
 

 

This is the author‘s version of a work that was 

published in the following source: 

 

Braun, M.; Dengiz, T.; Mauser, I.; Schmeck, H. 

(2016).  

Comparison of Multi-objective Evolutionary 

Optimization in Smart Building Scenarios .  

 

Applications of Evolutionary Computation 

(EvoApplications): 19th European Conference, 

Proceedings Part 1, Porto, Portugal, 30th 

March - 1st April 2016. Ed.: G. Squillero, 443-

458, Springer, Berlin.  

 

https://doi.org/10.1007/978-3-319-31204-0_29  

 

Please note: Copyright is owned by the 

author(s) and / or the publisher. The 

commercial use of this copy is not allowed. 

  

https://publikationen.bibliothek.kit.edu/1000063170
https://publikationen.bibliothek.kit.edu/1000063170
https://doi.org/10.1007/978-3-319-31204-0_29


 

1 
 

Comparison of Multi-objective Evolutionary 
Optimization in Smart Building Scenarios 

 

Marlon Braun1, Thomas Dengiz1, Ingo Mauser2, and Hartmut Schmeck1,2 

1 Karlsruhe Institute of Technology – Institute AIFB, 76128 Karlsruhe, Germany 

{marlon.braun,schmeck}@kit.edu, thomas.dengiz@student.kit.edu 

2 FZI Research Center for Information Technology, 76131 Karlsruhe, Germany  

mauser@fzi.de
 

 

 
Abstract. The optimization of operating times and operation modes of 

devices and systems that consume or generate electricity in buildings by 

building energy management systems promises to alleviate problems 

arising in today’s electricity grids. Conflicting objectives may have to be 

pursued in this context, giving rise to a multi-objective optimization 

problem. This paper presents the optimization of appliances as well as 

heating and air-conditioning devices in two distinct settings of smart 

buildings, a residential and a commercial building, with respect to the 

minimization of energy costs, CO2 emissions, discomfort, and technical 

wearout. We propose new encodings for appliances that are based on a 

combined categorization of devices respecting both, the optimization of 

operating times as well as operation modes, e.g., of hybrid devices. To 

identify an evolutionary algorithm that promises to lead to good 

optimization results of the devices in our real-world lab environments, we 

compare four state-of-the-art algorithms in realistic simulations: ESPEA, 

NSGA-II, NSGA-III, and SPEA2. The results show that ESPEA and 

NSGA-II significantly outperform the other two algorithms in our scenario. 
 
 

Keywords: Energy management system · Smart building · Evolution-ary 
algorithm · Multi-objective optimization 

 
 
1 Introduction 
 
In the face of a potential climate change that may be induced by man-made car-

bon dioxides, many countries started to change their power generation from fossil 

to renewable energy sources (RES). Coal-fired power plants are being replaced by 

plants emitting less carbon dioxide, such as wind turbines and photovoltaic (PV) 

systems that exploit solar radiation. Usually, their generation is intermittent and 

hardly controllable. This is already leading to high production peaks causing voltage 

problems and overloads in distribution grids as well as to periods with barely any 

generation by RES, meaning that almost all the needed power still has to be 

produced by conventional power generation [1]. 
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One way to deal with this problem of intermittent generation is to build 

additional energy storage systems that are able to balance the fluctuations out. 

Unfortunately, this is quite expensive, as for instance batteries, and often leads 

to public resistance, e. g., in case of pumped hydro storage plants. Another way 

would be a change in the central paradigm of power generation and 

consumption. At any time, the generation in the electricity grid has to be in 
balance with the consumption to keep the system stable. Currently, generation 

follows consumption in the energy system. This may change to consumption 

follows production by using measures of demand side management (DSM). 

DSM targets on the flexibilization of the traditional demand side of the power 

grid, which is nowadays also generating an increasing share of power, in 

particular by RES, and on increasing the self-consumption as well as self-

sufficiency of local energy systems [2].  
We consider the optimization of two different settings of smart buildings in a 

multi-objective context: one scenario consists of a smart residential building (SRB), 

the other scenario of a smart commercial building (SCB). In both scenarios, the 

operation times and operation modes of household appliances as well as heating, 

ventilation, and air-conditioning (HVAC) devices are optimized with respect to the 

minimization of energy costs, CO2 emissions, and technical wearout as well as to 

the maximization of comfort, i.e., minimization of dis-comfort. To optimize the 

appliances and devices, we propose novel encodings for appliances that have 

advantages over existing encodings, which have been used so far in the 

community. These encodings are based on a combined categorization of the 

appliances and devices that respects both, the optimization of operation times as 

well as the optimization of operation modes, e.g., of hybrid appliances. We compare 

four multi-objective evolutionary algorithms (MO-EA) on these scenarios—ESPEA 

[3], NSGA-II [4], NSGA-III [5], and SPEA2 [6]— that have either been applied 

successfully in past studies or appear to be suitable candidates for optimizing the 

scenarios found in smart buildings.  
Section 2 provides an overview of similar approaches to multi-objective 

optimization in energy management systems. In Sect. 3, the general approach, the 

modeling of devices, and the encodings of the devices in evolutionary algorithms 

are outlined. Section 4 presents the scenarios and setups that have been chosen 

to evaluate different algorithms for multi-objective optimization. The simulation 

results are analyzed and discussed in Sect. 5. We summarize and conclude the 

paper in the final Sect. 6 and provide an outlook on further research. 

 

2 Related Work 
 

There are numerous building energy management systems (BEMS) that have 
been used in simulations and in real-world environments. Usually, they are 
based on some kind of categorization of the devices to generalize and ease 
their optimization by deriving appropriate device representations. In the 
following sub-sections, we first present different device categorizations, before 
giving an overview of approaches to optimization in BEMS and showing some 
typical device representations. 
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2.1 Categorization of Devices in Buildings 
 
In the literature, there is a multitude of different device categorizations. For 

instance, Kok et al. [7] propose device categories that focus on the dimensions of 

when is it or may it be operated, e.g., stochastically or based on user interaction, and 

what is the constraint of operation, e.g., limiting buffer or storage.  
In contrast, Ha et al. [8] propose a categorization that focuses on the services 

that are provided by the devices. The first dimension is similar to the previous 

categorization and targets on time and availability (permanent services versus 

temporary or timed services). The second dimension distinguishes whether the 

service is provided directly to the user or whether it is an ancillary service only (end-

user services versus support services). The third dimension addresses the modifiability 

of the service by the BEMS (modifiable versus non-modifiable).  
Nestle et al. [9] add the differentiation whether it is load or generation, whereas 

Soares et al. [10] emphasize the potentials of control and modifiability by the BEMS 

by distinguishing uncontrollable, reparameterizable, interruptible, and shiftable 

loads. Mauser et al. [11] separate modifiability into two dimensions. The first 

dimension, which is called temporal degree of freedom, defines whether a device is 

deferrable or interruptible. The second dimension is called energy-related degree of 

freedom and defines whether a device has alternative profiles or is multivalent/hybrid, 

i.e., supports the utilization of different energy carriers. 

 

2.2 Heuristic and Multi-objective Optimization in Building Energy 
Management Systems 

 
Energy management systems have to optimize the energy consumption and 

generation iteratively to adapt them continuously to changing conditions and 

states. This process of reoccurring optimization in BEMS shall be executed on 

computers that have a low energy consumption and thus small memory space 

and low computation power. Therefore, heuristics promise to achieve this task 
of optimization efficiently and in particular evolutionary algorithms have been 

used quite often, for instance in [11–15]. Other approaches also use other 
meta-heuristics, e.g., particle swarm optimization [16, 17], to optimize the 

configuration [12] or the scheduling [11, 13–17] of devices.  
Usually, the optimization is done with respect to a single objective, which most 

of the time is the total costs. Nevertheless, there are also approaches taking other 

objectives into account that are not directly related to costs. For instance, De 

Oliveira et al. [18], who use a direct solver, consider economic costs and user 

comfort. Soares et al. [14] use a MO-EA, more precisely the genetic algorithm 

NSGA-II [4], to optimize the operation times of devices in a residential building with 

respect to energy costs and user satisfaction. Salinas et al. [19] develop their own 

MO-EA, which they call Load Scheduling With an (ǫ-Approximate) Evolutionary 

Algorithm. They optimize the device operation in multiple buildings with respect to 

the minimization of the total energy consumption costs and the maximization of 

usefulness, i.e., gross income of the overall community and comfort of individuals 

that living in it. They show that an approach that enforces diversity in the population 

leads to better results within shorter time. 
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2.3 Representation of Devices 
 
Allerding et al. [13] use a matrix of binary values determining the starting times of 

the devices as the representation of the optimization problem. Therefore, at minute 

resolution, the next 24 h are discretized to 1440 slots and every col-umn represents 

one minute. A similar approach has also been used by Zhao et al. [15], where the 

operation starting times of appliances and HVAC devices are optimized using a 

vector of binary strings that encodes the slot of the day, when the appliance with its 

fixed operation duration will be started.  
Mauser et al. [20] propose a more distinct approach to the encoding of the 

operating times of the devices in the genotypes: the overall optimization 

problem is represented by a bit string. Every device uses a dedicated part of 
the bit string for the individual encoding. The starting times of appliances are 

encoded as rel-ative times within the time window of optimization. Interruptible 

devices and devices with alternative load profiles, such as hybrid devices, are 

also supported by adding more bits to the bit string that determine the length of 

interrup-tions or enumerate the alternatives, respectively. The operating times 

of a micro combined heat and power plant (micro-CHP) are encoded as 
transitions of an automaton.  

Soares et al. [14] encode the starting times of the appliances in a string of 
integers, i.e., the overall problem is represented by a vector of integer values. 
The optimization horizon is set to the next 36 h and discretized to time slots of 
one minute. This approach is similar to Salinas et al. [19], who use a 
representation that uses a vector of real values. 

 

3 Approach and Modeling of Devices 
 

This section outlines the general approach, the categories for the devices used 
in this paper, the encodings of the devices in evolutionary algorithms, and the 
objective functions used in the optimization. 

 

3.1 General Approach 
 
The general approach of this paper to the optimization of devices in smart 
buildings is as follows: Firstly, we define several device categories and assign 
devices that are typically found in buildings to these categories. Then, we use 
a dedicated generic encoding for each category that fits the optimization of such 
devices. Finally, we distinguish several objectives that are usually conflicting 
and thus leading to a multi-objective optimization problem. 

 

3.2 Device Categories 
 
The device categories used in this paper are based on the categorizations in [11, 

20] and can be found in Table 1. Firstly, we identify whether the device is 

optimizable. Secondly, we distinguish whether an appliance has load-flexibility, 
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  Table 1. Proposed device categories.      
              

Category             
             

Load-flexibility  Interruptibility Description    Example      
      

Non-optimizable  Device may only be con- Hob, oven; PV system 

   trolled by the user        
         

None  (Yes) Starting time of the Traditional dishwasher, 

   device  may  be  opti- tumble dryer, washing 

   mized within a defined machine      

   period           
         

None  Yes Operation cycle of Interruptible dishwasher, 

   device may be split into tumble dryer, washing 

   one or more phases that machine; micro-CHP 

   are separated by pauses       
           

Yes  None Device has alternative Lighting, heat  pump, 

   load  profiles for the heating element; load- 

   same operation cycle flexible appliances   
        

Yes  Yes combination  of  the  two Air-conditioning,  gas- 

   above     fired  boiler; interruptible 

        load-flexible appliances 
              

 

 

i.e., alternative load profiles, and whether the device’s operation cycle may be 
deferred or may be even interrupted. Deferability is simply handled as a special 
form of interruptibility, which is limited to a single interruption at the very 
beginning of a possible operation cycle.  

In contrast to [11, 20], the micro-CHP, which is usually a gas-fired engine 
that generates electricity and hot water simultaneously, i.e., working as power 
generator and central heating, is modeled similarly to the appliances. The 
micro-CHP is a device having unlimited interruptibility but no load-flexibility, 
whereas the air-conditioning has not only unlimited interruptibility but also load-
flexibility in form of different cooling power levels.  

The flexibility of the devices is either limited to a temporal flexibility window that, 

in reality, would be set individually by a user per operation cycle or it is limited due 

to the capacity of an energy storage, such as a hot water storage tank. 

 

3.3 Device Modeling and Encoding 
 
Interruptible, load-flexible appliances form the basis of our modeling approach 
as all other device categories can be derived from them. For example, 
interruptible devices may be interpreted as interruptible, load-flexible devices 
that possess one operation mode only in every phase. Each device j possesses 

a user-provided earliest starting time, denoted by release time rj , and a latest 

finishing time, called deadline dj .  
Interruptible devices possess multiple phases of operation. The length of an 

individual phase i is denoted by p
j
i . We model interruptibility by associating 
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Fig. 1. Visualization of the encoding of interruptible devices. 
 
 

every phase with a decision variable s
j
i . Each s

j
i is an integer that states the time, 

at which phase i is executed. In contrast to other approaches, every s
j
i uses its 

earliest time of execution instead of the system time as reference point. Hence, s
j
i 

= 0 implies that phase i is started directly after phase i − 1. Figure 1 illustrates the 
approach. Constraint-handling is simplified using this encoding, since it is suffcient 

to check whether the last phase terminates before d
j
 . Different operation modes 

are modeled by integer encoding as well. For each phase i, the variable a
j
i 

represents the operation mode that is chosen.  
HVAC devices can be started an arbitrary number of times during the opti-

mization horizon. We incorporate this feature by introducing an integer encoded 

variable n
j
 that states the number of possible interruptions and thus opera-tion 

cycles. Minimum and maximum operation as well as minimum interruption time are 
implemented for HVAC devices limiting the number of feasible opera-tion cycles. 
We apply a thermodynamical model to describe the changes in room and boiler 
temperatures that considers heat losses, energy conversion efficiencies, and body 

heat dissipation
1
. Finally, lighting is modeled as an interruptible device with multiple 

operation modes reflecting different light intensities.  
Summarizing our approach, a single device is modeled using the decision 

variables listed below. Note that variables are omitted if they are not applicable 

for the given device and the sizes of sj and aj change dynamically depending 

on nj : 
 

𝑠𝑗  : vector of starting times for each individual phase 
𝑎𝑗: vector of operation modes for each phase  
𝑛𝑗  : number of operation cycles 

 
 
 

3.4 Objective Functions 
 
Our model considers a fixed, discretized time horizon for optimization. For the sake 

of clarity, most functions in this section only compute values at any time t. Self-

evidently, the objective values are obtained by summing up function values across 

all time slots. All objective functions in our model are minimized.  
 
1 A complete description of this model goes beyond the scope of this paper, but is 

available on request. 
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Energy costs are based on the electricity Pb (t) bought from the utility for a time-

variable price pb(t), the gas G(t) consumed at a fixed price pg per unit and the 

exceedance of a time-variable load limitation, which is penalized using a cost 

function S(t, Pb (t)). Excess energy generated by the PV system and the micro-

CHP is sold to the utility for Cf (t). Remuneration depends on the proportion of 

energy generated by the PV system and the micro-CHP, respectively. 
 

C(t) = pb (t) · Pb (t) − Cf (t) + pg · G(t) + S(t, Pb (t)). (1) 

 

Carbon dioxide emissions are related to the electricity that is consumed from 
the grid and to local gas consumption. A time-variable signal e(t) that depends 

on the current energy mix in the electricity grid determines the CO2 caused by 

consuming electricity from the grid. The constant eg describes the emissions 
per unit of gas consumed. 
 

E(t) = e(t) · Pb (t) + eg · G(t). (2) 

 

Thermal user discomfort occurs if the room temperature T(t) falls below a 

predefined lower threshold T l or exceeds an upper bound Tu. Otherwise, no 
discomfort occurs. 
 

DT (t) =  T l − T (t)  · 1T (t) < T
l+ (T (t) − Tu ) · 1T (t)>T

u . (3) 

 
Lighting user discomfort is modeled in the same manner as thermal discom-

fort. We also consider a lower bound Ll and an upper illumination threshold Lu 
. In our model, the current illumination level L(t) is the sum of daylight and 
artificial light. 

DL (t) =  Ll − L(t)  · 1L(t) < L
l + (L(t) − Lu ) · 1 L(t) > L

u . (4) 

 
Technical wearout is modeled as the number of total interruptions and thus 

start-ups across all HVAC devices. Let J H V AC denote the set of all HVAC 
devices. 

𝑊 = ∑ 𝑛𝑗𝑗∈𝐻𝑉𝐴𝐶   (5) 
 
Smart residential buildings are optimized with respect to total energy costs, 
carbon dioxide emissions, thermal discomfort, and technical wearout, whereas 
smart commercial buildings consider all five objectives, i.e., including lighting-
based user discomfort. 

 

4 Scenarios and Simulation Setup 
 
The simulation has been implemented in version 4.5 of the jMetal framework 

[21] and its code is publicly available on Sourceforge
2. All data that was used in 

the study is contained within the repository.   
2 http://sourceforge.net/projects/jmetalbymarlonso/. 

http://sourceforge.net/projects/jmetalbymarlonso/
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4.1 Scenarios 
 

We consider the seven scenarios in our study that are listed in Table 2. These 

scenarios reflect different challenges that potentially affect the effectiveness 
of the optimization effort. All SRBs comprise a washing machine, a tumble 
dryer, a dishwasher, a micro-CHP, a condensing boiler, and a PV system. 
Household appliances possess different operation modes as depicted in Table 
3. Temporal flexibilities are defined by release times and deadlines. The SCB 
possesses a micro-CHP, a condensing boiler, and a lighting system.  

Power consumption profiles of the appliances have been obtained from 
measurements in our laboratory environments. Real, existing products, which 
are listed in Table 4, served as blueprints for the simulated HVAC devices used 
in this study. Technical data was up-scaled for the commercial building scenario 
and missing data was amended by our own considerations.  

Floor spaces and ceiling heights were set to 130 m2 and 2 m (SRB) and 900 

m2 and 3 m (SCB), respectively, taking German legislation for occupational 
safety into consideration. Outside temperatures have been extracted from the 
online weather portal wetter.com at an hourly resolution. Measurements were 
taken in Karlsruhe (in case of the SRB) and Freiburg (CB). Solar radiation data 
is depicted in Fig. 2.  

The German standard load profiles of households H0 (SRB) and small enterprises 

G1 (CB) provided by the German Association of Energy and Water Industries (BDEW) 

served as estimates for the load of non-deferrable appli-ances. Time-variable electricity 

prices correspond to those employed in the project iZeus [22]. We used the same load 

limitation signal as employed by Allerd-ing et al. [13]. The penalty for exceedance was 

set as paying twice the current price. A natural gas price of 9.16 Cents per kWh was 

chosen, which reflect current tariffs in Germany. Feed-in tariffs are based on the 

German Renewable Energy Act with 12.56 Cents per kWh for PV systems and 8.53 

Cents per kWh for micro-CHPs. CO2 emissions of power obtained from the grid is based 

on data from the Fraunhofer 

 

Table 2. Overview of the scenarios examined. 
 

Scenarios Building type Date Optimization horizon 
     

RW1 - RW3 Smart residential building 7 January 2015 00:00 – 23:59 
     

RS1 - RS3 Smart residential building 4 June 2015 00:00 – 23:59 
    

CB Smart commercial building 13 March 2014 07:00 – 19:00 
     

 
Table 3. Household appliances flexibility. 

 
 RW1/RS1 RW2/RS2 RW3/RS3 Temporal flexibility 
     

Washing machine deferrable interruptible deferrable and load-flexible 08:00 – 17:00 
     

Tumble dryer deferrable interruptible interruptible and load-flexible 18:00 – 21:00 
     

Dishwasher deferrable interruptible interruptible and load-flexible 10:00 – 18:00 
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Table 4. Technical data of HVAC devices and lighting. 

 

 Appliance Product Manufacturer  
          

 Micro-CHP ecoPOWER 1.0 Vaillant  

 Condensing boiler Logamax plus GBH172 Buderus  

 Hot water storage tank VITOCELL 100-E Viessmann  

 Lighting SP482P Philips  
          

          

          

          

          

          

          

          
 
 
 
 

 
Fig. 2. Solar radiation obtained from measurements in our laboratory environments. 
 

 

Institute of Solar Energy3. Hot water consumption profiles were obtained from 

Directive 2010/30/EU of the European Commission4 and data for computing 
the visual comfort was taken from Reinhart et al. [23, p. 176]. Lower and upper 

bounds for temperature and lighting were set to 19.5◦ C and 20.5◦ C (January), 

21.5◦ C and 22.5◦ C (June), and 20.5◦ C and 21.5◦ C (March), and 750 Lux and 
1000 Lux, respectively. 

 

4.2 Algorithms and Settings 
 
We chose four different state-of-the-art evolutionary algorithms for optimizing 
the presented scenarios. All algorithm configurations were taken from their 
original publications if not stated otherwise.  

NSGA-II’s capability of solving problems in energy informatics has been 

demonstrated in several publications [14, 24], making it an ideal candidate for 

this study. The algorithm uses non-dominated sorting to rank its population of 

solutions into different tiers of non-dominated fronts for deciding which solutions 
prevail to the next generation. The selection mechanism is amended by the 

crowding distance metric if a front cannot be fully accommodated in the next 

generation. Crowding distance is a density measure that quantifies the volume 

of the smallest cuboid than can be circumscribed around a solution without 

enclosing any other members of the current front.   
3 https://www.energy-charts.de/power de.htm.  
4 http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32013R0812.  

https://www.energy-charts.de/power_de.htm
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32013R0812
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The successor to NSGA-II is the NSGA-III algorithm that is specifically 
tailored to solve problems in three and higher dimensions. It uses reference 

points instead of crowding distance as diversity preserving mechanism. 

Objective values are normalized using extreme solutions and the currently best 

estimate of the utopia point. Reference points are projected on the hyperplane 

spanned by the translated extreme solutions. Solutions are associated with the 

reference point to which their Euclidean distance of the line between origin and 
reference point is minimal. Solutions are selected such that they are equally 

distributed over all reference points. Equidistant reference points from Deb and 

Jain [5] were chosen for this study.  
SPEA2 has also been successfully applied in solving problems in energy 

informatics. The algorithm maintains a fixed-sized archive of solutions. The 
archive is trimmed using environmental selection, whereas fitness values are 
computed by combining the number of population members that a solution 
dominates and its distance to the k-nearest neighbour.  

The recently developed steady-state ESPEA has exhibited excellent results 

on many popular artificial benchmark problems [3], which is why it was chosen 

for this study. It mimics the physical phenomenon of electrostatic potential 
energy by finding a Pareto front approximation that minimizes the overall sum 

of all pairwise inverse distances between individual solutions in the objective 

space. For this purpose, the algorithm maintains a variable-sized archive of 

non-dominated solutions. After the archive has reached its maximum size, a 

new solution can only replace an existing archive member if the replacement 

reduces the sum of pairwise inverse distances.  
All algorithms were run using a population size of 100. Each run was 

terminated after 50,000 function evaluations. Binary crossover and bit flip 
mutation were applied as genetic operators. A crossover probability of 0.9 and 
a mutation probability of one by the number of decision variables were chosen. 
Every algorithm was run 100 times on each respective scenario. 

 

5 Results and Discussion 
 

Our analysis is divided into two parts. We first assess how the selected 
algorithms perform in finding a representative approximation of the Pareto front 
of the different problem scenarios. The second part concerns itself with how 
well the multi-objective approach is suited to achieve individual objectives by 
comparing extreme solutions. The temporal resolution was set to 60 s in the 
first and one second in the second part of the analysis. 

 

5.1 Median Performance Evaluation 
 
We use the hypervolume [25] and the inverted generational distance (IGD) [26] to 

evaluate performances, since the two indicators capture both diversity and 

convergence. Both indicators were computed for every final population of each 

algorithm and run. Hypervolume measures the space that is covered by the 
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Table 5. Hypervolume. Medians and inter-quartile ranges.  

 
 ESPEA NSGA-II NSGA-III SPEA2 
    

    

RW1 2.72E − 015.5E−02 2.42E − 015.3E−02 1.67E − 015.8E−02  2.37E − 015.8E−02 

RW2 2.69E − 014.3E−02 2.42E − 013.4E−02 1.77E − 015.0E−02 2.52E − 014.0E−02 

RW3 2.68E − 013.8E−02 2.37E − 012.8E−02 1.78E − 015.6E−02 2.51E − 014.3E−02 

RS1 3.97E − 014.5E−02 3.98E − 012.5E−02 2.91E − 011.2E−01  3.90E − 012.6E−02 

RS2 4.61E − 013.6E−02 4.59E − 012.0E−02 3.53E − 011.5E−01 4.48E − 014.1E−02 

RS3 3.77E − 013.7E−02 3.77E − 012.7E−02 2.79E − 019.6E−02 3.68E − 013.3E−02 

CB 2.45E − 011.8E−02 2.30E − 011.5E−02 4.39E − 023.8E−02  2.04E − 013.1E−02 
     

 
 

 

Pareto front approximation with respect to a given reference point, so a larger value 

is considered to be superior. The IGD indicator is computed by discretizing the 

Pareto front in a finite set of points and calculating the minimum distance of each 

said point to the Pareto front approximation. The average of all distances yields the 

IGD value, which makes smaller values preferable. Since the true Pareto fronts of 

all problem instances are unknown, reference fronts were created by combining the 

non-dominated solutions from all individual runs. Objective values were normalized 

before indicator values were calculated.  
An Anderson-Darling test rejected the hypothesis of normal distribution for both 

indicator values across all scenarios, which is why we report medians and inter-

quartile ranges. Table 5 shows medians and inter-quartile ranges (as sub-scripts) 

of the hypervolume indicator across all 100 runs. Best and second-best median 

performances are colored in dark and light gray, respectively. We observe that 

ESPEA and NSGA-II exhibit the overall largest hypervolumes. SPEA2 is only able 

to achieve two second-best performances and NSGA-III obtains no best or second-

best performance. Performance differences were checked for significance using a 

Kruskal-Wallis test in combination with a post-hoc analysis. Significant differences 

between NSGA-II and ESPEA could be confirmed for scenarios RW2, RW3 and 

OB. Since the differences for scenario RS1 and RS3, in which NSGA-II outperforms 

ESPEA, were not found to be significant, we can draw the conclusion that ESPEA 

achieves the overall best performance with respect to the hypervolume indicator.  
A similar pattern can be observed for the IGD indicator, whose results are 

displayed in Table 6. ESPEA and NSGA-II again nearly achieve all best and 
second-best performances. ESPEA even outperforms NSGA-II on all scenarios 
with the exception of the commercial building. Performance differences 
between both algorithms were found to be significant with the exception of the 
scenarios of the residential buildings in summer.  

The values in Tables 5 and 6 support the conclusion that all algorithms are 

capable of finding good approximations of the Pareto fronts. This enables users to 

choose a schedule among multiple balanced options that serves their interests 

best. However, at the same time, we observe that significant performance 

differences exist among the algorithms analyzed in this study. Table 7 provides a 
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summary of the significant performance differences that are observed in the 
data. The numbers support our previous analysis that ESPEA is the top 
performing algorithm closely followed by NSGA-II.  

We believe that the performance differences observed can be explained by the 

algorithms’ selection mechanisms. The smart building optimization problem as 

presented in this study is discrete. Reference point based methods such as NSGA-

III, although tailored for high dimensional problems, may struggle to find a diverse 

approximation of the Pareto front. Points of the Pareto front might be unequally 

distributed, which could make an association with reference points that span the 

entire front an unfavorable density estimate. The objective space being discrete 

might also impair SPEA2’s environmental selection mechanism as k-nearest 

distances are largely affected by the density of points along each objective. 

Crowding distance based selection mechanisms are known to perform poorly in 

higher dimensions [27]. NSGA-II’s good results can be explained, however, by very 

small differences in objectives being less probable to occur. Marginal differences 

distort the crowding distance metric, as absolute differences to neighboring 

solutions are multiplied along each dimension. ESPEA’s selection mechanism, on 

the other hand, is not negatively affected by discrete objective spaces, which is 

reflected by the results. 

 

5.2 Comparison of Extreme Values 
 
Increasing the temporal resolution to one second gives us a clear picture of the 

greatest improvements that can be achieved using optimization techniques. Tables 

8 and 9 list the minimum values that were achieved for each objective and 

algorithm. Best and second-best performances are again colored in dark and light 

gray. Colorings are omitted if best and second-best performances are tied. 

Technical wearout is not deeper considered in this analysis, since optimal values 

are easily achieved and resulting objective vectors are highly dissimilar.  
ESPEA and NSGA-II are again the best performing algorithms. At the same time 

however, the results of NSGA-III and SPEA2 greatly improve. This could be 

attributed to the higher temporal resolution, which is expected to increase the 

density of points in the objective space. We can also observe a clear difference 

 

Table 6. IGD. Medians and inter-quartile ranges.  
 

 ESPEA NSGA-II NSGA-III SPEA2 
    

    

RW1 2.31E − 032.5E−03 4.24E − 031.3E−03 6.18E − 031.8E−03  4.74E − 038.1E−04 

RW2 2.34E − 032.0E−03 4.07E − 037.9E−04 6.10E − 032.4E−03  4.16E − 038.2E−04 
    

RW3 2.33E − 032.1E−03 4.20E − 035.6E−04 6.13E − 032.3E−03  4.34E − 039.0E−04 

RS1 3.38E − 031.1E−03 3.51E − 036.8E−04 5.93E − 032.8E−03  4.34E − 038.4E−04 
     

RS2 3.40E − 038.3E−04 3.44E − 035.2E−04 5.53E − 032.7E−03 4.06E − 036.8E−04 

RS3 3.44E − 038.6E−04 3.72E − 035.0E−04 6.43E − 033.4E−03 4.40E − 039.3E−04 

CB 2.03E − 032.5E−04 1.81E − 031.1E−04 4.57E − 039.9E−04 1.96E − 031.6E−04 
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Table 7. Summary statistics for the hypervolume and IGD indicators. The number in each 

column states how many times the corresponding algorithm outperforms other 
algorithms with confidence across all scenarios and indicators at a five percent level. 
 

 ESPEA NSGA-II NSGA-III SPEA2 
     

Performance 28 24 0 14 
     

 
Table 8. Extreme solutions of RW and RS scenarios. Each cell entry is composed of the 
tuple costs, emissions, thermal discomfort, and wearout.  
 

  Costs CO2  emissions Thermal discomfort 
    

    

RW1 ESPEA (1803, 44165, 1.94, 3) (1833, 44126, 1.94, 3) (2039, 49935, 0.0, 3) 

 NSGA-II (1818, 44548, 1.85, 4) (1838, 44418, 1.91, 4) (2044, 49982, 0.0, 4) 

 NSGA-III (1835, 44560, 1.88, 5) (1837, 44535, 1.88, 5) (2060, 50319, 0.0, 4) 

 SPEA2 (1824, 44757, 1.86, 4) (1845, 44651, 1.91, 4) (2022, 50061, 0.0, 4) 
    

    

RW2 ESPEA (1800, 44062, 1.94, 4) (1825, 44045, 1.94, 4) (2091, 52415, 0.0, 3) 

 NSGA-II (1805, 44231, 1.92, 4) (1819, 44207, 1.93, 4) (2020, 49979, 0.0, 4) 

 NSGA-III (1818, 44529, 1.91, 5) (1824, 44525, 1.91, 5) (2030, 50167, 0.0, 5) 

 SPEA2 (1815, 44494, 1.87, 4) (1833, 44429, 1.89, 5) (2024, 50095, 0.0, 4) 
    

    

RW3 ESPEA (1809, 44392, 1.90, 3) (1822, 44378, 1.90, 3) (2015, 49912, 0.0, 3) 

 NSGA-II (1797, 44103, 1.93, 4) (1818, 44086, 1.93, 4) (2012, 49841, 0.0, 3) 

 NSGA-III (1817, 44624, 1.86, 4) (1817, 44624, 1.86, 4) (2046, 50645, 0.0, 4) 
 

SPEA2 
   

 (1801, 44174, 1.93, 4) (1835, 44032, 1.94, 4) (2023, 50095, 0.0, 4) 
     

     

RS1 ESPEA (-119, 6224, 3.38, 3) (-119, 6224, 3.38, 3) (374, 14650, 0.05, 6) 

 NSGA-II (-137, 5713, 3.52, 3) (-137, 5713, 3.52, 3) (363, 14106, 0.06, 6) 

 NSGA-III (-104, 6551, 3.49, 4) (-104, 6551, 3.49, 4) (310, 13935, 0.38, 7) 
 

SPEA2 (-119, 6195, 3.57, 3) 
  

 (-119, 6195, 3.57, 3) (364, 14182, 0.06, 5) 
     

     

RS2 ESPEA (-183, 4479, 4.03, 4) (-183, 4479, 4.03, 4) (330, 13558, 0.08, 6) 

 NSGA-II (-122, 6125, 3.50, 3) (-122, 6125, 3.50, 3) (412, 15282, 0.10, 8) 
    

 NSGA-III (-150, 5363, 3.82, 4) (-150, 5363, 3.82, 4) (334, 13733, 0.09, 6) 

 SPEA2 (-113, 6354, 3.54, 3) (-113, 6354, 3.54, 3) (356, 14148, 0.11, 5) 
     

     

RS3 ESPEA (-110, 6445, 3.30, 3) (-110, 6445, 3.30, 3) (318, 13706, 0.11, 7) 

 NSGA-II (-114, 6373, 3.27, 3) (-114, 6372, 3.41, 3) (333, 13868, 0.05, 6) 
    

 NSGA-III (-122, 6095, 3.58, 3) (-122, 6095, 3.58, 3) (306, 13571, 0.24, 6) 

 SPEA2 (-118, 6262, 3.47, 3) (-118, 6262, 3.47, 3) (298, 13273, 0.21, 6) 
     

 
 

 

between the summer and winter scenarios. The PV system makes the 
residential household a net power supplier, as it provides more power than the 
household consumes. This circumstance leads the minimum cost and 
minimum emission solutions to coincide in summer, which demonstrates that 
private PV systems may reconcile those two conflicting objectives.  

The comparison of summer and winter scenarios reveals that the additional 
degree of freedom provided by interruptible and load flexible appliances leads 
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Table 9. Extreme solutions of scenario CB. Each cell entry is composed of the tuple costs, 
emissions, thermal discomfort, visual discomfort, and wearout.  
 

 Costs CO2  emissions 
   

   

ESPEA (4800, 127197, 3.45, 99.8, 3) (5235,  99613, 3.36, 99.0, 6) 

NSGA-II (4848, 128521, 3.40, 98.5, 2) (5213, 112008, 3.32, 98.5, 5) 

NSGA-III (5288, 140215, 3.14, 35.7, 4) (5364, 138639, 3.14, 20.0, 4) 

SPEA2 (4880, 128856, 3.41, 96.1, 4) (5371, 116884, 3.30, 97.1, 8) 
   

 Thermal discomfort Visual discomfort 
   

ESPEA (7095, 189775, 0.3, 99.0, 3) (6338, 160802, 1.78, 0.00, 2) 

NSGA-II (7546, 192995, 0.3, 0.00, 3) (7508, 200388, 0.31, 0.00, 3) 

NSGA-III (7475, 199820, 0.3, 6.60, 4) (7475, 199820, 0.30, 6.60, 4) 

SPEA2 (7389, 196964, 0.3, 28.8, 4) (5473, 144760, 2.79, 27.5, 4) 
   

 

 

in most cases to an improvement in objective values. Consumption flexibility is 

therefore suitable to reduce costs and emissions, while raising comfort at the 
same time. Such an improvement, however, cannot be confirmed for all 

scenarios. We believe that deteriorating objective values that have been 
observed in some cases are caused by the additional complexity introduced by 
increasing the search space. We believe that focusing the search from the 

beginning on identifying tradeoff solutions that balance objective values, for 
example by applying methods from [28], might remedy this situation. 

 

6 Conclusion and Outlook 
 

We have presented a new approach of formulating a smart building multi-
objective optimization problem. Our formulation introduces device encodings 
that allow for the generic modeling of interruptible and load-flexible appliances 

and make constraint satisfaction easier to achieve. Our computational study 
has revealed that current multi-objective evolutionary algorithms are able to 

compute representative approximations of the Pareto front and approximate 
extreme solutions alike. Among the four tested state-of-the-art algorithms, 

ESPEA and NSGA-II delivered the overall best results.  
Future research may focus on developing specialized genetic operators and 

repair mechanisms tailored to our device encodings for improving MO-EA per-
formances. Additionally, further focus can be placed on identifying tradeoff 
solutions that balance objective values.  

An implementation of a multi-objective evolutionary algorithm based on the 
results in this paper will be transferred to the building energy management 
system in our laboratory environments and tested with real test users. This will 
help verifying the results obtained in the present analysis. 
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