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CHAPTER1
Introduction

1.1 Motivation
The treatment of atrial fibrillation (AFib) has received significant attention for several
decades, since this arrhythmia still represents the most common sustained heart rhythm
disturbance for humans [1]. Considering the European Union, a total of 8.8 million patients
were estimated to suffer from AFib in 2010, being projected to about 19.7 million in 2060.
Similar values were obtained for the United States of America, indicating a doubling of AFib
patients up to 2050 [2]. Both prevalence and associated costs have been subject of several
studies. Analysis of a European study group quantified the lifetime risk for developing AFib
to 23% for women and even 25% for men [3]. This leads to an immense financial burden on
health care systems, estimated up to 26.0 billion US dollar per year for the United States
alone [4].

Although AFib is not lethal itself, it is associated with several severe comorbidities.
Most importantly, a 34 year follow-up study including 5,070 participants identified AFib to
independently increase the risk of cerebral stroke over all age groups up to five times [5].
Stroke associated with AFib was linked to prolonged hospital stay, disability and the need for
long term care [1]. This emphasizes the relevance of AFib, both for each individual affected
patient and on the socio-economic scale.

But despite intense efforts in research, the mechanisms underlying AFib are still poorly
understood, and optimal treatment strategies are lacking. Catheter ablation is typically
applied if pharmacological treatment is not effective. But considering the persistent state
of AFib, current studies on ablation outcome report a success rate of less than 60% in the
18 month follow up [6, 7]. Even if AFib is successfully terminated by ablation, conversion
into atrial flutter (AFlut) was reported in up to 31% of cases [8]. Considering this consecutive
tachycardia, it is often reported as very symptomatic and difficult to treat due to a very
complex cardiac substrate.

Catheter ablation of both AFib and AFlut is performed in the scope of an electro-
physiological (EP) study. During the last years, tremendous advances have been achieved

1



2 Chapter 1. Introduction

with respect to the available diagnostic devices, particularly mapping systems and catheters.
Common catheters were designed to record up to 20 simultaneous electrograms from within
the heart, providing information about the cardiac depolarization. Two additional types
were brought to the market, each equipped with 64 electrodes. One model is referred to as
panoramic basket, as it is configured to acquire electrograms from distributed locations of
the complete atrium. A smaller mini-basket arrangement is suitable for local high-density
mapping. These recording devices can be combined with novel mapping systems, which can
be used to generate a virtual cardiac anatomy and allow to acquire thousands of measuring
points in the heart within minutes [9].

The resulting amount of data, however, makes simultaneous visual assessment a chal-
lenging task for any treating physician. But even in state-of-the-art mapping systems, only
few common methods are available for automatic signal analysis, making appropriate data
evaluation the bottleneck in the extraction of diagnostically relevant information.

Following the notion, that only joint research of engineers and physicians could tackle
the riddle of complex tachycardias, the Städtisches Klinikum Karlsruhe and the Institute
of Biomedical Engineering at the Karlsruhe Institute of Technology decided to organize
the workshop Atrial Signals 2015. Renown experts from both fields were invited, and this
very combination contributed to a unique and inspiring atmosphere, to which over 200
international participants were welcomed. The author was part of the organizing committee
and had the chance to discuss new ideas with the leading experts of the scientific community.
Following two days of intensive discussion, all participants agreed that the analysis of
intracardiac electrograms is a fundamental cornerstone in the understanding of cardiac
arrhythmias and the design of patient-specific treatment strategies.

The need for corresponding signal analysis techniques motivated the research presented
in this thesis. In close collaboration with clinical physicians, cardiac events and parameters
were identified which are relevant for treatment. These experience-based ideas from the
medical field were reformulated as engineering problems and addressed with the goal of
finding a potentially automatic solution. Simulations of cardiac activity were utilized to verify
and benchmark new processing techniques, before they were applied to clinical data. All
techniques were designed to avoid inappropriate simplification of the analyzed mechanisms.
Concluding, a system was developed for the direct clinical application of novel analysis
algorithms, allowing to rapidly gain feedback about the diagnostic value of analysis results
and their visual representation.

The signal processing techniques presented in this thesis help to comprehend the spatio-
temporal relationships in cardiac excitation, and to detect and statistically assess events of
diagnostic relevance. They will hopefully provide means to understand the mechanisms of
AFib, and aid in designing patient-specific treatment strategies for supraventricular tachycar-
dias like AFlut or AFib with improved success rate.
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1.2 Aims of the Thesis
The options to analyze intracardiac mapping data are nearly unlimited. Based on their clinical
significance for EP studies, some specific issues were selected as research topics. The joint
analysis of several thousand recorded signals was addressed to elucidate the mechanisms
behind AFlut. The appropriate assessment of panoramic mapping data was considered
due to the unique diagnostic possibilities of simultaneous electrogram acquisition. It was
also closely related to the development of methods for statistical analysis of depolarization
patterns.

Considering these topics, four major goals were addressed during the presented research:
• Develop algorithms to focus physicians’ attention on the critical site of atrial flutter
• Develop techniques which help to identify and analyze the excitation pattern during

complex atrial tachycardias as AFib
• Evaluate the diagnostic potential of basket-type catheters
• Bring novel analysis techniques into the clinical environment

1.3 Structure of the Thesis
Part I summarizes the medical and mathematical fundamentals:
◦ Chapter 2 recapitulates clinical information about the two atrial arrhythmias AFlut

and AFib, their diagnosis, mechanisms, and treatment options. It also provides an
overview about diagnostic devices and computational modeling.
◦ Chapter 3 outlines basic mathematical concepts for the analysis of intracardiac data

and concepts of classification.

Part II outlines the methods for data processing and visualization which were applied or
developed during this thesis:
◦ Chapter 4 describes the concept of computational catheter models and how their

deformation can be simulated.
◦ Chapter 5 demonstrates processing steps for the initial filtering of electrogram data.
◦ Chapter 6 depicts the preprocessing steps which are required to prepare the geometry

of the atrial chamber and to assess spatial information about the catheter position.
◦ Chapter 7 discusses special filtering techniques for the removal of ventricular far

fields in intracardiac electrogram data.
◦ Chapter 8 reflects the concept of activation time assignment, its relation to phase and

different interpolation techniques.
◦ Chapter 9 demonstrates alternative concepts for visualizing the time-dynamic process

of cardiac excitation when annotation of the activation time is not unambiguous.
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◦ Chapter 10 describes the method which was used to model AFlut. Both the simulation
of documented cases of AFlut is addressed, as well as the virtualization of actually
measured clinical cases.
◦ Chapter 11 continues with an overview of techniques which were developed to aid in

the diagnosis of AFlut. They were benchmarked using the simulated flutter scenarios
and annotated clinical data.
◦ Chapter 12 summarizes different techniques for the analysis of electrograms measured

during AFib.
◦ Chapter 13 describes the assessment of morphological and temporal patterns in single

and multichannel electrogram data.
◦ Chapter 14 concludes this part by addressing the requirements of applying the intro-

duced techniques in a clinical context.

Part III demonstrates how the previously outlined means can be used to address diag-
nostically relevant issues:
◦ Chapter 15 presents an evaluation of the coverage of panoramic basket catheters, and

assesses the field of view of the mini-basket catheter.
◦ Chapter 16 demonstrates the identification of dominant excitation patterns. It is

applied in the analysis of ectopic activity observed in biatrial basket catheter mapping
data.
◦ Chapter 17 subsequently discusses potential advantages as well as pitfalls during

mapping with panoramic basket-type catheters.
◦ Chapter 18 describes the application of the previously introduced algorithms to extract

diagnostically relevant information in the analysis of clinical cases of AFlut.
◦ Chapter 19 addresses the region-specific distribution of fractionation before and after

pulmonary vein isolation.
◦ Chapter 20 provides an example for the analysis of dominant patterns in high-density

mapping data acquired during atrial fibrillation.

Chapter 21 summarizes the thesis, draws conclusions from the achieved results and
motivates specific fields for future research.

During the last four years, the author contributed to six published journal papers, with
two more being currently under review or preparation. He presented his ongoing research at
nine conferences, in three invited talks, and co-authored another 18 conference contributions
with five additional being currently under review. The author was awarded the first price
as young investigator by the International Society of Electrocardiology in 2014. Besides
his own research, the author supervised 16 student theses which partly form the basis of the
work presented here (compare Chapter List of Publications and Supervised Theses).
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CHAPTER2
Clinical Fundamentals

2.1 Anatomy and Physiology of the Heart
Cardiac anatomy and circulatory function The heart is a muscular organ which pumps
blood through the human body. Its primary purpose is to supply all organs with oxygen,
nutrients, and to deliver and collect various other substances. Located in the middle medi-
astinum, it is anatomically optimized for this purpose by a division into four chambers, being
two atria and two ventricles. The directed flow of blood from the atria to the ventricles and
into subsequent vessels is assured by specific unidirectional valves. Right and left side of the
heart are separated by the interatrial and interventricular septum, respectively. On either side,
the atrium supports the pumping function of the ventricle by passively collecting blood and
then actively pressing it into the ventricles [10].

Figure 2.1: Cardiac anatomy. Major atrial structures and vessels are annotated. The heart is shown in
posterior view. From [11].

.
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8 Chapter 2. Clinical Fundamentals

Deoxygenated blood from the systemic circuit enters the right atrium (RA) through
the superior and inferior venae cavae, and is pumped through the tricuspid valve (TV) into
the right ventricle. From there it is injected into the pulmonary circulation, where it is
oxygenated again. Coming from the lung, the blood is collected via the pulmonary veins
(PVs) in the left atrium (LA), flows through the mitral valve (MV) into the left ventricle
and is finally pumped into the systemic circuit towards all organs. Within one cardiac cycle,
about 80 ml of blood are transported towards the organs. The cardiac anatomy including
major vessels is depicted in Figure 2.1. The coronary sinus (CS) is surrounding the posterior
wall of the LA on the level of the valvular plane. This vessel drains the myocardium into the
RA and is of particular importance for electrophysiological studies, as a catheter is typically
placed in the CS as stable reference for timing and spatial localization [12].

The cardiac wall is formed by myocytes, which can contract and thus perform the
actual pumping function. Corresponding to the respective pressures, the wall of the left
ventricle is strongest. Myocardium of RA and LA are significantly thinner, ranging about
1 to 3 mm [13]. While the endocardial part of the wall is in contact with the blood, the
epicard is surrounded by the pericard. The electrophysiology of mycodardial cells will be
addressed in the following.

Cellular electrophysiology The membrane of myocardial cells separates the intracellular
and the extracellular space. Specific channels control the transition of ions through this
boundary, with particularly Na+, K+ and Ca2+ being of interest for cellular electrophysiology.
At rest, a potential difference of about -80 mV is uphold accross the cellular membrane,
being known as transmembrane voltage (TMV) [12].

When cardiac myocytes are excited by an external stimulus, TMV increases slowly until
a level of -60 mV is reached. Exceeding this threshold triggers an action potential (AP), as
depicted in Figure 2.2. First, a rapid depolarization sets in, caused by an opening of Na+

channels and subsequent influx of these ions. This results in an overshot of the TMV and an
inactivation of the Na+ channels (phase 1). Subsequently, channels open which permit the
influx of Ca2+. This prolongs the depolarized state of the cell (phase 2). Finally, the cell is
repolarized again by an outward current of K+ (phase 3) until the resting TMV is reached
(phase 4). During its repolarized state, triggering of a subsequent AP is not possible. This
time is referred to as refractory state. Mechanical contraction of the myocard is caused by an
increase of Ca2+ concentration in the intracellular space, resulting from both the influx from
the extracellular space and a release of Ca2+ from the sarcoplasmic reticulum [10].

The initial stimulus for depolarization can be generated in four major ways. Some atrial
structures, like the sinus node, contain cells which do not have a stable resting potential.
Instead they are self-depolarizing, triggering cardiac depolarization in regular intervals. If
excitation is originating from the sinus node, this is refered to as normal sinus rhythm
(NSR). Also other parts of the heart exhibit this behavior, like the atrio-ventricular node or
the Bundle of His. These act as secondary pace makers and set in if the NSR is too slow.
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Figure 2.2: Ion channel conductivities and action potential. A schematic of the time-dependent conduc-
tivities for themost important ion channels sodium (Na+), potassium (K+) and calcium (Ca2+) is shown
on the left. The resulting action potential is shown on the right, comprising a rapid upstroke, a plateau,
repolarization and rest. From [11].

.
APs of most cells, however, is triggered by the depolarization of neighboring myocytes.

This is possible via so-called gap junctions, which form non-specific ion channels and thus
provide an intercellular coupling. All cardiac cells are electrically coupled this way, forming
an electrical syncytium. Once a stimulus is triggered anywhere in the heart, depolarization
is propagated from one cell to the next by intercellular currents via this connection. From
a macroscopic point of view, the speed with which the resulting depolarization pattern
propagates is termed conduction velocity (CV). During NSR, the earliest point of activation
can be found in the RA, next to the superior vena cava (SVC) ostium. This is the location
of the sinus node. Subsequently, excitation spreads over both atria and reaches the atrio-
ventricular node. Besides its auto-rhythmicity, this structure also delays the excitation before
propagating it to the ventricles in order to optimize hemodynamics. Right and left bundle
branches represent fast conducting parts of the ventricular conduction system and forward
the excitation to the apex, from which ventricular depolarization begins [10]. The field
resulting from the cardiac depolarization and repolarization processes can be measured as
electrocardiogram (ECG) on the body surface.

Two further ways of triggering an action potential are common. Some regions exhibit
a pathologically unstable resting potential, and thus act as ectopic centers. This can cause
cardiac arrhythmias as outlined in the following chapters. Last, also artificial pacing can be
performed. On the one hand, it is utilized as therapeutic measure by pace makers, which
trigger cardiac activity during bradycardia. On the other hand, it can also be generated by
a stimulation catheter during diagnostic procedures. In this case, the reaction on specific
pacing sequences is of interest to verify the completeness of electrical isolation or to assess
conduction properties.
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2.2 Cardiac Arrhythmias
2.2.1 Atrial Fibrillation
Atrial fibrillation (AFib) is the most common heart rhythm disorder with a prevalence of 1 -
2% of the total population. It is a supraventricular tachycardia characterized by a complete
loss of regular atrial activity. As it affects morbidity and mortality it is a major growing
expense for the health care system [14, 15]. Risk factors are increasing age, male sex, diabetes
mellitus, high blood pressure, myopathy and structural heart disease [16]. According to the
duration of it’s episodes, it is subclassified in paroxysmal, persistent, long standing persistent
and permanent AFib [17]. AFib is the primary indication of over 350,000 hospitalizations in
the US per year, resulting in total expenses of 26 billion US dollar annually [1].

Pathophysiological mechanisms The pathophysiology of AFib is complex and not yet
completely understood. Genetic predisposition, structural modification and fibrotic inclu-
sions, progression of cardiac diseases, inflammation, dysfunction of the autonomic nervous
system paired with electrophysiological abnormalities of the atria and PV, favor the initiation
and sustaining of fibrillation. Different studies have shown evidence for several (in parts
contradicting) theories.

Multiple Wavelet Hypothesis The multiple wavelet hypothesis was introduced by Moe
et al. in the late 1980s, stating that AFib is generated by parallel existing microreentry cir-
cuits in the atria [18]. The fibrillatory areas are self sustaining depending on CV, shortened
refractory periods and increased atrial volume. Based on this model, the maze operation for
therapy of AFib was generated [19].

Focal Sources Focal sources triggering episodes of atrial fibrillation could be identified
using catheters. Haissaguerre was the first to demonstrate, that focal triggers originating from
the PVs could initiate AFib [20]. Ablation of these focal sources terminated AFib [20, 21].
These studies are accepted as proof that AFib can be triggered by focal sources and are the
rationale for current ablation strategies like the pulmonary vein isolation (PVI) [22–26] or
other strategies targeting triggers outside the PVs [27].

Rotors The concept of rotors generating spiral waves was introduced by Krinsky [28]
and Winfree [29] and the first experimental demonstration of a spiral wave was made in a
sheep model by Davidenko [30]. The term rotor has become a household name and stands for
a functional reentrant activity. Once initiated, rotors will spin at very high rates to generate
electrical turbulence (fibrillatory conduction) [31]. The localized source hypothesis combines
the theory of rotors and focal impulses, that activate rapidly enough to cause disorganized
AFib. Recently Narayan et al. [27] could visualize rotors in the human atrium utilizing a
computational mapping technique. Their relation to fractionated electrograms, however, is
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still a matter of debate [32]. An alternative approach to detect rotors was presented using
activation or phase-based analysis of body surface potentials in a non-invasive technique [33].
Both groups could show remarkable success rates in ablating the detected sites in their centers.

Dissociation of Layers and Breakthroughs Epicardial mapping using high-density
electrode plagues (244 electrodes with interelectrode distance 2.25 mm) has brought evi-
dence for another rationale of perpetuation of AFib. Allessie and co-workers analyzed the
conduction pattern during induced and persistent AFib by means of wave mapping, observing
an increased complexity in propagation patterns during persistent AFib when compared to
acute AFib. Thus they proposed longitudinal dissociation [34] and breakthroughs [35] as
contributing mechanisms. The presence of micro-anatomic intramural re-entry was also
recently demonstrated using simultaneous optical mapping of both sides of the heart [36].

Structural and Electrical Remodeling AFib is a progressive disease with a continuous
transition from paroxysmal to persistent AFib [37]. Explanations were seen in an increased
atrial pressure or volume overload as well as solely electrical phenomena [38–40]. Although
the completeness of the electrical remodeling is still unclear, it seems likely, that shortening
of the AP, the refractory period, local conduction heterogeneities and zones of slow conduc-
tion are playing a major role [37, 41–45].

Fibrotic Tissue Areas of fibrotic tissue may be related to structural or electrical remod-
eling. In computer models, atrial fibrosis increases the fractionation of the electrograms [46].
Experimental models could show the influence of the excitation dynamics during AFib [47].
However, despite the improvements in detecting fibrosis by late-gadolinium enhancement
(LGE)-magnetic resonance imaging (MRI) [48], the correlation to clinically recorded elec-
trograms remains unclear [49, 50].

Autonomic Nervous System of Atria A study conducted by Bettoni et al. demonstrated,
that increased sympathetic and parasympathetic tone preceded the onset of paroxysmal atrial
fibrillation in a subgroup of patients [51]. Subsequent studies strengthened the theory that
sympathetic and parasympathetic influences play a role in AFib [52, 53]. Spontaneous
triggering originating from the pulmonary veins followed by electrical stimulation of the
ganglionic plexi or the autonomous nerves, which activate the ganglions retrogradely, can
induce episodes of AFib [54]. This is the experimental foundation for the hypothesis, that
the intrinsic cardiac autonomous system can promote the onset of triggered AFib.

Treatment options After identification of triggers inside the PVs [20], their isolation has
become standard first line approach for any catheter ablation. It can be achieved with both
radiofrequency ablation or cryoballoon application [55].

Due to limited success rates in the treatment of patients with persistent AFib, additional
approaches were suggested. The ablation of complex fractionated atrial electrograms (CFAE)
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was suggested as subsequent treatment strategy [56], the initial success rates, however, could
not be reproduced in recent large scale randomized studies [6, 7].

Following the hypothesis of rotational sources driving AFib, methods for their identifica-
tion have been suggested [27]. During this FIRMap approach, panoramic mapping catheters
are applied to acquire simultaneous multichannel information, which in turn is assessed with
a dedicated workstation. However, recent studies also question this approach [57].

Assessing the presence of atrial fibrosis is a cornerstone of alternative strategies. Presum-
ing its role as critical substrate, the identification of fibrotic regions using voltage mapping
and the subsequent circumferential isolation was proposed as technique for substrate modi-
fication [58]. Also combined evaluation of low voltage areas and the respective activation
patterns was investigated [59]. Non-invasive imaging was suggested to quantify the extent of
fibrosis and subsequently identify promising candidates for catheter ablation and suitable
strategies [60]. Despite this variety of ideas, the optimal treatment strategy for patients
suffering from AFib still has to be found. Detection of the mechanisms underlying AFib is
one of the most challenging research topics in current electrophysiology.

2.2.2 Atrial Flutter
Atrial flutter (AFlut) is defined as a supraventricular tachycardia with a consistent pattern of
excitation. The most common type is typical AFlut which consists of a circuit confined to
the RA and involving the cavo-tricuspid isthmus (CTI) bounded by the tricuspid annulus and
the inferior vena cava [61]. Therefore, ablation at this critical portion of the path is the first
line approach for termination [62].

However, a variety of atypical forms can be located in both RA and LA. In these cases,
different anatomical obstacles (like the MV), scars from previous cardiac surgery, regions
electrically isolated by ablation (like the pulmonary veins) and arrhythmogenic substrates
(like spots subject to substrate modification) can be responsible for the maintanence of the
tachycardia [8, 62–66]. Studies reported an incidence rate of 4.7 to 31% of AFlut following
an ablation for AFib [8]. Despite the variety of mechanisms, high success rates of AFlut
ablation were reported in the range of 88 to 100% [64].

Three categories were suggested to classify the mechanisms of AFlut (compare Fig-
ure 2.3) [65]:
• Focal source
• Microreentry
• Macroreentry

The focal source is characterized by a centrifugal spread of excitation originating from
autorhythmic tissue or a breakthrough. Well-known locations of focal sources are the PVs,
and these PV triggers are known to initiate atrial fibrillation [20]. During the tachycardia,
individual excitations run over the atria until they are completely depolarized. No excitation
can be observed in the atria during repolarization. Electrogram characteristics of the focal
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Figure 2.3: Three dominantmechanisms for atrial flutter. In case of macroreentry (a), roof-dependent
circuits around the PVs and the perimitral form are observed most frequent. The underlying mecha-
nism for a centrifugal spread of excitation can either be truly focal (c) or based on amicroreentry with
continuous activity (b). Reprinted from [65] with permission of the publisher.

source exhibit an S peak without R peak in the unipolar signal. However, most tachycardias
showing a centrifugal pattern of excitation are actually based on micro reentrant activity,
with only about 10 to 26% being truly focal [65, 66].

A microreentry is also characterized by a centrifugal spread of excitation. The main-
tenance mechanism, however, is a continuous propagation of a depolarization wave which
passes very slowly through a critical isthmus, like e.g. a previous ablation scar or fibrotic
tissue. The resulting centrifugal activation pattern arises from the exit point of the isth-
mus. In this area, a conduction velocity of <330 mm/s can be observed [63]. Consequently,
depolarization can be observed during the complete cycle length, thus the atria are not
electrically silent during any point in time. This activation is typically confined by a region
of <1-3 cm in diameter, which can be also mapped using a standard multipolar mapping
catheter [63, 65, 66]. In contrast to rotational sources assumed during AFib, the microreentry
does not meander but harbors stationary at a critical substrate.

Macroreentry is also characterized by a continuous excitation process, in which activity
can be observed during the complete cycle length. The complete circuit, however, cannot
be mapped simultaneously using a standard multipolar catheter since its minimum diameter
of >3 cm [63] exceeds the respective field of view. The flutter cycle typically runs around
an anatomical obstacle like mitral or tricuspid valve, or scar isolating ipsilateral PVs. Espe-
cially in preablated atria, the flutter path typically is mediated by a gap in an incomplete /
revitalized ablation line. Electrogram characteristics of this isthmus frequently exhibit highly
fractionated activity covering most of the cycle.

In any case, detection and ablation of the critical point (focal origin, anchor of microreen-
try, gap for macroreentry) is very likely to terminate the flutter circuit. This is not that
easy, however, since the propagation pattern is strongly influenced by existing ablation lines.
These can cause fractionation at many sites and slowing of the propagation and activation
delay of single regions. Sites showing activity during the diastolic interval of the surface
ECG are common ablation targets as they often represent the critical isthmus [8, 66].
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Recent studies have demonstrated a significant reduction in overall healthcare utilization
by 6% when atrial flutter was treated by catheter ablation. Most dominantly, in-patient
hospitalization and emergency department visits were substantially reduced [67].

AFlut has been observed to occur as subsequent tachycardia after ablation of AFib in
up to 31% of cases [8]. Although most studies provide an average incidence rate, a strong
dependency on the type of ablation could be observed. While only about 1 to 2.9% of
AFlut was reported following PVI, linear lesions resulted in a 10 fold higher incidence
rate [66]. In any case, diagnosis of post-AFib ablation tachycardias is rather complex due to
the modifications done to the atrial substrate by AFib ablation and the subsequent variety
of possible maintenance mechanisms [8]. This fact has stipulated various reseach about
technqiues for the identification and ablation of post-AFib tachycardias, primarily focusing
on step-by-step mapping algorithms based on manual signal assessment [8, 64–66]. Details
about the respecitve mapping procedures are presented in section 11.

2.3 Mapping and Ablation
Understanding the patient specific arrhythmia mechanism is an important step in diagnosis.
It can be achieved by understanding the propagation pattern of the arrhythmia itself or by
assessing its statistical properties. In any case, it is goal of an electro-physiological (EP) study
to acquire the required amount of data and simultaneously minimize the risk for the patient.
The general workflow of such a procedure is depicted in Figure 2.4. Catheters are inserted
via the inferior vena cava (IVC) into the RA and can subsequently be advanced through
the septum into the LA. Having entered the desired atrium, mapping can be performed to
identify areas in which lesions should be placed with the ablation catheter.
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Figure 2.4: Catheters in the heart. After transseptal punction, catheters are advanced into the LA for
mapping and ablation. From [68].

.
Different systems have been developed to acquire diagnostical information about the

heart. One goal of these systems is to minimize the risk of infection by applying minimally
invasive methods instead of open heart surgery. Also the radiation exposure required to
localize equipment in the heart should be minimized. Therefore, electroanatomical mapping
systems (EAMSs) have been developed, which can localize catheters without the need for
X-ray and record all diagnostically relevant data at the same time. Since they are frequently
applied in all modern EP labs, developing algorithms and analysis techniques for these kinds
of systems is an important step. Different commercially available systems and their concepts
are outlined in the following sections.

Other approaches aim to analyze the cardiac excitation pattern without the need for even
minimally invasive mapping. These systems solve the so called ’inverse problem’, which is a
reconstruction of cardiac activity based on the electrogram that can be measured on the body
surface. Two companies provide corresponding software: EP-Solutions (Amycard) [69] and
CardioInsight (acquired by Medtronic in June 2015) [70]. This problem is mathematically
ill-posed and it requires detailed knowledge about the torso and organs, which can be gained
using e.g. MRI. A regularization has to be applied, which limits the solution space and
focuses on major coarse excitation patterns. For treatment purposes, access to the heart is
still required.

Mapping of the arrhythmogenic substrate is also attempted independently from the exci-
tation itself. Therefore, LGE is applied as MRI technique. LGE contrast can be dominantly
seen in scar or fibrotic areas. The amount of myocardium which shows strong contrast is
e.g. quantified using the Utah scoring system [60]. Centers treating according to this scheme
decide the ablation pattern based on the level of Utah score. For patients having score 4 out
of 4, ablation has been shown less effective and associated with an increased recurrence rate.
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Mapping during open heart surgery is primarily applied for research purposes. It is used
to acquire high-density mapping data with epicardial plagues in order to assess complex
excitation patterns [34, 35, 71]. Thus, EAMSs are the most common technique to record
diagnostically relevant data from the heart and to select regions for ablation.

2.3.1 ElectroanatomicalMapping Systems (EAMS)
In the strive to both understanding the electrical excitation pattern of the heart and minimiz-
ing radiation during catheter based procedures, electroanatomical mapping systems were
developed. These systems should not only acquire the electrical information, but also assess
electrogram parameters like voltage or location activation time. To make the excitation
pattern comprehendable, the systems were able to generate a virtual cardiac anatomy based
on the tracked catheter locations. Thus it was also possible to guide an ablation catheter to a
designated spot and apply targeted ablation lesions.

The first system to track catheters in the heart and acquire the desired information was
CARTO

TM
by Biosense Webster [72]. Localization was done using magnetic fields, which

were received by three little coils in the catheter tip. Although this allowed for a very precise
positioning, the user was limited to catheter with these navigation coils only.

A second system design was introduced to the market by St. Jude Medical, which is
currently available in the version EnSite

TM
Velocity

TM
[73]. Localization is performed using

an impedance based approach, in which a high frequency electrical field is applied through
the body. The catheter electrodes subsequently serve as voltage divider, which allows to
track all electrodes individually. The field, however, heavily depends on the conductivity
value of all traversed organs and thus has to be scaled and adjusted based on a geometrical
reference marker in the heart. Therefore the type of CS catheter is usually set prior to the
study and subsequently used to adjust the field scaling. The ability to localize all electrodes
is a clear advantage, however this comes at the cost of generally decreased accuracy [74], low
long-term stability during the procedure and sudden position-changes when ablation current
is applied. Thus a remap of the cardiac shell may be required several times throughout the
procedures.

The latest mapping system on the market is Rhythmia
TM

by Boston Scientific. It uses a
combined approach for localization, which allows to utilize both techniques. The catheter is
initially localized based on electromagnetic tracking, while an impedance field is applied at
the same time. During acquisition of the anatomy, the impedance field is recorded for every
point in the heart. After the initial mapping, additional catheters can be inserted and localized
using the field information. This combines both the long term stability and precision of
magnetic tracking, and the ability to use catheters without localization coils. Automatic point
acquisition allows to increase the number of points recorded inside the heart [9, 75, 76].
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Figure 2.5: Screenshot of the EnSite Velocity EAMS.

Figure 2.6: Screenshot of the Rhythmia EAMS.

2.3.2 Catheter Designs
The electrical information from within the heart is acquired using catheters, on which small
electrodes are mounted. The catheters are composed of three major components: A handle
which is used to control curvature and torsion, the electrode arrangement at the catheter tip
and a shaft connecting both. The electrodes record the electrical field at their respective
position, also causing spatial averaging due to their size and high conductivity. Different
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mapping strategies, requirements for maneuverability and cost considerations consequently
lead to a variety of designs for diagnostic catheters, which are discussed in the following.

The most simple catheter design consists of four electrodes mounted linearly on a catheter.
For all catheters with unbranched design, the distal electrode at the catheter end is referred
to by the letter ’D’, while following electrodes towards the proximal end are counted using
arabic numbering (’2’, ’3’, ...). The distal electrode has a length of 4 mm or 8 mm in this
configuration, so that it can be used for both mapping and ablation. Although this simple
design is very cost efficient, it provides only limited options for mapping. For several reasons,
like e.g. ablation, a certain minimum electrode size is required, increasing spatial averaging
effects.

One extension of this concept are longer and curved designs, most often applied as CS
catheter. These typically consist of 8 or 10 electrodes, which are arranged in either equal or
paired spacing. Respective types are typically indicated in the datasheet using a triplet like
5-5-5 or 2-6-2, respectively, referring to the distances between three consecutive electrodes in
mm. Linear arrangements with up to 20 electrodes and more sophisticated electrode spacings
are available for interventions targeting typical AFlut, in which the catheter is positioned to
cover the right lateral and septal areas simultaneously. This allows to record the excitation
pattern during both the AFlut itself and pacing up to a point were conduction block in the
CTI is achieved.

In order to understand local excitation patterns, spiral shaped designs were developed (see
figure 2.7). Typical catheters comprise 10 to 20 electrodes, arranged on a single or a double
loop with either equal or paired spacing (Optima

TM
, Lasso

TM
). In this design, however, the

central part of the catheter does not contain electrodes. The star like PentaRay
TM

(Biosense
Webster, diameter 3.2 cm) design has also electrodes rather close to the center, however this
comes at the cost of increased interelectrode spacing on the outer circle.

(a) Spiral catheter. (b)ConstellationTMbasket. (c)OrionTMmini-basket.
Figure 2.7: Photographs of three common catheter designs. A spiral catheter with 20 electrodes in
paired spacing was used to acquire most data analyzed in this thesis. The diameter could be adjusted
when areas inside PVsweremapped (a). The Constellation basket allows for simultaneous panoramic
mapping with a diameter of up to 75mm (b). The Orion mini-basket is preferably used for sequential
mapping (c).
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Since all of these catheters are designed to directly record electrical information from the
myocardium while touching the endocard, they rely on good contact. Decrease of contact
quality leads to signal averaging effects which compromise signal quality. An alternative
approach for non-contact mapping was developed using a dedicated catheter in the heart
(EnSite Array

TM
) and solving the inverse problem ’Inside-Out’. This 64-electrode basket

shaped catheter was combined with a software to solve the inverse problem and reconstructed
3360 EGMs for the complete endocardial surface [77, 78].

Mapping the complete myocardial activity simultaneously is an important prerequisite of
understanding complex excitation patterns like in atrial fibrillation or atypical atrial flutter.
The Constellation

TM
Basket (Boston Scientific) was developed to achieve panoramic contact

mapping of cardiac activity. A total of 64 electrodes is mounted on 8 splines, which are
designed fully flexible in order not to hurt the endocard when the catheter is deployed. This
catheter is available in the diameters 31, 38, 48, 60, and 75 mm, with inter electrode spacings
of 2, 3, 4, 5 and 7 mm, respectively. As depicted in Figure 2.7, the electrode arrangement is
designed to primarily cover the central part of the atria, with no electrodes positioned in the
septal areas. This catheter has been used to rapidly acquire data from AFlut [79–81] and to
analyze biatrial propagation dynamics during the onset and perpetuating AFib [27, 82–84].

Application of the Constellation
TM

Catheter in clinical environment demonstrated two
limitations, being first the limited septal coverage and second the tendency to spline bunching.
In an attempt to address both issues, Topera Medical (now part of Abbott) developed a new
catheter design addressing these two issues. The FIRMap

TM
basket catheter also has 64

electrodes, with the distal electrode being shifted towards the catheter tip and the proximal
one being located closer to the shaft (see Figure 4.3 for comparison). This catheter is
available in three different sizes, being 50, 60 and 70 mm. The electrode configuration is
designed to cover the septal area better but at the cost of increased interelectrode spacing and
thus lower resolution. The issue of spline bunching is addressed by a modification of the
design: Splines are not fully flexible but exhibit a rectangular shape on which the electrodes
are printed on the outer surface only. This is also expected to reduce far field effects. It is
distributed primarily together with the RhythmView

TM
mapping system, which is the platform

providing automatic analysis of intracardiac mapping data with respect of detection of focal
sources and rotational activity [85].

Besides the global mapping of activity using non-contact and contact approaches, also
new catheters for local high-density mapping were developed. The smaller sized basket
Orion

TM
(Boston Scientific) carries 64 electrodes with an interelectrode spacing of 2.5 mm,

and has fully deployed a diameter of 18 to 22 mm [75, 86]. As visualize in Figure 2.7, each
electrode has a size of 0.4 mm2, increasing the sensitivity to record electrical potentials [86].
This catheter is equiped with coils for magnetic tracking, and thus can be used to acquire
precise anatomical information. The mapping system Rhythmia

TM
records both the position

and the local impedance field, which can subsequently be used to track standard catheters
without coils. The basket-style arrangement has proven helpful for rapid data acquisition
using automatic point collection. Studies reported a number of recorded points in the order
of 3,236 and 3,566±1,082, within 9.41±4.92 min and 5.2±0.8 min, respectively [9, 75]. The



20 Chapter 2. Clinical Fundamentals

amount of simultaneously covered area, however, is rather limited and has not been subject
to detailed evaluation.

Since the myocardial electrical activity can be mapped much more precisely using the
Orion

TM
catheter with the mini-electrodes, it is possible to detect e.g. vital isthmi in ablation

lines. Targeting this position with an ablation catheter precisely can be difficult, however,
since the potentials recorded with a 4 mm or 8 mm tip are subject to spatial signal averaging
effects. Thus an ablation catheter was developed which included small mini-electrodes
embedded in the ablation electrode but isolated both thermically and electrically. The
MiFi

TM
catheter (Boston Scientific) is currently brought into the market as 4 mm irrigated

tip catheter. Initial experience indicates, that vital atrial fibers can be identified by sharp
potentials on the mini electrodes [87], while the conventional bipole does not detect them.
Procedural time, however, seems to be prolonged [88].

2.3.3 Mapping Techniques
Modes of data acquisition Two major concepts of data acquisition can be distinguished
during electroanatomical mapping. During sequential mapping, one or more catheters are
moved to different endocardial aspects of the atria. They are held in a stable position with
contact to the endocard until a specified reference event takes place. Data around (before and
after) this event are acquired and then the catheters can be moved to the next location. Using
this technique, a map of the atria is acquired point by point. Prerequisite of this technique
is first, that the arrhythmia or the evaluted statistical properties must not change during the
time required for mapping. Second, a reference is required to synchronize data for certain
types of analysis (e.g. determination of local activation time). The collection of these points
can be performed either manually or with the help of automatic point collection [9, 89].

For single events of unstable tachycardias like AFib, simultaneous mapping is required.
In this approach, synchronization cannot be applied and consequently all data has to be
acquired simultaneously. This commonly consists of surface ECG, a stable intracardiac
channel for positional reference (e.g. CS) and one or more mapping catheters like single or
biatrial positioned panoramic baskets, spiral catheters, etc., depending on the desired type of
analysis and the respective field of view. In contrast to sequential mapping, no segmentation
or synchronization of the continuous data stream is performed.

Uni- and bipolar electrograms Cardiac mapping catheters are equipped with electrodes
which capture the local electrical potential at their respective position. This potential is
measured with respect to a reference, for which typically the Wilson Central Terminal is
used. Signals which are acquired this way are referred to as unipolar electrograms (UEGMs).
Although they very well represent the local activity near the measuring electrode, signal
quality is often strongly compromised by various artifacts like power line hum and far
fields [90].
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For clinical analysis, a high signal quality is desired. Subtraction of the signals measured
by two neighboring electrodes is a common technique to eliminate noise components which
equally affect both unipolar channels. The resulting bipolar electrogram (BEGM) typically
is less affected by artifacts, activity, however, cannot be related to one or the other recorded
channel. While the morphology of unipolar signals is very well studied, the morphology of a
bipolar measurement depends on the relative orientation between the measuring dipole and
the direction of depolarization [90]. The use of an intracardiac reference has been suggested
for improved signal quality of unipolar signals. Demonstrative examples of uni- and bipolar
EGMs are shown in Figure 2.8.
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Figure 2.8: EGMs in uni- and bipolar configuration. For all three examples, the ECG is shown at the top,
a BEGM in themiddle and the corresponding twoUEGMs in the lower row. The demonstrative signals
exhibit clear activations that result in a similar bipolar morphology (a), or amore complex shape of the
BEGM (b). The fractionated activity in (c) can clearly be related to one of the unipolar channels. Of note,
the influence of ventricular far field is much less in the BEGM.

Common mapping parameters Automatic signal analysis in the EP laboratory com-
prises three major parameters. First the voltage is assessed, being defined as the maximum
peak to peak amplitude which can be measured in a specific window of interest. This time
frame is typically set to the duration of one cycle of excitation. Times in which ventricular
depolarization may compromise signal analysis can be rejected from analysis.

Second the local activation time (LAT) is assessed, reflecting the point in time at which
the cardiac depolarization front passed the catheter. This time is typically also annotated in
the window of interest and measured with respect to the activation in a reference channel
(typically the CS). Subsequently, LAT information from all measured points is synchronized
and visualized in form of color-coded LAT maps. Although this approach is of great help in
understanding stable tachycardias with single distinct deflections in all signals, it cannot be
used for AFib and can be questioned in case of double potentials and prolonged activations.

In AFib, statistical measures are used to assess the degree of fractionation in the signal.
Although all common methods are inspired by early research about CFAE [56], the resulting
annotation does not always reflect physicians’ assessment [91]. Therefore, usage of CFAE
mapping algorithms for fully automatic signal analysis in the clinical context is typically
handled with care.
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2.3.4 Catheter Ablation
Catheter ablation has emerged to a recommended technique for symptomatic AFlut as well as
paroxysmal AFib [16]. For termination of AFlut, successful identification of the mechanism
and the critical isthmus is required. Whereas the isolation of the pulmonary veins aims for
trigger elimination during AFib, other techniques focus on substrate modification: linear
ablation, ablation of CFAE, ablation of ganglionated plexi and recently, panoramic mapping
and ablation of rotors. Up to date, all strategies for substrate modification are lacking in
defined, reproducible endpoints and the best ablation approach and ablation combinations
are discussed controversially [16, 20, 23, 24, 27, 32, 65, 92–97].

For radio frequency (RF) ablation, special catheters are advanced into the heart. These
are equipped with both an ablation electrode (typically 4 to 8 mm in length) and additional
distal electrodes for bipolar signal acquisition. RF current is delivered from the ablation
electrode in a range of about 300 to 1000 kHz, as lower frequencies may stimulate myocardial
tissue. Temperature of the surrounding tissue is subsequently increased by resistive heating,
which is the dominant mechanism for the generation of myocardial lesions. Lesion formation
itself is affected by multiple factors, like catheter tissue contact, transmitted power, time of
application, or convective heat dissipation from circulating blood. Additional irrigation with
saline has been shown to positively foster lesion growing. The location of ablation lesions
can be annotated in all EAMS [89].

An alternative option for lesion generation is provided by cooling [55, 89]. Cryoablation
catheters can be inserted in the heart and used to freeze surrounding tissue. Special catheter
designs for PVI are available, which provide circumferential RF ablation and simultaneous
monitoring of activation inside the PVs.

2.4 Simulation of Cardiac Activity
Algorithms for electrogram analysis have to be designed to process measured data, and thus
need to be robust against noise and artifacts. The clinical environment, however, is typically
not controlled enough to precisely benchmark the performance of new analysis methods.
In addition, the available data for retrospective processing is limited to what was measured
during the procedure. Computational modeling provides an important alternative option to
clinical data acquisition, as arbitrary scenarios can be simulated. This comprises different
tachycardias like AFlut or AFib, mapping with varying catheter designs and positions, and
even the assessment of virtual ablation patterns.

All computational models are based on the behavior of single cells, which are described
by a set of coupled differential equations. These models typically include ion concentra-
tions, describe the ionic currents and the resulting changes to the TMV. Depending on the
application and thus the desired level of detail, cardiac excitation can be simulated on both a
biophysical and a phenomenological level. Both approaches will be outlined in the following.
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2.4.1 BiophysicalModels for Cardiac Electrophysiology
Hodgkin-HuxleyModel Biophysical cellular models are based on cellular mechanisms
like ion-concentrations and -exchanges. The first cellular model describing the membrane ki-
netics of an excitable cell was published 1952 [98]. By assessing voltage-clamp experiments
from a giant squid neuron, a mathematical formulation of the electric currents across the cell
membrane was developed which included Na+ and K+ as dominant ions. The equivalent
circuit represents this relationship by parallel conductors as shown in Figure 2.9.

Figure 2.9: Hodgkin-Huxleymodel as electric circuit presentation. Adapted from [98].

In this circuit, the total current Im is formed by the sum of four components, representing
the capacitive and ionic parts. The ion channels for Na+ and K+ are modeled by time
dependent conductances gNa and gK , respectively. The electrochemical gradients ENa and
EK are included to model the driving force for each ion type. The effect of leak channels is
modeled by an analog path including the fixed conductance gL, and the influence of the cell
membrane by the capacitance Cm.

Mathematically, the currents INa, IK and IL are given by the product between their
respective conductance and the difference between TMV Vm and the ion specific resting
voltage Ek, also known as Nernst voltage:

Ik = (Vm−Ek) ·gk Ek =
RT
zkF
·ln

ck,i

ck,0
(2.1)

The Nernst equation describes the potential Ek of an ion k across the cell membrane,
depending on its concentration in the intracellular (ck,i) and extracellular (ck, j) space. It is
computed by considering the ideal gas constant R, Faraday’s constant F , the temperature T
and the charge zk of the ion.

Thus, Im can be formulated according to

Im = IC + INa + IK + IL =Cm
dVm

dt
+∑

k
(Vm−Ek)gk (2.2)

The conductivities gNa and gK depend on the degree of opening of the respective ion
channels. Their value is both time and voltage dependent and can be described by gating
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variables according to

gK = gK,maxn4

gNa = gNa,maxm3h.
(2.3)

While the potassium channel can be described by four activating n gates, the sodium
channel consists of three gates of type m (activating) and one h gate (inactivating). These
gating variables indicate the probability whether a gate and thus the channel is open or not.
Differential equations describe the transition between the opened and closed state by utilizing
two rate constants α and β . While α describes the probability to get to an opened stated, β

reflects the likelihood of closing. The instantaneous values of both rates are functions of Vm,
reflecting the TMV dependent behavior of ion channels in the cell membrane:

ṁ = αm(1−m)−βmm

ḣ = αh(1−h)−βhh

ṅ = αn(1−n)−βnn

(2.4)

Courtemanche-Ramirez-NattelModel Following Hodgkin and Huxley, more complex
cellular models were formulated. These include additional ion channels to better approximate
the behavior of single cells or tissue patches, both in physiological and pathological states.
The Courtemanche-Ramirez-Nattel (atrial cell model) (CRN) cellular model was designed to
describe human atrial myocardium [99, 100]. Building from the Hodgkin-Huxley model, it
more precisely reflects different types of Na+ and K+ channels, and additionally describes
Ca2+ concentration. Also the sarcoplasmic reticulum is considered for the intracellular
calcium handling.

Resulting time-dependent change of TMV Vm is given by

dVm

dt
=
−(Im + Ist)

Cm
, (2.5)

in which Im is given by the sum of all 12 modeled ionic currents. Ist further allows to add an
external stimulus current.

The CRN model was used for most cardiac simulations described in this thesis. To reflect
atrial remodeling, changes to ion channel conductivites were included when required [101].
For simulations of cardiac activity at Institute of Biomedical Engineering (IBT), the solver
acCELLerate [102] is used.

2.4.2 Conduction of Cardiac Excitation
Individual myocytes are linked by gap-junctions. These provide an electrical coupling
of the intracellular space, which in turn causes the spread of excitation from one cell to
the next. Having the models for cardiac electrophysiology implemented, the analysis of
patches of atrial tissue is the next step. To simulate the process of atrial depolarization in
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these patches, different macroscopic models can be applied. The data analyzed within the
presented research were generated by either using the detailed bi-/monodomain model or the
much faster but simplified Eikonal equations.

Bi- and monodomain models The bidomain model is a very frequently used way to
simulate cardiac excitation [102, 103]. Hereby it represents the electrical behavior averaged
for a bunch of cells. In this approach, both the intracellular and extracellular space are given
by two continuous domains in which the potentials Φi and Φe are defined. These are linked
to the current source densities following Poisson’s equation for a stationary electric field

∇(σe∇Φe) =−β · Im− Ise

∇(σi∇Φi) = β · Im− Isi,
(2.6)

in which β represents the surface-to-volume ratio of the cells, σi and σe the conductivity
tensors, Isi and Ise the stimulus currents applied in the intracellular and extracellular domain,
and Im the total membrane current which links both domains. The corresponding voltage
difference between both domains is given by Vm = Φi−Φe

Based on these equations, and considering the case in which no external stimulus is
applied, the first equation of the bidomain model can be formulated. It relates both the TMV
Vm from the cellular model and the extracellular potential Φe according to

∇((σi +σe)∇Φe) =−∇(σi∇Vm). (2.7)

The second bidomain equation is given by

∇(σi∇Vm)+∇(σi∇Φe) = β ·
(

Cm ·
dVm

dt
+ Im

)
− Isi. (2.8)

It can be used to determine the intracellular stimulus current, which is used to evaluate the
cell models in the next time step.

The bidomain model allows to specify separate conductivity tensors for the intracellular
and extracellular domain. This degree of detail is especially useful when the conductive and
capacitive effects of large ablation catheters should be integrated. But as this model is very
computationally expensive, most cardiac simulations applied in this work were based on
the monodomain model. The latter can be derived by assuming a constant anisotropy ratio
between the conductivities in the intra- and extracellular domain (σi = κ ·σe). This leads to
the monodomain equation which is given by

∇(σi∇Vm) = (κ +1) ·β ·
(

Cm ·
dVm

dt
+ Im

)
. (2.9)

FastMarching approach for Eikonal equations Cardiac excitation of simple rhythms
like NSR or AFlut can also be modeled using a phenomenological approach which is even
less computationally demanding. Therefore, the Eikonal equations can be used to represent
excitation of cardiac tissue in a parameterized approach on macroscopic level [104, 105].
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They were derived from the monodomain propagation model and describe the form of
activation wavefronts in the domain Ω according to

||c∇τ||= 1+∇ · (D∇τ) x ∈Ω,

n ·D∇τ = 0 x ∈ ϑΩ,
(2.10)

with ϑΩ representing the boundary of Ω, c the tensor of scaled propagation velocity, τ the
scaled activation time, D the scaled diffusion tensor, || · || the euclidean norm and n a unit
vector normal to ϑΩ [105]. For D→ 0 in the isotropic case, the velocity of the wavefronts
is constant as given by ||c∇τ|| = 1. Thus, the wavefront curvature dependent velocity is
introduced by the diffusion of activation times.

Solving generally requires several iterations with high complexity (e.g. O(N2) for grid
N×N), however it can be simplified by considering only adjacent nodes for each computation
in the fast marching approach. This reduces complexity to O(Nlog(N)).

Influence of wavefront curvature on CV is considered within this approach. Ionic currents
and concentrations, however, are not included. As opposed to a reaction-diffusion model like
the monodomain approach, it therefore neglects the source-sink mismatch and should not be
applied for complex depolarization processes like AFib.



CHAPTER3
Mathematical & Signal Processing

Fundamentals
3.1 Frequency Domain Analysis
All clinical electrogram data analyzed in this thesis were recorded in time domain, being a
continuous signal discretized with a specific sampling rate and quantification for digital signal
processing. Although many events can easily be detected in time domain, the frequency
content of signals also provides important information about artificial noise components and
can be utilized in advanced signal processing algorithms.

3.1.1 Fourier Transform
The Fourier transform is a very common way to assess the frequency content of a time
domain signal. Thereby, the signal is decomposed into the trigonometric functions sine and
cosine (Fourier analysis), or their exponential analogon. Each component is appropriately
weighted to reflect the strength of the respective curve within the signal. By using an infinite
sum over all components, signals can be transformed between time and frequency domain.

Considering a time-continuous signal x(t) of infinite length, its Fourier transform X( f ) =
F{x(t)} at frequency f is defined as

x(t) s cX( f ) (3.1)

X( f ) = 〈x(t),ej2π f t〉t =
+∞∫
−∞

x(t)e−j2π f tdt. (3.2)

The absolute value of X( f ) is referred to as frequency spectrum of x(t), as it reflects the
energy of individual frequency components in the signal. A filtering effect can be achieved
by reducing the strength of specific frequencies. The corresponding time domain signal x(t)

27
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can be retrieved by the inverse Fourier transform given by

X( f ) c sx(t) (3.3)

x(t) = 〈X( f ),e−j2π f t〉 f =

+∞∫
−∞

X( f )ej2π f td f . (3.4)

For digital processing, both time and values of recorded signals have to be discretized.
Given the sampling frequency fA, values are available at each multiple of the sampling time
TA = 1/ fA. Accordingly, values of x(t) are discretized to

xn
..= x(nTA) = x(t)|t=nTA

, n ∈ Z. (3.5)
Considering the N available sample values of the signal after discretation, the analoga

for the Fourier transform Xk and its inverse are calculated by

xn
s cXk (3.6)

Xk =
N−1

∑
n=0

xne−j2π
kn
N (3.7)

and

Xk
c sxn (3.8)

xn =
1
N

N−1

∑
k=0

Xkej2π
kn
N . (3.9)

The direct implementation of this transform is dependent to the number of sample points
N with a computational complexity of O(N2). By utilizing its symmetry and periodicity, the
Fast Fourier transform was developed as efficient algorithm [106, 107].

Although the Fourier transform does indicate the presence of a frequency component
within a signal, it does not allow to obtain information during which time it was observed.
The short time Fourier transform was developed to address this issue. The signal x(t) is
therefore multiplied with a window function w(t), which is non-zero only within the evaluated
time frame. Its transform S( f , t) subsequently reflects the components in a time-frequency
domain [108]:

S( f , t) =
+∞∫
−∞

x(τ)w(τ− t)e−j2π f τdτ (3.10)

The resolution in time and frequency domain can be controlled by selecting an appropriate
windowing function. However, due to their uncertainty relation, resolution of both quantities
cannot be increased arbitrarily [108].

3.1.2 Wavelet Transform
An alternative strategy to assess the frequency content of a signal is provided by means of
the wavelet transform. While complex exponentials are used as kernel function in the Fourier
transform, different types of wavelets can be chosen as kernel in the wavelet transform.
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A wavelet ψ(t) with its Fourier transform Ψ( f ) must fulfill the admissibility condition
of being a continuous zero-mean function as expressed in

Cψ =

+∞∫
−∞

|Ψ(a f )|2

| f |
d f < ∞ (3.11)

The transformation is then given in dependency of both ψ and the scaling parameters a
and b to be [108]

W ψ(a,b) = 〈x(t),ψa,b(t)〉t =
1√
|a|

+∞∫
−∞

x(t)ψ∗
(

t−b
a

)
dt. (3.12)

A major advantage of the wavelet transform is its capability to adapt the time-frequency
resolution. For high frequencies, temporal resolution is improved, with spectral resolution be-
ing increased for low frequencies. This is depicted and in Figure 3.1 and put into comparison
with the other outlined frequency domain representations.

To adapt the time-frequency resolution, the mother wavelet is scaled by a and time
shifted by b. The factor 1/

√
|a| is inserted to ensure that signal energy is not changed during

scaling.
The inverse transformation is given by [108]

x̂(t) =
1

Cψψ̃

+∞∫
−∞

+∞∫
−∞

W ψ(a,b)ψ̃
(

t−b
a

)
dadb

a2 , (3.13)

for which both analysis wavelet Ψ( f ) and the synthesis wavelet Ψ̃( f ) need to fulfill the
admissibility condition

CΨΨ̃ =

+∞∫
−∞

∣∣Ψ∗( f ) · Ψ̃( f )
∣∣2

| f |
d f < ∞. (3.14)

For the discrete wavelet transform, parameters are computed by dyadic scaling ak = 2k

and bm,k = m · 2k ·TA. This allows to use multirate filter banks for the rapid computation
of the discrete wavelet transform. Corresponding, the frequency domain is divided by a
factor of 2 of each level of decomposition, with the approximation coefficients reflecting the
spectrum up to 0.5 times the Nyquist frequency fN , and the detail coefficients representing
the remaining frequencies.
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(a) Signal in time-frequency domain. (b) Time-frequency domain (FFT).

(c) Time-frequency domain (STFT). (d) Time-frequency domain (WT).
Figure 3.1: Time and frequency resolution for different transforms. The time resolution of themeasured
signal depends on its sampling frequency (a). Frequency components cannot be localized in timewhen
the FFT is applied (b). A fixed resolution in both domains is applied in the STFT (c). The resolution
is adapted in theWT to achieve high spectral resolution for low frequencies and improved temporal
resolution for high frequencies.

3.2 Signal Processing Techniques
3.2.1 Non-Linear EnergyOperator
The presence of activity within a signal is reflected by an increase of instantaneous energy.
While typically the total energy of the signal is of interest, an expression for its time dependent
value has been derived following considerations about an ideal spring-mass-system [109].

The samples xn of a time-discrete simple harmonic oscillation with amplitude A, digital
frequency Ω and phase φ can be described according to

xn = Acos(Ωn+φ). (3.15)

The resulting expression for the energy of the harmonic oscillator can be formulated by

ENLEO = A2sin2(Ω)≈ A2
Ω

2, (3.16)
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with the approximation sin(Ω) ≈ Ω considered valid for frequencies below 1/8 of the
sampling frequency [109]. In this case, the relative error is smaller than 11%.

Transferring this concept to discrete time domain signals, the instantaneous energy En

for time step n can be derived by utilizing trigonometric identities to

En = x2
n− xn−1 · xn+1, (3.17)

thus being computed with three successive samples of the signal [109]. This operation is
termed non-linear energy operator (NLEO). It is proportional to both the squared amplitude
and the squared frequency of the signal. To obtain a more robust estimate in presence of noise,
the resulting NLEO value was typically low-pass filtered as described in literature [110] to
evaluate electrogram signals in this thesis.

3.2.2 Hilbert Transform and Phase Determination
The Hilbert transform can be used to generate a real-valued signal with shifted frequency
components. This is an important step to obtain either the signal envelope or the phase for
periodic processes.

Hilbert transform The Hilbert transform can be formally denoted by the Cauchy principal
value (p.v.) of the improper integral

x̃(t) = H {x(t)}= 1
π

p.v.
+∞∫
−∞

x(τ)
t− τ

dτ. (3.18)

Another more intuitive expression can be formulated as multiplication in the frequency
domain by considering the Fourier transforms of both the signal X( f ) and the Hilbert
transform as given by

F{H {x(t)}}= H̃( f ) ·X( f ) (3.19)
with

h̃(t) =


1
πt

, for t 6= 0,

0, for t = 0.
(3.20)

H̃( f ) =


−j, for f > 0,

0, for f = 0,

+j, for f < 0.

(3.21)

As indicated by equation (3.21), positive and negative frequencies are shifted by −90◦

and +90◦, respectively [111].
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Analytic signal Given a time domain signal x(t), its analytic signal is defined as

xa(t) = x(t)+ jH {x(t)}= x(t)+ jx̃(t), (3.22)

with x̃(t) denoting the Hilbert transform of the signal. According to the definition above, the
analytic signal only has positive spectral components.

Thus xa(t) is a complex-valued time signal, whose absolute value represents the envelope
A(t) of x(t) as given by

A(t) = |xa(t)|=
√

x2(t)+ x̃2(t). (3.23)

Phase The trajectory of a variable in state space representation can be analyzed to assess
the dynamics of the underlying process. For repetitive processes, the current state within
the period can be described by the phase φ(t). It can be measured with respect to an origin,
which has to be located inside the (non-overlapping) trajectory to obtain unique results.

To obtain a state space plot if only one single variable x is available, it can be plotted
against a time-delayed version of itself x(t + τ). The appropriate time lag τ can be de-
fined as first zero crossing of the autocorrelation of x(t), or based on the duration of rapid
changes of the observed process [112]. Subsequently, φ(t) can be determined based on the
trigonometrical relations according to

φ(t) = arctan
(
(x(t + τ)− x∗)

x(t)− x∗

)
, (3.24)

in which x∗ defines the origin of the state space trajectory [112]. This origin can be approxi-
mated by the mean of x(t).

In order to avoid the issue of finding an appropriate value for τ , a method based on the
Hilbert transform was suggested [113]. Using this approach, φ(t) can be expressed using

φ(t) = arctan
(
−(x(t)− x∗)

x̃(t)− x∗

)
, (3.25)

in which x∗ defines the origin of the phase plane [114].
In applications considering cardiac data, phase values are typically computed for all

acquired electrograms. Subsequently, the detection of phase singularities is of interest, as it
reflects the center of a rotational depolarization pattern. Following the concept of topologic
charge, phase singularities can be defined by evaluating φ at a specific instance of time t0

nt0 =
1

2π

∮
c

∇φ(t0)dl, (3.26)

in which the line integral is evaluated over path l on a closed curve c. This integral will yield
zero if the path contains no phase singularity, otherwise its value will be ±2π (depending on
the chirality of reentry and orientation of integration). Studies have addressed the detection
of phase singularities as filaments in space [115, 116] or on triangular meshes [117].
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3.2.3 Principal Component Analysis
The principal component analysis (PCA) is an important method in the field of statistical
data analysis. It is a widely applied approach for dimensionality reduction of measurement
data, and can be applied to simplify the structure of a dataset before e.g. feature extraction is
performed.

Primary objective is to transform a number D of potentially correlated variables into a
smaller number M of linearly uncorrelated variables, preserving the desired amount (M < D)
or all (M = D) information. Therefore, a new orthonormal base is generated, which can be
used to project the data into a subspace with decreasing variance in each component.

Consider a set of N observations X = [x0,x1, ...,xN ] of the D-dimensional measurement
vector xn, forming an N×D matrix. This data shall correspond to the N = 20 measurement
points in the D = 2 dimensional space shown in Figure 3.2. For demonstration purposes,
data points in this figure were annotated using two different classes, whose separation is a
common task.

Goal of the PCA is to find a new base A for expressing X according to

X = ZAT . (3.27)

Therefore, a version XZ of zero empirical mean is constructed from the data matrix X,
allowing to assess the variability from the origin. Subsequently, the observation covariance
matrix R is computed as

R = XT
Z XZ (3.28)

and its eigenvectors and eigenvalues are determined. Eigenvectors are sorted by decreasing
values of the respective eigenvalues, leading to λ1, ...,λD. The cumulative sum up to a
certain number of eigenvalues M hereby reflects the amount of explained variance when
reconstruction is performed using only the corresponding first M eigenvectors.

The resulting transformation is given by

ZPCA = XZA (3.29)

with ZPCA containing the principal component (PC) scores representing transformed data,
and A being formed by the M eigenvectors of R which are used for reconstruction. If all
eigenvectors are used, data is reconstructed perfectly. The dimensionality is reduced if only
a number M < D of eigenvectors is used.

Considering the example demonstrated in Figure 3.2, reduction to M = 1 seems rea-
sonable. Projection onto the first principal component allows for linear separation of both
classes using a single threshold. Its value could for example be determined using Fisher’s
Linear Discriminant [118, 119].
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Figure 3.2: Example demonstrating the concept of PCA. 20 data points in the two-dimensional space
are plotted, together with the principal components found by PCA. Data points were labeled using two
different classes, which became linearly separable in the first dimension of the transformed space.

3.3 Classification
3.3.1 Decision Tree
Decision trees are classifiers in which the assigned label is determined based on a sequence
of decisions. Starting from the root node, specific properties of class features are assessed,
and successive branches are followed based on the outcome. For each node, decisions may
be based on attributes of different types, like continuous values (size, weight) or categorical
variables (gender). The corresponding links must be mutually distinct and exhaustive.
Following the branches, finally a leaf node will be reached, which assigns the resulting
label [118].

This type of classifier brings several advantages, like automatic selection of features.
During growing of the tree, most significant attributes are located in the upper levels, least
significant features may be neglected. Each feature is analyzed individually, so that scale
differences are not a problem. Both linear and non-linear features can be used, as the tree is
not based on any underlying model. Last but not least, interpretation of the resulting tree
is very intuitive. However, over-fitting to the training data may occur if growing of the tree
is not limited. This can be avoided by subsequent pruning, being the removal of branches
which do not classify strongly.

Several ways exist to generate or grow a tree, like ID3, C4.5 or CART (classification and
regression tree) [118]. In general, the complete training set is split into subsets by evaluating
every single feature. Considering a previously defined metric, the best feature is selected and
the dataset partitioned accordingly. On each subset the process is repeated until a stopping
criterion is reached.

The resulting subset after a decision should be as pure as possible. Following the concept,
but reflecting that the variability of classes is more easy to measure, several criteria have been
designed which assess the impurity of the resulting outcome. One possibility is to determine
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the entropy H(S) of the set of objects S according to

H(S) =−∑
x∈X

p(x) log2 (p(x)), (3.30)

in which p(x) denotes the relative frequency of objects of class x among all existing classes X
in S. Goal during growing the tree is to reduce the cumulative entropy of the resulting subsets.

Another frequently applied criterion is the Gini diversity index, defined by

GDI(S) = 1−∑
x∈X

p(x)2. (3.31)

For sets with objects of just one class, the Gini diversity index is zero [118].

3.3.2 Support VectorMachine
The support vector machine (SVM) is a kernel-based classifier with the favorable property
of having sparse solutions, meaning that the classification of new inputs only depends on
the evaluation of the kernel function on a subset of training data points. Although it was
designed for binary linear separation, the usage of kernel functions and the combination
of multiple SVMs allows to tackle also multiclass problems which do not exhibit a linear
border.

Hardmargin SVM The fundamental SVM classification statement of a hard margin SVM
is linear and given by

y(x) = wT
Φ(x)+b, (3.32)

with Φ(x) being the transformed features of the input data, w the weight vectors and b
the bias paramter [119]. Depending on the binary class membership of input samples x,
the output y(x) will result in values higher or smaller than 0. Corresponding target values
t1, ..., tN with tn ∈ {−1,1} shall be defined so that tny(xn)> 0 for all training data points.

The decision boundary that separates both classes with a maximum margin can be found
by optimizing the following expression with respect to w and b, i.e. maximizing the minimum
distance between all points xn and the boundary (compare Figure 3.3):

max
w,b

{
1
||w||

min
n

[
tn
(
wT

Φ(xn)+b
)]} (3.33)

Optimization can be achieved by reformulating equation (3.33) with Lagrange multipliers
an ≥ 0. Additional boundary conditions can be introduced by calculating the derivatives
subject to w and b, leading to the dual representation of the maximum margin problem as
given by

max
a

L̃(a) = max
a

{
N

∑
n=1

an−
1
2

N

∑
n=1

N

∑
m=1

anamtntmk(xn,xm)

}
(3.34)
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with the kernel function being defined by k(xn,xm) = Φ(xn)
T Φ(xm) and respecting the

constraints

an ≥ 0 for n = 1, . . . ,N (3.35)
N

∑
n=1

antn = 0. (3.36)

Having determined the parameters an, new data points can be classified according to

y(x) =
N

∑
n=1

antnk(x,xn)+b, (3.37)

with the sign of y(x) representing the resulting class label. Computation is hereby simplified
as only the resulting support vectors of the training dataset will have an > 0, with all other
points being not considered for the classification of new data due to an = 0.

Using nonlinear kernel functions allows to transform the input feature vectors xn into a
higher dimensional feature space in which perfect linear separation may be possible. Further
enhancement is possible to relevance vector machines, which can be extended to multiclass
problems more comprehensively and also return direct posterior probabilities [119].

Soft margin SVM In the case that classes are not perfectly separable, misclassification
of some training data has to be accepted to train an SVM model which is of reasonable
generalization capability. Therefore, slack variables ξn > 0 are introduced which penalize
misclassification and modify the optimization problem (compared Figure 3.3). To balance
both margin size and slack variable penalty, a second parameter C is used. The resulting
optimization problem reflects the ”soft margin SVM” [119] and can be formulated as

min
w,b

{
1
2
‖w‖2 +C

N

∑
n=1

ξn

}
. (3.38)

Application of Lagrangian multipliers leads to the same form as shown in equation (3.37),
however under different constraints

0≤ an ≤C (3.39)
N

∑
n=1

antn = 0. (3.40)
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(b)Maximum hardmargin.
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(c) Soft margin (C = 10−2).
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(d) Soft margin (C = 10−0).
Figure 3.3: Example demonstrating the SVM-based classification. Data from a binary decision problem
is plotted in a two-dimensional feature space. While a separation boundary could be placed anywhere in
the domain, it wouldmost likely not provide optimal margin for the decision (a). Using the hardmargin
SVM finds themargin withmaximum distance to the support vectors (b). The soft margin SVM allows to
relax the boundary condition in order to achieve a higher generalizability. The corresponding trade-off
between penalization of outliers andmargin width can be adjusted using the parameterC (c, d).





PART II

QUANTITATIVE ANALYSIS OF
ATRIAL ELECTROGRAMS





CHAPTER4
Computational CatheterModels

As presented in Chapter 2.3.2, various catheter configurations are available and designed
for specific purposes during diagnosis and treatment. Although all modern catheters are
steerable and thus allow to control curvature and torsion, they are also designed flexible
enough to avoid perforation of the myocardium. Thus the resulting form of the catheter in
the heart frequently does not match its state ex-vivo. In fact, the shape of the catheter is
determined by its rigidity and an interplay of forces applied by the atrial wall and steering
maneuvers of the physician. Consequently, the true positions of all electrodes need to be
respected when assessing the spatio-temporal relations in EGM recordings.

In clinical practice, the use of EAM systems allows to localize the electrodes during
mapping and relate their position to the cardiac anatomy. During the simulation-based
development of novel algorithms, however, the deformation of virtual catheters is not given.
One way to deal with this issue is to directly transfer the position of electrodes from the
clinical measurement into the simulation. This, however, requires to use the clinical anatomy
also for the simulation, and inhibits the use of other mapping positions than in the clinic [120].
Previous research from our group suggested a projection method to include a catheter at
arbitrary positions into simulated geometries. Therefore a temporary set of electrodes was
determined within the blood pool. These initial positions were defined according to the
specification of the catheter, and demonstrated at a single-loop spiral. Each of the initial
electrodes was subsequently projected along the normal onto the tissue (when the catheter
should lie e.g. on the posterior wall) or radially (if the catheter should be placed e.g. in a
PV) [121]. This approach, however, does not allow to model the deformation of splines,
which can result in electrodes lying in the blood pool without wall contact.

In this chapter, the development of a computational catheter model is described, as it
was part of a supervised student thesis [122]. The shape of the model can be adapted to a
given cardiac anatomy and thus allows to include more realistic recording sites in virtual
diagnostic studies. In addition, it allows to evaluate the effect of catheter size and its electrode
arrangement on mapping data acquisition.
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4.1 Simulation of Catheter Deformation
Description of the Catheter Shape In order to gain a virtual representation of a catheter
shape, its form was modeled by a parameterized curve r(s). Considering its tangent T,
normal N and binormal B, r(s) can be described in matrix notation according to the Frenet-
Serret formulas [123]Ṫ(s)

Ṅ(s)
Ḃ(s)

=

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0


T(s)

N(s)
B(s)

 , (4.1)

in which κ and τ represent curvature and torsion, respectively. Equation 4.1 provides a
set of linear homogeneous ordinary differential equations (ODE) with arclength-dependent
coefficients. In order to compute the absolute coordinates of the splines in space, r(s) was
incorporated into equation 4.1 and integration was performed using the trapezoidal rule. This
technique was chosen after assessing the rectangle rule forward, rectangle rule backward,
trapezoidal rule, and the analytical solution for constant curvature and torsion, and comparing
their result to a reference example solved by the Runge-Kutta method which could assess
arbitrary values of κ and τ for any s. Despite improved accuracy, the latter could not be
applied due to its computational cost during the optimization process of shape adaption. The
catheter splines were modeled by line segments having piece-wise constant curvature and
torsion defined at the supporting points along the curve.

The undeformed shape of the catheter curve was determined according to considerations
about the equilibrium of an elastic rod [124, pp. 91–101]. Given boundary constraints for
the start and end point of the curve, its form is consistent with a stationary minimum of its
potential bending energy Epot . For a rod with length l, Epot is given by

Epot =
1
2

∫ l

0
A ·κ2(s) + C · τ2(s)ds, (4.2)

where κ [m−1] is the curvature, τ [m−1] is the torsion, A [Nm2] is the bending stiffness and
C [Nm2] is the torsional stiffness of the material [124, pp.11-12].

Computing the undeformed state of a catheter spline consequently meant to find values
for κ and τ which minimize the objective function Epot and fulfill the boundary constraints
like positions and angles at start and end of the curve. This was done by applying a MATLAB
built-in optimization function for multidimensional non-linear constrained problems.

Modeling Catheter Deformation The presented approach for designing computational
catheter models could be used to precisely model the electrode positions of complex catheter
geometries. In addition, it was designed to handle the deformation of the catheter shape
caused by the interaction of splines and the atrial wall. Therefore the position of supporting
points along the curve was incorporated as boundary constraint into the solver: All points
have to be located inside the anatomy. The required density of supporting points is related
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to the complexity of the surface mesh. Since the endocardial surface as acquired during
intracardiac mapping is generally rather smooth, an adequate density of supporting points
was already given by the approximation of the catheter curve. Although the adaption of
shape is possible with this approach, certain mechanical effects, like friction at the atrial wall,
and dynamic processes like the permanent motion of the atrium or the deformation of the
atrium by the catheter were not considered.

4.2 Implemented Basket CatheterModels
Although all types of catheters are affected by the deformation of shape, whole-chamber
mapping catheters like the Constellation

TM
basket (Boston Scientific, USA) are of special

interest. They are manufactured using super-elastic alloy splines, well-known to cause spline
bunching in MV and roof of the LA [125]. A clinical example of a deformed catheter can
be seen in Figure 4.1. The screenshot from the Velocity mapping system shows the basket
catheter located in postero-superior position in the left atrium. Bunching of splines in the
MV area and at the roof can be observed in both anterior (left) and lateral (right) view.

Figure 4.1: Screenshot of the Velocity mapping system demonstrating the deformation of a basket
catheter. The basket is placed in postero-superior position in the LA. Individual splines of the basket are
shown in different colors. Besides the basket, also the CS catheter (green) and the ablation catheter
(white) can be recognized. The LA is shown in antero-posterior (left) and latero-septal view (right). While
several splines are located in the roof and theMV, a lack of coverage can be observed at the anterior wall.

Following the above mentioned approach, individual splines of the basket catheter were
modeled. The basket size was defined by the length of the splines. Geometrical constraints
about the connection between splines at the distal catheter tip and the proximal end of
splines was given by the assembly. Since the eight splines are uniformly distributed around
the longitudinal axes, the interspline angle results to 45 ◦. The clamping angle between
the longitudinal axes and the splines was adapted to match a fully deployed catheter in an
undeformed state ex-vivo. The position of electrodes along each spline was given by their
distances along the parameterized curve. This information was directly available from data
sheets and product specifications.
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Constellation EA For the topics addressed in the presented studies, two catheter designs
with their respective electrode arrangements (EA) were focused upon. First, a catheter
designed according to the Constellation

TM
basket product specifications was modeled, being

referred to as Constellation EA. This catheter is available in the market for over 15 years now
and was applied in multiple studies addressing atrial flutter (AFlut) [79, 80, 126] and atrial
fibrillation (AFib) [82–84, 127]. It was not only used during panoramic approaches, but also
for local mapping of the PVs [128, 129]. When basket catheter mapping is performed for
diagnostic purposes, selecting the best possible catheter size and mapping position are of
interest. These have to be balanced with potential disadvantages like bunching of catheter
splines [125] and a lack of coverage in the proximal spline area [80].

FIRMap EA In order to cope with these issues, a novel catheter design was recently
developed. The FIRMap

TM
(Abbott Medical, USA) basket is manufactured with more rigid

splines to reduce spline bunching. In addition, the electrode arrangement was modified to
allow for EGM acquisition in proximal areas [130]. In this configuration, the catheter is
frequently used during FIRM-based mapping strategies targeting rotors and focal sources [85].
Since the number of electrodes was kept constant, however, the resulting interelectrode
distance along the individual splines had to be increased and led to a reduced mapping
density. This catheter was the second to be modeled, referred to as FIRMap EA.

Both electrode arrangement (EA) and clamping angle were adapted for each computa-
tional baskets as indicated by specifications or specimen. With respect to spline rigidity,
the properties of both catheters were set highly flexible. The resulting basket models are
depicted in Figures 4.2 and 4.3. An agreement between both the images and the overlays can
be observed. Using these techniques, the shape of spiral catheters or individual splines of
PentaRay could also be computed.

Basket in the Atrial Anatomy After implementation of the basket catheter models, the
computational catheters were applied during several studies as described in Chapters 15.2.2
and 17.1. Therefore, different catheter sizes and EAs were assessed with respect to interspline
distances and resulting coverage. The basket catheters were placed in the atrium and the
algorithm for shape adaption was applied.

An example of the basket catheter model in the LA can be seen in Figure 4.4. Considering
the LA size of 51 mm (lateral to septal), a catheter diameter of 48 mm was selected. Two
splines near the posterior wall show towards roof and inferior posterior wall, respectively, as
can be clearly seen in part (a).

In order to position the basket conveniently, a user interface was developed as depicted
in Figure 4.5. The interface allows to select different catheter types, vary the catheter size,
and change its position and orientation. Also different atrial geometries can be imported.
Images can be chosen as background and used to visually inspect the agreement between
implemented catheter designs and their respective photograph or data sheet. The resulting
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(a)Constellation catheter. (b)Overlay with simulated catheter.
Figure 4.2: Constellation catheter photographs, overlaidwith the undeformed simulated cathetermodel.
Yellow dots indicate the positions of the electrodes. Note the agreement between these simulated
positions and the silver electrodes on the images. From [122].

catheter shape and its electrode positions can be exported to perform subsequent analysis of
spatio-temporal patterns in diagnostic algorithms.



(a) FIRMmap catheter. (b) Overlay with simulated
catheter.

(c) FIRMmap catheter. (d) Overlay with simulated
catheter.

Figure 4.3: Image of the FIRMap specification sheet, overlaid with the undeformed FIRMap EA basket.
Yellow dots indicate the positions of the electrodes. Note the agreement between these simulated
positions and the silver electrodes on the images. Figures from [122] and adapted from [130].

(a) Lateral view (b) Postero-lateral view
Figure 4.4: Constellation catheter of size 48mm in postero-superior position. The catheter size was
selected based on the atrial size of 51mm. Spline separation can be observed at the posterior wall.
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Figure 4.5: Graphical user interface (GUI) for the placement of catheters. The GUI allows full control
over catheter type, size, position and orientation. The resulting electrode positions can be exported after
optimization and used for subsequent analysis or algorithm development. Figure from [122].

.





CHAPTER5
Preprocessing of Electrograms

Two major preprocessing steps were mandatory prior to electrogram analysis. First, filtering
was required to remove high frequency noise and low frequency components. Second,
ventricular activity had to be detected. This could be done based on the surface ECG,
in which ventricular components could be easily distinguished from atrial activity. The
techniques used for these tasks were developed during previous research projects [11, 131–
133]. They were optimized and extended in close collaboration with Gustavo Lenis, who is
conducting research in the field of ECG processing [134, 135].

5.1 Filtering Specific Frequency Components
All electrograms initially represent extracellular potentials, recorded in unipolar configuration
with reference to an indifferent electrode. For the latter, frequently the Wilson terminal
crest is used. These signals are typically corrupted by low frequency components, like
baseline wander or respiratory effects. Power line hum of 50 Hz as well as other discrete
and artificial frequency components also compromise signal quality, combined with general
high frequency noise. An example of unfiltered unipolar electrograms (EGMs) is visualized
in Figure 5.1. The electrograms were recorded by a Constellation

TM
basket catheter during

atrial flutter (AFlut) on electrodes B3 and G1, respectively. The presented data were 5 s long
and chosen due to the presence of clear atrial activity. The surface ECG lead V6 was plotted
additionally to ease differentiation between atrial and ventricular activity. For each of the
following plots, signals were scaled to emphasize the relative strength of signal and noise
components. The filtering techniques used for the processing of clinical data will be outlined
in the subsequent paragraphs.

Removal of baseline wander Slow processes like respiration or capacitive effects at
the electrodes can cause baseline wander in the low frequency domain. While spectral
components as little as 1 Hz are of interest during the processing for unipolar EGMs, the
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Figure 5.1: Exported unipolar EGMwithout additional filtering. Note strong 50Hz power line hum and
baseline wander, compromising the identification of atrial activity. The baseline was estimated (red) and
removed in subsequent steps.

ventricular repolarization (T wave) has been shown to contain frequency content of up to
7 Hz [136]. This overlap hampers the application of standard high-pass filter techniques in
baseline wander removal.

Therefore, the following preprocessing method was developed and presented [137].
First, the raw signal xr(t) was split into segments of 40 ms. The median values of every
segment were interpolated using cubic splines. As this initial baseline estimate could contain
undesired high frequency components, a Gaussian low-pass filter with a width of 7 Hz
in frequency domain was subsequently applied. This value was chosen consistently with
the center frequency of the T wave of the ECG [136]. The resulting baseline estimate is
visualized in Figure 5.1. Based on visual assessment, it closely followed the baseline wander
and reduced the component of ventricular repolarization. Subsequently, the baseline estimate
was removed from the initial signal, as demonstrated in Figure 5.2.
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Figure 5.2: Removal of the baseline in unipolar EGMs. The baseline was estimated in time domain by
median filtering and spline interpolation (compare Figure 5.1). It was subsequently subtracted from the
original signal.

Clinical filter settings Certain cut-off frequencies are typically applied for the different
signal types in the clinical context. As these values are based on year long clinical experience
and strongly effect the morphology of the filtered signal, it is generally adviceable to use
comparable values in automatic signal analysis. For surface ECG, and depending on the
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application, the high-pass is frequently set to 0.5 Hz, with the low-pass set to 50 Hz [138].
For bipolar signals, cut-off values of 30 and 300 Hz are typically applied [139]. As low
frequency components are of increased importance in the analysis of unipolar EGMs, the
high-pass cut-off frequency is set to about 0.1 Hz [137].

The exact type of filters which are used in clinical electroanatomical mapping system
(EAMS) and their order are not known. For the specific case of the electrogram recording
system EP Labsystem Pro of Bard, previous research has indicated that Butterworth filters of
first order were used as both high-pass and low-pass, respectively [140].

Application of these filters is demonstrated in Figure 5.3. The unipolar EGMs were
filtered with a low-pass at cut-off frequency 300 Hz and a high-pass with 0.1 Hz. Due to their
improved suppression of high frequency noise, filters of order 4 were applied. The 50 Hz
component still dominated the signals.
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Figure5.3: Unipolar EGMsfilteredwith clinical cut-off frequencies (0.1 - 300Hz). The signal is dominated
by 50Hz power line hum.

Removal of specific frequency components Power line interference at 50 Hz is the
most dominant artifact in unipolar signals, and peaks in the spectrum can also be observed
at harmonics of this frequency. Frequently, additional discrete spectral components can be
located at frequencies higher than 70 Hz, which cannot originate from a physiological source.

Spectral analysis of clinical data revealed, that the frequencies of these interferences
varied when data was acquired at different clinical centers and using different recording
systems. The exact source of the artificial components could not be located, as they may be
caused from both the utilized mapping system (i.e. while using impedance based localization)
or various equipment also present in the electro-physiological (EP) lab (pumps, ablation
generator, ...). This indicates the need for algorithms to automatically detect artificial
frequency components.

A corresponding detection and filtering technique was developed within the scope of
a student project [141] and is currently under review for publication. In short, the power
spectral density (PSD) was determined for each recorded EGM. Based on the assumption,
that artificial components would affect all channels, the resulting PSDs were averaged. A
sliding window of width 2 Hz was used to analyze the spectrum, with maximum and median
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of the spectral values calculated at each step and their quotient computed. If this value
exceeded a certain signal specific threshold, a peak was annotated. A subsequent iterative
algorithm was used to determine the fundamental frequency, as it was generally located
below 100 Hz and thus more hardly to be discerned from physiological components. The
resulting list of frequency peaks was subsequently handed over to a filtering algorithm for
removal of these artificial components [141].

In order to remove discrete spectral components, a notch filter with a Gaussian kernel
was designed [137]. This form was chosen due to its small time band-width product. The
width of the Gaussian in frequency domain was set to 2 Hz, and copies of this bell were added
to attenuate each harmonic. The filter was multiplied with the spectrum in frequency domain.
After transformation back into time domain, the resulting signal did not show oszillations at
these frequencies any more.

The application of the 50 Hz notch filter on the example signals is shown in Figure 5.4.
Atrial activity can be recognized with a cycle length of 253 ms.
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Figure 5.4: Removal of power line hum. A notch filter was applied in frequency domain to remove the
50Hz component. The Gaussian bell was chosen as kernel for the filter function due to its optimal
time-bandwidth product. Atrial activity can be recognized at this step.

After additional removal of other discrete frequencies at 142.5, 144, 195.5 and 203.5 Hz,
different atrial and ventricular components could be identified in the signal (see Figure 5.5).
Atrial activity was now clearly visible, and fractionation could be observed in EGM G1. A
comparison with the original unfiltered signal in Figure 5.1 emphasizes the need of careful
preprocessing prior to signal analysis.

However, ventricular components could still be recognized synchronously to the QRS com-
plexes in the surface ECG. An additional far field could also be observed simultaneous to
the T wave, although it was weakened by previous baseline filtering. As these components
overlap with the atrial activity in the frequency domain, they have to be addressed using
sophisticated methods in time domain (compare Chapter 7).

Preprocessing of bipolar signals For comparison, the respective preprocessing steps are
also shown for bipolar signals. Bipolar EGMs were constructed from the electrode pairs
G1/G2 and B3/B4, respectively, thus involving the unipolar EGMs used in the previous
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Figure 5.5: Removal of additional interferences at discrete frequencies. After identification of four
undesired frequency components, a notch filter was applied in frequency domain to remove them. Atrial
activity can be seenmore clearly.

paragraphs. The difference between both EGMs is plotted in Figure 5.6, in which a strong
baseline wander can be observed. But neither power line noise nor other high frequency
components were present.
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Figure 5.6: Bipolar EGMswithout filtering. In contrast to unipolar EGMs, common components of the
noise like synchronized artificial high frequency components or power line hum are canceled out by
subtraction and do not require additional filtering.

Figure 5.7 reflects the result of applying forth-order high- and low-pass filters with the
common cut-off values for bipolar signals of 30 and 300 Hz, respectively. Baseline wander
was strongly attenuated and atrial activation complexes were clearly visible. The ventricular
activity does hardly affect the measured EGM, as it similarly affected both unipolar channels.
This result was in agreement with clinical observations, that the application of high- and
low-pass filters is sufficient in most cases to achieve sufficient signal quality for bipolar
EGMs. Note that this is in contrast to unipolar signals, for which the presence of discrete
frequency components strongly affected signal quality (compare Figure 5.3).
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Figure 5.7: Bipolar EGMs after application of high-pass and low-pass. Filtering with cut-off values of
30Hz (high-pass) and 300Hz (low-pass) removed the baseline wander.

5.2 Detection of QRS Complexes
As demonstrated above, an undesired component within atrial EGMs is caused by ventricular
activity. The so called ventricular far field (VFF) can most clearly be observed in unipolar
EGMs, as this component is often canceled out in bipolar signals. It is caused by the
depolarization of the ventricles, and is also present as QRS complex in the surface ECG. As
the ventricular activity causes larger electrical potentials than the atrial one, QRS complexes
are more easy to identify in the ECG than P waves.

Techniques for the removal of VFFs will be presented in Chapter 7. Alternatively,
analysis of atrial electrograms can also be restricted to the time between QRS complexes, as
no ventricular depolarization takes place within the RR interval (compare Chapter 11.1). For
both approaches, information about the time of ventricular contraction is required.

In this chapter, a technique for the detection of QRS complexes is outlined. It is part
of the IBT biosig toolbox for ECG processing, which allows the annotation of various
interesting events from onset of the P wave up to end of the T wave. This is an important
tool for the analysis of parameters related to ventricular depolarization or repolarization,
effects of pharmacological treatment or risk statification [135, 142]. A benchmarking of the
presented technique follows in Chapter 11.1, in which manual annotations and automatic
QRS complex detection were compared in a database of 503 ECG traces, with all 810 QRS
complexes being identified correctly.

Annotation of QRS complexes in single lead ECG signals First, QRS complexes were
detected in each individual channel of the surface ECG. The band-pass filtered ECG was
down-sampled to 400 Hz to allow for rapid processing. The stationary wavelet decomposition
was performed up to a frequency of 50 Hz [135]. By default, the Haar wavelet was used, and
the detail coefficients of the frequency band around 50 Hz were analyzed. Both wavelet and
frequency range could be modified by the user. The energy of the transformed signal was
normalized and an adaptive threshold computed by a moving average. Times exceeding the
threshold were labeled as QRS complex [135, 142].



5.2. Detection of QRS Complexes 55

In a second processing step, the largest peak within the QRS complexes was annotated as
R peak and adjacent extrema as Q and S peaks, respectively. Additional processing methods
were available to reliably detect events like the beginning of the P wave [135].

Multichannel approach If multichannel data were available, first the QRS detection
was performed independently in all leads. Then the R peaks were assigned to individual
ventricular depolarizations by a voting algorithm. Within this algorithm, R peaks closer than
100 ms are merged and a minimum time between ventricular activities of 250 ms is assured
by discarding inconsistently annotated R peaks.

If required, the algorithm also allowed to compute a QRS template of normal beats for
each lead and correlate it to every occurrence. This could be used to determine the ECG
channel with best signal quality.

Assessment of signals with 1 s duration Most signal processing methods for ECG
analysis were developed for the assessment of parameters in Holter ECG. Respective signals
frequently have durations lasting up to several days, making long-term changes of QRS
morphology or statistical evaluation of ectopic activity most important tasks.

Within the field of intracardiac signal analysis, continuous signals are typically in the
order of minutes. Therefore, the correct detection of ventricular activity itself is sufficient
in most cases as supportive information for EGM analysis. Focusing on data recorded
during LAT mapping, exported signals have a fixed duration of 1 s (Velocity EAMS) or
2.5 s (CARTO EAMS). In these cases, the detection of QRS complexes using an adaptive
threshold is not possible.

Therefore, the QRS detection algorithm was adapted within the scope of this research
project. After the detail coefficients of wavelet decomposition were computed, the 99%
quantile was used to determine a saturation value thrsat for the energy level. The minimum
threshold for QRS detection was adapted based on two ideas inspired by physiology: As the
morphology of QRS complexes was expected to be constant during the short period of the
addressed tachycardias, the threshold was set to a fixed but individual value thrminAmp for each
signal. Following the assumption that the atrio-ventricular (AV) node refractory properties
limit the heart rate to about 180 beats per minute, a maximum corresponding number NQRS

of QRS complexes was computed according to the signal duration. Subsequently, peak
detection was applied with a minimum inter-peak distance of 50 ms and a minimum height
thrminAmp = 0.5× thrsat . If the resulting peak number Npeaks exceeded NQRS, most likely
only atrial activity was detected and consequently all detections were discarded.

Using these modifications to threshold computation, the QRS detection could be suc-
cessfully applied also to signals as short as 1 s. Besides the detection of ventricular activity,
information about the atrial activity can also be extracted from the surface ECG. During
some projects of the presented research, a close collaboration between the fields of ECG and
EGM processing proved very promising. One example was the study of P wave onset, for
which intracardac electrograms could be used as reference (compare Chapter 17.2) [135].
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Figure 5.8: ECGs of short duration with annotatedQRS complexes. Due to their short duration of 1 s,
the adaptive threshold approach used for typical ECG recordings could not be applied to these ECGs. An
adaptedmethodwas implemented and used to identify the presence of ventricular activity (red lines). A
variable number of QRS complexes was observedwithin the signals.



CHAPTER6
Atrial Geometry and Catheter

Position
In order to comprehend the spatio-temporal patterns in multichannel mapping data, knowl-
edge about the position of measuring electrodes and the cardiac anatomy is essential. Al-
though the data format used for export in different EAM systems varies significantly (see
Chapter 14.2), different preprocessing steps with respect to geometrical data are common.

When cardiac information was acquired in form of maps, the available clinical data
usually comprised the spatial coordinates of each measurement. For time-continuous data,
however, monitoring the position of each electrode and the subsequent identification of
representative catheter locations was an important step during preprocessing. Also the
acquired atrial geometries required certain preprocessing for subsequent analysis, as outlined
in the next chapters. All steps were developed and optimized for processing speed during
this thesis, as they were considered an important cornerstone to the goal of performing an
automatic analysis during the procedure.

6.1 Preprocessing of Atrial Geometries
The cardiac anatomy, which is displayed as virtual representation of the heart during the
electro-physiological (EP) study, is typically generated based on the catheter positions
reached during mapping. Each location acquired outside of the current model extends the
point cloud that represents the anatomy, comparable to inflating a balloon. Invalid points can
be excluded manually within the mapping system during the procedure while the anatomy
is generated. This can be due to unintended moving of the catheter (e.g. from through the
MV into the left ventricle), or caused by computational merging of adjacent structures (e.g.
LSPV and LAA). In any case, the resulting anatomy is a closed triangulated surface mesh, as
shown in Figure 6.1 (a). Including the openings for vessels and valves into the model was
the first step in the analysis workflow. In order to optimize up this process, a combination of
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user-interaction (annotation of cardiac structures) and automatic processing (modifying the
cardiac mesh) was designed during the research for this thesis.

Annotation of Anatomical Structures In order to open the valves, they first have to be
identified. One possible method is to annotate a representative template of the atrium, which
subsequently could be registered with the patient-specific geometry. A statistical atrial model
has been created based on computed tomography data from 138 subjects [143]. However,
the patient-specific anatomical variations from the standard model with two PVs on each
side were shown to be quite large, like a common ostium of ipsilateral PVs or three PVs
entering the atrium on one side. This complicates model-based approaches for the automatic
annotation of patient-specific anatomies, although corresponding segmentation algorithms
have been proposed which directly address this challenge [144].

Since the intra-procedural acquisition of the anatomy is based on sequential scanning
of the endocardial aspect over several minutes, the supporting technician has a sufficient
amount of time to annotate atrial structures as instructed by the physician. Annotation can
be done by placing labels along the border of the structures using the electroanatomical
mapping system (EAMS). A minimum number of three labels was required to define the path
around a structure, each one marked with an abbreviation of the corresponding component.
For complex structures, like the transition between atrium and ventricle, the physician can
additionally utilize his tactile sensation when guiding the catheter or monitor the amplitude
of atrial and ventricular signal components. Combined with his experience, these features
allow for a precise annotation of the patient-specific geometry prior to the signal analysis
without prolonging the procedure.

Extracting the Atrial Body After the anatomy has been annotated, it was exported from
the EAMS together with the respective labels. An algorithm was developed to automatically
extract the atrial body based on this information. For one atrial structure after the other, all
respective labels were located. Since all considered structures had a circular shape, it was
decided to fit a plane through these points and subsequently sort them by their angle around
the mean of all coordinates. The individual supporting points were connected in circular
order using a dedicated implementation of the Dijkstra algorithm, leading to a boundary
between the atrial body and the processed component of the atrial anatomy. A line was drawn
from the center of the atrium through the mean coordinate of the boundary, intersecting
the structure to be removed. Region growing was started from this intersection point and
continued until the complete boundary was included. All encompassed area was removed
from the atrial mesh, leaving boundary intact and saving its mean coordinate as reference for
latter visualization. In case that no annotation was available, an option of a manual mode
was also included. Therefore, the atrial mesh was shown to the user as point cloud in a dialog
window. The dialog allowed to rotate and zoom the view. For each structure after the other,
the user was asked to mark all corresponding points. These were subsequently removed,
leaving just the atrial body remaining.
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The result of automatic processing can be seen in Figure 6.1, which is a plot comparing
the LA prior and after opening. The required time for processing a biatrial anatomy of about
25.000 vertices and 50.600 facesvertices was about 17 s.

(a)Mapped geometry in AP view. (b)Mapped geometry in PA view.

(c) Endocardial mesh in AP view. (d) Endocardial mesh in PA view.
Figure 6.1: Extracting the atrial body from the acquired anatomy. The geometry was acquired as tri-
angulated surfacemesh during clinical mapping and subsequently exported (a, b). Annotations (yellow
dots) were placed on the anatomy under guidance of the physician and indicated the boundary between
regions. Usage of specific labels for each structure allowed for automatic processing (not shown). The
resulting endocardial meshwas generated within seconds (c, d).

6.2 Detection of Segments with Stable Catheter
Positions

In order to identify stable catheter positions within continuous mapping data, a parameteriz-
able algorithm was developed. It was originally implemented within the scope of a student
thesis for the morphology based analysis of atrial fibrillation data [145] and subsequently
reformulated. Based on the three-dimensional coordinates of N electrodes sampled with
frequency f sLoc over time T , it computes the time intervals during which the catheter position
can be considered stable.
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Therefore, the position vector is analyzed using sliding windows of length wL and
shift wS. For each window, median position and standard deviation along each individual
dimension is computed. Hereby, the median was chosen instead of the mean since it is more
robust to sudden shifts caused by contractions of the adjacent myocard. Beginning from
the start of the recording, successive windows were merged to a stable interval as long as
the euclidean distance of all electrodes to their position in the first window was below a
given threshold tp. If any electrode exceeded this threshold, a new stable interval was begun.
Existing intervals of stable median position were subsequently reanalyzed considering the
standard deviation. Since huge values of this parameter indicate a strong movement of the
catheter around a stable location, the interval was split again if the threshold ts was exceeded.
Finally, all stable intervals were returned for consecutive analysis (e.g. catheter contact,
electrogram morphology, excitation pattern, ...) that exceeded a minimum duration.

The sampling frequency of the electrode tracking is a technical property of the utilized
mapping system. For the Velocity EAMS, f sLoc is 100 Hz, and for Rhythmia it is 20 Hz.
Common values for the analysis include a window of wL = 1s which is shifted by wS = 0.5s,
and thresholds of 3mm for median position and its standard deviation, respectively. Increase
of these values was required if the respiratory compensation was not engaged during the
recording.

The application of this approach using above’s values to a segment of mapping data can
be observed in Figure 6.2. Data from a 20 pole spiral catheter were recorded for a period of
30 s. The algorithm was set to return only segments which were stable for more than 3 s. The
resulting three catheter positions are visualized in parts (b) and (c), indicating a mapping of
the anterior wall.

Although a threshold of 3mm may be considered a rather conservative estimate, it has
to be noted that absolute stability can be hardly achieved by the physician during mapping.
Several effects contribute to this, like breathing (although when respiratory compensation
is engaged), pulsatile blood flow caused by ventricular activity, and deformation of the
myocardium during atrial excitation. These effects have to be distinguished from voluntary
catheter re-positioning.

6.3 CoverageMaps
A high spatial density of intracardiac measurements is helpful for understanding a tachycardia
mechanism or gain information about the atrial substrate. One part of the processing workflow
was the assessment of the atrial coverage, being the amount of endocardial area from which
electrograms data were acquired [146].

Therefore two distance thresholds were defined, indicating the immediate proximity di

and medium distances dm between measurement positions and surface vertices. To be consis-
tent with the remaining analysis workflow, the locations of the electrodes were previously
projected onto the closest vertex of the geometry. The resulting error was considered ac-
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(a) Position time series with annotation of automatically detected stable segments.

(b)Catheter positions in RAO view. (c)Catheter positions in lateral view.
Figure 6.2: Detection of stable catheter positions. A segment of length 30 s was analyzed and three
stable positions were identified in the position time series (a). The corresponding catheter locations
were plotted in the atrial shell (b, c).

ceptable, due to the small distance between neighboring vertices (mean 1.7±0.6 mm in the
example outlined in Figure 6.1) on the one hand, and the expected error in catheter position
tracking and its relation to the contracting atrial wall on the other hand.

Vertices of the endocardial mesh with an Euclidian distance less than di or dm to any
acquired point were determined. Although a distance measure following the surface curvature
would be more exact than the Euclidian distance, the latter was chosen as it could be computed
rapidly and the effect of curvature was considered neglectable for the atrial structure and the
small distances. The covered area was subsequently defined as the region included by dm.
For statistical purposes, its relation to the total atrial surface was computed.

For visualization using the atrial surface mesh, areas within di and dm were colored green
and yellow, respectively, with all remaining geometry colored red. An example for this
technique is presented in Figure 6.3. Unmapped areas can easily be identified by their red
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color, allowing the physician to judge whether remapping is appropriate. The total number
of points used for analysis in RA and LA were 288 and 384, respectively.

(a) Endocardial coverage in AP view. (b) Endocardial coverage in PA view.
Figure 6.3: Typical coverage of the endocardial surface by intracardiac measurements. Surface areas
closer than a distance threshold dm=10mm to any recording position were considered covered (coloredyellow). The immediate proximity to measurement points is indicated green (di=5mm), while uncov-ered regions are indicated red. Dots mark the position of recordings in the RA (cyan) and LA (blue),
respectively.



CHAPTER7
Removal of Ventricular Far Field

The possibility to interpret intracardiac electrograms (IEGMs) can be compromised by
various artifacts that obscure the atrial activity as represented by the local activation wave
(LAW). Considering unipolar electrograms (EGMs), baseline wander, high frequency noise
and powerline hum are the most frequent undesired components. As these are well-defined in
the frequency domain, filters like high-pass, low-pass and notch filter can be used to reduce
the power of these undesired spectral components (see Section 5.1).

Another, and usually undesired component of IEGMs, represents the electrical activity of
the ventricles and is known as ventricular far field (VFF). The spectral components of VFF
are located in the same frequency range as atrial activity, because of which frequency-domain
filters cannot be applied without compromising the morphologies of LAWs as well. While
the atrial excitation typically takes place prior to the ventricular contraction in sinus rhythm,
this assumption is not valid during atrial tachycardias with stable basic cycle length (BCL).
Consequently, separating both components in time-domain is not possible as well.

One solution was proposed by the usage of bipolar or pseudo-unipolar EGMs: As
the noise affects the intracardiac channels with a comparable phase and magnitude, it
can be reduced by substracting two channels. This is the rationale for computing bipolar
electrograms (BEGMs) or applying an intracardiac reference to compute pseudo-unipolar
EGMs (compare Chapter 2.3.3).

For all kinds of unipolar signals and bipolar signals recorded close to the mitral valve,
however, special filtering techniques need to be applied to reduce the VFF. Several techniques
are commonly suggested, like template matching and subtraction, adaptive ventricular
cancellation or independent component analysis [147]. In previous work, our group and
others evaluated the applicability of the principal component analysis (PCA) [148, 149] to
remove VFF components. Results indicated that PCA is a powerfull technique for VFF
cancellation. Its applicability, however, relies on the decoupling of atrial and ventricular
activity. Although this can very well be assumed during atrial fibrillation (AFib), it is in
question during atrial flutter (AFlut) with stable conduction from the atria to the ventricles.

Therefore we sought to develop a new technique for the removal of VFF, which is
optimized for cases with stable temporal coupling of atrial LAWs and ventricular activity.
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This technique is based on the periodic component analysis (πCA), which was initially
developed in the field of speech processing [150]. Within the student project of Dan-Timon
Rudolph, this technique was benchmarked [151] and subsequently published [137, 139, 152].
For all these techniques, the time of ventricular contraction needs to be known. This
information, however, can reliably extracted from the surface electrocardiogram (ECG).
Corresponding algorithms and methods for multichannel detection of QRS complexes are
described in Section 5.2.

7.1 Principal Component Analysis
PCA is a method frequently applied to reduce the dimensionality of data for clustering
purposes. It has also been applied in different fields of EGM processing [148].

From the mathematical point of view, it is a linear transformation which projects given
data (e.g. N properties of S subjects) into a new orthogonal subspace given by the eigenvectors
of the covariance matrix. This also removes the correlation between the N properties. In
addition, the eigenvectors are sorted by descending variance. Eigenvectors which belong to
the largest eigenvalues are expected to explain the most variance of the data. Thus for similar
measurements, the first eigenvector approximates the general shape of the data, while the
eigenvectors of smaller eigenvalues describe the details of each respective subject. When the
data is projected using only a limited number M (with M < N) of eigenvectors, this allows to
approximate either the general shape of the properties or to focus on individual deviations.

When PCA is applied to remove VFF in IEGMs, typically N channels of electrograms
with each having a duration of S samples are subject to analysis. These signal snippets
contain data from one intracardiac channel and their timing is given by windows around
each detected QRS complex. Accordingly, all signals are synchronized with respect to the
ventricular depolarization. In case of AFib, a rather chaotic atrial excitation can be expected
and the atrial component in the resulting EGM snippets will exhibit different morphologies.
With respect to the ventricular activity, however, all signals are expected to have a similar
shape due to synchronization.

Given the N×S matrix X of EGM data, first an inverse version of X is added to obtain
the zero mean data matrix X∗ of size 2N×S. Next the PCA is applied on X∗. After this step,
the eigenvectors which explain the most of total variance are expected to primarily contain
the shape of the ventricular component. Consequently, eigenvectors accounting for at least
thrPCA of total variance are rejected and the remaining ones were used to reconstruct the
EGM without VFF. Linear interpolation of the baseline was performed to ensure continuity
of the signal after removal of the VFF component.

The threshold was suggested as thrPCA = 0.8, comparable to values applied in previous
work [149]. When compared to Adaptive Template Subtraction, the PCA based approach
leads to an individually estimated VFF component for each ventricular depolarization, and
thus is expected to perform better [148].
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7.2 Periodic Component Analysis
While the PCA can be used to separate sources based on statistical independence, other
properties like different periodicity also provide suitable features to detect underlying patterns
in a composition of signals. The πCA is a mathematical transformation which was designed
to separate repetitive structures in signals based on their cycle duration. Previous work
utilizing this approach included the frequency detection in multiple channels [150] or the
separation of maternal and fetal ECG [153]. In further fields of ECG signal processing, it
was used to estimate AFib activity [154, 155] or analyze T wave alternans [156].

Within the scope of this thesis, the concept of πCA was adapted to be applicable for VFF
removal during AFlut. Due to the well organized and stable underlying excitation process, the
cycle length of AFlut remains nearly constant over time. Since the conduction of excitation to
the ventricles is not random but rather deterministically based on the restitutional properties
of the AV node, stable patterns of 2:1 or 3:1 conduction can frequently be observed during
intracardiac mapping (compare Figure 7.1). This observation motivated the application of a
periodicity-based technique for the separation of atrial and ventricular activity.

1.5 2 2.5 3 3.5

Time [s]

CS 6

CS 3

V1

II

Figure 7.1: Example of stable 2:1 conduction between atria and ventricles. Two channels of surface ECG
clearly showmonomorphic and periodic QRS complexes (blue). Both unipolar CS channels showmore
rapid but regular atrial activity (green), indicated by the steep negative gradient in the signal. At a BCL of
320ms every second atrial excitation was conducted to the ventricles. Note the stable temporal relation
between atrial and ventricular activity. Data from patient C4 according to Table 7.1.

In above mentioned research, simultaneously recorded multichannel data had been
subject of analysis [150, 153–156]. The data was provided as matrix X(t) with each row
representing one channel xi(t). The πCA is applied to determine a linear mixing vector
w which maximizes the periodicity of the transformed signal s(t) = wT ∗X(t) for a given
period τ . To solve this problem, a formulation is chosen in which the goal is to minimize a
measure of non-periodicity ε . This optimization can be formulated as [153]

ε(w,τ) =
∑t |s(t + τ)− s(t)|2

∑t |s(t)|2
= 2

(
1− wTCxx(τ)w

wTCxx(0)w

)
, (7.1)
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in which Cxx(τ) is given by the covariance matrix of X(t) according to

Cxx(τ) = Et
{

X(t + τ)X(t)T} . (7.2)

The vector wopt of optimal transformation weights to minimize ε can be easily computed
with help of the Rayleigh-Ritz theorem [150]. It is given by the eigenvector of the biggest
generalized eigenvalue of the matrix pair (Cxx(τ),Cxx(0)). The linear transformation s(t) =
wT

opt ∗X(t) thus results in the signal with optimized periodicity τ . No constraints, however,
are imposed on signal morphology.

When simply applied to a set of IEGMs, the respective morphologies would be mixed
by πCA to optimize periodicity, but the resulting signals could not be used for diagnostic
purposes. Consequently, modifications were required to this original πCA approach to make
it usable as artifact removal technique which reduces the VFF component but preserves the
morphology of LAWs.

The respective changes to the application of πCA were investigated during this thesis. In
agreement with the desire to focus on the atrial activity, the period τ was set to the BCL. One
single IEGM was used as first channel in the data matrix X . A total of Nc additional channels
in X were generated by signals that contained pulses for samples of the IEGM which may be
corrupted by VFF (compare Figure 7.2).

Subsequently, the πCA was utilized to assign weights to all channels with pulse trains. As
no Dirac pulses were placed at times outside the VFF, the morphology of pure atrial activity
could not be changed when computing a linear combination. To optimize the periodicity of
LAW morphology, the πCA thus approximated the VFF. For an optimal mixing vector wopt ,
an inverse template V FFest would be formed by all Nc additional channels, matching the
original V FForg. When added to the original IEGM in the first channel of X , V FFest would
be removed from the signal. The amplitude of the initial EGM was preserved by scaling w
so that its first component was equal to 1.

In summary, first the position of QRS complexes was determined in the surface ECG.
Subsequently the BCL was determined using e.g. a coronary sinus (CS) channel without
artifacts. Due to the stable location of the CS catheter, this channel had to be chosen only
once for a procedure. For each IEGM channel after the other, the artificial channels were
generated and the data matrix X(t) composed. The weight vector wopt was computed using
the πCA and normalized. Finally the reconstructed electrogram could be computed as
AA f inal = wT

opt ∗X(t).
Having this general concept in mind, two alternative options were suggested. First, it

would be possible to reduce the number of additional artificial channels if e.g. Mexican
hat wavelets were used as basis functions instead of Dirac pulses [137]. However, both
the spacing and the width of the corresponding Gaussian curves would have to be chosen
appropriately to resemble the morphology of the ventricular component. Second, an improved
estimate of each respective VFF could be generated when artificial channels would be
estimated for each QRS complex individually instead of using periodically spaced Dirac
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Figure 7.2: Concept of the πCA. (a) QRS complexes are detected in the surface electrocardiogram, and
the timewindowwhichmight be compromised is annotated. (b) The respective window is marked in the
IEGM. (c) Artificial channels are generated and appended to the EGM. Each artificial channel contains
a sequence of Dirac impulses, with a fixed relative position to the ventricular activity. Goal of πCA is
to find a linear combination of these channels to resemble themorphology of the VFF component and
subsequently remove it. The number of channels is chosen to provide a pulse for each sample within the
window of interest. Reprinted from [137] with permission of the publisher.

pulses synchronous to the QRS complexes. This, however, would increase the number of
required artificial channels by a factor given by the number of QRS complexes.

7.3 Application of PCA and πCA
Having provided motivation and theoretical background of both artifact removal techniques,
their application is the central part of the following chapter. First clinical and synthetic data
are introduced, which were used to demonstrate and benchmark these techniques. The results
of performance analysis and application to clinical data conclude this section.

Clinical Data Clinical data from routine ablation of stable AFlut were retrospectively
exported to demonstrate the applicability of both artifact removal techniques. The database
comprised three patients which were mapped using the electroanatomical mapping system
(EAMS) EnSite Velocity

TM
(St. Jude Medical, St. Paul, MN, USA) and provided written

informed consent. Table 7.1 provides an overview about the most important properties of the
exported data and patient details.

Data from patient PtA was acquired using a basket catheter (Ba, Constellation, Boston
Scientific), while patients PtB and PtC were mapped using a 10 pole circular mapping
catheter (Opt, Optima, St. Jude Medical). The stability of the atrial rhythm was monitored
using a CS catheter. Surface ECG, intracardiac electrograms and catheter positions were
exported for continuous traces of mean duration 5.6 s. Bipolar EGMs were filtered by the
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Age, sex Cath Seg Dur [s] RR [ms],
µ±SD (nR)

BCL [ms]µ±SD (nA)
PtA 54, m Ba C1 4.8 672±79 (7) 253±2 (19)

Ba C2 5.1 814±193 (6) 252±2 (20)
Ba C3 4.8 706±157 (7) 253±2 (19)

PtB 64, m Opt C4 7.5 654±1 (11) 327±2 (23)
PtC 65, f Opt C5 7.6 538±5 (14) 269±7 (28)

C6 4.0 534±5 (8) 266±8 (15)
C7 5.6 654±196 (9) 264±7 (21)

Table 7.1: Details of patient and electrogram data. Duration (Dur), catheter (Cath), mean and SD of RR
intervals and atrial basic cycle length (BCL) are given for each EGM segment (Seg) C1-C7. Numbers of
R peaks (nR) and atrial activations (nA) are noted in parenthesis. Note that the SD of atrial BCL is 2ms
for patients PtA and PtB, indicating very high periodicity of the atrial rhythm. While a SD of 1 for the
ventricular rate also indicates a stable AV conduction in patient PtB, the higher values for patient PtA
indicate a variability in the AV coupling.

clinical system with a high-pass of 30 Hz and a low-pass of 300 Hz. Unipolar EGMs were
filtered during processing, using a high-pass of 1 Hz, a low-pass of 250 Hz and a notch filter
to remove 50 Hz powerline hum and non-physiological discrete high-frequency components.
Both unipolar electrograms (UEGMs) and BEGMs were subject to analysis.

The ventricular rate was determined based on the timing of detected QRS complexes.
LAWs in CS signals were assessed to compute the atrial rate. For all available and simultane-
ously recorded channels, first active parts of the signal were detected using an energy-based
approach [157]. Second the LAW morphologies were aligned in time based on correlation.
The channel showing best correlation was selected to compute the final measures for the
atrial rate.

As outlined in Table 7.1, the atrial BCL was very stable for patients PtA and PtB, with
a standard deviation (SD) of about 2 ms and relatively stable for patient PtC (about 7 ms).
The ventricular rate was also very stable for patient PtB (SD=1 ms) and some episodes of
patient PtC (C5 and C6, each with SD=5 ms). In these cases, AV conduction shows a clear
2:1 pattern. For segments C1-C3 (patient PtA) and C7 (patient PtC), high values of the SD
RR can be observed (80-200 ms), indicating a variable AV conduction.

Synthetic Electrograms Besides the clinical dataset, also a database of synthetic EGMs
was compiled to quantitively assess the performance of both signal processing algorithms. In
order to resemble the measured data as closely as possible, templates of atrial activity and
ventricular far-fields were generated from the clinical data. The templates were constructed
from manual annotations and comprised windows of duration 100 ms, ensuring to capture
all related activity. At least four individual complexes were used to construct the templates
and the mean correlation coefficient (CC) betwen the template and each single annotated
morphology was monitored to verify a sufficient match. The mean CC over all templates
was 0.94, being considered to represent sufficient agreement. To ensure the comparability
in subsequent analysis, the maximum peak amplitudes of all templates were normalized to
1 mV. This procedure resulted in a total of 7 templates of atrial activity and 4 templates of
ventricular activity [139].
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Cond ACL [ms] Jitter RR Jitter AA AmpAA/VFF
PA 2:1 280 No No 1/1
PB 3:1 200 No No 1/1
PC Varying 240 No No 1/1
PD Varying 240 No No Fixed
PE Varying 240 Yes No Breath
PF Varying 240 Yes No 1/1
PG Varying 240 No Yes 1/1
PH Varying 240 Yes Yes 1/1

Table 7.2: Populations of synthetic electrograms PA-PH. Conduction pattern (Cond), ACL, jitter and
amplitudes (Amp) were varied to generate datasets mimicking clinical data.

The templates were combined to generate 8 different populations of synthetic electro-
grams. The properties of these EGMs were specified to mimic clinical examples as closely
as possible. Details of the parameters used in each population are summarized in Table 7.2.
Since atrial activity could be recorded during any phase of the flutter circuit during clinical
mapping, six equally spaced shifts between atrial and ventricular activity were reproduced.
Thus each compiled population included 28 template combinations with 6 different phase
shifts, resulting in 168 individual traces in each population. Simultaneous occurences of
atrial and ventricular components were refered to using Sim and Non-Sim, respectively.

According to clinical observations documented in literature, atrial (basic) cycle length
(ACL) was set to 200, 240 or 280 ms. The simulated conduction ratios between atria and
ventricles were chosen as 2:1, 3:1 and alternating patterns of both values. In order to resemble
variability in the AV node conduction (AVC) time, the positions of R peaks were varied
(populations PE, PF and PH) by adding a random jitter (uniform distribution, half-width
5, 10, 20 or 30 ms). Variability in ACL was modeled by a jitter of 5 or 10 ms in the atrial
excitation rate of populations PG and PH.

For populations PD and PE, the same timing of atrial and ventricular components was
used as in PA. Their amplitude, however, was modified so that either the LAW or the VFF
was multiplied by a fixed value of 0.5 (PD) or modulated by 1+ 0.5 ∗ sin(x) (PE). For
the latter, x was chosen to represent a breathing frequency of 0.3 Hz within physiological
range [158].

Each signal was compromised by additive White Gaussian noise (Σ = 0.04mV ). Neither
powerline hum nor baseline wander were modeled since the data was expected to represent
filtered bipolar EGMs. Examples of five different signals are depicted in Figure 7.3.

Demonstrative Examples The practical implications of the theoretical considerations
about constant temporal relation of atrial and ventricular activity on artifact removal are
depicted in Figure 7.4. A synthetic electrogram from population PA is analyzed using both
PCA and πCA. The templates for both the atrial and ventricular component are visualized in
parts (a) and (b), respectively. At about 1250 ms of simulated data, both atrial and ventricular
activity concur simultaneously (c). Due to the fixed temporal relation between atrial and
ventricular activity, this overlap is consistent for each ventricular contraction. This is also
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Figure 7.3: Demonstrative examples of different populations. Atrial cycle length and relative timing
between atrial and ventricular depolarization were varied in the synthetic signals tomimic clinical data.
Reprinted from [137] with permission of the publisher.

reflected by the PCA-based estimate of VFF morphology, containing a superposition of the
atrial and the ventricular component. When the πCA is used to retrieve the undisturbed atrial
LAW, the VFF morphology is correctly estimated since the atrial component within the VFF
can already be explained by the periodic occurrence of the atrial activity.
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Figure 7.4: Comparison of the VFF estimates generated using PCA and πCA. Both atrial activity (a) and
VFF occured simultaneously in the EGMat 1250ms (c). The estimates for the VFF as generated using
the PCA contained both the atrial and the ventricular component, since both were synchronized (d).
The πCA correctly estimated the VFF (e). Although the estimated did not contain the atrial morphology,
note that only one single estimate was generated for all QRS complexes. Reprinted from [137] with
permission of the publisher.
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The effect on the resulting signal after VFF removal can be observed in Figure 7.5.
Since the atrial component is considered a part of the morphology including the artifact, it
is removed by the PCA from the signal (compare part (b)). The πCA was able to separate
ventricular and atrial components when the inverse template of ventricular activity was
determined, and thus successfully retains the morphology of the atrial LAW.
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Figure 7.5: Demonstration of both VFF removal techniques on a synthetic atrial signal. An EGMwith
stable atrial rate and fixed conduction rate 2:1 was filtered (a). When reconstruction was performed
using PCA, both AA and VFF were removed (b). Application of πCA retained the morphology of the
atrial component (c). Vertical lines indicate beginning and end of the VFF component. Time given inms,
amplitudes in mV. Reprinted from [137] with permission of the publisher.

Performance Benchmark The synthetic populations of EGM data were used to assess
the performance of both PCA and πCA. Two measures were chosen for a quantitative
benchmark, based on correlation and residual far-field energy. If at least 40 % of the
timespan of the ventricular component showed overlap with the atrial LAW, reconstructing
the morphology of the atrial component was considered the major goal. For this case, the
CC was computed between the original LAW and the signal after artifact removal. For little
or no overlap between VFF and atrial component, measuring the diminution of ventricular
activity was selected as performance criterion instead of the CC between both baselines.
This was measured by the fraction of initial energy of the VFF which was still present after
filtering (relEn). While a value of 1 was the best case for CC, relEn = 0 represented the
best case for Non-Sim signals. The respective results are depicted in the following, using
mean and standard deviation as statistical measures, and boxplots for visual representation.

The performance of both reconstruction techniques during stable AFlut with stable
AV conduction time was evaluated using the three populations showing these respective
properties (PA, PB, PC). The results are visualized in Figure 7.6, in which the data for
population PA is indicated by 2:1, PB by 3:1 and PC by Var. For an overlap of LAW and
VFF (part a)), the correlation showed very high values (CC = 0.98± 0.00, PA-PC) when
πCA was applied, while this dropped strongly (CC = 0.03± 0.08) for PCA. This is in
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perfect agreement with the demonstrative example depicted in Figure 7.5, in which the
PCA diminished all activity. Both techniques, however, were able to remove the ventricular
component when there was no overlap (NonSim signals, b)). This is indicated by the low
values of relEn.
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Figure 7.6: Statistics of filtering performance for stable conduction. (a) For simultaneous signals, AAmor-
phology was nearly perfectly reconstructed using πCA (CC = 0.98±0.00) but showed little correlation
when PCAwas used (CC = 0.03±0.08). (b) For non-simultaneous signals, both PCA and πCA removed
energy from the signal, which is the desired reconstruction of the noised baseline without VFF activity.
Reprinted from [137] with permission of the publisher.

The effect of changes in the relative amplitude between LAWs and the ventricular
component was assessed by evaluating the reconstructed signals of population PD. Other
properties, like atrial BCL and AV conduction time, were kept stable as in the previously
analyzed PA. The relation of both is indicated by 1:1, 2:1 and 1:2 in Figure 7.7. Although
the amplitudes were reduced to half of their initial value, no trend could be observed in the
reconstruction result for neither PCA nor πCA. This was in agreement with out expectations,
since the stability of amplitude was considered to play an important role during reconstruction
but not its value itself.
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Figure 7.7: Reconstruction performance depending on the ratio of amplitudes of AA and
VFF. Similar mean CC was observed for all scenarios (AA/VFF: 1:1/2:1/1:2; πCA: CC =
0.99±0.00/0.99±0.00/0.96±0.01; (PCA: CC = 0.03±0.05/0.03±0.05/0.02±0.04). Reprinted
from [137] with permission of the publisher.



7.3. Application of PCA and πCA 73

The stable coupling between atrial and ventricular activity was initially predicted to be
responsible for the poor performance of PCA and motivated the development of πCA. To
evaluate this effect, different levels of dissociation between atrial and ventricular activity were
mimicked in dataset PF. While the increasing aperiodicity of RR intervals showed little effect
on the performance of πCA (CC > 0.98), the outcome quality of PCA increased considerably.
Without jitter, CC of 0.03± 0.05 was observed. Already for a half-width of 5 ms this value
increased to 0.63± 0.18. For 10, 20 and 30 ms, the CC changed to 0.70± 0.17, 0.75± 0.16
and 0.77± 0.14, respectively.
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Figure 7.8: Filtering performance with respect to variations in AVC. Performance of πCA remained
nearly constant for increasing aperiodicity while performance of PCA improved. Reprinted from [137]
with permission of the publisher.

As demonstrated in Figure 7.7, the relative strength of LAW and VFF as reflected
by amplitude does not play an important role for the filtering performance of PCA and
πCA. However, dynamic alterations in the amplitude can also be present in the signals, e.g.
caused by breathing. This was reflected by population PE, in which the amplitudes were
either kept stable (const) or one component was modulated (VFF / AA). Variability of AV
conduction time was introduced to achieve comparable results for PCA as well. Considering
this technique for reconstruction, its performance was comparable over all scenarios (CC
for const/VFF/AA: 0.70± 0.17 / 0.71± 0.16 / 0.69± 0.17). Changes in the amplitude of
the atrial component did not affect the reconstruction performance of πCA (1.00± 0.00),
while a reduction of performance could be observed when the amplitude of the ventricular
component was modulated (0.85± 0.06). This can be explained by the fact, that one single
estimate for the VFF is computed using πCA, which is not adapted for each individual
occurrence. To confirm this, πCAind was also applied to this dataset, generating an individual



74 Chapter 7. Removal of Ventricular Far Field

estimate of the VFF for each QRS complex. Indeed, the resulting CC shows high values
independent of modulation (0.99± 0.00 / 0.99± 0.00 / 0.94± 0.01).
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Figure 7.9: Reconstruction performance with respect to amplitude variations over time. The varied
component is noted under each boxplot. Modulating VFF amplitude deteriorated πCA performance
(CC = 0.98 to CC = 0.85) while πCAind was not affected. Reprinted from [137] with permission of thepublisher.

Since the πCA was designed as novel filtering technique to overcome existing limitations
in the special case of periodic atrial activity, a violation of this assumption can be expected
to strongly compromise filtering performance. To confirm and quantify this effect, dataset
PG was compiled which included aperiodicity of the atrial rate but with stable coupling
time to the ventricles. The performance of both PCA and πCA in case of simultaneous and
non-simultaneous signals is depicted in Figure 7.10. Results demonstrated poor performance
of the PCA during Sim signals, indicated by the CC (0.03± 0.05 / 0.25± 0.32 / 0.27± 0.34)
with considerable intra-population variability. Performance of the πCA was reduced when
the aperiodicity of ACL became stronger (mean CC 0.99± 0.00 / 0.64± 0.31 / 0.39± 0.33).
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Figure 7.10: Influence of ACL variability on performance. Filtering with the πCAwas deteriorated when
ACL becamemore irregular. Reprinted from [137] with permission of the publisher.

Concluding, the combined effect of aperiodicity in atrial cycle length and the AV conduc-
tion time was evaluated using population PH. The resulting CCs are shown in Figure 7.11 and
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are consistent with the conclusions drawn earlier: πCA showed very good results for stable
atrial BCL, independent of variation in the ventricular rate. Its performance, however, was
strongly affected by aperiodicity in the atrial rate. Contrastingly, the well-known technique
PCA was hardly affected by an irregularity in the atrial rate, and performed increasingly
better when a decoupling of atrial and ventricular activity took place. For a stable coupling
between both, performance of PCA was poor. More details about this benchmark were
published in [137].

Figure 7.11: Combined effect of ACL and AVC time variability on performance. Median values of CC
are plotted for both variables. (a) πCA performance deteriorated for increasing ACL variability. (b)
PCA shows increasing performancewhen RR intervals become increasingly irregular. Bars colored by
irregularity of ACL. Reprinted from [137] with permission of the publisher.

Application on Clinical Data After benchmarking using synthetic data, both algorithms
were applied to different sets of clinical data. An example of artifact removal in a bipolar
signal with periodic atrial and ventricular activity (C4) is depicted in Figure 7.12. As
shown in the unfiltered EGM (part (b)), the VFF slightly preceeds the LAW, compromising
its diagnostical interpretation. Application of PCA for artifact removal attenuates both
components to nearly baseline values. If the πCA is used, however, the morphology of the
atrial LAW remains unaltered.

For comparison, the filtering algorithms were applied on a second EGM with a more
variable ventricular rhythm (C3). With an SD of 157 ms, its ventricular activity can be
considered decoupled from the atrial one (compare Table 7.1). The result of filtering can
be observed in Figure 7.13. In this case, also PCA was able to reconstruct the atrial LAW
correctly.

Considerations for usage It has been demonstrated, that the πCA can be used to remove
undesired ventricular components from IEGMs when the atrial BCL is stable. This is
especially useful in cases of a fixed coupling between atrial and ventricular activity, since
common techniques like Template Matching and Subtraction or PCA cannot be used in this
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Figure 7.12: Demonstration on clinical data with stable conduction properties and highly periodic atrial
and ventricular rate (C4). (a) Surface ECG. (b)Measured EGMwith VFF. (c) PCA removes both AA and
VFF. (d) Morphology of AA is retained using πCA. Time given in [ms], amplitudes in [mV]. Reprinted
from [137] with permission of the publisher.
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Figure 7.13: Demonstration on clinical datawith stable atrial rate but decoupling of atrial and ventricular
activity (C3). (a) Surface ECG. (b) Changes of relative timing between AA and VFF can be observed in the
measured EGM. Both PCA and πCA preserve AAmorphology and remove the VFF component (c and d).
Time given in [ms], amplitudes in [mV]. Reprinted from [137] with permission of the publisher.

case. If atrial excitation pattern and rate are constant, but the AV conduction is variable, PCA
can in general be applied.

The periodicity of atrial LAWs is an important prerequisite to the applicability of the
πCA. Slight variations in the BCL can be expected and are documented in the order of
5 ms [158], they could be, however, accounted for using phase-wrapping as suggested by
Sameni et al. [153]. For rather short signals of duration in the order of 1 to 2.5 s, it may
be more appropriate to simply select data from the undisturbed cycle for analysis purposes
(compare Section 11).

Recently, the Orthogonal Component Analysis was developed and implemented in our
lab. This is an advanced version of the PCA, which reconstructs the atrial activity by a
transformation of statistical moments in the PCA-space [159]. One major advantage of
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this method is its ability to work with non-periodic signals, as periodicity is not part of
this processing technique. It requires, however, knowledge of the position of LAWs in
uncompromised time windows during the initialization, and the timing of all potentially
compromised LAWs during processing. The database generated during this research can be
used to benchmark this new technique in a next step.





CHAPTER8
Determination of the Local

Activation Time
8.1 Annotation of LAT
Local Activation Time (LAT) maps have become a valuable diagnostical aid during elec-
trophysiological studies. They are used to visualize the electrical excitation on a three
dimensional cardiac geometry, allowing to easily comprehend the propagation pattern. There-
fore, intracardiac electrograms are measured at multiple positions, the LAT is assigned in
each individual signal and subsequently a complete map is interpolated. This map can in turn
be used to detect lines of block, compute parameters like the local conduction velocity (CV).
Since even small errors in the determination of the timing can cause huge errors during CV
computation, the best possible LAT assignment is highly important.

8.1.1 Criteria to Define the LAT
It has been demonstrated in experimental animal data, that the time of the steepest negative
slope in the unipolar electrogram coincides with the electrical excitation passing the mea-
suring electrode [90]. Although this is a very favorable marker, the determination of this
point can be compromized by powerline noise, other high frequency noise and far-fields.
The effect of these interferences is much less for bipolar signals. For these, however, the
shape of the signal heavily depends on the relative orientation between the wavefront and
the measuring dipole [90]. Thus no characteristic point in the electrogram can be used as
marker for the LAT. Due to its well understood nature, unipolar electrograms (UEGMs) are
considered the gold standard for LAT annotation in clinical signals [90]. In case of noise or
fractionation, bipolar electrograms (BEGMs) or hybrid approaches are frequently utilized
which detect the atrial activation first in the bipolar signal and then annotate the LAT in the
unipolar EGM [160].

79
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Since feature detection in bipolar EMs can be performed automatically in a more robust
way, BEGMs are commonly used for processing in EAM systems. Characteristic points
which can be detected in the signal are its maximum and minimum value, as well as the
maximum positive or negative derivative. Although these points may or may not concur
with the exact moment of the depolarization passing, they can reliably indicate an activation
complex.

Common to all methods is the annotation of LAT related to the intrinsic deflection, either
due to the high amplitude or the change in polarity of the EGM. Both concur to a local
maximum of the energy in the signal, and thus also the use of an energy-based algorithm
was proposed [161]. Therefore, the non-linear energy operator was applied to the signal,
followed by rectification and low-pass filtering at about 24 Hz. The maximum of the resulting
signal was used as surrogate for the LAT. The performance of this approach is analyzed in
the following chapter. It was first assessed using simulated data and subsequently applied to
clinical data. The results have been presented to the scientific community previously [162].

8.1.2 Benchmarkingwith Simulated Data
Simulations Simulations were performed on a regular grid of cubical voxels with a spatial
resolution of 0.2 mm. The setup included a tissue patch (42.2 x 15 x 4.4 mm) and a 7F
ablation catheter with two electrodes (compare Figure 8.1). Simulations were performed
using the human atrial cell model by Courtemanche et al. [99] and solved using the bidomain
approach implemented in the acCELLerate simulation environment [102]. The sampling
rate for simulations was set to 10 kHz and clinical filter settings were applied (second order
Butterworth filter, high-pass at 5 Hz or 30 Hz, low-pass at 250 Hz). This simulation setup has
been validated against clinical electrograms previously [140]. Angles α and β were varied to
evaluate the effect of catheter orientation, covering a total of 49 different settings. Unipolar
signals were calculated using the mean of the extracellular field in the upmost blood layer
as reference. Bipolar signals were defined as the potential difference of the proximal and
distal electrodes. Setup and simulations were part of a student project supervised by Matthias
Keller.

(a) Extracellular potential. (b) Coordinate system for
catheter position.

0 22.5 45 67.5 90 112.5 135 157.5 180
90

45

0

−45

−90

Catheter Orientations

α [degree]

β
 [
d
e
g
re

e
]

(c) Simulated catheter orienta-
tions.

Figure 8.1: Simulation setup used for LAT studies. (a) Extracellular potentials. (b) Simulation setup.
Planar stimulation was performed on the left side of the tissue patch. The excitation wavefront passed
the catheter as a nearly planar wave. Angles α and β were varied, covering 49 orientations as depicted
in (c).
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Methods to determine the LAT The LAT tTrue in patch simulations was defined as the
time of maximum upstroke velocity of the transmembrane voltage (TMV) in the most
endocardial tissue layer and considered as reference ground truth for benchmarking. For
unipolar measurements, the computational node underneath the center of each electrode was
considered. The geometric mean of both electrode centers was used for the bipolar case.

Six morphological landmarks of the simulated EGMs were analyzed as criteria to
annotate the LAT tCri within this study, being the maximum and minimum value (tMax and
tMin), the maximum and minimum derivative (t+dV/dt and t−dV/dt), as well as the maximum
absolute values (tAbs and t|dV/dt|). In addition, the maximum value of the filtered NLEO and
its baro-center was used (tNLEO and tbaro).

Impact of catheter orientation and filtering on signal morphology Simulated unipo-
lar signals showed a biphasic morphology as depicted in Figure 8.2 (a). High-pass filtering
with increasing cut-off frequency removed the low frequency components leading to a more
dominant negative peak.

Morphology of bipolar signals varied strongly depending on the catheter orientation.
Both monophasic (in (anti-)parallel alignment) and biphasic (orthogonal tilt) signals were
observed. Filtering caused further changes to this morphological variety as can be seen in
Figures 8.2 (b-d).
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(a)Unipolar distal EGM.
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(b)Bipolar EGM.
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(d)Bipolar EGM.
Figure 8.2: Effect of catheter orientation and filtering on electrogrammorphology. Raw signals (blue)
were filtered using a high-pass at 5Hz (green) and 30Hz (red, dashed). Corresponding tTrue is plotted asvertical dashed line and coincides with different characteristic points of EGMmorphology. (a) Unipolar
electrogram of the distal electrode (α = 90◦, β = 0◦). Bipolar electrograms for β = 0◦ and α = 180◦ (b),
α = 90◦ (c), and α = 0◦ (d).

LAT determination in simulated signals The performance of the criteria was evaluated
by comparing tTrue with the respective tCri in simulated EGMs which were filtered at a high-
pass of 30 Hz. The absolute time difference |∆tMaxMin| = |tMax− tMin| between maximum
and minimum of bipolar signals was computed as 6.6±1.5 ms.

Boxplots of the difference ∆tCriTrue = tCri − tTrue are visualized in Figure 8.3. For
unipolar signals, -dV/dt demonstrated the smallest deviation of all common criteria with
0.8±0.9 ms. All methods showed mean errors of more than 1 ms for bipolar signals. Both
energy-based approaches resulted in mean differences of less than 0.5 ms in unipolar and
bipolar configurations. A high standard deviation can be noted for bipolar analysis using
common criteria.

8.1.3 Impact of Criteria on Clinical Values
Clinical data Four LAT maps recorded from three paroxysmal AF patients (age 59.3±12.7
years) in sinus rhythm were analyzed retrospectively. Data was acquired for 1 s using a 10
polar circular mapping catheter (Optima, St. Jude Medical) in pair-wise bipolar configuration,
in connection with the Ensite NavX electroanatomical mapping system (EAMS) (St. Jude
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(a) Error in LAT annotation for unipolar signals.
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(b) Error in LAT annotation for bipolar signals.
Figure 8.3: Statistical error of annotated LATs. Boxplots of ∆tCriTrue for simulated unipolar (a) andbipolar (b) electrograms. In agreement with literature, -dV/dt demonstrated the best match for unipolar
signals. Performance of common criteria varied strongly depending on catheter orientation for bipolar
EGMs. Values of ∆tMaxTrue were out of range for unipolar signals (median 21.2ms), as themaximum ofthe filtered signal was not related to the local depolarization.

Medical). Sample rate was 1200 Hz and signals were filtered by the mapping system with
cut-off frequencies of 32 Hz and 250 Hz, respectively. Signals which met at least one of the
following criteria were not incorporated: Excluded by the physician, peak to peak amplitude
below the noise level of 0.08 mV, or at least one tCri deviating more than 120 ms from the
reference catheter activation time. Thus 489 out of 999 signals were used for analysis.

Generation of LAT maps using different criteria To demonstrate the consequences
for clinical signal processing, LAT maps were generated using the same recorded electro-
grams but different LAT criteria. For all these clinical signals, the absolute time difference
|∆tMaxMin|= |tMax− tMin| was 9.4±5.8 ms. An antero-septal part of the resulting maps for
one exemplary subject is shown in Figure 8.4, using signal maximum (a), minimum (b) and
NLEO (c). In addition, the distribution of ∆tMaxMin on the complete left atrium is plotted
in RAO view (d). All maps showed a propagation originating close to the right superior
pulmonary vein. Changes at markings I and II demonstrate the impact of algorithm selection
on the resulting map, causing early or late activation. The pattern was observed to be more
smooth when the NLEO was applied.



84 Chapter 8. Determination of the Local Activation Time

(a)Maximum signal value. (b)Minimum signal value.

(c)Annotation using NLEO. (d)Differences between annotations.
Figure 8.4: Impact of annotation method on clinical data. LATmaps generated from the same clinical
signals using three different criteriaMax (a), Min (b) and NLEO (c). The complete LA geometry including
the selected area for demonstration (white dots) and the distribution of ∆tMaxMin is shown last (d). Allvalues given inms.

8.1.4 Discussion and Conclusion
Unipolar signals For unipolar signals, the smallest error of -dV/dt was consistent with the
classical criterion of using the steepest negative gradient of the signal to define the LAT. The
remaining deviation of 0.8±0.9 ms was reduced to 0.4±0.6 ms if the high pass was set to
0.05 Hz, and to 0.2±0.2 ms if only the distal electrode was considered (which was always
in contact). Annotation using the NLEO resulted in 0.2±0.1 ms for the distal electrode.
Since information about tissue contact is not known in clinical practice, both electrodes were
incorporated for the statistics. Both Min and -dV/dt showed low standard deviation and a
bias of 2.2 and -0.8 ms, respectively, which could be corrected by an additive value.

Bipolar signals In case of bipolar EGMs, all common LAT criteria showed mean errors
greater than 1 ms, with the best value 1.2±0.7 ms for |dV/dt|. Considering parallel alignment
regarding the wave propagation only, AbsPeak performed best (|∆tAbs|=0.45 ms), which was
in agreement with literature [90] and corresponding to Figures 8.2 (b, d). The inconsistent
performance when considering different orientations might be caused by the varying mor-
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phology of bipolar signals. Both energy-based criteria performed better with mean errors
below 0.3 ms.

Clinical implications With respect to the clinical data, selection of different annotation
criteria was shown to affect the resulting LAT maps. Although the general excitation pattern
was consistent in all three maps of Figure 8.4, zones of early or late activation were present
at locations I and II depending on the annotation criterion. Using the NLEO provided a
relatively continuous activation pattern. Quantitative analysis showed a mean |∆tMaxMin| of
9.4 ms for clinical EGMs, representing the range of jitter which can be expected in LAT map
annotation. Although this does not affect the global pattern, it may compromise evaluation
of local data during conduction velocity (CV) estimation.

Limitations of this study All simulations were performed using a homogeneous tissue
patch and a planar wavefront. Thus the model did not account for the heterogeneities present
in real anatomy [101] and curved wavefronts. However, the simulation setup resembled
locally homogeneous scenarios described in literature [90]. Although not outlined here,
simulations were also compromised by noise and subsequently analyzed.

Conclusion Different criteria are used in clinical practice to define the LAT. This is the
first work known to the author to compare the performance of these criteria based on detailed
simulations. The results indicated that the maximum negative derivative of the signal (-dV/dt)
was the most appropriate indicator of LAT using unipolar signals. For bipolar signals, the
maximum of the absolute derivative |dV/dt| could be used with a good performance in signals.
The clinical importance of criterion selection was demonstrated by examples of resulting LAT
maps. Best performance was achieved using two energy-based algorithms, which showed to
be robust against changes in catheter orientation. Since they do not rely on morphological
landmarks, they might also be used to define the LAT for fractionated signals. Therefore
the energy-based criteria were used frequently during the presented research to achieve a
reliable automated local activation time (LAT) detection.

8.2 Determination of Atrial Activation Rate
During sinus rhythm and without any major disturbance in AV conduction, each atrial
depolarization is followed by a contraction of the ventricles. Thus an analysis of the
RR intervals generally reflects the frequency of atrial activity. During more rapid atrial
tachycardia, however, the refractory period of the AV node does not allow every single
activation to be passed to the ventricles. Consequently, the direct analysis of atrial signals
is required to extract diagnostically relevant information about the atrial excitation. This
information can be retrieved in both time and frequency domain.
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Selection of an appropriate channel Electrograms recorded in the coronary sinus (CS)
are commonly used to assess the stability of atrial excitation. Since the CS catheter remains
at a stable position during the complete procedure, it cannot only be used as positional
reference, but also to observe the stability of timing and morphology of local activation
waves (LAWs). As unipolar electrograms (EGMs) are frequently compromised by powerline
hum and ventricular far-fields (compare Chapter 7), bipolar EGMs are typically chosen for
analysis. Although BEGMs are generally less affected by ventricular far field (VFF), the
recording position very close to the ventricles has to be considered to be within the near-field
of the source, and thus ventricular components can frequently be observed in some of the CS
channels. Typical CS catheters have 8 or 10 electrodes, providing 4 or 5 bipolar channels. In
order to determine the atrial cycle length for a stable tachycardia, analysis of one reliable
channel is sufficient. Due to the patient-specific position of the CS, however, it cannot be
stated in general, if the proximal or the distal bipolar leads are less affected by the ventricular
activity.

Usually, a suitable channel is selected by visual inspection prior to the clinical mapping
procedure. Consequently it is used for temporal alignment during mapping and its data is
included as sole reference in the exported data. If data from several CS leads was available
(e.g. CARTO maps, Rhythmia study files), selection of the channel most suited for analysis
was helpful. Therefore, a semi-automatic method was developed during this thesis to
automatically rank BEGMs according to their suitability for atrial rate computation. As
suggested for the selection of a channel in QRS detection, the kurtosis was applied during this
context. The kurtosis of a data vector X represents its fourth central moment, divided by the
fourth power of its standard deviation. For signals with long segments of baseline and strong
and discrete LAWs, a high value for the kurtosis of the amplitude histogram is expected.
Its value will be low, contrastingly, if the signal contains prolonged atrial activity with low
amplitude. Based on these considerations, two copies of each BEGM were generated, one
with the time of QRS complexes blanked and one with all remaining data removed. For both
signals, the kurtosis was computed and its quotient assessed to identify the most suitable
channel. If the position of QRS complexes was not available for channel selection, the quality
measure was based on the kurtosis of the complete signal only. The CS channels were sorted
according to their expected suitability for atrial rate detection and displayed to the user for
verification purposes.

In case of dominant frequency (DF)-based ablation procedures of atrial fibrillation
(AFib), maps of EGM data are acquired on multiple points of the atrial surface (compare
Section 2.3.3). In this case, each individual EGM is subject to analysis of the atrial rate [163–
166].

Determination of the basic cycle length in atrial flutter The basic cycle length is one
of the most important parameters of an atrial flutter (AFlut) circuit. It can be determined
if at least two consecutive LAWs can be detected in the reference channel and their time
difference can be computed. Typical basic cycle length (BCL) values for AFlut lie between
180 and 400 ms (compare Table 10.2 in Chapter 10.1). As the duration of exported reference
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EGMs for LAT maps recorded with the Velocity EAMS is 1 s (and up to 2.5 s when CARTO
is used), three to five atrial LAWs can be expected in each EGM. The LAW which was found
most appropriate and thus used for synchronization of LAT data is located in the center of
the exported segment.

Although the BCL of AFlut is very stable, small fluctuations have been documented in
the order of 5 ms standard deviation [158]. These are not random but periodicity can be
found in the respective time series. Several factors influence the instantaneous BCL, like the
respiratory state and ventricular state, both causing changes in the atrial volume which in turn
change conduction properties according to the mechano-electrical feedback hypothesis [158].
In order to appropriately analyse sequential mapping data recorded during atrial flutter,
variations of the BCL need to be detected and accounted for. Within this thesis, an algorithm
was developed to automatically assess and monitor the atrial BCL in the reference channel
throughout the recorded data.

First, several measures were computed for each individual reference EGM. All active
segments of the signal were detected using an energy-based approach [157]. The peak of the
energy signal was used to determine the LAT. The central LAT within the segment and its
first preceeding and succeeding LAW were used for further analysis, providing information
about a prior and a subsequent cycle. Snippets of duration 50 ms were extracted around
each LAT, and subsequently used to compute the precise duration of the preceeding and
succeeding cycle based on correlation between the respective LAWs. In addition to the cycle
length, also the correlation coefficient of the best temporal alignment itself was computed.
Second, a mean template of the central LAW over all reference channels was determined,
and correlated with each individual reference EGM again.

In the third step, information about BCL and correlation was evaluated to reject mea-
surements which were not consistent with the mapped excitation pattern. Determined BCL
values were provided to the user as boxplot and as plot over time. The median BCL was
shown as initial estimate for the final BCL. Electrogram data acquired during the sequential
mapping process were subsequently rejected, when the LAW correlation of any of the two
inspected cycles was below 0.6, or if the BCL deviated more than 10 % from the final BCL
measurement. Data were also discarded if the correlation with the mean template was below
0.6.

An example for this process is depicted in the following figures. The initial data from
610 sequential measurements is plotted in Figure 8.5. All reference EGMs are shown in the
top row. While the central LAWs exhibit similar morphologies, also signals with varying
morphology (e.g. including a strong negative deflection) or different cycle length can be
observed. This is in agreement with both boxplot and time-series visualization in the lower
row. The median BCL was determined 303 ms. After rejection of low quality signals, the
remaining reference EGMs exhibited similar morpholgy and cycle length (Figure 8.6).

Also a multichannel analysis would be possible to monitor the atrial rhythm more closely.
The correlation between the central segments does provide information about the stability
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(a)CS signals as imported (610 EGMs).
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(b)BCL estimate (303ms).
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(c)BCL over time.
Figure 8.5: Estimation of AFlut BCL considering all signals (a). The BCL is visualized as boxplot (b) and as
continuous value over time (c). Deviations from themedian BCL could be observed, whichmay be caused
by alterations in the arrhythmia itself or bymisdetections in the CS channel.
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(a)CS signals after assessment of consistency (571 EGMs).
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(c)BCL over time.
Figure 8.6: Estimation of AFlut BCL considering only consistent signals (a). CS EGMswere rejected if
their BCL deviated for more than 10% of the median value or if the similarity of the synchronization
activation complex was too low. Both boxplot (b) and values over time (c) becamemore consistent.

of the underlying excitation pattern (see section 13.2). However, monitoring all CS leads
simultaneously would allow to observe their sequence of activation (LAT pattern). Thus it
would also be possible to reject data from cardiac patterns which show similar cycle length
but a deviating excitation sequence. This approach, however, was not utilized during this
research due to two major reasons. First, the clinical data exported from the EAMS Velocity
did only contain one intracardiac reference channel, making multichannel approaches for lead
selection not applicable. This issue could be overcome in the future by assigning additional
intracardiac channels to the three traces actually reserved for the surface electrocardiogram
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(ECG). Second, it was found rarely that stable atrial tachycardias changed into different
forms of tachycardias during clinical mapping and without any ablation being performed.
Intermediate episodes of sinus rhythm may take place, but can easily be identified by the
sudden increase of cycle length. Conversion into other forms of flutter typically took place
during ablation and were accompanied by an increase of cycle length.

Activation rate and dominant frequency during atrial fibrillation A more complex
case is given by atrial fibrillation, in which the constantly changing depolarization pattern
compromises the ability to determine a specific excitation rate. On the one hand, this is
due to more fractionated activity, in which the annotation of LAT may not be unambiguous.
Additionally, the morphology of LAWs may change from one cycle to the next, excluding
the possibility of precise correlation based alignment. Due to the dynamic excitation during
fibrillation, the activation rate observed in one channel may not be constant, but also vary
over time. Nevertheless, different approaches have been developed to estimate the atrial
activation rate or its inverse, the DF. Although both values are expected to be consistent,
studies have shown a correlation of only 0.21 between both values [167]. The dynamics of
amplitude and cycle length within the analyzed EGM were suggested as possible limitation
of DF determination in that study. However, also the annotation of LAT in time domain
usually is not obvious, thus may compromise the estimation of cycle length and was not
excluded as reason by the authors.

The activation rate is frequently used to assess the regularization of atrial excitation during
an ablation procedure, in which an increase by at least 10 % indicates that the tachycardia
gets more regularized and thus the correct point for ablation was chosen [27]. The DF is
also used to identify AFib sources, in anticipation that areas with a high DF and a gradient
towards smaller values in surrounding tissue may represent drivers of AFib [163–166].

An approach to compute the DF was implemented within a student project [168], follow-
ing a concept published previously. The corresponding algorithm consisted of the following
steps [163]:

1. Band-pass filtering at 40-250 Hz
2. Calculate absolute value (i.e. rectification)
3. Low-pass filtering at 20 Hz
4. Windowing (Hanning)
5. Zero padding
6. Fast Fourier transform (FFT)
7. Search for maximum of power spectrum

This technique was discussed intensively within previous work, addressing signal pro-
cessing fundamentals [169] as well as the application on uni- or bipolar signals, the influence
of SNR, VFF and the duration of the signal [163]. In order to focus on the physiological
values, the search range for the maximum of the power spectrum is frequently limited to val-
ues of about 2.5 to 16 Hz [167]. Of note, the typical threshold for continuously fractionated
signals is an activation cycle length of 120 ms, equivalent to a DF of 8.3 Hz.
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An example of DF computation and the corresponding time domain EGMs is shown in
Figure 8.7. Both unipolar signals were recorded simultaneously on spiral catheter electrodes
8 and 14, respectively. While EGM 8 shows clear deflections and one distinct peak in the
PSD, signal 14 is more fractionated in time domain and also less concentrated in frequency
domain.
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(a) EGM8with clear deflections.
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(c) EGM14with less consistent activation.
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(d) PSD of EGM14was less concentrated.
Figure 8.7: Dominant frequency calculation for unipolar EGMs. While one distinct peak clearly indicated
theDF for signals with consistent periodic activity (a, b), themethodwas less reliable for fractionated
activity (c, d).
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8.3 Relationship of LAT and Phase
LAT maps are typically used to comprehend the pattern of cardiac excitation during atrial
flutter [65]. For focal tachycardias, the point of earliest activation is considered the source
and consequently target for ablation. For reentrant tachycardias, the location of the isthmus
is of special interest, as ablation at this point is expected to terminate the arrhythmia. It
can be identified by observing the excitation pattern and searching for a moment at which
the excitation slowly propagates through a narrow region (crowding of isochrones). The
third type of reentrant mechanism (microreentry) is characterized by an area in which all
isochrones meet, and thus the LAT cannot be defined.

This specific scenario, namely the identification of rotational activity, can also be ad-
dressed using a physics-based approach: The concept of phase. Instead of representing the
activation in terms of time within the excitation cycle, it is represented by the phase from −π

to +π . Following the concept of topological charge, a microreentry results in a singularity
point [112].

As outlined in Chapter 3.2.2, a common method to determine the phase is based on
the Hilbert Transform. Segments of baseline values, however, can compromise the phase
computation. Since the presence of baseline is commonly observed in filtered bipolar
electrograms, a preprocessing step termed Sinusoidal Recomposition was developed in order
to overcome this issue [114]: The input signal v is reconstructed using sinusoidal wavelets,
which are scaled proportionally to the negative derivative of the signal. The duration of the
wavelet T is given by the cycle length of the observed process and can be determined using
the methods outlined above:

w(t) =
∫ t+T/2

t−T/2
sin(t− τ)

∣∣∣∣ dv
dτ

∣∣∣∣ 1− sign
( dv

dτ

)
2

dτ (8.1)

This technique can be applied to both unipolar and bipolar signals. Although the negative
gradient in bipolar signals does not reflect a physiological process like in unipolar EGMs,
it can be used very well to indicate the presence of an activation complex. An example for
this technique can be seen in Figure 8.8. The phase of a filtered unipolar EGM is computed
using both the Hilbert transform directly and after sinusoidal recomposition. In this case, the
same signal as in Figure 8.7 (a) was used, and its period T determined using its DF. As the
signal was recorded using an intracardiac reference, the amplitude of ventricular far field
was low when compared to e.g. the data presented in Figure 5.5. However, both this far field
and segments of baseline compromise the reliability of phase determination.

8.4 Interpolation Techniques
The number of points sequentially acquired during mapping is typically in the order of
several hundreds, which is much lower than the number of vertices used to represent the
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(b) Phase of the signal as computed by Hilbert transform.
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(c) Sinusoidal recomposition.
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(d)Computed phase after sinusoidal recomposition.
Figure 8.8: Computation of phase with and without sinusoidal recomposition. The phase of a filtered
unipolar EGM (a) was computed using the Hilbert transform (b). The result is compromised by far field
effects (0.6 s) and baseline values (0.9 s). Transformation of the recomposed signal (c) reduced erroneous
phase jumps (d). The phase transition from−π to π coincides with the steepest negative gradient of the
unipolar EGM.

atrial geometry. Consequently, interpolation between the points has to be performed for
visualization and some processing techniques. In the following, the different techniques will
be summarized and demonstrated.

Interpolation techniques Three major techniques were used to perform the interpolation
step:
• Nearest Neighbor

To merely visualize scalar analysis results like the LAT of a measured EGM, this value
was directly assigned to the atrial region surrounding the recording position. For each
vertex of the anatomy, data from the closest electrode was taken, without interpolation
of values between measurement points. Therefore no other than the acquired values
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were used for visual representation. This technique was generally applied to interpolate
information about voltage or the presence of activity in the EGMs.
• Laplacian-Interpolation

For continuous processes like the cardiac depolarization, however, interpolation with
constant values is not appropriate. For this case, a second technique was implemented
which minimized the Laplacian for getting a smooth interpolation. It was originally
introduced to interpolate the surface potential distribution of an electrical volume
conductor [170].
Consider the interpolation of k known values onto N vertices of the geometry. Let the
vector of data values be f, which can be rearranged to

f =

(
f1

f2

)
, (8.2)

with f1 being the vector of unknown values for points 1 to k and f2 be the vector of all
known values for points k+1 to N.
Based on the formulation of the Laplacian in a triangular mesh [170], the Laplacian
can be expressed as matrix L with elements

lii = − 4
hi

(
1
hi

)
,

li j = − 4
hi

1
ni

1
hi j

for i 6= j, p j direct neighbor of pi,

li j = 0 for i 6= j, p j no direct neighbor of pi,

with hi j being the distance between pi and p j, ni the number of neighbors of pi, hi the
average of hi j over the neighbors of pi, and (1/hi) being the average of 1/hi j over the
neighbors of pi.
Similar to f, L can be partitioned according to

L =

(
L11 L12

L21 L22

)
(8.3)

Based on these considerations, two interpolation techniques were generated. First, the
Laplacian was set to 0 for all points for which no function value was known. This
resulted in methods I, the linear Laplacian given by

f1 =−L−1
11 L12f2 (8.4)

As extrema only occurred at points with given values, the interpolated values did
not exceed this boundary. Thus this technique could be used to visualize NLEO and
amplitude values as these were bounded.
For interpolation of LAT times, however, a second method was required that allowed
values which were not restricted by the mapping field. Instead, a depolarization with
constant speed should be assumed if measurements did not indicate otherwise. This
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was reflected in method II minimization, the Laplacian of all points was minimized
resulting in the least squares solution

f1 =−

((
L11

L21

)t(
L11

L21

))−1(
L11

L21

)t(
L12

L22

)
f2 (8.5)

• Eikonal Diffusion Solver
Although the minimizing Laplacian already provided a continuous interpolation pattern
very useful for a single cardiac depolarization process, it was not able to handle
the phase jump present for reentrant tachycardias. Therefore a third method was
considered and implemented as described in literature [105] as part of a student project
supervised by Axel Loewe [171] (compare also Chapter 2.4.2). This technique was
based on an eikonal-diffusion solver, that estimated phase values instead of LATs and
also considered wavefront curvature. In addition it utilized sparse matrix formulation
for a memory efficient handling of data.
The respective interpolation scheme consisted of a two step approach, in which first
an initial estimate was computed by considering only the diffusion process. This
reduced to a Laplacian interpolation capable of handling reentrant patterns. In a
second step, the complete eikonal-diffusion process was solved iteratively. It also
allowed to consider the wavefront curvature dependent CV and anisotropic conduction
by specifying appropriate tensors c and D. These parameters could also be related to
the parameters required for monodomain simulations, allowing the method to specifiy
an initial condition of consecutive simulations. For interpolation, however, isotropic
conduction was assumed. LAT values also had to be converted from time to phase
space by dividing through the BCL.

Sinus rhythm activation on a 3D geometry In order to demonstrate these interpolation
techniques, data from an in silico approach was used. Atrial excitation during one beat of
sinus rhythm was simulated using a bi-atrial anatomical model, which was previously gener-
ated from segmented magnetic resonance imaging (MRI) data of a healthy male subject [172].
The model consisted of 1.1 million tissue voxels with a resolution of 0.33 mm in each spatial
direction. It also included anisotropic conduction and tissue heterogeneities [173]. Cardiac
depolarization was computed using the monodomain solver acCELLerate [102] and a bi-
atrial voxel model. Extracellular potentials were determined using field calculation [174]
(compared Chapter 2.4).

For each endocardial tissue voxel, the LAT was determined using the upstroke of the
TMV, being the time of maximum positive derivative. Rapid depolarization could be observed
along the crista terminalis on the right atrial posterior wall (compare Figure 8.9).

Subsequently, a triangulated surface mesh was generated which represented the endo-
cardial wall. Virtual electrodes were located in the blood pool within 1.5 mm of the tissue
surface, with a bipolar spacing of approximately 2 mm. Measurements were determined
by randomly positioning 500 bipoles in the RA and 600 in the LA. Extracellular potentials
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were extracted from the simulation at each electrode position at 2000 Hz sampling rate. The
bipolar signal was computed as difference between both electrodes and their mean position
used as location of acquisition. LATs were assigned to each bipolar signal using the NLEO
as described in Chapter 8.1. Subsequently the LATs were interpolated on the atrial shell.

The resulting interpolation schemes can be seen in Figure 8.9. Using the Nearest Neigh-
bor technique, discrete areas of simultaneous activation could be observed (b). Application
of the minimizing Laplacian resulted in a qualitatively more smooth pattern of activation.

(a) LATs extracted from the simulated tissue.

(b) LATs interpolated usingNearest Neighbor.

(c) LATs interpolated byminimizing Laplacian.
Figure 8.9: Interpolation of LATs using different techniques. The reference LATs were determined
directly from the maximum upstroke of transmembrane voltage of the simulated tissue (a). Bipolar
electrograms were computed at 500 right and 600 left atrial positions. The NLEOwas used to assign the
measured LATs, which were subsequently interpolated on the atrial shell using theNearest Neighbor (b)
and theminimizing Laplacian (c) approach.
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Method RA LA
NN 0.82±4.13 0.58±3.98

-4.50 / -1.50 / 0.50 / 2.50 / 6.00 -4.00 / 1.50 / 0.50 / 2.00 / 5.00
Laplacian 0.73±3.17 0.64±2.83

-2.15 / -0.50 / 0.38 / 1.30 / 3.96 -1.91 / 0.51 / 0.32 / 1.28 / 3.70
Table 8.1: Deviation between simulated and interpolated LAT. Laplacian interpolation exhibited a lower
standard deviation andmore compact quantile ranges. All value inms, quantile ranges 5%, 25%, 50%,
75% and 95%.

For quantitative analysis, the LAT assigned to each vertex by the interpolation techniques
was compared to the ground truth extracted from the simulation. The results are summarized
in Table 8.1. Both methods showed a mean error of less than 1 ms, indicating the absence of
a systematic offset. Comparison of standard deviations between both methods demonstrated
smaller values for the Laplacian-based technique. In addition, the quantiles were computed
for 5%, 25%, 50%, 75% and 95% of deviations. Assessment of the 25% and 75% quantiles
indicate that the errors using Laplacian interpolation were about 1 ms smaller. This was also
shown by the 5% and 95% quantiles.

Excitation during reentrant mechanisms To demonstrate the interpolation of LATs
during reentrant activations, a simplified model of ventricular slice was used as suggested in
literature [105]. LATs were specified as phase values at predefined locations. Subsequently,
both Nearest Neighbor interpolation and the eikonal-diffusion solver were applied.

A comparison of these techniques can be seen in Figure 8.10. The given measure-
ment positions are indicated by white dots in (a). The corresponding phase values were
assigned as constant values surrounding each point, clearly indicating the borders between
interpolation regions. The initial estimate of eikonal interpolation is shown in part (b). A
continuous change of phase can be observed, the wavefront as indicated by the phase jump,
however, does not exhibit any curvature. After iterative optimization of the eikonal-diffusion
solver converged, the final result additionally demonstrated curvature of the circulating
wavefront (c).

(a)Nearest neighbor. (b) Laplacian diffusion. (c) Eikonal-diffusion.
Figure 8.10: Interpolation of a reentrant LAT pattern. Phase values were assigned to 14 positions (white
dots) and interpolated usingNearest Neighbor, leading to constant phase values without smooth transi-
tion (a). The eikonal-diffusion solver first initialized using only diffusion (b) and then iteratively optimized
the solution (c).



CHAPTER9
Dynamic Visualization of Cardiac

Activity
Although the concept of LAT maps is widely used, it has two major limitations. For
generation of a map, one continuous time span in each electrogram is selected, which is
expected to contain exactly one cardiac excitation pattern. The latter can be for example
one SR activation or one cycle of a cardiac tachycardia. If several electrograms are used to
construct the map, a synchronization needs to be performed. Within the chosen time span,
the LAT of each electrogram is determined as a scalar value according to Chapter 8.1.

Consequently, the annotation of the LAT is not reasonable if there is fractionated activity
without a clear intrinsic complex or if there are two distinct deflections in the electrogram
(double potentials at lines of block). Three examplary electrograms can be seen in Figure 9.1.
In order to cope with the previously mentioned issues, new techniques for the visualization of
cardiac activity for diagnosis were developed in this thesis and presented to the cardiological
community [175].

It has to be mentioned that the drawbacks of required LAT annotation were independently
recognized and addressed by another group, who suggested the technique of Ripple Mapping
for signal visualization [176, 177]. In this approach, bars were placed at each measurement
location, pointing outwards perpendicular to the surface mesh. The length of the bars was
variable and indicated the absolute value of the measured voltage at each time instant. The
rapid change of voltage amplitude caused equivalent changes in bar length, given the rationale
for the name of the new technique.

97
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(a)Clear deflections.
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(b) Fractionated EGM.
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(c)Double potential.
Figure 9.1: Signals demonstrating morphologies of different complexity. In case of single deflections,
annotation of the LAT is reasonable (a). In case of fractionated signals (b) and double potentials (c), the
concept of annotating a LAT reaches its limitations and other techniques should be considered.

9.1 Time-Continuous Representation of Atrial
Activity

For LAT maps, the complete information which is comprised in the electrogram (EGM)
is reduced to one single value. Instead of annotating an LAT in the signal, the goal of the
new approach was to transform the signal and maintain its temporal information. Certain
requirements needed to be fulfilled by the resulting signal. Primarily, it should allow a
clear differentiation between episodes in which no activity was present (baseline) and those
containing activity (activity complexes). Second, a smooth course seemed favorable, since
it eased the interpolation between measurement points. Third, the resulting signal should
reflect the amount of activity in the signal.

Two concepts were developed which satisfy these expectations. Using the non-linear
energy operator allowed to generate a transformed signal that also reflects the amount
of activity in the signal over time. As suggested by physicians, an approach based on
binarization was also developed, since the clear discrimination between active and inactive
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areas eases visualization. At first, the concept of phase movies is shortly reviewed, as it is
commonly used to represent data during atrial fibrillation (AFib).

9.1.1 PhaseMovies
As demonstrated in Chapter 8.3, EGMs can be transformed into phase space by the Hilbert
transform. Although this is more often done with unipolar signals, it can be applied to bipolar
EGMs as well. As bipolar electrograms (BEGMs) signals typically contain prolonged
segments of baseline, sinusoidal recomposition was applied as preprocessing technique to
more reliably determine the instantaneous phase. The period T for this technique was set
to the BCL of the underlying flutter mechanism. The resulting signals in phase space are
plotted in Figure 9.2.

Both the signal with single clear deflections and the one with prolonged activation were
accurately represented in phase domain. For both, phase jumps indicate the presence of
activation complexes. Information about the actual duration of the fractionated complexes,
however, is lost. Similarly, only the dominant deflection is indicated by the transition from π

to −π for the double potential.
Concluding, all EGMs were transformed into a more continuous signal in phase space.

The increase of phase indicated the progress between different cardiac cycles, making phase
mapping an interesting tool to visualize propagation of depolarization. It can very well be
interpolated on the atrial anatomy as it will be demonstrated in Chapter 17.4. But neither
prolonged activity nor double potentials were accurately represented, posing the demand for
new techniques as outlined in the following chapters.

9.1.2 Energy-based Representation
As outlined in Chapter 3.2.1, the NLEO can be used to determine a surrogate for the
instantaneous energy of a signal. If the prerequisite is fullfilled (highest frequency component
is below 1/8 of the sampling frequency), its value is proportional to the squared values of
both the amplitude and the frequency of the signal. Postprocessing includes rectification
and low-pass filtering, which is a very favorable property of the transformation, since the
excitation pattern is smoothed.

The cut-off frequency of the low-pass was suggested to be 24 Hz [161], which proved
to be a reasonable setting. Selecting a lower value was found to cause smearing of the
activation complexes. A second challenge was the variability of electrogram amplitudes:
Since the electrogram amplitude heavily depends on various factors like tissue contact,
catheter orientation and wavefront propagation, the resulting NLEO value also depends on
these parameters. In order to visualize the dynamic activity, a normalization of the NLEO
signal at each measurement point was required. Therefore the area under the curve of the
signal was normalized to 1. This was performed in sliding windows, since the tissue contact
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(a)Clear deflections.
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(b) Fractionated EGM.
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(c)Double potential.
Figure 9.2: Phase of the signals from Figure 9.1. The instantaneous phase was determined by sinusoidal
recomposition andHilbert transform. Fractionation is not reflected by the resulting signal, and only the
dominant deflection of the DP can be recognized.

and thus the amplitude of each activation complex may vary over time. The window duration
was suggested as 0.9% of the cycle length of the observed activity. In case of discrete
complexes, this results in a normalization of the amplitude of each excitation. If prolonged
complexes are present in the signal, these will exhibit a smaller maximum amplitude after
normalization.

The result of this transformation to the signals shown in Figure 9.1 is visualized in
Figure 9.3. While clear deflections are represented by a single peak in the energy-domain,
fractionated activity shows activity over a longer period in time, during which distinct
deflections of the original EGM are pronounced. Double potentials in turn can be recognized
by the presence of two peaks of increased energy within one cycle.

Monitoring the instantaneous energy over time allows to relate the spatio-temporal
excitation pattern based on the activity in each EGM, without the need for annotating the
LAT. Potential issues arise, however, by the selection of the low-pass filter cut-off frequency.
While too high values may cause a lack of sufficient smoothing, small frequencies may cause
a smearing of distinct deflections.

9.1.3 Description using Binarized Activity
A second approach for dynamic visualization was focusing on the differentiation between the
active and inactive parts of the signal (compare also Chapter 11.1.2 for a more comprehensive
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(b) Fractionated EGM.
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(c)Double potential.
Figure 9.3: Normalized energy of the signals from Figure 9.1. The energy was computed using the
NLEO, low-pass filtered and subsequently normalized for the area under the curve for each cycle. Both
fractionation andDPs are reflected by the resulting values.

discussion of related issues). The EGM was transformed into an activity signal, which could
only have the binary states active and inactive. Following this approach, an EGM was
generally considered inactive during the complete measurement time. If the measured
voltage indicated the presence of an activity complex (e.g. based on the voltage, energy-
measures, ... ), the corresponding time was set to active. Initially, an approach based on the
postprocessing of the non-linear energy operator (NLEO) was applied [157].

Compared to the energy-based representation, the resulting activity signal only contained
two discrete values, making the need for normalization unnecessary. An example for this
approach can be seen in Figure 9.4. While distinct activities are characterized by short active
segments, fractionated activity were reflected by prolonged periods of activity. Two distinct
active segments indicated the presence of double potentials.

However, the outcome of this technique highly depended on the detection of active parts,
and thus the applied method and its parameterization. Since amplitude and morphology of
signals depend on multiple parameters like electrode size, tissue contact etc., the implemen-
tation of an activity detection algorithm seemed reasonable in a semi-automatic way. See
Chapter 11.1 for a detailed discussion of activity detection.
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(c)Double potential.
Figure 9.4: Activity of the signals from Figure 9.1. Active samples were annotated within each signal.
Both fractionation andDPs are reflected by the resulting values.

9.2 3DVisualization
After the time-dependent activity signal was computed for each electrode, the resulting
excitation pattern needed to be visualized. One approach developed during this research
was based on projecting the activity information on the atrial anatomy. This approach was
especially designed for the analysis of atrial maps, in which a multitude of data was available
from various atrial positions. The information of each electrode was assigned to the vertex
of the geometry, which was closest to the measurement point. If several measurements were
acquired within a very small surface area, only the data with the highest EGM amplitude
was used for analysis since it was expected to enable a map with best quality. After all
information was assigned to surface vertices, interpolation to the remaining surface points
was performed. Therefore either the NN or the Laplacian interpolation approach was used
(compare Chapter 8.4). For Laplacian interpolation, the linear approach was used which did
not exceed the given value range. Since interpolation was not reasonable for areas too far
from measurement points, these were discarded for visualization. The usage of interpolation
for smoothed representation and the different processing steps are the two major differences
between the presented technique and Ripple Mapping.

A second approach was developed in case that data from individual catheters was subject
to analysis. In this case, data was not projected on the atrial anatomy. Instead a triangular
surface mesh of the catheter geometry was computed, reflecting its shape and potentially
including deformation. Projection and interpolation were then applied to the catheter mesh,
without the need for discarding electrodes. It was found useful to simultaneously display the
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catheter model with the activity information and the atrial geometry for orientation during
final visualization.

Excitation during sinus rhythm A simulated excitation during normal sinus rhythm
(NSR) was used to demonstrate these approaches. As outlined in Chapter 8.4, cardiac
depolarization of a biatrial voxel model was computed using acCELLerate. The time of
upstroke of transmembrane voltage (TMV) was assessed in the tissue, providing a reference
LAT map (compare Figure 9.5). Extracellular potentials were calculated and acquired using
virtual electrodes located within 1.5 mm of the tissue surface. From these, extracellular
potentials were extracted with 2000 Hz sampling rate, resulting in 500 right and 600 left
atrial bipolar signals. In agreement with clinical processing, signals were filtered with a
high-pass cut-off frequency of 30 Hz and a low-pass with a cut-off frequency 300 Hz.

Figure 9.5: LAT of the simulated excitation pattern

The energy-based representation of each bipolar signal was computed as outlined above,
normalized and subsequently interpolated on the atrial shell. For demonstration purposes, this
was done using Nearest Neighbor and the Laplacian interpolation. Both results can be seen
on the left and in the middle of Figure 9.6, respectively. The binary representation of activity
is visualized on the right of Figure 9.6. It can be seen that depolarizing regions are indicated
as active in this binary representation. While the local maximum of energy indicates the
current position of the depolarizing wavefront at each time instance, this information cannot
be inferred from the discretized view.

All three time-continuous visualization techniques allowed to understand the cardiac
excitation pattern without the need of annotating LATs. In contrast to the LAT map shown
in Figure 9.5, they are not displayed as static image. While the assessment of the cardiac
excitation patterns using static LAT maps can typically be done more quickly, the usage of
dynamic movies allows to comprehend temporal relationships like dyssynchronicity between
regions more easily. It can also handle prolonged or fractionated activity, or double potentials.
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Figure9.6: Time-continuous visualization of cardiac excitation duringNSR. The pattern of depolarization
corresponds to the LAT map shown in Figure 9.5. The energy-based activities of each electrode are
interpolated onto the atrial shell using theNearest Neighbor (left) and the Laplacian approach (middle). For
these, the color indicates the energy values ranging from rest (blue) to highly active regions (orange). The
binarized activity is plotted using theNearest Neighbor (right). Note that themaximum energy indicates
the current position of the depolarization front, while this information is not contained in the binarized
activity.
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Rotor on Patch Rotational activity is of significant interest as mechanism maintaining
atrial fibrillation. To demonstrate the ability of activity movies to visualize these kind of
phenomena, it was utilized to analyze data from a simulated rotor which was provided by
Markus Rottmann.

Rotational activity was simulated in a flat patch of size 10 × 10 cm, consisting of cubical
voxels with isotropic edge length of 0.1 mm. The myocardium was modeled by a layer of 5
voxel thickness and covered by a blood layer of equivalent dimensions. Electrophysiological
characteristics of the Nygren et al. [178] cell model were adapted to represent chronic atrial
fibrillation as presented previously [179]. Extra-cellular potentials were computed inside
the blood and acquired in the most endocardial layer by an array of 43 × 43 equally spaced
electrodes with a sampling rate of 1 kHz.

Subsequently, a triangular mesh was generated which represented the surface of the patch
with over 11,000 points. In agreement with the previously outlined work flow, the virtual
electrodes were projected on this anatomy. The energy-based representation of activity was
subsequently computed and interpolated on the surface mesh using Nearest Neighbor. The
resulting energy movie is plotted in Figure 9.7, showing equidistant snapshots every 50 ms
over approximately 1.5 cycles of rotation. The visualization of more than one cycle is an
important advantage of the continuous representation, as LAT maps are naturally limited to
the visualization of the maximum duration of one cycle.



Figure 9.7: Energymovie of rotational activity. The extracellular potential caused by a rotational activity
was acquired on a surface directly over the patch and visualized as time-continuous process without
annotation of the LAT. This allowed to visualize dynamics for more than one BCL.



CHAPTER10
Simulation of Atrial Flutter

A huge number of text books, review papers and case-reports is availabe to physicians when it
comes to the diagnosis and treatment of atrial flutter (AFlut). All of them provide a consistent
view on this well understood atrial tachycardia, elucidating underlying mechanisms and
proposing treatment options. Diagnosis of the patient at hand, however, can become quite
complex. This especially concerns patients which develop AFlut after index or repeat
ablation of atrial fibrillation (AFib), since the atrial substrate already shows complex patterns
of isolating lines and ablation spots [64].

As will be outlined in Chapter 11, diagnosis of the presented mechanism is currently
based primarily on the experience of the physician. Despite an increasing amount of available
and diagnostically useful data, the number of engineering-based algorithms for automated
signal processing is rather limited. This also concerns the subsequent decision for a treatment
option, which aims for termination of the arrhythmia but hardly considers activation during
normal sinus rhythm (NSR) or reinducibility.

Due to its organized and well-understood form, the atrial activity during AFlut can be
very well simulated. Biophysical cellular models have been applied for this, but require
significant computational resources due to their ion-channel based approach. For AFlut,
however, simulation can also be performed on the macroscopic level using the Fast-Marching
approach on Eikonal Equations [180, 181]. This allows to simulate the excitation process
faster than real time, theoretically enabling to assess the impact of ablation lines on the
tachycardia during an ongoing intervention. A corresponding approach was previously
implemented in a virtual reality ablation simulator which was designed for the training of
cardiologists [181]. The fast-marching simulator (FaMaS) used at Institute of Biomedical
Engineering (IBT) was implemented within a student research project [171], supervised by
Axel Loewe and used in several research projects [182–184].

One goal of the presented research was to develop algorithms to support physicians in
diagnosis and treatment of AFlut using multichannel data analysis. In this context, simula-
tion of the tachycardia offers the unique possibility to develop and benchmark algorithms
in a laboratory environment before they are applied clinically. Therefore, however, the
simulations should be as realistic as possible.

107



108 Chapter 10. Simulation of Atrial Flutter

Two approaches were followed during the presented research project to achieve this
goal. On the one hand, a database of virtual AFlut scenarios was generated based on
documented cases of clinical tachycardias. For this purpose, a system was set up to be
able to manually parameterize simulations easily. On the other hand, an algorithm was
designed to automatically parameterize the simulation according to clinical mapping data
(see Chapter 10.2). This could also be considered a fundamental step for patient-specific
ablation planing during the procedure. Both will be outlined in the following sections.

10.1 Database of Documented Atrial Flutter Forms
The mechanisms underlying AFlut are very well described in literature. This applies to right
atrium (RA) tachycardias [61, 62, 185] as well as left atrium (LA) forms [63, 186, 187],
occurences after ablation for AFib [64, 65, 186] and macro reentrant mechanisms [188].
Based on these descriptions, a database of virtual AFlut forms was set up. These comprised
scenarios which precisely resembled documented clinical cases and ones which were im-
plemented based on loose descriptions. A graphical user interface was implemented for the
realization of the simulations.

(a)Result of clinical mapping. (b) Simulation outcome.
Figure 10.1: Simulating a clinical case of AFlut. Activation time mapping indicated two gaps in the
isolation lesion surrounding the LPVs (a). The simulated excitationmatchedwell with the clinical LAT
pattern after personalization of the model (b). (a) is reprinted from [186] with permission from the
publisher.

One example for a simulated clinical case is depicted in Figure 10.1. A left atrial tachy-
cardia was observed and documented following the circumferential ablation of pulmonary
veins (PVs) [186]. local activation time (LAT) mapping indicated a small-loop reentry with
a basic cycle length (BCL) of 190 ms passing gaps in the ablation line encircling the left PVs.
The corresponding simulation can be seen on the right hand side. After parameterization,
both the excitation pattern and the cycle length were in agreement with the clinical pattern.
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This provided an excellent scenario to test an algorithm for the detection of micro reentrant
circuits (compare Chapter 11.2).

Properties adjusted for the simulation All simulations were performed using a bi-atrial
anatomy to be able to study both left and right atrial excitation patterns. The model included
heterogeneities in tissue classes and anisotropic conduction. Tissue classes and interatrial
bridges were generated according to a rule-based algorithm developed and published pre-
viously for voxel geometries [173]. The algorithm was modified to work on a triangular
surface mesh and applied to this model within a diploma thesis [189, 190]. The bridges
included the most common interatrial connections like Bachmann’s Bundle (present in nearly
the complete population), posterior connections (67-93%) [191] and a coronary sinus bridge
(compare Figure 10.2).

Figure 10.2: Atrial geometry used for the simulation of AFlut scenarios. The bi-atrial geometry is colored
by the respectivematerial classes. 6 inter-atrial bridges provide the electrical connection between both
atria as defined by a rule-based algorithm [173, 189]. From [192].

Literature specifications for the conduction velocity (CV) of atrial myocardium cover
a wide range of values. Studies of paced excitations with inter-beat-intervals down to
300 ms showed CVs of 770±200 mm/s with a range of 470 to 1070 mm/s in the LA [193].
Measurements during ongoing RA flutter demonstrated mean values of 610±210 mm/s [62].
Conduction velocities along the macroreentry circuit of ongoing right and left AFlut were
assessed in a study focusing on the identification and the properties of the critical isthmus. For
the isthmus itself, values of 270±130 mm/s were found, while the mean values of CV outside
this critical area were found statistically significantly different with about 800 mm/s [188].
Contrastingly, in a study using noncontact mapping to evaluate RA flutter [61], CV of the
CTI was found to be 740±360 mm/s (ranging from 310 to 1700 mm/s). For the smooth and
trabeculated RA, values of 1160±480 and 1220±650 mm/s were found, respectively, with
a range from 330 to 2090 mm/s. Besides certain anatomical areas like the cavo-tricuspid
isthmus (CTI) [194], also regions surrounding previous ablation scar are known to reduce
the local CV [8]. Using an electroanatomical mapping system (EAMS), CVs of less than
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330 mm/s were observed [195]. In general, data about the CV of slow conducting zones in
the clinical context are limited, since the presence of strongly fractionated and continuous
electrograms hamper precise measurements.

For simulated scenarios, first the bi-atrial anatomy was initialized with a standardized
myocardium (tissue class 32). Its CV was specified in the value range 450 to 800 mm/s, as
indicated by previous clinical measurement studies. For the ease of parameterization of a
specific flutter scenario, isotropic conduction was generally set to a fix value of 1 for the
atrium.

Areas critical to the simulated flutter circuit were subsequently annotated on the atrial
geometry. Their conduction properties were adjusted to permit the perpetuation of a stable
tachycardia. Thus the CV values used for simulation were adapted in the range of 40 to
400 mm/s in order to achieve the required cycle length for a stable mechanism.

Lines of scar were manually inserted circumferentially around ipsilateral PVs to repre-
sent ablation scar from previous pulmonary vein isolation (PVI). For scar-related reentry
mechanisms, gaps were included in the ablation line to resemble surviving atrial fibers,
representing the critical isthmus of a flutter circuit [8].

In order to induce each respective mechanism, one instance of the ongoing tachycardia
was resembled as starting point of the simulation. Already depolarized tissue was set to a
refractory state, and a triggering stimulus was located in the desired direction of propagation.
This approach bounded the excited wavefront and allowed for a directed excitation pattern.
Simulations of reentrant mechanisms were performed for at least 5 s to ensure that the
resulting pattern was stable and matched with the desired flutter mechanism.

User interface to parameterize flutter forms A graphical user interface (GUI) was
designed in MATLAB to be able to parameterize and verify the simulated AFlut scenarios
more conveniently. It was initially developed during a master thesis [192] and subsequently
extended. A screenshot of the GUI can be seen in Figure 10.3. Different conduction
properties can be assigned to atrial regions to resemble heterogeneities encountered during
clinical mapping. The simulation can directly be started to assess the resulting propagation
pattern.

Files used for simulation The FaMaS system was used to simulate cardiac excitation
(compare Chapter 2.4.2). All required files were generated by the parameterization GUI.
These comprised the file (*.vtk) containing the anatomy used for the simulation and including
atrial regions with varying refractory and CV properties. Also the heterogeneity of fiber
orientation, the position of scar, and the location of triggers and refractive tissue were
provided. Second, the configuration file (*.famas) was written including all parameters to
specify tissue properties and the simulation itself like duration, temporal resolution and
parallelization.

An example for these data can be seen in Figure 10.4, which shows the state of the tissue
vertices. Sinus node and ectopic trigger are indicated by stars, respectively, to clearly indicate
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Figure 10.3: GUI to manually parameterize AFlut. It allowed to load existing data (red box), and the
imported anatomywas visualized in the central part of the figure (blue box). While normal atrial tissue
was indicated in green, areas with altered conduction properties were labeled in red. Sinus node, scar
and additional triggers could be added and their tissue properties adjusted (green box). Buttons allowed
to directly start the simulation (yellow box). The demonstrated data reflects the tissue properties used
to simulate the scenario depicted in the introductory Figure 10.1.

their position on the mesh. Scar from a previous ablation was located around both ipsilateral
PVs, showing gaps in the scar at the posterior LIPV. This was in agreement with the clinical
documentation of the case (compare Figure 10.1 and source [186].)

The corresponding tissue classes are visualized in Figure 10.5. The areas close to the scar-
related reentry path were adjusted to have reduced CV and refractory period (see Table 10.1).
This allowed to induce a stable AFlut during the vulnerable phase of NSR with only one
ectopic trigger in the LIPV region.

Tissue class CV [mm/s] Refractory period [ms]
32 700 200
10 300 170
5 150 100

Table 10.1: Parameters of the tissue used to simulate scenario 20. The myocardial CV was set to
700mm/s. The regions perpetuating the micro-reentrant circuit showed reduced CV of 300mm/s
and 150mm/s, respectively. The reduced refractory period within the PV area allowed to initiate the
flutter with just one ectopic beat originating in the PV ostial region.
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(b) Posterior view.
Figure 10.4: Initial states of the personalized tissue. Scar was introduced to resemble prior PV isolation.
Refractory tissue could be included to direct stimulated excitations. Stars indicate the positions of the
sinus node (red) and a pulmonary vein trigger (green). From [192].
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(b) Posterior view.
Figure 10.5: Tissue classes used to personalize conduction parameters. The different types of my-
ocardiumwere defined to assign varying electrophysiological properties like CV and refractory period to
specific atrial regions. From [192].

Implemented flutter forms With respect to clinical occurrence after ablation for AFib,
different studies found consistent results for different types of flutter mechanisms. In a study
considering 17 patients, the most common form involved the mitral isthmus (33%), with
roof-dependent flutter in 27% and focal origin in 22% of cases. Of note, termination of the
tachycardias was achieved in 96% [64]. In a study focusing on discrimination between truly
focal and micro reentrant sources, 128 patients were analyzed. While macroreentry was
found in 109 mapped tachycardias, localized microreentry was found in 95, with truly focal
activity present in only 34 cases [65]. Note that these numbers already indicate that several
tachycardias frequently occur in one single patient, as the flutter circuit is continuously
modified during ablation. Depending on the population, about 3.4±2.4 tachycardias were
observed per patient [186]. In a review article about AFlut occurrence after AFib ablation,
macro reentrant circuits were found most often around the MV (28%), and roof-dependent
in 12% [66].
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Besides various information about the occurrence frequency of flutter mechanisms, also
common values for BCL can be found in literature (compare Table 10.2). While mean values
range from 228 to 325 ms within these studies, individual cycles were found with durations
as short as 175 ms.

Study Characteristics Addressed BCL [ms]
Ammar et al.
(2015) [187]

77 patients
(66±9, 56men)

Perimitral 271±65
De Ponti et al.
(2007) [188]

65 patients
(56.7±16.7, 41men)

Macro reentrant 308±68 (200-515)
Deisenhofer et al.
(2006) [186]

16 patients
(57±7.7, 11men)

LA flutter after PVI 264±41 (180-330)
Itoh et al.
(2013) [62]

26 patients
(64±14, 18men)

RA flutter 246 (201-376)
Jais et al.
(2000) [63]

22 patients
(60±14, 15men)

LA flutter 303±78 (190-450)
Jais et al.
(2006) [195]

14 patients
(65±13, 3men)

Source anterior LA 325±125 (220-550)
Jais et al.
(2009) [65]

128 patients
(58±11, 109men)

AFlut after AFib 34 focal: 341±115
95micro: 278±85
109macro: 269±67Ndrepepa et al.

(2001) [185]
12 patients

(61±13, 10men)
RA flutter ccw
RA flutter cw

228±27 (182-260)
240±32 (202-278)Mesas et al.

(2004) [196]
13 patients

(57.4±8.9, 8 men)
AFlut after PVI 3 focal: 266±35.9

11macro: 275±75Patel et al.
(2008) [64]

17 patients
(62±10, 14men)

AFlut after AFib 288±77 (175-550)
Schilling et al.
(2001) [61]

13 patients
(mean 60, 11men)

RA Flutter 241±35
Table 10.2: Studies providing information about the occurrence of flutter mechanisms and their respec-
tive cycle lengths. Patient characteristics are indicated as number of patients, mean age in years and
number of male patients.

Data from the scar-related reentry at the LPV was already presented in the previous
figures of this chapter. A counter-clockwise perimitral circuit is demonstrated as a second
example in Figure 10.6.

The final database included a total of 20 scenarios of AFlut and is depicted in Table 10.3.
It included clockwise and counter-clockwise macro reentries around tricuspid valve (TV)
and mitral valve (MV), macro reentries around the PVs, focal sources originating close to
the PVs, and also micro reentries located at revitalized ablation lines or slow conducting
tissue. These scenarios were subsequently used to verify diagnostic algorithms as outlined in
Chapter 11.2. Six simulations are based on clinically documented cases and were initially
implemented within the scope of a student project [192]. They are summarized in the
following listing, together with the respective BCL (given by direct clinical documentation
and resulting simulation):
• sc12: Ccw macroreentry around MV [186] (BCL 180 and 177 ms)
• sc20: Scar-related reentry at left pulmonary vein (LPV) [186]: (BCL 190 and 175 ms)
• sc23: Scar-related reentry at right pulmonary vein (RPV) [196]: (BCL 235 and 224 ms)
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(a)Result of clinical mapping. (b) Simulation outcome.
Figure 10.6: Comparison of clinical and simulated perimitral flutter. Information from a clinically docu-
mented tachycardia (a) was used to personalize the model and simulate cardiac excitation during the
arrhythmia (b). (a) reprinted from [186] with permission from the publisher.

• sc40: Focal Source at anterior right superior pulmonary vein (RSPV) [196]: (BCL 307
and 295 ms)
• sc50: Microreentry at anterior MV annulus [195]: (BCL 286 and 172 ms)
• sc51: Microreentry at anterior left atrial appendage (LAA) [186]: (BCL 280 and

270 ms)

Mechanism Atrium Position Direction ID BCL [ms]
Macroreentry RA Tricuspid Valve ccw sc10 205
Macroreentry RA Tricuspid Valve cw sc11 184
Macroreentry LA Mitral Valve ccw sc12 177
Macroreentry LA Mitral Valve cw sc13 180
Scar-related Reentry LA LPV post sc20 172
Scar-related Reentry LA LPV ant sc21 226
Scar-related Reentry LA RPV post sc22 233
Scar-related Reentry LA RPV ant sc23 224
Figure-8Macroreentry LA Both PVs ant sc30 228
Figure-8Macroreentry LA Both PVs post sc31 227
Figure-8Macroreentry LA RPVs ant sc32 228
Focal Source LA RSPV anterior sc40 285
Focal Source LA RSPV posterior sc41 246
Focal Source LA LSPV anterior sc42 297
Focal Source LA LSPV posterior sc43 296
Microreentry LA antMV annulus sc50 172
Microreentry LA ant LAA sc51 227
Microreentry LA ant RSPV sc52 186
Figure-8Microreentry LA ant sc53 159
Microreentry LA post wall sc54 186

Table10.3:Database ofmanually parameterizedAFlut forms. 20different scenarioswere parameterized
to cover a variety of clinically relevant forms. These included typical RA flutter as well as atypical LA
forms likemacroreentry, focal soures and scar-relatedmicro reentries. Directions of macro reentries
around valves are indicated by cw (clockwise) and ccw (counter-clockwise), roof dependent forms by
ant (roof excited from posterior to anterior), and post (anterior to posterior), and scar related forms by
the corresponding direction of excitation outside the PV region.
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10.2 Personalization of a ComputerModel
The database of flutter scenarios can be very well used to develop and benchmark diagnostic
algorithms. In order to optimize the treatment of individual patients using computational
models, however, virtualization of the patient-specific flutter circuit is required. Due to its
high simulation speed, the FaMaS is a valuable tool to evaluate for example the effect of
different lesion patterns on termination and vulnerability to recurrence before ablation is
performed.

In the quest to find an optimal treatment strategy for ablation of AFib, computational
models have been widely used to assess the effect of different lesion patterns [197–200] or
signal guided ablation strategies [200, 201]. Recent work has demonstrated the personaliza-
tion of models based on late-gadolinium enhancement (LGE)-magnetic resonance imaging
(MRI). AFlut was subsequently introduced by pacing, and the resulting flutter cycle assessed
for ablation planning [202]. No electrical information from the clinical mapping, however,
was incorporated in this method. All of these approaches have in common, however, that
detailed biophysical cellular models were applied to resemble the complex excitation dy-
namics during AFib. Frequently, ion-based cellular models like Luo-Rudy [197–199] or
Courtemanche-Ramirez-Natell [200, 201] were used, always with changes to ion-channel
conductivity representing the remodelled state with shortened action potential (AP) duration.
With respect to their applicability in the clinical environment, computational time is in the
order of hours, and thus a significant limiting factor.

An approach to exploit the rapid computational time of the FaMaS in order to generate
a personalized ventricular model based on electroanatomical mapping data was described
in literature [180]. Non-contact mapping using the EnSite balloon catheter was applied to
determine the local activation times on a ventricular geometry. The apparent CV of the model
was subsequently modified in order to approximate the clinical measurement. Therefore,
the global conductivity was adapted first, and then an iterative strategy was proposed to
subdivide the ventricular mesh into different zones and process these one by one. In short, the
CVs were adapted or the zones subdivided for improved approximation, starting with zones
showing largest error in activation times and being activated first. The optimization of CV
adaption was terminated when the number of zones reached 64 or the simulation converged.
After application to simulated and clinical data, a correlation could be demonstrated between
regions identified as slow conducting after CV adaption and scar as shown on LGE-MRI
images. This method was extended to a statistical approach which could also incorporate
potential measurement errors using Bayesian inference [203]. Parameterization of a patient-
specific model using an Eikonal-approach was also suggested on the ventricular level to
determine vulnerability to tachycardia and fibrillation [204], as well as to assess the effects
of pacing during resynchronization therapy [205].

Part of this thesis was the development of a workflow that can be used to virtualize
clinical and thus patient-specific cases of AFlut. In a first step, intracardiac electrograms
were evaluated in order to determine characteristics which indicate the presence of scar or
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conduction block. Based on this information and visual assessment, the corresponding model
was set up and combined with information about the excitation pattern. Last, an iterative
strategy was used to adapt the region specific CV. The first evaluation of electrogram (EGM)
characteristics and the implementation of the CV adaption strategy into the FaMaS was done
within a student project [206] and published subsequently [184].

10.2.1 Generation of Initial Models
Before the conduction properties could be adapted, an initial model had to be set up. This
model included the atrial anatomy itself, the location of scarring, and the position at which
the excitation for the evaluated cycle began. Also the position of electrodes was included.

Clinical data Two sets of clinical data were available for initial algorithm development.
Both were acquired using the EAMS EnSite Velocity

TM
at Städtisches Klinikum Karlsruhe

and exported for further analysis. Patient 1 was male, 54 years old, and presented with
persistent atypical roof-dependent LA flutter around the right PVs (BCL=253 ms). He was
pre-ablated several times due to persistent AFib and AFlut. Prior ablation also included PVI
and a roof line. The critical isthmus was determined to be a gap on the left side of the roof
line (compare Figure 10.7). Ablation at this spot confirmed its role in the presenting circuit
and converted the tachycardia into a second form.

(a)Anterior view. (b) Posterior view.
Figure 10.7: Clinical LATmap of patient 1. Excitation passed through an isthmus on the lateral side of a
previously ablated roof line. Depolarization subsequently crossed the posterior wall and entered the
anterior wall from the lower septal region.

Patient 2 (male, 56 years) was initially treated for persistent AFib. Substrate modification
was performed (CFAE ablation) after successful isolation of the PVs. During defractionation,
AFib converted into counter-clockwise perimitral AFlut, diagnosed by sequential LAT
mapping with a 10 pole single loop spiral catheter. The LAT map showed an anterior line
of block, causing a delayed activation of the superior anterior wall when compared to its
inferior aspect (compare Figure 10.8).

After successful implementation and benchmarking, the algorithm was also applied to a
third patient.
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Figure 10.8: Clinical LATmap of patient 2. A line of block can be seen on anterior wall, indicated by the
large delay of activation inferior and superior of the line.

Visual assessment of excitation patterns Based on visual evaluation of LAT maps and
activity movies (compare Section 9), the distribution of conduction block was assessed for
each patient. This conduction block was assumed to represent scar, since there was no second
paced rhythm available to differentiate between functional and persistent blocks [207]. The
presence of ablation scar at PV ostia was hereby indicated by electrical isolation between the
veins and the LA (see the left superior pulmonary vein (LSPV) in Figure 10.8 for example).
Scarring on the atrial myocardium was assumed if the LAT indicated that conduction did not
propagate on a direct path between atrial regions but instead traveled around an imaginary
obstacle (compare the anterior wall in Figure 10.8).

Since AFlut is characterized by a continuous excitation process, the beginning of a
cycle can be set arbitrarily. In the clinical environment, however, it is common to select the
window of interest for LAT analysis in such a way, that the earliest excitation within the
cycle represents the exit site of the isthmus. As the color red is assigned to the earliest LAT
in standard clinical color maps, moving the time window and looking for a red spot helps to
easily identify the isthmus as potential ablation target. In order to simulate the excitation
pattern using FaMaS, a trigger was required which initiated the spread of depolarization. The
position of this stimulus was selected to match the location of the isthmus, so that the size
of the trigger could be kept minimal. As the simulated stimulus itself caused a centrifugal
spread of excitation, the tissue in reverse direction was additionally set to a refractory i.e.
unexciteable state. This channelized the excitation process into the desired direction. The
duration of this initial refractory period was chosen sufficiently large to stop the excitation in
reverse direction, but short enough not to interfere with the ongoing tachycardia after the first
complete cycle. The corresponding setup for patient 1 is depicted in Figure 10.9. Besides
the scar (Dead nodes), the images also show both the Trigger node and the Initial refractory
nodes.

The annotation also included regions in which a collision of wavefronts was observed
(posterior wall of patient 2) or in which the propagation passed through a narrow isthmus
(roof of patient 1). Subsequently, all recording positions which were close to the annotated
regions were compiled to form a database of signals indicating
• normal conduction
• scar
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Figure 10.9: LA roof of patient 1. The atrial anatomy is colored by the status of the nodes of the surface
mesh. Scar is shown in black while normal vertices are colored gray. The trigger (red) was located at
the isthmus, being enclosed by scar (isolation of left PVs and roof line) and refractory tissue in reverse
direction. This is expected to cause a depolarization pattern which excites the posterior wall in inferior
direction. Modified from [206].

• wavefront collision
• critical isthmus.

The spatial distribution on the atrial geometries is visualized in Figure 10.10. The scar
is indicated by black dots, and measurement positions surrounding it were termed Scar
electrodes (red crosses). The threshold for the maximum distance to the scar was set to
10 mm. After Isthmus electrodes and Collision electrodes were annotated (blue circles),
respectively, all remaining electrodes were labeled Normal (green dots).

(a) Patient 1 PA view. (b) Patient 1 RAO view.

(c) Patient 2 PA view. (d) Patient 2 RAO view.
Figure 10.10: Classification of electrodes by recorded phenomena. After manual annotation of scar,
isthums and collision, the adjacent electrodes up to a distance of 10mmwere assigned the respective
label. PA=postero-anterior; RAO=right anterior oblique. From [206].
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Preprocessing of excitationmaps The cardiac excitation pattern was indicated by the
clinical LAT map. Although this map provides information for each vertex of the anatomy,
information was actually only available at the electrode locations and subsequently inter-
polated on the atrial surface. In order to generate an excitation which was consistent with
the annotated position of scar, the interpolation step was repeated on the anatomy that
actually included the conduction block. Therefore the Laplacian interpolation scheme (see
Chapter 8.4) was used to provide a smooth and continuous excitation pattern.

Visual inspection of the results, however, revealed inconsistencies in the LAT map. Since
the excitation is governed by a causal process, these inconsistencies were most likely due to
incorrect annotations of the EGM, inaccurate synchronization with the reference channel
or erroneous localization of the mapping catheter. Due to the limited number of mapping
points and thus sparse information about the excitation process, there was no redundancy
to clarify the inconsistent activation pattern. Therefore, the annotations were corrected
manually to assure the causality of the depolarization pattern. Thereby neither the dominant
flutter mechanism nor its cycle length were altered.

An example for this process can be seen in Figure 10.11, with the re-interpolated map on
the left and the corrected map on the right. Note the correction of inconsistencies like the
orange spot prior to the isthmus. After the causality of the process was verified, the LAT
information for each electrode was exported together with the state information since this is
import for the FaMaS algorithm

(a)Re-interpolatedmap including scar. (b) Interpolation ensuring causality.
Figure 10.11: Preprocessing steps of LATmaps for CV estimation. The original clinical map can be seen
in Figure 10.7. It was interpolated by the Laplacian interpolation method considering the location of
scar (a). Subsequently, inhomogeneities in the excitation pattern were adapted to ensure causality of the
depolariztion process. From [206].

Initial assessment of electrogramcharacteristics The morphology of EGMs is known
to reflect certain properties of the underlying conduction pattern. Most importantly, signals
containing short activation complexes of large amplitude indicate the undisturbed and rapid
propagation of a depolarization wavefront over vital tissue, while signals with prolonged and
fractionated activation complexes with low amplitude indicate the presence of fibrotic critical
substrate [62, 195]. Moreover, double potentials in a signal (e.g. two activation complexes
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within one flutter cycle) indicate the presence of conduction block [207]. Sophisticated
approaches to determine and utilize corresponding measures from intracardiac electrograms
(IEGMs) will be presented in Chapter 11.

As first attempt to assess the possibility to differentiate between signals recorded at
vital tissue, at scar or at the isthmus / collision sites, the annotations shown in Figure 10.10
were used. The respective signals were compiled into a database of electrograms, of which
subsequently measures like peak-to-peak amplitude, and skewness and kurtosis of the
amplitude histogram were evaluated [208]. Contrasting to expected outcome, only minor
differences were observed between the different groups of electrograms. Although the signals
recorded close to scar were expected to have strongly diminished amplitude, their values
also covered the range expected for vital tissue. Assessment was also done for a reduced
distance threshold of 5 mm, but did not lead to different results.

Several possible explanations can be found for this outcome. First, the position of the
acquired points may be compromised by inaccuracies of the mapping system. If an atrial
region was mapped at the beginning of the procedure and then a slightly distant point was
re-mapped at some later point in time, a lack of long term stability may have caused these
to be projected in very close locations of the atrial shell. Second, only bipolar signals were
considered, being actually the difference between two signals. If one measuring electrode is
located on the scar, and the other one is not, this may also cause a large bipolar amplitude.
Third, both patients had a history of AFib, which may have caused the atria to be fibrotic to
some extend. This would reduce the amplitude of signals measured in locations remote from
scar to be reduced as well. Forth, the map was generated with a rather limited resolution and
using 1 mm electrodes. Usage of higher density of points and a smaller electrode size (e.g.
Orion catheter with Rhythmia mapping system) may allow to more precisely evaluate the
substrate.

In conclusion, the information gained from individual electrograms was not meaningful
enough at this stage to automatically and reliably annotate scar or the isthmus on the atrial
geometry. Therefore the visual assessment of the spatio-temporal excitation process as
outlined above was kept as expert-guided part of the workflow.

10.2.2 Personalization of Conduction Properties
After the patient specific geometry was prepared and the LATs were preprocessed, the local
CV could be estimated. Therefore an iterative algorithm was developed and implemented.
This algorithm first determined a global CV which matched the clinical BCL. Subsequently,
local homogeneities were included to better approximate the LAT of each electrode indi-
vidually. Therefore the atrial surface mesh was subdivided into regions surrounding each
measurement position. A simulated dataset with known properties was generated to verify
correct functionality during algorithm development.

Inspired by a previously published algorithm [180], an iterative procedure was chosen to
estimate local heterogeneities of conduction. Since this technique was originally designed to
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parameterize a ventricular model based on non-contact mapping data during NSR or pacing,
several modifications were required during the initial design phase.

These changes affected some fundamental steps, as AFlut represents a continuous prop-
agation pattern for which the stability over time without repetitive stimulation has to be
achieved. In addition, the contact mapping provided detailed LAT information for several
hundred measurement positions on the atrial surface. These were selected to represent the
centers of zonal division, meaning that the conduction properties around each measurement
point could be adjusted by the algorithm.

With respect to estimating the regional CVs, first one global CV was determined which
matched to the clinically observed cycle length BCLclinical . Therefore the simulation was
started with an initial guess of CVk (e.g. 900 mm/s for iteration step k = 0). For each surface
vertex which was part of the flutter circuit and measured by an electrode, the time between
its third and fourth excitation was computed to avoid initial delays due to the refractory
tissue. The mean of all these values was considered the initial BCLFaMaS,k and compared to
BCLclinical . If the absolute value of the difference between both values was below a certain
threshold (here 1 ms), CVk was set as global CV. Otherwise, the CV for the next iteration
CVk+1 was adapted by the proportion between both BCLs as given by

CVk+1 =CVk ·
BCLFaMaS,k

BCLclinical
, (10.1)

resulting in a one step approach to estimate the global CV.
After the initial value of the global CV was set, adjustment of the local CV began.

Therefore the atrial surface was subdivided into areas around each electrode as given by a
Voronoi diagram. These areas were combined to zones for joint analysis. The zones were
processed iteratively according to their clinical activation time. The causality as verified
previously was an important aspect at this point. If the difference of activation times as
given clinically (LATclinical) and computed by the FaMaS (LATFaMaS) exceeded a user defined
threshold thrLAT , the CV of all vertices of the current zone was decreased or increased by
50 %. Zones were split into subzones if required for more detailed adaption. When one zone
was successfully adapted, the next zone was processed.

In order to avoid extreme changes in conduction along the excitation pattern, thresholds
were introduced for a maximal (thrmaxCV ) and minimal (thrminCV ) CV, as well as for a
maximum difference between adjacent regions (thrinterCV ). Discarding these thresholds led
to fibrillation while the CV was adapted. During benchmarking of the algorithm, a variety
of combinations was evaluated on both clinical cases (see Table 10.4). Statistical analysis
of the analyzed cases revealed, however, that the computational time and accuracy of the
outcome hardly depended on the exact setting of these parameters. Therefore the most loose
parameter combination was chosen for future analysis.

This complete approximation process was implemented as alternative computational
strategy into the FaMaS and could be enabled by specific commands in the FaMaS configura-
tion files. The resulting output included information about the anatomical location of regions
with varying CV and a list containing their individual conduction properties. This allowed to
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Threshold parameter
Minimal CV (mm/s) thrminCV 10 50 100
Maximal CV (mm/s) thrmaxCV 1000 1500 2000
Maximal CV difference (mm/s) thrinterCV 200 500 800
Acceptable error (ms) thrLAT 1 5

Table 10.4: Parameter thresholds for which the CV estimation was benchmarked.

directly call the FaMaS again to execute the parameterized simulation. As a consequence,
this simulation could in turn be used to test ablation patterns.

10.2.3 Application to Clinical Data
After successful development of the procedure to virtualize clinical flutter forms using the
data from patients 1 and 2, it was applied to a set of high-density mapping data recorded by
the Rhythmia EAMS.

Clinical mapping data A 70 year old female patient was mapped during routine catheter
ablation of persistent LA AFlut using the Rhythmia EAMS at Städtisches Klinikum Karl-
sruhe. During mapping of the initial form (counter-clockwise perimitral flutter, BCL 330 ms),
the tachycardia converted to a second form (roof dependent macroreentry, BCL 430 ms).
LAT maps were acquired for both mechanisms and showed concordant information about the
underlying substrate. The roof-dependent form was selected for virtualization and processed
accordingly.

Figure 10.12 represents a screenshot of the mapping system. In the selected instance, the
depolarization wavefront just exits a region of slow conduction towards the roof. The slow
conducting region was located in the center of the anterior wall. Due to the large difference in
activation time compared to its surrounding regions, it can be clearly identified by its purple
color in the LAT map. Of note, this region was also observed during the index tachycardia.
Both the posterior wall and the septum were activated by broad wavefronts. The lateral part
of the anterior wall was activated by a depolarization wave coming from the posterior wall,
traveling around the left PVs, and passing the LAA. This wavefront excited the zone of slow
conduction after one BCL again and sustained the tachycardia. Both left and right PVs were
isolated by prior ablation, indicated by the grey coloring of low voltage. A total of over
12,000 EGMs was acquired in about 22 min to construct the electrical propagation pattern
for this map.

Generation of the initial model An initial model was generated from the imported
clinical data and provided the basis for personalization of conduction properties and thus
virtualization of the presented arrhythmia. Scar was added to the anatomy to reproduce PV
isolation and inserted between regions that did not show an ongoing propagation in the LAT
map. To allow for precise annotation of these conduction blocks, the LAT map was plotted
as background for the manipulated mesh.
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Figure 10.12: Clinical LATmap of an example case.

The exit point of the zone of slow conduction was defined as trigger and surrounded
by refractory tissue, ensuring propagation towards the roof. Initial global CV was set to
600 mm/s and BCLclinical to 436 ms. Limits for velocity estimation were chosen as pre-
viously benchmarked: thrminCV = 10mm/s, thrmaxCV = 2000mm/s, thrinterCV = 800mm/s
and thrLAT = 5ms.

In contrast to the previously available mapping data form EnSite Velocity, no raw electri-
cal information was contained in the maps exported from the Rhythmia EAMS. As neither
the measurement points nor the acquired EGMs were available at that time, 500 randomly
selected vertices of the excitable endocardium were used as virtual electrodes. Their LATs
were extracted from the LAT map. Also in this case, some electrodes were manually removed
after visual inspection as their LATs were contradicting to other neighboring values and
violated causality.

Result of conduction velocity estimation Simulation using the initial CV0 = 900mm/s
resulted in an initial BCL of 291 ms. Therefore the global CV was rescaled using equa-
tion 10.1 to 400 mm/s.

In the second step the local CVs were computed. This process took below 20 s, and
the resulting CVs are plotted in Figure 10.13. Low values for the estimated CV could
be observed at the central anterior wall, which was in agreement with the zone of slow
conduction observed during clinical mapping. Although the mean global CV was initially
estimated to 400 mm/s, nearly the complete posterior wall exhibited CVs of 800 mm/s and
higher.

Subsequently the flutter was initialized using the personalized conduction properties. The
depolarization wavefront followed a stable pattern that matched to the clinically observed
tachycardia mechanism in path and BCL. LAT maps of both the clinical mapping and the
simulated flutter are plotted in Figure 10.14. For the simulated arrhythmia in (b), one cycle
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Figure 10.13: Estimated CV map of the example case. A zone of slow conduction can be seen on the
central anterior wall, being in agreement with clinical observations. Conduction is also reduced at the
lateral roof PV ostia, close to the PV isolation line. While the global CV estimate was 400mm/s, local
values for the CV inmost regions were estimated to exceed 800mm/s.

of the continuous simulation was plotted with the beginning of the cycle set to the exit point.
No depolarization was simulated for the electrically isolated atrial regions located at the PVs
and the anterior wall. Visual comparison of both the clinical map and the simulation result
demonstrated certain analogies: First, the roof was depolarized rapidly once the activation
passed the zone of slow conduction. Second, septum and posterior wall were activated nearly
simultaneously during the orange phase of the cycle by two different wavefronts. Third, a
first conduction delay could be observed at the inferior anterior wall close to the MV annulus,
which was present in both maps (green). Concluding, a strong delay in activation could be
observed around by crowding of the isochrones around the zone of slow conduction in the
central anterior wall. Based on these observations, it was concluded that the virtual flutter
qualitatively resembled its clinical prototype.

Limitations Although the CV estimation was performed automatically in a short amount
of time, manual preprocessing was required to generate the initial model. This included the
insertion of scar, which was visually assessed from the propagation map and by considering
the voltage map if available. While placement of scar at previous ablation lines can be
justified, conduction block in atrial regions without prior ablation may also be functional.
Currently it is not possible to differentiate between these mechanisms without interrupting
the ongoing tachycardia.

Also the anisotropy cannot be estimated based on one single flutter form. Thus it could
only be deducted model-based [189]. If paced data would be available, this may allow to
both delineate functional and anatomical scar, and allow to infer information about tissue
anisotropy.

It has to be noted that the algorithm does require the depolarization process to comply
with causality. Clinical LAT maps in general describe the excitation pattern very well on a
global scale. Within small regions, however, changes of the BCL during mapping (compare
Chapter 7.3) may cause inconsistencies in the temporal sequence of excitation. These had to
be corrected for a reasonable CV estimate.
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(a)Clinically presenting tachycardia (compare Figure 10.12).

(b) Simulated flutter circuit (one cycle chosen for visualization).
Figure 10.14: Propagation pattern of the virtualized flutter. LAT maps of the original clinical data (a)
and one cycle of the simulated tachycardia (b) are shown. Both exhibit a high qualitative similarity and
presented equal BCL of 436ms.

Conclusion and outlook As demonstrated in this example, the tachycardia induced in
the personalized model closely resembled its clinical original form. Therefore the flutter
was considered to be successfully virtualized. On the one hand, this approach allows to
extend the database listed in table 10.3 by real clinical cases. Thus diagnostic algorithms
can be applied to more data. One the other hand, virtualization is the fundamental step to
admit testing sets of ablation lesions in the computational model before applying these to
the patient. It will be able to identify those which terminate the arrhythmia. Due to the fast
processing speed of the FaMaS, this approach can be well applied in the clinical workflow.

However, up to now preprocessing steps are required which are time consuming and
rely on visual inspection. From a theoretical point of view, a combination of LAT and
voltage maps should contain all data which are required to automatically place scar, trigger
and refractory tissue on the anatomy. An initial attempt to evaluate these characteristics
based on EGM characteristics was conducted during this research project but did not provide
convincing results. However, the density of acquired EGMs, their localization precision and
signal quality was improved by the use of a novel mapping system. Thus it is envisaged to
newly execute a corresponding analysis, aiming for a complete automation of the workflow.
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Not only the termination is of interest when effects of different ablation patterns are
evaluated. In addition, both reinducibility and resulting ejection fraction are of clinical
relevance. Two steps have to be accomplished before these goals can be reached. First
information about anisotropy should be included in the mode. This could be achieved by
applying a rule-based approach as demonstrated earlier [189]. It could also be assessed in
clinical data, if information about depolarization from different directions was available for
each endocardial region. This, however, would require additional high-density maps during
sinus rhythm or paced excitations.

As ejection fraction is a mechanical property, the FaMaS is not an appropriate tool to
assess this parameter. However, once the model is parameterized, it could be transferred into
a more complex computational environment that could estimate the mechanical properties
like force and pumping function during sinus rhythm [105, 205].



CHAPTER11
Algorithms to Support Diagnosis of

Atrial Flutter
Atrial flutter can frequently be observed as either index arrhythmia or as organized tachy-
cardia following the ablation of atrial fibrillation (AFib). In the latter case, atrial flutter
(AFlut) often is resistant to pharmacological treatment and cardioversion, but as well seen
as intermediate step before SR ist achieved [64]. In both cases, however, numerous studies
have already demonstrated consistent results with respect to the underlying mechanisms and
their anatomical locations [8, 209]. This understanding and the resulting treatment decisions
have led to success rates in the order of 80 to 100 % when catheter ablation is applied to
terminate AFlut. The understanding of the patient-specific variant, however, is the central
prerequisite of successful ablation.

Currently, this diagnostic process is primarily based on the experience of the physician.
Although comprehensive electrogram data can be acquired from the complete atrium using an
electroanatomical mapping system (EAMS) with multi-polar mapping catheters ([75]), there
are currently only two automatic analysis techniques. First, the maximum bipolar voltage of
electrograms (EGMs) is evaluated within one cycle. Regions which exhibit voltage values
below a certain threshold are considered scar, potentially being part of an anatomical obstacle.
Typical threshold values for atrial myocardium are in the range of 0.5 mV for zones of low
voltage and 0.05 mV for dense scar [188, 210]. Second, the local activation time (LAT) is
annotated in each signal. After all signals are synchronized (compare section 8.2), the LAT
reflects the global excitation pattern. This static image allows to gain a first impression of
the course of atrial activation [64].

However, a number of additional features are applied by physicians in the diagnostic
process and typically evaluated manually by visual inspection. Considering the analysis
of individual signals, these comprise the presence of double potentials, and evaluation of
fractionation and duration of activity in each signal [207]. From a multichannel point of
view, additional features can be determined, like the mid-diastolic activity, area-based cycle
length coverage and the critical isthmus [64]. Goal of this research was to develop algorithms
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which can help to assess these parameters automatically in order to support the physician in
understanding the flutter circuit for successful ablation.

Clinical mapping strategies Several mapping strategies have been suggested to system-
atically determine the presenting form of AFlut. One deductive mapping scheme applicable
to left atrium (LA) flutter incorporates following steps [65]:

1. Assess cycle length regularity Macro reentrant tachycardias are known to exhibit a high
stability in basic cycle length (BCL), while focal sources may show strong variations
in cycle length (see also section 7). Thus it was suggested to first evaluate the BCL
based e.g. on coronary sinus (CS) recordings. If BCL deviations of more than 15%
were observed, the mapping strategy was directly adapted to search for a focal source
as in step three. Otherwise mapping of the macroreentry was attempted.

2. Search for macroreentry Two macro reentrant forms of flutter are dominantly observed
in the LA: Perimitral and roof-dependent. By recording points sequentially around
the mitral valve, the perimitral form could be confirmed or rejected. Acquiring points
from the posterior wall over the roof to the anterior wall allowed to assess the presence
of a roof-dependent form. If either one was confirmed, linear lesions were drawn at the
mitral isthmus line (mitral valve (MV) to left inferior pulmonary vein (LIPV)) or the
roof (left superior pulmonary vein (LSPV) to right superior pulmonary vein (RSPV)),
respectively.

3. Search for origin of centrifugal activation If none of these forms was confirmed,
additional points were mapped in order to find the origin of the focal source. Also
electrograms with activity lasting for more of 50% BCL were annotated. Subsequently,
entrainment mapping was used to either confirm the reentry circuit or determine the
focal origin.

This mapping strategy was developed to be applicable without the use of an EAMS, and
thus concentrated on sequences of individual collected points. Especially in the context of
micro reentrant mechanisms, the limited signal processing techniques provided by state-of-
the art EAMSs hamper the assessment of signals which are active for over half the BCL,
since annotation of the LAT is disputable in this case [65]. The critical isthmi were shown to
exhibit low voltages and concur with the isoelectric line between flutter waves in the surface
electrocardiogram (ECG) [66]. An example for this behaviour can be seen in Figure 11.1, in
which the EGMs measured by a PentaRay catheter on a microreentry can be observed.

In the search for the optimal spot to terminate macro reentrant circuits, a strategy was
proposed to easily identify the isthmus based on the relative timing between surface and
intracardiac electrograms [188]. First, tachycardia BCL was determined using activation of
the CS reference channel. Second, AV conduction was suppressed by carotid sinus massage
or an intravenous bolus of adenosine, allowing to clearly identifiy the P wave morphology in
the ECG. The window of interest was subsequently set to cover 90-95% of the BCL, with
the P wave centered in the analyzed window. Consequently, mid-diastolic potentials were
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Figure 11.1: EGMsmeasured on amicroreentry during atrial flutter. Continuous activity was observed
on splines D and E, covering the complete BCL. Reprinted from [65] with permission from the publisher.

identified as sites at which the activation time was determined at or outside the boundary
of the window of interest. Given the colormap used for activation mapping in the clinical
context, this corresponds to the head-meets-tail region identified in purple-to-red (compare
Figure 11.2). The imporance of the mid-diastolic potentials was also demonstrated by other
groups [195].

If the patient was pre-ablated, conduction recovery of previously isolated regions like the
pulmonary veins or the cavo-tricuspid isthmus (CTI) could be considered first [65]. Based
on statistical analysis of 140 patients, evaluation of activation pattern and timing of the CS
activity was suggested as initial stratification criteria to differentiate AFlut mechanisms at
the beginning of a multi step diagnostic process [211]. Especially in the context of extensive
low-voltage zones, identification of an optimal ablation spot is considered a challenging
task [212].

Clinical Criteria and Engineering Pendants The clinical mapping strategies outlined
above incorporate many steps based on visual analysis. In order to find appropriate and
automatic signal processing techniques, an understanding of the observed phenomena and
their interrelation is required.

From a macroscopic point of view, the cardiac excitation wavefront propagates along
the myocardium. The moment at which it passes a measuring electrode is termed LAT,
and the resulting excitation pattern is referred to as LAT map. In microscopic view, cells
depolarize, which is accompanied with currents causing a change in extracellular potential.
The morphology of an unipolar EGM has been very well studied, and the moment of
maximum negative gradient of the unipolar electrogram (UEGM) was shown to coincide with
the passing of the wave. Some time prior and after this moment, however, often a deviation
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(a)RA flutter, BCL 240ms.

(b) LA flutter, BCL 300ms
Figure 11.2: Localization of the mid-diastolic isthmus based on its relative timing to the P wave in
surface ECG. The technique is demonstrated in two examples from a right and left atrial macroreentry,
respectively. The window of interest for LAT analysis is centered on the P wave and its length set to
about 90% of the respective BCL. The transition purple-red indicates the location of the critical isthmus
(left side). Bipolar electrogram at this site exhibited low voltage, coinciding with the isthmus location
(right side). Reprinted with permission from the publisher [188].

from baseline can be observed in the EGM. For bipolar signals, the local depolarization can
be related to one dominant deflection in the bipolar electrogram (BEGM), being the atrial
activation complex. In clinical practice, however, fractionation can frequently be observed
in uni- and bipolar EGMs. This is considered to be related to the presence of fibrosis or
scar [46], both causing reduced and inhomogeneous inter-cell coupling and a reduction of
conduction velocity. Besides the fractionated morphology, also reduced amplitudes and a
prolonged duration of the atrial activation complex were observed in the clinical context.

Several studies focusing on AFlut demonstrated the importance of respective sites, as
one single ablation point was sufficient to terminate the tachycardia. For micro reentrant
mechanisms after pulmonary vein isolation (PVI), electrograms with activations lasting up
to 140 ms were observerd [186]. Other studies found mid-diastolic potentials of 200±80 ms
duration (range 110 to 360 ms) in unablated LA regions, occupying 63±22% of cycle
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length [195]. In the analysis of a cohort including 246 LA flutter cases, a prolonged
activation complex was found at the critical substrate in each of 95 focal micro-reentries,
with a duration of 256±74 ms and amplitudes of 0.15±0.12 mV. This emphasizes the need
for a tool to identify the active parts of an EGM, being deflections from baseline which are
stronger than noise. After the detection of active parts, further analysis allows to assess their
individual characteristics, like duration, or adjunctive properties.

On example of the latter is the detection of micro reentrant sources. Using LAT maps,
these mechanism are identified by visual inspection of the LATs that are present in a bounded
area not bigger than 2 cm. If LAT values can be found that cover at least 75% of the BCL, a
microreentry is assumed [65]. As each electrogram is assigned one single LAT value only,
while prolonged activity on average extends over 200 ms, the usage of LAT values in this
context may cause problematic annotations. The usage of activity may represent a powerful
alternative option, since it represents a time-continuous measure for each EGM without
simplification to one scalar value. From an engineering point of view, the detection of micro
reentrant sources can be considered equivalent to finding regions that exhibit 100% of BCL
coverage by OR conjunction of adjacent measurements.

The P wave in surface ECG reflects the depolarization of atrial myocardium. Strong and
clear P waves which are isolated by an isoelectric line in the surface ECG indicate a rapid
and complete depolarization of both atria. This can be observed during sinus rhythm and
may be indicative for a truly focal mechanism during AFlut. Inversely, a complete lack of
isoelectric intervals can be expected during macro reentrant tachycardias. From this point
of view, approaches that concentrate on the identification of mid-diastolic potentials [188]
actually identify tissue which is depolarizing at a moment in time during which no activity is
present in the remaining atrial tissue.

Identification of P waves may be hampered when the isoelectric baseline is not visible due
to the presence of a reentrant mechanism. In addition, P waves do represent the atrial activity
but rather electric field caused by the depolarizing tissue, projected onto the measuring
dipole. Since intracardiac measurement data are available during electrophysiological studies
anyway, an alternative strategy was developed during this thesis. Instead of focusing on the
P waves, the activity of EGMs is directly assessed to compute the amount of depolarizing
atrial tissue. This measure is able to differentiate the contribution of both atria to the resulting
P wave surrogate, is independent from the surface lead and is highly sensitive due to the
close proximity to the source which minimizes spatial averaging effects. Details and its
application will be outlined in Chapter 11.2.

11.1 Measures Describing Activity of Individual
Electrograms

In agreement with these considerations, algorithms were developed to compute two measures
for each single electrogram: Their activity and the presence of double potentials. Although
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their diagnostic relevance is widely accepted in cardiology, neither one is currently assessed
in commercial clinical mapping systems. The algorithms developed during this thesis are
considered a fundamental step towards improved mapping strategies of complex atrial flutter
scenarios.

Bipolar electrograms recorded by a catheter inside the atrial volume and not in contact
to the endocard exhibit an isoelectric baseline. This value is typically compromised by
measurement noise in the order of ±0.05 mV and may also be disturbed by artifacts like
sudden peaks of up to 50 mV due to a contact between two electrodes. If measured close to the
ventricles, these signals may also contain far fields caused by the ventricular depolarization.
When the catheter approximates the endocardial wall, additional deflections can be observed
which are caused by the depolarization of adjacent cardiac cells. As depicted in the previous
paragraph, the morphology of the corresponding atrial activity complex can be used to derive
information about the substrate. The maximum bipolar voltage of the deflection indicates the
conduction velocity [62] and the presence of scar or fibrotic tissue [195, 213]. The duration
of the activation complex indicates the presence of a critical isthmus [65, 186, 195].

Intracardiac electrograms are usually defined as double potentials when two discrete atrial
complexes per reentry circuit can be observed, separated by either an isoelectric baseline
or a low amplitude interval [61, 214]. These EGMs are of diagnostic interest since the
twofold occurrence indicates a conduction disturbance, typically consisting of a functional
or anatomical line of block [61]. Since the two components represent the left and right
handed activation of the line of block, respectively, the duration of the isoelectric interval
indicates the conduction delay. This duration will decrease while the mapping catheter is
guided towards the pivot point of electrical excitation along a line of double potentials. This
pivot point may in turn represent a critical isthmus for ablation, making knowledge about
double potentials a diagnostically relevant tool.

11.1.1 Database of Annotated Atrial Activity
Within the presented research project, a database of annotated atrial activity was set up for the
development and benchmarking of various processing techniques. It incorporated a total of
2863 bipolar intracardiac electrograms, which were acquired during LAT mapping of stable
sustained atrial flutter using the Velocity EAMS at Städtisches Klinikum Karlsruhe. Duration
of each electrogram was 1 s, and simultaneously recorded surface ECG and intracardiac CS
reference was also available. Each signal was sampled at 2034.5 Hz. Data were acquired
from eight different patients (358±238 recordings per patient), whose characteristics are
summarized in table 11.1. All provided written informed consent.

Result of manual annotation All 2863 EGMs were subsequently annotated by a sci-
entist with more than 2 years experience in the field of intracardiac electrogram (IEGM)
processing. The surface ECG and the inspected intracardiac EGM were shown synchronously
using a custom-made MATLAB-based GUI, allowing to clearly identify R peaks and the
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Patient ID Age Gender Mechanism Atrium Points Catheters
PtAFlut1 71 m focal LA 269 Inquiry Optima (10)
PtAFlut2 71 f microreentry

anterior
LA 320 Inquiry Optima (10)

PtAFlut3 54 m roof dependent
macroreentry

LA 249 Inquiry Optima (10)
PtAFlut4 71 m unknown LA 34 Constellation Basket,

Inquiry Optima (10)PtAFlut5 64 m microreentry
RIPV

RA, LA 461 Inquiry Optima (10)
PtAFlut6 65 f unknown LA 228 Inquiry Optima (10)
PtAFlut7 61 m unknown RA, LA 461 Inquiry Optima (10)
PtAFlut8 56 m ccw perimitral RA, LA 841 Inquiry AFocus II (20)

Table 11.1: Patient characteristics for the database of AFlut EGMs. Clinical data from eight patients
(age 64±6.8 years) were included in the database. All data was recorded during stable tachycardia.

corresponding ventricular far field components. The sweep speed was set to 175 mm/s,
allowing a precise annotation of all events. The magnification of signal amplitude was
adjusted automatically to the strength of the electrogram components. The complete duration
of data was displayed at once for each measured point, allowing to comprehend the excitation
process. A list of all signals was provided and allowed to skip ambiguous signals. Buttons
allowed to mark individual EGMs as noise, ventricular far field (VFF) or artifact.

Following rules were set up to obtain a clear annotation procedure:
1. If no significant activity was observed (typically less than 0.1 mV peak-to-peak values),

the signal was considered noise
2. If the only significant activity was synchronous to the QRS complex, the signal was

considered VFF
3. If the signal did neither show periodic activity of constant morphology and consistent

BCL, nor a dominant VFF, it was considered compromised by an artifact
4. All remaining signals were considered usable for further analysis

For every signal, the position of the R peak in the surface ECG was annotated by clicking
with the mouse. In all usable signals, the beginning and the end of each atrial activity
complex were marked. If VFF activity was observed simultaneously to an atrial activity, care
was taken to only annotate the time window of atrial activity as good as possible. The initial
deflection from the isoelectric and the final return to its level was considered the beginning
and the end of the atrial activity.

Usable signals were additionally marked as double potentials, if at least two distinct
deflections could be identified within one cycle, separated by a nearly isoelectric baseline.

After annotation, 1981 of 2863 EGMs were identified as usable signals showing a
periodic activity pattern. The remaining 882 EGMs were considered drowned out by the
noise (187 signals), dominated by ventricular far field (207 signals) or inconsistent in
activation (488 signals). 154 of the 1981 annotated EGMs presented double potentials.

Examples for usable signals are shown in figure 11.3. In every figure, the surface ECG is
plotted at the top, the intracardiac CS reference in the middle, and the annotated EGM at
the bottom. The examples were chosen for presentation as they cover a variety of different
morphologies: While a clean signal with strong single deflections is plotted in (a), a highly
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fractionated signal is depicted in (b). The annoated activity within the latter covered a huge
percentage of the cycle length. Regular P waves (i.e. flutter waves) can be seen in the ECG.
The EGM shown in (c) contained a far-field component which occurred only simultaneous
to the R peak. This VFF exhibited a morphology which was comparable to the atrial activity
in terms of amplitude and complexity. An example for double potentials is plotted in (d).

0 0.2 0.4 0.6 0.8 1

-0.3

0.5

E
C

G

0 0.2 0.4 0.6 0.8 1

-1.5

1.5

C
S

0 0.2 0.4 0.6 0.8 1

-1.0

0.5

E
G

M

(a) Single deflections.
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(b) Prolonged fractionated.
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(c)Visible VFF.
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(d)Double potential.
Figure 11.3: Example signals from the flutter EGMdatabase. Surface ECGwith annotated R peaks (cyan)
are shown at the top. Coronary sinus EGMs are plotted in themiddle, centered on the activation complex
which was used to synchronize sequential measurements during clinical LATmapping. The inspected
EGM is shown at the bottom, with beginning and end of atrial activity indicated by vertical green and red
lines, respectively. All annotations were donemanually. Amplitudes as given inmV, time in s.

The degree of fractionation within each signal was not assessed. However, the database
could easily be extended in this regard. The dataset compiled during this thesis is the first
atrial flutter database at IBT. Although an extension of the database is desirable, data already
showed a certain degree of variability since it included eight patients and was recorded using
several catheter types.

Result of automatic preprocessing After manual annotation was completed, automatic
processing was applied to determine BCL and the position of R peaks. Since the required
intracardiac reference and the surface ECG were manually selected during the procedure,
a good quality of these signals was assumed and therefore no additional artifact removal
technique was applied.

The BCL was determined using the approach presented in Chapter 8.2. Briefly, each
intracardiac reference electrogram was inspected individually. All activities were annotated
using an energy-based approach. The central activity was used by the clinical system for
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Patient ID Traces Doc BCL [ms] Comp BCL [ms] R peak pos
PtAFlut1 55 290 294.9±4.4 -10.2±1.8
PtAFlut2 64 190 198.6±18.2 -15.9±2.9
PtAFlut3 50 250 253.1±2.5 -17.9±2.4
PtAFlut4 1 260 260.0±0.5 -15.4±0.0
PtAFlut5 98 330 330.8±3.4 -7.0±2.5
PtAFlut6 46 240 253.6±8.9 10.5±3.4
PtAFlut7 103 266 268.4±2.0 -11.2±1.4
PtAFlut8 86 280 267.4±2.5 -8.4±2.2

Table 11.2: Evaluation of reference traces for the database of AFlut EGMs. Traces indicates the number
of available traces,Doc BCL the documented cycle length and Comp BCL the computed BCL.

synchronization and thus also selected as reference during the automatic BCL determination.
Next, the preceding and the subsequent activity were detected. Correlation was used to align
the activation complexes precisely and the respective time intervals between the central and
the neighboring activations determined as cycle lengths.

R peaks were detected using the IBT biosig toolbox for ECG processing. One single
lead of the surface ECG was processed automatically as outlined in Chapter 5.2.

The resulting measures for all eight datasets are outlined in Table 11.2. A total of 503
individual traces was processed. Considering the BCL, both the clinically documented
value and the result of fully automatic processing were in good agreement. While a total of
808 R peaks was annotated manually, automatic processing detected 810 R peaks. Visual
inspection of the two respective signals revealed, that in both cases the missing R peak was
located on the boundary of the recorded time frame and thus not annotated. Automatic
analysis, however, detected these peaks in both cases. Considering the 808 coinciding
annotations, an offset of -18 to 11 ms was present between the manual annotation and the
result of automatic processing. The standard deviation of these values, however, was below
3.5 ms, indicating a consistent behavior for each patient.

Concluding, the automatic processing worked very well for both the BCL determination
and the detection of R peaks. The exact position of manual annotation, however, differed
from the automatic one.

11.1.2 Algorithms for Activity Detection
The duration of activity in EGMs plays an important role during diagnosis, as prolonged
fractionated activity indicates a pathological propagation of excitation. Active parts of EGMs
have been assessed as feature for algorithms in research addressing AFib [208]. During
diagnostics of AFlut, however, this topic has hardly been addressed.

Inspired by the characteristic properties of intracardiac EGMs and well-known processing
signal techniques, several algorithms were implemented and benchmarked to assess their
ability to identify activity in the bipolar EGMs of the database. The presented work was
part of a student project [215] that was co-supervised by Gustavo Lenis and subsequently
published [216].
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General workflow In order to obtain comparable results for the performance of different
activity detection algrorithms, a common processing workflow was set up. As the signals
were already filtered, an additional pre-filtering was in general not included. The first step
comprised a mathematical transformation which represented the central part of the processing
scheme and was chosen from the following methods:

1. Energy-based (NLEO)
2. Hilbert-transformation
3. Wavelet-filtering
4. Matched-filter
5. Voltage-based

The transformed signal was subsequently squared to suppress noise and ensure positive-
ness of all values. Low-pass filtering with cut-off frequency fc and thresholding with value
T represented the third and forth step, respectively. Both fc and T were expected to stongly
influence the outcome of annotations. Thus each parameter was varied within a reasonable
search range to find an optimal pair of values for each method. Hereby, T was defined as
product between the standard deviation of the signal and a proportional factor k, with the
latter being optimized. Details of this generalized workflow were adapted for each respective
method.

Last, a post processing step is included. According to physiological considerations, truely
separate activity has to be disconnected by an inactive segment which is of similiar length
as the refractory period. Therefore, activities were merged when the separating inactivity
was shorter than 42 ms. Additionally, active segments with physiological origin are expected
to have a certain minimum duration. Thus active regions of sporadic duration of less than
10 ms were also removed [132]. For rapid processing, these steps were implemented using
morphological operations opening and closing according to

Spp(n) = (S(n)•W42)◦W10 (11.1)

Cycle of interest for statistical analysis Goal of the presented algorithms was the cor-
rect annotation of atrial activity in the EGMs. Therefore, just the atrial components were
marked during the manual annotation of the database. In order to avoid that ventricular
activity compromised the results of benchmarking, only one atrial flutter cycle without
synchronous QRS complex was considered for analysis.

The cycle for analysis was automatically selected based on a linear quality measure which
penalized proximity to R-peaks. Based on this criterion, the cycle for analysis was chosen
out of four different possibilities. The restriction to four discrete options was introduced to
allow for the resampling of sequentially acquired clinical data in map-based analysis (see
Chapter 18). If one R peak occurred early or late within the surface ECG, the cycle was
chosen to begin or end with the central activation of the reference EGM, respectively. If no
QRS complex was detected, or two on either sides of the central reference LAW, the cycle
which was centered on the reference LAW was selected. If the ventricular depolarization
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occurred simultaneously to the reference activity, the cycle had to be split apart for the
statistics, and thus one early and one late portion of the signal was analyzed. As the AV node
did not allow for every excitation to pass to the ventricles, it was always possible to detect a
cycle without simultaneous ventricular activity.

This procedure is demonstrated in Figure 11.4. The R peaks can be clearly seen in the
surface ECG. They were manually annotated and correctly identified by automatic signal
processing. The cycle which was not synchronous to the ventricular depolarization was
chosen for analysis. Its length was equal to the BCL.

-0.2

0

0.2

0.4

0.6

A
m

p
lit

u
d

e
 [

m
V

]  Surface ECG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

-0.2

-0.1

0

0.1

A
m

p
lit

u
d

e
 [

m
V

]

 330 ms

 EGM

Figure 11.4: Example for the analyzed cycle during ventricular diastole. Two QRS complexes can be
noted in the surface ECG, with simultaneous ventricular far fields in the EGM. The cycle chosen for
benchmarking of activity detection algorithmswas selected during the diastole of the ventricles, thus
being not compromised by VFF. Vertical lines represent the manual annotations of R peaks and the
beginning and end of atrial activity.

Measures for performance evaluation Several statistical features were computed in
order to assess the accuracy of annotation. In this context, the correct detection of activity
in a sample was defined as true positive (TP), with correct detection of inactivity termed
true negative (TN). Manually annotated activity, which was not detected by the automatic
algorithm, was referred to as false negative (FN), with false positive (FP) being detected
activity which was not annotated by hand.

Based on these measures, the classification accuracy was measured for the samples
within the cycle of length N in terms of
• Correct rate (CR), being the ratio of correctly detected (in-)activity to the total length

of the cycle in samples:

CR =
∑
N

TP+∑
N

TN

N
(11.2)

• Sensitivity (SE), being the ratio of correctly detected activity to all annotated activity:

SE =
∑
N

TP

∑
N

TP+∑
N

FN
(11.3)
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• Specificity (SP), being the ratio of correctly detected inactivity to the entire amount of
manually annotated inactivity:

SP =
∑
N

TN

∑
N

TN+∑
N

FP
(11.4)

• Positive predictive value (PPV), given by the ratio of correctly detected activity to the
total amount of samples marked manually as ’active’:

PPV =
∑
N

TP

∑
N

TP+∑
N

FP
(11.5)

• Negative predictive value (NPV), given by the ratio of correctly detected inactivity to
the total amount of samples marked manually as ’inactive’:

NPV =
∑
N

TN

∑
N

TN+∑
N

FN
(11.6)

From a more abstract point of view, SE desribes the ability of an activity detection
algorithm to correctly identify activity, while SP represents the ability to correctly identify
inactivity. A measure for precision of activity identification is provided by the PPV, with
NPV describing the accuracy of an activity detection algorithm for identification of inactivity.

Energy-Based The instantanteous energy has been shown to indicate activity in EGMs.
While its maximum value has been applied to annotate the LAT (compare Chapter 8.1),
its course over time has already been utilized to detect active segments and derived mea-
sures [208]. As these research focused on classification of AFib EGMs, a benchmarking had
not yet been performed. The energy-based approach was thus included to get a quantitative
evaluation and an optimal parameter setting for this method.

As additional preprocessing step, a Butterworth filter with a cut-off frequency of 100 Hz
was applied to each EGM to assure that the frequency content was below one eighth of the
sampling frequency of 2034.5 Hz. As transform, the energy E of each sample n of the signal
x was computed as given by the NLEO to

En = x2
n− xn+1xn−1.

This operation accentuated both high amplitudes and high frequency components. Squar-
ing was replaced by the absolute value since the NLEO already included squaring. Low-pass
filtering, comparison with the threshold and post processing was done as outlined in the
General workflow paragraph. The appliation of this process to an example signal is shown in
Figure 11.5.
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Figure 11.5: Processing steps of energy-based activity detection. The original signal was low-pass
filtered at 100Hz to comply with the frequency restrictions of the NLEO. Next the instantaneous energy
was determined and its absolute value computed. The resulting signal was low-pass filtered at fc andcompared to the adaptive threshold. Adjacent segments weremerged during post processing. Both fcand the adaptive factor kwere optimized during algorithm development as their value showed a huge
impact on detection performance.

The low-pass frequency fc was varied in steps of 2 Hz from 10 to 30 Hz. The second
parameter, proportional scaling factor k, was varied between 0.1 and 1.0 in increments of
0.1. The classification performance for each combination of these parameters is visualized in
Figure 11.6. It can be noted, that no parameter combination could simultaneously optimize
all statistical measures. Therefore, the CR was chosen as optimization criterion. The
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best performance was obtained with a cut-off frequency of 16 Hz and a k factor of 0.3,
corresponding to a CR of 91%.

(a)Correct rate.

(b) Sensitivity. (c) Specificity.

(d) Positive predictive value. (e)Negative predictive value.
Figure 11.6: Statistical measures for energy-based activity detection. The parameters fc and k were
varied from10 to 30Hz and 0.1 to 1.0, respectively. The correct ratewas chosen as optimization criterion
as its maximum showed to balance all measures. Best performance of 91.0% accuracy was found for
fc = 16Hz and k = 0.3.
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Hilbert Based Central part of the Hilbert-based approach was the computation of the
envelope of the EGM. Therefore the analytic signal xa(t) was determined as outlined in
Chapter 3.2.2. The envelope was calculated as absolute value of the analytic signal and
subsequently squared. All post processing steps were the same as presented above. The
corresponding steps are visualized in Figure 11.7, which shows the processing of an EGM
with fc=18 Hz and k=0.3.
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Figure 11.7: Processing steps of the Hilbert-based activity detection. The envelope of the signal was
computed as absolute value of the analytic signal. Squaring, low-pass filtering and thresholding and post
processing were applied as outlined in the general workflow.
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To optimize the performance of this technique, fc was varied in steps of 3 Hz ranging
from 3 Hz to 33 Hz. The search span for k was evaluated between 0.1 and 1.0 in steps of
0.1. With all combinations evaluated, the highest CR of 91.9% was achieved for the cut-off
frequency of 18 Hz and a k factor of 0.3.

Matched Filter Analysis of EGMs in the frequency domain lead to the observation that
most power in the spectrum resulted from the active parts of the signal. Goal of the matched-
filter approach was to design a filter which approximated the spectrum of the active segments,
being able to preserve their information while diminishing other components.

First, the power spectral density (PSD) of the complete EGM was computed. A Gaussian
was fitted into the spectrum by minimizing the least-squares-error. The EGM was convoluted
with the inverse Fourier transform of this Gaussian. Squaring, low-pass filtering with fc,
thresholding and post-processing were performed as previously outlined. An example of the
corresponding workflow is depicted in Figure 11.8.
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Figure 11.8: Processing steps of thematched filter-based activity detection. The output of thematched
filter was squared and post processed as outlined in the general workflow. fc=20Hz and k=0.2 wereused for computation.
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The parameter search space ranged from 5 to 55 Hz and 0.1 to 1.0, with increments of
5 Hz and 0.1 for fc and k, respectively. Within these combinations, a CR of 92.5% was
achieved ( fc=20 Hz, k=0.2).

Wavelet Based Wavelet-based analysis techniques were already applied for electrogram
analysis in previous work [217], in which an existing approach was extended [218]. Within
the scope of this work, a second wavelet-based method was introduced and benchmarked.

Spectral analysis had indicated that the centroid of energy in the spectrum was located at
53 Hz (mean over all usable signals). Accordingly, the essential bandwith containing 95% of
energy showed a mean of 121 Hz. Little power was observed in the low frequency domain
since all signals were filtered with a high-pass of 30 Hz (common for bipolar EGMs). With
the sampling rate being 2034.5 Hz for all signals in the database, the detail levels 4, 5 and 6
covered this frequency range of 16 to 128 Hz.

Wavelet decomposition was performed and subsequently the signal was reconstructed
using only the three detail levels 4, 5 and 6. For each level, the reconstructed signal was
squared and these subsequently added. This process is demonstrated in Figure 11.9 for the
wavelet Biorthogonal 1.5 with fc=30 Hz and k=0.4.
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Figure 11.9: Processing steps of the wavelet-based activity detection. The Biorthogonal 1.5 wavelet
was used with fc=30Hz and k=0.4. Selected detail coefficients were reconstructed, squared, added, and
low-pass filtered.

The cut-off frequency of the low-pass which was used to smoothen the reconstructed
signal was varied between 5 Hz and 55 Hz in steps of 5 Hz, with the factor k varied in
increments of 0.1 between 0.1 and 1.0.
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As the wavelet type was expected to have a major effect on the performance of the
algorithm, five different wavelets were assessed. An overview of the tested wavelets is
provided in Table 11.3, together with the achieved performance. Best results were achieved
with the wavelet Biorthogonal 1.5 (92.3% with k=0.4 and fc=35 Hz).

Correct rate Sensitivity Specificity PPV NPV
Wavelet in %
Coiflet 4 91.6 87.4 94.0 86.2 93.8
Coiflet 5 91.6 87.7 93.7 85.8 93.9
Daubechies 4 91.7 84.5 95.6 88.5 92.7
Daubechies 5 90.3 85.2 93.5 82.6 92.9
Symlet 5 90.4 84.1 94.0 84.2 92.5
Biorthogonal 1.5 92.3 84.9 96.1 90.4 93.0

Table 11.3: Results for wavelet-transform-based activity detection with various wavelet types. Besides
the cut-off frequency fc and the factor k, also the type of wavelet was varied in this technique. Bestresults were achieved for Biorthogonal 1.5.

Voltage Based One very intuitive method for activity detection was directly based on
the voltage amplitude of the EGM. Therefore, a sliding window was used to analyze the
signal with 50% overlap. For each window, the difference between maximum and minimum
signal values was determined and compared to a fixed threshold. The initial concept of this
approach was published [219], and subsequently subject of further evaluation.

This approach significantly differed from the previous methods. Accordingly, different
parameters were selected for optimization: Both the length of the sliding window w and
the fixed threshold T were variable. Neither low-pass filtering nor squaring were applied,
post-processing, however, was kept to merge adjecent segments and remove sporadic activity.
The method of voltage-based activity detection is presented in Figure 11.10.

The search range for optimization spanned the values between 2 ms and 22 ms for w,
with steps of 2 ms. The voltage threshold T was varied in steps of 0.02 mV from 0.01 to
0.19 mV. For one single fixed pair of parameters, the optimum performance was found to be
88.7%, obtained with w=14 ms and T =0.05 mV.

However, a dependency of the parameters on signal voltage was observed. The CR
for different ranges of signal amplitudes is summarized in Table 11.4. The performance
improved for increasing peak to peak amplitude, with optimal parameters for T increasing
and for w decreasing.

For a more detailed analysis, classes containing 200 EGMs each were formed depending
on the peak to peak amplitude. Optimal parameters were determined for each class inde-
pendently, as shown in Figure 11.11. In order to find optimal value pairs for the analysis of
new data, a functional relation was determined to relate amplitudes and analysis parameters.
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Figure 11.10: Processing steps of the voltage-based activity detection algorithm. The voltage difference
of each sliding windowwas direclty subject to thresholding.

optimal parameter values
Class P2P range Threshold Windowwidth Correct rate

[mV] [mV] [ms] [%]
1 0.035 – 0.23 0.03 18 89.9
2 0.23 – 0.55 0.05 18 92.3
3 0.55 – 1.40 0.07 14 94.0
4 1.40 – 17.74 0.11 10 95.7

Table 11.4: Dependency of voltage-based performance on signal amplitude.

Therefore, polynomials up to degree of 3 and exponentials up to 2 were fitted to the clustered
measurement data.

All models and their combinations were subsequently used to dynamically compute the
parameters for analysis. Comparison of the resulting CR indicated the best performance of
93.3% for exponential model functions. Based on the bipolar peak to peak amplitude A, the
resulting non-linear functional relations were determined to:

w = 19.92 exp
{
−0.17

A
mV

}
[ms] (11.7)

T = 0.08 exp
{

0.14
A

mV

}
−0.07 exp

{
−2.65

A
mV

}
[mV] (11.8)
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Figure 11.11: Class specific parameters and fit for the voltage dependent method.

Comparison of methods All provided good results. Details about the performance of
each technique can be seen in Table 11.5.

Correct rate Sensitivity Specificity PPV NPV
NLEO-based 91.0 84.6 94.2 87.6 92.3
Hilbert-transform-based 91.9 83.0 96.2 91.1 92.4
Matched-filter-based 92.5 85.9 95.6 90.3 93.5
Wavelet-transform-based
(Biorthogonal 1.5)

92.3 84.9 96.1 90.4 93.0
Voltage-based activity detection
(fixed parameter values)

88.7 81.0 93.7 85.5 91.2
Voltage-based activity detection
(P2P-dependent parameters)

93.3 87.6 95.7 91.1 94.3

Table 11.5:Overall performance results of all activity detectionmethods. All values given in [%].

11.1.3 Double Potential Detection
Double potentials are of special interest during diagnosis, as the presence of two activity
complexes typically indicates a conduction disturbance. As the time interval between both
deflections often falls below the refractory period of atrial myocardium, they cannot be
caused by depolarization of the same tissue [207]. Consequently, double potentials (DPs)
indicate that spatially adjacent areas show a considerable delay in activation. High-density
epicardial studies mapping a canine model demonstrated that this delay reflected the passing
of activation on either side of a central obstacle, instead of being caused by a central slow
conduction [220]. The obstacle is typically caused by functional or anatomical block, with
either one being a potential obstacle for reentry.

Both persistent and functional DPs were studied during clinical mapping of RA flutter.
Both were found stable over time while the tachycardia persisted. During SR and rapid
pacing, however, the latter could not be observed [207]. The automatic detection of DPs
would consequently aid the diagnosis of the flutter mechanism itself and additionally support
the analysis of stimulated excitations aiming for detecting arrhythmogenic substrate. Also
after the generation of linear lesions, monitoring the presence of DPs on the ablation line
was suggested and demonstrated as valuable tool to localize gaps in the lesion [221].
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Recent studies confirm the importance of DPs in diagnosis and treatment of atrial
arrhythmias [221, 222]. But despite their value, no signal processing technique is known to
the author which has been presented to reliably detect and annotate double potentials based
on electrogram morphology.

Therefore, part of the presented research was the development of a classifier to distinguish
between normal EGMs and DPs. Several features were considered, all in agreement with
the definition of DPs and respective their peculiar morphological properties. These features
were subsequently provided to a decision tree which assessed their usability during cross-
validation. The development of corresponding features and the classification process was
part of a student project [215] which was co-supervised by Gustavo Lenis and is currently
under review for publication.

Features Since DPs are defined by the presence of two activity complexes within one
atrial cycle, the first approach was to simply count the Number of Activity Complexes. As
the cycle of interest was defined based on ECG criteria independently from the annotation
of activation complexes, it was possible that an activity complex was cut off by the cycle
boundary (compared Figure 11.12 (b)). Therefore, each activity was weighted by the relative
amount of its duration inside the cycle. The sum of all relative values provided an estimation
for the number of activation waves per BCL. As demonstrated in Figure 11.12, the total value
was close to 1 for EGMs with single deflections, while the presence of DPs was indicated by
a sum close to 2.

Although this measure was very intuitive, it strongly depended on the correct annotation
and precise discrimination of all local activation waves. If activity was not detected, or
spurious activity was wrongly annotated, the number of activities was too sensitive. Therefore,
the cycle length coverage of single signals was added as feature. While the duration of single
deflections usually was rather short, fractionated and double potentials tended to exhibit
longer activities. Although this cannot discriminate between fractionation and real DPs, it
was considered as feature Activity per Cycle.

A novel concept of identifying dominant deflections in the EGM was based on assessing
the instantaneous energy within the active parts of the signal. As demonstrated in Fig-
ure 11.13 (a), local activation waves (LAWs) that contain just one single deflection also have
one single maximum of energy. Additionally, the time of the maximum is very close to
the centroid of the energy distribution of each activation complex. For double potentials,
each deflection results in an individual peak which can be identified in the course of energy.
These peaks are located further away from the centroid of the energy, as can be observed in
Figure 11.13 (b). In order to evaluate the presence of multiple components within one LAW,
the two features Number of Peaks (being the average number of peaks in the considered
signal) and the Peak-Centroid Distance (being the average distance between peaks and the
centroid of each individual LAW) were introduced.



148 Chapter 11. Algorithms to Support Diagnosis of Atrial Flutter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

-1

-0.5

0

0.5

A
m

p
lit

u
d

e
 [

m
V

]
1.00

Total: 1.00

(a) EGMwith single deflection within the considered cycle.
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(b) EGMwith one single deflection at the cycle boundary.
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(c)Double potential with two activities per BCL.
Figure 11.12: Example demonstrating the featureNumber of Activity Complexes for DP detection. Three
EGMs are shown (blue) together with themanually annotated activity (red). If just one single deflection
is present, it may be located completelly within the considered cycle (a). If the activity is located at the
boundary of the considered cycle, the relative duration inside the cycle has to be considered (b). This
allows to estimate the number of activations also in case of double potentials (c).

Double potentials are frequently defined by the existence of an isoelectric baseline
separating LAWs. In the presence of noise, however, short segments of baseline may not
be detected during initial annotation and subsequently cause the detection of a fractionated
potential of long duration. Therefore two additional ways to analyze the baseline were
incorporated as potential features for DP detection.

Short segments of baseline were often removed during the post processing of activity
detection. Keeping this in mind, the annotated activity prior to post processing was analyzed.
Only the baseline was assessed which was located between two subsequently joined activity
complexes. Its longest duration was evaluated and included as feature Baseline 1 (see
Figure 11.14 (b)).

Since the low-pass filtering may already cause a smoothing of the signals before merging,
a second measure was introduced. Feature Baseline 2 was based on the voltage of the original
EGM. The variance of voltage values was computed within the inactive parts of the signal
and considered to be a measure for the noise level. Subsequently, a threshold of three times
the standard deviation was defined and used to identify baseline segments within annotated
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(a) EGMwith one deflection per BCL.
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(b)Double potential within a prolonged EGM.
Figure 11.13: Example demonstrating the featureNumber of Peaks for DP detection. The instantaneous
energy was assessed within all detected LAWs. While the presence of a single peak indicated one
deflection (a), multiple peaks could be related to DPs which were annotated as one larger LAW (b). The
distance between each peak and the centroid of energy was evaluated for the feature Peak-Centroid
Distance.

LAWs. The longest duration of these values was considered the length of the baseline and
thus used as feature as shown in Figure 11.14 (c).

Two additional features were included to assess the similarity between detected LAWs.
For all LAWs which were at least partially located inside the cycle of interest, mean and
standard deviation of their durations was computed. While the length of all active segments
could be considered similar if just one type of morphology was present per cycle, the
individual components of DPs were also observed to have different lengths. This led to
higher values of the standard deviation, making LAW µ and LAW σ potentially relevant
features. Another measure, although not included, may be the correlation coefficient between
LAWs (compare Chapter 13.2). This however, would require an annotation of the LAT and
correlation in time domain, making it a more complex and due to the fractionation of DPs
probably less robust feature.

Performance evaluation All features introduced in the previous paragraph strongly rely
on the correct detection of activity. Within this project, several techniques for activity



150 Chapter 11. Algorithms to Support Diagnosis of Atrial Flutter

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

-0.1

-0.05

0

0.05

0.1

A
m

p
lit

u
d

e
 [

m
V

]

(a)Result of automatic annotation using the NLEO-basedmethod.
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(b)Baseline determined from the intermediate processing result withoutmerging
of adjacent activities.
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(c) Baseline determined from the low amplitude segments within the detected
LAWs.

Figure 11.14: Example demonstrating the Baseline features for DP detection. Activity detection using
the NLEO basedmethod joint adjacent deflections (a). Evaluating the intermediate processing step prior
tomerging of active segments demonstrated the presence of a baseline. Its durationwas determined
as used as feature Baseline 1 (b). The amplitude of the EGMwithin the annotated activity was directly
assessed for feature Baseline 2. Isoelectric intervals of short duration could be detected this way (c).

detection were developed and benchmarked. All these algorithms demonstrated classification
accuracy above 90% (see Section 11.1.2). Despite these values, the possibility could not be
excluded that one technique was more suited for the detection of DPs than the others. Thus,
the process of feature calculation, classifier training and cross-validation was executed for
every of these preprocessing method.

As the voltage based annotation did not involve an energy-based measure that could be
used to compute Number of Peaks or Peak-Centroid Distance, the NLEO was additionally
computed and evaluated within those segments of the signal that were determined as active
based on their amplitude.

Another issue was brought up by the difference in numbers: As the normal EGMs
(1827 signals) heavily out numbered the DPs (154 signals), balancing of the training data
was required. This was done by one cycle of random-oversampling, i.e. a random replication
of signals from the minority class [223]. Despite an increased possibility of leading to over-
fitting, comparison with other techniques for balancing demonstrated very good performance
and little increase in tree complexity for random-oversampling [224].
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For each preprocessing method, a tree was grown using the Gini Diversity Index as
split criterion (see Chapter 3.3.1). The complexity of the resulting tree was restricted
to 10 decisions, with branch node observations limited to minimum of 10 and leaf node
observations set to 1. These measures were applied to prevent overfitting.

Performance of the induced trees was assessed using leave-one-out cross-validation. In
order to test the suitability of the features and the classification procedure, an additional tree
was generated based on the manual annotations instead of the automatic activity detection.
The resulting performance of 99% correctly annotated signals indicated that the chosen
features were very well applicable to distinguish between both classes.

The resulting correct rates when using the automatic algorithms for annotation are
summarized in Table 11.6. Depending on the preprocessing algorithm, the correct rate varied
between 77.2% and 90.5%. Best performance was observed for the voltage-based activity
detection. The resulting tree grown with all available data is visualized in Figure 11.15. The
Activity per Cycle was identified as most relevant feature, directly followed by the Number
of Activity Complexes in the second level.

11.1.4 Conclusion
The morphology of individual EGMs is inspected by the physician during mapping, as it
provides important information about both the excitation and the underlying substrate. While
single clear LAWs are generally observed during uncompromised propagation, prolonged
and fractionated components are assumed to indicate the presence of injured, fibrotic or
remodelled tissue. Special clinical value is attributed to signals covering over 50% of the
tachycardia cycle length, as the regions where they can be measured often represent the
critical substrate for tachycardia perpetuation. Also the presence of DPs is of high diagnostic
relevance, as they indicate functional or anatomical lines of block.

Correct rate Sensitivity Specificity PPV NPV
Manual annotations 99.0 99.6 98.4 98.4 99.6
NLEO-based 79.7 69.2 90.2 87.6 74.5
Hilbert-transform-based 83.4 79.1 87.8 86.7 80.8
Wavelet-transform-based 78.7 65.5 91.7 88.8 72.7
Voltage-based
(fixed parameters)

85.4 89.1 81.7 83.0 88.2
Voltage-based
(P2P-dependent parameters)

90.5 91.3 89.6 89.8 91.2
Matched-filter-based
activity detection

77.2 61.1 93.3 90.1 70.6

Table 11.6: Cross-validation results of decision trees for DP detection. All values given in [%]. For the
wavelet-transform-based approach, the Biorthogonal 1.5 wavelet was used. For the voltage-based
approach, Number of Peaks and Peak-Centroid Distancewere calculated using the results of the NLEO-
based activity detection algorithm. Best performancewas observerd for the voltage-based approach
with about 90% accuracy.
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Figure 11.15: Decision tree for DP detection. Inspected EGMs were labeled as normal signal (green
circle) or DP (filled red dot), depending on the values of the five following features: Activity per Cycle (ApC),
Number of Activity Complexes (N), Peak-Centroid Distance (PCD), LAW µ , and Baseline 2 (BL 2).

Performance Within the scope of this research, different methods were developed to
determine the activity of intracardiac electrograms. Therefore, a database with 2864 EGMs
was set up and manually annotated. It provided the opportunity to benchmark the performance
of automatic annotation algorithms. After parameter optimization, accuracies of over 90%
were achieved. While the voltage-based activity detection performed best, all other methods
also achieved values close to or above 90%.

For the automatic detection of DPs, a corresponding classifier was developed. First
different features were generated, all related to the morphological peculiarities of DPs. A
decision tree was induced as classifier with all eight features and subsequently grown using
the Gini Diversity Index as split criterion. Comparison of different processing techniques
showed that the voltage-based activity detection performed best, with a resulting accuracy of
over 90%.

The resulting classifier comprised a variety of features which addressed different proper-
ties of DP morphology. The Number of Activity Complexes was included, as well as the total
Activity per Cycle. Detection of dominant deflections within active segments was addressed
by the Peak-Centroid Distance and the feature Baseline 2. Also the LAW µ was included.

Clinical application Both the activity annotation algorithms and the resulting DP classifier
were included into the analysis workflow for clinical AFlut data. After processing, an atrial
map was generated that indicated the regions in which DPs were detected. Figure 11.16
shows the processing result of an example dataset. The LAT map indicated a line of block on
the anterior wall, delaying activation between the inferior and superior aspect. This coincides
with the DP map, which indicated the presence of a conduction block at the very same
location.
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(a) LATmap. (b)Double potential map.
Figure 11.16: Demonstration of a DPmap and its relation to the cardiac excitation pattern. The LATmap
indicated a delay in activation between the inferior and the superior part of the anterior wall (a). This was
in agreement with the DPmap, which indicated the presence of a conduction block at this location (b).

11.2 Measures Based onMultichannel Information
While the analysis of individual EGMs provides information about the local excitation, the
combined analysis of multiple channels allows to assess the spatio-temporal excitation pattern.
Assuming a stable pattern of excitation, both simultaneously measured electrograms and
synchronized data from sequential mapping can be taken into account for these techniques.
All of the following techniques presume stable excitation patterns as observed during AFlut.
For dynamically changing excitation processes like AFib, statistical analysis techniques may
be preferable (compare Chapters 12 and 13).

11.2.1 VirtualMapping of Atrial Activity during Sustained
Flutter

In order to quantify the atrial activity and relate it to the depolarizing myocardium, simulated
scenarios from the database outlined in Table 10.3 were virtually mapped. Therefore a total
of 1000 and 1500 measurement points were acquired from the RA and LA, respectively.
These were drawn randomly from all vertices in the respective atrium. As the fast-marching
simulator (FaMaS) directly provided the LATs at each vertex, no electrogram preprocessing
like detection or annotation of the activitiy was required. Instead, activity was centrally
inserted on the LATs with a Normal distributed duration N(20ms,4ms).

The spatial information of virtual measurement points and their activity were rearranged
into the format used for the processing of clinical atrial flutter data. Coverage maps and
interpolation matrices were computed as outlined in Chapters 6.3 and 8.4, respectively.

LAT maps were computed in order to visualize the cardiac excitation pattern. Therefore
one vertex located at the central posterior mitral valve annulus was chosen to represent the ref-
erence CS recording. The first activation in the CS lead after two seconds of simulated AFlut
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was chosen as reference time, corresponding to the synchronization process in clinical data.
The cycle length was automatically detected by inspecting the preceeding and subsequent
LAT of the reference channel. The LAT map of the mapped tachycardia was then constructed
based on the the LATs of all virtual electrodes within one BCL centered at the reference CS
activation. It was interpolated to the endocardial shell using the Nearest-Neighbor-Technique.

Three demonstrative cases were chosen from the database depicted in Table 10.3 for
exemplary analysis and will be discussed in the following. These covered all three major
excitation patterns, being a macroreentry around the mitral valve (sc12), a focal source
at the anterior RSPV ostium (sc40) and a scar-related microreentry at the postrior LIPV
isolation (sc21).

11.2.2 Mapping of the Atrial Cycle
A first indicator for the nature of the underlying tachycardia mechanism is given by the
amount of cycle length which can be annotated when all recorded signals are assessed in
conjunction. Reentry is typically suspected as mechanism for atrial flutter if activation times
for at least 85 % of the BCL can be successfully mapped [225]. For each moment of the
covered time, accordingly, an EGM can be found somewhere in the atrium which exhibits
activity and whose LAT can be annotated. Inversely, no activity can be detected for less than
15% of the cycle length. Given a sufficiently high-density of intracardiac measurements,
the atrium is suspected to be in rest during this inactive time, excluding the presence of a
reentrant source and endorsing a truly focal source. The coverage of macroreentry activation
was shown to be about 95.9±4.3% (range 90 % to 100 %) in clinical mapping studies [188].
This is one important indicator that can be assessed when all recorded electrograms are
analyzed jointly.

The buffer of 15% is frequently applied since some endocardial aspects of the flutter
cycle may not be reachable during mapping, or the flutter may propagate on the epicardial
aspect of the atrium. Thus the excitation wave cannot be observed at these locations and
no LAT can be annoted. In addition, also highly fractionated potentials are assigned just
one LAT value, despite the fact that they may cover significant parts of the cycle length.
Studies have shown prolonged activation at the critical isthmus lasting mean durations of
200±80 ms, with individual potentials having duration of 360 ms (mean 200±80 msec) [195].
This demonstrated a situation in which the annotation of LAT will not lead to optimal results.
Instead, an activity based approach is suggested in the following.

In order to quantify the mapped cycle length and relate it to the depolarizing myocardium,
the activity of each virtual electrode was mapped onto the surrounding atrial surface as
surrogate for the amount of depolarizing tissue. This was done for each sample, resulting
in a time-continuous course of the amount of active tissue for each individual atrium. By
dividing this value through the total amount of covered atrial surface, the relative amount of
active tissue was determined. It was low-pass filtered with a cut-off frequency of 2 Hz to
ensure a smooth course.
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From a theoretical point of view, two important findings could be derived from these
measures. First, they allow to comment on the mapped cycle length. The time in which the
relative amount of active tissue is non-zero indicates observed and ongoing depolarization.
This allows to separate between macro reentrant activites (> 85 % of the cycle mapped) and
non-reentrant mechanisms or passively activated atria. Second, the presence of a critical
isthmus can be assessed. If the amount of depolarizing tissue is very little at some point in
time, this most likely indicates the passing through of a critical isthmus.

In the following, this is demonstrated using three simulated scenarios of tachycardias
(see Figures 11.17 to 11.19). For each example, LAT maps are depicted at the top, indicating
the excitation pattern seen from anterior (a) and posterior (b). The relative amount of active
tissue is plotted underneath (c), for each atrium individually. Its time-continuous value is
plotted for a duration of 1 s. During this time, a repetitive pattern can be observed in the
amount of active tissue. The cycle used to generate the LAT map is indicated by green and
red lines, respectively, and shown together with the colorbar. This allows to relate the relative
amount of active tissue and the propagation pattern seen in the LAT map. For a statistical
overview, please see Table 11.7.

The analysis of simulated scenario sc12 is depicted in Figure 11.17. The LAT map
indicated a counter-clockwise perimitral flutter in the LA. The relative amount of active
tissue in the RA varied between 0 % and 30.2 %, with a total of 67.0 % of BCL showing
activity. The time of RA activation coincided with the LATs colored in yellow, green and
cyan, which matched the propagation pattern visualized in the LAT map. For the LA, 100 %
of BCL could be mapped, with instantaneous values ranging from 2.8 % to 11.2 %. This
corresponds to an active area of 3.3 cm2. This was in agreement with the expected finding
that activity would be present in the LA during the complete cycle length of the macro
reentrant mechanism. The RA showed passive activation only.

Focal activity originating from the anterior RSPV is simulated in sc40. For none of the
atria, the cycle could be covered to 100%. More precisely, for 15% of the BCL no active
tissue was found, indicating complete depolarization of both atria and thus excluding a
reentrant mechanism. This is in agreement with the absence of blue colored regions in the
LAT map.

A scar related micro reentrant flutter form is shown in Figure 11.19. The LAT map
indicated an excitation pattern originating from the postrior LIPV ostium. Qualitative
inspection of right and left atrial relative activity indicated that most of the atrial tissue
depolarized during the second half of the cycle length, being in agreement with the dominance
of green and blue areas in the LAT map. Quantitatively, the relative activity in the RA ranged
from 0 % to 26.1 %, with a covered cycle of 52.9 %. For the LA, the relative activity ranged
from 0.3 % to 20.5 %, with 100 % coverage of the cycle length and a minimum surface area
of active tissue of 0.4 cm2. This clearly indicated the presence of a reentrant mechanism with
a critical isthmus.
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(a) LATmap in anterior view. (b) LATmap in posterior view.
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(c)Relative amount of active tissue for both atria.
Figure 11.17: Relationship between LAT and depolarizing tissue in sc12 (perimitral atrial flutter,
BCL 177ms). Counter-clockwise activation can be observed in the RA covered to 67.0%, LA covered to
100%.

11.2.3 Cycle Length Coverage by Area
Although the joined analysis of all recorded signals allowed to differentiate between truly
focal and reentrant based mechanisms, it did not allow to differentiate between micro and
macroreentry, respectively. Therefore a more localized analysis of cycle length coverage is
required. Clinical studies demonstrated that the complete BCL of localized micro reentries
could be covered in areas with a diameter of less than 2 cm [65] (compare also Figure 11.1).
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(a) LATmap in anterior view. (b) LATmap in posterior view.
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(c)Relative amount of active tissue for both atria.
Figure 11.18: Relationship between LAT and depolarizing tissue in sc40 (focal source at anterior RSPV,
BCL 285ms). RA covered to 74.6%, LA covered to 80.1%.

Literature values suggest the coverage of least 75% of BCL within <3cm for micro reentrant
sources [211], while macro reentrant mechanisms require a circuit diameter of >3 cm [8].

Therefore, an algorithm was developed to jointly analyze only data from neighboring
measurement points within this distance. For each vertex of the anatomy, the surrounding
region within an Euclidean distance of 1 cm was considered. The cycle length coverage
was assessed for this area by a logical OR-conjunction of the activity information over time.
As this was done with respect to all acquired data comprehensively, it allowed to detect
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(a) LATmap in anterior view. (b) LATmap in posterior view.
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(c)Relative amount of active tissue for both atria.
Figure 11.19: Relationship between LAT and depolarizing tissue in sc21 (scar related flutter at LIPV,
BCL 226ms). Most of the atrial tissue depolarized during the second half of the cycle length. The cycle
was successfully mapped for 52.9% in the RA and covered to 100% in the LA. Strong variations and very
small values for the relative activity in the LA indicated the presence of a critical isthmus.

micro reentries even if they were not covered by a catheter completely within one single
measurement.

The result of this analysis technique applied to exemplary cases of AFlut is visualized
in Figure 11.20. While no significant coverage was found in the both macro reentrant case
sc12 (maximum of 62% in LA) and for focal activity sc40 (maximum of 36% in LA), a
microreentry was detected and identified correctly in sc21 with 100% of area-based CLC.
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11.2.4 Locating Diastolic Activity
Since AFlut is a continuous process, the starting point can be set arbitrarily. For Figures 11.17,
11.18 and 11.19, the reference time was set to the CS activity. This is reflected by the green
color surrounding the CS in the LAT maps. The rest of the cycle was colored accordingly.

In the clinical environment, however, a diagnostically more valuable setting of the color
map is frequently applied. An adjustment of the window of interest is suggested, which
brings the head-meets-tail color shift (blue to red) right to the critical isthmus [188]. Based on
the concept of a mid-diastolic potential, the window of interest for LAT annotation is centered
on the P wave of the surface ECG. From an engineering point of view, this corresponds to
the time when the majority of atrial tissue depolarizes. Accordingly, the limits of the window
of interest correspond to the times at which little activity is present in the atria, coinciding
to the wave passing through the critical isthmus. In clinical practice, this can be used to
easily identify the isthmus by the color shift. Within this thesis, corresponding methods were
developed to automatically adjust the window of interest for consistent visualization and to
highlight areas suspected to be the critical isthmus.

First, the amount of covered cycle length in each atrium was evaluated. Assuming a
macro reentrant mechanism limited to one atrium, the passively activated atrium is expected
to show less cycle length coverage than the driving one. Thus the atrium showing more BCL
coverage was selected as the one harboring the perpetuating mechanism. For this atrium,
the course of the amount of active tissue was assessed in the second step, and its minimum
used to define the time of activation for the critical isthmus. All LATs were subsequently
re-referenced so that the window of interest began at the point in time at which the cardiac
activation exited the isthmus. This is equivalent to shifting the phase of the flutter circuit if
the propagation would be described in terms of angle instead of time.

The effect of this shift can be observed in Figure 11.21. While the general pattern of
excitation is in agreement with the previous visualizations in Figures 11.17, 11.18 and 11.19,
it can be noted that the activation of the inferior posterior wall is no longer located in the
middle of the cycle. Instead, the head-meets-tail transition (blue to red) is set to be as small
as possible, being much more localized and providing a potential spot for ablation.

In order to make the identification of the location of the isthmus easier, an approach
was developed which highlights areas that exhibit activity during the time in which most
of the atrial mycardium is at rest. Therefore all electrodes of one atrium were inspected
individually. For each electrode, the time of the cycle was analyzed in which the electrode
showed activity. The relative amount of active tissue was extracted within this time and
subsequently its 0.1-quantile determined, reducing the effect of erroneous annotation.

Considering an electrogram that showed activity while huge parts of the atrium depolarize,
the corresponding values for the relative amount of active tissue were found to be in the
order of 0.1 (compare Figure 11.19). For an electrode which measured activity while the
remaining mycardium was already depolarized, the values ranged in the order of 0.03. This
only changed slightly by application of the quantile operation.
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The results are visualized in Figure 11.22. For each scenario, different locations can be
identified as possible candidates for the isthmus. These always comprised the true locations,
being the lateral left atrial appendage (LAA) area in sc12, the anterior RSPV in sc40 and
the posterior RSPV ostium in sc21. However, additional areas like the lateral right atrial
appendage could be identified. This could be explained by the fact that these were the latest
depolarizing areas of the RA. Since the presented algorithm did not consider causality, it
could not distinguish between the active areas causing subsequent depolarization and those
just being activated last.
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(a)CLC coverage by area sc12 (AP). (b)CLC coverage by area sc12 (PA).

(c)CLC coverage by area sc40 (AP). (d)CLC coverage by area sc40 (PA).

(e)CLC coverage by area sc21 (AP). (f)CLC coverage by area sc21 (PA).
Figure 11.20: Area based cycle length coverage of sustained flutter. The local CLCwas computed for
an areawith radius of 1 cm. Formacro reentrant scenarios (sc12), themaximal values for cycle length
coverage were about 62% and could be found in regions of wavefront collision. For the focal source, CLC
was below 40% (sc40). For themicro reentrant tachycardia, however, values of 100%were observed.
Their location was in agreement with the position of the driving circuit at the posterior LIPV ostium
(sc21).
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(a) LATmap sc12 (AP). (b) LATmap sc12 (PA).

(c) LATmap sc40 (AP). (d) LATmap sc40 (PA).

(e) LATmap sc21 (AP). (f) LATmap sc21 (PA).
Figure 11.21: Normalization of LAT maps to start at the diastolic isthmus. After the time of diastolic
activity was detected, all LATs were re-referenced so that the beginning of the window of interested
coincided with the time of exit of activation from the isthmus. By this, the spatial extension of the
head-meets-tail phenomenonwas strongly reduced (compare sc12 in Figure 11.17).
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(a)Diastolic activity sc12 (AP). (b)Diastolic activity sc12 (PA).

(c)Diastolic activity sc40 (AP). (d)Diastolic activity sc40 (PA).

(e)Diastolic activity sc21 (AP). (f)Diastolic activity sc21 (PA).
Figure 11.22: Diastolic activity during atrial flutter. Red areas highlight potential ablation targets and
always comprised the true driver. Additional areas were annotated as causality was not considered.
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11.2.5 Conclusion
The mulitchannel analysis techniques demonstrated in the previous chapters were applied to
the complete database of simulated AFlut cases from Table 10.3. The results of quantitative
analysis are summarized in Table 11.7. For each scenario, the type of mechanism and the
harboring atrium is given. Considering the global CLC as addressed in Chapter 11.2.2, both
the total value as well as the values for each individual atrium are given. In the fourth column,
the range of active tissue over time is given for each atrium as relative value. It is followed
by the maximum CLC which was achieved in each atrium using the area-based approach
depicted in Chapter 11.2.3. The minimal areas of active surface during one cycle for each
atrium are listed in the last column.

Several aspects are of interest. First, the global CLC which was computed by considering
all measurements from both atria reached 100% for all re-entrant mechanisms, while it
reached only 85% for focal mechanisms (sc40 to sc43). This was in agreement with clinical
observations that reentry should be considered as driver if at least 85% of BCL can be
mapped [225].

Second, the complete coverage was achieved only in the atrium which harbored the
driver. The global CLC reached 100% for the RA measurement locations in sc10 and sc11,
both being right atrial tachycardias. In all other reentrant forms, the cycle was covered in the
LA.

Third, the area-based CLC allowed to differentiate between macro- and micro-reentrant
mechanisms. Although complete mapping of the cycle was achieved for all types of reentrant
drivers, only the micro-reentrant types sc20-sc23 and sc50-sc54 exhibited complete local
coverage within a field of diameter 2 cm. This was in agreement with literature values [211].

In agreement with all previous statements, the minimum of active surface area over time
was found to be 0.0% for all atria in which no reentrant source was simulated. For all macro-
reentrant mechanisms (sc10-sc13, sc30-sc32), the amount of active surface area exceeded
3cm2 for any instance throughout the measurement, making the presence of an isthmus less
likely. For most of the scar-related micro-reentrant scenarios sc20-sc23, however, the active
surface area was found to be as small as 0.7 cm2.

Concluding, it can be stated that all algorithms were able to extract diagnostically relevant
parameters from the simulations which met the clinically expected values. Therefore the
resulting workflow will be applied to clinical data in Chapter 18.

In addition to the above mentioned methods, further parameters of excitation could be
considered to further support diagnosis. For example, conduction velocity could be assessed
to identify zones of slow conduction. Various techniques were suggested for this task, like the
Cosine Fit algorithm [161], and are well described in literature [226]. Parameters quantifying
EGM complexity like approximate entropy [227] may also be of help to identify zones of
dissociation or complex conduction.
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ID Mechanism Global CLC
value [%]
RA / LA
total

Active tissue
range [%]

RA
LA

Area based
max CLC [%]

RA / LA
Active surface
min area [cm2]

RA / LA

sc10 Macro
in RA

100 / 88
100

4.3 - 19
0.0 - 13

88 / 39 5.8 / 0.0
sc11 Macro

in RA
100 / 71

100
4.6 - 21
0.0 - 18

63 / 37 6.2 / 0.0
sc12 Macro

in LA
67 / 100

100
0.0 - 30
2.8 - 11

32 / 62 0.0 / 3.3
sc13 Macro

in LA
72 / 100

100
0.0 - 25
4.0 - 12

37 / 60 0.0 / 4.8

sc20 Micro
in LA

68 / 100
100

0.0 - 34
1.3 - 26

35 / 100 0.0 / 1.6
sc21 Micro

in LA
53 / 100

100
0.0 - 26
0.3 - 21

27 / 100 0.0 / 0.4
sc22 Micro

in LA
65 / 100

100
0.0 - 24
0.5 - 15

33 / 100 0.0 / 0.6
sc23 Micro

in LA
77 / 100

100
0.0 - 23
0.6 - 16

34 / 100 0.0 / 0.7

sc30 Macro
in LA

91 / 100
100

0.0 - 17
2.5 - 9

35 / 36 0.0 / 3.1
sc31 Macro

in LA
78 / 100

100
0.0 - 21
3.0 - 11

39 / 39 0.0 / 3.6
sc32 Macro

in LA
91 / 100

100
0.0 - 17
2.8 - 10

37 / 48 0.0 / 3.4

sc40 Focal
in LA

75 / 80
85

0.0 - 16
0.0 - 13

29 / 36 0.0 / 0.0
sc41 Focal

in LA
51 / 53

70
0.0 - 33
0.0 - 22

27 / 28 0.0 / 0.0
sc42 Focal

in LA
46 / 43

59
0.0 - 28
0.0 - 19

20 / 20 0.0 / 0.0
sc43 Focal

in LA
45 / 42

63
0.0 - 33
0.0 - 24

21 / 21 0.0 / 0.0

sc50 Micro
in LA

66 / 100
100

0.0 - 30
0.4 - 16

36 / 100 0.0 / 0.4
sc51 Micro

in LA
74 / 100

100
0.0 - 21
0.2 - 16

38 / 100 0.0 / 0.3
sc52 Micro

in LA
84 / 100

100
0.0 - 21
2.3 - 15

51 / 100 0.0 / 2.8
sc53 Micro

in LA
88 / 100

100
0.0 - 25
2.0 - 15

48 / 100 0.0 / 2.4
sc54 Micro

in LA
92 / 100

100
0.0 - 22
2.2 - 13

52 / 100 0.0 / 2.7
Table 11.7: Flutter scenarios with results of automated analysis. See text for detailed discussion. For
details about each scenario, see Table 10.3.





CHAPTER12
Analysis of Continuous Excitation

during Fibrillation
Major challenges in the development of algorithms for the analysis of electrograms (EGMs)
recorded during atrial fibrillation (AFib) are posed by the dynamic changes of the observed
process over time. Although dominant mechanisms may perpetuate the arrhythmia, signals
recorded by individual electrodes frequently exhibit a pseudo random behavior. To account
for this, several statistics-based approaches were implemented and utilized during the pre-
sented research. As described in Chapter 12.1, a fuzzy-decision-tree was applied to classify
complex fractionated atrial electrograms (CFAE) based on their morphology. Differentiation
between different types of activation patterns was addressed with a support vector machine
(SVM) as outlined in Chapter 12.2. Modeling the excitation dynamics directly was central
aspect of the research presented in Chapter 12.3.

12.1 Classification of CFAE Signals
Ablation of CFAE has been suggested as additional treatment strategy with favorable success
rates [56]. Therefore, this approach is frequently applied after isolation of the PVs in patients
with persistent AFib. Only two algorithms for the automatic identification of CFAE are
implemented in current electroanatomical mapping system (EAMS), and the need for manual
and thus subjective parameter setting is one drawback of these algorithms. In addition, they
only assess single EGM characteristics which may or may not relate to clinical experience
from different centers. Consequently, interpretation of studies addressing the effect of CFAE
based substrate ablation is difficult [6, 7]. Several groups have started work on the automatic
and reliable identification of potential ablation targets [201, 228–234].

In previous research, a new algorithm for CFAE annotation was developed and pub-
lished [208]. Morphology of the EGMs was assessed by 18 descriptors, which were jointly
analyzed by a fuzzy-decision-tree. This classifier was trained by annotated EGMs, allowing
to respect different levels of electrogram complexity. This approach was considered to more
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realistically reflect clinical assessment of potential ablation targets. It will be outlined in the
following and compared to clinical criteria in Chapter 19.

Classes of fractionated electrograms Studies have shown that the result of automatic
annotation with the conventional algorithms do not always concur with clinical perspec-
tive [91]. To be of real help for physicians, however, resembling their judgment is required.
Based on this clinical experience, four different classes of CFAE were defined. Class 0 was
defined as being non-fractionated with high activation frequency. Fractionated EGMs with
periodic activity were labeled class 1. If a mixture of both fractionated and discrete activities
was observed, the signal was annotated class 2. Class 3 represented CFAE with continuous
activity. Corresponding EGMs are plotted in Figure 12.1 and exhibit an increasing degree of
complexity.

0 0.5 1 1.5 2

Time [sec]

Class 3

Class 2

Class 1

Class 0

Figure 12.1: EGMs representing different classes of CFAE signals. Classes 0 to 3 indicate an increasing
degree of complexity, ranging from period discrete activity to continuously fractionated EGMs.

Classification using the fuzzy-decision-tree A database of 605 EGMs from 11 differ-
ent patients was compiled for learning and benchmarking. All underwent catheter ablation for
AFib at Städtisches Klinikum Karlsruhe and provided written informed consent. Each signal
was 5 s long and sampled at 1200 Hz. All EGMs were annotated independently by two ex-
perts from different centers according to the criteria outlined above. The annotation matched
in 429 signals, providing the training data for the fuzzy decision tree (FDT). This data base
has meanwhile also been used by other groups in research on CFAE complexity [227, 234].

Aiming for classification, a total of 18 features was subsequently computed to describe
the morphology of each signal. Features were selected to describe the time domain behavior
(e.g. length of activation complexes, mean number of local maxima per active segment, ... ) as
well as frequency information (e.g. wavelet decomposition). Also similarity-based measures
and amplitude statistics were included (see [208] for details).

Subsequently, a FDT was implemented, validated and benchmarked to distinguish be-
tween these CFAE classes. This type of classifier was chosen as it provided a measure for
certainty for each annotation and the fuzzy zones were expected to account for a potential
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overlap between different CFAE types. Using 10x5 cross validation, an average correct rate
of 81±3% was achieved. It has been applied during the presented research in region specific
study of fractionation as described in Chapter 19.

12.2 Classification of Cardiac Excitation Patterns
The fuzzy decision tree outlined in Chapter 12.1 was designed to determine potential ablation
targets for substrate modification. Therefore, the complete EGM of duration 5 s was assigned
to one class. In a complementary approach, a classifier was developed to differentiate between
the most common types of excitations that could be passing the catheter. A corresponding
support vector machine was trained on simulated activation patterns and subsequently
applied to clinical data. This work was central part of a student project [168] and is currently
submitted for publication. The project was co-supervised by Markus Rottmann, who also
provided the simulated depolarization patterns.

Training data and feature definition Simulated data were used to train the classifier and
verify the suitability of the suggested features. Four common depolarization patterns were
virtually mapped to obtain a variety of excitations for training. Snapshots of transmembrane
voltage (TMV) are shown in Figure 12.2 for each pattern. Plane wave, block and ectopic
focus were simulated on a square patch of 400 voxels edge length and 0.2 mm spatial
resolution. The rotor was simulated on a more detailed geometry (1000 × 1000 voxels
with 0.1 mm isotropic edge length). The electrophysiological cell models developed by
Courtemanche and Nygren were used for simulation in acCELLerate, respectively. All
scenarios were induced by suitable stimulation protocols.

(a) Plane wave. (b)Block. (c) Focus. (d)Rotor.
Figure 12.2: Simulated excitation patterns. Four types of depolarizations were simulated and sub-
sequently mapped with virtual catheters. These represented different dominant types of excitation
patterns: Plane wave (a), line of block (b), ectopic focus (c) and rotational excitation (d).

Virtual models of three different catheter types were available for this research project,
being a circular single-loop catheter, a double loop spiral and a star-shaped catheter resem-
bling the PentaRay

TM
design. Diameter of the single-loop catheter was variable between 15

and 25 mm, and both 10 and 20 pole configurations could be defined. For the PentaRay
TM

,
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both the 4-4-4 mm equal spacing and the paired spacing of 2-6-2 mm was addressed. The
presented data was generated using a single-loop 20 pole catheter with a diameter of 25 mm.
The catheter was moved over the patches in equidistant steps and rotated between 0 and
180◦ at each position. Temporal scaling was included to evaluate the effect of conduction
velocity (CV) between 500 and 1000 mm/s. In order to reduce computational time, forward
calculation of extracellular potentials was waived. Instead, the local activation time (LAT)
for each electrode was determined based on the maximum TMV upstroke velocity of the
nearest tissue voxel. Corresponding LAT patterns over all measuring electrodes are depicted
in Figure 12.3.
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(a) Plane wave.
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(b)Block.
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(c) Focus.
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(d)Rotor.
Figure12.3: Exemplary LATpatterns for the simulated scenarios. A computational 20pole spiral catheter
was used to virtually map the excitations shown in Figure 12.2. Themaximum upstroke velocity of the
TMV (green lines) from the closest tissue voxel was detected to assign the LAT for each electrode (red
dots). Combined assessment of all electrodes exhibited specific LAT patterns for all scenarios, inspiring
the research on this approach.

Striking similarities were observed in the LAT patterns of different phenomena, when
the catheter was positioned away from the center of the mapping field. If the block scenario
was mapped, for example, but the catheter did not overlap the block line, it just saw a plane
wave passing by. This was found to cause incorrect classifications during initial evaluation.
Therefore, new subclasses were defined which more precisely described each scenario by
specifying if the catheter overlapped with the area of interest (Near) or not (Far). This lead
to following seven classes of excitation patterns: Plane, FocusFar, FocusNear, OffBlock,
OnBlock, RotorFar and RotorNear

A total of 500 realizations was generated for each class. After visual inspection of these
LAT patterns, different features were developed which could be summarized in the following
groups: Fitting features, spectral analysis of the LAT pattern, statistical values of pairs of
LATs at defined locations, cycle length coverage and baseline duration within the cycle or
LAT pattern.

An SVM with Gaussian kernel was chosen as classifier to distinguish between the
different scenarios. It was first trained with all features and benchmarked using 10-fold cross
validation. Kernel scaling parameter σ and penalty parameter C were initially set to standard
values as described in literature [235], yielding a resulting classification accuracy of 85.1%.

Subsequently, feature selection was performed. Classification accuracy of each single
feature was first assessed individually. Subsequently, canonical correlation analysis was
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used to assess redundancy in linear combination of features. Features were discarded if
they showed a predictive accuracy below 0.7 or similarity above 0.98 by the combination of
more significant features. The resulting reduced feature set was used for cross-validation and
showed increased performance of 91.9% for noise-free data.

In a last step, σ and C were optimized empirically by assessing classification performance
for all parameter combinations. The search range was set to have the best accuracy inside
the given value boundaries. The resulting classification performance resulted in 97.4%.
This proved the validity of the chosen approach and the usability of the developed features.
The chosen technique additionally allowed to obtain a posterior probability, indicating a
trustability measure for the annotation.

Application to clinical data during flutter After the classifier was successfully trained
on the simulated data, it was applied to clinical cases of different complexity. First data from
atrial flutter (AFlut) was analyzed. Clinical mapping data was available from a patient who
presented with a perimitral macro reentrant mechanism and was mapped using a 20 pole
spiral catheter. During mapping, a line of block could be observed at the anterior wall.

In measured data, LATs could not be defined based on TMV, as this value was not
acquired during mapping. Instead they were determined based on the energy of bipolar
EGMs as outlined in Chapter 8.1. Two different catheter positions were chosen to test the
classification approach. First a location at the posterior wall was analyzed, which exhibited a
depolarization pattern like a plane wave. The catheter position and the respective LAT map
are shown in Figure 12.4 (a). The normalized energy and the annotated LATs are plotted
in part (b), followed by the classification result in (c). For the latter, the relative number of
annotations is given for all seven possible subclasses. As the general shape of a plane wave
would also match to the scenarios FocusFar and OffBlock, all these reasonable scenarios
were marked in green. In contrast, the scenarios OnBlock and RotorNear were colored red,
as these could be excluded by visual inspection of the corresponding clinical LAT map. The
resulting annotation was FocusFar for about 70% of annotated waves.

Next a position directly over the block line was classified. Data and resulting annotation
are shown in Figure 12.5. Indeed, the scenario OnBlock was correctly identified in all cases.

Application to clinical data during fibrillation Finally, the classifier was applied to a
set of continuous data recorded during AFib. The EGMs were acquired with a 10 pole spiral
catheter in a 65 year old female undergoing routine catheter ablation for persistent AFib.
LATs were determined in the bipolar signals based on local energy maxima and respecting a
refractory period of 150 ms. The EGM with least noise between atrial activities was chosen
as reference channel. In this channel, the dominant frequency was computed as described in
Chapter 8.2. A window of 66% of the local cycle length was then set around the activations
in the reference channel and subsequently wavefronts were defined within this window in
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(a)Clinical map. (b)Annotated LATs.

0 % 70 % 0 % 30 % 0 % 0 % 0 %

(c)Classification outcome.
Figure 12.4: Classification of a clinical depolarization pattern of type plane wave. The LAT map at
the catheter position indicated an excitation by a planar wavefront (a). This was in agreement with
the sinusoidal shape of the LAT pattern, which is plotted on top of the instantaneous energy of each
channel (b). Pictograms indicate all possible subclasses for annotation, in which reasonable outcomes
aremarked in green. Excitations within this case weremost often classified as slightly curved plane wave
of type FocusFar (c).

(a)Clinical map. (b)Annotated LATs.

0 % 0 % 0 % 0 % 100 % 0 % 0 %

(c)Classification outcome.
Figure 12.5: Classification of a clinical depolarization pattern of type block. The catheter was placed
directly on a line of block (a). Correspondingly, EGMs showed activity in two distinct parts of the atrial
BCL (b). TheOnBlock scenario was identified clearly (c). (See Figure 12.4 for details).

all other simultaneous EGM traces. Three representative activation patterns are shown in
Figure 12.6.
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As the true excitation pattern was not known for these clinical data, it was not possible
to quantitatively assess the correctness of annotation. Qualitative assessment, however,
indicated a high presence of strongly curved or discontinuous conduction patterns. Within
14 segments of total duration 159.7 s, 738 individual excitation waves were identified. From
these, 78% were annotated as RotorNear and 21.7% labeled as OnBlock. No pattern was
classified as being plane wave.

(a)Rotor near. (b)On block. (c) Focus near.
Figure 12.6: Classification of clinical depolarization patterns during AFib. Three scenarios were selected
for demonstration, which were classified as RotorNear (a),OnBlock (b) and FocusNear (c).

Discussion and conclusion The identification of depolarization patterns during AFib
would help to better understand the underlying mechanisms and represent a major progress
in the design of patient-specific treatment strategies. Classification could very well help
to distinguish between the dominant types of excitation, allowing physicians to gain a first
impression of the observed processes.

Within this chapter, the concept of a corresponding classifier was presented. Simulated
data was used to define suitable features for discrimination between different activation
patterns and to benchmark the resulting classifier. A classification accuracy of 97.4%
confirmed the suitability of the chosen approach of using a kernel SVM.

The concept was subsequently applied to clinical cases, in which promising results were
achieved for AFlut data. Analysis of AFib EGMs, however, did not show any plane wave
but indicated a strong bias towards classes of strongly curved or discontinuous conduction.
Although the occurrence of at least some plane waves could have been expected, there was
no proof to assume that these assignments were incorrect. A more detailed differentiation
between pattern, however, would be desirable also during mapping of AFib.

Two ideas may help to explain this outcome. First, rather idealized simulations of all
scenarios were used during the learning phase. Although they did include realistic CV
and setup dimensions, and temporal jitter was added to the LATs, they did not account for
anisotropic conduction or catheter deformation / imprecise localization. This variety of
depolarization patterns could be included into future simulation setups, potentially providing
more realistic data. Second, the implemented features may have been not able to cope with
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the increased complexity of clinical scenarios. When a broader set of simulation setups is
available, a second look on the feature definition may be appropriate.

Concluding, the developed classifier very well indicated the increased complexity ob-
served during AFib. Individual wavefronts were successfully detected subsequently classified
also during AFib, providing a good proof-of-concept for this approach.

12.3 StatisticalModeling of Propagation Dynamics
Excitation dynamics during AFib can be quite complex. For treatment, however, knowledge
about the dominant excitation pattern would be of interest. Multivariate autoregressive
modeling was suggested in literature as one way to identify the underlying mechanism
during cardiac excitation. It was successfully applied to simulated and measured data
from AFlut and AFib during initial work [236]. Subsequently, this approach was extended
to sparse modeling, which allowed to incorporate the distance between measuring points
into model estimation [237]. Due to the large diameter of basket-type catheters, this was
considered a very favorable property for correct estimation of excitation patterns. The
corresponding approach for partial directed coherence (PDC) analysis was implemented
at Institute of Biomedical Engineering (IBT) within the scope of a student project [192].
Central mathematical aspects, its potentials and limitations will be outlined in the following.

Estimationof sparsemultivariatemodels for excitationdynamics Considering EGM
data with N channels, the corresponding N-dimensional multivariate signal x can be repre-
sented for each time step n as weighted sum of the m past values according to

x(n) =
m

∑
k=1

Akx(n− k)+w(n). (12.1)

The parameter matrices Ak (with k = 1, . . . ,m) describe the model behavior and are
defined by N×N weighting coefficients ai j,k. A white noise process is incorporated by w(n).

Equation 12.1 can be extended to T observations and expressed in matrix form to be [237]

X = YB+W, (12.2)
with

X = [x(m+1) · · ·x(T )]T = [x1 · · ·xN ]

W = [w(m+1) · · ·w(T )]T

B = [A1 · · ·Am]
T = [β1 ... βN ]

yn = [x(m−n+1) · · ·x(T −n)]T (12.3)

Y = [y1 · · ·ym] =

 xT (m) · · · xT (1)
...

. . .
...

xT (T −1) · · · xT (T −m)

 .
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Different methods can be used to estimate the parameters ai j,k, like the ordinary least-
squares solution as given by

B̃ = (YT Y)−1YT X. (12.4)
The Bayesian information criterion was used to determine the optimal model order m.

To introduce the sparsity in model estimation, an approach using the least absolute selection
and shrinkage operator (LASSO) was suggested, as it allowed for both parameter selection
and estimation [237]. To introduce a-priori knowledge about the distance information, an
extended weight factor was defined being

αi, j(di, j) = exp

(
1
2

d2
i, j

γ2
2

)
, γ2 > 0. (12.5)

This factor increased with larger distances di, j between electrodes i and j, fostering that the
corresponding parameters will be estimated to be zero during model estimation. Parameter
γ2 could be adjusted to the specific mapping catheter.

To assess the presence of causal coupling in frequency domain, the PDC was intro-
duced [238]. It is evaluated at a specific frequency, which is suspected to be the dominant
frequency of the observed process. The significance of detected couplings was assessed by
surrogate data testing [239]. Therefore a set of artificial surrogate time series were generated,
which lacked the coupling to be assessed. Statistical testing of the resulting data indicated
the significance of the coupling. All significant couplings were subsequently plotted into
coupling graphs for visual interpretation. This process is summarized in Figure 12.7.

Figure 12.7: Concept of coupling analysis. See text for details.
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Signal processing EGMs were preprocessed before model estimation to gain a low fre-
quency signal with pronounced fundamental frequency. Therefore the non-linear energy
operator (NLEO) was computed and subsequently low-pass filtered with a cut-off frequency
of 24 Hz. Notably, the morphology of the signal was not retained. The resulting signal was
down sampled to 100 Hz [236].

Performance assessment As the underlying excitation pattern was known in case of
simulated data, it was possible to statistically assess the performance of coupling detection.
Therefore ideal coupling graphs were generated based on the LATs measured at each
electrode. Coupling was introduced between neighboring electrodes in the direction of
excitation propagation.

Both the ideal coupling graph and the outcome of model were compared by computing
the sensitivity (defined as probability to detect truly existing couplings) and the specificity
(being the probability of rejecting a coupling which did not exist).

12.3.1 Model-based Analysis of Stable Excitation Patterns
Simulated atrial flutter To verify correct implementation in a well defined scenario,
computational AFlut was processed. A focal mechanism was chosen for analysis, originating
from the anterior right superior pulmonary vein (RSPV) (scenario sc40 from Table 10.3).
The tachycardia was simulated as described in Chapter 10.1.

Subsequently, a computational basket catheter was inserted (compare Chapter 4.2) and
simplified EGMs computed at all electrode positions (see Chapter 2.4). The tachycardia
mechanism and the resulting coupling graphs are shown in Figure 12.8. Surrogate data
testing was used to identify significant couplings. Using the simple LS algorithm achieved
a sensitivity of 0.25 and a specificity of 0.73. Using the dagLASSO yielded values of 0.21
and 0.87, respectively. Thus the approach did not detect all the couplings present the ideal
coupling graph, but successfully rejected not existing connections.

(a) LATmap. (b)Coupling graph.
Figure 12.8: Coupling during simulated AFlut. Focal activity originated from the anterior RSPV ostium
(a, scenario sc40 from the flutter database). A computational basket catheter was introduced and utilized
to acquire virtual EGMs. The resulting coupling graph was in agreement with the LAT pattern, indicating
propagation from septal to lateral along the splines (arrows in b).
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Measured atrial flutter Data from a stable tachycardia was evaluated to obtain a first
impression about clinical applicability. EGMs were recorded at the anterior wall during
perimitral flutter (see Chapter 18.4.1 for a detailed case report). The catheter was positioned
directly over an anatomical conduction block, causing a delay in activation of the inferior and
superior anterior wall. A segment with 19 bipolar traces of duration 18 s was preprocessed
and analyzed. Coupling was determined using the agLASSO and significance determined
using surrogate data testing.

Catheter position, LAT map and the resulting coupling graph are plotted in Figure 12.9.
Visual assessment of the activation pattern indicated a lateral to septal activation in the
inferior part of the anterior wall, while the superior aspect was activated in opposite direction.
This was very well represented by the couplings determined by PDC analysis. Notably, no
couplings were determined crossing the anatomical block.

(a) Position of the catheter. (b) LATmap. (c)Coupling graph.
Figure 12.9: Coupling during clinical AFlut. A 20 pole spiral catheter was positioned on a line of block
which was located at the anterior wall (a). An LATmapwas generated for one BCL, confirming that both
parts of the cycle weremapped (b). Coupling was in agreement with this observation and demonstrated
propagation of two depolarization waves in antidromic direction (c).

12.3.2 Analysis of Unstable Excitation Patterns
Analysis of simulated fibrillation The excitation patterns during AFib change dynam-
ically, complicating the identification of dominant mechanisms. To assess the effect of
unstable depolarization on coupling, a sequence of simulated AFib was analyzed. Please
refer to Chapter 17.1 for details about this scenario. It was virtually mapped using a 20 pole
spiral catheter positioned at the inferior anterior MV annulus.

First the complete sequence between 0.6 s and 5.6 s was analyzed. Resulting coupling
graphs, however, did not show a consistent pattern of activation (see Figure 12.10). Visual
inspection of the TMV during fibrillation indicated a collision of two wavefronts in the
interval from 0.6 s to 2.6 s, and a rather consistent depolarization caused by one broad
wavefront in the following interval. Therefore, the analysis time frame was split in two parts
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with each one being analyzed individually. Indeed, both coupling graphs demonstrated a
more consistent activation pattern.

(a) Interval 0.6 s - 5.6 s. (b) Interval 0.6 s - 2.6 s. (c) Interval 2.6 s - 5.6 s.
Figure 12.10: Coupling in simulated AFib. A sequence of simulated AFib was virtually mapped using
a single-loop spiral catheter with paired bipolar spacing (a). As analysis of a 5 s window produced
contradicting outcomes, itwas split into two time frameswith each showing a rather consistent activation
pattern. While two excitation waves entered the mapping field in the first interval (b), one dominant
depolarization was observed after 2.6 s (c). Red arrowsweremanually added to ease interpretation.

Clinical recording of varying rhythms In order to evaluate the effect of an unstable and
thus changing rhythm in clinical electrograms, a dataset with paced excitations was analyzed.
Data was available from a previous research project [11, 161]. It was recorded using a 10
pole circular catheter which was positioned at the central posterior wall achieving full contact.
Recorded electrograms contained 13 s of normal sinus rhythm (NSR) at about 66 beats per
minuted, followed by paced excitations from CS 7/8 with 500 ms BCL.

EGM data were analyzed in a window of duration 8 s, which was shifted from the
beginning of the dataset until it just covered paced excitations. The resulting coupling graphs
are depicted in Figure 12.11. The initial segment from 5 s to 13 s only contained NSR and
indicated a propagation originating from the upper right part of the plot. Anatomically, this
was the direction of the RSPV and thus well matched with the depolarization pattern as
expected during NSR. The coupling graph for the time span 13 s to 21 s just comprised paced
episodes and well indicated the position of CS 7/8 as origin. The two intermediate segments
(8 s to 16 s and 11 s to 19 s, respectively) were chosen to contain both types of excitations.
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This was reflected by an increased diversity of directions in the coupling graphs, being well
in agreement with the tendency to transition between both rhythms.

(a) Interval 5 s - 13 s. (b) Interval 8 s - 16 s. (c) Interval 11 s - 19 s. (d) Interval 13 s - 21 s.
Figure 12.11: Coupling during the transition fromNSR to pacing. During NSR, the source of excitation
was located towards the RSPV (a). As an increasing number of paced excitations was comprised in the
analysis window, coupling was foundmore diffuse and the dominant direction shifted towards the CS
ostium (b, c). Analysis of a segment containing only paced beats clearly pointed towards the stimulation
bipole CS 7/8.

Discussion and conclusion The challenges in identifying mechanisms for perpetuation
of AFib can largely be attributed to the dynamic alternations between different excitation
patterns. Within this chapter, a sparse modeling approach was presented to identify the
dominant depolarization type. It was already described in literature [237] but not yet available
in our institution. After implementation, the concept was applied to simulated and clinical
data of different complexity. For stable tachycardias like AFlut, the resulting coupling
graphs very well reflected the excitation pattern. This held true not only for a simple planar
activation sequence, but also for a block scenario in which bi-directional depolarization was
present.

Subsequently, the sparse modeling approach was applied to inconsistent activation
patterns, as these were expected to more realistically depict the clinical situation. Assessment
with simulated AFib indicated ambiguous results when the evaluated signals were governed
by more than one excitation pattern. This phenomenon was also observed during the analysis
of clinical data, in which two different excitation patterns were induced by pacing. Restricting
the analysis sequence to a time frame containing only one dominant pattern, the latter was
well reflected by the coupling graphs.

During mapping of clinical AFib, however, no information about the consistency of the
excitation pattern is available. Consequently it may be possible, that resulting coupling graphs
represent a combination of different patterns. Although this information could be utilized to
assess the local variety / complexity of the depolarization process, it may compromise the
possibility to uniquely identify a dominant pattern.





CHAPTER13
Assessment of Individual Excitation

Waves
Continuous intracardiac electrogram data allows to evaluate the stability of the cardiac
rhythm over several minutes. During sinus rhythm, e.g., the occurrence of extrasystoles
can be assessed. And although the depolarization during atrial fibrillation (AFib) shows
rather chaotic behavior, evidence has been found that certain phenomena can be observed
regularily in an individual patient. This comprises the mechanisms during both the initiation
of AFib [240] and its perpetuation [241].

Within this thesis, two approaches were developed to compare and cluster individual
excitations passing a catheter. First, the morphology of all electrograms was evaluated
to assess the stability of the underlying depolarization process. Second, the sequence of
activation was assessed, being the pattern of local activation times.

13.1 Simulated Excitation Patterns
In order to benchmark the following classification techniques, the procedure Pattern Com-
position was implemented to model sequences of cardiac excitation and their respective
electrograms (EGMs) on a planar patch. In addition, the fast-marching simulator (FaMaS)
was applied to simulate different excitation patterns on a realistic biatrial surface model. This
resulted in local activation times (LATs) for each vertex of the geometry, but without the
corresponding EGM. Both will be presented in the following paragraphs.

13.1.1 Pattern Composition
Plane waves and ectopic foci were simulated using the bidomain model on a patch of cardiac
tissue by Axel Loewe (10 cm x 10 cm, resolution 0.1 mm per voxel, thickness 1 voxel,
remodeled model as in [101], compare Chapter 2.4). Plane waves originated parallel to each
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side and the foci were located in each of the four corners. This resulted in a total number of
8 different excitation patterns. Single-loop spiral catheters with 20 electrodes and an equal
interelectrode spacing of 4 mm and a paired spacing of 1-4.5-1 mm were modeled to gain
realistic positions of the virtual electrodes. The unipolar electrograms (UEGMs) of each
electrode were computed as 150 ms long snippets of EGM recordings for each excitation
pattern and direction of incidence. Artifacts from the stimulation and boundary effects
were removed by blanking, assuring that the signal morphology was not affected. Two
examples for simulated excitation patterns and their respective EGM sequences are depicted
in Figure 13.1.

(a) Plane wave from left. (b) Ectopic focus from lower right.
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(c) EGMPlanewave from left.
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(d) EGMEctopic focus from lower right.
Figure 13.1: Simulated excitation patterns with corresponding EGMs. A planar wave from the left was
simulated (a) and the resulting BEGMs computed (c). Ectopic activity originating from the lower right
corner is depicted as second example (b, d). Electrodes 1 and 2 are plotted as circle and star, respectively.
Earliest EGM activity can be observed in the bipolar channels which point towards the source. Note that
both the time of incidence and themorphology of each LAWvary for different excitation patterns.

The individual snippets were concatenated to simulate virtual measurements with well-
defined properties. For each artificial measurement, both catheter type (equal vs. paired
spacing) and total duration (in seconds) could be specified. Individual excitation patterns
were added one after the other until the desired duration was reached. Therefore, first the
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type of excitation (plane / focal, direction) was drawn from a uniform distribution of all eight
initial patterns and added once to the EGM. Second, additional repetitions of each pattern
were included to reproduce transient linking of excitation waves [241]. The number of
additional repetitions was given by a realization drawn from a Poisson distribution according
to the probability function

P(k) =
λe−λ

k!
, (13.1)

with λ being the expected value. The time between individual excitations was chosen from a
uniform distribution ranging from 50 to 150 ms. This approach allowed to test the complete
processing workflow including the detection of LAWs in the EGMs.

13.1.2 Biatrial simulation of SVES
A second method was implemented to generate artificial mapping data representing the
occurrence of supraventricular extra-systoles (SVESs). Simulations were conducted using
the FaMaS and a heterogeneous anisotropic surface model [172]. They included excitations
originating in the sinus node area, as well as SVES from the left and right superior pulmonary
veins (PVs)). Paced excitations were simulated from the proximal coronary sinus (CS) region.
After the desired origin for each pattern was defined on the anatomy, individual excitations
were triggered from the 30 closest vertices. After simulation of all 120 individual cardiac
excitations was completed, LATs for each of the 13,748 vertices of the anatomy were
available.

Two catheters were simulated to gain realistic measurement positions, resembling the
shape of a PentaRay

TM
catheter located at the posterior wall of the left atrium (LA), and a

4 pole ablation / mapping catheter in high right atrium (HRA) position. The LATs corre-
sponding to the ten left and one right atrial positions were extracted from the simulations.
Representative LAT maps of the four dominant patterns are depicted in Figure 13.2, to-
gether with the electrode locations. For subsequent analysis, synthetic LAT sequences were
generated by randomly drawing the LATs from the 120 patterns according to an equal dis-
tribution. This data was used for benchmarking the developed algorithms within a student
project [183, 242].

13.2 Evaluation of ElectrogramMorphology
The morphology of activation complexes in a bipolar EGM highly depends on both tissue
properties (e.g. fibrosis, scar) and the relative orientation between measuring dipole and
progress of depolarization [90, 140]. When the physician holds the catheter at a stable
position during mapping, both catheter orientation and tissue characteristics can be assumed
steady during the measurement. Consequently, changes in the morphology of activation
complexes can be related to changes in the excitation pattern itself. The recurrence of similar
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(a) Sinus rhythm activation. (b) SVES fromRSPV.

(c) SVES from LSPV. (d) Pacing fromCS.
Figure 13.2: Biatrial excitation patterns used to benchmark the algorithms for assessing spatio-temporal
dynamics. The FaMaSwas used to generate representations of four different excitation patterns, being
NSR (a), SVES from the RSPV (b), SVES from the LSPV (c) and paced excitations from the CS (d). The
LATwas extracted at 10 LA locations, resembling the shape of a PentaRay catheter. In addition, one RA
electrode at HRAwas recorded. These positions are visualized as black circles in the images. Time of
activation is indicated in color from red to blue.

patterns allows to assess the stability of the excitation pattern [243]. Mathematical methods
to quantitatively evaluate these aspects are presented in the following sections.

13.2.1 Detection and Comparison of Local ActivationWaves
As a first step in the presented analysis, atrial activation complexes were detected in the
continuous mapping data. For each of these LAWs, the LAT was assigned using the maximum
of the non-linear energy operator (NLEO) as described in Chapter 8.1. A window of duration
90 ms was subsequently centered around each LAT and used to extract the local activity.
This resulted in a total of N LAWs in the considered bipolar channel, each having a duration
of p samples.

A measure to assess the morphological similarity between LAWs, was suggested in liter-
ature [244]. These were compared pairwise, resulting in a regularity index that represented
the organization in an EGM. In order to reduce the influence of wall contact and thus signal
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amplitude on the analysis results, it was suggested to normalize each LAW xi using its norm
to si as given by

si =
xi√

∑
p
j=1 x2

i j

. (13.2)

In order to quantify the similarity between two normalized LAWs si and s j, the distance
metric d(si,s j) of the unitary sphere was determined according to

d(si,s j) = arccos(si · s j), (13.3)

in which the arcus cosine of the scalar product of both waves was computed.
The similarity index S was defined by comparing the distance metric between two waves

to a threshold ε . The relative number of similar pairs was subsequently assessed using the
Heaviside function Φ

S(ε) =
2

N(N−1)

N

∑
i=1

N

∑
j=i+1

Φ(ε−d(si,s j)). (13.4)

Based on study data, the parameter ε was suggested as ε = π/3 [244]. This technique was
subsequently applied to determine the regularity of intracardiac recordings, in which S' 1
indicated high regularity within the signal and S' 0 chaotic patterns without repetition. This
value was combined with information about the cycle length to identify signals with high
rate and high similarity (suspected to be drivers for AFib) and signals with high rate and low
similarity (suspected to indicate critical substrates) in recent work [166, 245].

Related research utilized the cross correlation coefficient between LAWs to assess their
morphological similarity, suggesting a threshold of 0.8 to distinguish between similar and
dissimilar pairs of LAWs [243]. The boolean value was plotted in a morphology recurrence
plot for each signal, which in turn was quantitatively analyzed. The utilized features included
statistics about the relative number of recurrences and information about the number of
subsequent similar excitation patterns or those showing a comparable sequence over time.

13.2.2 Classification of Local ActivationWaves
Both similarity index and recurrence plots judge similarity based on thresholding as a
boolean value and operate on individual EGMs only. However, simultaneous multichannel
mapping data is frequently available in clinical practice, and current research has indicated
the presence of transient linking of excitation waves [241]. This has inspired the idea of a
class-based analysis of intracardiac propagation patterns, which was part of the presented
research and will be detailed in the following. In order to demonstrate and benchmark
the performance of the proposed method, a database of simulated excitation patterns was
generated using the Pattern Composition technique. Previous work in the field included
the clustering of activity in the principal component analysis (PCA) space using the first
5 principal components (PCs) and a hierarchical cluster tree [132].
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Within the scope of the presented work, the measures for similarity were first applied to
cluster LAWs that exhibit comparable morphologies within one single channel. This allowed
for easy visualization of similar activation patterns in the EGM and for assessment of the
stability of each class quantitatively. Furthermore it facilitated to draw attention on patterns
that occurred often.

First, the distance metric d was computed between each pair of LAWs based on the
correlation coefficient. Then an iterative strategy was applied to generate clusters. In each
iteration, the pair exhibiting closest similarity was processed. It was added to an existing
cluster, if either a) one of the two LAWs was already part of the cluster and the similarity
between the other LAW and all members of the cluster was below a manually set threshold
thrintra, or b) both LAWs were not yet assigned and below the threshold for an existing
cluster. Otherwise a new class was generated. This process was repeated until the best
similarity exceeded a given stop threshold thrstop.

Two exemplary results of this process are visualized in Figure 13.3. An artificial EGM
including 10 simultaneous bipolar channels of duration 40 s was generated based on the
Pattern Composition method. LATs were detected in each individual channel using the
NLEO-based approach (see Section 8.1). The correlation-based clustering was applied to the
complete signal with thresholds of thrintra = thrstop = 0.8. The resulting class-membership
of each LAW is indicated color-coded in the EGM as shown in Figure 13.3. Considering
the 2.5 s of BEGM data from channel 1, 11 LAWs were classified into two different classes.
Data from channel 2, however, were classified into three different classes, being in agreement
with visual inspection of the respective EGMs.

A comparison between the class assignments in both channels indicated, that different
excitation patterns may lead to similar activation complexes in some channels, while they
show different morphologies of LAW in other channels: While the first 6 of the depicted
excitations showed matching class labels in both channels, the LAWs 7 to 9 exhibited
deviating combinations of annotations. This information can be exploited in multichannel
analysis as will be outlined in the following chapters.

13.2.3 Quantification of the Stability of Excitation Patterns
Different measures were introduced to allow a quantitative analysis of the excitation patterns.
These were inspired by work on morphology recurrence plots [243, 246] and adapted to the
multi-class problem statement. While recurrence plots indicate the similarity of LAWs in
general, respective measures for pattern specific evaluation need to consider each class of
morphologies individually. Therefore the quantities were computed for each individual class
as follows.

First, the number of singular classes was assessed. During classification, it is possible
that only one single LAW is assigned to a class. In most cases, these single events are not
important for further analysis. To measure the occurrence of these outliers, the amount of
singular classes Cs was computed as percentage of all classes C. In addition, the relative
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(a)Channel 1.

(b)Channel 2.
Figure 13.3: Clustering of LAWs in simulated bipolar EGMs. Two channels of simultaneous EGMswere
processed individually, resulting in annotated LAWs for each EGM. The 11 consecutive activations
shown in the figure were clustered in two and three classes for channels 1 and 2, respectively. Note that
the classes were assigned for each channel individually, thus the annotation using a red background does
not imply any relation between the LAWs of channels 1 and 2.

number of LAWs which were annotated using singular classes Ns was computed. It was
based on the total number of identified LAWs N. These values provided general information
about the measured site and could be compared to the embedding dimension of recurrence
plots.

For each individual class c, the number of respective LAWs Nc was counted to indicate
its frequency of occurrence within the mapped sequence. This value can be considered as
recurrence rate RRc for each individual class. It can be expressed as

RRc =
Nc

N
(13.5)

Vertical lines in the recurrence plot are known to indicated stationarity. In the class-
based approach, this is reflected by consecutive LAWs being assigned to the same class.
Laminarity LAMc can be computed to assess the frequency in which LAWs of a specific
class appear at least vmin times subsequently. vmin was set to 2 within this work. With P(v)
indicating the probability of a series of activations within the class having length v, LAMc

can be computed as

LAMc =
∑

N
v=vmin

vP(v)
Nc

. (13.6)
Trains of similar activations can also be quantified by computing the sequence mean

length SMc and sequence standard deviation SSc of all sequences longer than vmin. The
analog to SMc is known as trapping time in recurrence plots.

Also the analysis of diagonal lines (besides the main diagonal) is of great interest in
recurrence plots, as this indicates the presence of repetitive sequences. In the class-based
approach, this would be reflected by alterations of specific class labels. Consequently, it
was of no use when computed for each individual class. Instead, alternative measures could
be used to quantify the information contained within the sequence of LAW classes. One
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example is the Shannon’s entropy H, which is computed for the sequence of LAWs according
to

H =−
C

∑
c=1

RRc · log2(RRc). (13.7)

Additionally, it is possible to compute more complex parameters for the class patterns
by considering word length or information gain as in text processing. Also time dependent
analysis could be considered to assess the alterations in rhythm over segments exceeding
30 s. All of the above mentioned parameters can also be computed to assess the properties of
a multichannel pattern as presented in the following section.

13.3 Multichannel Analysis
While the analysis of single channels only indicates the stability of the spatio-temporal
excitation pattern over time, the evaluation of multiple simultaneous channels yields the
possibility to assess the spatio-temporal pattern itself. Therefore, the LAWs detected in each
individual channel have to be combined to wavefronts passing the catheter as will be outlined
in the following section. Subsequently, activation patterns can be evaluated based on either
the preceding classification of LAW morphology or the LAT pattern in the EGMs.

13.3.1 Combination of ExcitationWavefronts
After the LATs were identified in each channel individually, they were combined in order
to construct complete wavefronts passing the catheter. An approach for the generation of
the corresponding wavefront matrix (i.e. matrix with one row for each electrode and one
column for each wavefront) was implemented as inspired by Richter [247]. It was extended
by adapting its iterative clustering strategy as outlined in the following.

The wavefront matrix was initialized with all LAT values from a first channel. Then one
channel after the other was inserted in the matrix, until all channels were processed. The
order of this iterative processing could be specified by a user-defined quality criterion. This
allowed to proceed according to the assumed quality of data (e.g. clear activations tend to
have higher amplitude), spatial considerations (neighboring channels are expected to be more
correlated than distant measurements), or other user-defined metrics.

The LATs of each processed channel were compared to the LATs of the first channel.
Starting with the smallest time difference between LATs, the new values were inserted into
an existing wavefront if their distances in time were below a given threshold thrLATtime.
Otherwise, the LATs were compared with the second already inserted channel and so on.
Consequently, LATs within one channel were processed first if they showed a good fit to
already existing values in the wavefront matrix. If the number of LATs in one channel was
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lower (e.g. block or scar) or higher (double potentials), these were inserted to appropriate
positions in the LAT matrix W:

W =


t1,1 ud ud t1,4 · · · t1,N1

t2,1 t2,2 t2,3 t2,4 t2,N2

0 0 0 0 0
· · ·
0 0 0 0 · · · 0

 (13.8)

After processing, each column of W represented one activation wavefront. If no LAT
information was available for a specific channel within one wavefront, the respective entry
was denoted as undefined (ud). Individual wavefronts could be rejected from analysis if these
wave trains were only detected in few channels, potentially being far field. If the number of
LATs within single channels was much lower than in others (e.g. due to bad electrogram
quality, high amount of noise, ...), these channels could now be excluded from subsequent
processing. Comparisons of the LAT patterns of subsequent activations is an alternative
approach to evaluate the excitation pattern [247] and could potentially be combined with the
morphological analysis as outlined above.

13.3.2 Classification of Propagation Patterns based on LAT
As outlined above, both catheter position and atrial anatomy can be considered stable,
and thus changes of the LAT pattern of the wavefront matrix reflect alterations in the
depolarization dynamics.

The degree of clustering of similar waves is strongly related to the diagnostic intention.
Having the clinical applicability in mind, this process was designed as an operator dependent
workflow. First those wavefronts were processed, for which LAT information in all chan-
nels was available. After this data was clustered and potentially annotated, the remaining
wavefronts with one or more missing LAT data were classified.

For the initial process, the LATs of all channels were centered to have zero median.
Median was used in this context to reduce the potential effects of erroneously annotated
LATs (outliers). Then the PCA was computed on all centered LAWs. The number of utilized
PCs NPC was set to explain at least 90% variance (this threshold could be changed by the
user if required). The corresponding NPC scores were used for subsequent classification.

Since the number of classes for the clustering depends on the diagnostic aims as defined
by the operator, the classification was performed in an interactive way. First, classification
was computed for a series of classes, with the initial range of cluster numbers defined by
the user (e.g. 2 to 5 classes). While a little number of classes would limit the possibility to
distinguish different excitation patterns in this context, a large number of classes does also
not seem appropriate since the dominant mechanisms should be in the focus of analysis. If a
high number of classes is really required to appropriately represent the data, the suitability
of this approach can be in doubt. The outcome was processed to generate a median LAT
map for all classes and clusters. These were shown to the user in the form of 3D LAT maps,
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projected onto the atrial anatomy. The user could inspect the properties of the individual
LAT maps and decide up to which level the usage of individual classes was reasonable. The
corresponding result was taken over as final annotation.

To demonstrate this approach, the simulated dataset described in Chapter 13.1.2 was used.
A randomized sequence of the 120 different wavefronts was compiled and subject of analysis.
The resulting dendogram plot is shown in Figure 13.4. It indicated that classification into
increasing numbers of classes strongly reduced the dissimilarity within the clusters. For up
to 4 clusters, increased performance by adding individual classes could be observed. Using
more clusters led to a further improvement, however this was rather asymptotic. Although
it would be highly desirable to automatically specify a threshold for the number of classes
based solely on the dendrogram, this would be independent from any diagnostic use and was
therefore not followed further.

0

20

40

60

80

100

120

140

160

Figure 13.4: Dendrogram plot representing the hierarchical clustering. Horizontal lines represent the
split into two new classes. The length of the vertical lines indicates the distance between both clusters.
While the dissimilarity is large for a little number of classes, classes become progressively similar for an
increasing number of clusters.

An example for clustering into varying number of classes is shown in Figure 13.5. Note
that the division into 2 classes separated NSR originating in the RA from excitations starting
in the LA. By averaging all LA excitations, a rather uniform excitation in the field of view of
the PentaRay catheter could be observed for 2 clusters. Using 4 clusters resulted in LAT maps
that closely resembled the demonstration examples of input data as depicted in Figure 13.2.
Adding a fifth cluster did not generate a new cluster with significant differences in the field
of view of the PentaRay catheter.

Different approaches can be applied to classify the PC scores, like Gaussian Mixture
Models or a hierarchical cluster tree [233]. The latter was chosen for this clustering task and
based on the furthest city block distance between the scores, since it is not a starting value
depending algorithm.

Subsequently, wavefronts with missing LAT information could be classified. The class of
each wavefront was determined by comparing its LAT pattern to the ones initially annotated.
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Figure 13.5: Representative LAT maps for different number of classes of excitation patterns. The
complete dataset with 120 excitations was subject to analysis and classified in 2 to 5 classes. Numbers in
parenthesis indicate the number of wavefronts within each class.

The root-mean-square-error between the known LATs was used as criterion for the quality of
fit, allowing to discard wavefronts which did not show a consistent activation profile. Since
the centering to zero median may have influenced the results, the optimum was searched
within a time range of -50 to +50 ms.

13.3.3 Clustering of Propagation Patterns based on LAW
Morphology

As described in Chapter 13.2, the morphology of LAWs in individual channels of EGM data
could be assessed to identify prevailing types. Although this could provide information about
the local stability of excitation patterns over time, it does not allow to draw conclusions about
the direction of depolarization itself. Therefore, multichannel information was required.

After classification was performed in the individual EGM channels, data was combined
again using the wavefront matrix. Although the exact LAT in the individual channel may
not be unambiguous during fibrillation or fractionated activity, it was considered accurately
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enough annotated to generate wavefronts. Each wavefront thus consisted of a sequence
of class labels, one present for each annotated channel. As these represented categorical
variables, the k-medoids function was applied with the Hamming distance for subsequent
clustering, addressing the number of coordinates which differ.

This method was applied to the simulated EGM already presented in Chapter 13.2.2.
After LAWs were annotated in all channels based on their morphology, the wavefront matrix
was generated. Clustering was performed for a specified value of 8 classes. The result
is depicted in Figure 13.6, in which the very same time span is shown as in Figure 13.3.
However, all 10 channels are shown this time, while only leads 5 and 9 were plotted
previously. The pattern which was detected exactly matched the initially simulated sequence
of foci and planar waves.

Figure 13.6:Multichannel clustering of LAWs based onmorphology. Considering the individual LAW
morphologies detected in all channels, the complete activation sequence was detected as initially simu-
lated.

13.4 Discussion and Conclusions
Statistical approaches are frequently applied in the analysis of cardiac activity. Especially
during AFib, classification of EGM morphology has been used to annotate potential ablation
targets [201, 228–233, 248]. However, all these techniques assess a continuous trace of
single channel EGM data with a typical duration of about 5 s.

Rationale and advantages To understand the underlying mechanisms and depolarization
pattern during AFib, an analysis of each passing wavefront is required. Subsequently,
statistics can be generated to identify the most prominent patterns and their dynamics. Using
high-density epicardial mapping data, transient linking was observed between wavefronts
during ongoing AFib. Given this rationale, trains of activations with similar direction could
be expected during mapping. Their frequency may in turn provide information about the
perpetuating mechanism.

The delineation of individual depolarizations is generally easier using electrodes of small
size. These represent also very sensitive recording dipoles and are typically mounted on
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high-density mapping catheters. As they only acquire information from a limited field of
view, however, their ability to determine the macroscopic direction of depolarization may be
more inaccurate as if panoramic mapping catheters were applied. To address both scales of
analysis, two methods were presented within the previous paragraph, one utilizing the LAT
pattern to distinguish between different types of activations (macroscopic), and one based on
the morphology of individual LAWs (microscopic).

Both methods were successfully applied on respective sets of simulated data. Measures
for quantification have been proposed in this chapter and can be used to assess the outcome
of annotation statistically. The methods will be applied to detect SVES (Chapter 16) and in
the analysis of AFib data (Chapter 20).

Limitations Despite the possible advantages and options to gain new insights into the
perpetuation of AFib, fully automatic usage of the methods is currently limited. One major
challenge is the definition of the number of clusters which should be used for classification.
Especially for the classification of SVES, variable positions of measuring electrodes do not
allow for a general fixed threshold. With respect to diagnosis, however, setting the required
level of differentiation between varying excitations was considered an advantage which
allows physicians to more precisely delineate between rhythms.

For the analysis of AFib data, however, additional research will be required to define an
optimal set of parameters for analysis. As the underlying truth is not known, physicians do
not have a point of orientation.

Especially in the presence of complex depolarization pattern, the unambiguous annotation
and generation of the wavefront matrix may be complicated. This is one aspect to consider
during the mapping of AFib.





CHAPTER14
Systems and Programs for Clinical

Application
It cannot be questioned that physicians with year-long experience in electrophysiological
examinations are experts in the diagnosis of cardiac arrhythmias. However, the amount
of electrogram data which is acquired using state-of-the-art EAM systems, poses a huge
challenge for any human expert. New algorithms were shown to be able to extract diagnosti-
cally relevant information from this mapping data. These algorithms were inspired by and
designed according to expert experience, and demonstrative examples have indicated their
general usability. However, any analysis cannot help in the treatment of a current patient if it
is performed weeks after the procedure.

One important technical limitation hampers the application of algorithms in the clinical
environment, which is that EAM systems prohibit the testing of new algorithms on the
system itself. Analysis on a second system is generally possible, it requires, however, access
to the clinical data.

Therefore it was one goal of this research project to setup a system which comprised
the complete workflow from data acquisition up to visualization of the final analysis result.
Therefore an iMac was setup up with all required software and installed in the Städtisches
Klinikum Karlsruhe. The software comprised MATLAB for data analysis, as well as Paraview
and the custom made visualization platform KaPAVIE for the visualization [146].

14.1 Requirements
Several requirements can be formulated considering both the clinicians’ and engineers’
perspectives.

Clinical requirements Some aspects have to be met by any system in the clinic. First,
these address safety issues, so that the success of the procedure is not compromised in any
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way. Second, the system has to be accepted by the physicians, which leads to additional
design considerations. Following issues were identified as important aspects:
• Compliant with safety regulations
• No disruption of the clinical procedure
• Correct and rapid processing
• Suitable visualization of results

As only already existing equipment and standard laptops were used for processing,
the first point could easily be fulfilled. Most analysis was done retrospectively after the
procedure was finished. If technical personnel was present during the procedure, it stayed in
the background so that neither the physician nor the workflow was impacted.

With respect to processing speed, discussions with physicians revealed that a time of
about 5 min for signal analysis was considered short enough to be potentially included in
a clinical routine. In terms of visualization, it should be in agreement with common data
presentation styles as much as possible. This comprises typically used values for ECG sweep
speed or familiar color scales.

Requirements from engineering perspective Also from the engineering perspective,
several requirement can be formulated which simplify subsequent data analysis:
• Standardized workflow
• Clear naming conventions
• Usage of predefined equipment and settings
• Availability of all data
• Comprehensive documentation of all procedural details and relevant events

As the initial treatment approach may be adapted during the procedure due to unexpected
events, it is generally difficult to perform exactly according to a predefined and standardized
acquisition protocol. Therefore, flexibility is required on the engineering side. Since the time
for study specific documentation during the procedure is rather limited, a debriefing with the
physician has proven reasonable. As access to the clinical data acquisition systems is limited
due to safety reasons, the availability of clinical data has been one major limitation to the
direct application of analysis routines in the clinical environment and will be discussed in
the following chapters.

14.2 Accessibility of Clinical Data
In previous work, import functions were implemented in order to read EP data from the
recording device LabSystem PRO (Boston Scientific, former BARD, USA). Furthermore,
functions were available to read data exported from the electroanatomical mapping system
(EAMS) EnSite NavX 8 (St. Jude Medical, USA). Within the scope of this research, these
existing algorithms were updated to handle data from the successor EAMS EnSite Velocity
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and optimized with respect to processing speed. In addition, algorithms were implemented to
import data from the EAM systems CARTO 3 (Biosense Webster) and Rhythmia (Boston Sci-
entific). The types of exported and thus available data for each system and the corresponding
format will be outlined in the following.

Recorder LabSystemPRO The LabSystem PRO is an EP recorder which acquires elec-
trograms from all ECG leads and intracardiac channels during the complete procedure for
documentary purposes. Events like isolation of the PVs, conduction block or termination of
the arrhythmia can be annotated in a log file, so that the corresponding traces can be easily
addressed and exported during review. Information about the atrial geometry or the position
of the electrodes, however, is neither acquired nor stored. Data of up to 1 s duration can be
exported in ASCII format on USB drive, including detailed information about name and
filter settings of each channel. This allows for an easy import of the continuous electrogram
data.

EnSite Velocity The mapping system Velocity provides the option to explicitly specify
different kinds of clinical data for export. Individual components can be selected in a dialog
and are subsequently saved into an uncompressed folder on DVD. All data is exported in
individual *.xml and *.csv files in ASCII, making them easy to read. Right and left atrial
geometries can be tagged and exported as separate models, jointly with labels and lesions as
annotated during the procedure.

Focusing on map-based data, a typical export bundle analyzed in the presented research
additionally contained information about all acquired points, like the position in space,
their projection on the anatomy, electrogram information as well as simultaneous traces of
intracardiac reference and surface ECG. For LAT maps, data for 1 s was exported as fixed
setting, while for CFE maps data of 5 s could be exported. In addition, the result of automatic
map analysis was available, given as coloring of the virtual geometry.

With respect to continuous mapping data, a time interval could be chosen for which the
following quantities were typically exported for analysis: Filtered and raw surface ECG,
unfiltered unipolar electrogram data, bipolar electrograms as filtered in the clinic, as well as
locations of all electrodes over time and the respiration curve. These data allowed to rapidly
review the interval when looking at their filtered data, and provided options for research
when different filtering or processing techniques were applied. For all data, sampling rate
was given as 2034.5 Hz.

CARTO3 The CARTO 3 EAMS allowed to export data in the form of a complete study
file. This compressed *.zip file contained individual files in ASCII format with information
about all maps acquired during the procedure. For each, the captured geometry was included,
together with catheter positions and electrogram traces for every recorded point and the
simultaneous surface ECG. The duration of recorded EGMs was 2.5 s for LAT maps and
could be adjusted for CFE maps, both recorded at 1000 Hz. Continuous mapping data,
however, could not be exported due to technical limitations.
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Within the scope of this thesis, an algorithm was developed which could read the geome-
try of acquired maps and concatenate all information from the individual point files without
uncompressing the respective study file. As the uncompressed folder was frequently about
20 GB in size, this approach proved very memory efficient. Duration of the resulting import
scaled proportional to the number of acquired points but was reduced by parallelization. It
typically lasted for about 2 min.

Rhythmia The Rhythmia mapping system also allowed to export the complete study
including screenshots and animations. As opposed to the CARTO study file, it did not
include the specific electrogram information from every point of the acquired map. However,
the sole geometry and both the continuous electrogram data and the catheter position for the
complete study were available. All data are saved in binary format, embedded in an *.xml
file.

Despite of the compression, typical sizes of study files range between 2 and 4 GB,
complicating direct import into MATLAB. Thus a three step approach was developed for the
import: First, the binary content was completely removed and replaced by an information
about the corresponding byte indices within the original file. The resulting file contained
pure xml content with less than 10 MB. Second, the xml information was evaluated, allowing
the user to explicitly choose the data to import. Third, the actual binary content was read and
converted into values according to the format specifications contained in the xml file.

Electrogram information was acquired at a sampling rate of 953.7 Hz, with positions
recorded at 20 Hz. The complete process of importing clinical patient data was in the order
of minutes.

14.3 Handling of Clinical Data
Although varying types of data were available when recording was done using different
systems, the reusability of algorithms independently from the mapping system was an
important design consideration. Therefore, the clinical data were converted into standardized
and specified formats after import. The most important data structures are outlined in this
chapter.

Atrial Geometry As outlined in Chapter 6.1, atrial anatomies were exported as closed
triangulated surface meshes from all EAMS. For processing, these were separated and saved
in two independent entries of a structure array representing the geometrical model. Using
one representing each atrium allowed to loop over both surfaces during data analysis and
processing each one individually.

In a second step, the endocard was extracted using clinical annotations or manual
interaction (compare Figure 6.1 and Chapter 6.1). The valve geometry was saved equivalently.
A table of corresponding point indices allowed to map data between both geometries.
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Mapping points which were acquired in vessels or valves were discarded at this point.
Information of the remaining positions was then used to compute the atrial coverage as
outlined in Chapter 6.3 and shown in Figure 6.3. The coverage was also used during
visualization as spatial filter to reject unreliable data.

Map-based data Data acquired during sequential mapping could be directly exported
from EnSite Velocity and CARTO 3. The resulting files contained information about the
location of each acquired point, the measuring electrode pair, the result of analysis within
the EAMS and the original electrogram information of all channels. In the original format,
surface ECG and intracardiac reference EGMs were saved for every acquired point. But
also during sequentiall mapping, multipolar catheters allow to record information from each
electrode in one simultaneous measurement. Electrogram information of these simultaneous
recordings is therefore redundant.

Thus the map-based data were rearranged aiming at two major goals. First the measure-
ments acquired from right and left atrial positions were separated so that processing could be
performed in matrix form directly in combination with the respective atrium. Second the
simultaneously measured surface ECG and intracardiac electrogram data were extracted from
the list of sequentially mapped points and added into a listing of simultaneously recorded
traces. This was memory efficient and the detection atrial rate or QRS complexes had only
to be done once.

Continuous segments of EGMs Continuous traces of electrogram data and the respective
measurement positions could be extracted from the EAMS EnSite Velocity and Rhythmia.
These data were subject of analysis using various algorithms, and therefore the utilized
format was kept application specific.

Remapping from continuous segments The export of map-based data was not possible
from the Rhythmia EAMS. In clinical practice, however, this system is currently most
frequently used for the sequential analysis of stable tachycardias. While maps with over
10,000 point ease the understanding of flutter mechanisms during the EP study, the lack of
export options for this mapping data inhibits the development of new algorithms. Therefore a
technique was developed to remap the atria based on the continuous electrogram and position
information of the Orion catheter. This project was part of a supervised bachelor thesis [141]
and is outlined briefly.

For remapping, the user first had to select the map of the desired tachycardia. The
geometry of this map was used as atrial anatomy. This information also allowed to address
the electrogram data which were recorded during the ongoing arrhythmia. For each segment
of continuous data, stable positions of the Orion catheter were detected as described in
Chapter 6.2. Both QRS complexes and CS activity were annotated as outlined in Chapters 5.2
and 8.1, respectively.

For each vertex of the endocardial geometry, the distance to each electrode in each
stable position was determined. Selection of the minimal distance led to potential electrode
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positions for remap data acquisition. A maximum distance of typically about 5 mm could be
defined to ensure sufficient proximity to the endocard. After position and electrode number
of the mapping point were identified, one snippet of roving EGM data had to be chosen
for synchronization. Therefore the amplitudes of all activities in the measured EGM were
assessed. The strongest signal which did not coincide with a ventricular contraction was
chosen and synchronized according to its CS activity. This process was performed for each
atrium if a biatrial map was generated. The analysis of the resulting mapping data will be
demonstrated in Chapter 18.

14.4 Interactive Visualization Software KaPAVIE
As described in Chapter 14.1, the appealing representation of analysis results is an important
requirement for novel algorithms to be accepted and utilized in the clinical environment.
Although MATLAB provides intensive signal processing capabilities, its possibilities for
interactive visualization are rather limited. Aiming for the final goal of applying new
analysis techniques during EP studies, a computer program was developed that allowed an
appropriate visualization of analysis results in the clinic. This system and the fundamental
design considerations were subsequently published [146].

Design Considerations When novel algorithms are designed, initially neither correct
functionality nor usefulness are verified. To allow physicians assessing these aspects, it was
found important to provide the chance to relate the analysis result and quantities they were
familiar with. Therefore, the visualization system was required to allow the simultaneous
display of surface ECG, intracardiac reference EGM and the EGM which was currently
subject to analysis. As the amplitude of electrograms could vary over orders of magnitude,
automatic normalization of amplitudes was included and could be engaged if required. The
sweep-speed of electrogram display was adjusted to values common in clinical practice.

The positions of all measurement points were indicated by small spheres on the atrial
shell. The corresponding electrogram was displayed by selecting a site by mouse-click. Both
EGM trace and the matching sphere were plotted in the same color to clarify togetherness if
multiple points were selected.

In agreement with the well-known clinical maps, the atrial surface could be colored
according to the result of automatic analysis. For time dependent processes, the respective
map could be varied over time. In combination with the selected electrogram traces, this
allowed to comprehend spatio-temporal processes.

Implementation The graphical user interface (GUI) was implemented using the Qt C++
framework (Qt version 5.3.0), which is open-source and allows cross-platform development.
The VTK C++ framework (VTK version 6.1.0) was utilized for rapid and interactive visu-
alization, including existing components for the display of data. The 3D representation of
the atrial anatomy was visualized by an existing Qt-plugin that was distributed with VTK.
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Electrograms were plotted by QCustomPlot which is an open source project licensed under
GPL. Usage of Qt and VTK assured compatibility to all common operating systems (Window,
Mac, Linux). For Macintosh OS X, KaPAVIE was bundled into an application package
which allowed easy distribution to other machines.

14.5 Clinical Application
To allow an immediate retrospective analysis, a Macintosh system (21.5 inch iMac, 2.8GHz
quad-core Intel Core i5 , Retina display, 1TB fusion drive SSD, 16GB RAM) was set up and
installed at Städtisches Klinikum Karlsruhe. Its technical specification ensured rapid and
parallelized processing.

The installed software included MATLAB for data processing and KaPAVIE for the
visualization of analysis results. Paraview was added to generate publication quality images.
Software for file compression and unarchiving was installed, as well as various developer
tools like the VTK library, MacPorts and Xcode.

Processing of clinical data was structured in a two step process, consisting of import and
analysis. For the import of new clinical data, corresponding MATLAB scripts were available
for each type of EAMS and exported electrogram data. These scripts were used to both read
the data and convert them to a standardized format as outlined in Chapter 14.3.

Data analysis itself was performed in the second step. As the format was standardized
after import, data from all EAMS could be analyzed using the same algorithms. Analysis of
atrial flutter data will be presented in the following paragraph and Chapter 18.

An application of KaPAVIE to visualize the result of a novel diagnostic algorithm is
shown in Figure 14.1. Acquired electrograms were assessed with respect to the amount
of fractionation present in the signal and classified accordingly using a fuzzy decision tree
developed during previous work [208]. The atrial regions surrounding each measured EGM
were colored accordingly. While signals located in blue and green regions could be expected
to show little fractionation, coloring in yellow or red indicated increased fractionation.
Examplary EGMs were selected from the different regions and are plotted in the EGM
display on the left hand side. This potentially diagnostically relevant information is directly
related to the atrial anatomy.



Figure 14.1: Screenshot of KaPAVIE. Reprinted from [146] with permission of the publisher.
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CHAPTER15
Analysis of Catheter Contact

15.1 OrionMini-Basket
The Orion

TM
mini-basket is a new high-density mapping catheter which is primarily used

with the Rhythmia
TM

mapping system for sequential mapping of stable tachycardias (compare
Chapters 2.3.1 and 2.3.2). For this purpose, it has proven to be a useful tool in rapid
acquisition of mapping data during sequential data collection [9, 75, 76].

In some situations, however, also the ability of simultaneous mapping is of great interest.
This can for example be required for the precise localization of critical sites in a reentrant
mechanism, or during the mapping of unstable rhythms like atrial fibrillation (AFib). In this
case, knowledge about the field of view is important to develop methods which can correctly
assess the excitation pattern.

Clinical data Although the shape of the Orion catheter already allows to deduct some hy-
potheses concerning the potential field of view, atrial geometry and catheter maneuverability
may strongly affect the achievable wall contact. Therefore a database of 25 anonymized
patient files was set up. Data from two centers were included in the study, with 15 from
Karlsruhe and 10 from Munich, respectively. Patients underwent routine ablation for atrial
tachycardias like atrial flutter (AFlut) or AFib, and inclusion in the study was independent of
age, gender, indication or procedural outcome. Electrogram data, positions of all electrodes
over time and atrial geometries were exported retrospectively from the Rhythmia system for
analysis and imported at Institute of Biomedical Engineering (IBT). If more than one atrial
map was acquired for a patient, the one with the longest available position data was selected
for analysis.

Study design The presence of wall contact for each individual electrode was defined as
an Euclidean distance from the electrode to the atrial geometry of less than 5 mm. Stable
positions of the catheter were automatically determined using the algorithm described in
Chapter 6.2. They were utilized for statistical evaluation if more than 6 electrodes were in
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contact to the atrial wall. The frequency of contact for each electrode was determined based
on the total number of catheter positions of all patients.

Due to the catheter shape, a rotational symmetry of the results was expected. In order
to get a more representative view of the actual contact pattern, the splines were circularly
shifted so that the dominant contact point was centered at the spline pair D/E. This was
achieved by determining a shift which led to a compact coverage centered between splines D
and E. An example of this procedure is visualized in Figure 15.1, next to a photograph of the
Orion catheter.

(a)Orion catheter. (b)Measured contact. (c)Contact after centering.
Figure 15.1: Effect of centering the Orion contact data. Due to the rotational symmetry of the Orion
catheter (a), the analysis of wall contact was performed before and after centering the point of contact to
the spline pair D/E. In this demonstrative example, wall contact was found for several central electrodes
on splines A, B, G and H (b, marked in yellow). Centering the contact information allowed to deduct more
detailed contact statistics as data from all stable catheter positions became comparable (c).

Results of analysis For most of the 25 subjects, data from the LA was chosen for analysis
as it was more intensively mapped than the RA. This was probably due to the increased
anatomical complexity of the LA. The duration of available position data in each patient
ranged from 9.7 min to 42.6 min (mean 23.5±10.3 min). The mean number of stable catheter
positions was 162±67.4, with a mean duration of 4.6±6.2 s.

Good contact was found for the distal electrodes D to 5 with values exceeding 49%. The
contact was nearly equally distributed over all splines, see left hand side of Figure 15.2.
Average contact frequency of the distal electrodes D of all splines was 56% and decreased
to a value of 19% for the proximal electrodes. Considering the number of electrodes
simultaneously in contact, 15, 20 and 30 electrodes were at the endocard in 80%, 67% and
40% of cases.

After mapping data was centered around the dominant contact point, it became apparent
that contact was most frequent for the two central splines D/E and electrodes 2-5, with a
resulting mean relative contact of 86.6±6.0%.

Depending on the degree of opening of the catheter, this resulted in a field of view of
about 1 cm2 with 8 simultaneous channels in a trapezoidal area.
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(a)Contact distribution asmeasured. (b)Contact distribution after centering.
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(c)Average contact for electrodes.
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(d)Average contact (centered).
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(e) Average contact for splines (mea-
sured).
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(f)Average contact (centered).

Figure 15.2:Orion contact statistics. Analysis of themeasuredOrion catheter positions (a) showed good
coverage for the distal electrodes (c) and nearly rotational symmetry over all splines (e). After rotating
themeasured contact with respect to the central spline pair, the statistical contact pattern becamemore
apparent indicating that two central splines hadmost contact (b, f). Average contact along the splines
remained unaltered (d).
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15.2 Panoramic Baskets
Panoramic baskets provide several unique options for acquisition of simultaneous mapping
data (compare Chapter 17). Clinical experience, however, has indicated potential constraints
by spline bunching [125] and limited coverage in septal regions [80]. To quantitatively assess
these issues, clinical and simulated data were evaluated as outlined in the following chapters.

15.2.1 Clinical Experience
Clinical data Electroanatomical mapping data were available from 9 patients in whom
data acquisition was performed using the Constellation

TM
basket (5 male, mean age 61±11

years) at Städtisches Klinikum Karlsruhe. All provided informed consent. Electrogram
and position information were recorded by the Velocity mapping system. A detailed atrial
anatomy was acquired using either the basket catheter or an additional circular mapping
catheter.

Four catheter positions were chosen for analysis. These were selected based on the
clinical experience that they allowed to keep the catheter stable and provided good wall
contact:

1. RA antero-lateral
2. RA central
3. LA postero-superior
4. LA lateral

Study Design 22 mapping positions were retrospectively selected from the 9 patients
and considered for statistical analysis. To reduce the influence of respiration and cardiac
movement, average locations were computed for each electrode based on their positions
100 ms prior to the ventricular contraction as indicated by the QRS complexes in the surface
ECG.

Following atrial regions were manually annotated in all subjects:
RA: lateral, posterior, septal, roof and CTI
LA: anterior, septal, posterior, roof, right PV ostium, left PV ostium

The Euclidean distance between two adjacent splines was determined for quantitative
assessment of the interspline distance. The atrial coverage was computed as outlined in
Chapter 6.3, considering electrodes closer than 10 mm to the endocardial shell. A very
conservative distance threshold of dm=10 mm was chosen for coverage analysis. The relative
coverage was determined for both the complete atrium and all individual atrial regions. A set
of example data is shown in Figure 15.3.
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(a) X-ray image. (b) EAMS screenshot. (c)Coveragemap.
Figure 15.3: Clinical example of spline bunching in a panoramic basket. Spiral, CS and basket catheter
can be seen on an X-ray image acquired during the procedure (a). Position of the basket catheter was also
visualized in the EAMSduring the intervention. Due to adaption to the cardiac anatomy, two splineswere
shifted towards theMV, leaving a huge part of the posterior wall uncovered (b). The resulting coverage
map reflected a good coverage of the anterior wall with four splines, while the remaining splines were
located at the roof (2 splines) or at theMV (2 splines). Uncovered regions aremarked in red (c).

Results In order to acquire baseline characteristics, a Constellation basket of size 60 mm
was measured ex-vivo. Mean interspline distance was determined to be 11.9±0.6 mm (distal
electrodes), 20.3±0.9 mm (equatorial plane) and 18.1±0.6 mm (proximal electrodes).

The interspline distances as measured in clinical data are summarized in Figure 15.4. RA
positions showed similar distances between all splines, indicating a rather undeformed state.
Especially the LA postero-superior position, however, exhibited large variations caused by
spline bunching.
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(a)RA central.
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(b) LA postero-superior.
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(c)RA antero-lateral.
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(d) LA lateral.
Figure 15.4: Interspline distances observed during clinical mapping. Especially the postero-superior
position in the LAwas found prone to severe spline bunching. Interspline distances of about 20mmwere
observed in nearly all positions. Spline pairs were sorted in descending order, colors indicated different
datasets.
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The result of coverage analysis is shown in Figure 15.5. Boxplots were generated from
all available mapping positions, indicating the value ranges in different patients. The length
of the green bar indicates the median coverage for each region. For RA positions, higher
coverage was determined for the antero-lateral position when compared to the central location
(53% vs. 35%). Little coverage was observed for the cavo-tricuspid isthmus (CTI) region
(<21%) and septal aspects (<37%). Considering the LA, a coverage of 47% was achieved
in the postero-superior position, which was higher as in the lateral position (40%). While
posterior and anterior areas were covered comparably well, coverage of the roof was reduced
in the more lateral position (89% vs. 50%). Both septal areas and PV antra were only
sparsely covered.
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(a)RA central (35.1%).
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(b) LA postero-superior (46.9%).
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(c)RA antero-lateral (53.2%).
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(d) LA lateral (40.1%).
Figure 15.5: Coverage achieved during clinical basket catheter mapping. Both CTI in the RA and LA
septal regions were hardly covered, being in agreement with earlier clinical observations [80]. Despite
an optimistic coverage inclusion range of 10mm around each electrode, hardly 50% of the atriumwere
covered. Values in parenthesis indicate the average total surface coverage.

15.2.2 Simulated Data
Study design Computational catheter models were implemented as outlined in Chapter 4.
Two types of electrode arrangement were chosen, resembling two commercially available
catheter designs (Constellation EA and FIRMap EA, see Chapter 4.2).

To study the relationship between catheter size, deformation and coverage, the diameter
of the computational basket was modified. In agreement with the LA size of 51 mm, catheter
diameter was increased from 40 mm to 51 mm in steps of about 1 mm. The smallest and
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largest resulting catheter shapes for each electrode arrangement are visualized in Figure 15.7,
together with the corresponding coverage.

For statistical analysis, both the interspline distance and the atrial coverage were com-
puted as outlined for the clinical data. Additionally, the Euclidean distance between elec-
trodes and the endocard was computed as surrogate measure for wall contact.

Results The resulting interspline distances, electrode-endocard distances and coverage
values are summarized in Figure 15.6 for both catheter types. A nearly equal spacing between
all splines could be observed for the smallest diameter of 40 mm. For an increasing diameter,
however, spline bunching could be observed which was reflected by huge deviations in the
interspline distance. In addition, a tendency in reduction of electrode to endocard distance
could be observed. Total coverage increased for both catheter types (Constellation EA: 40%
to 49%; FIRMap EA: 50% to 65%).
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Figure 15.6: Effect of catheter diameter on performancemeasures. The diameter of the computational
baskets was varied to study the effect on interspline distance (a,d), distance to the endocard (b,e) and
total coverage (c,f). Data for Constellation EA is plotted in the upper row, values for the FIRMap EA in the
lower row. Data indicates a tendency to pronounced spline bunching for increasing diameter. Coverage,
however, also increasedwhen bigger baskets were chosen.

The undersized and oversized catheters of each type are plotted in Figure 15.7. Uncovered
regions on both the anterior and the posterior wall could be observerd for the 61 mm diameter
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basket. As expected due to the modified electrode arrangement, an increased septal coverage
was achieved with the FIRMap EA.

Figure 15.7: Coverage for over- and undersized computational baskets. Coveragemaps were plotted for
both electrode arrangements (Constellation EA left, FIRMap EA right) in anterior (top row) and posterior
view (middle row). The pair representingminimum andmaximum simulated size is shown. Coverage is
also assessed specifically for each region (lower row). Uncovered regions are indicated in red. p: posterior;
r: roof; a: anterior; s: septal; R: right PV ostium; L: left PV ostium

15.3 Discussion and Conclusions
Local high-densitymappingwith theOrion catheter Averaged contact analysis over
all 25 patients indicated, that the wall contact during mapping was rotationally symmetric.
Thus there is no obvious preferred mapping position during clinical data acquisition.

Although the Orion is generally accepted as mini-basket, certain peculiarities can be
noted concerning its shape. First, its design is rather rigid compared to the fully flexible
arrangement of panoramic basket catheters. Second, the first 5 electrodes are arranged on a
nearly linear spline segment, after which a strong bend can be recognized (see Figure 15.1 (a)).
As the atrial anatomy has only little curvature in most areas, simultaneous contact of all
electrodes along one spline is difficult to achieve. This hypothesis was in agreement with
the result of wall contact analysis, showing that contact frequency strongly decreased past
electrode 5 on all splines.

With respect to the field of view, also the number of splines which can be in contact
simultaneously is of interest. Statistics after centering to spline pair D/E indicated, that two
splines were in contact for 70% of cases, with four splines being in contact for still 50% of
cases. As data were acquired during routine procedures focusing on sequential mapping or
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generation of the anatomy, it cannot be excluded that more simultaneous coverage could
be achieved. Nearly complete coverage was also observed in some positions within the
presented coverage study. Corresponding locations, however, were primarily located inside
the pulmonary veins (PVs) or the left atrial appendage (LAA).

Considering an interelectrode spacing of 2.5 mm, five consecutive electrodes span over
1 cm. Depending on the level of opening, the interspline distance is about 2 mm at the distal
electrodes and about 5 - 8 mm measured at the equatorial plane. Assuming the contact of
four splines and their five distal electrodes, this leads to a contact area of trapezoidal shape
with bases of 6 mm and 24 mm, and a height of 10 mm. The resulting field of view amounts
to 1.5 cm2. If additional 2 mm were considered as good measure for each boundary electrode,
the mapping field increased to 2.7 cm2, covered by 20 electrodes and thus resulting in an
average density of 7.5 electrodes per cm2.

These findings were not incorporated into algorithm development during this research.
However, they were considered as relevant finding which have to be kept in mind for the
development of future substrate mapping techniques.

Deformation of panoramic baskets Significant spline bunching could be observed in
both simulated and clinical data. The resulting increased interspline distance was frequently
determined to exceed 20 mm. This is an important finding, as studies suggest that a maximum
interspline distance of 10 mm is required for the detection of rotational sources [249].

With respect to the atrial coverage, maximum values of 53% (RA antero-lateral) and
47% (LA postero-superior) were achieved. This was in line with studies by other groups.
Considering a population of 19 patients, coverage of 43±16% was observed in the LA and
60±23% in the RA [250]. In a study focusing on electrogram characteristics near rotor sites,
merely 54±15% of LA surface were found closer than 10 mm to any basket electrode [251].

Due to the limited number of commercially available diameters, mapping with a perfectly
sized basket is rather seldom in clinical practice. Consequently, the issues of spline bunching
and limited coverage have to be considered during the development of algorithms for
panoramic basket signal analysis. As will be shown in Chapter 17, panoramic baskets offer
unique mapping possibilities. But correct interpretation of acquired data is only possible
when information about the geometrical position of electrodes and anatomy is available.





CHAPTER16
Analysis of Ectopic Activity

The concept that triggers in the pulmonary veins initiate atrial fibrillation (AFib) has led to
the consensus that pulmonary vein (PV) isolation is a cornerstone in treatment of AFib. In
this step, the PVs as such are generally electrically decoupled from the atria, so that ectopic
activity cannot propagate through the ablation line. Consequently, there is no need to exactly
localize the source of the ectopic activity.

Multiple evidence suggests, however, that also non-PV triggers can initiate atrial flutter
(AFlut) or AFib [27]. Since these triggers are located outside the isolated area, their excitation
is not confined and requires specific localization and ablation. Considering the presented
research, this has motivated the development of a patient-specific approach to evaluate the
existence and location of ectopic triggers. After testing on simulated data as demonstrated in
Chapter 13.3, the approach was applied to measured data from a well defined scenario, and
subsequently to clinical patient data.

16.1 Classification of Paced Excitations
The idea to distinguish different kinds of atrial excitations based on their LAT pattern was
first applied to clinical data recorded during pacing. In each dataset, normal sinus rhythm
(NSR) was present when pacing was turned off. Considering the paced beats as surrogates for
monomorphic supraventricular extra-systoles (SVESs), goal was subsequently to correctly
identify the paced beats during SR. This allowed to test the classification process based
on a two-class problem, in which the goal was to correctly distinguish SR activity from
intermittent SVES.

Clinical data and preprocessing steps Data were available from a previous study [11,
193]. During mapping, a spiral catheter was placed on either the anterior or the supero-
posterior wall. Best possible contact of all electrodes and stable position were assured by the
physician. Pacing from the coronary sinus was performed during NSR from either CS 3/4 or
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CS 7/8. Three datasets were chosen for analysis, in which NSR and pacing could be clearly
defined by manual annotation.

In order to generate a ground-truth for the evaluation of the classification result, manual
annotation of all data was performed. Therefore, all available channels (surface ECG,
four bipolar CS leads, nine bipolar leads from the mapping catheter) were visualized. A
consistent morphology of QRS complexes was ensured to exclude the presence of ventricular
extrasystoles. The presence of an isoelectric line on all intracardiac channels was used to
identify individual atrial complexes. The presence of a stimulation artifact in the CS leads
and subsequent capture was used to identify paced beats. The consistency of the excitation
pattern on both coronary sinus (CS) and mapping catheter was visually inspected to exclude
the presence of real SVES during NSR. Detailed patient characteristics are depicted in
table 16.1.

The clinical data were recorded using the EnSite
TM

NavX
TM

electroanatomical mapping
system (EAMS) at a sampling rate of 1200 Hz. Filtered bipolar data were available for four
leads of the CS catheter and nine channels of the mapping catheter, together with the position
in space of all measurement points and the atrial geometry.

Since visual inspection excluded the presence of high voltage artifacts (>10 mV) in the
mapping data, no channels were excluded during preprocessing. The time of individual
pacing events was automatically determined from the pacing artifact within the stimulation
channel. In order to avoid the analysis being compromised by the stimulation artifact in the
mapping channels, a time period of about 10 ms before and after the stimulus was blanked
in all mapping channels by interpolation using cubic splines.

The LAT was detected as outlined in Chapter 13.3 with a refractory period of 100 ms.
Subsequently, the wavefront matrix was generated using an inclusion time of 90 ms and a
minimum length of 2 for wave trains.

Data were recorded during a pacing protocol which included the step-wise reduction
of coupling intervals from about 500 ms to 300 ms in steps of 50 ms, with 10 stimulations
per basic cycle length (BCL). Therefore, dynamic changes were expected during the course
of pacing, representing the cycle length dependent restitution properties of the atrial tissue.
These indeed could be observed in the wavefront patterns. To focus on the differentiation
between NSR and paced excitations, only the first principal component (PC) was used for
classification. Of note, application of the common threshold of 90% explained variance was
shown to additionally distinguish between paced episodes of different BCL.

The clustering of wavefront types was performed for a fixed value of 2 clusters in
each dataset. All wavefronts were classified, including those in which LATs could not be
assigned in all channels. The resulting classes were compared to the manual annotations.
For statistical evaluation, true positives were defined as correctly identified paced beats.
Accordingly, sensitivity indicated the correct automatic annotation of manually labeled paced
beats.

Result of analysis A short segment of EGM data from patient PtW1 is shown in Fig-
ure 16.1. NSR was present for the first 13 s, after which pacing from CS 7/8 was applied with
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a BCL of 500 ms. Differences in the activation pattern can be seen between both rhythms,
with the EGM labeled OPT 5 being activated last during NSR and first during pacing.
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Figure 16.1: Electrograms recorded at the onset of pacing. The sequence of activation was different for
NSR and stimulated excitations. Stimulation artifacts were observed in all intracardiac leads. P wave
morphology differed betweenNSR and paced excitations.

The result of analysis for all patients is summarized in table 16.1. The number of
automatically detected wavefronts was in agreement with the automatic data analysis. Values
of all statistical parameters close to 1.00 indicated a good overall performance of the new
method.

Patient ID Catheter
position

Stimulation (BCL
range [ms])

LAWs annotated /
detected

SE SP PPV NPV
PtW1 post CS 3/4 (500-300) 101/101 1.00 0.93 0.99 1.00
PtW1 post CS 7/8 (500-300) 111/111 1.00 1.00 1.00 1.00
PtW2 ant CS 3/4 (600-300) 161/161 0.99 1.00 1.00 0.97

Table 16.1: Data used for clinical benchmarking. Three datasets were analyzed, each containingNSR and
paced beats. The number of manually annotated LAWs is provided together with the number of LAWs
which were automatically detected. Sensitivity (SE), specificity (SP), positive predictive value (PPV) and
negative predictive value (NPV) were computed as performance indicators. post: supero-posterior wall;
ant: anterior wall

16.2 Detection and Analysis of SVES
After the successful demonstration of the proof-of-concept, the processing scheme was
applied to clinical data from a patient in whom SVES were observed during mapping.
Related research was part of a student project [242] and subsequently published [183].
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Clinical data and preprocessing Data was available from a patient in whom biatrial
basket catheter mapping was performed for ablation of paroxysmal atrial fibrillation using
the EnSite

TM
Velocity

TM
EAMS at Städtisches Klinikum Karlsruhe. During mapping, the

patient presented in SR with intermittent SVES. A continuous segment of duration 190 s was
exported and retrospectively analyzed. It comprised unfiltered unipolar data of 126 channels
from the two basket catheters (electrodes H 3/4 of the LA basket were not connected) and
one pair of the reference channel CS 7/8. Since the ablation procedure did comprise PVI but
did not include the localization and ablation of non-PV triggers, no detailed knowledge about
the origin of the SVES was available for statistical assessment based on a clinical ground
truth.

First, bipolar electrograms were computed for the reference channel and all pairs of
basket catheter electrodes along the splines. Due to the unconnected electrodes, three
channels of the theoretical maximum of 112 were not available and thus data from 109
bipolar mapping channels were processed. The EGMs were filtered using high-pass and
low-pass of 30 Hz and 300 Hz, respectively.

QRS complexes were automatically detected as outlined in Chapter 5.2. In order to
identify channels which only contained noise or VFF and no atrial activity, data recorded
simultaneously to the QRS were blanked using cubic splines. Channels which subsequently
exhibited a bipolar amplitude < 1 mV were rejected (36 channels). In addition, high voltage
artifacts from electrodes touching each other were removed by rejecting channels with
amplitude peaks >10 mV (5 channels). Consequently, 68 channels were used for subsequent
processing.

The signal without blanking was processed for the detection of LAWs. In order to reduce
the presence of VFF prior to wavefront analysis, the PCA-based VFF removal technique was
applied (compare Chapter 7.1). Since the excitation patterns of SVES (which do not originate
from the sinus node) were expected to be different from NSR activity, the morphology of the
atrial activity was expected to be decoupled from the VFF.

The LATs in each channel were detected with a refractory period of 100 ms, resulting
in a minimum of 187 and a maximum of 595 LATs per channel. This high number was
inspected visually and revealed spurious VFF activity which was still present after filtering
and detected as LAT in channels close to the MV.

The wavefront matrix was generated including LATs up to a time difference of 150 ms to
the reference channel, allowing to comprehend the complete biatrial activation. The minimum
number of electrodes required to detect a wavefront was accordingly set to 20, excluding
spurious VFF. A total of 214 waves were automatically detected using this approach.

Classification of activationwaves All wavefronts were centered to have median 0 ms.
All wavefronts in which the LAT could be determined in all electrodes were used for
the initial classification (148 LAWs). The classification was performed as described in
Chapter 13.3, with PCs explaining over 90% of variance and 2 to 6 classes shown to the
user with the dendrogram (compare Figures 16.2 and 16.3). The first two branchings in
the dendrogram can be found at metrics of about 1800 and 1400, leading to four classes.
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Additional branchings start from 1000 and are located more close, indicating an increased
consistency of the classes to be split.

500

1000

1500

2000

Figure 16.2: Dendrogram plot representing the hierarchical clustering. Horizontal lines represent the
split into two new classes. The length of the vertical lines indicates the distance between both clusters.
While the dissimilarity is large for a little number of classes, classes become progressively similar for an
increasing number of clusters.

Resulting LAT maps are depicted in Figure 16.3. In case of 2 clusters, the LAT maps
primarily represented an excitation starting at the SN (class 2 with 136 elements), while
the second cluster contained extrasystoles (class 1 with 12 waves). For 3 clusters, 15
additional extrasystoles were separated leaving 121 NSR activations. Of note, the branch
containing NSR depolarizations was not split further for up to 6 clusters. SVES were further
distinguished when 4 clusters were used, splitting septal from lateral origin (classes 1 and 2,
respectively). Only minor changes in the LA activation sequence were observed when the
class number was increased to 6 clusters. After visual inspection, a number of 4 classes was
manually chosen for analysis.

Now the 68 remaining activation patterns were compared to all classified wavefronts
based on their RMSE and subsequently annotated. Representative LAT maps of the 4 classes
are plotted in Figure 16.4, in which all types are marked by an individual color. A short
segment of the completely annotated EGM signal is shown in Figure 16.5. The background
color is in agreement with the annotation of the representative LAT maps in Figure 16.4. Dif-
ferences between the classes can be observed in the activation sequence of the electrograms,
which are in agreement with the LAT plots: For NSR beats (class 1), earliest activity could be
observed in the RA with subsequent activation of the LA. Both shown NSR beats presented
a consistent activation pattern. The excitation at time 27.8 s showed earliest activation in the
LA and subsequent RA activation, being in agreement with the LAT map of class 4. For the
forth beat at 29.4 s of class 2, activation of RA and LA began nearly simultaneously. This
demonstrated both the congruence of electrogram pattern and LAT map, and the facilitation
of interpretation of electrogram data in the form of representative LAT maps.
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Figure 16.3: LAT maps representing the activity pattern for different amounts of clusters. Each row
represents the result of classification using two (top) to six clusters. The resulting LAT patterns for each
class are plotted in the columns, with number of waves shown in parenthesis. Manual inspection of the
clusters allowed to determine an appropriate number of individual patterns, depending on the desired
type of analysis.

In order to provide quantitative information about the frequency of SVES, the activation
sequence was evaluated with respect to the relative appearance of each pattern and its
recurrence within the analysis window. The most prominent pattern was class 3 (representing
SR activity, 61.2%), followed by class 4 (LA SVES, 26.6%), class 1 (LA SVES, 8.4%) and
class 2 (septal SVES, 3.7%). When similar patterns were considered to be one type, SVES
originating from the LA roof were observed in 35% of excitations.
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Figure 16.4: LATmaps of the resulting clusters after all 214 LAWswere annotated. The representative
LATmap for each cluster is plotted, starting with themost frequent cluster at the top left corner. Visual
interpretation allowed to distinguish between three dominant patterns: Excitations starting in the area
of the sinus node (class 3), SVES originating in the LA (classes 4 and 1), and SVES starting at the septum
(class 2). Classes 4 and 1were separated due to differences in activation on the LA posterior wall.

Excitation type Class Occurrence Consecutive activations
SR Class 3 131 (61.2%) 6.2±7.8
SVES LA Class 4 57 (26.6%) 3.2±5.9
SVES LA Class 1 18 (8.4%) 1.8±1.1
SVES septal Class 2 8 (3.7%) 1.0±0.0

Table 16.2: Statistics of SVES during biatrial basket catheter recording. A total number of 214 individual
excitations was detected during 3:10min of data acquisition. Analysis indicated four different clusters,
which represented three kinds of dominant patterns: SR (61%), SVES LA (35%) and SVES septal (4%).
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Figure 16.5: Clinical multichannel EGM with annotation of dominant excitation patterns. Biatrial
panoramic mapping data were analyzed, including 68 channels of good quality. Four prevailing types
of excitation complexes were distinguished and annotated by individual background color as defined in
Figure 16.4. Earliest activation in the EGM could be observed in the RA channels for class 3 (green), and
in the LA channels in class 4 (red). A nearly simultaneous onset of activation could be observed in both
RA and LA channels of the excitation assigned to class 2 (blue), which was in agreement with a septal
origin of the SVES.
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16.3 Discussion and Conclusions
The analysis of ectopic activity from outside the pulmonary veins is an important step in
the treatment of focal supraventricular tachycardias and paroxysmal AFib. However, the
locations of all ectopic foci have to be determined prior to ablation. Multichannel mapping
allows to acquire simultaneous data from several atrial positions. This information can be
evaluated in order to quantify the number of different excitation patterns, differentiate be-
tween monomorphic and polymorphic extrasystoles, and statistically assess their occurrence.
This can subsequently aid the remapping to precisely locate the focal source.

Corresponding data analysis required the automatic detection of each excitation wave and
the subsequent clustering of similar waves. Identification of individual depolarizations was
successfully achieved in all clinical data. The term ’similar’, however, always reflects a trade-
off between the number of waves and their applicability to statistical evaluation: Although
the best possible fit could be achieved by using an individual class for each excitation, the
huge amount of clusters with only one single element would not allow statistical evaluation.

In general, quantities like the difference between the measured LATs of each wave
and the representative cluster LATs could be considered as threshold. The selection of the
appropriate cut-off, however, reflects the level of sensitivity used to distinguish different types
of excitation patterns. Since the wavefront propagation is a complex spatio-temporal process,
the appropriate sensitivity is related to the sampling of the process as defined by the electrode
positions. Consequently, there is no optimal parameter value which can be generally applied
for clustering. Instead, the presented semi-automatic approach contains a step which requires
the user to set a reasonable patient-specific value for the number of classes. This assessment
is done by considering both the resulting LAT pattern and dendrogram of the hierarchical
cluster tree.

After the demonstration on artificial data, the method was successfully applied to clinical
data as presented in this chapter. In the first example, stimulated excitations were used as
surrogate for SVES and detected using a two class approach. Assessment of sensitivity
and specificity indicated the correct differentiation between NSR and paced beats. In the
second dataset, analysis was performed retrospectively on basket catheter data, and thus no
remapping was performed. Since some positions were not sufficiently covered during basket
mapping (compare Chapter 15.2), exact localization could not be performed and the ground
truth is not known.

The presented approach is independent from the number and type of utilized catheters
and can thus be applied in any combination. The possibility of using only CS electrograms
for the detection of different rhythms could not be assessed since no panoramic activity was
available during the local mapping described in the first section, and just one CS channel
was available during the second trial. However, multiple rhythms could show a similar
CS activation sequence, because of which the combination with a second spatially remote
reference should be considered.
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One application for this type of analysis includes rhythm monitoring, indicating the
amount, type and potential source region of extrasystoles. After clustering and annotation
of some representative excitations, new data can be acquired and automatically classified.
In addition, the capability of differentiating the type of excitation allows to reconstruct
activation maps for each individual type during complex rhythms using a mapping catheter.



CHAPTER17
Interpretation of Panoramic

Mapping Data
Usage of panoramic basket catheters has gained significant attention in the last years. This
can primarily be attributed to their ability to simultaneously acquire electrical information
from 64 distributed atrial sites and related diagnostic advances [27].

Algorithmic support to analyze this kind of data, however, is strongly limited. Two
clinical observations motivated the research which will be presented in the following. First,
the deployed basket catheter is designed highly flexible and thus adapts to the atrial wall.
This causes a shifting of the splines, leading to non-uniform spacing of the electrodes.
Although the location of the atrial shell and the catheter electrodes can be recorded using an
electroanatomical mapping system (EAMS), this information is not considered in the analysis
technique mentioned before. The author is convinced that knowledge about the recording
positions is fundamental for correct assessment of the spatio-temporal depolarization process.

Second, the amount of data recorded during basket catheter mapping is too extensive
for visual inspection. Actually, it cannot even be visualized in the clinic as the electrogram
display screens do not provide enough space. Therefore, novel analysis techniques are
a prerequisite to evaluate basket catheter mapping data. One potential topic, being the
detection of a supraventricular extra-systole (SVES), has been addressed in Chapter 16.2. In
the upcoming chapters, additional tools and considerations for the analysis of basket catheter
data will be presented.

17.1 Diagnostic Pitfalls of Spline Separation
Spline bunching was frequently observed during clinical mapping of the LA. Quantitative
analysis indicated interspline distances of more than 20 mm, making basket deformation a
potentially relevant parameter in diagnosis (see also Chapter 15.2). An in silico approach
was chosen to evaluate the effect of spline separation on the outcome of mapping. The data
and the corresponding conclusions will be presented in the following.
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Parameters of the simulation Atrial fibrillation was simulated using the anatomical
model already described in Chapter 8.4. Chronic atrial fibrillation (AFib) remodeling was
represented by an adapted variant of the Courtemanche et al. cell model [101]. Depolarization
was computed using the acCELLerate solver (see Chapter 2.4). In order to induce AFib, a
premature stimulus of diameter 5 mm was applied near the right superior pulmonary vein
(RSPV) during the vulnerable phase.

Virtual basket position The simulated AFib was mapped using a computational model of
a Constellation basket of size 60 mm in lateral position. This diameter was clearly oversized
for the atrium of size 51 mm. However, it proved very useful to demonstrate the effect of
spline separation. After the catheter shape was adapted to the cardiac anatomy, spline A was
located at the anterior MV annulus. Spline B had moved to the high anterior wall, leaving a
huge part of the anterior wall uncovered. The catheter position is visualized in Figure 17.1.

(a)Anterior view. (b) Posterior view.
Figure 17.1: Coverage of the oversized basket. While the posterior wall was coveredwell, spline bunch-
ing led to a lack of coverage at anterior wall between splines A (anterior MV annulus) and B (anterior
roof).

Signal analysis Extra cellular potentials were extracted from the simulation at all electrode
positions. The EGMs of the first 3 electrodes from splines A and B are plotted in Figure 17.2.
For each signal, the phase was determined using sinusoidal recomposition and Hilbert
transformation as described in Chapter 8.3. The phase values of the selected 6 electrodes
indicate a gradient that persisted for all shown cycles.

The phase was computed for all 64 basket catheter electrodes and will be considered
at four distinct time steps in the following. These time instances correspond to the vertical
lines plotted in Figure 17.2. A conventional 2D representation of the phase values is shown
in the left row of Figure 17.3, in which each line corresponds to one time step. As no
distance information was incorporated in this type of visualization, a rotational pattern
around electrode 2 of spline pair A/B could be seen very clearly.
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Figure 17.2: Exemplary EGMs and phase values. A gradient in activation could be observed along the
circular path A1 A2 A3 B3 B2 and B1.

In order to reflect the spatial relationships, the phase was also interpolated on the atrial
surface and plotted in 3D as outlined in Chapter 9.2. As the huge distance between electrodes
A3 and B3 becomes apparent, the gradient is not directly interpreted as rotational source.

The true propagation pattern is visualized in the two central 3D plots of Figure 17.3.
They represent the TMV extracted directly from the simulation. While the posterior wall is
excited by broad wavefronts which travel from septal to lateral, the anterior wall is excited
by three different wavefronts which collide at the central anterior wall. As this area is not
covered by any spline, the collision remains undetected and may falsely be interpreted as
rotational source.

Discussion and conclusion Analysis of panoramic mapping data using common electro-
gram visualization is very demanding, as the simultaneous visual assessment of 56 bipolar
leads is overwhelming. Grasping the spatio-temporal relationships is even more complex.
Therefore different techniques have been particularly designed for this kind of mapping data.
Already in 1999, a sphere-like 3D representation of the catheter was introduced to visualize
basket catheter data [252]. The most widely spread illustration used today, however, is a
grid-like 2D plane [27]. For this display, splines and electrodes are arranged in an equally
spaced matrix, enticing the observer to assume an isotropic distribution of measurement
points inside the cardiac chamber. As demonstrated above, visualization of non-uniformly
sampled data on this equidistant grid represents a potential pitfall during diagnosis.

Visualization on the anatomical shell retains the spatio-temporal relationships and allows
to assess the excitation process more objectively. This is especially advantageous when the
assumption of equal spacing between measurement points is not fulfilled.

The example outlined above should be regarded as a concrete case in which the spline
separation was demonstrated to be diagnostically relevant in case of an oversized basket.
In order to quantitatively assess this effect, multiple mapping positions, catheter size, atrial
anatomies and fibrillation processes should be evaluated. This has not been done within
the presented research. However, this example strongly emphasizes two aspects. First, the
real position of measuring points should be incorporated in the analysis of spatio-temporal
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Figure 17.3: Cardiac excitation represented by TMV and phase maps in 2D and 3D. After the phase
values were determined for each of the 64 electrodes, data for four distinct time steps (rows, indicated
by vertical lines in Figure 17.2) were plotted in the common 2D representation (left column). Phase
values were also visualized on the 3D atrial geometry (2nd and 5th column). In this representation, the
spatial relationships aremaintained, and the large distance between splines A and B becomes apparent.
The TMV as given in the simulation shows that a collision of three wavefronts took place at the anterior
wall, and no rotational activity was present (columns 3 and 4).

processes. Second, assumptions about the required mapping density for the observed process
should be formulated for signal processing algorithms. Compliance with the resulting
sampling density should be assured during data acquisition.

17.2 Pwave Analysis
Long-term Holter ECG recordings are a valuable tool for monitoring cardiac activity. Be-
sides the detection of arrhythmia episodes, they can also be used to assess the effects of
pharmacological treatment. As annotation of the individual components in the ECG is
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both tedious and operator dependent, algorithms for the automatic delineation of different
waves are important instruments. Benchmarking of novel methods is complicated, however,
as the cardiac activation sequence is not known and thus the algorithms are developed to
approximate best previous manual annotations.

With respect to this issue, panoramic mapping offers the unique possibility to acquire
comprehensive information about each single atrial depolarization. Considering simple
processes like sinus rhythm or typical atrial flutter (AFlut), basket catheters are very well
suited to understand the endocardial excitation pattern [80, 82, 126]. Within the presented
research, data was prepared which in turn was used to develop and benchmark a novel
algorithm for the delineation of the P wave. The resulting ECG analysis technique was
subsequently published with Gustavo Lenis [135].

Clinical data Simultaneous ECG and EGM recordings were available from a 54 year
old female patient who was subject of routine catheter ablation for paroxysmal AFib at
Städtisches Klinikum Karlsruhe and provided informed consent. Simultaneous biatrial
mapping was performed using the Constellation basket in combination with the Velocity
EAMS. Data were exported from an intermittent episode of normal sinus rhythm (NSR).
This segment was 33 s long and contained 32 P waves. Available data comprised a 12 lead
ECG and the positions and EGMs of 128 electrodes (126 leads from the baskets, 2 leads
of coronary sinus (CS) reference). The right atrial basket was positioned to achieve high
coverage of the posterior SVC ostium, being the area in which the sinus node was located.

The position of both baskets is depicted in Figure 17.4, together with a short segment of
synchronous EGM and ECG recordings. All recordings from the right and left atrium were
colored in green and blue, respectively. This allowed to easily relate EGMs and recording
positions. Bipolar EGMs were analyzed in this study to reduce the effect of far fields.

Outcome and conclusion Within this research project, a new wavelet based approach
was developed to delineate the P wave in the surface ECG. The performance of 10 different
wavelets was assessed, also considering different levels of wavelet decomposition. First, the
validity of the proposed method was confirmed using synthetic data. Amplitude, shape and
the amount of noise was hereby varied to obtain representative results. Then the delineation
performance was assessed by comparing the atrial activity as seen in the intracardiac mapping
and the result of automatic annotation. The ground truth for the beginning of the P wave
was defined as the earliest point in time at which activity was detected in the EGMs of at
least three electrodes. Best results were obtained for the reverse biorthogonal wavelet 3.3
(mean accuracy of 1.95±5.61 ms), which was subsequently applied to the QT database from
PhysioNet. Overall performance showed an accuracy of -0.27±12.2 ms for annotation of the
P wave onset in 3194 ECGs.

This work is a neat demonstration of the joint analysis of intracardiac mapping data and
surface ECG during algorithm development. As the basket catheters were positioned directly
at the source, averaging effects as on the torso were strongly reduced. The panoramic baskets
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(a)Catheter position (LAO). (b)Catheter position (RAO).
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(c) Intracardiac EGMs of both basket catheters.
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(d) Surface ECG (lead II).
Figure 17.4: Pwave analysis using basket catheters. Intracardiac EGMswere recorded during simultane-
ous biatrial mapping of sinus rhythm. Data from the RA is shown in green, while LA information is plotted
in blue. The BEGM traces clearly demonstrate that the RAwas depolarized before the LA. Vertical lines
indicate the beginning of the Pwave. Analysis of both BEGM and surface ECG data allowed to assess the
performance of new algorithms for Pwave delineation [135].

provided simultaneous view on the endocardial wall, helping to directly relate intracardiac
EGMs and P wave.

17.3 Mapping of Atrial Flutter
Although the interspline distance of panoramic basket catheters may be too large to ade-
quately sample complex depolarization patterns like during AFib, it may be sufficient to
comprehend more simple rhythms like AFlut.

Clinical data After multiple catheter ablations for AFib, a 54 year old male patient pre-
sented with persistent atypical AFlut at Städtisches Klinikum Karlsruhe. A stable BCL
of 253 ms was measured with distal to proximal CS activation and considered indicative
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for a reentrant mechanism. The EP study was performed with the Velocity EAMS. After
acquisition of the atrial anatomy using a 10 pole circular catheter, a 60 mm Constellation
basket catheter was introduced to acquire an LAT map as single shot technique. Although
the basket position allowed good coverage of roof and anterior wall, it was not possible to
acquire activity for the complete cycle. Therefore detailed data from the sequential mapping
with the spiral catheter was evaluated in addition.

Level of detail in panoramic and sequential mapping Data from both the single shot
panoramic approach and the sequential mapping was analyzed retrospectively. EGMs which
only contained noise (bipolar voltage <0.1ṁV) and those recorded inside the vessels were
rejected. Thus a total of 40 and 158 points was evaluated from basket and sequential
mapping, respectively (compare Chapter 6.3). As depicted in the comparative arrangement
in Figure 17.5, limited septal coverage could be observed when mapping was performed with
the panoramic basket. The septal to lateral arrangement of electrodes along the splines could
be seen clearly. Data from all atrial structures were acquired during sequential mapping. For
both datasets, interpolation threshold dm was set to 10 mm.

(a) Panoramic mapping (AP). (b) Panoramic mapping (PA).

(c) Sequential mapping (AP). (d) Sequential mapping (PA).
Figure 17.5: Coverage in simultaneous and sequentialmapping. Positions of the acquired pointsmatched
well with the electrode arrangement of a Constellation basket introduced via transseptal puncture.
As splines accumulated at the roof and MV, the interior-septal part of the posterior wall remained
uncovered (a, b). More homogeneous distribution of measurements was achieved with sequential
mapping (c, d).

Clinical data was retrospectively analyzed with the workflow outlined in Chapter 18.1 to
determine the excitation pattern visible for both mapping approaches. The resulting LAT
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maps are shown in Figure 17.6. The LAT map which was generated using basket catheter
data very well indicated both the septal to lateral activation of the superior anterior wall and
the activation gradient along the roof. Information about the depolarization pattern of septal
regions and the inferior anterior wall was not available.

The excitation pattern in these regions was elucidated by detailed sequential mapping.
The inferior anterior wall was depolarized from lateral to septal by a pivoting wavefront,
covering more than 50% of the BCL but just being passively activated. The septal region,
as opposed, exhibited activity which completed the mapping of the reentrant path. This
confirmed the diagnosis of a roof-dependent macro reentrant mechanism.

(a) Panoramic mapping (AP). (b) Panoramic mapping (PA).

(c) Sequential mapping (AP). (d) Sequential mapping (PA).
Figure 17.6: LATmaps acquired during sequential and simultaneousmapping. Septal to lateral activation
couldbeobservedon theanteriorwall, passing the roof throughan isthmusanddepolarizing theposterior
wall from lateral to septal. Septal and antero-inferior parts of the cycle remain uncovered during the
panoramic mapping.

Dynamic visualization of the excitation pattern Data from simultaneous and sequen-
tial mapping were additionally processed for dynamic visualization. For each EGM, the
instantaneous energy was computed and normalized as presented in Chapter 9. It was inter-
polated on the covered areas of the atrial anatomy and visualized as time-continuous movie.
Snapshots of seven selected time instances are plotted in Figure 17.7. Note that the time
scale chosen here is different from the isthmus-based reference time in Figure 17.6.

The pattern of excitation could clearly be traced in the sequentially acquired map, shown
in both central columns. The inferior anterior wall was depolarized at around 50 ms. The
excitation passed the roof through the lateral isthmus at about 70 ms and subsequently
propagated along the posterior wall in septal direction, returning to the anterior wall at about
170 ms.
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Also in panoramic mapping, the process of depolarization could be well tracked along
the roof (50 ms to 130 ms). Excitation of the inferior anterior wall and the septal aspect of
the macro reeentry could not be observed.

Discussion and conclusion Sequential mapping of stable tachycardias like AFlut is the
common approach to acquired data for the identification of the underlying mechanism.
Despite the option of automatic point collection in state-of-the-art mapping systems, the
sequential collection of electrogram data is time consuming. In addition, the tachycardia
may convert into other forms during mapping or stop due to mechanic stress induced by the
catheter. This makes single shot techniques a desirable alternative to conventional sequential
mapping.

The extended field of view offered by panoramic basket catheters in theory allows to
acquire comprehensive information from different atrial structures simultaneously. The
central question, however, is whether or not the decisive parts of the flutter cycle are covered
during mapping. If this is the case, time for data acquisition in AFlut could be reduced to
seconds.

In the example outlined above, the critical isthmus was covered by four splines of the
basket catheter, allowing to deduce a target for ablation. Several atrial regions, however, were
not covered by the basket electrodes. Thus only an incomplete part of the depolarization
pattern was acquired. Nevertheless, repositioning the catheter to a complementary location
would probably allow to amend the picture and clarify the mechanism. This does not
represent a single shot technique any more, but still could be expected to reduce the time
required for mapping. Due to the high costs of a basket catheter, this method seems especially
reasonable if the presenting tachycardia is demonstrated to easily alternate between several
mechanisms.
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Figure 17.7: Dynamic visualization of cardiac excitation based on panoramic and sequential mapping
data. Energy of the EGMs was computed and plotted color-coded on the atrial shell (for details see
Chapter 9). The entire propagation pattern could be observed in the sequential mapping data (two
central columns), while at time 198ms no depolarization was foundwithin the basket catheter’s field of
view (left and right columns).
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17.4 Excitation Dynamics during Atrial Fibrillation
The most important field for application of panoramic mapping is the acquisition of non-
stationary processes which do not allow for sequential mapping. AFib is the most prominent
and wide spread example for such an arrhythmia. Hereby, the atrial depolarization pattern
changes dynamically and seems pseudo chaotic. Although the exact mechanisms maintaining
AFib are not clear, established theories consider meandering rotational sources or multiple
wavelets that annihilate or proliferate by interaction.

Clinical data To demonstrate the possibilities and challenges of basket catheter mapping
during AFib, a biatrial panoramic recording was available. Data was acquired during routine
index ablation of paroxysmal AFib in a 54 year old female at Städtisches Klinikum Karlsruhe.
Both atria were mapped simultaneously using Constellation catheters of diameter 48 mm and
60 mm. Electrograms and anatomical information was acquired using the Velocity EAMS.
As only 128 channels could be recorded by this system, the CS catheter electrodes 7 and
8 had to be attached instead of H3 and H4 of the LA basket. Both basket catheters were
positioned to achieve optimal wall contact and signal quality. Data were recorded for several
minutes, of which a segment of length 30 s will be discussed in the following.

Signal processing Data were exported from the clinical system and analyzed retrospec-
tively. Atrial anatomies were processed as outlined in Chapter 6.1. Stability of both catheters
was confirmed already before data export. The mean position of all electrodes over the
30 s recording was computed and used to generate coverage maps as shown in Figure 17.8
(compare Chapter 6.3). While the anterior walls were covered well, especially coverage
of the LA posterior wall was limited. Subsequently, data from 61 right and 62 left atrial
electrodes could be analyzed with respect to the spatio-temporal depolarization process.
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(a)Coverage (RAO). (b)Coverage (PA).
Figure 17.8: Coverage in biatrial mapping of AFib. One basket catheter was positioned in each atrium.
Good coveragewas achieved for the LA anterior wall and RA lateral wall. The posterior LAwas hardly
covered.

Unipolar signals were first filtered using a second order high-pass and low-pass of 1 Hz
and 300 Hz, respectively. Based on visual inspection of the spectrum, additional artificial
frequency components were filtered at distinct values of 50 Hz, 144 Hz, 145 Hz, 196.6 Hz
and 203.5 Hz, together with their harmonics (see Chapter 5.1). Ventricular depolarizations
were detected as presented in Chapter 5.2. Subsequently, the principal component analysis
(PCA) was applied to reduce ventricular far fields (compare Chapter 7.1). The resulting
unipolar EGMs from both basket catheters are shown in Figure 17.9.

Considering activation of the RA, nearly synchronous depolarization patterns were
observed from the beginning of the shown segment up to about 22 s. Activity became less
organized between 22 s and 25 s, as indicated by a lack of distinct gradients in the EGMs of
splines D, E and F. At about 25 s, however, the nearly synchronous depolarization could be
seen again.

Three splines in the LA primarily recorded ventricular far fields. Visual inspection
revealed that these were located towards the MV, with splines H and A projected onto the
inferior posterior wall and spline B onto the inferior anterior wall. No signal was recorded
for H3 and H4, as the CS catheter was connected as positional reference. Splines C to G
showed the complex activation pattern of the LA endocard.

The phase of all unipolar electrograms (UEGMs) was computed using sinusoidal re-
composition and Hilbert transform (see Chapter 8.3). To determine the cycle length for
recomposition, LATs were annotated based on the steepest negative derivative of the unipolar
signals (compare Chapter 8.1). To avoid erroneous detections of EGMs low voltage, a
refractory period of 120 ms was applied and a voltage difference of at least 0.1 mV was
required within a window of ±5 ms around the potential LAT.

Although the PCA-based VFF removal method was observed to strongly reduce the
influence of far fields, these ventricular components were not completely diminished and
could potentially be annotated as LAT. Thus the signal segments not synchronous to the
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ventricular depolarization were evaluated with respect to the amplitude of their LATs. All
signals were excluded from further processing which did not exceed a minimum of 0.5 mV
amplitude in any of the respective detected LATs.

Excitation dynamics The instantaneous phase was subsequently interpolated on the
atrium. Snapshots of selected time frames are visualized in Figures 17.10 to 17.12. All of
them visualize the cardiac excitation corresponding to the electrograms shown in Figure 17.9.

A sequence reflecting the organized excitation of the RA between 20 s and 22 s is depicted
in Figure 17.10. Two wavefronts entered the RA lateral wall at 20.24 s and depolarized it
completely before colliding at the mid-lateral wall at 20.32 s. This collision could no longer
be observed in both subsequent RA activations (starting at 20.42 and 20.56 s, respectively).
Instead, a first wavefront depolarized the superior TV annulus and was stopped by a functional
block (20.44 s and 20.60 s, respectively), while a second wavefront arriving clockwise from
inferior excited the remaining tissue (20.50 s and 20.66 s). No propagating wavefronts could
be observed between these depolarization processes.

LA excitation was less clear to interpret. Phase movies indicated a passive activation
by wavefronts traversing the roof (20.26 s, 20.44 s) or coming from the lateral wall (20.24 s,
20.52 s, 20.70 s). Excitation from the septal side was also observed (20.36 s, 20.50 s, 20.70 s).

Starting at about 22 s RA activation became more complex with nearly continuous
depolarization. However, still a dominant excitation pattern could be observed which
propagated from the lower posterior lateral wall in anterior direction. For the LA, the
phase maps presented no broad activation pattern but were more indicative for excitation by
multiple wavelets.

As already indicated by the EGMs, activation became more regularized after 25 s. The
sequence of images shown in Figure 17.12 covers a duration of about 400 ms in which the RA
was depolarized three times by broad wavefronts coming from the roof in counter-clockwise
direction (25.56 s, 25.76 s and 25.98 s). Wavefront collision on the lateral wall was just
observed in the last depolarization (26.00 s).

Similarly, activation of the LA appeared more organized within this time frame. Broad
wavefronts were found to come from the lateral wall (25.54 s, 25.68 s and 25.86 s) and the
septum (25.74 s and 25.96 s). For both the RA and the LA, time instances were found in
which no depolarization was observed (e.g. from 25.64 s to 25.74 s in the RA; 25.64 s or
25.84 s in the LA).

Discussion and conclusion Understanding the excitation dynamics during AFib is the
most challenging task in the field of contemporary cardiac rhythmology. Due to their ability
of simultaneous panoramic electrogram acquisition, basket catheters are promising tools
to tackle this issue. Analysis and interpretation of the measured data, however, confront
physicians with tremendous challenges. Most importantly, the spatio-temporal process of
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depolarization has to be perceived within the measured data, and subsequently the dominant
mechanisms need to be identified.

As outlined previously, dedicated software has been designed for the visualization of
basket catheter data for research purposes already in 1999 [252]. Result of signal processing
was projected on a 3D sphere, reflecting the shape of the catheter. It was demonstrated on
data from AFlut patients, in whom it generated LAT maps for every recorded cycle. Mapping
of unstable tachycardias, however, had not been performed.

Analysis of AFib data is the focus of a recently launched commercial software for the
diagnostic assessment of basket catheter data. Although details about the utilized processing
are not known up to now, promising success rates in the treatment of AFib have fostered
usage of this approach [27]. As discussed in Chapter 17.1, geometrical information from the
specific patient is not incorporated in that approach.

Within the scope of the presented research, a method for visualizing the cardiac excitation
dynamics in 3D was developed. It was applied to AFib data within the presented chapter.
Considering the truly measured electrode positions allowed to precisely relate atrial anatomy
and electrogram information for spatio-temporal analysis. Unipolar EGMs were transferred
to phase-space in order to allow for visual interpretation by human experts.

Certain parameters were semi-automatically determined during this process, like the
fibrillatory cycle length, interpolation distances, voltage thresholds for LAT annotation and
refractory times. Although all values were chosen within physiological reasonable range, the
influence of parameter selection was not assessed.

The depolarization pattern derived from phase-mapping was compared to a version
that was directly determined based on the annotated LAT values. Although this was done
for several dozens of representative time steps, no quantitative comparison between both
techniques was performed.

Although issue of spline bunching was successfully addressed by considering the true
electrode positions within the analysis, the problem of limited coverage was also encountered
in the presented case. Due to deformation of the basket catheter, the LA posterior wall was
hardly covered. Excitation dynamics presented in Figures 17.10 to 17.12 demonstrated a
LA depolarization caused by wavefronts emerging from the LA posterior wall. A more
detailed analysis was not possible, however, due to the lack of data acquired there. If this
information would have been available directly during clinical mapping, a specific mapping
of the posterior wall may have been considered.
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(a)Unipolar signals recorded in the LA.
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(b)Unipolar signals recorded in the RA.
Figure 17.9: Unipolar EGMs during AFib. Data were recorded by simultaneous biatrial basket catheter
mapping in the RA (a) and LA (b), respectively. Surface ECG lead I is shown at the top of each plot.
Preprocessing included band-pass filtering and the removal of artificial discrete frequencies. Ventricular
farfieldswere reducedby aPCA-based technique. Note the decrease of right atrial organization between
22 s and 25 s.
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Figure 17.10: Phase plots indicating organized activity in the RA. Instantaneous phase was determined
from the EGMs and visualized on the atrial geometry. The right lateral wall was depolarized by distinct
broadwavefronts, whose site of collision changed dynamically. Activation of the LAwasmore complex
but seemed to be driven bywaves originating from the posterior wall.
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Figure 17.11: Phase plots of unorganized activity in both atria. Continuous depolarization was observed
on the RA lateral and LA anterior wall.
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Figure 17.12: Phase plots during organized activity in both atria. The anterior walls of both RA and LA
were activated by broadwavefronts, also showing times without electrical activity.
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17.5 Discussion and Conclusions
Panoramic mapping with a 64 electrode basket catheter provides huge amounts of data,
complicating analysis with conventional techniques. Both the deformation of splines and
the large number of simultaneously recorded electrograms make visual assessment of the
underlying excitation pattern highly challenging. This inspired research for novel methods
of data processing and visualization.

Coverage and spline bunching Several issues limit the ability of basket catheters to
record complete panoramic mapping data. First, the number of electrodes is restricted to
64. Although this is a threefold increase when compared to other conventional catheter
types, this averages less than about 0.5 electrodes per cm2 in an atrium of 150 cm2. Second,
the recording positions are strongly determined by the bending of splines along the atrial
wall. Selection of a strongly oversized catheter may cause a lack of coverage due to spline
bunching. Third, commercial availability of catheter sizes is limited by the product palette,
making choice for the individual patient a trade-off.

Although these issues cannot be avoided, knowledge about their effects allows to design
appropriate analysis techniques. Incorporation of recording positions and the patient specific
anatomy is a major advantage of the presented algorithms, excelling state-of-the-art signal
analysis. As demonstrated in Chapter 17.1, neglecting spline bunching may pose a pitfall
for diagnosis. When the true electrode positions are incorporated into analysis, however,
comprehension of depolarization dynamics is more reliably possible.

The applicability of this approach has also been shown on clinical mapping data in
Chapters 17.3 and 17.4. In case of AFlut, the critical isthmus was well covered by the basket
catheter. Due to limited septal coverage, however, it was not possible to acquire data from the
complete cycle. The latter could be sampled by sequential mapping. Sequences of biatrial
panoramic mapping data of AFib were processed and illustrated in Chapter 17.4. Patterns of
different complexity were found by visual inspection and matched very well with the level
of organization in recorded EGMs. Due to a lack of coverage on the posterior wall, however,
exact evaluation of the driving source was not possible.

Sampling and identification of cardiac processes Cardiac depolarization is a dynamic
process, whose understanding requires a certain level of measurement information. In signal
processing theory, correct reconstruction of a signal is possible if the sampling theorem
is fulfilled: The signal must not have frequency components above the Nyquist frequency.
Formulation of a corresponding spatio-temporal theorem for cardiac excitation patterns could
be based on the electrode positions as spatial measurement points and the cardiac wave
length given by conduction velocity and refractory period.

Cardiac tissue, however, is strongly heterogeneous. Especially the presence of scar
from previous ablation of fibrosis caused by structural remodeling make assumptions for
homogeneous tissue patches invalid. Due to the variety of possible tissue characteristics in
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clinical patients, a general recommendation with regard to spatial sampling density does
not seem reasonable. During epicardial mapping studies with a spoon-shaped electrode
array (244 electrodes, interelectrode spacing 2.25 mm), individual excitation waves were
reconstructed during AFib [34]. Statistical analysis showed a mean number of 4.5 waves
per cm2 within the mapped field per AFib cycle. Processes of this complexity cannot
be accurately evaluated during panoramic mapping. Analysis of excitation patterns on a
more global scale, however, are not prohibited by the given interelectrode spacing of a
basket catheter. For more detailed mapping of regions of interest, a combined approach
utilizing catheters with smaller interelectrode spacing is recommended (e.g. Orion catheter,
interelectrode spacing of 2.25 mm).

Special attention needs to be paid to the varying interelectrode spacing along and be-
tween splines. While the spacing along splines is defined by manufacturing and thus the
basket catheter type, the interspline distance varies with spline bunching. For the detection
of rotational sources, an inter electrode spacing of 10 mm is generally considered suffi-
cient [249]. Especially for panoramic basket catheters, distances between splines frequenty
exceed 20 mm, however, violating a frequently posed prerequisite for accurate analysis.

Applicability of panoramicmapping Concludingly, panoramic mapping can be consid-
ered a valuable tool for the acquisition of comprehensive mapping data on a macroscopic
scale. Effects like spline bunching and limitations in coverage can be incorporated into
analysis techniques, allowing an appropriate handling of these issues.

During the presented research, several techniques have been developed to analyze
basket catheter recordings. Projection of the dynamic processes onto the atrial shell allows
to correctly interpret the depolarization pattern and represents a significant improvement
compared to the state-of-the-art. It provides the basis for subsequent visual assessment of
the excitation pattern. With respect to future research, automatic detection of dominant
patterns is considered a valuable addition to the existing processing. It has been implemented
for the detection of SVES as describend in Chapter 16.2, but analysis of unstable rhythms
like AFib pose additional challenges. If such an analysis would be performed within the
procedure, remapping of interesting areas may have been performed. A combined approach
of simultaneous large-scale and relevance-based sequential mapping may offer an alternative
way to cope with the limited coverage in panoramic mapping.



CHAPTER18
Diagnosis of Atrial Flutter Forms

The interpretation of EP data for the clinical diagnosis of atrial flutter (AFlut) mechanisms is
currently based primarily on the experience of the cardiologist. During data acquisition, the
physician has to closely observe the EGM and manually annotate extraordinary morphologies
like double potentials, prolonged activity or diastolic potentials. While simultaneous inspec-
tion of EGM data is possible when acquired with 20 pole spiral catheters, the analysis and
interpretation of data recorded by a 64 pole mini-basket cannot be carried out by any treating
physician. State of the art automatic signal analysis is limited to voltage and activation time
mapping, strongly simplifying morphological properties. Interpretation of these maps can be
time consuming as no computational means are available.

Advanced methods for the automatic analysis of intracardiac mapping data have been
presented in the previous Chapters in Part 2 of this thesis. Up to now, the rationale behind
these methods was outlined, and they were individually benchmarked using simulated
or annotated clinical data. In the following, their ability to support diagnosis will be
demonstrated on clinical cases which were recorded at the Städtisches Klinikum Karlsruhe.
It will be shown that they are capable of extracting more comprehensive information from the
mapping data and highlight specific atrial regions for closer inspection by the cardiologist.

18.1 Analysis Procedure
An automatic signal analysis workflow was developed within the scope of this thesis, in-
corporating the different techniques outlined in the previous chapters. To allow processing
of mapping data from all clinically utilized electroanatomical mapping systems (EAMSs),
a common data structure was defined as described in Chapter 14.3. Both geometrical and
electrical data were prepared before the common processing was executed.

Preprocessing steps First the stability of the arrhythmia was assessed. Therefore the CS
activation was evaluated for each single acquired point. The instantaneous basic cycle length
(BCL) was computed for each mapped cycle as described in Chapter 8.2. The progress
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of BCL over time was shown to the cardiologist, and the median BCL was suggested as
reference measure.

After this reference BCL was confirmed by the physician, all recordings whose BCL
deviated more than 10% were rejected from further analysis. This allowed to exclude
extrasystoles from analysis in case they did not represent the desired rhythm. In addition, the
correlation of LAWs within the reference trace was assessed and the recording discarded
if its value was below 0.6. This procedure was also used to exclude all acquisitions which
synchronized on an LAW that was not similar to the mean morphology of all recordings.

Next all QRS complexes were annotated in the surface ECG as described in Chapter 5.2.
This information was used to determine one cycle of the tachycardia which was free of
ventricular depolarization artifacts. As described in Chapter 11.1.2, this time span had to be
defined for the computation of measures like the cycle length coverage (CLC).

Subsequently, the coverage was determined and visualized (compare Chapter 6.3). The
interpolation functions were prepared as described in Chapter 8.4.

Analysis of individual EGMs Single signals were analyzed first. The amplitude of each
signal was computed to assess the presence of atrial activity and exclude signals which only
contained noise. The NLEO was computed and normalized to permit the time-continuous
visualization of the depolarization process. As shown in Chapter 9.1, this avoided the
potentially erroneous annotation of LAT in prolonged EGMs or DPs.

The activity of each EGM was determined by using the methods introduced in Chap-
ter 11.1.2. For each channel, the CLC of the single signal was computed. Classification of
each EGM was performed to detect DPs (compare Chapter 11.1.3).

As the instantaneous BCL was allowed to vary within ±10% of the reference BCL, time
dependent measures may not be comparable when determined once for a short and once for
a long instantaneous BCL. Considering a tachycardia with a reference BCL of 300 ms, tissue
which is depolarized at the end of the cycle may be annotated active at 270 ms or 330 ms,
respectively. To minimize this effect, all data were resampled to 2 kHz and normalized to
exactly match the reference BCL. The instantaneous BCL of each acquired point was used
to compute the factor for normalization. The LAT of each signal was determined within this
normalized single cycle (compared Chapter 8.1). In addition, the data allowed to compute
statistics about the jitter of BCL.

Multichannel analysis After the activity was assessed in each single signal, the multi-
channel measures were determined (compare Chapter 11.2). Based on the active surface
regions around each measurement point over time, the progress of depolarization and the
relative amount of active area were computed (see Chapter 11.2.2).

Next the area-based CLC was determined as described in Chapter 11.2.3. The amount
of activite tissue as a function of time was also evaluated to identify diastolic activity and
define the reference time of LAT maps accordingly (see Chapter 11.2.4).
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Visualization All resulting measures were interpolated on the atrial anatomy and plotted
in MATLAB. This allowed to gain a first impression of the analysis results and determine if
an adaption of parameters was required.

Data were additionally exported for the visualization in KaPAVIE after processing was
finished. This enabled the combined visualization of electrograms and analysis results as
will be demonstrated in Figure 18.12.

18.2 Focal Source
The general concept of regenerating an LAT map retrospectively using clinical data is
demonstrated using data from AFlut with a focal mechanism.

18.2.1 Focus from posterior RSPV
A 52 year old female was referred to catheter ablation due to a suspected left atrial focal
tachycardia with cycle length of 190 to 270 ms. Intracardiac mapping was performed using
the Rhythmia system and the Orion catheter. An LAT map of the RA showed earliest
activity close to the SVC, and subsequent left atrial activation mapping revealed focal activity
originating from the posterior RSPV. The LAT map as generated by the mapping system
during the procedure is visualized in Figure 18.1, and will be referred to as Clinical LAT map
for the course of this chapter. Encircling the right PVs converted the tachycardia to sinus
rhythm. Ongoing focal activity could be observed during mapping inside the RSPV.

(a) LATmap in anterior view. (b) LATmap in posterior view.
Figure 18.1: Clinical LATmap. Earliest activation indicated a focal source located at the posterior RSPV.
Data were acquired using the Rhythmia mapping system. Electrode positions as found during remapping
are shown in green.

The study data were exported and transferred to Institute of Biomedical Engineering
(IBT). Both atria were remapped based on the continuous position and electrogram data as
outlined in Chapter 14.3. After stability analysis of the CS activation sequence, 416 and 701
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EGMs were available from the RA and LA, respectively. Their positions are indicated by
green dots in Figure 18.1. BCL was determined to 190 ms. The automatically generated LAT
map is plotted in Figure 18.2. This type of retrospectively created map will be indicated
by remapping at IBT. The LAT reference time was correctly adjusted to represent the focal
origin as earliest point of activation. Good general agreement between the clinical map and
the reconstructed map could be observed.

(a) LATmap in anterior view. (b) LATmap in posterior view.
Figure 18.2: LATmap as generated by remapping at IBT. Qualitatively, good agreement to the clinical
map as shown in Figure 18.1 was observed.

18.3 Microreentry
Algorithms for the identification and localization of micro reentrant sources of AFlut were
outlined in Chapter 11.2.2. These will be demonstrated on two sets of clinical data in the
following chapters.

18.3.1 Microreentry RIPV
A male patient aged 64 was treated for persistent atrial tachycardia. Previous procedures
included PVI, isthmus ablation, and bypass surgery. Biatrial LAT mapping was performed
using the EnSite Velocity system and a 10 pole spiral catheter. The corresponding LAT map
is shown in Figure 18.3 and indicated an early activation close to the RIPV, with passive
activation of the RA. Visual inspection of EGMs in this region revealed a microreentry which
was documented in the clinical procedure report. Ablation at the area of the mid-diastolic
potential terminated the arrhythmia and restored normal sinus rhythm (NSR).

Data could be exported and imported directly, without the need to remap the tachycardia.
116 EGMs were acquired in the RA and 223 EGMs in the LA. Analysis of the area based
cycle length coverage clearly highlighted the region at the posterior RIPV, in which the
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(a) LATmap in anterior view. (b) LATmap in posterior view.
Figure 18.3: Clinical LATmap. Earliest activation was found close to the RPVswith passive activation of
the RA.

microreentry had been observed by visual EGM assessment during clinical mapping (see
Figure 18.4). Notably, this area was identified automatically, without the need of EGM
annotation.

(a)CLC in anterior view. (b)CLC in posterior view.
Figure 18.4: Cycle length coverage by area. The increase of CLC at the RIPV clearly highlights the
location at which amicroreentry was observed during clinical mapping.

18.3.2 Figure 8 Reentry at AnteriorWall
A Figure 8 reentry was observed during activation time mapping of an atypical AFlut in
a 68 year old female patient. The EP study was performed using the Rhythmia EAMS.
The corresponding LAT map is shown in Figure 18.5. A crowding of isochrones could be
observed at the anterior wall, representing a huge gradient of activation between adjacent
areas. The posterior wall, as opposed, was activated from septal to lateral by one broad
wavefront.
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(a) LATmap in anterior view. (b) LATmap in posterior view.
Figure 18.5: Clinical LAT map. A figure 8 reentry could be observed on the anterior wall, while the
posterior wall was only activated passively.

Remapping of the study data allowed to analyze 2898 EGMs in the LA. The result of
area-based cycle length coverage analysis indicated several notable regions (see Figure 18.6).
These comprised the anterior wall and left PV antra. Additional evaluation of the diastolic
activity is presented in Figure 18.7. Analysis indicated that diastolic activity was present
at the anterior wall, coinciding with the both the LAT gradient and the high cycle length
coverage.

(a)CLCmap in anterior view. (b)CLC in posterior view.
Figure 18.6: Cycle length coverage by area. Multiple regions are highlighted for closer inspection,
including the anterior wall and reflecting the sensitivity of the approach.

Comparison between the clinically measured LAT map and the remapped data indicated
good agreement. The reference time for the remapped LAT map was automatically set to
match the exit point of the micro reentrant mechanism (compare Figure 18.8). Also the
septal to lateral activation pattern of the posterior wall was present, which originated from
the septal exit point of the figure 8 reentry.
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(a)Diastolic activity in anterior view. (b)Diastolic activity in posterior view.
Figure 18.7: Diastolic activity. Evaluation of the activity over time indicated a region on the anterior wall,
which showed activity while the rest of the LAwas already depolarized. This location coincided to the
critical isthmus.

(a) LATmap in anterior view. (b) LATmap in posterior view.
Figure 18.8: LAT map generated based on remapping at IBT. The general excitation pattern matched
with the clinical observation.
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18.4 MacroreentrantMechanisms
18.4.1 Counter-Clockwise Perimitral Flutter
Counter-clockwise perimitral flutter was observed in a 56 year old male patient after ablation
for atrial fibrillation (AFib) (including PVI and substrate modification). Mapping was
performed using a 20 pole spiral catheter connected to the EnSite Velocity EAMS. The
resulting map contained a total of 280 right and 366 left atrial usable measurement points
after CS evaluation. The LAT map which resulted from retrospective analysis was in good
agreement with the clinical one and is shown in Figure 18.9.

Activation progressed from lateral to septal at the anterior wall and from septal to lateral
at the posterior wall. This movement around the MV annulus was in line with a macro
reentrant mechanism. Analysis of the area-based cycle length coverage did not indicate a
region with more than 80% of coverage (compare Figure 18.10).

(a) LATmap in anterior view. (b) LATmap in posterior view.
Figure 18.9: LATmap as generated by the proposed analysis procedure. The resulting pattern was in
good agreement with the clinical map.

A huge gradient in activation times and an increased cycle length coverage could be
observed at the central anterior wall. Classification of signals indicated the presence of double
potentials (DPs) in this region, confirming the presence of a conduction block (compare
Figure 18.11).

The occurrence of DPs could also be verified by direct visual inspection in KaPAVIE.
Two screenshots of the software during analysis of this dataset are shown in Figure 18.12.
Panel A shows the clinical LAT map on the right with selected EGMs on the left. The
progress of depolarization can be seen clearly in the gradient of activation times. A zoomed
view on the region of conduction block is depicted in panel B, showing a reduced signal
amplitude along the line of block. While signals which were acquired superior or inferior
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(a)CLCmap in anterior view. (b)CLC in posterior view.
Figure 18.10: Cycle length coverage by area. No regionwas highlighted to represent a high CLC. Also
during clinical mapping, no microreentry was observed. This was in agreement with the underlying
perimitral macro reentrant mechanism.

(a)Double potential map in anterior view. (b)Double potential map in posterior view.
Figure 18.11: DPmap. The activation gradient on the anterior wall was found in agreement with the
presence of DPs along this line of block.

to the block exhibited clear deflections in their respective part of the cycle, DPs could be
observed directly on the line of block.
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Figure 18.12: Screenshot of KaPAVIE. Panel A: Clinical LATmap indicating a block between the inferior
and superior aspect of the anterior wall. Panel B: Signals recorded on the line of block indeed show
reduced amplitudes andDPmorphologies. Reprinted from [146] with permission of the publisher.
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18.4.2 Roof Dependent Flutter Around LPVs
A roof dependent macroreentry was observed during mapping for atypical AFlut in a 70 year
old female patient after previous ablation of AFib. During the EP study, several tachycardias
occurred and transitioned between each other. All exhibited a slow conducting region
at the central anterior wall (compare the virtualizaton described in Chapter 10.2). The
corresponding LAT map as acquired by the Rhythmia EAMS is shown in Figure 18.13.

Figure 18.13: Clinical LATmap of roof dependent flutter. A zone of slow conduction was observed at the
central anterior wall, showing huge gradients in activation towards surrounding regions.

After remapping, 539 EGMs were available for analysis. The resulting LAT map is
visualized in Figure 18.14 and shows good agreement to the clinical map.

(a) LATmap in anterior view. (b) LATmap in posterior view.
Figure 18.14: LATmap generated after remapping at IBT. Activation of both anterior and posterior wall
very well matched to the clinical mapping outcome.

The amount of active left atrial tissue over time is plotted in Figure 18.15 (a), above
the reference CS traces of the analyzed atrial cycle. It can be seen that most myocardium
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depolarizes slightly prior to the reference activation, which is consistent with the dominance
of orange and green areas in the LAT map. Continuous electrogram traces including two
cycles of the tachycardia are depicted in part (b). Two QRS complexes can be identified in
the surface ECG at about 20 and 450 ms, respectively, compromising the ability to clearly
annotated the respective P waves. For the CS activation at about 950 ms, a simultaneous
P wave can be seen in the ECG. As both the maximum of active tissue and the P wave concur
with the CS activation, this reinforces the idea, that the active tissue may be used as surrogate
for the P wave in diagnosis.
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(a) Active myocardium related to the CS
reference activation.
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(b) Relationship between CS activation
and Pwaves in the ECG.

Figure 18.15: Relationship between CS activation, active tissue and P wave. (a) The amount of active
tissue over time (top) is plotted synchronously to the reference CS activation (bottom). The colorbar
of the LATmap is included, indicating a good agreement between the coloring of the LATmap and the
amount of active tissue. (b) About 1 s of surface ECG (top, two leads) and CS trace (bottom) are depicted
to demonstrate the relationship of P waves in the ECG and CS activation.

The assessment of diastolic activity indicates the presence of an isthmus at the cen-
tral anterior wall, which was in very good agreement to the clinical mapping (compare
Figure 18.16).
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(a)Diastolic activity in anterior view. (b)Diastolic activity in posterior view.
Figure 18.16: Diastolic activity. A region in the central anteriorwall was highlighted for closer inspection.
It correctly reflected the critical isthmus as detected during clinical mapping.

18.5 Discussion and Conclusions
Concept and achievement Even in state-of-the-art mapping systems, conventional volt-
age and amplitude mapping are the only automatic signal processing tools available to
support physicians during diagnosis of AFlut. During this research, several new diagnostic
algorithms were invented, implemented and benchmarked. Primary goals were to ease
comprehension of the tachycardia mechanism and highlight regions for detailed inspection
for the physician.

The assessment of active surface regions was a central part of the algorithms. Activity
within the EGMs hereby indicates the depolarization of tissue adjacent to the measuring
electrode. Given a sufficient density of mapping points, this allows to evaluate the amount of
depolarizing tissue within the flutter cycle. Three major implications were derived from this
information.

First, the amount of depolarizing atrial tissue can be used as surrogate for the P wave.
As the P wave results from a projection of the potential vector on the surface leads, its
morphology is different in each lead. On the one hand, this can be used for diagnostic
purposes prior to intracardiac mapping. In the presence of ablation scar, on the other hand,
typical conclusions cannot be drawn from the presenting morphology. As intracardiac
mapping data is available during the EP study, information about the depolarization may
provide an alternative to the P wave.

Second, the progress of active tissue over time can help to identify the mid-diastolic
isthmus. P waves are typically annotated to identify mid-diastolic potentials. As P waves
indicate the depolarization of major parts of the atrial tissue, activity between P waves is
typically confined to the critical isthmus. Within this thesis, a functional relationship was
introduced which automatically highlights these areas without the need of LAT annotation.
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It additionally allowed to set the reference time for LAT annotation on the exit point of the
isthmus. Both these concepts were successfully demonstrated in the clinical examples.

Third, evaluation of cycle length coverage in small regions allowed to assess the presence
of a micro reentrant source. Only if continuous activity could be found in a small area, this
was considered a potential target for remapping and ablation. Analysis of clinical data also
reflected the potential of this method.

Developed algorithms also allowed to automatically determine the BCL and assess the
stability of CS activation. Manual interaction was only required to confirm the proposed
reference BCL. Although it would have been possible to modify this value, the need to do so
was never observed.

Dynamic visualization of the AFlut cycle was also successfully achieved for each subject.
This way of displaying the spatio-temporal relationships of cardiac depolarization was the
second major novel concept included in the signal analysis.

Limitations Although the successful application of the processing was demonstrated, it
has to be noted that the number of patients was still limited. The analysis should be applied to
data from additional subjects to gain more experience and identify the need for improvement.

As different clinical systems vary in signal quality, a manual setting of the noise level was
required. While signals with peak to peak amplitudes of less than 0.1 mV were considered as
scar when data from the Velocity system was analyzed, this could be reduced to 0.04 mV
for Rhythmia electrograms. Furthermore, parameters such as the diameter for area-based
cycle length coverage had to be adjusted in the range of 14 to 30 mm for different datasets.
It seems reasonable to include an option to parameterize these measures within the clinical
analysis.

The functional relation which highlights diastolic activity currently does not consider
causality. Consequently, it does not clearly differentiate between true diastolic activity
and regions which are activated last. Analysis of the propagation pattern may provide the
possibility to identify the dominant path, which sustains the tachycardia. Along this path, in
turn, the isthmus could be subsequently determined as recently presented [202]. Combined
with automatic delineation of scars, this would be a major step towards fully automatic
analysis of flutter data. Nevertheless, the presented techniques are expected to already
represent a major step towards this goal.

Outlook Supporting the treatment of AFlut by automatic analysis of intracardiac mapping
data was a major goal of the presented research. A corresponding analysis workflow was
successfully implemented and led to promising results. Several novel algorithms were
included and demonstrated to correctly identify interesting phenomena like micro reentrant
sources or DPs. This is expected to reduce the stress during mapping and the risk of
overlooking important aspects, as automatic signal analysis will help to identify extraordinary
signal patterns without the need of continuous visual assessment of all EGM traces.
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New presentation techniques, such as a combined plot of LAT and DPs, may help to
ease comprehension of the presenting tachycardia. Additionally, the dynamic visualization is
expected to help comprising the spatio-temporal depolarization pattern.

To evaluate its clinical value, however, processing the recorded data according to this
workflow immediately after the procedure is an important next step. The direct retrospective
analysis will allow to assess both the usability in the clinical environment and the ability of
the workflow to correctly identify the tachycardia mechanism. These are critical milestones
towards a blinded study.





CHAPTER19
Analysis of CFAEmaps

Following very promising success rates in catheter ablation of atrial fibrillation (AFib),
targeting complex fractionated atrial electrograms (CFAE) became an important corner-stone
of substrate based ablation strategies [56]. Reproducing these outcomes in other centers,
however, has proven difficult [6, 7]. One limitation of corresponding treatment approaches
is the lack of objective definition and therefore identification of complex fractionated atrial
electrograms (CFAE).

Although state-of-the-art electroanatomical mapping systems (EAMSs) provide algo-
rithms to automatically detect CFAEs, these possess two major limitations. First, their
behavior can be adjusted by user specific parameters. As different clinical centers use
different parameter settings, the results can hardly be compared [91]. Second, and although
these algorithms are inspired by the original definition of CFAE, the resulting annotation
does not always reflect the assessment as potential ablation target given by an experienced
physician.

In an attempt to put the identification of CFAE on a quantitative footing, a classification
algorithm was developed and published in previous work [208]. It was based on a fuzzy-
decision-tree that assigned one of four distinct labels to each EGM. The classes ranged from
C0 (regular) to C4 (continuously fractionated). Up to 18 features were considered to describe
the EGMs and their complex morphology (for details see Chapter 12.1 or [208]). The
database used for training and cross-validation of the classifier was congruently annotated
by physicians from two international clinical institutions. Therefore, it was considered to
represent the variety of clinically relevant CFAE morphologies.

Following scientific objectives will be addressed with this novel diagnostic algorithm:
• Compare the assigned CFAE classes with the commonly used CFE index
• Evaluate the regional distribution of CFAE classes within the LA
• Assess the impact of pulmonary vein isolation (PVI) on these measures

261
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19.1 Study Design
Clinical data Data from a small cohort of 5 subjects (54.6±14.4 years, all male and treated
for persistent AFib) was analyze within the scope of an initial study. All data were acquired
during routine catheter ablation of AFib using the EnSite Velocity EAMS at Städtisches
Klinikum Karlsruhe. CFE mapping was performed before PVI (bPVI) and after PVI (aPVI)
using either a 10 or 20 pole spiral catheter. The number of available patients was limited as
the complete left atrial mapping of bPVI and aPVI was required for inclusion in the study.

Annotation of LA anatomies The endocardial surface was extracted after import of clin-
ical geometries as outlined in Chapter 6.1. In order to evaluated the anatomical relationships
of CFAE, each atrium was annotated manually under supervision of an experienced cardiol-
ogist. Therefore a MATLAB GUI was implemented in which the following regions were
annotated due to their clinical relevance:
• left pulmonary veins (PVs) (LPV)
• right PVs (RPV)
• left atrial appendage (LAA) (LAA)
• anterior wall (ant)
• posterior wall (post)
• roof (roof )
• septum (sept)

Preprocessing of EGMs All clinical data were imported first. During this process, all
mapping points were removed that were either already rejected from analysis by the physician
or not acquired using the spiral catheter. All EGMs were recorded at 2034.5 Hz with a
duration of 5 s. To ensure consistency with the previously published approach, they were
down sampled to 1200 Hz and filtered using a wavelet-based method [208]. Thus data from
a total of 412±192 and 376±177 acquired points bPVI and aPVI were available for analysis,
respectively.

Parameters computed First the amplitude was of interest, being a very common param-
eter. As several depolarizations were expected to be in the recorded signal, the difference
between the total maximum and the total minimum of the signal may not reliably provide
information about the underlying substrate. Thus the parameter amplitude was computed as
maximum peak to peak amplitude of any single deflection within the signal in the scope of
this study. This is similar to considering a sliding window of interest around each passing
depolarization wavefront.

Instead of recomputing the CFE index using the exported EGM, the value determined
by EnSite Velocity was directly assessed within the study. Standard settings for the CFE
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algorithms were applied as common in the clinical practice: P-P sensitivity 0.04 mV, detection
mode -dV/dt, refractory length 40 ms, and segment length 5 s.

Besides this clinical descriptor, also the class of CFAE morphology was of interest.
Therefore 18 features were computed for all electrograms and subsequently they were
classified by the fuzzy-decision-tree developed in previous work (compare Chapter 12.1
and [208]).

Assessment of regional distribution For further analysis of regional distribution, EGMs
were excluded if their measurement locations were inside the pulmonary veins or the MV.
They were also rejected if the distance between the atrial shell and the recording position
exceeded 5 mm. To avoid that artifacts would compromise the statistics, EGMs were not
considered if their amplitude exceeded a physiologically reasonable value of 20 mV. After
this step, 341±141 and 320±159 acquired points bPVI and aPVI were available for regional
assessment, respectively.

For each of the remaining measurement points, a coverage map was generated using
3 mm and 5 mm as thresholds di and dm for the radius, respectively (see Chapter 6.3 for details
about the assessment of coverage). The resulting coverage map is depicted in Figure 19.1 (a)
for one demonstrative patient. An interpolation scheme according to the Nearest Neighbor
was subsequently set up and used to interpolate the amplitude and the CFE index of all
electrodes onto the anatomical shell. The distribution of the CFE index on the atrium is
visualized in Figure 19.1 (b).

(a)Coverage. (b)CFE index.
Figure 19.1: Coverage and CFE index for one example patient bPVI. The atrial coverage was determined
based on the position of all acquiredmeasurement positions, leading to 96.6% in this example. Uncovered
regions are colored red. White dots indicate the boundaries of atrial regions (a). The CFE index was
directly provided by the mapping system and interpolated on the atrial shell. Its value was given in
[ms] (b).

The regional distribution of amplitude values was assessed by computing the mean value
for each anatomical region after interpolation on the surface. Complying with this approach,
also the mean CFE index for each region was determined.
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Three value ranges were defined for analysis of CFE index values, being R1 (CFE>200 ms),
R2 (CFE 120-200 ms) and R3 (CFE<120 ms). These boundaries were specified in close
collaboration with a physician, as regions with CFE index smaller than 120 ms are typically
selected as ablation targets during substrate modification, while regions exhibiting values
higher than 200 ms are considered healthy, making those in between secondary ablation
targets. The color map in Figure 19.1 was chosen accordingly. The broad distribution of CFE
values <120 ms emphasizes the need for algorithms which can specify potential ablation
targets more precisely. The categorical values R1, R2 and R3 were interpolated on the
surface mesh. Similarly, the CFAE class was interpolated on the anatomy.

For regional statistical assessment, the total surface area of each atrial region was
computed, together with the amount of surface area covered by each CFAE class and CFE
index range. This analysis was restricted only on the covered regions. As the increasing
amount of scar compromises the analysis of CFAE areas, low voltage regions (<0.2 mV)
were considered scar and treated as separate class during statistical analysis. The distribution
of CFAE classes and scar tissue is plotted for one example patient in Figure 19.2 bPVI and
aPVI, respectively.

(a)CFAE classes (bPVI). (b)CAFE classes (aPVI).
Figure19.2: CFAEclasses before (a) and after PVI (b). An increase of low-voltage areas could be observed
aPVI. See Figure 19.6 for definition of colors.

As final part of region specific assessment, analysis was focused on areas which exhibited
the most fractionated activity class (C3) before PVI and were covered both bPVI and aPVI.
For these, the class after successful PVI was evaluated.

To conclusively compare both algorithms for CFAE analysis, the occurrence of different
CFAE classes was observed within the CFE index regions bPVI and aPVI. This analysis was
only performed in regions which did not exhibit low voltage.
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19.2 Results of Analysis
Coverage of atrial surface First the coverage of the atrial surface by the acquired mea-
surements was assessed. Mean coverage values for the 5 subjects are visualized in Figure 19.3
and indicate a comparable coverage both bPVI and aPVI. Complete coverage of the endo-
card, however, was not achieved. This may be explained by the fact that all points had to be
acquired manually and the resulting measurement density was judged during the procedure
as being sufficient. Considering their values bPVI vs. aPVI, ant areas were covered to 75%
vs. 73%, and post to 64% vs. 61%.
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(b)Coverage (aPVI).
Figure 19.3: Coverage of the atrial surface for the included datasets. Region specific values were
determined bPVI (a) and aPVI (b).

Amplitude distribution For each patient, the mean amplitude per atrial region was com-
puted. The statistics over all patients are visualized as boxplots in Figure 19.4. Three aspects
are of interest in these values.

First, analysis of signal amplitudes indicated median values for the LAA of 3.7 and
3.6 mV bPVI and aPVI, respectively. These values were much higher than in all other atrial
regions and were in agreement with clinical observations that EGM recordings at the LAA
typically exhibit large amplitudes. It was also not affected by PVI. Second, the median
amplitudes in the LPV and RPV regions were reduced by PVI from 1.1 and 0.9 mV to 0.3
and 0.3 mV, respectively. This was in agreement with presence of ablation scar in these
regions. Last, the amplitudes in the remaining atrial regions (ant, post, roof and sept) were
hardly affected by PVI, indicating that the ablation at the PV ostia did not modify the vitality
of the surrounding tissue.

Distribution of fractionation For first assessment of fractionation, the mean CFE index
was computed analog to the amplitude values and visualized in Figures 19.5. Most impor-
tantly, the CFE index in LPV and RPV regions was strongly prolonged by PVI. This reflects
that the determined CFE index in scar regions results in a high value. However, it does not
indicate a more regular excitation pattern but increased scarring without conduction. Off
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(a)Region specific amplitudes (bPVI).
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(b)Region specific amplitudes (aPVI).
Figure 19.4: Amplitude of EGMs. Amplitude were determined bPVI (a) and aPVI (b).

note, the median CFE index did not show strong deviation between regions bPVI on this
level of aggregation.
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(a)Mean CFE index per region (bPVI).
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(b)Mean CFE index per region (aPVI).
Figure 19.5: Impact of PVI onCFE index distribution. TheCFE indexwas determined bPVI (a) and aPVI (b).

Next, the CFE index was discretized in the regions R1 to R3, as outlined in the previous
paragraph. The relative amount of CFE index regions was determined for each atrial region
and averaged over all subjects. For this analysis, low voltage values were considered as scar.
The increase of scar by PVI can easily be seen by comparison of the plots bPVI and aPVI in
Figure 19.6. Of note, the amount of scar did increase in the remap after PVI, confirming a
representative mapping.

In addition to the CFE index region plots (a) and (b), also the determined CFAE classes
are depicted in parts (c) and (d). While only 2.1% and 7.8% of LAA surface showed the
hardly fractionated value range R1 bPVI and aPVI, respectively, 90.3% and 94.6% were
found to have rather regular morphologies of either class C0 or C1. This indicates that both
algorithms differentiate the varying aspects of CFAE complexity.

CFAEs of class C3 exhibit continuous fractionated activity and are therefore typically
assessed as potential ablation targets. Thus, it was of interest whether or not the regions
found as C3 during mapping bPVI did remain class C3 signals after PVI. This also indicates
if the excitation properties in regions distant to the PVI scarring were affected by ablation.

Therefore, regions were specifically analyzed which showed class C3 bPVI and were
also covered during mapping aPVI. Corresponding EGMs were assessed by atrial region
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(a) CFE index regions (bPVI).
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(b) CFE index regions (aPVI).
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(c)CFAE classes (bPVI).
LPV RPV LAA ant post roof sept

0

25

50

75

100

F
ra

c
ti
o
n
 [
%

]

Scar C3 C2 C1 C0

(d)CFAE classes (aPVI).
Figure 19.6: Anatomical distribution of fractionation. Fractionation wasmeasured using the CFE index
bPVI (a) and aPVI (b). The result of classification using the FDTwas also evaluated bPVI (c) and aPVI (d).

and shown in Figure 19.7. Most C3 in LPV and RPV regions were transformed to scar. For
the LAA, C3 region bPVI only was 1.0% and completely converted to C0 and C1. For the
remaining regions, an increase in scar could be observed which was strongest in the roof and
probably due to ablation in these regions. No dominant class was observed after PVI for C3
substrate.
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Figure 19.7: Signal classes aPVI assigned to signals which were annotated as C3 CFAE prior to PVI.

Differences between algorithms The comparative view of CFAE class and CFE index
regions already indicated that both did not result in unanimous vote. As the CFE index is a
widely spread criterion for the identification of ablation targets in CFAE mapping, it was
assessed to what degree this measure reflected the morphology based classification of CFAE.

For bPVI and aPVI, the occurrence of CFAE classes within each CFE index region
was assessed in each single patient and subsequently averaged in the statistics. The result
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(b)Distribution of CFAE classes (aPVI).
Figure 19.8: Variability between CFE index and CFAE classes. The occurrence of different CFAE classes
within each CFE index region was determined bPVI (a) and aPVI (b).

is visualized in Figure 19.8. Results indicated that signals with continuously fractionated
morphology were also observed in regions with CFE index exceeding 200 ms.

19.3 Discussion and Conclusions
An automatic and reliable annotation of CFAE is important to identify specific targets for
substrate ablation and preserve vital tissue. Within this small clinical study, the analysis
result of two algorithms for the detection of CFAE was compared. The CFE index was
addressed as widely used measure for fractionation, which is implemented in the EnSite
EAMSs. The clinical annotation of this algorithm was contrasted with a morphology-based
classification, which was based on a fuzzy decision tree and developed during previous work.
The annotations provided by both algorithms were compared by considering the different
atrial regions.

Both algorithms did not provide concordant annotations. This can most clearly be seen
in Figure 19.8, which shows that signals of all fractionation classes were present in each
CFE index region. Most notably, EGMS labeled with the continuously fractionated class C3
were also present in the CFE index region R1 with values >200ms. As the effect of ablation
was not related to the annotation of the algorithms, however, it could be stated that these
algorithms detect different aspects of the signals. The usefulness of corresponding ablation
approaches cannot be judged. This is considered the most important aspect of future research.
Its implementation and the corresponding study design, however, is not trivial, as ablation
continuously modifies the substrate and thus monitoring of the arrhythmia and the ablation
success is hardly possible.

Little fractionation and high amplitudes were observed in the LAA. This was in agreement
with clinical observations, that this part of the myocardium is hardly considered an ablation
target.

As the parameter settings for CFE index computation within the EAMS can be adjusted,
this is an additional degree of freedom for evaluation. This issue has not been adressed
within the study, as the parameter settings for one clinical center are typically fixed and based
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on best practice. The resulting outcome, however, may or may not reflect the assessment as
done by the physician.





CHAPTER20
High-DensityMapping during Atrial

Fibrillation
Mapping of atrial fibrillation is one of the biggest challenges in electro-physiological (EP)
studies. Due to the unstable depolarization process, simultaneous mapping is required to
comprehend the excitation pattern. But consequently the available data is limited by the
field of view of the utilized catheter. Although panoramic baskets provide the option to
record atrial activity from widely spread areas, this comes at the cost of significant sparsity
of measurement points (compare Chapters 15.2 and 17).

An alternative option for signal acquisition is provided by small catheters for local high-
density mapping, like different circular mapping catheters, PentaRay

TM
or Orion

TM
. Although

their field of view is limited to an area of about 20 to 30 mm diameter, it is covered by 20
to 64 electrodes, offering the possibility to more precisely comprehend the local excitation
process.

High-density epicardial mapping of depolarization during AFib has brought evidence for
so-called transient linking [241], being the tendency of excitation to exhibit distinct modes
of propagation. Trains of waves propagating in similar direction were observed in 51% of
cases of distinct depolarization events during ongoing AFib. In addition, predominant types
of transition between the propagation patterns were observed.

Comparable analysis in clinical data may offer the possibility to gain information about
both the excitation dynamics and the underlying substrate. Within the scope of the presented
research, methods have been developed to identify depolarization events and cluster them
based on the activation pattern or the morphology of local activation waves (LAWs) (see
Chapter 13). In the following, this technique will be demonstrated using data recorded with
the Orion catheter during AFib.

Clinical data and preprocessing A 62 year old female underwent catheter ablation for
paroxysmal atrial fibrillation at Städtisches Klinikum Karlsruhe after multiple previous
procedures for PVI. Continuous mapping data were recorded during routine data acquisition
during ongoing AFib, exported from the Rhythmia

TM
system and processed retrospectively.
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Stable catheter positions were identified within the mapping data based on information of
the log file and subsequent visual inspection.

Two datasets were chosen for analysis. The first dataset was recorded at the antero-septal
wall and 41.5 s long. The second segment of EGM data was recorded at the roof for a duration
of about 66.5 s. Electrogram and position information was available for all 64 electrodes
of the Orion catheter. Bipolar leads were computed along all splines, leading to 56 bipolar
electrograms (BEGMs). Signals were filtered from 30 to 300 Hz. In addition, artificial
specific frequencies were removed (compare Chapter 5.1).

The atrial geometry was preprocessed as outlined in Chapter 6.1. Electrodes were
rejected from analysis if they were located further away from the surface mesh than 5 mm.
Thus 13 and 38 electrodes were available for processing in datasets 1 and 2, respectively.
Subsequently, coverage maps were computed (see Chapter 6.3). Both catheter position and
coverage maps of both datasets are visualized in Figure 20.1.

(a)Antero-septal position in dataset 1. (b)Roof location in dataset 2.
Figure 20.1: Catheter positions and coverage for both exemplary datasets. The LA is shown in antero-
posterior view. The Orion catheter was positioned at the antero-septal wall in dataset 1 (a), with 13
electrodes on three splines having contact to the endocard. In dataset 2, the catheter was placed in
frontal position at the roof, bringing 38 electrodes close to the atrial shell.

20.1 Classification ofMorphology in Individual
Leads

For the analysis of LAW morphology, first the LATs were annotated in each individual
channel. Therefore local maxima of the instantaneous energy were detected using a refractory
period of 150 ms. For each potential LAT, peak-to-peak amplitude of the bipolar EGM was
evaluated within a window of ±10 ms. LATs were only accepted if this value exceeded
0.05 mV. For each channel of dataset 1, 170 to 181 LATs were annotated. In dataset 2, 0 to
310 LATs were found, as some channels only contained noise.
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For each LAT, the morphology of the corresponding LAW was extracted and clustered
by a correlation-based approach (see Chapter 13.2.2). Thresholds thrintra and thrstop were
set to 0.6 for automatic annotation. The resulting classification for three channels of dataset 1
is shown in Figure 20.2. Two types of morphologies could be recognized in channel 6, and
automatic annotation matched to this visual inspection. Also for lead 5, LAWs after 1.8 s
showed similar morphologies. A more complex pattern of LAW morphologies could be
observed in channel 1.

(a)Channel 1.

(b)Channel 5.

(c)Channel 6.
Figure 20.2: AFib EGMs with morphology-based annotation. Twomajor types of morphologies were
identified in channel 6 (c). Channels 5 (b) and 1 (a) exhibited LAWswith increasing complexity. Conse-
quently, more classes were used for labeling.

20.2 Multichannel Evaluation
After assignment of LAW classes in all individual channels, multichannel evaluation was
performed. Wavefronts were generated as outlined in Chapter 13.3.1. A minimum length of
3 LATs was required for each wavefront, with a maximum search range of 90 ms. Subse-
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quently, a number of 40 clusters was manually defined to detect similar activation patterns
over all channels as outlined in Chapter 13.3.3.

For dataset 1, 183 wavefronts were generated. The EGMs of all 13 channels are plotted
in Figure 20.3 (a), together with the detected wavefronts. While distinct activations could be
observed in channels 5 to 7, fractionated activity was present in channels 1 to 4. Of note, this
contrast reflected the change between two measuring splines. Particularly in the presence
of double potentials as in lead 1, annotation of the LAT was found to alter between the first
and the second component. The result of multichannel annotation of the excitation waves is
shown in Figure 20.3 (b). Statistical analysis showed that 16 of the 40 clusters were singular.
Therefore all classes which were found less than 6 times during annotation were rejected in
further visualization and grayed out. The resulting labeling is depicted in part (c), indicating
that the patterns including waves 3 and 8 were rarely observed.

For dataset 2, the wavefront matrix contained 351 entries. 12 channels were subsequently
rejected as they did not contain LAT information for more than 20% of detected wavefronts.
The EGMs of all initial 38 leads are plotted in Figure 20.4, together with the annotated
wavefronts. After multichannel annotation of 40 different clusters, 8 classes were found to
be singular. The 6 most often assigned classes were labeled during visualization, accounting
for 55.8% of annotations, although they only accounted for 15% of annotated classes. The
resulting annotation is depicted in Figure 20.4 (b), in which the 34 rare classes were grayed
out and EGMs omitted.

20.3 Discussion and Conclusions
The high-density mapping catheter Orion has proven to be a valuable tool during sequential
mapping of stable tachycardias. Mapping of several thousand points was achieved in combi-
nation with automatic data acquisition, providing the opportunity to precisely comprehend
the underlying rhythm disorder [86, 253].

Its utility for mapping of an unorganized tachycardia like AFib, however, remains unclear.
Research presented within this thesis has assessed the field of view of the Orion catheter
as outlined in Chapter 15.1. In typical mapping situations, wall contact was achieved with
2 to 4 splines and approximately 20 electrodes, leading to a covered area of about 1 to
2 cm2. Simultaneous mapping data from this field could be assessed to evaluate the local
depolarization pattern during AFib.

Following the observation of transient linking between wave trains [241], directed
coherent coupling [237] and recurrence of certain LAW morphologies [166, 243], statistical
analysis of the dominant pattern was addressed within the scope of this research. Different
clustering-based methods were presented in Chapter 13 and applied to Orion mapping data
of AFib.
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(a)Wavefronts.

(b)Morphology based classification (all classes).

(c)Morphology based classification (classes occurringmore than 5 times).
Figure 20.3:Morphology basedmultichannel classification. LATs (red crosses) and the generated wave-
fronts (red lines) are annotated in themultichannel EGM (a). Resulting annotations after multichannel
labeling are shown for all classes (b) andwhen discarding singular clusters (gray, c).

Results indicate, that these methods are capable of identifying and separating dominant
morphologies of LAWs in single channel EGMs. This option allows to quantitatively assess
the stability of propagation. In addition, the number and sequence of dominant LAWs could
be evaluated to identify dynamic alterations of the depolarization pattern.

Combined analysis of multiple simultaneous channels allows to additionally determine
the propagation pattern within the field of view. This approach was applied to data from two
mapping positions, and indicated that dominant types of excitation patterns were responsible
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(a)Wavefronts.

(b)Morphology based classification (all classes).
Figure 20.4: Repetitions in annotation of multichannel data. The dominant 6 classes accounted for >55%
of wavefronts, although they represented only 15% of classes used for annotation. Bothminority and
majority classes formed trains of successive activations.

for the majority of distinct depolarization events. This is fostering the hypothesis that a
certain degree of dynamic organization can be observed during ongoing AFib.

The analysis of dominant patterns in simultaneous endocardial high-density mapping
data is a promising but challenging field of research. The evaluation presented in this chapter
was based only on the morphology of LAWs but did not incorporate the LAT-based activation
sequence. The latter was already demonstrated in Chapter 16 and could very well be applied
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also in this context. Annotation of LAT may be compromised in the presence of fractionated
activity, however.

Several distance criteria were proposed for clustering. Besides the correlation coefficient
used in this chapter, also the similarity-index or principal component analysis (PCA)-based
clustering could be applied to classify LAW morphologies (compare Chapter 13.2.2). Subse-
quent multichannel analysis is even more complex as only categorical variables are available
when single EGM leads were annotated previously. A direct multichannel approach with
suitable basis function could be considered at this point. The optimal way for single and
multichannel data clustering is one central point for future research.

Within the presented methods, information about local excitation dynamics and the
underlying substrate are jointly analyzed. It would be of great interest to separate these two
aspects, allowing to identify the critical substrate maintaining the tachycardia. This should
be another core aspect of future work. After statistical evaluation, the projection on the atrial
anatomy will be a valuable step for final visual inspection.





CHAPTER21
Conclusion

Four major goals were pursued within the presented research, aiming for novel ways to assist
physicians in correctly interpreting intracardiac multichannel mapping data. First, algorithms
for the diagnosis of atrial flutter were developed. Although this is a very well understood
tachycardia, the design of a patient specific treatment approach is often quite challenging.
At this point, automatic signal processing could aid the physician during the intervention.
Second, techniques for the statistical analysis of complex arrhythmias like atrial fibrillation
were developed. As the mechanisms perpetuating this tachycardia are hardly understood, its
investigation is still a matter of basic science and could be fostered by novel signal processing
techniques. Third, the diagnostic potential of novel catheter types was assessed. Lastly, the
possible application of all algorithms within the clinical workflow was addressed as basic
intention during all research.

Considering the treatment of atrial flutter, electroanatomical mapping systems have
become useful tools during electrophysiological studies. They allow for a precise acquisition
of the atrial anatomy, orientation in the virtual space, labeling sites of interest and additionally
a reduction of radiation exposure. Automatic point acquisition can be applied to record
electrical information from thousands of points on the endocard during stable tachycardias
like atrial flutter. Despite this huge amount of information, automatic analysis in state-of-the-
art systems is restricted to voltage and activation time mapping. Within the presented research,
several additional methods were developed to extract diagnostically relevant information
from the recorded data during atrial flutter:
• The periodic component analysis was developed as novel filtering technique, and

shown to outperform the commonly used principal component analysis during stable
atrio-ventricular coupling.
• Considering single lead recordings, methods for the detection of active segments

within electrograms and the identification of double potentials were developed. They
were benchmarked using a database of over 2,800 annotated electrograms, achieving
over 90% accuracy.
• Addressing multichannel analysis, the activity of the atrial myocardium was suggested

as surrogate for the P wave. Following this concept, an approach to automatically
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determining diastolic activity was implemented, being capable of localizing the critical
isthmus. Focusing on microreentrant tachycardias, the concept of cycle length coverage
by area was introduced, which identifies regions of continuous excitation. These
methods were successfully verified on a database of 20 simulated cases including all
common maintenance mechanisms of atrial flutter.
• The resulting semi-automatic workflow was demonstrated on clinical data, and cor-

rectly highlighted the critical substrate.
• Aiming for the vision of virtual ablation planing, a semi-automatic method was

developed and demonstrated to virtualize clinically presenting cases of atrial flutter.
All algorithms were inspired by the clinical approach to diagnosis, and subsequently refor-
mulated as seen from an engineer’s perspective. The potential benefit for diagnosis will
be assessed in future studies by the author. The adaption of a patient specific model and
subsequent arrhythmia induction is a fundamental step for computational assessment of
ablation patterns and studies about subsequent reinducibility of follow-up tachycardias. It
hopefully will lead to shortened procedure times and improved long-term success rates in
the ablation of atrial flutter.

One central aspect of this thesis was the collaboration with both clinical partners and
colleagues with a strong background in computer modeling. Exchanging ideas with cardiolo-
gists proved highly important to assess clinical relevance and assure correct understanding
of the physiological fundamentals. In addition, it allowed to identify limitations in potential
clinical application at an early stage. Although measured electrogram data did provide an
impression of signal quality, however, it did not originate from a controlled environment.
Simulations were of great help in this regard, as they allowed to precisely define environment
conditions. Selection of parameters for the simulations, in turn, was based on clinical obser-
vations. This loop revealed to be an important aspect during the development of algorithms,
as they could be verified using simulated data and subsequently be applied on clinical data.

Addressing the visualization of cardiac activity, conventional representation of the
excitation pattern is based on activation time mapping. This method relies on the exact
annotation of the passing depolarization wave, which is not unambiguous in case of double
potentials of prolonged activity. Within the presented research, approaches for the time-
dynamic visualization of cardiac excitation were addressed:
• Transformations for electrograms were developed based on phase, signal energy and

activity, capable of retaining information about fractionation and double potentials.
• A realistic 3D representation was achieved using the patient specific atrial anatomy

and acquired electrode positions.
• Dynamic excitation during atrial fibrillation was successfully visualized, incorporating

simultaneous biatrial basket catheter mapping data from 126 intracardiac channels.
These methods allow to more intuitively comprehend spatio-temporal relation ships, as wave-
fronts can easily be tracked over time and the reentrant patterns or collisions be explained.
Additionally, the new techniques allow to visualize continuous processes and are not limited
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to a time span like the basic cycle length. They are particularly useful during mapping of
unstable tachycardias like atrial fibrillation, as the cardiac activity is acquired continuously.

Focusing on statistical analysis, mapping the mechanisms that perpetuate atrial fibrillation
is one of the most challenging tasks in contemporary electrophysiological research. Evidence
has been found that the depolarization during fibrillation is not completely random but
exhibits a certain level of organization. Within the presented thesis, different approaches
were presented to identify the dominant excitation patterns:
• Classification and sparse modeling were assessed to understand excitation dynamics.
• Automatic detection of dominant patterns based on their activation time was imple-

mented and successfully demonstrated to detect the frequency and origin of ectopic
activity.
• Morphology-based analysis of local activation waves was introduced as a technique to

determine the dominant patterns during atrial fibrillation.
• Measures for the quantitative analysis of detected excitation classes were introduced

and combined with the annotation in time domain as method to structure the electro-
gram data for visual assessment.

Concluding, the analysis of individual wavefronts was suggested as promising approach
due to the high variability of depolarization patterns. Both the spatio-temporal activation
sequence and the morphology-based analysis were introduced as techniques to determine
the dominant patterns during atrial fibrillation. Statistical evaluation allows to differentiate
between singular events and more frequently occurring depolarization patterns. These two
methods are considered valuable tools in the statistical analysis of fibrillatory activity and
will be subject of further research. Implementation of additional signal processing and
feature extraction is considered a very promising approach to delineate information about
the atrial substrate and the process of depolarization.

With respect to novel devices, two major catheter types are of significant interest to the
current cardiological community. While panoramic baskets provide the opportunity to record
simultaneous electrogram information from a wide range of atrial sites, the Orion

TM
mapping

catheter is designed for local high-density mapping. Within the presented thesis, the electrode
to endocard contact was assessed for both catheter types:
• Computational catheter models were implemented, which allowed to simulate shape

adaption and coverage of different electrode designs within the atrial geometry.
• The effect of spline bunching in panoramic mapping catheters was quantitatively

assessed for both clinical and simulated scenarios.
• The field of view for the Orion catheter was quantified based on clinical mapping data

from multiple centers.
Based on these examinations, knowledge about the position of electrodes in space was
identified as fundamental prerequisite for correct data analysis with diagnostic purpose.
Methods for the corresponding processing and visualization were demonstrated on multiple
clinical datasets. The field of view of the Orion catheter is of special interest for mapping
during atrial fibrillation, in which its utility was neither analyzed nor clinically evaluated up
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to now. This knowledge will be helpful in the design of analysis algorithms to specifically
analyze respective mapping data.

Considering the clinical application, three major achievements were accomplished within
the presented research:
• Algorithms were developed to import mapping data from all three commercially

available mapping systems.
• Data structure was standardized to allow processing of information recorded with all

systems.
• Software was developed for the presentation of analysis results in the clinical environ-

ment, respecting the peculiar needs of physicians and engineers.
All algorithms were designed to highlight areas of interest to the treating physician for a
more detailed inspection. Processing is done within minutes, allowing to include the analysis
without prolonging the procedure. The processing techniques can cope with the enormous
amount of mapping data acquired by state-of-the-art mapping systems, and help to identify
substrate which is critical for the tachycardia.

Overall, many advances in the field of processing intracardiac electrograms have been
described in this thesis. The multichannel analysis of mapping data allowed to automatically
identify critical sites in several clinical cases of atrial flutter. Addressing the basic research
on atrial fibrillation, different approaches were described to statistically evaluate dominant
excitation patterns. These will hopefully aid in understanding the underlying mechanisms
and allow to design patient specific treatment therapies. During the course of his PhD
studies, the author co-organized the congress Atrial Signals 2015, which was attended by
many renown international physicians and engineers. Although a lively debate about the
underlying mechanisms of atrial fibrillation took place, all participants acknowledged the
importance of intracardiac electrogram signal processing, as it can allow to understand both
excitation dynamics and the atrial substrate. The presented techniques will hopefully aid in
a more complete understanding of atrial arrhythmias, optimization of treatment strategies,
reduction of costs to the health care system and ultimately reduce the burden on the individual
patient.



APPENDIXA
Annotated Atrial Anatomy

(a)Right atrium in lateral view. (b)Right atrium in postero-septal view.

(c) Left atrium in AP view. (d) Left atrium in PA view.
Figure A.1: Annotated atrial anatomy. Most simulations shown in the thesis were performed on this bi-
atrial anatomicalmodel, whichwas previously generated from segmentedMRI data (see [172] for details).
The right atrium (RA) is shown from lateral (a) and postero-septal view (b). For the left atrium (LA), the
antero-posterior (AP, c) and postero-anterior (PA, d) viewwere chosen.
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