

STEELS FOR NUCLEAR FUSION REACTORS

Michael Rieth

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS

Contents

- Fusion Energy Generation
- Fusion Reactor Components
- Steel Demands for a DEMOnstration Reactor
- Steel Challenges for In-Vessel Components
- EUROfusion Steel Development Project

Nuclear Fusion

<u>Gravity confined</u> T = 15 Mio. °C E_t = 3.7 x 10¹⁷ GW → ρ_E = 30 W / m³

$\frac{\text{Magnetic confinement}}{E_t ~ 3.5 GW}$ ρ_E ~ 4 MW / m³ →T = 100 Mio. °C

Tokamak Plasma Discharge

Existing Plasma Facilities

Nuclear fusion is relatively easy to accomplish. The trick is to gain energy out of it!

(Restart in 2015)

ITER (Our target device) MAST Upgrade (Start in 2016)

Roadmap to Fusion Power

7 OCAS-Seminar, M. Rieth - Steels for Nuclear Fusion Reactors Gent, 11.10.2016

WHERE IS THE CHALLENGE?

DEMO – the step in between

Fusion Reaction: Deuterium-Tritium Fusion

- Kinetic energy (½ m v²) of α-particles
 (⁴He) and neutrons = 17.6 MeV
- α -particles and neutrons shall have the same impulse $(m^* v) \rightarrow$ neutron must be 4 times faster than Helium
- kinetic energy distributed by mass ratio $m_n/m_{\alpha} = 4/1 = (14.1/3.5)$,
- 80% of energy in kinetic neutrons

Fuel

Tritium does not occur in Nature and thus has to be produced (from Lithium)

Tritium is radioactive. There is not enough tritium due to ist half-life of 12 years. Therefore tritium has to be produced from lithium by "breeding".

The resources for Fusion are **Deuterium** and Lithium

"Fuel for ever !"

The fuel required to cover the energy consumption of a 4 persons household per year fits easily into bag.

75 mg Deuterium 225 mg Lithium

contained in:

2 Liters water and 250 g rocks

energy content:

48000 Millionen Joule equivalent to 1000 Liters light fuel oil

Introduction to the reactor - components

Fusion Reactor Core

14 OCAS-Seminar, M. Rieth - Steels for Nuclear Fusion Reactors Gent, 11.10.2016

Breeding Blanket Functions and Requirements

- Main functions of the blanket:
- 1. Tritium production (breeding) and extraction
- 2. Transforming surface and neutron power into heat and collection of the **heat for electricity production**
- 3. Contribute to the **shielding** of the Vacuum Vessel and Toroidal Field Coils
- The design has to be featured in order to achieve:
- 1. Low maintenance time
- 2. Sufficiently long lifetime
- 3. High safety level (e.g. accidents, operations, etc.) and low environmental impact (including waste)
- 4. Reasonable direct cost including operation (e.g. small dimensions, high efficiency, etc.)

HCPB: Breeder and Neutron Multiplier

Daniel Iglesias et al., Blanket Segment Remote Maintenance, EFDA-WP13-DAS07-T05 (CCFE)

Example of kinematics for OB segment extraction

HCPB Blanket: EU DEMO-2050 (KIT, 2013)

Water-steam Cycle (Rankine)

Power Generation System

HCPB: Breeder and Neutron Multiplier

F. Cismondi, HCPB TBM 2008 (KIT)

HCPB: Manifold system

F. Cismondi, HCPB TBM 2008

Divertor

(e.g. W)

diffuses into the SOL and follows the flux

Impurities can originate from the surface

be desorbed thermally or by impact of

Wall material can be introduced to the

particles (ions, atoms, electrons ...)

lines towards the divertor

Institute for Applied Materials - Applied Materials Physics

Slide 15

Outer and Inner Vertical Target Dome Liner, Cassette

AnsaldoRicerche ietà Finmessaniza

B.Riccar

22 OCAS-Seminar, Gent, 11.10.2016 M. Rieth - Steels for Nuclear Fusion Reactors

Institute for Applied Materials - Applied Materials Physics

Slide 51

DEMO Divertor

Maintenance System: ITER Configuration

Maintenance System: Vertical port

Steel Demand - DEMO

Future Steel Demand

DEMO – DEMOstration Power Plant

Steel Demand - DEMO

Structural Materials: Internal components

Components		Quantity needed / tons	
Blanket		~ 2,180	
Divertor Cassette Body		~ 1,170	
MAIN candida	ate	Qualification	on & stage
Alternat materia	ive Is HT-FM steels	T ≤ 650 °C	ated R&D quired
	Advanced materials unde considered for Fissi	er examination also being on GEN IV reactors!	

Structural Materials – External components

Components	Quantity needed / tons	
Vacuum Vessel	> 10,000	
Superconducting Coils	~ 29,300	
Cryostat	~ 15,300	

Material: SS 316LN – ITER Grade

Steel Demand - DEMO

DEMO – DEMOstration Power Plant (BoP part)

Components	Total weight / tons per unit	
Steam generators	~ 800	
Turbines HP/LP	~ 120 - 200	
Pressurisers	~ 106	
Generators	~ 250	

Pressuriser

Total weight per reactor: 4,500 tons

Steam generator

Institute for Applied Materials - Applied Materials Physics

30 OCAS-Seminar, M. Rieth - Steels for Nuclear Fusion Reactors Gent, 11.10.2016

DEMO: Total steel needs

Components	Steel	Quantity needed / tons
Blanket	EUROFER	~ 2,180
Divertor Cassette Body	EUROFER	~ 1,170
Vacuum Vessel	SS (ITER grade)	> 10,000
Superconducting Coils	SS (ITER grade)	~ 29,300
Cryostat	SS (ITER grade)	~ 15,300
BoP	SS	~ 4,500

> 3,300 tons EUROFER > 62,450 tons SS

cf **~ 406 M€**

Steel Challenges (in-vessel components)

DEMO Blanket – Assumptions & Requirements

DEMO is a pulsed device with pulses of at least 2 h. The neutron wall load is ~1.3 MW/m² (conservative), 15 dpa/fpy in steel is taken as a benchmark. **Starter Blanket**: ~1.33 fpy or 4 calendar years.

- → Starter Blanket steel dose 20 dpa (conservative)
- → Starter Blanket **steel 6000-9000** large-amplitude **fatigue cycles**

A **second Blanket**, lasting 11-16 calendar years could then be assumed. At 30% availability, this is **3.3-4.8 fpy**.

- → Second Blanket steel dose 50-70 dpa
- → Second Blanket **steel 13000-20000** large-amplitude **fatigue cycles**

DEMO will keep as back-up option the possibility to use water in the breeding blanket (such as the Water Cooled Lithium Lead concept in PPCS) and to rely on a technology similar to Pressurized Water Reactors (PWR) in the BoP. For this, the coolant inlet temperature must be reduced to T_{inlet} < 300°C.

→ increased radiation embrittlement concerns for the ferritic steel structure

Elimination of certain elements:

Ni, Nb, Mo, Al, Co

34

EUROFER – Activation response

- Production of radioactive isotopes by high-energy radiation (neutrons)
- Aim: "Hands-on" limit after 100 years
- Reference element: Iron

10⁵

A. Möslang, IAM-AWP, 2015

10⁵

Fe

Nb

Mo Al Si

Co

EUROFER – Alloying elements

- Replacment of certain elements
 - Mo -> W
 - Nb -> Ta
- Reduce impurities
- Low Activation Steels: Fe-Cr-W-V-Ta-C-N

Element	MIN Value	MAX Value	Remarks
	(wt%)	(wt%)	
Carbon	0.090	0.120	Target 0.11
Manganese	0.20	0.60	Target 0.4
Phosphorus		0.005	
Sulphur		0.005	
Silicon		0.050	
Nickel		0.01	ALAP
Chromium	8.50	9.50	Target 9
Molybdenum		0.005	ALAP
Vanadium	0.15	0.25	
Tantalum	0.10	0.14	Target 0.12
Tungsten	1.0	1.2	Target 1.1
Titanium		0.02	
Copper		0.01	ALAP
Niobium		0.005	ALAP
Aluminium		0.01	ALAP
Nitrogen	0.015	0.045	Target 0.030
Boron		0.002	ALAP
Cobalt		0.01	ALAP
As+Sn+Sb+Zr		0.05	Target
Oxygen		0.01	

ALAP: as low as possible

DEMO Blanket – Materials & Strategies

Materials

- Baseline → EUROFER
- Development of steels with advanced properties for the plasma-facing part of the blanket (15-30 cm)
 Advanced Steels for higher temperatures and

doses

Topics

- Ferritic ODS steels
- RAFM for high temperatures
- RAFM for water cooling

M. Gilbert, CCFE

EURO*fusion* Steel Development

wp**MA**

Budget (w/o overheads)

Advanced Steels (AS): Objectives

ODS steel: Fabrication & Demonstration

- Production of a 100 kg 14%Cr ODS steel batch by mechanical alloying
 - Plates: thickness 2 mm, size 2 m²
 - Demonstration of applicability to first wall
- Alternatives to mechanical alloying (feasibility studies and industrial large-scale fabrication)

Optimization of RAFM steels for possible water cooling

- Specific thermal treatments (for optimum DBTT)
- Change of chemical composition (for optimum DBTT)

Development of RAFM steels for high temperature applications

- Specific thermal treatments on EUROFER
- Special thermo-mechanical treatments (TMT)
- Fine tuning of the chemical composition

RAFM: Reduced Activating Ferritic-Martensitic

Toughness – Limits of Heat Treatment

Strength – Limits of Heat Treatment

Effect of Extreme Thermo-Mechanical Treatments

Very high austenitization temperature for full dissolution of secondary phases

- \rightarrow Increase PAG size for improved creep strength (lower diffusion)
- \rightarrow Possible problem: Retain enough ductility at RT

Dissolution of all secondary phases (carbides, nitrides)

Cooling to rolling temperature in furnace (metastable austenite phase) Rolling in the austenite phase

Effect of Extreme Thermo-Mechanical Treatments

Extreme TMT

Standard Heat Treatment

1250°C/30 min + TMT at 800°C + 750°C / 2h

1050°C / 30min + 750°C / 2h

- Very large prior austenite grains (0.5-1 mm)
- But fine martensite laths

Advanced Steels: High Temp. Applications

Adjustment of EUROFER properties by varying heat treatment temperatures

- Austenitisation: 980 °C 1150 °C
- Tempering: 700 °C 760 °C

Advanced "EUROFER-type" Steels

Development of RAFM steels for high temperature applications

Special thermo-mechanical treatments (TMT, "aus-forming", ...)

TMT at OCAS, Gent, Belgium

44 OCAS-Seminar, M. Rieth - Steels for Nuclear Fusion Reactors Gent, 11.10.2016

Advanced "EUROFER-type" Steels

Optimization of RAFM steels for possible water cooling

- Change of chemical composition
- Specific thermal treatments (for optimum DBTT)

Several batches have been produced CSM, Italy

45 OCAS-Seminar, M. Rieth - Steels for Nuclear Fusion Reactors Gent, 11.10.2016

Effect of Carbon Content on Phase Transformation

CCT Diagrams

Advanced "EUROFER-type" Steels

Development of RAFM steels for high temperature applications

Fine tuning of the chemical composition

Validation Studies for Thermodyn. Mod.

TEM studies on aged Eurofer samples

 \rightarrow 30000 h, 550-600 °C: Is there Z phase Cr₂TaVN₂?

Cr Ta Fe V Ta Fe

- → Precipitation maps
- \rightarrow Correct parameters for simulation
- **48** OCAS-Seminar, Gent, 11.10.2016

Outlook

- Objective: improvement of selected EUROFER properties
 - Operating temperature window
 - Irradiation resistance
 - Low activation
- Intensive steel R&D for specific fusion applications (about 10 years at least)
- Close cooperation with industry supported by EUROfusion
- Increasing numbers of irradiation campaigns (beyond 2030)
- Additional future topics:
 - Joinig
 - Fabrication issues (rolling, forging, bending, ...)
 - Codes & Standards (e.g. RCC-MRX, ASME)

CONGRATULATIONS, OCAS !!!

51

Institute for Applied Materials - Applied Materials Physics

wp**MAT**

Partners:

and joined universities

Additional Slides

Tokamaks

Tokamaks

Plasma Operation in JET

OCAS-Seminar, 54 Gent, 11.10.2016

M. Rieth - Steels for Nuclear Fusion Reactors

Worksite progress

M. Rieth - Steels for Nuclear Fusion Reactors

Manufacturing progress

Europe is responsible for delivering remote handling systems for the divertor, the neutral beam system, in-vessel viewing and metrology, and the cask transfer system for activated components—in all, about EUR 250 million of investment. At the Divertor Test Platform facility hosted by the VTT Technical Research Centre in Finland, the final demonstration of the divertor cassette remote handling system was carried out in February 2015.

Manufacturing progress India

India is responsible for the fabrication and the assembly of the 30 x 30 m. ITER cryostat. Pictured, six 60° base plates are temporarily assembled at the factory in order to check tolerances prior to shipment to ITER. The first cryostat elements are scheduled to arrive at ITER in November 2015.

Manufacturing progress

Japan is manufacturing half of the 18 giant toroidal field coils needed for ITER. Here, the D-shaped pancake windings are heat treated at 650 °C for 100 hours to react tin and niobium to form the superconducting compound niobium-tin.

