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Abstract

Efficient and effective system-level power, energy, and thermal management are very important issues in
modern computing systems, e.g., to reduce the packaging cost, to prolong the battery lifetime of embedded
systems, or to avoid the chip from possible overheating. These are some of the main motivations why com-
puting systems have moved from single-core to multicore/manycore platforms, mainly to balance the power
consumption and computation performance. Furthermore, clustered architectures with multiple voltage is-
lands, where the voltage on a cluster can change independently and all cores in a cluster share the same
supply voltage at any given time, are an expected compromise between global and per-core Dynamic Volt-
age and Frequency Scaling (DVFS) for modern manycore systems. In this dissertation, we focus on two of
the most relevant problems for such architectures, specifically, optimizing performance under power/thermal
constraints, and minimizing energy under performance constraints.

For performance optimization, we first present a novel thermal-aware power budgeting concept, called
Thermal Safe Power (TSP), which is an abstraction that provides safe power and power density constraints as
a function of the number of active cores. TSP conceptually changes the typical design that uses a single and
constant value as power budget, e.g., the Thermal Design Power (TDP), and can also serve as a fundamental
tool for guiding task partitioning and core mapping decisions. Secondly, we show that runtime decisions typ-
ically used to optimize resource usages (e.g., task migration, power gating, DVFS, etc.) can result in transient
temperatures much higher than the normally considered steady-state scenarios. In order to be thermally safe,
it is important to evaluate the transient peaks before making resource management decisions. To this end, we
present a lightweight method for computing these transient peaks, called MatEx, based on analytically solv-
ing the system of thermal differential equations by using matrix exponentials and linear algebra, instead of
using regular numerical methods. Thirdly, we present an efficient and lightweight runtime boosting technique
based on transient temperature estimation, called seBoost. Traditional boosting techniques select the boosting
levels (for boosted cores) and the throttle-down levels (for non-boosted cores) arbitrarily or through step-wise
control approaches, and might result in unnecessary performance losses for the non-boosted cores or may
fail to satisfy the required runtime performance surges. Contrarily, seBoost relies on MatEx to select the
boosting levels, and thus it guarantees meeting the required runtime performance surges, while maximizing
the boosting time with minimum performance losses for the non-boosted cores.

In regards to energy minimization, we first focus on a single cluster, and we propose to use the Double
Largest Task First (DLTF) strategy for partitioning tasks to cores based on load balancing and idle energy
reduction, combined with either the Single Frequency Approximation (SFA) scheme or the Single Voltage
Approximation (SVA) scheme for deciding the DVFS levels for execution. Furthermore, we provide thor-
ough theoretical analysis of both solutions, in terms of energy efficiency and peak power reduction, against
the optimal task partitioning and optimal DVFS schedule, especially for the state-of-the-art designs, that have
a limited number of cores inside each cluster. In SFA, all the cores in a cluster run at a single voltage and
frequency, such that all tasks meet their performance constraints. In SVA, all the cores in a cluster also run at
the same single voltage as in SFA; however, the frequency of each core is individually chosen, such that the
tasks in each core can meet their performance constraints, but without running at unnecessarily high frequen-
cies. Finally, we extend our analysis for systems with multiple clusters, and present two task-to-core mapping
solutions when using SFA on individual clusters, specifically, a dynamic programming algorithm that derives
optimal solutions for homogeneous manycores, and a lightweight and efficient heuristic for heterogeneous
manycores.
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Chapter 1

Introduction

Over the past decade, single-core systems have reached a practical upper-limit in regards to their maximum
operational frequency, mostly due to power dissipation. This is one of the main motivations why chip man-
ufacturers shifted their focus towards designing chips with multiple cores that operate at lower voltages and
frequencies than their single-core counterparts, potentially achieving the same computational performance
while consuming less power. Moreover, the performance demands of modern applications have considerably
increased and can no longer be satisfied only by raising the frequency of a single-core system. Therefore,
modern computing systems require many cores in the same chip, and their number is expected to increase
every year [39].

The ever-increasing transistor integration and the observed limits on voltage scaling for next-generation
technology nodes are starting to result in high power densities and temperatures on manycore systems, which
are the causes behind the emerging dark silicon problem [95]. Particularly, when a common cooling solution
is used for several scaling generations (i.e., the cooling costs are kept constant), all the cores on a chip can no
longer be simultaneously active at the nominal operation levels without violating the chip’s thermal constraints
[19, 95, 99]. Such an effect challenges the viability of further cost-effective technology scaling, given that
it can slow down the current performance gain trends between generations [27]. Therefore, efficient and
effective power and thermal management techniques are now all the more relevant, especially for optimizing
performance, as they promise to maintain technology scaling trends feasible, without incurring in high cooling
costs, while avoiding the chip from possible overheating. Furthermore, in order to prolong the battery lifetime
of embedded systems, or to cut the power bills in servers, energy management for energy minimization under
performance (or real-time) constraints is another relevant (almost dual) problem.

In this dissertation, we focus on two of the most relevant problems related to power management on mul-
ticore and manycore systems. Specifically, one part of the dissertation focuses on maximizing/optimizing
computational performance under power or thermal constraints, while another part focuses on minimizing
energy consumption under performance (or real-time) constraints.

1.1 Optimization Goals and Constraints

1.1.1 Computational Performance
Computational performance refers to how quickly the system can execute an application or a given set of
applications. The performance of an application can be measured in, e.g., execution time, throughput, In-
structions per Cycle (IPC), Instructions per Second (IPS), speed-up factor (normalized to a known reference),
etc. For a set of applications, the term overall system performance is commonly used, which is a generic term
that can, e.g., refer to maximizing the summation of the weighted throughput of all applications (weights add
some sort of priority to the applications), minimize the longest execution time among all applications (i.e.,
the makespan), etc.

The resulting performance of an application depends on how the application is executed, e.g., in how
many threads the application is parallelized, the types of cores to which the application is mapped, how other
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applications are simultaneously using the shared resources (e.g., caches, the Network on Chip (NoC), etc.),
the execution frequency of the cores, etc. The characteristics of individual applications also play a major role
in its resulting performance, e.g., their Thread-Level Parallelism (TLP) or their Instruction-Level Parallelism
(ILP), and directly impact how an application’s performance scales in regards to the number of parallel threads
or executed frequency. Applications with high TLP normally scale well when they are parallelized in many
threads, while applications with high ILP normally scale well with increasing frequencies. For example,
Figure 1.1 shows the total number of executed cycles, total execution time, and speed-up factors, of one
instance of five applications from the PARSEC benchmark suite [4] (with simsmall input) with respect to the
execution frequency, when executing a single thread on different types of cores.
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Figure 1.1: Execution cycles, execution time, and speed-up factors (normalized to the execution time of each
application running at the lowest frequency on each type or core) of one instance of five applications from
the PARSEC benchmark suite [4], executing a single thread with simsmall input, based on simulations in
gem5 [5] and McPAT [57] (for 22 nm), and measured on the Exynos 5 Octa (5422) processor [92].

Maximizing the overall system performance is generally the most commonly pursued optimization goal.
Nevertheless, for applications with real-time deadlines, meeting the deadlines can be formulated as satis-
fying performance requirements, and therefore for such cases performance is considered as a constraint.

1.1.2 Power and Energy Consumption
Every core doing some computation consumes power (unit Watt [W ]), and this power consumption produces
heat. Power consumption is an instantaneous metric that changes through time. Particularly, a core executing
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a certain application thread will consume different amounts of power at different time instants. For exam-
ple, Figure 1.2 shows the resulting power consumption values of simulations conducted with Sniper [8] and
McPAT [57], for a PARSEC bodytrack application executing 4 parallel threads on a quad-core Intel Nehalem
cluster running at 2.2GHz. The power consumption observed on a core at a given time point depends on sev-
eral parameters, e.g., the technology node, the underlying architecture of the core, the execution mode (e.g.,
active, idle, sleep, etc.), the voltage and frequency settings, the current temperature, the current application
phase, etc.
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Figure 1.2: Power consumption of a PARSEC bodytrack application with simsmall input, executing 4 threads
at 2.2GHz on a quad-core Intel Nehalem cluster, based on simulations using Sniper [8] and McPAT [57].

On the other hand, energy is the integration of power over time (units Joule [J ] or Watt second [Ws]).
Namely, when plotted, the energy consumed between two time points is equal to the area below the power
curve between those two time points. Hence, energy can be associated to a time window, e.g., an application
instance. For example, when the power consumption between two time points remains constant, the energy
consumed between those points can be simply computed by multiplying the power consumption by the time
elapsed between the points. Figure 1.3 presents average power and energy consumption values for one in-
stance of five applications from the PARSEC benchmark suite [4] executing a single thread on an out-of-order
(OOO) Alpha 21264 core.

Minimizing the overall energy consumption under performance or timing constraints is a common opti-
mization goal for mobile embedded systems that desire to prolong the battery lifetime. Contrarily, it is rare
to optimize for power consumption, and thus power is mostly considered as a constraint, for example, to
run the system under a given per-chip power budget.

1.1.3 Temperature

As mentioned in Section 1.1.2, when some part of the chip consumes power, it also generates heat. However,
although the changes in power consumption can be considered to be instantaneous for practical purposes,
changes in temperature do not occur instantaneously, as there is a thermal capacitance associated to every
element on a chip. After enough time elapses without a change in power consumption (depending on the val-
ues of the thermal capacitances), the temperature throughout the chip eventually reaches its steady-state. The
intermediate temperature values that are visible until the steady-state temperatures are achieved are defined
as the transient temperatures, as shown in the example in Figure 1.4.
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Figure 1.3: Average power and energy consumption values of one instance of five applications from the
PARSEC benchmark suite [4] executing a single thread with simsmall input, based on simulations in gem5 [5]
and McPAT [57] (for 22 nm), and measured on the Exynos 5 Octa (5422) processor [92].

Figure 1.4: Example of transient
and steady-state temperatures for a
change in power at t = 1 s.
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Maintaining the temperature throughout the chip under a certain critical value (or thermal threshold) is
of paramount importance. Otherwise, excessively high temperatures on a chip may cause permanent failures
in transistors. In order to dissipate this power and temperature, chips are provided with a cooling solution
(e.g., the combination of the thermal paste, the heat spreader, the heat sink, the cooling fan, etc.). To aid in
the design of such a cooling solution, the common industry practice is to provide system designers with the
Thermal Design Power (TDP) of a specific chip, defined as “the highest expected sustainable power while
running known power intensive real applications” [34]. Therefore, since TDP should be a safe power level to
run the system, manufacturers generally recommend to design the cooling solution to dissipate TDP, such that
the cooling solution is not over-dimensioned. However, given that TDP is not the maximum achievable power,
chips are also normally provided with some kind of Dynamic Thermal Management (DTM) technique. DTM
techniques are mostly reactive (i.e., are triggered after the critical temperature is reached or exceeded) and
can power-down cores, gate their clocks, reduce their supply voltages and execution frequencies, boost-up
the fan speed, etc. Namely, if some part of the chip heats up above a critical value (condition identified using
temperature sensors distributed on the chip), then DTM is triggered in order to reduce the temperature. An
abstract example of a standard reactive control-based closed-loop DTM technique [34] based on voltage and
frequency scaling can be seen in Figure 1.5.

Thermal constraints are generally the biggest limiting factor for performance optimization, especially in
modern computing platforms with very high power densities due to the dark silicon problem.
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Figure 1.5: Abstract example of a standard reactive control-based closed-loop DTM technique based on
voltage and frequency scaling. When the critical temperature is violated in some part of the chip, the voltage
and frequency levels of all cores are reduced. After a control period (or hysteresis time), and if the maximum
temperature in the chip is below the critical value, the voltage and frequency levels of the cores can be brought
back to the nominal operation settings.

1.2 Optimization Knobs

1.2.1 Core Heterogeneity
The continuous increase in power density and performance demands have led to the emergence of heteroge-
neous multicore and manycore systems composed by different types of cores, where each type of core may
have different performance, power, and energy characteristics [98], as already seen in the examples on Fig-
ure 1.1 and Figure 1.3. The distinct architectural features of each type of core can be thus potentially exploited
to meet the system’s goals and to satisfy its constraints (e.g., computational performance, power consumption,
energy consumption, temperature, etc.). Therefore, for power and energy efficiency, heterogeneous multicore
and manycore systems are a promising alternative over their homogeneous counterparts, as an application
may witness large improvements in performance and/or power when mapped to an appropriate type of core.
An example of a heterogeneous system is the Exynos 5 Octa (5422) processor (simple block diagram shown
in Figure 1.6) based on ARM’s big.LITTLE architecture [21].

Quad-Core Cortex-A7 Cluster

CPU0 CPU1 CPU2 CPU3

Snoop Control Unit

512 kB L2 Cache

Quad-Core Cortex-A15 Cluster

CPU0 CPU1 CPU2 CPU3

Snoop Control Unit

2 MB L2 Cache

Mali T-628 MP6 GPU

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5

Memory Management Unit (MMU)

32 kB/256 kB L2 Cache

Low Power Multi-Layer Bus

2GB DRAM

Figure 1.6: Exynos 5 Octa (5422) processor based on ARM’s big.LITTLE architecture.

1.2.2 Task-to-core Assignment/Mapping
Task-to-core assignment (or mapping) involves deciding to which specific core a thread is mapped to, both in
terms of the type of core and the physical location of the core in the chip. Namely, due to the characteristics
of the different cores (as explained in Section 1.2.1), the type of the core to which a thread is mapped to
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affects its resulting execution time and power/energy consumption. Nevertheless, the physical location to
which a thread is mapped to is also a non-trivial issue, given that this impacts the execution time (due to
communication latencies among cores, potential link congestions, simultaneous utilization of shared resources
by other threads, etc.), as well as on the resulting temperature distribution throughout the chip (due to the heat
transfer that occurs among cores, which can potentially create or avoid hot spots).

1.2.3 Dynamic Power Management (DPM)
Dynamic Power Management (DPM) refers to dynamically selecting the power states of individual cores.
In general terms, cores could be individually set to the execution/active mode, or they could be set to some
low-power mode when they are inactive (e.g., idle/clock-gated, sleep, power-gated, etc.). The available num-
ber of low-power modes depends on the chip, and each different low-power mode has associated a power
consumption, as well as different latencies for transitioning from one mode to another.

1.2.4 Dynamic Voltage and Frequency Scaling (DVFS)
Dynamic Voltage and Frequency Scaling (DVFS) refers to the ability of dynamically scaling the voltage
and/or frequency of cores. The voltage value supplied to a core limits the maximum frequency at which it
can be stably executed. Higher voltages allow for stable execution at higher frequencies. As shown in [82],
the relationship between the supply voltage of a core and the maximum frequency for stable execution can be
modeled according to Equation (1.1),

fstable = k · (Vdd − Vth)
2

Vdd
(1.1)

where Vdd is the supply voltage of the core, fstable is the maximum stable frequency, Vth is the threshold
voltage for the given technology, and k is an architecture-dependent fitting factor. For a given Vdd, running at
frequencies lower than fstable is stable, but power/energy inefficient, and therefore generally avoided (further
details about this statement are later presented in Chapter 3.4). Figure 1.7 uses Equation (1.1) to model the
voltage and frequency relationship necessary for stable execution on a 28 nm x86-64 microprocessor [22].

Figure 1.7: Supply voltage vs.
maximum stable frequency re-
lationship, modeled with Equa-
tion (1.1) for the experimental
results of a 28 nm x86-64 micro-
processor developed in [22].
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The granularity at which voltage scaling and frequency scaling are available may vary across chips. For
example, we could have:
• Global voltage and frequency scaling: All cores in the chip share a common voltage and frequency.
• Global voltage scaling: All cores in the chip share a common voltage, but individual cores can change

their frequencies independently.
• Voltage and frequency islands/clusters: Different groups of cores share a common voltage and frequency.
• Voltage islands/clusters: Different groups of cores share a common voltage, but individual cores can

change their frequencies independently.
• Per-core voltage and frequency scaling: The voltage and frequency of all cores is selected individually.

Given that there is a quadratic relationship between the power consumption of a core and its supply
voltage (explained in detail later in Chapter 3.3), having a system with only one global supply voltage for
all cores can be power/energy/thermal inefficient. The reason behind this inefficiency is that the voltage
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of all cores in the chip is then determined by the core requiring the highest frequency, while other cores
requiring lower frequencies are also forced to execute at a high voltage, thus consuming more power/energy
and producing more heat than necessary. On the other hand, having an individual voltage for every core can
be very power/energy/thermal efficient, since every core could be supplied with the lowest stable voltage for
its required frequency. However, based on Very Large-Scale Integration (VLSI) circuit simulations, it has
been suggested in [29] that it may be costly for implementation as it can suffer from complicated design
problems. Therefore, cluster-based architectures with multiple voltage islands are a promising compromise
for multicore and manycore systems, as different clusters/islands can run at different voltages at any time
point. For example, in Intel’s Single Chip Cloud computer (SCC) [36], cores are clustered into groups of
eight cores sharing a common voltage, while the frequency can be selected for every tile of two cores, such
that there can be up to four different frequencies inside every cluster of eight cores sharing a voltage. On the
other hand, in the Exynos 5 Octa (5422) processor [92] (Figure 1.6), all the cores inside every cluster share
both their voltage and frequency, and therefore only frequency settings are exposed to the software level,
while the voltage is automatically selected according to the chosen frequency.

1.3 Performance Optimization under Power or Thermal Constraints

As explained in Section 1.1.1, maximizing the overall system performance is one of the most commonly
pursued optimization goals on manycore systems. However, the temperature on the chip needs to remain
below safe margins at all times without incurring in high cooling costs. For such a purpose, the most common
approaches are to directly use temperature as a constraint, or to consider some kind of power budgets (either
at a per-chip or per-core level). In either case, there is also a physical power constraint on every chip (not an
abstraction like a power budget) which can, e.g., be determined by the inner chip’s wire thickness or by the
supply voltage.

Power budgets are abstractions that allow system designers to indirectly handle temperature issues. The
main idea is that running the system under a given power budget should presumably avoid violations of the
temperature constraints. In line with this idea, a power budget aimed to serve as a thermal abstraction can
be considered safe, when satisfying the power budget guarantees the satisfaction of the thermal constraints.
Furthermore, a power budget can be considered efficient if, when consuming the entire budget, the resulting
peak temperature is very close to the critical temperature, i.e., there is no unnecessary thermal headroom.
An abstract example of a safe and efficient power budget is shown in Figure 1.8, in which, when the system
consumes the entire power budget, the maximum temperature among all elements in the chip at any time point
remains just under the critical temperature.
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Figure 1.8: Abstract example of a safe and efficient power budget.

Optimizing performance under a power budget constraint therefore involves assigning threads/tasks to
cores considering the core heterogeneity available on the chip, and then applying DPM and DVFS. Developing
algorithms to solve such a problem is potentially less complex than directly dealing with temperature, because
of two main reasons. First, transient temperature effects are implicitly ignored, and satisfying the power
budget should be thermally safe from a transient perspective. Secondly, the heat transfer among cores is
also implicitly ignored, meaning that this approach mostly deals with task-to-core assignment, rather than
task-to-core mapping. That is, the physical location of the cores to which tasks are assigned is mostly relevant
due to communication costs/latencies, but not due to thermal effects. Therefore, as long as the power budgets
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are satisfied, it should not matter whether all tasks are mapped to cores close together in a concentrated
manner, or if the mapping is evenly distributed across the chip.

Optimizing performance using power budgets as constraints is potentially simpler than directly dealing with
temperature by considering thermal constraints. Nevertheless, the reduced complexity should be transfered
to the techniques that derive such power budgets. Otherwise, using very simplistic power budgets would
result in poor performance and/or thermally unsafe behavior. In other words, efficient performance opti-
mization under power budget constraints should be intended to partition the problem in two subproblems,
and not merely to reduce the overall complexity.

The major issue with techniques based on power budget constraints is how to guarantee whether the
power budget is met or not. In practice, if the chip is equipped with one power meter for every core, meeting
a power budget can be simply achieved by measuring the actual power consumption on every core and acting
accordingly, e.g., applying DVFS such that the measured power is as close as possible to the power budget
but without exceeding it, thus, running as fast as possible for optimizing the core’s performance. In case that
power meters are not available in the hardware or in case their granularity is not suitable (e.g., only one power
meter for the entire chip), then design-time application profiling (e.g., [48]) or runtime power estimation
through performance counters (e.g., [38, 58, 83, 106]) are reasonable alternatives as an intermediate step to
relate core settings (i.e., DPM states and DVFS levels) and power consumption values.

The alternative to using power budgets as constraints is to optimize performance by dealing directly with
temperature, either by using thermal sensors or through thermal models. In comparison to using power budget
constraints, directly dealing with temperature accounts for the effects of heat transfer among cores (hence, the
location of active cores does matter) and transient temperatures, thus avoiding possible pessimistic or unsafe
scenarios that can exist when using power budgets as thermal abstractions.

Using thermal sensors can generally be more accurate and easier to implement than using thermal models,
since it is very common to find several thermal sensors inside modern chips, possibly even one thermal sensor
for every core, as is the case in the Exynos 5 Octa (5422) processor [92]. Nevertheless, the problem with such
an approach is that doing proactive management without using some kind of thermal model to predict future
temperatures is not feasible. Therefore, thermal management techniques that only rely on thermal sensors
are generally reactive in nature, avoiding thermal violations or exploiting the available thermal headroom at
runtime, with little involvement in terms of predictability or timing guarantees.

On the other hand, optimizing performance using thermal models is more complex and challenging than
using thermal sensors or power budget constraints. However, it enables efficient and thermally safe proac-
tive management, as thermal models can predict the future thermal behavior (not possible when only using
thermal sensors) while accounting for the effects of heat transfer among cores and transient temperatures
(not possible on power budgeting approaches). Similar to any other approach based on modeling, it can be
potentially affected by accuracy losses, e.g., due to modeling errors or the dynamic behavior of applications.
Nevertheless, thermal modeling errors can normally be handled by using some modeling method that relies
on real measurements on a specific chip and cooling solution, e.g., [17]. Moreover, such an option is also well
suited to deal with process variations, heat sink imperfections, aging effects, multiple fan speeds, etc.

1.4 Energy Minimization under Performance Constraints

For real-time tasks with hard deadlines or for performance-constrained applications, rather than maximizing
performance, the main objective is to guarantee that all applications meet their timing/performance require-
ments/constraints. If all timing and performance constraints are satisfied, then the system can focus on further
optimization, such as minimizing the overall energy consumption to prolong the battery lifetime of embedded
systems or to cut the power bills in servers. Minimizing energy under performance constraints involves parti-
tioning the threads/tasks into task sets (such that several tasks can be assigned to the same core, handled with
preemption, but having no more task sets than cores on the chip), assigning every task set to a core/cluster, and
then applying a DPM and DVFS policy on each core and cluster. Even for chips with no DVFS capabilities,
obtaining the optimal task partitioning for energy minimization, i.e., the task-to-core assignment that results
in the lowest possible energy consumption, is already an NP-hard problem [3, 18].
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Minimizing energy is related to minimizing average power consumption; however, it is not precisely
equivalent. For example, as seen in Figure 1.1 and Figure 1.3, when the DVFS level of a core increases,
generally, the average power consumption of the core raises and the application’s execution time is reduced.
Given that energy is the integration of power through time (i.e., for a constant power, it can be computed by
multiplying power with time), when the ratio of increase in average power consumption is larger than the
decrease in the execution time, executing at low DVFS levels results in low energy consumptions. However,
when the opposite happens, decreasing the DVFS levels will not further reduce the energy consumption, as
in such cases the increase of the execution time becomes more significant than the reduction of the average
power consumption (normally due to high leakage power consumptions). This effect can for example be
observed in Figure 1.3b and Figure 1.3d for x264, where it is not energy efficient to execute applications at
frequencies lower than 0.4GHz and 1.4GHz, respectively.

Therefore, minimizing energy under performance constraints is tightly related to maximizing performance
under power and thermal constraints. Particularly, they are almost dual problems, both using the same
optimization knobs and requiring a very similar background knowledge. Nevertheless, due to the above
mentioned differences, they should be approached as separate problems.

1.5 Summary of the State-of-the-art, Problems, and Challenges

For performance optimization under power budget constraints, the most common and traditional ap-
proach is to consider a single and constant per-chip power budget as an abstraction from thermal problems.
The main idea is that the summation of the power consumptions of all individual elements on the chip should
not exceed the per-chip budget. Particularly, the most widely used per-chip power budget is TDP, and there
are several researches in the literature aiming at performance optimization for such a case [54, 64, 87, 93]. A
similar approach is to have a single and constant per-core power budget, where the power consumption of
individual cores cannot exceed the per-core budget. The value of the per-core power budget for such cases
could be computed by dividing TDP by the number of cores on the chip. However, using a single and constant
value as a power constraint, either at a per-chip or per-core level, can easily result in thermal violations or
significantly underutilized resources on multicore/manycore systems (a motivational example justifying this
statement is later presented in Chapter 5.1.1). The challenge here is therefore to derive a novel thermal-aware
power budgeting technique that does not result in thermal violations or underutilized resources.

With respect to performance optimization under thermal constraints based on thermal modeling,
most state-of-the-art techniques have high time complexity, making them well suited for design-time deci-
sions (e.g., [25, 48]), but not so well suited for runtime thermal management, especially when considering
transient thermal effects that can produce transient temperatures that are higher than the associated steady-
state values (a motivational example about this issue is later presented in Chapter 6.1.1). The challenge here
is thus to find methods to speed-up current thermal management techniques, e.g., with the same thermal-
aware power budgeting techniques as mentioned above, and with lightweight techniques to estimate whether
a mapping/scheduling decision might result in a thermal violation due to transient temperatures.

For performance optimization under thermal constraints using thermal sensors, boosting techniques
have been widely adopted in commercial multicore and manycore systems, e.g., Intel’s Turbo Boost [9,10,35,
91] and AMD’s Turbo CORE [66]. Specifically, boosting techniques leverage any available thermal headroom
at runtime by allowing the system to execute cores at high DVFS levels during short time intervals while
ignoring the standard operating power budgets, e.g., TDP. Given that running cores at high DVFS levels
increases their power consumption, applying boosting will normally result in an increment of the temperature
through time. Therefore, after the temperature in some part of the chip reaches the critical value, the system
must return to the nominal operation levels (requiring some cool-down time before boosting again), or use a
closed-loop control-based approach to oscillate around the critical temperature (thus prolonging the boosting
time indefinitely). The problem with these kinds of techniques is that, due to their reactive nature and lack
of thermal modeling, they are unsuitable for providing predictability or timing/performance guarantees, and
these are challenges for new boosting techniques.

In regards to energy minimization under performance constraints (or hard real-time constraints),
task scheduling, task partitioning, and DVFS policies have been explored in the academia and industry in the

13



past decades. Most researches assume to have either per-core DVFS (e.g., [3, 12, 14, 108]), or global DVFS
(e.g., [15, 50, 94, 109]). However, aside from a few examples (e.g., [18, 24, 53, 65, 107]), there is not much
research for cluster-based architectures with multiple voltage islands. Given that obtaining the optimal task
partitioning for energy minimization is an NP-hard problem [3, 18], most task partitioning strategies are
based on polynomial time greedy algorithms like the Largest Task First (LTF) strategy [109]. With respect
to DVFS, once tasks are assigned to cores and clusters, it is necessary to choose a policy that selects the
voltage of the cluster and the frequencies of the cores. For energy minimization of periodic real-time tasks or
performance-constrained applications, the simplest and most intuitive scheme (adopted by several researchers
in the past, e.g., [15, 65]) is to use a single voltage and frequency for execution, specifically, the lowest
voltage and frequency that satisfies the timing and performance constraints, denoted as the Single Frequency
Approximation (SFA) scheme. Combining a task partitioning strategy like LTF with a DVFS policy like SFA
is clearly not the optimal solution for energy minimization; however, it is a practical and easy to implement
approach, with little or no DVFS overheads at runtime. Nevertheless, deriving the worst-case efficiency in
terms of energy consumption for combining these two schemes is an open problem. Furthermore, when also
considering core heterogeneity, the energy consumption and execution time of a task changes both with the
DVFS levels and the type of the core to which the task is assigned to, as already observed in Figure 1.1 and
Figure 1.3. Therefore, state-of-the-art solutions for homogeneous systems [24, 53, 65, 107] will not derive
good solutions for the heterogeneous case, while state-of-the-art solutions for heterogeneous systems [18,63]
are not yet in a mature state.

1.6 Dissertation Contributions

This dissertation makes the following contributions for two of the most relevant problems related to power
management on multicore and manycore systems, specifically, optimizing performance under power/thermal
constraints, and minimizing energy under performance constraints. An overview of the interactions and
relations of these contributions in a common manycore system are shown in Figure 1.9.
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1.6.1 Performance Optimization under Power and Thermal Constraints

Efficient Thermal-Aware Power Budgeting

We present a novel thermal-aware power budgeting concept, called Thermal Safe Power (TSP), which is an
abstraction that provides safe (but efficient) power and power density constraints as a function of the number
of simultaneously active cores. Based on the thermal model of a specific chip and its cooling solution, we
derive a polynomial-time method for computing the Thermal Safe Power (TSP) values for the worst-case
mappings. That is, we derive an algorithm for computing a per-core power budget for a given number of
simultaneously active cores, that will be thermally safe for any possible mapping with that number of active
cores, and that will also have little pessimism which could lead to underutilized resources and a large thermal
headroom. Furthermore, we derive a second algorithm that is able to compute the TSP values at runtime for a
particular mapping of active cores and ambient temperature, further reducing any possible thermal headroom.

TSP conceptually changes the typical design that uses a single and constant value as per-chip or per-core
power budget, e.g., the Thermal Design Power (TDP). Moreover, TSP can also serve as a fundamental tool
for guiding task partitioning, core mapping, DPM, and DVFS algorithms on their attempt to achieve high
predictable performance under thermal constraints.

Analytical Transient and Peak Temperature Computation

We show that runtime decisions typically used to optimize resource usages (e.g., task migration, DPM, DVFS,
etc.) can result in transient temperatures much higher than the normally considered steady-state scenarios. In
order to be thermally safe, it is important to evaluate the transient peaks before making resource management
decisions. To this end, we present a lightweight method for computing these transient peaks, called MatEx.
MatEx works with any compact thermal model composed by a system of first-order differential equations,
e.g., the thermal model used by HotSpot [33]. In contrast to traditional numerical methods, MatEx is based
on matrix exponentials and linear algebra, thus allowing us to derive an analytical expression that can be used
for computing any future transient temperatures without requiring incremental computations or incurring in
accuracy losses. Moreover, the peaks in the transient temperatures can be then computed simply by analyzing
and differentiating such an expression, which is something not possible to do when solving the system of
differential equations using traditional numerical methods.

Selective Boosting

We present an efficient and lightweight runtime boosting technique based on transient temperature estimation
(specifically, based on MatEx), called seBoost. Traditional boosting techniques select the boosting levels (for
boosted cores) and the throttle-down levels (for non-boosted cores) arbitrarily or through step-wise control
approaches, and might result in unnecessary performance losses for the non-boosted cores or in failing to
satisfy the required runtime performance surges for the boosted cores. Contrarily, seBoost relies on MatEx
to select the boosting levels. Therefore, seBoost can guarantee to meet the required runtime performance
surges for the boosted cores, while maximizing the boosting time with minimum performance losses for the
non-boosted cores.

1.6.2 Energy Minimization under Real-time/Performance Constraints

Energy and Peak Power Efficiency Analysis for Simple Approximation Schemes

Focusing on an individual cluster of a chip, we present the Double Largest Task First (DLTF) scheme (an
extension of the LTF scheme) and propose to use it to partition the tasks assigned to a cluster into task sets
(assigned to cores). Then, we propose to use the Single Frequency Approximation (SFA) or the Single Voltage
Approximation (SVA) scheme for selecting the DVFS levels on the corresponding cluster. Combining DLTF
with either SFA or Single Voltage Approximation (SVA) are two simple and practical solutions for energy
minimization that incur in little or no DVFS overheads at runtime. In SFA, all the cores in a cluster run at a
single voltage and frequency, such that all tasks meet their performance constraints. Furthermore, since all the
cores run at a single frequency and no frequency alignment for DVFS between cores is needed, any uni-core
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DPM technique for reducing the energy consumption for idling can be easily incorporated individually on
each core in the cluster. In SVA, all the cores in the cluster also run at the same single voltage as in SFA;
however, the frequency of each core is individually chosen, such that the tasks in each core can meet their
performance constraints, but without running at unnecessarily high frequencies. Hence, for the worst-case
execution times of tasks, all the cores are executing tasks at all times, and there is no need for any DPM
technique to reduce the energy consumption for idling.

Most importantly, we provide thorough theoretical analysis of both solutions, in terms of energy efficiency
and peak power reduction, against the optimal task partitioning and optimal DVFS schedule, especially for
the state-of-the-art designs that have just a few number of cores per cluster.

Energy-Efficient Task-to-core Assignment for Clustered Manycores

We extend the analysis of SFA for systems with multiple clusters and present two task-to-core mapping
solutions when using SFA on individual clusters, specifically, an optimal dynamic programming algorithm
for homogeneous manycores, and a lightweight and efficient heuristic for heterogeneous manycores.

1.7 Dissertation Outline
The rest of this dissertation is organized as follows:
• Chapter 2 summarizes the background and related work concerning performance optimization under pow-

er/thermal constraints and energy minimization under performance (or hard real-time) constraints.
• Chapter 3 summarizes the system model used throughout the dissertation.
• Chapter 4 summarizes the common simulation framework used for the experimental evaluations conducted

throughout the dissertation.
• Chapter 5 presents the details of the thermal-aware TSP power budgeting technique.
• Chapter 6 presents the details of the MatEx transient and peak temperature computation technique.
• Chapter 7 presents the details of the seBoost boosting technique.
• Chapter 8 presents thorough theoretical analysis for combining DLTF with either SFA or SVA, in terms of

energy efficiency and peak power reduction, against the optimal task partitioning and optimal DPM/DVFS
schedule, especially for the state-of-the-art designs that have just a few number of cores per cluster.

• Chapter 9 extends the analysis of SFA for homogeneous multicore systems clustered in multiple voltage
islands, and presents the details of an optimal dynamic programming technique for energy-efficient task-
to-core assignment when using SFA on individual clusters.

• Chapter 10 presents the details of a lightweight and efficient heuristic technique for energy-efficient task-
to-core assignment for heterogeneous multicore systems clustered in multiple voltage islands.

• Chapter 11 summarizes this dissertation and discusses the future work.

1.8 Orientation within Funding Projects

1.8.1 Invasive Computing
Figure 1.10 illustrates the operational flow of an integrated and coordinated cross-layer dark silicon man-
agement method and its interactions with other layers of a heterogeneous computing system, as part of the
Power-Efficient Invasive Loosely-Coupled MPSoCs (B3) subproject, in the context of the Transregional Col-
laborative Research Centre Invasive Computing [SFB/TR 89] supported by the German Research Foundation
(DFG). The chapters focusing on performance optimization under power/thermal constraints (i.e., Chapters 5,
6, and 7), are concrete contributions to the dark silicon management layer of this subproject.

After reading the raw data from the hardware sensors, the sensing layer collects and correlates any rele-
vant information from the chip to be used as a basis for the dark silicon management decisions. This relevant
data are hardware monitor values (e.g., power consumption of cores and their temperature), as well as probes
that capture traces (e.g., thread execution time) or evaluate system-specific information (e.g., thread gener-
ation rates). These power and workload statistics are forwarded from the sensing layer to the dark silicon
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Figure 1.10: Overview of a distributed dark silicon management system illustrating the interaction of different
system components across several hardware and software layers.

management layer, for a certain spatial granularity (cores, clusters, or group of clusters) and temporal gran-
ularity (time elapsed between two inputs from the sensing layer). The granularity of the statistics is selected
based on feedback from the dark silicon management layer.

The dark silicon management layer performs various optimizations, particularly, dark silicon patterning
(i.e., mapping alternatives for active cores), DPM (i.e., deciding the power state of cores), DVFS, boosting
decisions, and coarse-/fine-grained power budgeting. These optimization decisions are based on the pre-
processed monitored data received from the sensing layer, accounting for the heterogeneous nature of the
different compute fabrics in a clustered architecture. Then, the chosen dark silicon patterning and DVFS
levels are forwarded to the agent system as a set of thermally-safe mapping alternatives. Moreover, the dark
silicon management layer provides feedback to the sensing layer in order for it to adapt the collection of plat-
form data based on the achieved power and energy efficiency. These adaptations may be changing the spatial
and temporal granularity of observation, or selecting/filtering specific data sources.

The agent layer then performs resource allocation and dark silicon-aware mapping based on the inputs
received from the dark silicon management layer, in order to maximize the performance-per-power efficiency
in a distributed manner. The agent layer is both power and temperature agnostic, and thus thermal violations
would occur frequency without the existence of the dark silicon management layer. Therefore, power-efficient
resource management under dark silicon constraints (i.e., power and temperature constraints) is enabled by
the continuous feedback between the dark silicon management layer and the agent layer. The dark silicon
management layer has a physical view of the available resources and the system state (e.g., temperature,
power consumption, etc.), such that it can define thermally-safe mapping alternatives that are forwarded to
the agent layer. Contrarily, the agent layer has an application level view and it attempts to provide a good
performance-per-power efficiency for the applications. Namely, the agent layer optimizes performance under
the physically defined constraints provided by the dark silicon management layer.
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1.8.2 Power Management for Multicore Architecture with Voltage Islands
The chapters focusing on energy minimization under real-time/performance constraints (i.e., Chapters 8, 9,
and 10), are concrete contributions to projects Power Management for Multicore Architecture with Voltage
Islands (PM4MAVI) (part of the Baden Württemberg MWK Juniorprofessoren-Programms) and Energy Effi-
cient Schedules for Multi-core Architectures with Voltage Islands (part of DAAD exchange projects).
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Chapter 2

Background and Related Work

This chapter summarizes the background and related work concerning performance optimization under pow-
er/thermal constraints and energy minimization under performance (or hard real-time) constraints.

2.1 Performance Optimization under Power or Thermal Constraints

2.1.1 Techniques using Per-chip Power Constraints
There are many works in the literature that focus on performance optimization under a per-chip power budget
constraint, e.g., [16, 54, 86, 87, 93].

Sartori and Kumar [93] propose three design-time techniques for maximizing the overall performance,
specifically, mapping the power management problem to a knapsack problem, mapping the problem to a ge-
netic search problem, and mapping the problem to a simple learning problem with confidence counters. Their
work shows that these techniques prevent the total power consumption from exceeding the given per-chip
power budget, and they enable the placement of more cores on a die than would be normally allowed by the
budget.

Kultursay et al. [54] build a 32-core TFET-CMOS heterogeneous multicore chip and present a runtime
scheme to optimize the performance of applications executing on such cores, while operating under a given
per-chip power budget. The runtime scheme combines thread-to-core mapping on a heterogeneous system,
dynamic work partitioning, and dynamic power partitioning.

Ebi et al. [16] present a distributed agent-based1 power management technique aiming at peak temperature
reduction for soft real-time tasks on a homogeneous system with per-core DVFS. The thread-to-core mapping
is assumed to be given, and the DVFS level selection of independent cores is managed by agents (one agent
per core), based on trading power units among adjacent cores, compared to a classical supply and demand
model of computational economics. The total amount of power units is fixed at design-time by considering a
per-chip power budget.

Raghunathan et al. [87] attempt to exploit process variations among cores in order to choose the most
suitable cores for each application, for overall performance optimization on homogeneous systems. The
results of their experiments suggest that, mostly due to the proportional increment of the process variations
on a chip, the overall performance can be potentially increased along with the increment of the dark silicon
area.

2.1.2 Techniques using Thermal Constraints
Khdr et al. [48] propose a design-time resource management technique based on dynamic programming,
denoted as DsRem, which aims at maximizing the overall system performance by distributing the available
cores among different applications, such that the maximum steady-state temperature among all cores remains
below the critical temperature. By relying on extensive design-time application profiling, DsRem determines

1An agent is an autonomous computational entity (its behavior at least partially depends on its own experience) that perceives and
acts upon its environment [105].
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the number of active cores and their DVFS levels considering the TLP and ILP characteristics of every appli-
cation. Particularly, for applications that have a high TLP, DsRem will try to execute them by using a large
number of cores running at low DVFS levels (thus exploiting the parallelism of such applications). Contrarily,
applications with high ILP will try to be executed by using a small number of cores running at high DVFS
levels. If there exist applications that exhibit both high TLP and high ILP, DsRem will attempt to execute
them by using a large number of cores running at high DVFS levels. In more detail, DsRem consist of three
phases: (1) it first distributes the cores among applications (considering their TLP and ILP characteristics)
and chooses the DVFS levels to maximize the overall performance under a TDP constraint, (2) it then greedily
maps applications with a high average power consumption to cores with a low steady-state temperature (esti-
mating the new temperature after mapping every task) attempting to reduce the peak steady-state temperature,
and (3) it heuristically adapts the previous decisions in an attempt to reduce the peak steady-state temperature
or exploit available thermal headroom.

The work in [96] proposes a variability-aware dark silicon manager, called DaSiM. The idea behind
DaSiM is to exploit the heat transfer among cores by greedily deriving a thread-to-core mapping that min-
imizes the peak temperature on the chip, assuming a model for core-to-core leakage power variations. An
efficient thread-to-core mapping will directly influence the temperature distribution on the chip due to im-
proved heat dissipation, potentially enabling the activation of more cores (beneficial for high TLP applica-
tions), and/or boosting certain cores (beneficial for high ILP applications). To enable runtime optimizations,
DaSiM also presents a lightweight steady-state temperature prediction mechanism that can estimate the re-
sulting temperature distribution for a candidate solution.

Hanumaiah et al. [25] propose a thermal management technique based on RC thermal networks which
attempts to minimize the latest completion time among the applications for homogeneous multicores with
per-core DVFS. The technique is separated in two parts: first, the task-to-core allocation is determined at
the beginning of a migration interval (typically every 50ms to 100ms), and secondly, the DVFS levels of
the cores are adjusted independently (typically every 5ms to 10ms). The proposed technique uses convex
optimization to derive an optimal solution to the stated problem, but with very high time complexity which is
only suited for design-time decisions. Nevertheless, authors then exploit the structure of certain matrices in
the RC thermal network in order to have an approximate solution which is reportedly 20 times faster than the
convex optimization approach. Authors also consider the dependency between leakage power consumption
and temperature in their formulation through a piece-wise linear approximation. The implementation of such
a technique for runtime adaptations is however debatable, as the experiments in [25] show that it may require
more than 15ms to compute the DVFS levels of each core for a given mapping, and more than 120ms to
decide the corresponding mapping solution, which is generally not fast enough for runtime usage in manycore
systems.

Intel’s Turbo Boost [9, 10, 34, 35, 91] enables a group of cores to execute at high DVFS levels when there
exists headroom within the power, current, and temperature constraints. More specifically, whenever the
temperature, power, and current are below their predefined constraints, the cores increase (i.e., boost) their
DVFS levels one step at a time (within a control period, e.g., 1ms) until either the temperature, power, or
current reaches its predefined upper limit (which could also depend on the number of active cores). Similarly,
whenever the temperature, power, or current exceed their associated constraints, the cores reduce their DVFS
levels one step at a time (also within a control period, e.g., 1ms) until the corresponding constraints are
satisfied, or until the nominal DVFS levels are reached. Naturally, as already seen in Figure 1.3, boosting to
high DVFS levels will result in high power consumptions. Nevertheless, although the temperature will raise
due to the increments in power consumption, Turbo Boost exploits the thermal capacitances inside the chip
by knowing that this temperature raise will not occur immediately after a change in power, but it will rather
require some time to reach or exceed the critical temperature. Figure 2.1 shows an example of the behavior
of Intel’s Turbo Boost for a critical temperature of 80◦C, based on simulations conducted with gem5 [5],
McPAT [57], and HotSpot [33], when executing two applications from the PARSEC benchmark suite [4]
(each application executing 8 parallel dependent threads, one thread per core) on a system with 16 OOO
Alpha 21264 cores.

Computational sprinting [85] is a different type of boosting technique that proposes to optimize per-
formance at runtime by exploiting parallelism. Particularly, sprinting is based on activating cores that are
normally inactive (e.g., idle or in a low-power mode) during short bursts of time (typically shorter than 1 s).
Motivated by the almost cubic relationship between the DVFS levels of execution and the power consumption
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Figure 2.1: Intel’s Turbo Boost [9] example. The bold line represents the maximum temperature among all
elements in the chip at a given time point (left axis). The performance of the applications is measured in Giga
Instructions per Second (GIPS) (right axis).

on a core (as seen in Figure 1.3), computational sprinting intentionally discourages boosting through DVFS.
On the contrary, sprinting is motivated by the ideally linear relationship between computational performance
and power consumption which is expected when activating several cores running at the same DVFS levels.
However, although this is an interesting approach, only applications with very high ILP will scale their per-
formance linearly when activating more cores, while the performance increments of normal applications can
become quickly saturated due to what is known as the parallelism wall, as seen in the example in Figure 2.2.
Furthermore, the latencies associated to waking up cores from low-power modes, as well as the correspondent
thread migrations, can potentially result in large overheads, especially when considering the short duration
of the sprinting periods. Because of these reason, Intel’s Turbo Boost will generally achieve a higher overall
performance than computational sprinting.
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2.1.3 Temperature Estimation
There are significant works in the literature for temperature estimation/computation in integrated circuits.
Most techniques limit themselves to steady-state computations, e.g., [56, 84, 112]. However, there are also
several techniques capable of dealing with transient temperature estimations, e.g., [2, 32, 33, 51, 89, 103, 104,
114].

Wang and Chen [104] present a 3-D transient temperature simulator which is based on the Alternating Di-
rection Implicit (ADI) method, having linear time complexity and a linear memory requirement. The problem
with this method is that it cannot model different packaging components with detailed temperature distribu-
tion information. Klab et al. [51] propose to couple a gate-level logic simulator with an analytical solution.
However, their model is only able to consider the dynamic power consumption of cores, assuming a negligible
leakage power, which is not a realistic assumption. Moreover, the analytical solution limits the approach only
to dice geometries, since it is computationally exhausting for complex geometries with composite materials.
Ardestani and Renau [2] propose a time-based sampling simulator, called ESESC, that enables integrated
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power and temperature evaluations in statistically sampled simulations for multicore systems. The problem
with ESESC is that the temperature simulations cannot be easily separated from the complete system sim-
ulations, which denies the ability to have fast temperature estimations based on power consumption values.
Rai et al. [89] present a technique for temperature estimation based on application-specific calibrations us-
ing the available built-in sensors, such that it does not need information about the chip’s floorplan or power
consumption of the cores. Their work shows that every application has a unique temperature profile, thus
allowing to derive a lightweight method for temperature estimation that combines mapping and scheduling
information. The limitation of [89] is that it assumes that an application consumes constant power during its
entire execution, which is not necessarily a practical assumption, as already seen in Figure 1.2.

The most widely used temperature simulator is HotSpot [33]. Based on the popular stacked-layer pack-
aging scheme of modern VLSI systems (as seen in the example in Figure 2.3), HotSpot constructs a compact
thermal model that results in an RC thermal network (further details in Chapter 3.5). Aside from modeling
silicon and several packaging layers made of different materials, HotSpot also includes a high-level on-chip
interconnect self-heating power and thermal model that allows it to take in consideration the thermal impacts
of the interconnects. For transient temperature estimations, HotSpot solves the system of first-order differen-
tial equations associated to the RC thermal network of a specific chip (more details in Chapter 3.5) by using
a fourth-order Runge-Kutta numerical method with an adaptive number of iterations.

Figure 2.3: Stacked layers in a
typical Ceramic Ball Grid Array
(CBGA) package (adapted from a
figure in [33]).
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There exist a few techniques that currently compete with HotSpot, e.g., [32, 103, 114]. Power Blur-
ring [114] is a matrix convolution method, where the distribution of temperature throughout the chip is repre-
sented as a blurred image of the power consumption map when it is blurred with a filter mask for the impulse
response. The temperature profile for a given power consumption map is therefore computed by convolv-
ing the power map with the filter mask. The filter mask for the impulse response is obtained using a Finite
Element Analysis (FEA) tool such as ANSYS [1]. Wang et al. [103] present a compact thermal modeling
technique that derives a composable thermal model. The composable model is derived from detailed struc-
tures for each basic block on the chip by using the finite difference method. The complexity of the model
is then reduced, and the technique attempts to merge the boundary nodes of blocks to improve the reduction
efficiency, thus leading to different space discretizations for the whole thermal system. By using Generalized
Integral Transforms (GIT), Huang and Lee [32] present an analytical temperature simulator that estimates
the temperature distribution on a chip with a truncated set of spatial bases that only needs a small number of
truncation points.

Coskun et al. [13] present a thermal management approach that is based on temperature estimation using
Autoregressive Moving Average (ARMA) modeling, which is able to estimate future temperatures based on
past temperature measurements. The ARMA model is updated at runtime whenever a workload change is
detected. However, this technique does not directly model the relationship between power consumption,
DVFS levels, and the workload, and more importantly, it does not consider a thermal model that accounts
for the transfer of heat among cores. Therefore, the work from [13] is not well suited to estimate future
temperatures before a change in workload occurs, and thus it is not able to evaluate the potential benefits of a
candidate task migration or change of the DVFS levels.
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2.2 Energy Minimization under Real-time/Performance Constraints

2.2.1 Per-core DVFS Techniques

For per-core DVFS, power-aware and energy-efficient scheduling for homogeneous multicore and manycore
systems has been widely explored, especially for real-time systems with hard deadlines, e.g., [3, 11, 12, 14,
60, 108]. Chen and Thiele [12] have shown that using the LTF strategy for energy-efficient task partitioning
results in solutions with upper-bounded approximation factors, in which the absolute values of the approx-
imation factors depend on the specific hardware platforms. Particularly, by power gating cores to reduce
the energy consumption, Xu et al. [108] and Chen et al. [12] present polynomial-time algorithms to derive
task partitions that attempt to execute at the most energy-efficient DVFS levels. Moreover, de Langen and
Juurlink [14] provide some heuristics for energy-aware scheduling, while Moreno and de Niz [60] propose
an algorithm that, with polynomial-time complexity, computes the optimal DVFS setting for systems with
uniform DVFS steps and negligible leakage power consumption.

There are also several works in the literature focusing on heterogeneous multicore systems with per-core
DVFS, e.g., [110]. The work in [110] presents a dynamic programming algorithm that uses trimming by
rounding, in which the rounding factor trades the quality of the derived solution (in terms of energy consump-
tion) with the total execution time of the algorithm.

2.2.2 Global DVFS Techniques

For homogeneous systems with global DVFS, negligible leakage power consumption, and negligible over-
heads for entering/leaving low-power modes, Yang et al. [109] present an optimal DVFS schedule for energy
minimization when executing periodic frame-based real-time tasks (i.e., all the tasks have the same arrival
time, deadline, and period). Their solution is based on an accelerating DVFS schedule and the deep sleeping
property (which states that every core in the system is put to sleep after executing all the workload in its
ready queue), as shown in the example in Figure 2.4. For a system with M cores, after the task partitioning
is finished, the cores are ordered increasingly according to their assigned workload, and every periodic frame
is then divided into M fragments. In the i-th fragment, all active cores are executing at frequency fi during
time ti. After time ti elapses, the i-th core finishes all its workload for the current frame and it goes to sleep,
such that there are M − i + 1 active cores in the i-th fragment. The problem with the approach in [109] is
that it is highly restrictive and it cannot be easily extended for systems with non-negligible leakage power
consumption, or to handle periodic real-time tasks (i.e., tasks have different arrival times and periodicity).

Core 1: · · · · · ·f1

Core 2: · · · · · ·f1 f2

...

Core M − 1: · · · · · ·f1 f2
fM−1

Core M : · · · · · ·f1 f2
fM−1

fM

t1 t2 tM−1 tM

Figure 2.4: An accelerating schedule for
frame-based real-time tasks satisfying
the deep sleeping property.

The studies in [15, 94] relax some of the assumptions made in [109] by considering periodic real-time
tasks with non-negligible leakage power consumption, as well as non-negligible overhead for entering/leaving
low-power modes. The technique in [15] first partitions tasks to choose the number of active cores, and it
then decides the DVFS levels of the active cores for execution, using SFA when tasks do not complete earlier
than the estimated worst-case execution times. Nevertheless, [15] lacks the theoretical analysis that supports
the effectiveness of their approach for energy minimization in the worst cases. Seo et al. [94] propose to
dynamically balance the task loads of multiple cores in order to optimize the power consumption during
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execution, and to repartition tasks to adjust the number of active cores in order to reduce the leakage power
consumption under low load conditions.

2.2.3 Clustered Manycores / Multiple Voltage Islands
In the literature, there exist some heuristic solutions for energy minimization on clustered homogeneous
manycores with multiple voltage islands, e.g., [24, 53, 65, 107]. Furthermore, among these examples, [65]
and [107] use the SFA scheme to choose the DVFS levels on individual clusters.

Particularly, Kong et al. [53] propose a heuristic that selects the number of active clusters and then parti-
tions the tasks according to the LTF scheme. The task model from [53] is then extended by Han et al. [24]
in order to consider shared resources. Moreover, the work in [24] also presents a modified (synchronized)
version of LTF, that is used to partition the tasks by assuming that only one task can access a particular re-
source at any given time. Nikitin and Cortadella [65] propose an Extremal Optimization Heuristic (EOH)
assuming that tasks are modeled as task graphs, considering the corresponding communication costs between
tasks. However, it considers that only one task can be assigned to each core, and it fails to provide theoretical
analysis for the energy efficiency of the their solution. Wu et al. [107] propose a heuristic based on genetic
algorithms that assigns real-time tasks to clusters, in which the selection, crossover, and mutation operators
gradually optimize the energy consumption through an iterative process.

To the best of our knowledge, there exist only a handful of works in the literature that target either average
power consumption minimization or energy minimization on clustered heterogeneous manycores with mul-
tiple voltage islands, e.g., [18, 63, 64]. Muthukaruppan et al. [64] present a hierarchical power management
framework based on control theory, which aims at minimizing the overall average power consumption while
satisfying the required Quality of Service (QoS) of the applications (i.e., their performance constraints), while
using TDP as a per-chip power constraint. Task migrations and DVFS are used at different levels, particu-
larly, at a task level, at a cluster level, and on the chip controllers. The controllers are coordinated in such
a way that they can throttle down the power consumption in case TDP is exceeded, and to do task-to-core
mapping in order to optimize the overall performance. The work in [63] presents a hierarchical power man-
agement technique based on price theory (following supply and demand based market mechanisms) for clus-
tered heterogeneous multicores with multiple voltage islands, which aims at minimizing the average power
consumption (not energy) while satisfying application performance goals under a per-chip power constraint,
specifically, TDP. As this approach is not targeted for real-time systems, it does not guarantee a feasible
schedule for real-time tasks with hard deadlines. The technique from [63] is implemented as a collection of
autonomous agents (specifically, task agents, core agents, cluster agents, and a chip agent), where each agent
represents a transactional body in the market (earning, bidding, purchasing, and distributing computational
resources). However, since minimizing the power consumption does not always translate into minimizing
energy, the techniques from [64] and [63] could potentially result in high energy consumption values when
executing at low frequencies even if the performance constraints are satisfied. Contrarily, Elewi et al. [18] do
target energy minimization and propose a simple greedy task partitioning scheme called Equally-Worst-Fit-
Decreasing (EWFD), which focuses on balancing the total workload assigned to each cluster. After the task
partitioning is completed, EWFD uses SFA to select the DVFS levels on individual clusters.
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Chapter 3

System Model

This chapter summarizes the system models used throughout the dissertation.

3.1 Application Model
For the chapters targeting performance optimization (i.e., Chapters 5, 6, and 7), we do not consider any
specific application model for our contributions. Furthermore, with the exception of just a few cases, all the
experiments/examples conducted/presented throughout the dissertation consider multi-threaded applications
from the PARSEC benchmark suite [4], where every executed application runs several parallel dependent
threads. Nevertheless, the chapters targeting energy minimization (i.e., Chapters 8, 9, and 10) focus on
real-time embedded systems, for which some application model is required.

Particularly, for Chapters 8, 9, and 10, we consider that every thread of an application (for the case of
multi-threaded applications) can be modeled as a periodic real-time task with an implicit hard deadline, such
that there are in total R periodic tasks, denoted as {τ1, τ2, . . . , τR}. We assume that there is no data de-
pendency among tasks, i.e., we consider independent tasks. Note that although this seems like a limiting
assumption, it is in fact a practical assumption when considering closed intellectual property multi-threaded
applications, for which is not generally possible to accurately model data dependency among threads. Fur-
thermore, there exist methods to model a set of dependent tasks as a set of independent ones [52]. Every task
τn releases an infinite number of task instances with period (and relative deadline) dn and every instance has
worst-case execution cycles eq,n when being executed on a core of type q. For example, Figure 1.1 already
presented experimental results showing the total execution cycles of several applications from the PARSEC
benchmark suite [4], where it can be observed that, for those applications, the execution cycles of a task re-
main constant (for practical purposes) in regards to the DVFS levels for execution, but a certain task needs a
different amount of cycles when running on different types of cores. Moreover, note that for memory bound
applications, the worst-case execution cycles of a task might grow with the execution frequency, as mem-
ory operations do not scale with the core’s frequency. Thus, for memory bound applications, the maximum
worst-case execution cycles (normally occurring at the highest DVFS levels) should be considered.

In regards to scheduling, we consider partitioned scheduling, where every task is assigned to one core.
When a new task instance (also denoted as job) arrives to the system and is ready for execution, the task is
executed on the assigned core. Moreover, in each independent core, we use Earliest Deadline First (EDF) [59]
to schedule the tasks, such that the task instance (job) with the earliest absolute deadline on each core has the
highest priority and preempts other tasks, as seen in the example in Figure 3.1. The least common multiple
among all periods of all tasks is called the hyper-period, denoted as D. The schedule decided by the selected
scheduling policy (e.g., EDF), is repeated every hyper-period. A special (more restricted) case of this task
model are periodic framed-base tasks, where all R tasks arrive at the same time and have the same period and
relative deadline, e.g., as is the case for the work in [109] shown in the example in Figure 2.4.

After the task partitioning is completed by considering M cores, all R tasks are grouped into M disjoint
task sets, denoted as {S1,S2, . . . ,SM}, such that there are no more task sets to map than available cores in
the chip. We assume that if the task partitioning strategy groups the tasks into less than M task sets, dummy
empty task sets (i.e., task sets without assigned tasks that do not need to execute any workload) are included in
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Figure 3.1: Example of an EDF schedule for three periodic tasks, i.e., τ1, τ2, and τ3, with periods (and
deadlines) d1 = 2ms, d2 = 3ms, and d3 = 5ms, hyper-period D = 30ms, and worst-case execution cycles
eq,1=0.5 · 106 cycles, eq,2=1 · 106 cycles, and eq,3=2 · 106 cycles, assigned to one core of type q running
at 1GHz. Symbol ↓ represents the arrival time of a new task instance (job) ready for execution. Symbol ↑
represents the period and deadline of a task instance (job). For periodic tasks with implicit deadlines, ↓ and ↑
overlap, i.e., l. In this example, in case two or more tasks have the same absolute deadline and one of these
tasks was already being executed, then we continue to run it in order to reduce the number of preemptions.
Otherwise, we run the task with lowest index.

order to have a total of M task sets. We define the cycle utilization of task set Si running on a core of type q as
wq,i=

∑
τn∈Si

eq,n
dn

, with unit cycles
second . Empty task sets without assigned tasks have a resulting cycle utilization

of 0 for any type of core. The total cycle utilization among all tasks for a given core of type q, can be computed
as
∑R

n=1
eq,n
dn

=
∑M

i=1 wq,i. By defining wq,0 = 0 for all cores of type q, for simplicity of presentation and
without loss of generality, we order the task sets such that 0 = wj,0 ≤ wj,1 ≤ wj,2 ≤ · · · ≤ wj,M , where j
is an arbitrary type of core used for reference when ordering the task sets, e.g., the lowest-power core. It has
been well studied, e.g., in [59], that executing task set Si on a core of type q at frequencies higher than or
equal to wq,i with EDF guarantees that all the tasks inside task set Si will meet their timing constraints.

In this way, when using EDF to schedule tasks on individual cores (as is the case in this dissertation),
satisfying the hard real-time constraints of all tasks translates to satisfying the cycle utilizations (i.e., per-
formance constraints) of all task sets. This is the reason why throughout the dissertation we always refer
to real-time or performance constraints, rather than one or the other. Furthermore, the application model
described in this section is not restricted to the real-time domain, and any general performance-constrained
applications that requires to recurrently execute a certain amount of computation in a specific time interval
can be modeled as described above.

3.2 Hardware Model

Throughout this dissertation we focus on homogeneous and heterogeneous multicore/manycore systems clus-
tered in multiple voltage islands, where there are in total M cores in the chip (among all types of cores). We
assume that the cores inside a cluster/island are all of the same type, but different islands can have different
types and/or number of cores. Particularly, we assume that the system has Q types of cores and a total of
V clusters/islands, such that there is at least one cluster/island for each core type, but there can be several
clusters/islands of the same core type, i.e., Q ≤ V . Every cluster k is composed of M cluster

k cores, such that
the total number of cores in the system is M =

∑V
k=1 M

cluster
k . Moreover, there are in total M type

q cores of
type q in the chip, such that M =

∑Q
q=1 M

type
q . Depending on convenience, we use two different notations

to identify the cores. For the general case in which the cluster to which a core belongs to is not relevant,
cores are simply indexes as C1,C2, . . . ,CM . When the cluster is relevant, the cores in cluster k are denoted
as Ck,1,Ck,2, . . . ,Ck,M cluster

k
. We identify the type of core of each cluster through indexes Q�

1 ,Q
�
2 , . . . ,Q

�
V ,

such that if cluster k is composed of cores of type q then we have that Q�
k = q.
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With respect to DVFS, we assume that every core of type q has F̂ type
q + 1 available frequencies, de-

noted as
{
F type
q,0 ,F type

q,1 ,F type
q,2 , . . . ,F type

q,F̂ type
q

}
, such that F type

q,F̂ type
q

is the maximum frequency for a core of type

q, while an inactive core (i.e., idle or in a low-power mode) is said to be set at frequency F type
q,0 . A similar

notation can be defined for individual cores, such that core i has F̂ core
i + 1 available frequencies, denoted as{

F core
i,0 ,F core

i,1 ,F core
i,2 , . . . ,F core

i,F̂ core
i

}
, where F core

i,F̂ core
i

is the maximum frequency for core i, while when inactive
(i.e., idle or in a low-power mode) it is said to be set at frequency F core

i,0 . In regards to the granularity of
DVFS, we assume that all the cores in a cluster share a common voltage and frequency at any given time
point (i.e., we consider voltage and frequency clusters). Particularly, in order to be power/energy efficient, for
running the cores in a cluster at a desired frequency, the voltage of the cluster is set to the minimum value that
supports stable execution (as discussed in Chapter 1.2.4 and later elaborated in Section 3.4). For example, the
Exynos 5 Octa (5422) processor based on ARM’s big.LITTLE architecture [21] (shown in Figure 1.6) may
be described by such a model.

The geometry of a particular architecture is described by its floorplan, which specifies the areas and spatial
location of the functional blocks composing a chip. The granularity of the blocks that compose the floorplan
of a chip can be freely chosen, and may vary for different objectives. For example, consider the homogeneous
64-core system shown in Figure 3.2, based on simulations conducted using gem5 [5] and McPAT [57], for
OOO Alpha 21264 cores in 22 nm technology. According to the simulations, every core has an area of
9.6mm2 and is composed by several units: an Instruction Fetch Unit (IFU), an Execution Unit (EXU), a Load
and Store Unit (LSU), an out-of-order (OOO) issue/dispatch, and a private L1 cache. Moreover, every cluster
is composed of 4 cores, a shared 2MB L2 cache, and a memory controller. The combined area of the shared
L2 cache and memory controller is 4.7mm2, which is comparable (in magnitude) to the area of a core. Thus,
for deriving a thermal model based on the floorplan of such a chip (later discussed in Section 3.5), a practical
approach would be to consider one block for every core (not one block for every internal unit inside each
core, especially considering that the power consumptions of the internal units of the cores are tightly related
with their DVFS levels), while having independent blocks for the L2 cache and the memory controllers.

3.2 mm

3
.0

m
m

EXU

L1

cache

OOO
issue /

dispatch

IFU LSU

28.72 mm

2
4
.0

m
m

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2C1,1 C1,2 C1,3 C1,4

C2,1 C2,2 C2,3 C2,4

C3,1 C3,2 C3,3 C3,4

C4,1 C4,2 C4,3 C4,4

C5,1 C5,2 C5,3 C5,4

C6,1 C6,2 C6,3 C6,4

C7,1 C7,2 C7,3 C7,4

C8,1 C8,2 C8,3 C8,4

C9,1 C9,2 C9,3 C9,4

C10,1C10,2C10,3C10,4

C11,1C11,2C11,3C11,4

C12,1C12,2C12,3C12,4

C13,1C13,2C13,3C13,4

C14,1C14,2C14,3C14,4

C15,1C15,2C15,3C15,4

C16,1C16,2C16,3C16,4

Figure 3.2: Floorplan of a homo-
geneous 64-core system (16 quad-
core clusters) based on simulations
in gem5 [5] and McPAT [57], where
every core is composed by several
units: an IFU, an EXU, an LSU, an
OOO issue/dispatch, and a private
L1 cache.

For simplicity of presentation, throughout the dissertation we assume that there are a total of Z blocks in
the floorplan, such that M is the total number of cores in the chip and Z −M ≥ 0 is the number of blocks
corresponding to other types of components (e.g., L2 caches and memory controllers). For a given type of
core, the area of all cores of type q is denoted as areatype

q . For a specific core, the area of core m (among all
M in the chip) is defined as areacore

m . Finally, for a given floorplan, when simultaneously activating m cores,
there are

(
M
m

)
combinations of which specific cores in the floorplan to activate. Throughout the dissertation,

we refer to a specific decision of which cores to activate as core mapping or mapping of cores. We define
column vector X = [xi]M×1 for a particular mapping of active cores (among all cores, ignoring the types of
the cores). Vector X is a binary vector: xi=1 means that core i corresponds to an active core, while xi=0
means that core i corresponds to an inactive core. For considering core heterogeneity, we also define column
vector Xq = [xq

i ]M type
q ×1 for all types of cores q = 1, 2, . . . Q, which represents a particular mapping of active

cores of type q. Vector Xq is a binary vector: xq
i =1 means that core i corresponds to an active core of type

q, while xq
i =0 means that core i corresponds to an inactive core of type q.
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3.3 Power Model

The algorithms presented in Chapters 5, 6, 7, 9, and 10, do not require to rely on any specific power model.
Specifically, in these chapters we simply consider that the power consumed on a core of type q while executing
task τn at frequency index j (such that 0 ≤ j ≤ F̂ type

q ), is denoted as P τn
q

(
F type
q,j

)
. For notational brevity,

upon convenience, the value of P τn
q

(
F type
q,j

)
might represent the average power consumption throughout the

entire execution of the task (or for a given execution phase of the task), or the peak power consumption
throughout the entire execution of the task (or for a given execution phase of the task), or the instantaneous
power consumption at a certain time instant. Furthermore, for a specific core, when core m (among all M in
the chip) is inactive (i.e., idle or in a low-power mode, not in execution mode), we assume that it consumes
P core

inactm. Similarly, for a given type of core, the inactive power of all cores of type q is denoted as P type
inactq . For

the special case of homogeneous systems, all the cores in the system consume the same power when they are
inactive, which we define as P core

inact for simplicity in the notation. Moreover, there is also a maximum chip
power constraint, denoted as Pmax, and a maximum chip current constraint, denoted as Imax. Both Pmax and
Imax are electrical constraints that cannot be exceeded (e.g., from the capacity of the power supply or the wire
thickness), and not abstractions like is the case for power budgets (as discussed in Chapter 1.3).

Nevertheless, a more specific power model is required for our theoretical analysis in Chapter 8. Generally,
as detailed in [27], the power consumption of a generic CMOS core at a given time point can be modeled as
shown in Equation (3.1),

Pcore (Vdd, f ,T , t) = uτn (t) · Ceff · Vdd
2 · f + Vdd · Ileak (Vdd,T ) + Pind (3.1)

where uτn (t) represents the instantaneous activity factor of the core for task τn at time t (thus considering
the task dependent part of the power consumption), Ceff represents the effective switching capacitance of
the core, Vdd represents the supply voltage, f represents the execution frequency of the core, Ileak represents
the leakage current (which depends on the supply voltage and the temperature of the core T , such that high
temperatures cause high leakage currents), and Pind represents the independent power consumption attributed
to maintaining the core in execution mode (i.e., the voltage and frequency independent part of the power
consumption). In Equation (3.1), uτn (t) · Ceff · Vdd

2 · f represents the dynamic power consumption on
the core (mainly generated by switching activities), while Vdd · Ileak (Vdd,T ) represents the leakage power
consumption (mainly generated by leakage currents). Thus, running cores at low voltages and frequencies
reduces the power consumption.

Furthermore, Equation (3.1) can be further approximated with three considerations. First, given that in
order to be power/energy efficient, the voltage of a cluster is set to the minimum value that supports stable
execution for the highest execution frequency among all cores in the cluster (as discussed in Chapter 1.2.4
and Section 3.2), according to Equation (1.1), if Vdd � Vth, we can have a linear approximation relating the
supply voltage and the highest execution frequency among all cores in the cluster, defined as fcluster, i.e., it
holds that Vdd ∝ fcluster. Secondly, we can consider safe margins for Ileak with regards to the temperature by
always modeling the value of Ileak for a temperature on the core that reaches the critical temperature, such
that Ileak only depends on the supply voltage. Thirdly, given that the analysis in Chapter 8 targets energy, we
can limit the focus of our power model to average power consumption (rather than instantaneous and time
dependent power consumption), and therefore consider the average activity factor on the core instead of the
instantaneous activity factor. Moreover, in order to allow for theoretical analysis and given the similarities of
most of the average power consumptions values observed in Figure 1.1, we assume that all tasks have similar
average activity factors, resulting in a single power model for all types of tasks. Therefore, with these three
considerations, for the general case of having voltage scaling at a cluster level and frequency scaling at a core
level, the average power consumption on a CMOS core can be approximated as shown in Equation (3.2),

Pcore (fcluster, f) = α · fcluster
γ−1 · f + β · fcluster + κ (3.2)

where f is the execution frequency of the core, γ > 1 is a constant related to the hardware (in CMOS
processors, γ is generally modeled equal to 3 [15, 109], such that Vdd

2 ∝ fcluster
γ−1), and α > 0 is also

constant (including the effective switching capacitance, the average activity factor of the core, and a scaling
factor for the linear relationship between the voltage of the cluster and the highest frequency in the cluster).
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The dynamic power consumption is now represented by α ·fcluster
γ−1 ·f ≥ 0, the leakage power consumption

is represented by β · fcluster ≥ 0, and κ ≥ 0 represents the independent power consumption, all with the same
physical interpretations as in Equation (3.1). Furthermore, in case the core runs at the same frequency which
sets the voltage of the cluster, i.e., if f = fcluster, then the power consumption can be rewritten as shown in
Equation (3.3).

Pcore (f) = α · fγ + β · f + κ (3.3)

For example, Figure 3.3 presents power consumption values for a 22 nm OOO Alpha 21264 core, based on
simulations conducted on gem5 [5] and McPAT [57], for an x264 application from the PARSEC benchmark
suite [4] running a single thread (i.e., a subset of the values presented in Figure 1.3a). As shown in Figure 3.3,
these experimental power values can be modeled using Equation (3.3) with power parameters γ = 3, α =
0.27 W

GHz3 , β=0.52 W
GHz , and κ=0.5W, resulting in a goodness of fit of: Sum of Squares due to Error (SSE) of

1.058, a Square of the correlation between the response values and the predicted response values (R-square)
of 0.9992, an Adjusted R-square of 0.9992 and a Root Mean Squared Error (RMSE) of 0.1626.
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Figure 3.3: Experimental results
for a 22 nm OOO Alpha 21264
core, based on simulations using
gem5 [5] and McPAT [57] for an
x264 application from the PARSEC
benchmark suite [4] running a sin-
gle thread, and the power model
from Equation (3.3) when γ = 3,
α = 0.27 W

GHz3 , β = 0.52 W
GHz , and

κ=0.5W.

Similarly, we can use Equation (3.3) to model the experimental results from [30] (research paper on
Intel’s SCC), which developed a manycore system integrating 48 cores. Figure 12 (Frequency vs. voltage)
and Figure 13 (Measured power vs. voltage) from [30] are of special interest, and we summarize its values
in Figure 3.4a and Figure 3.4b. Particularly, Figure 3.4a relates several execution frequencies for the cores
and their minimum voltages for stable execution, while Figure 3.4b presents power consumption values for
running all cores at certain voltages (and at their corresponding maximum frequencies for each voltage).
Following, we approximate the table in Figure 3.4a by using a quadratic function. Therefore, having a function
that relates frequency and voltage for this chip, we are able to compute new values relating frequency with
power based on the values from Figure 3.4b. These new results are divided by 48 (given that the experiments
in [30] were conducted for the entire chip, but we are interested in the power of individual cores) and shown
in Figure 3.4c. Finally, we approximate the experimental values in Figure 3.4c with the power model from
Equation (3.3) using parameters γ=3, α=1.76 W

GHz3 , β=0 W
GHz , and κ=0.5W, resulting in a goodness of fit

of: Sum of Squares due to Error (SSE) of 0.05041, a Square of the correlation between the response values
and the predicted response values (R-square) of 0.9958, an Adjusted R-square of 0.9958 and a Root Mean
Squared Error (RMSE) of 0.07938.

3.4 Energy Model

The algorithms presented in Chapter 9 and Chapter 10 only require a very general energy model. As briefly
discussed in Chapter 1.1.2, energy is the integration of power through time. Therefore, when a core of type q
executes task τn at frequency F type

q,j (such that 0 ≤ j ≤ F̂ type
q ) while consuming constant power during time

interval ∆t, the energy consumed by the core during interval ∆t is computed as P τn
q

(
F type
q,j

)
·∆t. Moreover,

during time interval ∆t, a core running at frequency F type
q,j executes a certain amount ∆c of core cycles, such

that ∆t = ∆c
F type

q,j

. If we now consider that ∆c is equal to eq,n, then the energy consumption for executing one

instance of τn in a core of type q at frequency F type
q,j is computed as P τn

q

(
F type
q,j

)
· eq,n
F type

q,j

. In this way, given that

τn is executed D
dn

times during one hyper-period, the total energy consumed by τn during one hyper-period,
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Voltage Frequency
0.73 V 301.48 MHz
0.75 V 368.82 MHz
0.85 V 569.45 MHz
0.94 V 742.96 MHz
1.04 V 908.92 MHz
1.14 V 1077.11 MHz
1.23 V 1223.37 MHz
1.32 V 1303.79 MHz

(a) Frequency vs. voltage [30]

Voltage Total Power
0.70 V 25.38 W
0.80 V 37.26 W
0.91 V 50.76 W
1.00 V 70.73 W
1.05 V 91.25 W
1.10 V 110.15 W
1.14 V 125.27 W
1.21 V 161.99 W
1.28 V 201.40 W

(b) Power vs. voltage [30]

0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

4

5

Frequency [GHz]

A
ve

ra
ge

Po
w

er
[W

]

Experimental Values from [30]
Power Model from Equation (3.3)

(c) Power model for a single core

Figure 3.4: Experimental results from the 48-core system in [30] and the power model from Equation (3.3),
when γ=3, α=1.76 W

GHz3 , β=0 W
GHz , and κ=0.5W.

which we denote as Eτn
q

(
F type
q,j

)
, is presented in Equation (3.4).

Eτn
q

(
F type
q,j

)
=

D

dn
· P τn

q

(
F type
q,j

)
· eq,n
F type
q,j

(3.4)

As shown by previous work in the literature (e.g., [11, 45]), when the voltage of a core is always set
to the minimum value that achieves stable execution for a given frequency, there exists a critical frequency
for every application, and this critical frequency minimizes the energy consumption for execution when the
overhead for entering/leaving a low-power mode can be considered negligible. The critical frequency of task
τn running on a core of type q is denoted as fcrit

τn
q . Namely, executing at low voltages and frequencies reduces

the power consumption, as already seen in Figure 1.3, and as suggested by the power model of Equation (3.3),
mainly due to the cubic relationship between the dynamic power consumption and the frequency. However,
executing at low frequencies also prolongs the execution time of an application, as already seen in Figure 1.1.
Therefore, for task τn running on core type q, the critical frequency fcrit

τn
q represents the frequency below

which the energy savings achieved by reducing the power consumption (mainly savings in dynamic energy)
are less significant than the associated increments to the energy consumption for prolonging the execution time
(mainly due to leakage effects). In simple terms, this means that, for the corresponding type of core, executing
an application below its critical frequency is not energy efficient, and it should hence be preferably avoided
when the optimization goal is minimizing energy, even if it reduces the power consumption and meets the
timing and performance constraints. For example, Figure 1.1 and Figure 1.3 presented execution time, average
power consumption, and energy consumption values for executing one instance of five applications from the
PARSEC benchmark suite [4], where we can observe the presence of a critical frequency. Particularly, it
is energy inefficient to execute both Alpha cores below 0.4GHz, and to execute the Cortex-A7 cores below
1.4GHz. Contrarily, since the Cortex-A15 cores cannot execute slower than 1.2GHz, there is no critical
frequency observable in the figure for them, and thus they can be executed as slow as possible while satisfying
the timing and performance constraints. Nevertheless, a critical frequency would also be observable for this
type of cores if they could be executed at slower frequencies.

Similarly as with the power model described in Section 3.3, a more specific energy model than the de-
scribed above is required for our theoretical analysis in Chapter 8. Therefore, by considering the power
model from Equation (3.2), the energy consumption of a core running at frequency f during time interval
∆t and executing a certain amount ∆c of core cycles, such that ∆t = ∆c

f , can be computed as presented in
Equation (3.5).

Ecore (fcluster, f) =
(
α · fcluster

γ−1 · f + β · fcluster + κ
) ∆c

f
(3.5)

Furthermore, for the case in which the core runs at the frequency which decides the voltage of the cluster, i.e.,
f =fcluster, the energy consumption on the core can be written as shown in Equation (3.6), which is a convex
function with respect to f .

Ecore (f) = (α · fγ + β · f + κ)
∆c

f
(3.6)
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Therefore, by setting the first-order derivative of Equation (3.6) with respect to f to zero, the minimum value
for Ecore (f) can be found when f is equal to γ

√
κ

(γ−1)α
. In this way, the value of the critical frequency for the

energy model in Equation 3.6, simply denoted as fcrit (given that in Chapter 8 we focus on homogeneous sys-
tems and assume that all tasks have similar average activity factors), is computed as shown in Equation (3.7).

fcrit = γ

√
κ

(γ − 1)α
(3.7)

For example, Figure 3.5 illustrates function Ecore (f) from Equation (3.6) for a single core executing 109

computer cycles with the same power parameters derived from the experimental results in [30] for Figure 3.4c,
where we can observe that there exist a critical frequency at 0.52GHz.
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] Figure 3.5: Energy consumption for

a single core from [30] execut-
ing 109 computer cycles, when us-
ing the energy model from Equa-
tion (3.6) with γ=3, α=1.76 W

GHz3 ,
β =0 W

GHz , and κ=0.5W, resulting
in a critical frequency of 0.52GHz.

With respect to the voltage of the cluster, so far in this dissertation we have claimed that it is energy ineffi-
cient to execute cores at voltages higher than the minimum required voltage for stable execution of the desired
frequency. Following, we justify such a statement based on the power and energy models of Equation (3.1)
and Equation (3.5). According to Equation (3.1), the dynamic power consumption has a quadratic relationship
with the supply voltage and a linear relationship with the execution frequency. Therefore, for a fixed supply
voltage, reducing the execution frequency of a core will linearly decrease the dynamic power consumption
while linearly incrementing the execution time, but it will have no effect on the dynamic energy consumption.
Contrarily, when modeling Ileak for the critical temperature, the leakage power consumption depends only on
the voltage (not on the frequency), while the independent power consumption is both voltage and frequency
independent. In this way, reducing the execution frequency without changing the voltage will merely result
in an increment of the leakage and independent energy consumptions, mainly due to the increase in the ex-
ecution time while not changing the leakage and independent power. To illustrate this discussion, focusing
now on Equation (3.5), Figure 3.6 shows several examples of energy consumption values with respect to the
frequency when considering different values of fcluster (which is equivalent to considering different supply
voltages, since fcluster sets the voltage of the cluster).
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fcluster =3GHz fcluster =2GHz
fcluster =1GHz fcluster =f

Figure 3.6: Energy consumption
examples for a core executing
∆c = 109 compute cycles, con-
sidering four different cases for the
voltage (i.e., different values for
fcluster), for the model in Equa-
tion (3.5) with γ=3, α=0.27 W

GHz3 ,
β=0.52 W

GHz , and κ=0.5W.

Finally, every core consumes some energy during the transition process of entering and leaving a low-
power mode. Given that Chapters 8, 9, and 10 focus on periodic tasks, which after entering a low-power
mode will always go back to execution mode after a certain amount of time, we define the overheads for
sleeping as the summation of the energy consumption for both for entering and leaving a low-power mode.
Therefore, when the duration of the waiting interval between the time at which a task instance finished all the
workload in its ready queue and the time at which a new task instance arrives to the system is short enough,
keeping a core idle is more energy efficient than entering/leaving a low-power mode. On the other hand, when
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the waiting interval is sufficiently long, entering (and later leaving) a low-power mode results in higher energy
savings than idling. Hence, we define the break-even time as the time such that the energy consumption for
keeping a core idling is equal to the energy overheads for sleeping.

3.5 Thermal Model

The most widely adopted model used in electronics for thermal modeling are RC thermal networks, which are
motivated by the well-known duality between thermal and electrical circuits [33], which we also adopt in this
dissertation. In an RC thermal network, the different parts of the chip and cooling solution are represented by
N thermal nodes (electrical nodes in an electrical circuit), such that there are at least as many thermal nodes as
blocks in the floorplan, i.e., N ≥ Z. The temperature associated to each thermal node (with unit Kelvin [K]) is
represented by the voltage on the node. Thermal nodes are interconnected between each other through thermal
conductances (with units Watts per Kelvin

[
W
K

]
). Heat transfer (or heat flow) among cores and other elements

of the chip is represented by the currents flowing through the thermal conductances. There is a thermal
capacitance associated to every thermal node which accounts for the transient thermal effects. The ambient
temperature is represented by another thermal node denoted as Tamb, and there is no thermal capacitance
associated with it as the ambient temperature is considered to be constant for long periods of time. The power
consumption of the cores and other elements on the chip correspond to sources of heat on the chip (with unit
Watt [W ]), represented by current sources in the electrical circuit. With these considerations, the temperatures
throughout the chip are modeled as a function of the ambient temperature, the power consumptions inside the
chip, and by considering the heat transfer among neighboring elements on the chip.

Figure 3.7: (from [75]) Simplified RC thermal net-
work example for 2 cores, where we assume that
cores are in immediate contact with the heat sink,
and there is no other connection between a core and
the ambient temperature. In a more detailed exam-
ple, we would have several layers between a core
and the heat sink (e.g., as seen in Figure 2.3, the
ceramic packaging substrate, the thermal interface
material, the heat spreader, etc.), and there would
also exist more paths that lead to the ambient tem-
perature (e.g., through the circuit board).

p1

p2

a1

a2

T1(t)

T2(t)

bc

bc-hs

bc-hs

a3

a4

T3(t)

T4(t)

bhs

gamb

gamb

Tamb

Figure 3.7 shows a simplified example of an RC thermal network for a chip with two cores. In Figure 3.7,
T1(t) and T2(t) are the voltages representing the temperatures on core 1 and core 2, respectively. Voltages
T3(t) and T4(t) represent the temperatures on the heat sink nodes directly above core 1 and core 2, respec-
tively. Current supplies p1 and p2 represent the power consumptions on core 1 and core 2, respectively. For
the heat transfer among thermal nodes, bc represents the thermal conductance between core 1 and core 2, bc-hs
represents the thermal conductance between a core and the heat sink, bhs represents the thermal conductance
between nodes of the heat sink, and gamb represents the thermal conductance between a heat sink node and
the ambient temperature. Finally, the thermal capacitances of thermal node i is represented by capacitor ai.
By using Kirchoff’s first law and linear algebra, we can derive a system of first-order differential equations
for the example in Figure 3.7. Particularly,

p1 − (T1(t)− T3(t)) bc-hs + (T2(t)− T1(t)) bc − a1
dT1(t)

dt
= 0

p2 − (T2(t)− T4(t)) bc-hs − (T2(t)− T1(t)) bc − a2
dT2(t)

dt
= 0

(T1(t)− T3(t)) bc-hs + (T4(t)− T3(t)) bhs − a3
dT3(t)

dt
− (T3(t)− Tamb) gamb = 0

(T2(t)− T4(t)) bc-hs − (T4(t)− T3(t)) bhs − a4
dT4(t)

dt
− (T4(t)− Tamb) gamb = 0.
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This system of first-order differential equations can be rewritten in matrix and vector form as
(bc-hs + bc) −bc −bc-hs 0

−bc (bc-hs + bc) 0 −bc-hs

−bc-hs 0 (bc-hs + bhs + gamb) −bhs

0 −bc-hs −bhs (bc-hs + bhs + gamb)



T1(t)
T2(t)
T3(t)
T4(t)

+


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4



T ′
1(t)

T ′
2(t)

T ′
3(t)

T ′
4(t)

 =


p1
p2
0
0

+ Tamb


0
0

gamb
gamb

 .

Therefore, in condensed matrix and vector form, the system of first-order differential equations of an RC
thermal network with N thermal nodes can be expressed as shown in Equation (3.8)

AT′ +BT = P+ TambG (3.8)

where matrix A = [ai,j ]N×N contains the thermal capacitance values (generally a diagonal matrix, since
thermal capacitances are modeled to ground), matrix B = [bi,j ]N×N contains the thermal conductance values
between vertical and lateral neighboring nodes, column vector T = [Ti (t)]N×1 represents the temperatures on
the thermal nodes, column vector T′ = [T ′

i (t)]N×1 accounts for the first-order derivative of the temperature
on each thermal node with respect to time, column vector P = [pi]N×1 contains the values of the power
consumption on every node, and column vector G = [gi]N×1 contains the values of the thermal conductances
between each node and the ambient temperature. In case that thermal node i is not in contact with the ambient
temperature, e.g., the temperature of a core, the value of gi is set to zero. Furthermore, Equation (3.8) can be
rephrased as

T′ = CT+A−1P+ TambA
−1G with C = −A−1B. (3.9)

In order to solve the system of first-order differential equations in Equation (3.8) or Equation (3.9), we need
to have a set of initial conditions (as is the case when solving any differential equation). For such a purpose,
we define column vector Tinit = [Tiniti]N×1 which contains the initial temperatures on all nodes at time zero,
i.e., t = 0 s.

When only considering the steady-state temperatures, Equation (3.8) becomes

BTsteady = P+ TambG or Tsteady = B−1P+ TambB
−1G

where column vector Tsteady =
[
Tsteadyi

]
N×1

represents the steady-state temperatures on all thermal nodes,

and B−1 = [̃bi,j ]N×N is the inverse of matrix B. Furthermore, when only focusing on the steady-state
temperature of node i, denoted Tsteadyi, we have that

Tsteadyi =

N∑
j=1

b̃i,j · pj + Tamb ·
N∑
j=1

b̃i,j · gj (3.10)

where b̃i,j · pj represents the amount of heat contributed by thermal node j into the steady-state temperature
of node i.

In practice, for a specific floorplan and cooling solution, the parameters of the associated thermal network
can be computed by using a modeling tool like HotSpot [33] (which would derive a detailed RC thermal
network equivalent to the one used internally by HotSpot to conduct thermal simulations). Furthermore, as
discussed in Chapter 1.3, a more practical alternative would be through thermal profiling, by using some
thermal modeling method that relies on real measurements on a specific chip and cooling solution, e.g., [17].
Such an option is well suited to deal with modeling errors, process variations on the chip, imperfections on
heat sink, etc. Similarly, given that having different fan speeds changes the thermal conductivity of the heat
sink, a method like the one presented in [17] could also help to adapt the thermal model at runtime, or to
derive multiple thermal models to choose from (one for every fan speed).
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In regards to vector P, we can divide it into three column vectors, specifically, Pcores, Pblocks, and Prest,
such that P = Pcores +Pblocks +Prest. Column vector Pcores = [pcores

i ]N×1 represents the power consumption
on the cores. Column vector Pblocks =

[
pblocks
i

]
N×1 represents the power consumption on other blocks in

the floorplan that do not correspond to cores, (e.g., the L2 caches for the manycore system in Figure 3.2, as
explained in Section 3.2). Column vector Prest = [prest]N×1 represents the power consumption of the rest of
the thermal nodes (e.g., internal nodes of the heat sink), for which it holds that prest

i =0 for all i. In this way,
we have that

Tsteady = B−1Pcores +B−1Pblocks + TambB
−1G

and

Tsteadyi =

N∑
j=1

b̃i,j · pcores
j +

N∑
j=1

b̃i,j
(
pblocks
j + Tamb · gj

)
. (3.11)

For notational brevity, we define set L = {`1, `2, . . . , `Z}, such that the elements in set L include all
the indexes of the thermal nodes that correspond to blocks in the floorplan (as opposed to thermal nodes that
represent the heat sink, internal nodes of the heat spreader, the thermal interface material, etc.), and thus for
block `j it should hold that 1 ≤ `j ≤ N . For example, if thermal node i corresponds to block j in the
floorplan, then the steady-state temperature on node i (i.e., Tsteadyi) is also indexed as Tsteady`j

. Similarly,
we define set K = {k1, k2, . . . , kM}, such that set K contains all the indexes of the thermal nodes that
correspond to cores (among all cores, ignoring the types of the cores), and thus for core j it should hold
that 1 ≤ kj ≤ N . For example, if thermal node i corresponds to core j, then the steady-state temperature
on node i (i.e., Tsteadyi) is also indexed as Tsteadykj

. For considering core heterogeneity, we also define sets

Kq =
{
kq1, k

q
2, . . . , k

q

M type
q

}
for all core types q = 1, 2, . . . ,Q, such that set Kq contains the indexes of the

thermal nodes that correspond to cores of type q.
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Chapter 4

Experimental Framework

Throughout this dissertation we conduct several experimental evaluations based on a common simulation
framework, for which Figure 4.1 presents an overview. The framework has two modes: (1) a detailed mode
for evaluations requiring detailed transient temperature information and a runtime feedback loop, mostly
used for evaluating performance optimization techniques; and (2) a high-level mode that does not include the
runtime feedback loop, but which can simulate a very large number of applications, mostly used for evaluating
energy optimization techniques.

Runtime Feedback Loop

INPUTS:

- Constraints: TDTM, Pmax, Imax

- Ambient Temperature: Tamb

- Manycore Architecture
- PARSEC applications to run

HotSpot

Compute
Temperatures

Optimization Technique
(task-to-core mapping,

DPM, and/or DVFS)

OUTPUTS:

- Power Consumption
- Energy Consumption
- Temperature
- Execution time
- Performance

DTM
(when necessary)

PARSEC gem5 McPAT

Exynos 5
Octa (5422)

Performance, Timing
and Power Traces

Floorplan
Application

Profiles

RC thermal network
(from HotSpot)

Cooling Solution

(HotSpot v5.02 default)

Extraction of
Output Statistics

Figure 4.1: Overview of our simulation framework.

4.1 Setup

4.1.1 Detailed Mode Setup
In the detailed mode, our experimental evaluations are conducted considering detailed transient thermal ef-
fects, such that we can conduct accurate full system simulations. Particularly, our simulation framework
integrates gem5 [5], McPAT [57], real measurements of an Exynos 5 Octa (5422) processor [92] conducted
on the Odroid-XU3 [26] mobile platform, and HotSpot [33], in a closed-loop transient simulator with a run-
time feedback loop. For the simulations with gem5 and McPAT, applications from the PARSEC benchmark
suite [4] are first executed in gem5 for all possible frequency configurations on the different types of cores,
as well as by considering different number of parallel threads for each application. The output statistics from
gem5 are then parsed, stored as traces for later use, and also used to generate the xml files required as inputs
by McPAT, point at which we add the voltage information to the xml files (not required before by gem5).
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Following, we also parse the output results from McPAT in order to obtain the necessary power consumption
data for every part of the chip, again stored as traces for later use. For the measurements on the Odroid-
XU3 platform, we simply execute the PARSEC applications for all possible frequency configurations and by
considering different number of parallel threads for each application, and we measure the resulting execu-
tion time and power consumption values. Figure 1.1 and Figure 1.3 have already shown experimental results
obtained with this simulation framework, where it can be observed that different applications have different
average power consumptions, and the specific power values depend on the application, the DVFS levels, and
the selected number of threads (this last point not shown in Figures 1.1 and 1.3). Finally, all this power data
is then fed to HotSpot such that we can conduct the transient thermal simulations.

For each architecture under consideration (later detailed in Section 4.2), we consider one thermal block
for each core and independent thermal blocks for other hardware (e.g., L2 caches, memory controllers, NoC
routers, etc.). We then obtain the values for A, B, B−1, G, and C, by using HotSpot v5.02 with its default
configuration in the block model mode. Namely, a chip thickness of 0.15mm, a silicon thermal conductivity
of 100 W

m·K , a silicon specific heat of 1.75 · 106 J
m3·K , a heat sink of 6×6 cm and 6.9mm thick, a heat sink

convection capacitance of 140.4 J
K , a heat sink convection resistance of 0.1 K

W , a heat sink and heat spreader
thermal conductivity of 400 W

m·K , a heat sink and heat spreader specific heat of 3.55 · 106 J
m3·K , a heat spreader

of 3×3 cm and 1mm thick, an interface material thickness of 20 μm, an interface material thermal conductivity
of 4 W

m·K , and an interface material specific heat of 4 · 106 J
m3·K . Furthermore, we consider that the ambient

temperature is 45◦C, the maximum electrical power constraint for the chip (i.e., Pmax) is 250W, and the
critical threshold temperature that triggers DTM (i.e., TDTM) is 80◦C.

Whenever we evaluate a technique that does not have its own dynamic thermal control using thermal
sensors (e.g., when we evaluate a technique other than Intel’s Turbo Boost), we consider that the chip is
integrated with a standard reactive control-based closed-loop DTM technique [34], which is triggered when
TDTM is exceeded anywhere in the chip. Particularly, similar to the DTM technique detailed in [34], when
DTM is triggered, it reduces the DVFS levels of all active cores, one step at a time, by using a control period
of 1ms. Once the maximum temperature in the chip drops back below TDTM, the DVFS levels of the cores
are increased one step at a time, by using the same 1ms control period, until all cores reach their nominal
operation levels. In our simulations, this voltage and frequency reduction/increment is achieved by changing
the DVFS levels in gem5 and McPAT or in the Odroid-XU3 platform, or more specifically, by reading the
trace information for the corresponding DVFS levels. Therefore, these changes in the DVFS levels translate
to different execution times for each application thread and also on different power consumption values.
Thanks to the runtime feedback loop in our simulation framework, these new power consumption data is
fed to HotSpot for the next simulation steps, hence changing the resulting transient temperatures. On the
other hand, when evaluating Intel’s Turbo Boost, the transient simulations are conducted in a very similar
manner. The only difference is that Turbo Boost will always attempt to increase the DVFS levels whenever
the temperature everywhere in the chip is below the critical threshold temperature, not stopping at the nominal
operation levels, as already explained in detail in Chapter 2.1.2.

As an additional comment with respect to the implemented DTM technique for our simulations, it should
be noted that although decreasing the DVFS levels of all the cores in the chip when maybe only one core
has a temperature above TDTM might seem a pessimistic approach, in most practical cases it will not be
as pessimistic as it seems. For example, for the floorplan illustrated in Figure 3.2, Figure 4.2 presents a
temperature snapshot for a specific mapping with 12 active cores, in which each active core has a power
consumption of 18.75W (225W in total). For such a case, the highest steady-state temperature among all
cores is 102.9◦C. Nevertheless, the lowest steady-state temperature among the active cores is 97.0◦C, which
is still much higher than the critical temperature of 80.0◦C. Therefore, in our experiments we conservatively
assume that DTM is triggered for all active cores without incurring in much pessimism.

4.1.2 High-level Mode Setup
In the high-level mode of our simulation framework, we do not include the runtime feedback loop for the
transient temperature simulations. Namely, the execution time and power traces for the different frequency
configurations and number of parallel threads for each application are obtained using gem5, McPAT, and
the Odroid-XU3 mobile platform, in the same way as described in Section 4.1.1. This collection of traces
information is then used to compute the peak power consumption, energy consumption, and steady-state
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Figure 4.2: (from [76]) Temperature snap-
shot for the floorplan illustrated in Fig-
ure 3.2, for a specific mapping with 12 active
cores in which each active core has a power
consumption of 18.75W (225W in total), re-
sulting in a highest steady-state temperature
of 102.9◦C and a lowest steady-state tem-
perature (among the active cores) of 97.0◦C.
Top numbers are the power consumptions of
each active core (boxed in black). Bottom
numbers are the temperatures in the center of
each core. Detailed temperatures are shown
according to the color bar.

temperatures of any mapping, scheduling, and DVFS decision which we wish to evaluate. Therefore, the
high-level mode merely avoids conducting the transient temperature simulations, which are the most compu-
tational intensive part of our simulations once the execution time and power traces have been obtained. In
this way, the high-level mode is able to run simulations for a very large number of applications and workload
scenarios in a reasonable time (just a few seconds for each simulation), which is not possible in the detailed
mode due to the long time required to finish a single simulation (in the order of several hours).

4.2 Architectures
In this section we describe the architectures used throughout the dissertation for most of the presented moti-
vational examples and experimental evaluations.

4.2.1 Homogeneous architectures
For the motivational examples in Chapters 5, 6, 7, we consider two simplified hypothetical manycore systems
with 16 homogeneous cores simulated with gem5 and McPAT, arranged in 4 rows and 4 columns, as shown in
Figure 4.3. The chip shown in Figure 4.3a considers simple in-order Alpha 21264 cores in 45 nm technology
with a resulting size of 2.31×2.31mm, while the chip shown in Figure 4.3b considers OOO Alpha 21264
cores in 22 nm technology with a resulting size of 3.2mm× 3.0mm.
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(a) simple Alpha
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(b) OOO Alpha
21264 cores (22 nm)

Figure 4.3: Floorplans of two homogeneous
16-core systems used for the motivational exam-
ples in Chapters 5, 6, 7, based on simulations in
gem5 [5] and McPAT [57].

For our experiments on clustered homogeneous architectures, we consider a system very similar to Intel’s
SCC [36], particularly, the homogeneous 64-core system already illustrated in Figure 3.2 and briefly discussed
in Chapter 3.2, based on simulations conducted on gem5 [5] and McPAT [57] for OOO Alpha 21264 cores
in 22 nm technology. We assume a DVFS granularity at a cluster level and consider that every cluster is
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composed of 4 cores, a shared 2MB L2 cache, and a memory controller. According to our simulations and
as shown in Figure 3.2, every core has area of 9.6mm2, and the combined area of the shared L2 cache and
memory controller in each cluster is 4.7mm2. All the clusters are connected to a 512MB RAM (executing at
1GHz, with 73GB/s memory bandwidth). When using HotSpot to derive the RC thermal network associated
to the floorplan of such a chip, we consider one block for every core (not one block for every internal unit
inside each core), while having independent blocks for the L2 cache and the memory controllers. Finally, we
assume that every cluster has available frequencies {0.2, 0.4, . . . , 4.0} GHz, and consider that the minimum
voltages for stable execution of each frequency are taken from the work in [22], as already presented in
Figure 1.7.

4.2.2 Heterogeneous architectures
For our experiments on clustered heterogeneous architectures, we consider the 72-core system presented in
Figure 4.4, consisting of 24 OOO Alpha 21264 cores (arranged in three clusters of eight cores) and 16 simple
in-order Alpha 21264 cores (arranged in four clusters of four cores), based on the simulations on gem5 [5]
and McPAT [57] for 22 nm technology, and 16 in-order Cortex-A7 cores and 16 OOO Cortex-A15 cores (both
cases arranged in four clusters of four cores), based on an Odroid-XU3 [26] mobile platform with an Exynos
5 Octa (5422) [92] chip with ARM’s big.LITTLE architecture. According to our simulations, each OOO
Alpha core has an area of 9.6mm2, and every OOO Alpha cluster with eight cores has a shared 2MB L2
cache and a memory controller. Moreover, each simple Alpha core has an area of 1.6mm2, and every simple
Alpha cluster with four cores has a shared 2MB L2 cache and a memory controller. All OOO and simple
Alpha clusters are connected to a 512MB RAM (executing at 1GHz, with 73GB/s memory bandwidth). The
areas of the Cortex-A7 and Cortex-A15 cores are estimated from die figures of the Exynos 5 Octa (5422) [92]
chip as 0.8mm2 and 5.0mm2, respectively. There is a shared 512 kB L2 cache in every Cortex-A7 cluster
with four cores, and a shared 2MB L2 cache in every Cortex-A15 cluster with four cores, all connected
through two low-power multi-layer 32 bit buses to a 2GB LPDDR3 RAM PoP (executing at 933MHz, with
14.9GB/s memory bandwidth). For the OOO and simple Alpha clusters, we assume available frequencies
{0.2, 0.4, . . . , 4.0} GHz, and consider that the minimum voltages for stable execution of each frequency are
taken from the work in [22], as presented in Figure 1.7. For the Cortex-A7 and Cortex-A15 clusters, the
available frequencies in the Odroid-XU3 platform are {0.2, 0.3, . . . , 1.4} GHz and {1.2, 1.3, . . . , 2.0} GHz,
respectively, and the voltages for each frequency are automatically selected by the chip.

Figure 4.4: (from [76]) Floorplan of a het-
erogeneous 72-core system based on sim-
ulations conducted using gem5 [5] and
McPAT [57], and an Odroid-XU3 [26]
mobile platform with an Exynos 5 Octa
(5422) [92] chip. For a given cluster type,
every cluster is identified as a, b, c, and d,
from left to right and from top to bottom.
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4.3 Benchmarks
For benchmarks, we use realistic applications from the PARSEC benchmark suite [4], where every application
can run 1, 2, . . . , 8 parallel dependent threads. For all our experiments, in order to maintain the system busy,
we consider that every time an application instance finishes, another instance is immediately executed.

When focusing on real-time tasks or performance-constrained applications, we assume that every task
consists of one randomly-selected PARSEC application running a single thread (i.e., using a uniform distri-
bution, we randomly choose which specific application, among all PARSEC applications, is executed by each
task), to which we randomly assign a deadline and period, such that every application instance must finish
before its deadline.
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Chapter 5

Thermal Safe Power (TSP)

5.1 Overview

In this chapter, we present a novel power budget concept called Thermal Safe Power (TSP) [75, 76, 77]. TSP
is an abstraction which provides safe and efficient per-core power budget values as a function of the number
of simultaneously active cores. According to the number of cores that are active at a certain time, executing
the cores in a way that their power consumptions reach TSP will result in a maximum temperature across the
chip which is just below the critical threshold temperature that triggers DTM. In this way, TSP conceptually
changes the typical design that uses a single and constant value as per-chip or per-core power budget, e.g.,
TDP. Furthermore, TSP can serve as a fundamental tool for guiding task partitioning, core mapping, DPM,
and DVFS algorithms on their attempt to achieve high predictable performance under thermal constraints.

Based on the RC thermal network of a specific chip and cooling solution (as discussed in Chapter 3.5),
this chapter presents polynomial-time algorithms to compute TSP for both homogeneous and heterogeneous
manycore systems. For simplicity of presentation and introduction of the TSP concept, we start by presenting
the special case for handling homogeneous manycore cores. We then present the algorithms for the general
case, which are suitable for heterogeneous manycore systems. In Section 5.2.2 and Section 5.3.2, we present
a polynomial-time method for computing the values of TSP for the worst-case mappings of active cores. That
is, we derive an algorithm for computing a per-core power budget for a given number of simultaneously active
cores, that will be thermally safe for any possible mapping with that number of active cores, thus allowing
system designers to abstract from core mapping decisions, and that will also have little pessimism which could
lead to underutilized resources and a large thermal headroom. Furthermore, in Section 5.2.1 and Section 5.3.1
we present another method that is able to compute the TSP values for a particular mapping of active cores and
ambient temperature, which can be used at runtime, thus accounting for changes in the mapping decisions
and further reducing any existing thermal headroom.

Open-Source Tools: The algorithms to compute TSP are implemented as an open-source tool available
for download at ces.itec.kit.edu/download.

5.1.1 Motivational Example
In this section we present a motivational example providing some insight on the drawbacks of using single
and constant per-chip or per-core power budgets as abstractions from thermal issues. For simplicity of pre-
sentation, consider the 16-core homogeneous system presented in Figure 4.3a (described in Chapter 4.2.1).
Assume a critical temperature that should not be exceeded of 80◦C, and consider that DTM is deactivated
and will therefore not be triggered in this example. Following, consider a constant per-chip power budget of
90.2W. Conducting simulations with HotSpot, Figure 5.1 presents the resulting steady-state temperatures on
the chip when equally distributing the 90.2W per-chip budget among all active cores, for different number
of simultaneously active cores. From the figure, we can observe that the only case in which the maximum
steady-state temperature among all cores reaches the critical temperature of 80◦C (without exceed it and also
without leaving thermal headroom) is when equally distributing the power budget among 8 cores. However,
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this power budget is either pessimistic or not thermally safe when equally distributing the budget among more
than 8 cores or among less than 8 cores, respectively.
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Figure 5.1: Temperature distribution example (with DTM deactivated) for using a 90.2W per-chip power
budget equally distributed among different number of simultaneously active cores. Top numbers are the
power consumptions on each active core (boxed in black). Bottom numbers are the temperatures on the
center of each core. Detailed temperatures are shown according to the color bar.

In order to show that similar effects also occur for other power budgets, Figure 5.2 presents simulations
conducted in HotSpot that show the maximum steady-state temperature among all cores, as a function of
the number of simultaneously active cores, for three per-chip power budgets and one per-core power budget,
particularly, 58.7W per-chip, 90.2W per-chip, 129.0W per-chip, and 8.06W per-core. From Figure 5.2,
it becomes clear that considering a single and constant per-chip or per-core power budget as an abstraction
from thermal issues can be either a pessimistic approach (for small power budgets), or it can result in frequent
thermal violations that would trigger DTM (for large power budgets).

Figure 5.2: Maximum steady-
state temperature (with DTM
deactivated) among all cores
as a function of the number
of simultaneously active cores,
when using different single and
constant per-chip and per-core
power budgets.
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A more efficient power budgeting technique would consider different per-core power budgets according to
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the number of active cores, such that the maximum steady-state temperature among all cores is exactly 80◦C
for all cases, and this is precisely the novel power budgeting approach which we call Thermal Safe Power
(TSP). For example, conducting simulations with HotSpot, Figure 5.3a illustrates the resulting steady-state
temperatures on the chip when 4 cores consume 14.67W each (58.7W in total). Similarly, Figure 5.3b and
Figure 5.3c illustrate the resulting steady-state temperatures on the chip when 8 cores consume 11.27W each
(90.2W in total) and when 16 cores consume 8.06W each (129.0W in total), respectively. For all cases in
Figure 5.3, although different per-core power budgets are considered, at least one core exactly reaches the
critical temperature of 80◦C in the steady-state.
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Figure 5.3: Examples resulting in a maximum steady-state temperature of 80◦C. Top numbers are the power
consumptions on each active core (boxed in black). Bottom numbers are the temperatures on the center of
each core. Detailed temperatures are shown according to the color bar.

5.1.2 Problem Definition

TSP is an abstraction that provides safe (but efficient) per-core power constraint values as a function of the
number of simultaneously active cores. The values of TSP vary according to the floorplan, cooling solution,
and according to which cores are simultaneously active. Some specific core mappings result in the lowest
TSP values, and we define these core mappings as the worst-case mappings. For the corresponding mapping
and number of active cores, executing cores at power consumption values that do not exceed TSP will result
in maximum steady-state temperatures that do not exceed TDTM.

For a specific chip and its corresponding RC thermal network, the first objective of this chapter is to
derive a numerical method to compute TSP for a given mapping of cores. This given mapping of cores
is typically determined by an operating/runtime system or by a design-time system software. This method
should have polynomial-time complexity, such that TSP can be computed at runtime for a particular mapping
of cores and ambient temperature. Formally, for the case with homogeneous cores, for a given core mapping
X, this means obtaining a uniform power constraint for the active cores, defined as PTSP (X), such that the
steady-state temperature of all blocks in the floorplan does not exceed TDTM, i.e., such that Tsteadyi ≤ TDTM
for all i ∈ L. Similarly, for the case with heterogeneous cores, also for a given core mapping X (independent
of the type of core), this translates to obtaining a uniform power density constraint, defined as P ρ

TSP (X), and
then multiplying P ρ

TSP (X) with the area of every active core.
The second objective of this chapter is to derive an algorithm to compute the most pessimistic TSP values

for a given number of simultaneously active cores, i.e., for the worst-case mappings. Such TSP values can
be used as safe power constraints for any possible mapping of cores, therefore allowing the system designers
to abstract from core mapping decisions. Formally, for the case with homogeneous cores, this means obtain-
ing the most pessimistic uniform power constraint for any m active cores, defined as Pworst

TSP (m), such that
Tsteadyi ≤ TDTM for all i ∈ L. Furthermore, for the case with heterogeneous cores, given that different core
types have different areas, the value of the power density constraint depends on the number of active cores for
each type of core. Therefore, defining set m = {m1,m2, . . . ,mQ} to represent the number of active cores
for core types {1, 2, . . . ,Q}, respectively, this translates to obtaining the most pessimistic uniform power
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density constraint (independent of the type of core) for any m = {m1,m2, . . . ,mQ} active cores, defined as
P ρ worst

TSP (m), and then multiplying P ρ worst
TSP (m) with the area of every active core.

For simplicity of presentation and in order to consider safe margins, when computing TSP, we assume
that all blocks in the floorplan that do not correspond to cores are always active and consuming their highest
power consumption, such that column vector Pblocks is filled with the associated power consumption values.

The algorithms presented in Section 5.2 and Section 5.3 are derived considering the steady-state tempera-
tures. Section 5.4 explains a method to further account for the transient thermal effects.

5.2 Thermal Safe Power for Homogeneous Systems
This section presents the algorithms necessary to compute TSP for homogeneous systems.

5.2.1 Given Core Mapping on Homogeneous Systems
This section presents a polynomial-time algorithm to compute TSP at runtime for a particular core mapping
and ambient temperature, resulting in a uniform per-core value of TSP, for all active cores in mapping X.
That is, a per-core power budget value for each active core in the specified mapping, defined as PTSP (X), that
results in a maximum steady-state temperature throughout the chip that does not exceed TDTM.

Note that this does not imply that in practice all active cores are forced to consume the same power, as this
would be an unrealistic assumption. Thus, every active core may consume any amount of power, which can
be different for each core, as long as the power consumption on individual cores does not exceed PTSP (X).

Due to the heat transfer among cores, which cores are active and which cores are inactive (i.e., the specific
core mapping), plays a major role in the computation of the maximum temperatures. This concept can be seen
in the following example. Consider the 16-core homogeneous system presented in Figure 4.3a (described
in Chapter 4.2.1). Figure 5.4 illustrates two possible mappings when simultaneously activating 6 cores: a
concentrated mapping and a distributed mapping. For Figure 5.4a, the maximum steady-state temperature
among all cores reaches 80◦C when each active core consumes 12.74W. Contrarily, for Figure 5.4b this
happens when each active core consumes 14.64W. Therefore, we have a total power difference of 11.4W
between these two core mappings; however, both cases result in the same maximum steady-state temperature.

Figure 5.4: (from [75]) Example of
TSP for two different mappings re-
sulting in a maximum steady-state
temperature of 80◦C. Top numbers
are the power consumptions on
each active core (boxed in black).
Bottom numbers are the tempera-
tures on the center of each core.
Detailed temperatures are shown
according to the color bar.
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For simplicity of presentation, we start by ignoring the maximum chip power constraint Pmax. Therefore,
by taking into account the thermal model of the chip, the power consumption on blocks of the floorplan that
do not correspond to cores, the ambient temperature, and the power consumption of inactive cores, we derive
a uniform per-core power budget for all active cores in mapping X that could potentially exceed Pmax, such
that the maximum steady-state temperature throughout the chip does not exceed TDTM. This per-core power
budget is defined as P ?

TSP (X).
For a given core mapping executing under per-core power budget P ?

TSP (X), the maximum temperatures
would clearly occur if all active cores consume the entire power budget. Therefore, by considering vector
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X, set K, and assuming that all inactive cores consume P core
inact and that all active cores consume equal power

Pequal at a given point in time, we start by rewriting Equation (3.11) as shown in Equation (5.1).

Tsteadyi =

N∑
j=1

b̃i,j · pcores
j +

N∑
j=1

b̃i,j
(
pblocks
j + Tamb · gj

)
(3.11 revisited)

Tsteadyi = Pequal ·
M∑
j=1

b̃i,kj · xj + P core
inact ·

M∑
j=1

b̃i,kj (1− xj) +

N∑
j=1

b̃i,j
(
pblocks
j + Tamb · gj

)
(5.1)

In Equation (5.1), the value of Pequal is not yet P ?
TSP (X), but the expression represents the resulting steady-

state temperature on thermal node i when all active cores in the given mapping consume equal power. Fur-
thermore, for a given X, Pblocks, Tamb, and thermal model, the only variables in Equation (5.1) are Tsteadyi and
Pequal. As seen in Equation (5.1), that is,

Tsteadyi = Pequal ·
M∑
j=1

b̃i,kj · xj + P core
inact ·

M∑
j=1

b̃i,kj (1− xj) +

N∑
j=1

b̃i,j
(
pblocks
j + Tamb · gj

)
︸ ︷︷ ︸

Constant for node i

.

Given that the temperature which we do not wish to exceed is TDTM, the goal is now to find the value
of Pequal that would make Tsteadyi reach the value of TDTM. This can be easily done from Equation (5.1) by
setting Tsteadyi to TDTM and then deriving the value of Pequal as shown in Equation (5.2).

Pequal =
TDTM − P core

inact ·
∑M

j=1 b̃i,kj (1− xj)−
∑N

j=1 b̃i,j
(
pblocks
j + Tamb · gj

)∑M
j=1 b̃i,kj · xj

(5.2)

The most pessimistic value of Pequal is a safe per-core power budget for all cores in mapping X. Therefore,
the resulting P ?

TSP (X) for the given X, Pblocks, Tamb, TDTM, P core
inact, and thermal model, can be computed by

finding the minimum value of Pequal for all blocks in the floorplan, i.e., ∀i ∈ L. The computation of P ?
TSP (X)

is presented in Equation (5.3). The value of i that results in P ?
TSP (X) corresponds to the block with the highest

temperature for such a case.

P ?
TSP (X) = min

∀i∈L

{
TDTM − P core

inact ·
∑M

j=1 b̃i,kj (1− xj)−
∑N

j=1 b̃i,j
(
pblocks
j + Tamb · gj

)∑M
j=1 b̃i,kj

· xj

}
(5.3)

Considering the 16-core homogeneous system presented in Figure 4.3a (described in Chapter 4.2.1), Fig-
ure 5.5 presents a brief example of how P ?

TSP (X) is computed using Equation (5.3) for Figure 5.4a. Namely,
Figure 5.5a shows the power that should be consumed by the 6 active cores (i.e., Pequal), such that Tsteady1
reaches 80◦C, by momentarily ignoring the temperature on the other blocks of the floorplan. Figure 5.5b
and Figure 5.5c present the same thing when focusing on Tsteady7 and Tsteady14, respectively. The compu-
tation of Pequal for the other cores is not shown in the figure; however, the same principle applies. After
computing Pequal for all Tsteadyi, particularly Tsteady1,Tsteady2, . . . ,Tsteady16 for this example, P ?

TSP (X) is set
to the smallest value of Pequal, which for this example was the case when computing Tsteady14. Furthermore,
given that the final value of P ?

TSP (X) is found when computing Tsteady14, it holds that this block will have the
highest steady-state temperature in the entire chip when all active cores consume equal power, as shown in
Figure 5.4a.

Now that we have P ?
TSP (X), we can include Pmax back into the formulation. Basically, if all active cores

in mapping X consume the entire per-core power budget, considering the power consumption of the inactive
cores and other blocks in the floorplan, the total power consumption in the chip should not exceed the value
of Pmax. Therefore, since the summation of the elements in vector X is equal to the number of active cores in
the mapping, it should hold that

PTSP (X) ·
M∑
i=1

xi + P core
inact

(
M −

M∑
i=1

xi

)
+

N∑
i=1

pblocks
i ≤ Pmax.
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Figure 5.5: (from [75]) TSP computation example for the given mapping from Figure 5.4a.

From this equation, it is simple to derive the amount of power that any m active cores can consume, such
that the total power consumption precisely reaches the value of Pmax. For such a purpose, we define auxiliary
function P core

max (m), shown in Equation (5.4), where m represents the number of active cores.

P core
max (m) = P core

inact +
Pmax −

∑N
i=1 p

blocks
i − P core

inact ·M
m

(5.4)

Therefore, if we have that P ?
TSP (X) ≤ P core

max

(∑M
i=1 xi

)
, it means that consuming P ?

TSP (X) in all ac-
tive cores will not exceed Pmax, and thus we can safely set PTSP (X) to P ?

TSP (X). Contrarily, in case that

P ?
TSP (X) > P core

max

(∑M
i=1 xi

)
, then consuming P ?

TSP (X) in all active cores would exceed Pmax. Hence, in-
stead of setting the value of PTSP (X) to P ?

TSP (X), in this case we simply set it to a smaller value, specifically,

to P core
max

(∑M
i=1 xi

)
, such that Pmax is satisfied. Formally, the computation of power budget PTSP (X) for each

active core in the specified mapping X is shown in Equation (5.5). The total time complexity for computing
PTSP (X) for a given Pblocks, Tamb, TDTM, Pmax, and thermal model of the chip, is O (ZN).

PTSP (X) =

P ?
TSP (X) if P ?

TSP (X) ≤ P core
max

(∑M
i=1 xi

)
P core

max

(∑M
i=1 xi

)
otherwise

(5.5)

5.2.2 Worst-Case Mappings on Homogeneous Systems
This section presents a polynomial-time algorithm to compute TSP for the worst-case mappings with m active
cores, resulting in a uniform per-core value of TSP for all m active cores. That is, a per-core power budget
value for each active core in any possible mapping with m simultaneously active cores, defined as Pworst

TSP (m),
that results in a maximum steady-state temperature throughout the chip that does not exceed TDTM.

As mentioned in Section 5.2.1, note that this does not imply that in practice all active cores are forced to
consume the same power, as this would be an unrealistic assumption. It means that every active core, for
any possible mapping with m active cores, may consume any amount of power, which can be different for
each core, as long as the power consumption on individual cores does not exceed Pworst

TSP (m). The purpose
behind this, is to allow system designers and resource management techniques to abstract themselves from
mapping decisions when doing task partitioning and selecting the DVFS levels of cores, thus reducing the
complexity of the management algorithms.

As already discussed in Section 5.2.1 and shown in Figure 5.4, due to the heat transfer among cores, the
mapping of cores will play a major role in the resulting maximum temperatures. According to Equation (5.1),
if all active cores in the system consume equal power Pequal at a given point in time, there will be one (or
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more) active core (or cores) that will heat up more than the other cores. Moreover, for the same value of
Pequal, different X mappings will result in different maximum temperatures. Dually, for the same maximum
temperature among all cores, different mappings will result in different power consumption values to achieve
such a temperature. This duality is what allows us to compute PTSP (X) through Equation (5.5) for a given
X.

Generally, as already shown in Figure 5.4, for the same maximum steady-state temperatures with pblocks
i =

0 for all i, having a group of cores active together in a corner of the chip results in lower Pequal values when
compared to dispersing the active cores throughout the chip. This happens because when active cores are
dispersed, the active cores have a high chance of transferring heat to the inactive cores. The worst-case
mappings for TSP are those that result in the lowest power budgets, while no block in the floorplan exceeds
(in the steady-state) the critical threshold temperature that triggers DTM, i.e., Tsteadyi ≤ TDTM for all i ∈ L.

By computing TSP for the worst-case mappings, given that they are the most pessimistic cases, system de-
signers and resource management techniques can abstract themselves from core mapping decisions. When
having m active cores, executing cores at power consumption levels that do not exceed Pworst

TSP (m) will
result in maximum steady-state temperatures, among all blocks in the floorplan, that do not exceed the
critical threshold temperature that triggers DTM, for any possible mapping with m active cores.

For example, considering the 16-core homogeneous system presented in Figure 4.3a (described in Chap-
ter 4.2.1), Figure 5.6 illustrates the values of TSP for the worst-case core mappings when having and ambient
temperature of 45◦C and m = 1, 2, . . . , 16 active cores. The figure shows that TSP is a per-core power budget
that results in a decreasing function with respect to the number of simultaneously active cores. For presenta-
tion purposes, by multiplying the TSP values with the number of active cores for each case, Figure 5.6 also
presents the resulting power consumptions at a chip level when all active cores are consuming their entire
per-core power budgets, resulting in a non-decreasing function with respect to the number of active cores.
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Figure 5.6: Example of TSP results for the worst-case core mappings.

To reinforce the concept that using TSP as a per-core power budget for the worst-case mappings with
m active cores is safe for any possible core mapping with m simultaneously active cores, considering the
16-core homogeneous system presented in Figure 4.3a (described in Chapter 4.2.1), Figure 5.7 presents an
example for three different core mappings with 4 active cores executing under the computed worst-case TSP
of 14.67W. The figure shows that distributed mappings result in a larger thermal headroom than concentrated
mappings, but more importantly, it shows that in no case does the steady-state temperature anywhere on the
chip exceeded the value of TDTM while the worst-case TSP power budget is satisfied.

One possible approach for computing TSP for the worst-case mappings could consist on first finding one
such worst-case mapping, and then computing the TSP value for the mapping by using Equation (5.5). How-
ever, it would be more efficient if we can derive a method to directly compute Pworst

TSP (m) without troubling
on finding a worst-case mapping first.

For a given thermal node i, we know from Equation (5.1) that there is one or more core mappings X
that result in the maximum Tsteadyi for a given value of Pequal. Particularly, we can distinguish which part of
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Figure 5.7: Example of different core mappings executing under TSP for the worst-case mappings with 4
active cores. Top numbers are the power consumptions on each active core (boxed in black). Bottom numbers
are the temperatures on the center of each core. Detailed temperatures are shown according to the color bar.

Equation (5.1) is constant for a given thermal node i and which part depends on the mapping of cores, as

Tsteadyi = Pequal ·
M∑
j=1

b̃i,kj · xj + P core
inact ·

M∑
j=1

b̃i,kj (1− xj)

︸ ︷︷ ︸
Depends on the mapping

+

N∑
j=1

b̃i,j
(
pblocks
j + Tamb · gj

)
︸ ︷︷ ︸

Constant for node i

.

Namely, from Equation (5.1), given that B−1, G, Pblocks, and Tamb are constant, for a given node i and
value of Pequal, the value of Tsteadyi is maximized when Pequal ·

∑M
j=1 b̃i,kj · xj + P core

inact ·
∑M

j=1 b̃i,kj (1− xj)
is maximized. Moreover, assuming that an inactive core will always consume less power than an active core
(even if the active core executes at its minimum DVFS levels), it holds that Pequal ≥ P core

inact. Hence, given that
xj and (1− xj) are mutually exclusive, for a given node i and Pequal, then the value of Tsteadyi is maximized
when

∑M
j=1 b̃i,kj

· xj is maximized. For row i, this happens when mapping X activates the m cores with the
highest b̃i,kj

values.

Thus, if all active cores consume equal power Pequal, the m highest values for Pequal · b̃i,j such that j ∈ K,
correspond to the maximum amount of heat than any m cores can contribute to temperature Tsteadyi.

In order to compute the maximum amount of heat that any m cores can contribute to the temperature on
node i, we define auxiliary matrix H = [hi,j ]Z×M . Matrix H is built by making a partial copy of matrix B−1,
such that hi,j = b̃`i,kj

for all i = 1, 2, . . . ,Z and for all j = 1, 2, . . . ,M , and then reordering every row
of H decreasingly. For a given chip and cooling solution (i.e., for a given RC thermal network), matrix H
only needs to be build and ordered one time, which has time complexity O (ZM logM). The pseudo-code
to build matrix H is presented in Algorithm 1.

Algorithm 1 Computation of auxiliary matrix H

Input: Matrix B−1 = [̃bi,j ]N×N , set L, and set K;
Output: Auxiliary matrix H = [hi,j ]Z×M ;

1: for all i = 1, 2, . . . ,Z (i.e., for all blocks in the floorplan) do
2: for all j = 1, 2, . . . ,M (i.e., for all cores in the chip) do
3: hi,j ← b̃`i,kj

; {Build partial copy of matrix B−1}
4: end for
5: Re-order row i of matrix H decreasingly;
6: end for
7: return Auxiliary matrix H;
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Based on the definition of auxiliary matrix H, for thermal node `i, the first m elements in row i of matrix
H correspond to the m highest b̃`i,j values, such that j ∈ K. Therefore, if all active cores consume equal
power Pequal, multiplying the power consumption on each core with the summation of the first m elements in
row i of auxiliary matrix H, i.e., computing Pequal ·

∑m
j=1 hi,j , will result in the maximum amount of heat

that any m cores can contribute to the steady-state temperature on node `i, i.e., Tsteady`i
.

For simplicity of presentation and similarly to Section 5.2.1, we first start by ignoring the maximum chip
power constraint Pmax. Therefore, by taking into account the thermal model of the chip, the power con-
sumption on blocks of the floorplan that do not correspond to cores, the ambient temperature, and the power
consumption of inactive cores, we derive the worst-case uniform per-core power budget for any possible map-
ping of cores with m simultaneously active cores that could potentially exceed Pmax, such that the maximum
steady-state temperature throughout the chip does not exceed TDTM. This per-core power budget is defined as
P ?worst

TSP (m). In order to derive P ?worst
TSP (m), we first rewrite Equation (5.1) considering matrix H as

Tsteady`i
≤ Pequal ·

m∑
j=1

hi,j + P core
inact ·

M∑
j=m+1

hi,j +

N∑
j=1

b̃`i,j
(
pblocks
j + Tamb · gj

)
.

Similar to Section 5.2.1, by setting Tsteady`i
to be equal to TDTM for a given i, we can compute the value of

Pequal that would make Tsteady`i
reach the value TDTM as

Pequal =
TDTM − P core

inact ·
∑M

j=m+1 hi,j −
∑N

j=1 b̃`i,j
(
pblocks
j + Tamb · gj

)∑m
j=1 hi,j

.

Given that the most pessimistic value of Pequal is a safe power budget for any m active cores, for the
given Pblocks, Tamb, TDTM, P core

inact, and thermal model, the value of P ?worst
TSP (m) can be computed by finding the

minimum Pequal for all blocks in the floorplan, i.e., for every i = 1, 2, . . . ,Z. The computation of P ?worst
TSP (m)

is presented in Equation (5.6), and the value of i that results in P ?worst
TSP (m) corresponds to the block with the

highest temperature in the worst-case mapping with m active cores.

P ?worst
TSP (m) = min

1≤i≤Z

{
TDTM − P core

inact ·
∑M

j=m+1 hi,j −
∑N

j=1 b̃`i,j
(
pblocks
j + Tamb · gj

)∑m
j=1 hi,j

}
(5.6)

Similar to Section 5.2.1, considering the 16-core homogeneous system presented in Figure 4.3a (described
in Chapter 4.2.1), Figure 5.8 presents a brief example of how P ?worst

TSP (m) is computed using Equation (5.6) for
the worst-case mappings with 4 active cores. Namely, Figure 5.8a shows the power that should be consumed
by the 4 cores that contribute the most heat to Tsteady1, such that Tsteady1 reaches 80◦C, momentarily ignoring
the temperature on the other blocks of the floorplan. Figure 5.8b and Figure 5.8c present the same thing when
focusing on Tsteady7 and Tsteady15, respectively. The computation of Pequal for the other cores is not shown in
the figure; however, the same principle applies. It is important to note that for each Tsteadyi, there is a different
set of m active cores that contributes more heat into temperature Tsteadyi. After computing Pequal for all
Tsteadyi, particularly Tsteady1,Tsteady2, . . . ,Tsteady16 for this example, P ?worst

TSP (m) is set to the smallest value of
Pequal, which for this example was the case when computing Tsteady15. Furthermore, given that the final value
of P ?worst

TSP (m) is found when computing Tsteady15, it holds that this block will have the highest steady-state
temperature in the chip when all active cores consume equal power under the worst-case mapping, as shown
in Figure 5.7c. Naturally, for symmetrical chips there exist more than one worst-case mapping for m active
cores; however, computing TSP for one such mapping is sufficient to derive a safe per-core power budget for
any possible mapping with m active cores.

Similar to Section 5.2.1, now that we have P ?worst
TSP (m), we can include Pmax back into the formulation. The

logic and procedure is equivalent as that in Section 5.2.1. Namely, if we have that P ?worst
TSP (m) ≤ P core

max (m),
it means that simultaneously consuming P ?worst

TSP (m) in m active cores will not exceed Pmax, and thus we
can safely set Pworst

TSP (m) to P ?worst
TSP (m). Contrarily, in case P ?worst

TSP (m) > P core
max (m), then simultaneously

consuming P ?worst
TSP (m) in m active cores would exceed Pmax. Hence, instead of setting the value of Pworst

TSP (m)
to P ?worst

TSP (m), in this case we simply set it to a smaller value, specifically, to P core
max (m), such that Pmax is

satisfied. Formally, the computation of power constraint Pworst
TSP (m) for each active core in any possible core
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Figure 5.8: (from [75]) TSP computation example for the worst-case mappings with 4 active cores.

mapping with m simultaneously active cores is shown in Equation (5.7). Given that matrix H only needs to
be build once for a given chip by using Algorithm 1, the total time complexity for computing Pworst

TSP (m) for
a given m is O (ZN), and for computing Pworst

TSP (m) for all m = 1, 2, . . . ,M is O (MZN).

Pworst
TSP (m) =

P ?worst
TSP (m) if P ?worst

TSP (m) ≤ P core
max (m)

P core
max (m) otherwise

(5.7)

5.3 Thermal Safe Power for Heterogeneous Systems

Given that in heterogeneous systems cores have different areas and consume different amounts of power, a
power budgeting technique should not use the same per-core power constraint for different types of cores.
The two algorithms in Section 5.2 provide the foundations of TSP for homogeneous systems. In this section,
we extend these concepts for the general case of heterogeneous systems.

5.3.1 Given Core Mapping on Heterogeneous Systems
In this section we extend Equation (5.5) from Section 5.2.1 in order to consider heterogeneous systems,
like the one illustrated in Figure 4.4 (described in Chapter 4.2.2). To start, it is important to note that the
temperature on a chip is directly related to how power density is distributed throughout the chip, and only
indirectly related to the power consumption. For example, for two cores with different areas, if both cores
have the same power consumption, the core with a small area will have a higher temperature than the core
with a big area. Therefore, core heterogeneity should be handled by focusing on power density instead
of power consumption, thus deriving a power density budget. This could be potentially done by dividing
the cores of a heterogeneous floorplan into smaller homogeneous sub-blocks of the same size, and then
computing TSP through Equation (5.5) for these smaller sub-blocks. However, such an approach would not be
computationally efficient, especially when considering the required size of the sub-blocks (and corresponding
RC thermal network) to perfectly fit all types of cores. A more efficient method is thus to directly compute the
power density budgets. Therefore, in this section we derive a uniform power density budget for every active
core in the specified mapping (independent of the type of core), defined as P ρ

TSP (X), that results in a maximum
steady-state temperature throughout the chip that does not exceed TDTM. To compute the corresponding TSP
value for core j, we simply multiply the power density budget P ρ

TSP (X) with the area of core j.
As already done in Section 5.2 for simplicity of presentation, we first start by ignoring the maximum

chip power constraint Pmax. Therefore, by taking into account the thermal model of the chip, the power con-
sumption on blocks of the floorplan that do not correspond to cores, the ambient temperature, and the power
consumption of inactive cores, we derive a uniform power density budget (independent of the types of cores)
for all active cores in mapping X that could potentially exceed Pmax, such that the maximum steady-state
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temperature throughout the chip does not exceed TDTM. This power density budget is defined as P ρ?
TSP (X).

Considering the above and assuming that all active cores have an equal power density P ρ
equal at a given point

in time, Equation (3.11) can be rewritten as shown in Equation (5.8).

Tsteadyi = P ρ
equal ·

M∑
j=1

b̃i,kj
· areacore

j · xj +

M∑
j=1

b̃i,kj
· P core

inactj (1− xj) +

N∑
j=1

b̃i,j
(
pblocks
j + Tamb · gj

)
(5.8)

From this expression and by following a similar procedure as in Section 5.2.1, we can compute P ρ?
TSP (X)

as presented in Equation (5.9), with total time complexity O (ZM). The value of i that results in P ρ?
TSP (X)

corresponds to the block with the highest temperature for such a case.

P ρ?
TSP (X) = min

∀i∈L

{
TDTM −

∑M
j=1 b̃i,kj · P core

inactj (1− xj)−
∑N

j=1 b̃i,j
(
pblocks
j + Tamb · gj

)∑M
j=1 b̃i,kj · areacore

j · xj

}
(5.9)

Once again, now that we have P ρ?
TSP (X) we can include Pmax back into the formulation. Basically, if

the power density in all active cores in mapping X is equal to the entire power density budget, considering
the power consumption of the inactive cores and other blocks in the floorplan, the total power consumption
should not exceed the value of Pmax, i.e., it should hold that

P ρ
TSP (X) ·

M∑
j=1

areacore
j · qj +

M∑
j=1

P core
inactj (1− xj) +

N∑
i=1

pblocks
i ≤ Pmax.

From this equation, it is simple to derive the amount of power density that any active cores in mapping X
can have, such that the total power consumption precisely reaches the value of Pmax. For such a purpose, we
define auxiliary function P core

max
ρ (X), shown in Equation (5.10), used to compute this power density value.

P core
max

ρ (X) =
Pmax −

∑N
i=1 p

blocks
i −

∑M
j=1 P

core
inactj (1− xj)∑M

j=1 areacore
j · xj

(5.10)

Similar to Section 5.2, we then have that P ρ
TSP (X) can be computed as presented in Equation (5.11). The

total time complexity for computing P ρ
TSP (X) for a given Pblocks, Tamb, TDTM, Pmax, and thermal model of the

chip, is O (ZM). To compute the corresponding TSP value for core j, we simply multiply P ρ
TSP (X) with the

area of core j.

P ρ
TSP (X) =

P ρ?
TSP (X) if P ρ?

TSP (X) ≤ P core
max

ρ (X)

P core
max

ρ (X) otherwise
(5.11)

5.3.2 Worst-Case Mappings on Heterogeneous Systems
This section extends Equation (5.7) presented in Section 5.2.2 in order to consider heterogeneous systems.
Similar to Section 5.3.1, we focus on deriving a safe power density budget, rather than focus on power
consumption. Furthermore, in Section 5.2.2 the value of the per-core power budget for the worst-case core
mappings depends on the number of active cores. However, as mentioned in Section 5.1.2, for the case with
heterogeneous systems, given that different core types have different areas, the value of the power density
budget will depend on the number of active cores for each type of core. Therefore, in this section we derive a
uniform power density budget for the worst-case core mappings with m = {m1,m2, . . . ,mQ} active cores,
and we define such a power density budget as P ρ worst

TSP (m). For example, if we have a system with three
types of cores and we activate 4 cores of type 1 and 7 cores of type 3, the power density budget for such
a case is denoted as P ρ worst

TSP ({4, 0, 7}). We then simply multiply the power density budget with the area of
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each core, thus obtaining a per-core power budget for each type of core for any possible core mapping with
m = {m1,m2, . . . ,mQ} simultaneously active cores, that results in a maximum steady-state temperature
throughout the chip which does not exceed TDTM.

Similar to Section 5.2.2, we define auxiliary matrix Hρ =
[
hρ
q,i,j

]
Q×Z×M type

q
which is used to compute

the maximum amount of heat that any mq cores of type q can contribute to the temperature on node i, for
all core types q = 1, 2, . . . ,Q. Particularly, matrix Hρ is built by making a partial copy of matrix B−1,
considering the type and the area of the cores, such that hρ

q,i,j = b̃`i,kq
j
· areatype

q for all q = 1, 2, . . . ,Q, for all

i = 1, 2, . . . ,Z, and for all j = 1, 2, . . . ,M type
q , and then, for every q and every i, reordering (with respect to

j) each row of Hρ decreasingly. For a given chip and cooling solution (i.e., for a given RC thermal network),
matrix Hρ only needs to be built and ordered one time, which has time complexity O

(
ZM type

q logM type
q

)
for

every type of core q. The pseudo-code to build matrix Hρ is presented in Algorithm 2.

Algorithm 2 Computation of auxiliary matrix Hρ

Input: Matrix B−1 = [̃bi,j ]N×N , set L, number of cores M type
q , and sets Kq for q = 1, 2, . . . ,Q;

Output: Auxiliary matrix Hρ =
[
hρ
q,i,j

]
Q×Z×M type

q
;

1: for all q = 1, 2, . . . ,Q (i.e., for all types of cores) do
2: for all i = 1, 2, . . . ,Z (i.e., for all blocks in the floorplan) do
3: for all j = 1, 2, . . . ,M type

q (i.e., for all cores of type q) do
4: hρ

q,i,j ← b̃`i,kq
j
· areatype

q ; {Build partial copy of matrix B−1}
5: end for
6: For these q and i values, reorder Hρ decreasingly with respect to j;
7: end for
8: end for
9: return Auxiliary matrix Hρ;

As already done in Section 5.2 for simplicity of presentation, we first start by ignoring the maximum
chip power constraint Pmax. Therefore, by taking into account the thermal model of the chip, the power
consumption on blocks of the floorplan that do not correspond to cores, the ambient temperature, and the
power consumption of inactive cores, we derive the worst-case uniform power density budget (independent
of the types of cores) for each active core in any possible mapping of cores with m = {m1,m2, . . . ,mQ}
simultaneously active cores that could potentially exceed Pmax, such that the maximum temperature in the
steady-state among all blocks does not exceed TDTM. This power constraint is defined as P ρ?worst

TSP (m).
In order to derive P ρ?worst

TSP (m), we first rewrite Equation (5.8) by grouping together the mappings of
different types of cores as

Tsteadyi = P ρ
equal ·

Q∑
q=1

M type
q∑

j=1

b̃i,kq
j
· areatype

q ·xq
j +

Q∑
q=1

M type
q∑

j=1

b̃i,xq
j
·P type

inactq

(
1− xq

j

)
+

N∑
j=1

b̃i,j
(
pblocks
j + Tamb · gj

)
,

after which we rewrite this expression now considering matrix Hρ as

Tsteady`i
= P ρ

equal

Q∑
q=1

mq∑
j=1

hρ
q,i,j +

Q∑
q=1

P type
inactq

areatype
q

·
M type

q∑
j=mq+1

hρ
q,i,j +

N∑
j=1

b̃`i,j
(
pblocks
j + Tamb · gj

)
.

From this last expression and by following a similar procedure as in Section 5.2.2, we can compute P ρ?worst
TSP (m)

as presented in Equation (5.12).

P ρ?worst
TSP (m) = min

1≤i≤Z


TDTM −

∑Q
q=1

P type
inactq

areatype
q

∑M type
q

j=mq+1 h
ρ
q,i,j −

∑N
j=1 b̃`i,j

(
pblocks
j + Tamb · gj

)
∑Q

q=1

∑mq

j=1 h
ρ
q,i,j


(5.12)
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Once again, now that we have P ρ?worst
TSP (m) we can include Pmax back into the formulation. Basically,

if the power density in all active cores is equal to the entire per-core power density budget, considering the
power consumption of the inactive cores and other blocks in the floorplan, the total power consumption should
not exceed the value of Pmax, i.e., it should hold that

P ρ worst
TSP (m) ·

Q∑
q=1

areatype
q ·mq +

Q∑
q=1

P type
inactq

(
M type

q −mq

)
+

N∑
i=1

pblocks
i ≤ Pmax.

From this equation, it is simple to derive the amount of power density that any m = {m1,m2, . . . ,mQ}
active cores can have, such that the total power consumption precisely reaches the value of Pmax. For such
a purpose, we define auxiliary function P core

max
ρ (m), shown in Equation (5.13), used to compute this power

density value.

P core
max

ρ (m) =
Pmax −

∑N
i=1 p

blocks
i −

∑Q
q=1 P

type
inactq

(
M type

q −mq

)∑Q
q=1 areatype

q ·mq

(5.13)

Similar to Section 5.2, we then have that P ρ worst
TSP (m) can be computed as presented in Equation (5.14).

Given that matrix Hρ only needs to be built once for a given chip using Algorithm 2, the total time complexity
for computing P ρ worst

TSP (m) for a given m = {m1,m2, . . . ,mQ} is O (ZN), and for computing P ρ worst
TSP (m)

for all possible combinations of active cores of different types is O
(
ZN

∏Q
q=1 M

type
q

)
.

P ρ worst
TSP (m) =

P ρ?worst
TSP (m) if P ρ?worst

TSP (m) ≤ P core
max

ρ (m)

P core
max

ρ (m) otherwise.
(5.14)

Note that the algorithms for homogeneous systems presented in Section 5.2 are a special case of the algo-
rithms presented in this section. Particularly, when the area of all cores is constant, i.e., areacore

j = areacore
j+1

for j = 1, 2, . . . ,M − 1, and when the power consumption of all inactive cores is also constant, i.e.,
P core

inactj = P core
inactj+1 for j = 1, 2, . . . ,M − 1, then multiplying the derived power density budget with the

area of the cores results in the same TSP values computed using the algorithms from Section 5.2.

5.4 Transient State Considerations
Depending on the executed applications, the task partitioning, the task-to-core mapping, and the DPM/DVFS
policies implemented in the system, the power consumption and the number of active cores throughout the
chip could change very frequently (in the order of milliseconds) or it could change rarely (in the order of
several seconds). The former happens very often in normal systems, e.g., when there are context switches
inside different cores due to task preemption, when some cores become idle waiting for data from memory
or waiting for some other thread to finish its computation before being able to continue, etc. The latter may
occur in scenarios with long running applications that have no more running threads than cores (such that
preemption is not needed). In either case, when drastic power changes occur and depending on the adopted
DVFS policy, the temperature of some cores might exceed the value of the critical temperature due to the
effects of transient temperatures. When this happens, DTM is triggered in order to avoid damages to the
chip, resulting in lower performance than originally expected. Unless care is taken, these transient thermal
effects can be observed in any power budgeting technique derived for the steady-state temperatures, e.g., for
constant power budgets like TDP, and also for some cases with TSP.

The following example briefly illustrates how this effect could possibly occur for systems constrained
both by (1) TDP and (2) TSP. Consider the 16-core homogeneous system presented in Figure 4.3a (described
in Chapter 4.2.1), with a P core

inact of 0W, and (1) a TDP of 90.2W used as a per-chip power budget, or (2)
Pworst

TSP (4) = 14.67W and Pworst
TSP (8) = 11.27W, i.e., a per-core TSP of 14.67W and 11.27W when activating

4 and 8 cores, respectively. Under these assumptions, Figure 5.9 presents simulations in which there are 8
active cores according to Figure 5.3b during t = [0 s, 0.5 s], each core consuming 11.27W (90.2W in total).
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During t = [0.5 s, 1 s], these cores are shut-down and we activate other 4 cores according to Figure 5.3a, each
core consuming 14.67W (58.7W in total). Therefore, when using (1) TDP as a per-chip power budget, the
system consumes the entire TDP budget during t = [0 s, 0.5 s], and less than TDP during t = [0.5 s, 1 s].
Moreover, when constrained by (2) TSP, the system consumes the corresponding TSP values according to the
number of active cores at all times. However, although the power budgets are being satisfied in both cases,
Figure 5.9 shows that during t = [0.5 s, 1 s] the temperature of at least one core exceeds the 80◦C critical
threshold temperature that triggers DTM. Such a transient effect, i.e., when we have transient temperature
peaks that are higher than the corresponding steady-state temperatures, normally occurs when the power
density of some cores is incremented during a change in power. For example, for the opposite case in which
we transition from the mapping in Figure 5.3a to that in Figure 5.3b, given that the power density in all the
active cores decreases, the transient temperatures remain below both steady-states, as shown in Figure 5.10.
Other examples about this issue and an analytical method to compute the transient peaks in temperature,
called MatEx, are later presented in Chapter 6.

Figure 5.9: Transient example for both TSP
and TDP (the bold line shows the maximum
temperature among all elements in the chip).
During t = [0 s, 0.5 s] there are 8 active cores
according to Figure 5.3b, each core consum-
ing 11.27W. During t = [0.5 s, 1 s], these
cores are shut-down and we activate 4 cores
according to Figure 5.3a, each core consum-
ing 14.67W.
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Figure 5.10: Transient example for both TSP
and TDP (the bold line shows the maximum
temperature among all elements in the chip).
During t = [0 s, 0.5 s] there are 4 active cores
according to Figure 5.3a, each core consum-
ing 14.67W. During t = [0.5 s, 1 s], these
cores are shut-down and we activate 8 cores
according to Figure 5.3b, each core consum-
ing 11.27W.

55

65

75

85

95

0 0.2 0.4 0.6 0.8 1
71

74

77

80

83

90.2W=8·Pworst
TSP (8)=TDP

58.7W=4·Pworst
TSP (4)<TDP To

ta
lp

ow
er

[W
]

Time [s]

M
ax

.T
em

pe
ra

tu
re

[◦
C

]

Max. Temp.
Total Power

If the frequency of the power changes that produce this transient effect is very high, then DTM could
potentially be triggered frequently, and the associated performance losses (compared to the expected perfor-
mance) would be noticeable. There are several approaches that can be used to deal with this issue in regards
to TSP, and in this section we detail two of them. Particularly, one approach (discussed in Section 5.4.1) is to
adjust the temperature for which we compute TSP such that the transient peak temperatures are constrained
below TDTM even if we always adjust the DVFS levels to consume the entire TSP budget according to the
number of active cores at any given time. The other approach (discussed in Section 5.4.2) is to maintain the
DVFS levels at nominal operation for a given mapping by ignoring the partial number of active cores due to
cores being idle while waiting for data from memory or waiting for other threads to finish.

5.4.1 Adjusting the Temperature for Computing TSP
For this approach, we need to quantify the maximum values that the transient peak temperatures can actually
reach during the transient state. We denote the difference between such maximum transient temperatures and
the value of TDTM as ∆Tmax

transient, with value 3.08◦C for the example in Figure 5.9. Therefore, if instead of
computing TSP for temperature TDTM we compute it for temperature TDTM − ∆Tmax

transient, we can make sure
that the transient temperatures never exceed TDTM. Nevertheless, depending on the thermal model of a chip
and its resulting thermal capacitances, it may occur that the transient temperatures for this new TSP value are
too pessimistic compared to TDTM. For such cases, with just a few iterations, a near optimal value for which
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to compute TSP can be derived. This method should be applied at design-time, due to the large required
design-space exploration and the overheads for obtaining ∆Tmax

transient for each case. A similar method should
also be adopted for systems that use constant power budgets, e.g., TDP. Furthermore, the MatEx technique
later described in Chapter 6 is a lightweight tool for computing the transient peak temperatures, and can
therefore be used to speed-up the computation of ∆Tmax

transient.

Procedure Example

Consider the 16-core homogeneous system presented in Figure 4.3a (described in Chapter 4.2.1) and an
ambient temperature of 45◦C. For the power consumption values, consider a hypothetical scenario in which
the power of the cores changes every 0.1 seconds, and these changes in power are for a random number
of active cores. The mapping and power values adopted in all cases are those of TSP for the worst cases,
computed using Equation (5.6) and Equation (5.7), according to the number of active cores at each point in
time. Under these assumptions, we run simulations for such a case and present the resulting temperatures in
Figure 5.11a. In Figure 5.11a, we can observe that for our experimental settings (detailed in Chapter 4) the
thermal capacitances of the resulting thermal model are not negligible, which results in long transient-state
periods. Therefore, for such a case, the TSP values should be recomputed for some temperature below TDTM.
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Figure 5.11: Transient example for 16 cores. The number of active cores and their power consumption
changes every 0.1 s. The adopted mapping and power values are those of TSP for the worst-case mappings,
computed for (a) 80◦C and (b) 69.5◦C. The temperature on each core is illustrated using a different color, and
the maximum temperature among all cores at any given time is highlighted by the bold curve.

Looking at Figure 5.11a, we can quantify the value of ∆Tmax
transient, which we set to 15◦C, and then we

recompute TSP for 65◦C. After re-conducting the experiments, we observe that this results in a maximum
transient temperature of 74◦C, which is too pessimistic and thus we need a higher value. Therefore, we
iterate computing TSP and running transient temperature simulations. After just 5 iterations, particularly, by
computing TSP for 80◦C, 65◦C, 71◦C, 69◦C, and 69.5◦C, we reach a near optimal value for which to compute
TSP, which for this thermal model is 69.5◦C. Naturally, the new TSP values are smaller than those for a TSP
computed for 80◦C. Finally, Figure 5.11b presents simulation results for a similar experiment than that in
Figure 5.11a, but with power states according to the new TSP values computed for 69.5◦C. From the figure,
we can observe that the transient temperatures are always below TDTM. When computing TSP at runtime for
particular mapping scenarios, the target temperature should also be 69.5◦C, and not the original 80◦C.

If, unlike Figure 5.11, the changes in power do not occur very frequently, such that DTM is triggered with
low frequency and during short time intervals, then computing TSP for the original 80◦C could still prove to
be a better approach that results in higher total performance.

5.4.2 Nominal DVFS Operation for a Given Mapping
Another approach for dealing with the transient peak temperatures is to keep the DVFS levels at nominal
operation for a given mapping by ignoring the partial number of active cores due to cores being idle while
waiting for data from memory or waiting for other threads to finish. For example, considering a 64-core
system like the one shown in Figure 3.2, assume a situation in which the operating system partitions the tasks
and maps them to cores such that we have 32 cores with threads assigned to them while the other 32 cores
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remain power gated. For such a case, the DVFS levels of the 32 active cores can be set such that the power
consumption in every active core is below the TSP values for the worst-case mappings with 32 active cores,
i.e., Pworst

TSP (32). Normally, there will be time intervals (which could last some milliseconds or entire seconds)
during which some of these 32 active cores will remain idle in practice, e.g., when a thread is locked waiting
for data from another thread to continue. When this occurs, there are two possible alternatives of how the
system could operate: (1) change the DVFS levels in order to satisfy the TSP values for the partial number of
active cores, or (2) maintain the same DVFS levels that satisfy TSP when there are 32 active cores.

It is important to remember at this point that the TSP values result in a decreasing function with respect
to the number of active cores, as illustrated in Figure 5.6. Therefore, given that the TSP values for less than
32 active cores are larger than the TSP values for 32 active cores, this means that operating under alternative
(1) we can potentially achieve higher system performance by dynamically changing the DVFS levels, since
cores can execute at faster frequencies while satisfying TSP. However, this is precisely the case in which we
can have many transient thermal violations, as explained above and shown in Figure 5.11a.

Contrarily, operating under alternative (2) is a conservative approach which needs little additional consid-
erations. Namely, since the TSP values for less than 32 active cores are larger than the TSP values for 32 active
cores, if the DVFS levels are not changed, then individual cores will not consume more than Pworst

TSP (32) and
this is safe for any scenario with less than 32 active cores. Moreover, given that the power density of the active
cores remains constant under alternative (2), in this scenario the transient temperatures will generally remain
under TDTM and hence DTM will not be frequently triggered. This statement is supported by Figure 5.12,
showing further simulations for the 16-core system from Figure 4.3a. Figure 5.12a presents the same simula-
tions as in Figure 5.11a, in which the DVFS levels are constantly changing to match the TSP values for the
partial number of active cores for every time interval. On the other hand, Figure 5.12b illustrates the resulting
temperatures for the same assumptions and scenario, but keeping the DVFS levels constant at nominal opera-
tion when there are 16 active cores, where it can be observed that all transient temperatures remain below the
value of TDTM. Finally, note that under alternative (2) the DVFS levels are not maintained always constant,
but are rather set to nominal values. In other words, when an application finishes its execution or when a
new application arrives, the runtime management system will change the mapping of threads and compute
new nominal DVFS levels to satisfy the TSP values for the new mapping. Alternative (2) simply maintains the
DVFS levels constant when the partial number of active cores changes due to core idling or similar situations.
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Figure 5.12: Transient example for 16 active cores when using different DVFS policies for idling. The partial
number of active cores changes every 0.1 seconds, e.g., when threads become idle waiting for other threads
to finish. In (a), DVFS is used to match the worst-case TSP values for the partial number of active cores in
every time interval. In (b), DVFS levels are maintained constant to match the worst-case TSP values when no
core is idle, i.e., for 16 active cores. The temperature on each core is illustrated using a different color, and
the maximum temperature among all cores at any given time is highlighted by the bold curve.

5.5 Experimental Evaluations for Homogeneous Systems
This section presents experimental evaluations for homogeneous systems, that compare the total system per-
formance of seven different power budget techniques: TSP for given mappings, TSP for the worst-case map-
pings, three constant per-chip power budgets, a constant per-core power budget, and a runtime boosting
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technique, specifically, Intel’s Turbo Boost [9, 10, 35, 91] (described in Chapter 2.1.2). We also show how
TSP can be used to estimate the amount of dark silicon [6, 19, 95], and how such estimations are much more
realistic than those considering constant power budgets.

For the evaluations, we use the simulation framework described in Chapter 4 in detailed mode, considering
the homogeneous architecture illustrated in Figure 3.2 and described in Chapter 4.2.1. From the PARSEC
benchmarks described in Chapter 4.3, we use four representative applications, specifically, x264, bodytrack,
blackscholes, and swaptions.

5.5.1 Power Constraints
In this section we compute the power constraints used in our experiments. By using Equation (5.6) and
Equation (5.7), we compute TSP for the worst-case mappings, i.e., Pworst

TSP (m) for all m = 1, 2, . . . ,M .
Figure 5.13 presents the computed per-core TSP values as TSPworst, which results in a decreasing function
with respect to the number of simultaneously active cores. For presentation purposes, by multiplying the
TSPworst values from Figure 5.13 with the number of active cores for each case, Figure 5.14 also presents
TSP estimations at a chip level, resulting in a non-decreasing function with respect to the number of active
cores. Furthermore, for all possible number of active cores m = 1, 2, . . . ,M , we obtain the best-case core
mappings for a uniform power budget through integer linear programming, and compute the TSP values for
such given mappings by using Equation (5.5), presented in Figure 5.13 and Figure 5.14 as TSPbest. This allows
us to estimate how much pessimism we can have when considering TSP values for the worst-case mappings
compared to the best-case mappings, such that we quantify the highest possible performance losses incurred
when simplifying the resource management by abstracting from mapping decisions.
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Figure 5.13: Worst-case and best-case TSP for the 64-core homogeneous architecture illustrated in Figure 3.2
and described in Chapter 4.2.1, compared to a constant per-core power budget, and estimations of constant
per-chip power budgets equally distributed among the active cores.

For the constant per-chip power budgets, we cannot simply consider TDP, as this is a simulated platform
for which we do not have a datasheet with that information. Therefore, we consider three different per-chip
power budgets, which coincide with m · Pworst

TSP (m) for m=4, m=16, and m=64. Particularly, these power
budgets are 80W per-chip, 150W per-chip, and 225W per-chip. These constant per-chip power budgets are
representative TDP values for current technologies [34], and are shown as horizontal lines in Figure 5.14.
In Figure 5.13, we estimate the maximum power consumed by individual cores when these per-chip power
budgets are equally distributed among the active cores. For the constant per-core power budget, we consider
it to be equal to TSP when simultaneously activating all cores, i.e., Pworst

TSP (m) for m=64. This results in a
constant per-core power budget of 3.52W, which is represented by a horizontal line in Figure 5.13 and by an
increasing linear function in Figure 5.14. Note that representing TSP and the constant per-core power budget
in Figure 5.14 at a chip level does not imply that either constraint should be considered as a per-chip power
budget. Both budgets should be strictly considered at a per-core level, and we include them in Figure 5.14 only
as a mean to compare their resulting total chip power consumption with the other per-chip power budgets.
Similarly, the opposite applies when representing the constant per-chip power budgets in Figure 5.13.

With regards to temperature, Figure 5.15 presents simulation results that show the maximum steady-state
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Cores TSPworst TSPbest per-core per-chip per-chip per-chip

8 112.76 145.94 28.16 80.00 150.00 225.00

16 149.45 190.06 56.32 80.00 150.00 225.00

24 171.18 211.35 84.48 80.00 150.00 225.00

32 187.43 223.00 112.64 80.00 150.00 225.00

40 199.96 229.57 140.80 80.00 150.00 225.00

48 210.51 232.91 168.96 80.00 150.00 225.00

56 219.82 233.13 197.12 80.00 150.00 225.00

64 225.28 225.28 225.28 80.00 150.00 225.00

Figure 5.14: Constant per-chip power budgets, compared to estimations by multiplying the number of active
cores with a constant per-core power budget, and the worst-case and best-case TSP values, for the 64-core
homogeneous architecture illustrated in Figure 3.2 and described in Chapter 4.2.1.

temperature throughout the chip as a function of the number of simultaneously active cores, for the discussed
power budgets, considering that DTM is deactivated. As expected, when consuming TSP in all active cores,
the maximum steady-state temperature on the chip is 80◦C. Moreover, from Figure 5.15 we can conclude that
whenever the value of TSP for a given number of active cores is greater than any constant power budget, in
case such a power budget is used as the power constraint, the system could actually consume more power
without exceeding TDTM, which accounts for performance losses. On the other hand, whenever a constant
power budget exceeds the value of TSP for a given number of active cores, this implies that if the cores con-
sume more power than TSP, most likely DTM would be very frequently triggered due to thermal violations.
Note that for some cases in Figure 5.15, especially when having just a few active cores, the cores never con-
sume the entire power budgets even when executing at the maximum DVFS levels (e.g., in our experiments no
individual core ever consumes more than 20W). Hence, the dashed lines in the figure illustrate the potential
maximum steady-state temperature in case every power budget would have been entirely consumed, while the
solid lines show the maximum steady-state temperatures that can be practically achieved for this type of core.
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Figure 5.15: Maximum steady-state temperatures throughout the chip for the 64-core homogeneous archi-
tecture illustrated in Figure 3.2 and described in Chapter 4.2.1, with DTM deactivated, when using TSP, a
constant per-core power budget, and three equally distributed constant per-chip power budgets.

5.5.2 Execution Time of Online TSP Computation
In order to verify the applicability of TSP computations at runtime, we measure the execution time required by
an application implementing Equation (5.3) and Equation (5.5) (implemented in C++ as a single-threaded ap-
plication) on a desktop computer with a 64-bit quad-core Intel Sandybridge i5-2400 CPU running at 3.10GHz.
We consider several floorplans with different number of cores for every floorplan. For every floorplan, we
consider 25000 random mappings and present the maximum measured execution time for each case in Fig-

56



ure 5.16, from which we can conclude that TSP is suitable for runtime usage. Moreover, given that in order
to compute TSP, Equation (5.3) needs to find the minimum value of Pequal among all blocks in the floorplan,
TSP could be easily implemented as a multi-threaded application (e.g., one thread computing Pequal for each
block), and thus parallelized into multiple cores, further reducing the execution time.
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Figure 5.16: Execution time for
computing TSP for a given map-
ping, considering several floorplans
with different number of cores in
each floorplan.

5.5.3 Dark Silicon Estimations
From Figure 5.17 (a summarized version of Figure 5.13), we can easily estimate the amount of dark silicon for
a given power consumption on the cores. For example, consider that we would like to execute the active cores
at certain DVFS levels, such that the resulting power consumption in each core is 4W. Then, considering
the values of TSP for this chip and cooling solution, it would not be possible to simultaneously activate more
than 54 cores for such a case (as doing so would violate TSP), resulting in 15.63% of the chip being dark at
all times for these desired DVFS levels. Contrarily, if a constant per-chip power budget equally distributed
among all active cores is used for the same example estimations, e.g., 150.0W per-chip, then it would not
be possible to active more than 37 cores simultaneously, resulting in 42.19% of the chip being dark, which
is much higher than the estimations for TSP. This happens because, as explained in Section 5.5.1, whenever
the value of TSP for a given number of active cores is greater than a constant power budget, then using the
constant power budget as a constraint would keep the system underutilized.
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Figure 5.17: Example of dark silicon
estimations when using TSP for the
worst-case mappings and a constant
per-chip power budget, for the 64-core
homogeneous architecture illustrated
in Figure 3.2 and described in Chap-
ter 4.2.1

Moreover, when estimating the amount of dark silicon for another desired power consumption value on
the active cores for which the constant power budget exceeds the value of TSP for a given number of active
cores (e.g., 14W in this example), the TSP estimations would be more pessimistic than the estimations for
the constant power budget. However, as explained in Section 5.5.1, when this occurs, if the constant power
budget is used as a constraint, the most likely scenario is that DTM would be very frequently triggered due to
thermal violations, meaning that the associated dark silicon estimations would not be valid.

5.5.4 Performance Simulations
Figure 5.18 presents the resulting average total performance (using IPS as metric), for considering different
numbers of active cores and the different power budgets described in Section 5.5.1. We select the nominal
DVFS levels for operation of every active core for each case, such that the performance of each specific
application is maximized without exceeding the power budget under consideration.

In Figure 5.18, we can observe that the per-core budget and the 225W per-chip budget achieve the same
performance as TSPworst when all 64 cores are simultaneously active. This is an expected result, as in both
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Figure 5.18: Experimental evaluation results for homogeneous systems showing the average total system
performance when using different power budgets.

cases these power budgets coincide with the TSP values. However, there are many cases in which the fixed
per-chip and per-core power budgets are pessimistic and therefore the chip remains underutilized, as explained
in Section 5.5.1. Particularly, this happens with all other cases for the per-core power budget, and when
activating more than 4 and 16 cores with the 80W and 150W per-chip power budgets, respectively. On the
other hand, there are many other cases in which the fixed per-chip power budgets constantly trigger DTM,
specifically, when activating less than 16 cores under the 150W per-chip budget, and when activating less than
64 cores under the 225W per-chip budget. Here, given that DTM is constantly triggered, thermal violations
are avoided at the cost of reducing the DVFS levels of the cores during long periods of time. Therefore,
the resulting performance of the per-chip power budgets is generally much worse than originally expected
by the task partitioning and mapping algorithms. Furthermore, there is no simple way of predicting the
performance losses for such cases, making it almost impossible for the system to provide performance and
timing guarantees. Contrarily, TSP never triggers DTM and can thus achieve the performance expected by
the task partitioning and mapping decisions. The average percentage increase in performance (among all
number of active cores and all applications) for using TSPworst as a per-core power budget results in a 12%
higher average total IPS when compared to all the evaluated constant per-chip and per-core power budgets.
There are just a few cases in which the resulting performance of the per-chip power budgets is higher than
that of TSP. This happens mostly because a per-chip power budget can potentially execute different cores at
different DVFS levels, thus reducing the thermal headroom for these few cases. Contrarily, under TSP all
cores share the same per-core power budget, and sometimes a certain DVFS level would slightly exceed this
budget, while a lower DVFS level would result in a large thermal headroom.

Intel’s Turbo Boost is a simple but very efficient runtime technique, achieving higher performance than
TSPworst in some cases. Namely, while under TSP the DVFS levels of the cores are maintained constant
(as does the performance), under Turbo Boost the DVFS levels are constantly changing, thus exploiting the
thermal capacitances of the thermal model by knowing that the associated temperature changes require some
time to follow the changes in power. In this way, the instantaneous performance of Turbo Boost can sometimes
be much higher than TSP during some time intervals (when there is thermal headroom and the DVFS levels
are increased), and much lower during other time intervals (when the critical temperature is reached and the
DVFS levels are reduced). After computing the average performance of Turbo Boost among all number of
active cores and all applications, we observe that Turbo Boost and TSPworst result in the same average total
IPS. However, similar to having frequent triggers of DTM, there are no simple performance predictions which
are suitable for estimating the behavior of such boosting techniques a priori, and thus no timing guarantees
can be easily provided in advance. Hence, Turbo Boost cannot be used to guide the task partitioning and
mapping algorithms to make intelligent decisions. Contrarily, this can be done with TSP, helping to simplify
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task partitioning and mapping algorithms to achieve high predictable performance without thermal violations.
Finally, there are no restrictions that prohibit the combination of Turbo Boost and TSP, and this can

potentially result in higher performance than applying each technique separately. Namely, TSP may be used
to guide the task partitioning, mapping, DPM, and DVFS selection algorithms to make intelligent decisions
that optimize the performance without incurring in thermal violations at nominal operation. Then, Turbo
Boost may be applied on top of such a solution in order to exploit any thermal headroom available at runtime,
by boosting the cores to execute at power levels higher than the TSP values. Opposed to standard Turbo
Boost, in which once the critical threshold temperature is reached the DVFS levels must be decreased until
the temperature is again below the TDTM, in this case Turbo Boost can stop decreasing the DVFS levels of
the cores at the nominal operation levels that satisfy TSP, given that we know that these are thermally safe
operation levels. Therefore, by combining TSP and Turbo Boost, the system can potentially achieve high
predictable performance while also exploiting the thermal headroom available at runtime.

5.6 Experimental Evaluations for Heterogeneous Systems
This section presents evaluations for heterogeneous systems. Similarly as described in Section 5.5, we use the
simulation framework described in Chapter 4 in detailed mode, considering the heterogeneous architecture
illustrated in Figure 4.4 and described in Chapter 4.2.2. Given that the Odroid-XU3 platform does not provide
performance counters to measure the total number of executed instructions, we use throughput as our perfor-
mance metric, where throughput is defined as the total number of application instances finished (or partially
finished) every second.

From the PARSEC benchmarks described in Chapter 4.3, we again consider four representative applica-
tions, specifically, x264, bodytrack, blackscholes, and swaptions. Furthermore, given that different applica-
tions have different power consumptions depending on the type of cores and number of threads in which they
are executed, we run the applications under different scenarios. Specifically, we focus on different applica-
tions individually, considering multiple instances of the same application, with different number of threads
per instance and also different thread-to-core mappings, as detailed in Table 5.1.

Scenario Alpha OOO Alpha simple A15 A7

S1

a: 8 threads
b: 8 threads
c: 2 threads

6 threads

a: -
b: -
c: 3 threads
d: 2 threads

a: 4 threads
b: 2 threads
c: 2 threads
d: -

a: -
b: 2 threads
c: 2 threads
d: 4 threads

S2

a: 5 threads
3 threads

b: -
c: 7 threads

1 thread

a: 4 threads
b: 1 thread
c: 2 threads
d: -

a: 2 threads
b: -
c: 1 thread
d: 4 threads

a: 4 threads
b: -
c: -
d: 2 threads

S3

a: 4 threads
b: 4 threads

4 threads
c: -

a: 2 threads
b: -
c: 3 threads
d: -

a: 4 threads
b: 1 thread
c: -
d: -

a: 2 threads
b: 2 threads
c: -
d: -

S4

a: 4 threads
4 threads

b: 4 threads
4 threads

c: 4 threads
4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

Table 5.1: Details of the application mapping sce-
narios for our experiments. Indexes a, b, c, and d
represent the cluster ID as explained in Figure 4.4.
Every line corresponds to an application instance
executed in the corresponding cluster with the in-
dicated number of threads, where “-" means that a
cluster is not executing any application.

5.6.1 Power Constraints
For our heterogeneous evaluations, we use similar power budgets as those described in Section 5.5.1, but
extended for heterogeneous systems. Using Equation (5.11), we compute TSP for the given mappings detailed
in Table 5.1. For the per-chip power budgets, we choose 205W per-chip (i.e., the total active power of using
TSP when all cores are activated), as well as 140W and 70W per-chip (to have a similar relation with the
per-chip budgets from Section 5.5.1). For the evaluations in Section 5.5, the total per-chip power budgets
were equally divided among the number of active cores for each experiment. Similarly, for the heterogeneous
case, the per-chip power budgets are proportionally divided according to the area of the active cores. For
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example, when activating two OOO Alpha cores and three Cortex-A7 cores under the 140W per-chip power
budget, the total active area for these cores is 2 · 9.6mm2 + 3 · 0.8mm2 = 21.6mm2, such that each OOO
Alpha core can consume up to 9.6 mm2

21.6 mm2 ·140W = 62.2W and each Cortex-A7 core can consume up to 5.2W.
Finally, we use 0.586W/mm2 as the per-core power budget, simply by dividing 205W by the total core area
in the chip, i.e., 350.36mm2.

5.6.2 Performance Simulations
Figure 5.19 presents the average total throughput for considering the different mappings from Table 5.1 and
the different power budgets described in Section 5.6.1. Similar to Section 5.5.4, we also compare with Intel’s
Turbo Boost [34, 91]. The observations of the results are very similar to those in Section 5.5.4. Additionally,
developing intelligent and efficient task partitioning and mapping algorithms is much more challenging for
heterogeneous systems than it is for the special case of homogeneous cores. Hence, TSP can dearly help to
reduce the complexity of such decisions, achieving high predictable performance without thermal violations.

TSP 70W per-chip 140W per-chip 205W per-chip 0.586W/mm2 per-core Turbo Boost
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Figure 5.19: Experimental evaluation results for heterogeneous systems showing the average total system
performance when using different power budgets.

5.7 Summary
Using a single and constant per-chip or per-core power budget as an abstraction from thermal problems
(e.g., TDP), is a pessimistic approach for homogeneous and heterogeneous manycore systems. Therefore,
this chapter presents a novel thermal-aware power budget concept called Thermal Safe Power (TSP), which
is an abstraction that provides safe and efficient per-core power budget values as a function of the number
of simultaneously active cores. Using TSP results in high total system performance, while the maximum
temperature in the chip remains below the critical level that triggers DTM. TSP is a new step and advancement
towards dealing with the dark silicon problem as it alleviates the unrealistic bounds of TDP and enables
system designers and architects to explore new avenues for performance improvements in the dark silicon era.
Furthermore, TSP can also serve as a fundamental tool for guiding task partitioning, core mapping, DPM, and
DVFS algorithms on their attempt to achieve high predictable performance under thermal constraints.

For a specific chip, cooling solution, and ambient temperature, TSP can be used to obtain safe power and
power density budgets for the worst cases, allowing the system designers to initially abstract the mapping de-
cisions. Moreover, TSP can also be computed at runtime for a particular mapping of active cores and ambient
temperature. The experimental evaluations show the validity of our arguments, comparing the total perfor-
mance of using TSP, several constant per-chip/per-core power budgets, and a runtime boosting technique.
TSP can also be used to estimate the amount of dark silicon, which results in much more realistic estimations
than those using constant power budgets.

Finally, Section 5.4 raised an interesting problem by showing that power changes on the chip can result
in much higher transient temperatures than any steady-state scenarios. This motivates for the development
of a fast and accurate method to compute such transient temperature peaks, which is the focus of Chapter 6.
Furthermore, the technique described in Chapter 6 can be used to assist the approach presented in Section 5.4.1
to quantify the maximum values that the transient peak temperatures can reach during the transient state.
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Chapter 6

Transient and Peak Temperature Computation based
on Matrix Exponentials (MatEx)

6.1 Overview

Runtime/design-time management decisions, such as mapping new application tasks/threads to cores, migrat-
ing tasks/threads among cores, scheduling tasks in individual cores, activating/deactivating cores (i.e., DPM
decisions), changing the DVFS levels, etc., are typically used by resource management techniques to optimize
the usage of the available resources. Among the existing techniques in the literature, there are several power
budgeting and thermal management techniques that are derived/formulated for the steady-state temperatures
(e.g., [31, 48, 64, 96]). However, management decisions change the power consumption throughout the chip,
and this can in turn result in transient temperatures which are much higher than any expected steady-state
scenarios (as shown in the examples in Chapter 5.4 and Section 6.1.1). If this occurs and the transient tem-
peratures are higher than the critical threshold temperature, some DTM technique would be activated on the
chip to guarantee that it is not damaged. Nevertheless, very frequent triggers of aggressive DTM techniques
may degrade the overall performance of the system in an unpredictable manner (from the perspective of the
resource management techniques). More importantly, chips could also be seriously damaged if in some case
the transient temperatures grow at a faster rate than the speed in which DTM can react to them. In order
for the system to operate in thermally safe ranges and have a predictable behavior, resource management
techniques could thus benefit from evaluating (i.e., estimating or predicting) such transient temperature peaks
when making management decisions.

In this chapter, we present a lightweight and accurate method for computing the peaks in transient tem-
peratures at runtime. Our technique, called MatEx [73, 74], is suitable for any compact thermal model that
consist in a system of first-order differential equations, e.g., a thermal model based on RC thermal networks
(like the one used by HotSpot [33]). Most existing state-of-the-art techniques/tools for temperature compu-
tation/estimation/prediction use standard numerical methods to solve such a system of first-order differential
equations (e.g., [2, 32, 33, 51, 89, 103, 104, 114]). Although some of these techniques are reasonably efficient,
they are not suitable to only compute the peaks in temperature during the transient state, and thus these peaks
must be extracted from extensive simulations for many time steps, taking sometimes several seconds to com-
pute. Contrarily, MatEx is based on an analytical solution using matrix exponentials and linear algebra, that
results in a mathematical expression which can be easily analyzed and differentiated in order to only compute
the peaks in transient temperatures. Furthermore, given that MatEx is based on an exact solution which is a
function of time, it can also be used to efficiently compute any future transient temperatures without accuracy
losses, making it able to potentially replace existing temperature estimation tools.

Open-Source Tools: We implement our algorithms as an open-source tool called MatEx (from matrix
exponentials), which is particularly useful for making thermally-safe resource management decisions at
runtime. MatEx is available for download at ces.itec.kit.edu/download.
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6.1.1 Motivational Example
For simplicity of presentation, consider the 16-core homogeneous system presented in Figure 4.3b (described
in Chapter 4.2.1), and a critical threshold temperature for triggering DTM of 80◦C. After running simulations
with HotSpot, Figure 6.1 illustrates the steady-state temperature distribution of two mappings with different
numbers of active cores and different power consumptions. For both cases in Figure 6.1, the maximum steady-
state temperature throughout the chip is 80◦C, such that DTM would not be triggered in either steady-state
scenario.

Figure 6.1: (from [73]) Example of
two steady-states for the 16-core
chip presented in Figure 4.3b (de-
scribed in Chapter 4.2.1). Active
cores are boxed in black. Top num-
bers represent the power consump-
tions on active cores. Bottom num-
bers represent the temperatures on
the center of each core. Detailed
temperatures are shown according
to the color bar.
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However, as presented in the transient simulations in Figure 6.2, the temperature on at least one core
exceeds 80◦C for several seconds when transitioning from the mapping in Figure 6.1a to that in Figure 6.1b,
reaching up to 87.51◦C after 60ms of the change in power consumption. Furthermore, according to the
numbering of cores in Figure 4.3b, the temperature on core C5 raises to 86.60◦C almost instantly, potentially
damaging the chip because DTM may take some time to react and become active. This transient thermal
behavior occurs regardless of the fact that the steady-state temperatures for both mappings do not exceed the
critical threshold temperature of 80◦C. The reason behind this effect is that the 8 cores that are shut-down at
time t = 1 s require some time to cool down, and thus they transfer heat to the other cores during this time
period, while at the same time the 4 cores that remain active are almost duplicating their power density.

Figure 6.2: Transient temperatures
example. During t= [0 s, 1 s] there
are 12 active cores according to Fig-
ure 6.1a. During t= [1 s, 3 s], there
are 4 cores active according to Fig-
ure 6.1b. The highest transient tem-
perature occurs on core C5 at time
t = 1.06 s.
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6.1.2 Problem Definition
For any compact thermal model that is composed by a system of first-order differential equations relating
the temperatures of different areas of the chip with their power consumptions and the ambient temperature,
as shown in Equation (3.9), the objective of this chapter is to derive a lightweight and accurate method to
efficiently compute the peak in the transient temperature on thermal node k, i.e., Tk (t), after a change in the
power consumption of one or more nodes, such that vector P is the new power vector after the change in
power.

T′ = CT+A−1P+ TambA
−1G with C = −A−1B (3.9 revisited)

For such a purpose, we first require an analytical solution for the system of first-order differential equations
from Equation (3.9). In other words, we require a mathematical expression from which we can efficiently
compute Tk (t) for any thermal node k and time t ≥ 0. This is presented in Section 6.2.
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Following, from the results in Section 6.2, we then need to find the time instant at which Tk (t) is max-
imized, and we define this time instant as t↑k. Finally, we simply compute Tk

(
t↑k
)

in order to obtain the
value of the peak in the transient temperature of thermal node k for the given power change. This is presented
in Section 6.3.

6.2 Computing All Transient Temperatures

In this section, we find a mathematical expression from which we can efficiently compute Tk (t) for any
thermal node k and time t ≥ 0. Figure 6.3 shows an overview of the different steps required to achieve such
a goal.

RC thermal
network, Eq. (3.9)

Express with matrix
exponentials, Eq. (6.1)

Solve the matrix
exponential, Eq. (6.2)

Analytical solution
of Tk (t), Eq. (6.3)

Speed-up computation
of Tk (t), Eq. (6.5)

Figure 6.3: Overview of the steps involved in deriving MatEx to compute all transient temperatures.

It has being well studied in the literature (e.g., [61]), that the system of first-order differential equations
from Equation (3.9) can be solved analytically by using matrix exponentials. Therefore, by assuming that
when there is a change in power we reset the time such that the change in power occurs at time t = 0 and the
new power values are those of vector P, we can apply the results from [61] in order to rewrite Equation (3.9)
as a function of Tinit, Tsteady, and C, as shown in Equation (6.1).

T = Tsteady + eCt (Tinit −Tsteady) (6.1)

In Equation (6.1), eCt =
[
eCt

i,j

]
N×N is defined as a matrix exponential. As explained in Chapter 3.5, matrix

B (used to compute the steady-state temperatures) and matrix C are related to the hardware and cooling
solution, such that they are constant for a given thermal model. Therefore, the variables in Equation (6.1) are
time t, the initial temperatures Tinit, and the steady-state temperatures Tsteady (which in turn depend on the
new power consumptions P and the ambient temperature Tamb). Note that Equation (6.1) does not imply that
the temperature on a thermal node approaches its steady-state temperature exponentially, given that eCt is a
matrix exponential (i.e., its solution will also be a matrix) and not a regular exponential function.

There are several methods that can be used to solve the matrix exponential eCt, including numerical
methods that solve it for a certain time t, and analytical methods that are based on linear algebra in which
t remains a variable. Focusing on the latter, the work in [61] presents a solution to the matrix exponential,
particularly,

eCt = ΓΛΓ−1,

where matrix Γ = [Γi,j ]N×N represents a matrix containing the eigenvectors of matrix C, matrix Γ−1 =

[Γ̃i,j ]N×N is the inverse of matrix Γ, and matrix Λ is a diagonal matrix such that

Λ =


eλ1·t 0 · · · 0
0 eλ2·t · · · 0
...

...
. . .

...
0 0 · · · eλN ·t

 ,

where λ1,λ2, . . . ,λN are the eigenvalues of matrix C. The eigenvalues and eigenvectors of matrix C can
be computed by applying linear algebra (e.g., using the Eigen C++ template library [100]), with total time
complexity O

(
N3
)
. Given that this a physical and stable system in which all temperatures eventually reach

their steady-state values, it holds that λi ≤ 0 for all i = 1, 2, . . . ,N . Note that for a given matrix C (i.e.,
for a given thermal model associated to a given chip and cooling solution), the eigenvalues, matrix Γ and its
inverse Γ−1, and matrix Λ, only need to be computed once and can be stored in memory for later use. Hence,
the matrix exponential can be solved by computing every eCt

k,j inside eCt as shown in Equation (6.2).

eCt
k,j =

N∑
i=1

Γk,i · Γ̃i,j · eλi·t (6.2)
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Therefore, we can apply the results for matrix exponentials from [61] that are shown in Equation (6.2) to
the expression in Equation (6.1), such that we can compute the transient temperature on thermal node k as a
function of time, i.e., Tk (t), as shown in Equation (6.3).

Tk (t) = Tsteadyk +

N∑
i=1

eλi·t · Γk,i ·
N∑
j=1

Γ̃i,j

(
Tinitj − Tsteadyj

)
(6.3)

Note that in Equation (6.3), we consider that time t = 0 corresponds to the time point at which a change
in power takes place, such that P is the new power vector. The steady-state temperatures Tsteady, which can
be computed using Equation (3.10) for each node k, are the temperatures to which every thermal node will
eventually converge considering this new power vector.

Tsteadyk =

N∑
j=1

b̃k,j · pj + Tamb ·
N∑
j=1

b̃k,j · gj (3.10 revisited)

The initial temperatures on all thermal nodes right before the change in power are represented by vector
Tinit. Therefore, for a given change in power and power vector P, the only variable in Equation (6.3) is t.
Figure 6.4 illustrates the physical interpretation of the symbols in Equation (6.3) through an abstract example
of the transient temperature on thermal node k.

Figure 6.4: Physical interpretation
of the symbols in Equation (6.3)
for computing the transient tem-
perature of thermal node k. In
Equation (6.3), time t = 0 corre-
sponds to the moment at which a
change in power occurs.
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Furthermore, considering that t is the only variable in Equation (6.3), the computation of Tk (t) could be
achieved more efficiently by first building auxiliary matrix Ω = [Ωk,i]N×N , such that

Ωk,i = Γk,i ·
N∑
j=1

Γ̃i,j

(
Tinitj − Tsteadyj

)
, (6.4)

for all k = 1, 2, . . . ,N and for all i = 1, 2, . . . ,N . Finally, for a given ambient temperature, initial tempera-
tures, and power change which would eventually converge to new steady-state temperatures, the temperature
on node k at time t can be computed as shown in Equation (6.5).

Tk (t) = Tsteadyk +

N∑
i=1

Ωk,i · eλi·t (6.5)

Note that, unlike the eigenvalues and eigenvectors which only need to be computed once for a given
thermal model (i.e., for a given chip and cooling solution), vector Tsteady and matrix Ω are computed/build
once for every change in power, with total time complexity O

(
N2
)
. Therefore, for a given time t and

considering that matrix Ω is already built, the total time complexity for computing Tk (t) for thermal node k
is O (N), and O

(
N2
)

when computing Tk (t) for all thermal nodes k = 1, 2, . . . ,N .
Finally, there are additional implementation improvements that may reduce the execution time (not the

complexity) for computing Tk (t). For example, when building matrix Ω for every change in power, we
can compute an auxiliary vector Tdiff = Tinit − Tsteady, therefore allowing subtraction Tinitj − Tsteadyj to be
computed once for every node (N times in total for all nodes), instead of N3 times in total for all nodes
as suggested by Equation (6.4) when computing Ωk,i for all k = 1, 2, . . . ,N and for all i = 1, 2, . . . ,N .
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Similarly, for a given time t, we can compute an auxiliary vector
{
eλ1·t, eλ2·t, . . . , eλN ·t}, which would

allow this exponentiation to be computed only once for every node (N times in total for all nodes), instead
of N times for each node k (N2 times in total for all nodes) as suggested by Equation (6.5). A pseudo-code
for building auxiliary matrix Ω is presented in Algorithm 3, and the corresponding pseudo-code to compute
Tk (t) for every node k is presented in Algorithm 4.

Algorithm 3 Build auxiliary matrix Ω

Input: Matrix Γ and its inverse Γ−1, vector Tinit, and vector Tsteady;
Output: Auxiliary matrix Ω;

1: for all j = 1, 2, . . . ,N (i.e., for all thermal nodes) do
2: Tdiffj ← Tinitj − Tsteadyj ;
3: end for
4: for all i = 1, 2, . . . ,N (i.e., for all thermal nodes) do
5: auxΩi ←

∑N
j=1 Γ̃i,j · Tdiffj ;

6: end for
7: for all k = 1, 2, . . . ,N (i.e., for all thermal nodes) do
8: for all i = 1, 2, . . . ,N (i.e., for all thermal nodes) do
9: Ωk,i ← Γk,i · auxΩi;

10: end for
11: end for
12: return Auxiliary matrix Ω;

Algorithm 4 Compute the transient temperatures of all thermal nodes at time t

Input: Auxiliary matrix Ω for the current change in power, the eigenvalues, and time of interest t;
Output: Temperatures Tk (t) for all thermal nodes k = 1, 2, . . . ,N ;

1: for all i = 1, 2, . . . ,N (i.e., for all thermal nodes) do
2: auxExpi ← eλi·t;
3: end for
4: for all k = 1, 2, . . . ,N (i.e., for all thermal nodes) do
5: Tk (t)← Tsteadyk +

∑N
i=1 auxExpi · Ωk,i;

6: end for
7: return Tk (t) for all k = 1, 2, . . . ,N ;

6.3 Computing Peaks in Transient Temperatures

In this section we find the time instant at which Tk (t) is maximized, defined as t↑k, such that we can compute
Tk

(
t↑k
)

to obtain the value of the peak in the transient temperature of thermal node k for the given power
change. Given that the value of Tk (t) depends on power vector P, time instant t↑k for every thermal node k
needs to be computed once for every change in power. Figure 6.5 shows an overview of the different steps
required to achieve such a goal.

Analytical solution
of Tk (t), Eq. (6.3)

Derive T ′
k (t) and T ′′

k (t),
Eq. (6.6) and Eq. (6.7)

Solve T ′
k (t) = 0 Obtain t↑k , Eq. (6.8) Compute Tk

(
t↑k

)
,

Eq. (6.5)

Figure 6.5: Overview of the steps involved in deriving MatEx to compute the peaks in transient temperatures.

It should be noted that since Tk (t) results in a different expression for every thermal node k, the value
of t↑k will be different for every node. For example, Figure 6.6 shows the transient temperatures on cores
C2 and C5 for the transient simulations already presented in Figure 6.2, where we can clearly observe the
difference in the transient temperatures on each core.
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Figure 6.6: Example showing that, since Tk (t) results in a different expression for every thermal node, the
value of t↑k is also different for every node k.

From Equation (6.3) and Equation (6.5), we know that Tk (t) can be computed as a summation of decaying
exponential functions, and therefore Tk (t) is continuous and differentiable with respect to t for the case of
t ≥ 0. Therefore, we can derive the first-order derivative of Tk (t) with respect to time, defined as T ′

k (t),
which starting from Equation (6.5) can be expressed as shown in Equation (6.6).

T ′
k (t) =

N∑
i=1

λi · Ωk,i · eλi·t (6.6)

For example, Figure 6.7 illustrates the first-order derivative of the temperature on core C5 with respect to
time, for the simulations already presented in Figure 6.2.

Figure 6.7: First-order derivative
of the temperature on core C5 for
the transient simulations in Fig-
ure 6.2. After the change in power,
T ′
k (t) is zero at t = 1.06 s and

when t → ∞ (i.e., when the tem-
perature reaches its steady-state
value).
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As seen in Figure 6.7, when there is a peak in the temperature of thermal node k, the slope of Tk (t)
changes sign and the value of T ′

k (t) is equal to zero. Therefore, one possible method to find a transient
peak on thermal node k is to solve T ′

k (t) = 0 for t ≥ 0. Given that Tk (t) would eventually reach its
steady-state temperature Tsteadyk (if the power remains constant for a long enough time), there is always at
least one solution for T ′

k (t) = 0 when t→∞. Furthermore, there can also exist several other solutions for
T ′
k (t) = 0, and every solution in which t ≥ 0 is a potential peak in the temperature on thermal node k. A

naive approach would attempt to find all the solutions for T ′
k (t) = 0, and then test the one that results in

the highest temperature. However, given that Tk (t) is a summation of decaying exponential functions, from
control theory (e.g., [55]) we know that, for any stable system in which all poles are less than or equal to zero,
the maximum temperature (or overshoot in control theory [55]) always occurs at the first peak. In order to be
certain that this is the case, we apply the Laplace transform to Equation (6.5), such that

Tk (S) =
Tsteadyk

S
+

N∑
i=1

Ωk,i

S − λi

where Tk (S) is the Laplace transform of Tk (t). Given that, as mentioned in Section 6.2, this a physical and
stable system in which all temperatures eventually reach their steady-state values, we have that λi ≤ 0 for all
i = 1, 2, . . . ,N , such that all poles in Tk (S) are less than or equal to zero, and therefore the above conclusion
holds. In this way, the only solution of interest for T ′

k (t) = 0 is the closest solution to zero such that t ≥ 0,
and this solution is time instant t↑k.
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Unfortunately, there is no closed analytical form to directly solve T ′
k (t) = 0, and therefore we need to

apply a numerical method for such a purpose. One approach for solving such an expression would be to apply
the Newton-Raphson method [7], for which we need the second-order derivative of Tk (t), defined as T ′′

k (t),
expressed in Equation (6.7).

T ′′
k (t) =

N∑
i=1

λi
2 · Ωk,i · eλi·t (6.7)

Then, starting from an initial guess for t↑k, which we define as t↑k0 , the value of t↑k can be iteratively
approximated. The value of t↑k for the n-th iteration, defined as t↑kn , is computed from the value of the
previous iteration t↑kn−1. Specifically, the value of t↑kn is computed as shown in Equation (6.8), with time
complexity O (N) for every iteration of a thermal node k.

t↑kn = t↑kn−1 −
T ′
k

(
t↑kn−1

)
T ′′
k

(
t↑kn−1

) = t↑kn−1 −
∑N

i=1 λi · Ωk,i · eλi·t↑kn−1∑N
i=1 λi

2 · Ωk,i · eλi·t↑kn−1

(6.8)

In order for t↑kn to converge to the first transient peak with t ≥ 0, we use t↑k0 =0 as initial guess. Finally,
time t↑k is set to t↑kW , where W is a constant indicating the total number of iterations used when applying
the Newton-Raphson method, and then Tk

(
t↑k
)

can be computed through Algorithm 4. A pseudo-code to
compute the peak temperatures on all nodes is presented in Algorithm 5. Figure 6.8 shows an example of the
Newton-Raphson method for the first-order derivative of the temperature on core C5 shown in Figure 6.7.

Algorithm 5 Peak temperature computation for all thermal nodes

Input: Auxiliary matrix Ω, and total number of iterations W for the Newton-Raphson method;
Output: Peak temperatures Tk

(
t↑k
)

for all k = 1, 2, . . . ,N (i.e., for all thermal nodes);
1: for all k = 1, 2, . . . ,N (i.e., for all thermal nodes) do
2: t↑k ← 0; {Set the value of the initial guess of t↑k}
3: for all n = 1, 2, . . . ,W (i.e., for all iterations of the Newton-Raphson method) do

4: t↑k ← t↑k −
∑N

i=1 λi·Ωk,i·eλi·t
↑k∑N

i=1 λi
2·Ωk,i·eλi·t↑k

; {Compute t↑k for the n-th iteration from the previous iteration}

5: end for
6: end for
7: return Tk

(
t↑k
)

for all k = 1, 2, . . . ,N from Algorithm 4;
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t↑k= t↑kW

Time [s]

T
′ k
(t
)

T ′
k (t) on core C5

Figure 6.8: Conceptual example of
the Newton-Raphson method for
solving T ′

k (t) = 0 on core C5 in
W iterations (only a few shown for
simplicity of presentation), for the
transient simulations in Figure 6.2.
After the change in power, the first
solution to T ′

k (t) = 0 is found at
time t=1.06 s.

There is the possibility that Tk (t) is a strictly decreasing or strictly increasing function, such that there is
no peak in Tk (t) and its maximum value occurs at t=0 or when t → ∞, respectively, with value Tk (0) or
Tsteadyk, respectively. For example, this is the case for core C2 in Figure 6.6. Therefore, the actual maximum
temperature to consider is

max
{
Tk

(
t↑k
)
,Tk (0) ,Tsteadyk

}
.
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Furthermore, if there is a new change in power at time tchange, the temperature on thermal node k might never
reach the value of Tsteadyk. For such cases, the maximum temperature to consider is

max
{
Tk

(
t↑k
)
,Tk (0) ,Tk (tchange)

}
,

and Tinitk for the next computation can be set to Tk (tchange).

6.4 Experimental Evaluations
In this section, we evaluate the accuracy and the efficiency (in terms of computation time) of MatEx, compared
to the widely-adopted HotSpot [33].

6.4.1 Setup
For this particular experimental evaluations, we only use parts of the simulation framework described in
Chapter 4. Figure 6.9 presents an overview of the simulation flow used for evaluating the accuracy and
execution time of both HotSpot and MatEx. Specifically, we again use HotSpot to derive the compact thermal
model (i.e., the values of matrix A, matrix B, and vector G), and this thermal model is used both by HotSpot
and MatEx as an input. Note that since MatEx is not tied to HotSpot, any other compact modeling tool could
have been used to derive the thermal model, and we merely use HotSpot due to its popularity. With respect to
the floorplan and the number of cores in the chip, since the size of the thermal model affects the complexity
and execution time of the algorithms under evaluation, we consider four different cases in which the chip
has 16 cores, 32 cores, 48 cores, and 64 cores. For these numbers of cores, HotSpot generates RC thermal
networks with 76 nodes, 140 nodes, 204 nodes, and 268 nodes, respectively.

Floorplan and
cooling solution

• Alpha 21264 (22nm)
• # cores: 16, 32, 48, 64

RC thermal network
(from HotSpot)

Power traces
• Values: gem5 & McPAT
• Changes: 1 and 100
• Length: 1 s

HotSpot
Compute all transient

temperatures

HotSpot
Compute all tempe-
ratures. Find peak

MatEx
Compute all transient

temperatures

MatEx
Compute peak
temperatures

Time resolution
• 3.3 μs
• 1 ms

Time resolution
• 3.3 μs
• 1 ms

Time resolution
• 3.3 μs
• 1 ms

Newton-
Raphson

• 20 iterations

1st Experiment: Compute all temperatures

2nd Experiment: Compute peak temperatures

Compare accuracy
and execution time

Compare accuracy
and execution time

Figure 6.9: Overview of the simulation flow used for evaluating the accuracy and execution time of HotSpot
and MatEx.

In MatEx, Algorithm 4 is used to compute all transient temperatures at a given time t, while Algorithm 5
is used to compute the peaks in the transient temperatures generated by the changes of power inside the chip.
Therefore, we conduct two separate experiments, one experiment to compare each algorithm to HotSpot. In
the first experiment, when computing the transient temperatures using HotSpot, it is required to set a time
resolution (or time step) for the transient simulations, i.e., the period of time elapsed between each computed
temperature. Hence, when we evaluate Algorithm 4 of MatEx to compute specific transient temperatures,
we use equivalent time resolutions as used in HotSpot to have comparable results. Specifically, we consider
two resolutions: 3.333 μs and 1ms. In the second experiment, given that HotSpot cannot only compute the
peaks in the transient temperatures, we assume that it considers the same two time resolutions as in the
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first experiments, and extracts the maximum values after the complete simulation finished. Contrarily, when
evaluating Algorithm 5 of MatEx, we are able to only compute the transient peaks, for which we consider 20
iterations for the Newton-Rhapson method.

Given that MatEx needs to build auxiliary matrix Ω for every change in power, a higher number of
power changes in the input power traces would result in longer execution times for MatEx. Therefore, for
the power traces required as inputs by both HotSpot and MatEx, we intentionally generate synthetic traces
using randomly selected power values from simulations using gem5 and McPAT for applications from the
PARSEC benchmark suite, but do not directly considering the detailed power values from specific application
executions. The reason behind this consideration is to have a controlled number of power changes in each
power trace, such that we can evaluate how the frequency of the power changes affects the execution time of
MatEx. Were we to directly use power traces from real applications, these effects would be harder to observe
since the number of power changes in the input trace would be imposed by the application and architecture.
In order to account for two different cases, the power traces are generated considering 1 power change and
100 power changes, and in all cases the traces have a length of 1 s.

6.4.2 Results
Figure 6.10 presents the experimental results comparing the accuracy of both HotSpot and MatEx, for the case
of 64 cores and a single change in power (other results are omitted because equivalent observations apply to
all other cases). In the figure, we can see that aside from some minor jitter in HotSpot’s transient output when
the time resolution is 1ms, both HotSpot and MatEx produce the same results (within a margin of 0.01◦C).
Furthermore, the accuracy of MatEx is entirely independent on the time resolution used for computing the
transient temperatures, and this comes from the fact that MatEx can compute a future transient temperature
through Equation (6.5) for any given time t, and the time of the previous temperature computation is irrelevant.
Therefore, when using MatEx to run full transient simulations, the user could adapt the time resolution for
any specific needs, without additional considerations about accuracy losses.
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Figure 6.10: Simulation results for all transient temperatures used to compare the accuracy of HotSpot and
MatEx, for the case of 64 cores and a single change in power.

Figure 6.11 and Figure 6.12 present the execution time results of HotSpot and MatEx (Algorithm 3 and
Algorithm 4), respectively, for the experiment that computes all transient temperatures, for all the cases
described in Section 6.4.1. For both HotSpot and MatEx, a higher time resolution results in longer execution
times. Moreover, in HotSpot, the execution time is only affected by the time resolution, and not by the number
of power changes, as this is not relevant for a numerical method. In MatEx, aside from the effect of the time
resolution, the number of changes in power could also increase the execution time. In our experiment, for a
resolution of 1ms, Algorithm 4 is executed 1000 times (since the power trace lasts 1 s and we compute all
transient temperatures every 1ms), while Algorithm 3 is executed 100 times (for the traces with 100 power
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changes) or only once (for the traces with 1 power change). Hence, given that Algorithm 3 is executed just
10 times less or 1000 times less than Algorithm 4, the effect of the number of power changes is noticeable
in the total execution time of MatEx for a time resolution of 1ms. However, for a resolution of 3.333 μs,
Algorithm 4 is executed 3 · 105 times, while Algorithm 3 is executed the same number of times as before
(given that we have the same number of power changes in the trace), thus masking the execution time of
Algorithm 3. The most important fact to highlight is that MatEx is always faster than HotSpot for the same
time resolution. Particularly, for all the evaluated cases, MatEx is on average 40 times faster than HotSpot,
being up to 100 times faster for the case with 64 cores, one power change, and a time resolution of 1ms.

Therefore, due to its high efficiency and accuracy, aside for using MatEx to conduct peak temperature
estimations, these results enable MatEx also to replace HotSpot for general transient temperature compu-
tations.

Resolution 1ms (1 power change)
Resolution 3.33 μs (1 power change)
Resolution 1ms (100 power changes)
Resolution 3.33 μs (100 power changes)

Figure 6.11: Execution time for com-
puting all transient temperatures and
the peaks in the transient temperatures
when using HotSpot.
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Figure 6.12: Execution time for com-
puting all transient temperatures when
using MatEx (Algorithm 3 and Algo-
rithm 4).
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Figure 6.13 presents the execution time results of MatEx (Algorithm 3 and Algorithm 5) for the second
experiment that only focuses on computing the peaks in the transient temperatures, for all the cases described
in Section 6.4.1. With regards to HotSpot (or any other numerical method), since this type of temperature
estimation tool is unable to only analyze the peaks in temperature without simulating the entire trace, hence
the execution time of HotSpot for this experiment is the same as when computing all transient temperatures
and these values are already presented in Figure 6.11 (for this experiment HotSpot was trivially modified
in order to keep track of the highest transient temperature, incurring in negligible overheads). Hence, from
Figure 6.11, we can see that for these experimental settings HotSpot needs at least 1.4 s to compute the peaks
in transient temperatures, which is not suitable for runtime management decisions. On the other hand, MatEx
(Algorithm 5) uses the Newton-Raphson method to compute the time instants of the peaks in temperature, and
therefore, for every change in power, it only needs to compute the temperature on a few points, significantly
reducing the execution time. Particularly, for a system with 16 cores, Figure 6.13 shows that the execution
time of MatEx when having one power change is only up to 2.5ms, which might be suited for runtime
management decisions. Furthermore, given that Algorithm 3 and Algorithm 5 have independent computations
for every thermal node, MatEx could be easily implemented as a multi-threaded application (e.g., one thread
for each node), and thus parallelized into multiple cores, further reducing the execution time. Finally, the
results also show that the number of power changes has a linear impact in the execution time of MatEx for
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peak temperature computation. Therefore, the execution time of MatEx takes around 100 times longer when
we have 100 power changes than when having a single power change.

Resolution 1ms (1 power change)
Resolution 3.33 μs (1 power change)
Resolution 1ms (100 power changes)
Resolution 3.33 μs (100 power changes)

Figure 6.13: Execution time for com-
puting the peaks in the transient tem-
peratures when using MatEx (Algo-
rithm 3 and Algorithm 5).
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6.5 Summary
In this chapter we have shown that management decisions typically used to optimize resource usages (e.g.,
task migration, DPM, DVFS, etc.) can result in transient temperatures that are much higher than their associ-
ated steady-state temperatures. Therefore, given that the system could benefit from evaluating such transient
peaks while making resource management decisions in order to operate in thermally safe ranges and have a
predictable behavior, in this chapter we presented a lightweight and accurate method for estimating/predicting
transient thermal peaks, as well as computing any future transient temperatures without requiring incremen-
tal computations. In contrast to traditional numerical methods for model-based temperature estimation, this
new method, called MatEx (implemented as an open-source tool), is based on matrix exponentials and lin-
ear algebra, which allows us to derive an analytical expression that can be used for computing the transient
temperatures, as well as analyzing and differentiating such an expression to obtain its maximum values.

Our experimental evaluations compared the efficiency and accuracy of MatEx with that of the widely-used
temperature simulator HotSpot. With respect to the computation of future transient temperatures, our results
show that the execution time of MatEx is in average 40 times faster than that of HotSpot, and up to 100 times
faster in a few cases, which makes MatEx a promising candidate to replace existing temperature estimation
tools. More importantly, for the computation of the peaks in temperature, the execution time of MatEx under
the given experimental settings is just a few milliseconds for every power change. These results suggest that
MatEx can be used for runtime estimation of transient thermal peaks when making resource management
decisions, thus helping the system to prevent undesired triggers of DTM or damages to the chip when DTM
would be unable to react fast enough.

Finally, MatEx can be used to assist the TSP power budgeting technique (presented in Chapter 5) in order
to quantify the maximum values that the transient peak temperatures can reach during the transient state, as
discussed in Chapter 5.4.1. Furthermore, MatEx is also the foundation of the runtime boosting technique
based on transient temperature estimation presented in Chapter 7.
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Chapter 7

Selective Boosting for Multicore Systems (seBoost)

7.1 Overview

Whenever a set of applications is executed on a multicore or manycore system, it is common that at some
moment one or more application threads require to increase their performance during some time, mostly due
to performance/timing requirements surges/peaks at runtime. For example, this could occur in a video face
recognition application when suddenly a crowd of people enter the frame [113]. Figure 7.1 shows an abstract
example of such a case with three applications running at nominal performance, where one application needs
to increase its performance at runtime during some time interval. Moreover, several applications could require
to increase their performance concurrently, but such runtime requirements, although overlapping, might arrive
at different times or might have different durations.
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Figure 7.1: Abstract example
of a performance requirement
surge/peak at runtime. At the
beginning, all three applications
are executing at the required
nominal performance. Then, ap-
plication 3 (which is a high pri-
ority application) needs to in-
crement its performance during
some time in order to meet its
timing requirements due to a
drastic increase in its workload.

Boosting techniques provide the system with the means to satisfy such runtime performance/timing re-
quirements surges, and have therefore been widely adopted in commercial multicore and manycore systems.
For example, through DVFS, boosting techniques (e.g., Intel’s Turbo Boost [9,10,35,91], described in Chap-
ter 2.1.2, and AMD’s Turbo CORE [66]) allow the system to execute some cores in the chip at high DVFS
levels during short time intervals, even if this implies exceeding standard operating power budgets (e.g.,
TDP). Given that running cores at high DVFS levels increases their power consumption, boosting will nor-
mally result in an increment of the chip’s temperature through time. Due to this temperature increase, if the
temperature somewhere in the chip reaches a predefined critical threshold value, the system must either return
to nominal operation (requiring some cool-down time before another boosting interval is allowed), or use
some closed-loop control-based strategy in order to oscillate around the threshold temperature (prolonging
the boosting time).

In order to have high overall performance, careful decisions must be taken when selecting the boosting
levels. Particularly, when one or more applications identify a runtime boosting requirement, normally the
applications that do not require boosting at this time can be momentarily considered to have a lower prior-
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ity. This implies that the cores of these low-priority applications could be momentarily throttled-down, i.e.,
their DVFS levels could be reduced, such that their power consumption decreases and therefore the duration
of the boosting intervals might be prolonged at the required performance levels. Failing to appropriately
throttle-down the cores of such non-boosted applications can potentially result in failing to satisfy the run-
time performance requirements surges of the high priority applications during the required time, mainly due
to a rapid raise in the temperature. Contrarily, excessive throttling-down will result in unnecessary overall
performance penalties to the system, especially for the non-boosted applications.

Therefore, in this chapter we present an efficient and lightweight runtime boosting technique based on
transient temperature estimation (specifically, based on MatEx, presented in Chapter 6), called seBoost [80]
(from Selective Boosting). This technique guarantees that the runtime performance requirements surges are
met, by executing the cores requiring boosting at the desired DVFS levels for the entire boosting intervals,
while throttling-down the non-boosted cores with minimum performance losses for the lower priority appli-
cations/threads. In order to minimize such performance losses, the throttling-down levels of the non-boosted
cores are chosen such that the maximum temperature throughout the chip reaches the critical threshold value
at the precise time in which the boosting requirements are expected to expire. Furthermore, seBoost is also
capable of refining the boosting decisions when, e.g., new applications/threads receive additional (concur-
rent) boosting requirements in the middle of a boosting interval, or when some application/thread finishes its
boosted execution but other applications/threads need to continue operating in boosting mode.

7.1.1 Motivational Example

This section presents a motivational example that provides insight into the impact of boosting on both temper-
ature and performance. For simplicity in presentation, consider the 16-core homogeneous system presented
in Figure 4.3b (described in Chapter 4.2.1), and a critical threshold temperature for triggering DTM of 80◦C.
Assume that the system is executing two applications from the PARSEC benchmark suite [4], specifically, an
x264 and a bodytrack application, each one running 8 parallel dependent threads (one thread mapped to each
core), such that the nominal performance requirements of both applications are satisfied when all cores run at
3GHz. For such a case, we conduct simulations using our simulation framework in detailed mode (described
in Chapter 4), in order to obtain results for performance, power, and temperature.

Following, assume that after 0.1 s of starting its execution, the bodytrack application needs to boost its
performance, specifically, all 8 cores running this application need to be boosted to 3.7GHz. The precise
duration of the required boosting time is not exactly known; however, based on historical data, it is expected
to last no more than 0.25 s. Figure 7.2 presents the simulation results for four different boosting methods,
where we can see the maximum temperature throughout the chip and the performance of each application
as a function of time. Among these boosting methods, method A simply decides to fully throttle-down the
lower-priority x264 application to the lowest available DVFS levels. Therefore, the cores executing the body-
track application are able to be boosted during 0.25 s at the required frequency, while the x264 application is
only able to achieve 3% of its nominal performance. Boosting method B on the other hand, simply decides
to keep running the cores executing the x264 application at its nominal values. Hence, although now the
x264 application does not suffer performance losses, in this case the temperature raises faster due to a higher
power consumption, and the cores executing the bodytrack application can only be boosted to 3.7GHz dur-
ing 0.1 s, reducing the boosting time in comparison to method A. Boosting method C applies a closed-loop
control-based strategy, specifically, Intel’s Turbo Boost. For such a case, although the x264 application again
does not suffer from performance losses, and also while the bodytrack application runs faster than its nominal
frequency, the latter fails to meet its runtime requirements during the entire 0.25 s, particularly, only running
at 3.7GHz for merely 0.01 s out of the required 0.25 s. Contrarily, boosting method D intelligently selects to
throttle-down the cores executing the x264 application to 2.5GHz. In this way, the cores executing the body-
track application are able to be boosted to the required 3.7GHz during the full 0.25 s, precisely reaching the
critical threshold temperature at the end of the maximum expected boosting time, while the x264 application
is able to achieve 84% of its nominal performance.

Therefore, this motivational example shows the benefits of having an efficient boosting method. Neverthe-
less, until now, existing boosting techniques have neglected to make such careful decisions when selecting
the boosting levels and the duration of the boosting interval, such that this remains an open problem.
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Figure 7.2: Motivational example with four different boosting techniques when the bodytrack application
requires to increase its performance at runtime, for a critical temperature of 80◦C (represented by the dot-
ted line). The bold line shows the maximum temperature among all elements in the chip (left axis). The
performance of the applications is measured in Giga Instructions per Second (GIPS) (right axis).

7.1.2 Problem Definition
We consider that the thread-to-core mapping of all the applications is known and given as an input. Through
experimental evaluations, we assume to have given input tables with current and power profiles for every
thread of every application, for the different execution phases of each application/thread, when executed on
all different types of cores and for all available DVFS levels for each core type. We assume that the nominal
DVFS levels of operation for every thread at a given time or execution phase are also known, and running
the system at such nominal values for the given thread-to-core mapping meets the nominal performance
requirements of all applications, while the critical threshold temperature (i.e., TDTM) is not exceeded. That is,

Tsteadyk ≤ TDTM for all k ∈ L

where Tsteadyk can be computed through Equation (3.10). The given thread-to-core mapping and nominal
DVFS levels can be derived with any of the existing solutions in the literature, e.g., [25, 48].

Tsteadyk =

N∑
j=1

b̃k,j · pj + Tamb ·
N∑
j=1

b̃k,j · gj (3.10 revisited)

At a given time tinit, for which we know the temperatures on all cores (i.e., column vector Tinit =
[Tinitk]N×1 is known), one or more application threads require a runtime increase in their performance, achieved
by increasing the DVFS levels of their corresponding cores, i.e., boosting. The required boosting time is ex-
pected to last until no more than time instant tend. During this time (i.e., the time between tinit and tend),
the cores that do not require boosting are considered to have a lower priority than the cores that do require
boosting, and therefore, the non-boosted cores can be momentarily throttled-down by reducing their DVFS
levels. All cores return to nominal operation after the runtime performance requirements expire. An overview
of this description is presented in Figure 7.3.

When an application requires a runtime boost of its performance to meet its requirements, we assume that
there are certain scenarios in which the maximum expected duration of the boosting interval is known or that
it can be estimated. Given that this information can prove to be very useful when deciding the DVFS boosting
levels, we assume it to be a system-level abstraction, and we consider it as an input to our algorithms. To
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INPUTS:

- Applications with
nominal performance
requirements

MAPPING DECISIONS:

- Number of Threads for each application
- Thread-to-core mapping considering
   core heterogeneity

SELECTION OF NOMINAL

FREQUENCIES:

- To meet the nominal
  performance requirements

OUTPUTS:

- Nominal performance
- Nominal power
- Nominal temperatures

BOOSTING:

- To meet run-time surges
- Different boosting methods:
   - Turbo Boost
   - seBoost

Arrival of performance

surges at runtime

End of performance

surges at runtime

Back to nominal operation

Figure 7.3: seBoost’s system and problem overview.

specify such maximum expected boosting time requirements, the system could use historic profiling under
different workloads. That is, although it might not be possible to predict when a certain kind of workload will
arrive; however, the system can potentially estimate the duration of a runtime performance surge requirement
based on the type of workload once the workload has arrived. For example, for a signal processing applica-
tion, the application may not be able to predict when a new signal will arrive; however, the application could
possibly estimate how much time it will require to process a new signal based on the size of the input data.
Another potential method to estimate the maximum expected duration of the boosting intervals is through ap-
plication phase-classification [97]. For example, we might have an application for which the critical workload
phases require to be executed at the maximum DVFS levels during the entire critical phase, and the duration
of each phase could also be profiled at design-time. Nevertheless, although the duration of a critical phase
can be estimated, it might not be possible to predict when each critical phase will be executed.

With all these considerations in mind, we first assume that the DVFS levels that meet the runtime perfor-
mance requirements surges are known and given as inputs. The problem then focuses on selecting the throttle-
down levels for the non-boosted cores, such that the maximum temperature throughout the chip reaches TDTM
precisely at time tend, also without exceeding the maximum chip power constraint (i.e., Pmax) or the maximum
chip current constraint (i.e., Imax). In this way, the non-boosted application threads do not suffer from unnec-
essary performance losses, like for example, adopting a trivial solution that throttles-down the non-boosted
cores to their minimum DVFS levels. The solution to this problem is presented in Section 7.2.

Secondly, we assume that the runtime performance requirements and the associated DVFS levels that
meet such requirements are unknown. Therefore, the new problem focuses on selecting the DVFS levels
of the boosted cores in order to maximize the performance of their application threads, and also selecting
the throttle-down levels for the non-boosted cores, such that the maximum temperature throughout the chip
reaches TDTM precisely at time tend, also without exceeding Pmax and Imax. In this case, maximizing the perfor-
mance of the boosted cores has a higher priority than minimizing the performance losses of the non-boosted
cores. The solution to this problem is presented in Section 7.3.

Finally, we consider cases in which the maximum expected boosting time is unknown and therefore cannot
be specified in advance. Thus, this last problem focuses on finding the DVFS levels for the previous two cases,
such that these DVFS levels can be sustained indefinitely (not only until time tend) without exceeding TDTM,
Pmax, and Imax. This is presented in Section 7.4.

7.2 Given Required Boosting Levels

For this case, the required DVFS levels for the cores that need boosting are given, and the duration of the
maximum expected boosting time is also known, as conceptually shown in Figure 7.4.

According to the applications and threads mapped to every core, we can estimate the currents and power
consumptions of every core for all possible DVFS levels from the input current and power profile tables.
Therefore, knowing the initial temperatures and the power consumption throughout the chip, we can also
estimate the temperature behavior on all cores after selecting/changing their DVFS levels by using our MatEx
temperature estimation tool (described in Chapter 6). Particularly, we can compute/predict the temperature
on every thermal node k at future time tend after selecting the DVFS levels of all cores as already shown in
Equation (6.3).
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for the case with given required boost-
ing levels, when the bodytrack applica-
tion requires to increase its performance
at runtime and the x264 application can be
throttled-down. The unknown parameter
is shown with symbol ?, in this case, the
throttle-down levels of the non-boosted
cores.

Tk (t) = Tsteadyk +

N∑
i=1

eλi·t · Γk,i ·
N∑
j=1

Γ̃i,j

(
Tinitj − Tsteadyj

)
(6.3 revisited)

Nevertheless, although MatEx is very efficient in terms of execution time and can thus be used at run-
time for future temperature estimation, evaluating all possible combinations of throttle-down levels for all
non-boosted cores would still require an excessively long computation time. Because of this reason, we are
limited in the number of combinations that can be evaluated in order to select such throttle-down levels. Par-
ticularly, our proposed seBoost technique, presented in Figure 7.5 for this case, is based on a binary search
like approach. Basically, seBoost sets the DVFS levels of the boosted cores such that the runtime performance
requirements surges can be satisfied. Then, by applying binary search proportional to the nominal DVFS val-
ues on each core, seBoost tests a limited number of combinations of DVFS levels for the non-boosted cores.
Estimating the temperatures at time tend using MatEx, i.e., through Equation (3.10) and Equation (6.3), se-
Boost selects the combination that resulted in the highest DVFS levels for the non-boosted cores such that
the maximum temperature among all blocks in the floorplan at time tend does not exceed TDTM, i.e., such that
max∀k∈L {Tk (tend)} ≤ TDTM, and both Pmax and Imax are also satisfied.

Set the DVFS levels of the

boosted cores according to

the runtime requirements

Initialize the binary search space of

each non-boosted core between

its minimum DVFS levels and

its nominal operation levels

Compute the total current and total

power for these DVFS levels using

the current/power profile input tables

Set the DVFS levels of all

non-boosted cores to the middle

values of the current search space

Using MatEx for these DVFS levels,

compute the maximum temperature

throughout the chip at time tend

Are the
total current, total

power, or maximum temperature
constraints
satisfied?

Resize the search space

of each non-boosted

core to the lower half of

its current search space

Is the binary search of
the non-boosted core with largest

search space finished?Remember which non-boosted core

has the largest search space

yes

no

OUTPUT: Selected
DVFS levels for the
non-boosted cores

INPUTS: Nominal DVFS levels,
initial temperatures, expected

boosting time, runtime performance
requirements for the boosted cores

Resize the search space

of each non-boosted

core to the upper half of

its current search space

yesno

Figure 7.5: Flow chart of our seBoost technique for given boosting requirements.

The algorithm presented in Figure 7.5 is described in detail as follows. First, the DVFS levels of the
boosted cores are set to meet the runtime performance requirements. Moreover, the binary search space of
each non-boosted core is initialized between its minimum DVFS levels and its nominal operation levels, such
that the size of the search space for each core depends on the number of available DVFS levels between
these two points. Hence, we keep track of the non-boosted core with the largest search space, which will
determine the exit condition of the binary search loop. Specifically, since the number of iterations of the
binary search depends on the search space of each core, which may vary from core to core, the search for the
throttle-down levels of cores with small search spaces will finish before the search for cores with large search
spaces is completed. After the initialization is completed, we enter the proportional binary search loop. The
first step inside the search loop is to set the DVFS levels of the non-boosted cores to the middle value of the
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search space of each core. Then, considering the already selected DVFS levels for the boosted cores, and
by assuming that the non-boosted cores would run at the DVFS levels in the middle of their search space,
we compute the total current and power consumption for these settings by using the input current and power
profile tables, and we use MatEx to estimate the temperature at future time tend. At this point, we can verify
whether selecting these throttle-down levels for the non-boosted cores would satisfy the temperature, power,
and current constraints, TDTM, Pmax, and Imax, respectively. Depending on whether all constraints are satisfied
or not, the search space is resized such that the next iteration considers the upper or lower half of the current
search space. This proportional binary search loop is repeated until the search in the non-boosted core with
the largest search space ends. Figure 7.6 shows a graphical example of the procedure of our seBoost technique
for the case with given required boosting levels.
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Figure 7.6: Conceptual example of our seBoost technique for given boosting requirements (algorithm illus-
trated in Figure 7.5), when the bodytrack application requires to increase its performance at runtime and the
x264 application can be throttled-down. The bold line shows the maximum temperature among all elements in
the chip (left axis). The performance of the applications is measured in Giga Instructions per Second (GIPS)
(right axis).

According to our hardware model in Chapter 3.2, every core i has F̂ core
i available active frequencies,

denoted as
{
F core
i,1 ,F core

i,2 , . . . ,F core
i,F̂ core

i

}
, where F core

i,F̂ core
i

is the maximum frequency for core i. Therefore, as-

suming that the nominal operating frequency of core i is denoted as Fnomi
, such that 1 ≤ nomi ≤ F̂ core

i , and
assuming that set Υ holds the indexes of all non-boosted cores at a specific time instant, then the number
of combinations evaluated by seBoost is merely log (max∀i∈Υ {nomi}). Contrarily, a brute-force algorithm
would have evaluated

∏
∀i∈Υ nomi combinations. In case it occurs that running all non-boosted cores at their

minimum DVFS levels still exceeds either Pmax, Imax, or TDTM at time tend, then satisfying the given boosting
requirements for this case is not feasible, and therefore the boosting time interval will be shorter than the
maximum expected time for the given DVFS level requirements and initial temperatures.

7.3 Unknown Required Boosting Levels

In this section, we consider that the required DVFS levels of the cores that need boosting are unknown, but
the duration of the maximum expected boosting time is known, as conceptually shown in Figure 7.7.

Our seBoost algorithm for this case is presented in Figure 7.8, whose core computation is based on the
algorithm from Section 7.2 illustrated in Figure 7.5 (called as a function inside the algorithm in Figure 7.8), but

78



10

30

50

70

0 0.1 0.2 0.3 0.4 0.5

74

76

78

80

?

?

Pe
rf

or
m

an
ce

[G
IP

S]

Expected boosting time

Time [s]

Te
m

pe
ra

tu
re

[◦
C

]
Max. Temp. [◦C] x264 [GIPS] bodytrack [GIPS]

Figure 7.7: Conceptual problem example
for the case with unknown required boost-
ing levels, when the bodytrack applica-
tion requires to increase its performance
at runtime and the x264 application can
be throttled-down. The unknown parame-
ters are shown with symbol ?, in this case,
the boosting levels of the boosted cores
and the throttle-down levels of the non-
boosted cores.
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Figure 7.8: Flow chart of our seBoost technique for unknown required boosting levels.

which requires some additional logic. Namely, by assuming that the boosted cores are set to their maximum
DVFS levels and that the non-boosted cores are set to their minimum DVFS levels, seBoost first verifies if
the temperature at future time tend would remain below TDTM, and whether the current and power constraints
are also satisfied. If this verification is successful, it implies that there exists at least one solution in which all
boosted cores can be executed at their maximum DVFS levels. Therefore, since maximizing the performance
of the boosted cores is the priority, we execute the algorithm illustrated in Figure 7.5 by assuming that the
runtime requirements of the boosted cores are satisfied when they run at their maximum DVFS levels, such
that we find the throttle-down levels for the non-boosted cores. Contrarily, if all boosted cores cannot be
executed at their maximum DVFS levels without violating one of the constraints, then we need to find different
boosting levels. For this purpose, we execute the algorithm illustrated in Figure 7.5 by exchanging the boosted
and non-boosted cores, assuming that the runtime requirements of the non-boosted cores are met when they
run at their minimum DVFS levels, and that the nominal operation levels for the boosted cores are their
maximum DVFS levels. In this way, the non-boosted cores are forced to run as slow as possible, and the
algorithm illustrated in Figure 7.5 will now select the DVFS levels of the cores that do require boosting,
rather than the throttle-down levels of the non-boosted cores.

Figure 7.9, Figure 7.10, and Figure 7.11 present a graphical example of the procedure of our seBoost
technique for this case. Figure 7.9 first shows two cases with opposite results for evaluating if the boosted
cores can safely be executed at their maximum DVFS levels while the non-boosted cores are executed at their
minimum DVFS levels. Figure 7.10 then shows the procedure example when the verification was successful,
and Figure 7.11 shows the procedure example for the opposite scenario.

7.4 Unknown Maximum Expected Boosting Time

In this section, we extend our two previous algorithms to consider cases in which the maximum expected
boosting time is unknown and therefore cannot be specified in advance. Here, we assume that the runtime
performance requirements surges can last for a very long time, and therefore the goal is to find DVFS levels
that can be sustained indefinitely. Specifically, instead of obtaining the DVFS levels that result in transient
future temperatures for which the maximum temperature throughout the chip reaches TDTM precisely at time
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Figure 7.9: Conceptual example of the evaluation of our seBoost technique for unknown required boosting
levels (illustrated in Figure 7.8), when testing if the boosted cores can (left figure) or cannot (right figure)
be safely executed at their maximum DVFS levels. The cores requiring boosting are those mapped with the
blackscholes or the bodytrack application. The bold line shows the maximum temperature among all elements
in the chip at any given time (left axis). The performance of the applications is measured in Giga Instructions
per Second (GIPS) (right axis).
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Figure 7.10: Conceptual example of our seBoost technique for unknown required boosting levels (illustrated
in Figure 7.8), when all boosted cores of the blackscholes application can be safely executed at their maxi-
mum DVFS levels. Therefore, the DVFS levels of the boosted cores are set to their maximum values, and the
throttle-down levels of the non-boosted cores are selected through the algorithm for given boosting require-
ments (illustrated in Figure 7.5). The bold line shows the maximum temperature among all elements in the
chip at any given time (left axis). The performance of the applications is measured in Giga Instructions per
Second (GIPS) (right axis).

tend, we now focus on staying just below the value of TDTM when t → ∞, i.e., in the steady state, without
also exceeding Pmax and Imax. Therefore, we only need to make some minor changes in order to extend
the algorithms presented in Section 7.2 and Section 7.3. Particularly, for both algorithms illustrated in Fig-
ure 7.5 and Figure 7.8, instead using MatEx to compute Tk (tend) through Equation (6.3) in order to select
the highest DVFS levels for which max∀k∈L {Tk (tend)} ≤ TDTM, we now simply compute Tsteadyk through
Equation (3.10), in order to select the highest DVFS levels for which max∀k∈L

{
Tsteadyk

}
< TDTM.
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Figure 7.11: Conceptual example of our seBoost technique for unknown required boosting levels (illustrated
in Figure 7.8), when all boosted cores of the bodytrack application cannot be safely executed at their max-
imum DVFS levels. Therefore, the boosted and non-boosted cores are exchanged, the DVFS levels of the
non-boosted cores are set to their minimum values, and the boosting levels of the boosted cores are selected
through the algorithm for given boosting requirements (illustrated in Figure 7.5). The bold line shows the
maximum temperature among all elements in the chip at any given time (left axis). The performance of the
applications is measured in Giga Instructions per Second (GIPS) (right axis).

7.5 Concurrency and Closed-Loop Control-Based Boosting
The algorithms illustrated in Figure 7.5 and Figure 7.8 implicitly assume that all the boosted cores have the
same maximum expected boosting time. However, in practice there might be cases in which the runtime
performance requirements surges of some applications finish and go back to nominal levels, or there might be
cases in which new applications/threads require boosting when we are already in a boosting interval. When
this occurs, time tend should be set to the maximum value among all boosting times of all boosted cores.
Furthermore, both algorithms (depending on which one is being used) should be re-executed every time the
boosting requirements change.

For example, once one or more cores finish their boosted execution, the algorithm illustrated in Figure 7.5
(or Figure 7.8, depending on the case) should be re-executed (now with less cores requiring boosting), in
order to improve the overall performance of the system, given that now more cores can probably be safely
executed at higher DVFS levels due to the decrement in the power consumption of the cores that just finished
their boosted execution. Similarly, if during a boosting period one or more additional cores require boosting,
time tend is set to the maximum expected absolute boosting time among all boosted cores, and the algorithm
illustrated in Figure 7.5 (or Figure 7.8, depending on the case) is re-executed in order to adjust the DVFS
levels such that we can feasibly boost all the required cores, specifically, the cores that were already being
boosted plus the new cores that also require boosting. Figure 7.12 shows an example with such concurrent
boosting requirements.

Furthermore, although the simple closed-loop control-based boosting technique used by Turbo Boost does
not guarantee that the runtime performance requirements surges are satisfied, it does provide a simple method
to prolong the boosting intervals after the temperature, power, or current constraints are exceeded. For ex-
ample, even when running the non-boosted cores at their minimum DVFS levels it is not always possible to
satisfy the runtime surges during the entire expected boosting times, particularly for high initial temperatures.
For such cases, it would be pessimistic to directly return to nominal operation after the temperature, power,
or current constraints are exceeded. Therefore, seBoost can easily incorporate a simple closed-loop control-
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Figure 7.12: Concurrent boosting exam-
ple. The bodytrack application is boosted
to 3.3GHz from 0.10 s to 0.16 s, and the
x264 application is boosted to 3.4GHz
from 0.14 s to 0.35 s. The bold line shows
the maximum temperature among all ele-
ments in the chip (left axis). The perfor-
mance of the applications is measured in
Giga Instructions per Second (GIPS).
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based boosting technique, like the one used by Turbo Boost, which is triggered after any of the constraints
are exceeded. This simple control-based technique can then reduce the DVFS levels of the boosted cores,
not longer meeting the performance requirements surges, but achieving higher performance than at nominal
operation.

7.6 Experimental Evaluations

This section presents experimental evaluations that compare seBoost, Turbo Boost [9], and a simple boosting
method that always throttles down the non-boosted cores to the slowest frequencies. For the evaluations,
we use the simulation framework described in Chapter 4 in detailed mode, considering the heterogeneous
architecture illustrated in Figure 4.4 and described in Chapter 4.2.2. For benchmarks, we consider applications
from the PARSEC benchmark suite [4], described in Chapter 4.3. The ambient temperature is set to 45◦C,
and we consider a critical temperature of 80◦C.

7.6.1 Results
We run the applications from the PARSEC benchmark suite under different scenarios. First, we focus on dif-
ferent applications individually, considering multiple instances of the same application, with different num-
ber of threads per instance and also different thread-to-core mappings. For each scenario we also consider
different arrival periods for the runtime performance requirements surges and different maximum expected
boosting times. Secondly, we focus on mixed application scenarios, considering several cases with different
applications, number of threads and thread-to-core mappings. In all cases, we consider that the nominal fre-
quency for the OOO and simple Alpha cores is 2.0GHz, and the nominal frequencies for the Cortex-A7 and
Cortex-A15 cores are 0.8GHz and 1.5GHz, respectively. Furthermore, for every application scenario, we
consider that the system was running for a long enough time such that the temperatures throughout the chip
correspond to the steady-state temperatures at nominal frequencies, and we assume these temperatures to be
the initial temperatures in each case. As also done in Chapter 5.6, given that the Odroid-XU3 platform does
not provide performance counters to measure the total number of executed instructions, we use throughput as
our performance metric, where throughput is defined as the total number of application instances finished (or
partially finished) every second. We consider that every time an application instance finishes, another instance
is immediately executed under the same mapping and DVFS settings.

Figure 7.13 shows the timing behavior of each policy for the mixed application scenario M6, as detailed
in Figure 7.15. The computational overheads incurred by seBoost to decide the boosting levels at runtime are
considered in the experiments, resulting in 7.5ms for this specific case as shown in the figure. With respect
to performance, we can see that both the simple throttling-down method and seBoost satisfy the runtime per-
formance requirements surges during the entire boosting time interval, but seBoost manages this with higher
performance for the non-boosted applications. In regards to Turbo Boost, we can see that the performance
of the non-boosted applications is in fact much higher than that of seBoost. Moreover, the average perfor-
mance of the boosted applications is also slightly higher than that of seBoost. However, although the average
boosted performance is slightly higher (only 3%), Turbo Boost fails to constantly meet the minimum runtime
performance requirements for the boosted applications by a very small amount (around 2 frequency steps),
particularly, only satisfying the surges during 49% of the total boosting time.
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Figure 7.13: Timing simulation results for mixed ap-
plication scenario M6. The bold line shows the maxi-
mum temperature among all elements in the chip (left
axis). The added performance of the applications is
measured in application instances per second (i.e.,
throughput).
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The details of the mapping scenarios used for the experiment considering individual applications can be
found in Table 7.1, and Figure 7.14 shows the corresponding results for 100 s of execution for all the evaluated
scenarios. Similarly, Figure 7.15 shows the mapping scenarios and results for 100 s of execution for all the
evaluated scenarios in the experiment considering mixed applications.

Scenario Alpha OOO Alpha simple Cortex-A15 Cortex-A7

I1
Boost: 10s
Period: 30s

a: 4[3.6] threads
4[3.6] threads

b: 4[3.6] threads
4[3.6] threads

c: 4 threads
4 threads

a: 4[4.0] threads
b: 4[4.0] threads
c: 4[4.0] threads
d: 4[4.0] threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

a: 4 threads
b: 4 threads
c: 4 threads
d: 4 threads

I2
Boost: 20s
Period: 25s

a: 8 threads
b: 8 threads
c: 2[4.0] threads
6[4.0] threads

a: -
b: -
c: 3 threads
d: 2 threads

a: 4[2.0] threads
b: 2[2.0] threads
c: 2[2.0] threads
d: -

a: -
b: 2[1.4] threads
c: 2[1.4] threads
d: 4[1.4] threads

I3
Boost:∞
Period: -

a: 5[4.0] threads
3[4.0] threads

b: -
c: 7 threads
1 thread

a: 4[4.0] threads
b: 1 thread
c: 2 threads
d: -

a: 2[2.0] threads
b: -
c: 1 thread
d: 4 threads

a: 4[1.4] threads
b: -
c: -
d: 2 threads

I4
Boost: 7s

Period: 10s

a: 6[4.0] threads
2[4.0] threads

b: 8 threads
c: 4 threads
4 threads

a: 3 threads
b: 4 threads
c: -
d: -

a: -
b: -
c: 4 threads
d: 2 threads

a: -
b: 1 thread
c: 4[1.4] threads
d: -

Table 7.1: Details of the application map-
ping scenarios for the experiment with in-
dividual applications. Indexes a, b, c, and
d represent the cluster ID as explained in
Figure 4.4. Every line corresponds to an
application instance executed in the corre-
sponding cluster with the indicated number
of threads, where “-” means that a cluster
is not executing any application. A super-
index enclosed in brackets next to the num-
ber of threads implies that the specific ap-
plication instance will have runtime perfor-
mance surges, where the target frequency is
the number between the brackets (in GHz).
The duration of the surges is detailed in the
Scenario column (under Boost), while Pe-
riod details how often such surges arrive.

In Figure 7.14 and Figure 7.15, we can see the percentage of time that the runtime performance re-
quirements surges are satisfied for each boosting policy, the total average performance for the boosted ap-
plications/cores, the total average performance for the non-boosted applications/cores, the total peak power
consumption, and the total energy consumption. In both figures, there are a few cases in which, for the
given initial temperatures, it is not possible to satisfy the runtime requirements surges without violating the
hardware constraints, and therefore neither seBoost or the simple throttling-down method manage to satisfy
the requirements 100% of the time. For the rest of the evaluated cases, seBoost and the simple throttling-
down method satisfy the requirements during the entire boosting interval (except for seBoost’s small com-
putation overheads of a few milliseconds), as seen in Figure 7.14 and Figure 7.15. Nevertheless, the simple
throttling-down boosting method does so while incurring unnecessary performance losses for the non-boosted
applications.
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(a) Scenario I1
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(b) Scenario I2
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(c) Scenario I3
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(d) Scenario I4

Figure 7.14: Evaluation results for individual applications from the PARSEC benchmark suite. We consider
multiple instances of the same application, with different number of threads per instance, different thread-to-
core mappings, different arrival periods for the runtime performance surges, and different maximum expected
boosting times. Details can be found in Table 7.1.

In regards to Turbo Boost, for all the evaluated cases, although Turbo Boost achieves higher average
performance than seBoost for the non-boosted cores, Turbo Boost rarely manages to satisfy the runtime
requirements during the entire boosting interval, and the specific percentages vary drastically depending on
the application scenarios. Sometimes this occurs because the non-boosted cores are executed at higher DVFS
levels than their nominal requirements, unnecessarily increasing the power consumption. However, given that
Turbo Boost is not aware of the performance that the applications require, sometimes the failure to satisfy
the runtime requirements during the entire boosting interval occurs because the DVFS levels of the boosted
cores are set to values much higher than necessary, resulting in long cool-down times. As seen in Figure 7.14
and Figure 7.15, compared to seBoost, the over-boosting incurred by Turbo Boost might sometimes result in
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Scenario Alpha OOO Alpha simple Cortex-A15 Cortex-A7

M1
Boost:∞
Period: -

a: 2 blacks.
6 x264

b: 4[3.6] ferret
4[3.6] bodytr.

c: 8 dedup

a: -
b: 2[3.8] dedup
c: 1 ferret
d: 3[3.8] bodytr.

a: -
b: 1 facesim
c: 4[1.9] fluidan.
d: 2 blacks.

a: 2 ferret
b: -
c: 2[1.0] vips
d: 4 streamcl.

M2
Boost: 3s

Period: 45s

a: 8[4.0] bodytr.
b: 1[4.0] x264
c: 8[4.0] dedup

a: 1 dedup
b: 4 canneal
c: 3 x264
d: 2 blacks.

a: 4 bodytr.
b: 2[1.8] facesim
c: 1[1.8] swapt.
d: 1 x264

a: 4 swapt.
b: 2 vips
c: 2 freqm.
d: 2 x264

M3
Boost: 27s
Period: 35s

a: 5[4.0] dedup
3[4.0] blacks.

b: -
c: 7[3.4] ferret
1[3.4] dedup

a: -
b: -
c: -
d: 4[4.0] dedup

a: -
b: -
c: -
d: 1 streamcl.

a: 2 blacks.
b: 1 bodytr.
c: 4 x264
d: 4 fluidan.

M4
Boost: 30s
Period: 50s

a: 8 bodytr.
b: 7 x264
1 ferret

c: 8 blacks.

a: -
b: -
c: 4[4.0] x264
d: 4[4.0] canneal

a: 2[1.9] streamcl.
b: 2[1.8] swapt.
c: 1[2.0] bodytr.
d: 1[2.0] ferret

a: 4[1.2] x264
b: 2[1.2] freqm.
c: -
d: -

M5
Boost: 23s
Period: 40s

a: 1 bodytr.
7 x264

b: 2[4.0] blacks.
6[4.0] dedup

c: -

a: 2 ferret
b: -
c: -
d: -

a: 1 bodytr.
b: 2 blacks.
c: 1 facesim
d: 2 swapt.

a: 4 ferret
b: 2 facesim
c: 4[1.4] fluidan.
d: 1 streamcl.

M6
Boost: 16s
Period: 45s

a: 3[4.0] canneal
2[4.0] x264

b: 8 ferret
c: 8 bodytr.

a: 1[3.4] blacks.
b: 2[3.2] bodytr.
c: 3 dedup
d: 4[4.0] x264

a: 4 freqm.
b: 1 ferret
c: 1 streamcl.
d: 4 vips

a: 1 swapt.
b: 2 x264
c: 4 blacks.
d: 2 bodytr.

M7
Boost: 10s
Period: 30s

a: 4[3.6] x264
4[3.6] canneal

b: 4[3.6] blacks.
4[3.6] swapt.

c: 4 dedup
4 x264

a: 4 swapt.
b: 4 ferret
c: 4[4.0] ferret
d: 4[4.0] blacks.

a: 4[2.0] fluidan.
b: 4 freqm.
c: 4 facesim
d: 4[1.9] streamcl.

a: 4 vips
b: 4[1.4] freqm.
c: 4[1.2] x264
d: 4 bodytr.

M8
Boost: 32s
Period: 40s

a: -
b: 8 dedup
c: 4[4.0] ferret
4[4.0] x264

a: -
b: -
c: 3 x264
d: 3 dedup

a: 1 x264
b: 4 bodytr.
c: 4 streamcl.
d: 1 ferret

a: 1[1.4] blacks.
b: 2[1.3] vips
c: 2[1.0] swapt.
d: 4[1.4] facesim

M9
Boost:∞
Period: -

a: 1[3.8] ferret
7[3.8] blacks.

b: 4[4.0] canneal
c: 8 dedup

a: 1 dedup
b: 3 bodytr.
c: 2 ferret
d: 4 swapt.

a: 1 swapt.
b: 4[2.0] blacks.
c: -
d: -

a: 1[1.3] vips
b: 2 ferret
c: 4 streamcl.
d: 2[1.3] facesim

M10
Boost:∞
Period: -

a: 5[4.0] ferret
3[4.0] bodytr.

b: -
c: 7 canneal
1 swapt.

a: 4[3.4] x264
b: 1 dedup
c: 2 blacks.
d: -

a: 2[1.9] freqm.
b: -
c: 1 x264
d: 4 vips

a: 4[1.4] facesim
b: -
c: -
d: 2 streamcl.
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Figure 7.15: Evaluation results for mixed applications from the PARSEC benchmark suite (right). We con-
sider different applications, with different number of threads per application instance, different thread-to-core
mappings, different arrival periods for the runtime performance surges, and different maximum expected
boosting times. Details can be found in the table (left), which is very similar to Table 7.1. The main differ-
ence is that in this table we detail which application type is executed in each cluster, and the word threads is
omitted.

higher average performance for the boosted cores. However, the performance gains for using Turbo Boost
are relatively very small and arguably unjustified when considering the big increments to the total peak power
and energy consumption. For example, Turbo Boost achieves 3% higher boosted average performance for
scenario M6, while resulting in a peak power and energy consumption of 105% and 51%, respectively, higher
than that of seBoost.

With respect to the computational overheads incurred by seBoost, when implemented in software (C++)
as a single threaded application, the worst-case measured execution time for seBoost for all the evaluated
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cases was below 7.5ms. This shows that seBoost is in fact a lightweight technique which might be suitable
for runtime usage. Implementing seBoost as a dedicated hardware controller would result in negligible time
overheads, especially given that the computations done by MatEx to estimate the future temperatures in the
algorithms illustrated in Figure 7.5 and Figure 7.8 can be fully parallelized, as already explained in Chapter 6.

7.7 Summary
This chapter presented seBoost, an efficient and lightweight boosting technique based on future transient tem-
perature estimation (specifically, based on MatEx, presented in Chapter 6). This technique guarantees meeting
any performance requirements surges that can occur at runtime, and this is achieved by executing the boosted
cores at the required DVFS levels for the entire boosting intervals, while throttling down the non-boosted
cores. In order to minimize the performance losses of the applications being executed on the non-boosted
cores, the throttling down levels are chosen such that the maximum temperature throughout the chip reaches
the critical threshold temperature precisely when the boosting is expected to expire. Our experiments show
that seBoost can in fact guarantee the required runtime performance surges, while the state-of-the-art closed-
looped control-based boosting techniques fail to constantly satisfy these runtime requirements, even while
consuming more power and energy.
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Chapter 8

Energy and Peak Power Efficiency Analysis for
Simple Approximation Schemes

8.1 Overview

For multicore and manycore cluster-based architectures with multiple voltage islands that are executing
performance-constrained applications or real-time tasks, the task partitioning stage and DVFS schedule play
a major role for peak power reduction and energy minimization. Here, task partitioning refers to the process
of grouping all the tasks into separate sets of tasks (or tasks sets), where each task set can hold one or more
tasks, such that all tasks belonging to the same task set will be mapped and executed on a single core by using
preemption. Moreover, the DVFS schedule refers to which specific DVFS levels are chosen in each cluster/-
core at different points in time. A combination of a task partitioning policy and a DVFS schedule policy is
said to be feasible when all tasks meet their performance constraints or hard real-time deadlines, and it is said
to be optimal in terms of energy consumption or peak power consumption, if it results in the minimum energy
consumption or peak power consumption, respectively.

With regards to task partitioning, having in consideration the convexity of the dynamic power consumption
of a core (as discussed in Chapter 3.3), the energy consumption for executing some workload in one core at
a specific frequency will generally be bigger than executing the same workload (perfectly distributed) in two
cores at half of the frequency (as suggested by Chapter 3.4). This suggests that in most cases, for a group of
unpartitioned tasks assigned to a cluster, a task partitioning strategy that balances the workloads throughout
all the cores in the cluster would have the minimum dynamic energy consumption. However, deriving such
a balanced solution involves very high complexity and it might not be feasible for most practical cases.
Therefore, a good option is to use a polynomial-time algorithm based on load balancing, like the Largest Task
First (LTF) strategy [109] (further details in Section 8.1.2), or our own extension of LTF, the Double Largest
Task First (DLTF) strategy (further details in Section 8.1.3).

For a given cluster, once the tasks are assigned onto the cores in the cluster, it is now necessary to apply
a DVFS scheduling policy that decides the voltage of the cluster and the frequencies of the cores for exe-
cution. For performance-constrained applications or real-time tasks assigned to a cluster, the simplest and
most intuitive policy, denoted as the Single Frequency Approximation (SFA) scheme, is to use a single volt-
age and frequency for execution during the entire hyper-period (as opposed to a technique that uses different
DVFS levels at different points in time), particularly, the lowest voltage and frequency that satisfies the timing
constraints of all the cores in the cluster (further details in Section 8.1.4). A similar alternative (when the hard-
ware platform allows it), denoted as the Single Voltage Approximation (SVA) scheme, would be to also use a
single voltage for execution during the entire hyper-period (particularly, the same single voltage as in SFA),
and independently choose the frequency of every core (kept constant during the entire hyper-period), such
that the frequency on each core is set to the lowest value that satisfies the timing constraints of all its tasks,
but possibly having different execution frequencies for different cores in the same cluster (further details in
Section 8.1.5).

Combining DLTF with either SFA or SVA (referred to as DLTF-SFA and DLTF-SVA, respectively) will
not derive optimal solutions in terms of peak power reduction or energy minimization. However, they are
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two simple and practical solutions that significantly reduce the overheads for changing the supply voltage of
the clusters and the frequencies of cores, as neither SFA nor SVA require voltage or frequency changes at
runtime. Furthermore, when using SFA, any uni-core DPM technique can be adopted individually in each
core without additional effort, because SFA does not require any DVFS alignment between cores. Similarly,
given that when using SVA all the cores are executing tasks at all times, SVA does not require any DPM
technique to reduce the energy consumption for idling. However, the worst-case performance of DLTF-SFA
and DLTF-SVA in terms of peak power reduction and energy efficiency remains an open problem.

Therefore, motivated by the above discussions, for performance-constrained applications or real-time tasks
that are already assigned to a specific cluster (or for systems with a global supply voltage), this chapter
presents and theoretically analyzes the worst-case behavior (in terms of energy and peak power efficiency)
of two simple and practical polynomial-time strategies, particularly, DLTF-SFA and DLTF-SVA, which
use DLTF for task partitioning and SFA or SVA to decide the voltage of the clusters and the frequencies of
the cores [68,69,70,71]. For the theoretical analysis, we compare both schemes against the optimal energy
and peak power solutions, especially, for the state-of-the-art designs that only have a few cores inside every
cluster.

8.1.1 Problem Definition
In this chapter, we focus on an individual cluster/island. Among all the periodic performance-constrained/real-
time tasks that have to be executed on the chip, we assume that different sets of tasks are already assigned
to a specific cluster, such that every individual cluster has to execute the specific tasks that are assigned to it.
Therefore, for simplicity of presentation, in this chapter (and not on other chapters of this dissertation) we
redefine two symbols introduced in Chapter 3. Specifically, instead of considering that R represents the total
number of tasks to be executed on the entire chip, in this chapter we assume that R represents the total number
of tasks to be executed on a specific (arbitrary) cluster. Similarly, instead of considering that M represents
the total number of cores in the entire chip and M cluster

k represents the total number of cores in cluster k, in
this chapter we assume that M represents the total number of cores in a specific (arbitrary) cluster.

Therefore, for R periodic performance-constrained/real-time tasks that are assigned to a cluster/island,
in this chapter we present a practical solution, that partitions the R tasks assigned to the cluster onto the
M cores in the cluster, and then applies a simple DVFS schedule, such that the energy consumption in the
voltage island is minimized and the peak power consumption is reduced. Particularly, we consider that the
tasks are partitioned using the DLTF strategy, and that the DVFS scheduling policy is either SFA or SVA,
such that these combinations are denoted as DLTF-SFA and DLTF-SVA, respectively. More importantly, we
theoretically analyze the approximation factor (i.e., the worst-case behavior) of these two approaches both
for energy minimization and for peak power reduction, against the optimal task partition, optimal DVFS
schedule, and optimal DPM schedule, i.e., against the optimal solution, for each case, defined AFenergy

DLTF-SFA and
AFpeak power

DLTF-SFA for DLTF-SFA, respectively, and AFenergy
DLTF-SVA and AFpeak power

DLTF-SVA for DLTF-SVA, respectively.
The approximation factor of DLTF-SFA for energy minimization can be computed as shown in Equa-

tion (8.1), where E∗
OPT represents the optimal energy consumption for the optimal solution (i.e., the optimal

task partition, the optimal DVFS schedule, and the optimal DPM schedule) during a hyper-period, EDLTF
SFA

represents the energy consumption during a hyper-period for partitioning tasks with DLTF and using SFA
to decide the DVFS levels on individual clusters, and E∗

↓ represents a lower bound for the optimal energy
consumption during a hyper-period.

AFenergy
DLTF-SFA = max

EDLTF
SFA

E∗
OPT
≤ max

EDLTF
SFA

E∗
↓

(8.1)

Similarly, the approximation factor of DLTF-SFA for peak power reduction can be computed as shown in
Equation (8.2), where P̂ ∗

OPT represents the optimal peak power consumption for the optimal solution (i.e.,
the optimal task partition, the optimal DVFS schedule, and the optimal DPM schedule), P̂DLTF

SFA represents
the peak power consumption for partitioning tasks with DLTF and using SFA to decide the DVFS levels on
individual clusters, and P̂ ∗

↓ represents a lower bound for the optimal peak power consumption. Given that
E∗

OPT and P̂ ∗
OPT cannot be easily obtained, in the analysis we use their lower bounds E∗

↓ and P̂ ∗
↓ , that should
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not too far away from E∗
OPT and P̂ ∗

OPT, respectively.

AFpeak power
DLTF-SFA = max

P̂DLTF
SFA

P̂ ∗
OPT

≤ max
P̂DLTF

SFA

P̂ ∗
↓

(8.2)

The approximation factors for DLTF-SVA can be computed in a similar way, as shown in Equation (8.3)
and Equation (8.4)

AFenergy
DLTF-SVA = max

EDLTF
SVA

E∗
OPT
≤ max

EDLTF
SVA

E∗
↓

(8.3)

AFpeak power
DLTF-SVA = max

P̂DLTF
SVA

P̂ ∗
OPT

≤ max
P̂DLTF

SVA

P̂ ∗
↓

(8.4)

As briefly mentioned above, when we talk about energy minimization, the optimal task partition for
energy minimization is defined as a task partitioning solution that results in the minimum energy consumption
when used in combination with the optimal DVFS and DPM schedule for energy minimization, and obtaining
such a task partition is an NP-hard problem [109]. Similarly, when we talk about peak power reduction, the
optimal task partitioning for peak power reduction is defined as a task partitioning solution that results in the
minimum peak power consumption when used in combination with the optimal DVFS and DPM schedule for
peak power reduction. Later, in Section 8.2, we show that both optimal task partitions are in fact equivalent
for the lower bounds of energy and peak power consumption. Therefore, for simplicity of presentation, we
use a single notation for both cases, such the optimal task partition for energy minimization and peak power
reduction results in task sets {S∗

1,S
∗
2, . . . ,S

∗
M}. Without loss of generality, we can assume that task set S∗

i is
assigned on core i, and we define its cycle utilization when running on a core of type q as w∗

q,i=
∑

τn∈S∗
i

eq,n
dn

,

with unit cycles
second . Given that in this chapter we focus on homogeneous systems, we can omit parameter q from

this notation for simplicity of presentation, such that w∗
q,i simply becomes w∗

i . By defining w∗
0 = 0 for

notational purposes and without loss of generality, the task sets of the optimal task partition are ordered such
that 0 = w∗

0 ≤ w∗
1 ≤ w∗

2 ≤ · · · ≤ w∗
M .

For the power model, we use the expressions from Equation (3.2) and Equation (3.3) shown in Chapter 3.3.

Pcore (fcluster, f) = α · fcluster
γ−1 · f + β · fcluster + κ (3.2 revisited)

Pcore (f) = α · fγ + β · f + κ (3.3 revisited)

Similarly, for the energy model, we use the expressions from Equation (3.5), Equation (3.6), and Equa-
tion (3.7), presented in Chapter 3.4 .

Ecore (fcluster, f) =
(
α · fcluster

γ−1 · f + β · fcluster + κ
) ∆c

f
(3.5 revisited)

Ecore (f) = (α · fγ + β · f + κ)
∆c

f
(3.6 revisited)

fcrit = γ

√
κ

(γ − 1)α
(3.7 revisited)

When a core finishes executing all the workload available in its ready queue, the core has to wait until a
new task instance arrives. During this waiting interval, the core can remain idle (i.e., clock-gated), consuming
P idle

core (fcluster) = β · fcluster + κ. On the other hand, the core can also enter a low-power mode (e.g., sleep,
power-gated, etc.) that consumes κsleep ≥ 0 power. Given that the optimal solutions for peak power reduction
or energy minimization cannot optimize for κsleep (i.e., κsleep is an offset that is always present), without loss
of generality, we can transfer the power consumption κsleep to some other part of the system, such that we
can set Pcore (fcluster, f) to Pcore (fcluster, f)− κsleep, set Pcore (f) to Pcore (f)− κsleep, and set P idle

core (fcluster) to
P idle

core (fcluster)−κsleep, such that we can disregard the effect of the power consumption of a core in a low-power
mode. In this way, since not even the optimal solution can optimize for κsleep, we only focus on the effective
optimization region and we avoid possible masking problems in systems with large κsleep values.
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For the analysis in Section 8.3 and Section 8.4, we consider continuous DVFS levels in the range of
[Fmin,Fmax], such that Fmin = F type

q,1 and Fmax = F type
q,F̂ type

q
, where there is only one possible type of core q since

in this entire chapter we focus on homogeneous systems. These results are then extended in Section 8.6 by
considering discrete voltage and frequency pairs

{
F type
q,1 ,F type

q,2 , . . . ,F type
q,F̂ type

q

}
, as defined in Chapter 3.2.

8.1.2 Largest Task First (LTF) Scheme
A good and widely used algorithm for task partitioning is the LTF scheme [109], which is a Worst-Fit-
Decreasing heuristic algorithm. The LTF scheme is mainly a reformulation of the Longest Processing
Time (LPT) algorithm [20] for the Makespan problem. Particularly, LTF partitions the R periodic tasks
{τ1, τ2, . . . , τR} into M groups of disjoint task sets, denoted as

{
SLTF
1 ,SLTF

2 , . . . ,SLTF
M

}
. For a given type of

core q, the corresponding cycle utilizations of these task sets are 0 = wLTF
q,0 ≤ wLTF

q,1 ≤ wLTF
q,2 ≤ · · · ≤ wLTF

q,M ,
ordered without loss of generality. Given that in this chapter we focus on homogeneous systems, we can omit
parameter q from this notation for simplicity of presentation, resulting in 0 = wLTF

0 ≤ wLTF
1 ≤ wLTF

2 ≤ · · · ≤
wLTF

M . For completeness, a pseudo-code for LTF is presented in Algorithm 6, with worst-case time complexity
O (R (logR+ logM) +M) [109]. Throughout this chapter, we implicitly assume that for a homogeneous
system composed by cores of type q, it holds that wLTF

M ≤ F type
q,F̂ type

q
, as otherwise LTF does not derive a feasible

solution under EDF [59] (i.e. there would be no guarantee that all the tasks assigned to the cluster can meet
their timing constraints).

Algorithm 6 Largest Task First (LTF) scheme

Input: Tasks {τ1, τ2, . . . , τR};
Output: Task sets

{
SLTF
1 ,SLTF

2 , . . . ,SLTF
M

}
;

1: Sort all tasks in a non-increasing order of their cycle utilizations;
2: for all M task sets (i.e., for all i = 1, 2, . . . ,M ) do
3: SLTF

i ← ∅; wLTF
i ← 0; {Initialize all task sets to be empty, with zero cycle utilization}

4: end for
5: for all R tasks (i.e., for all n = 1, 2, . . . ,R) do
6: Find the task set SLTF

i with the smallest cycle utilization wLTF
i ;

7: SLTF
i ← SLTF

i + {τn}; {Assign task τn to task set SLTF
i }

8: end for
9: Re-order all task sets decreasingly according to their cycle utilization;

10: return
{
SLTF
1 ,SLTF

2 , . . . ,SLTF
M

}
;

The LTF scheme has a few properties inherited from the LPT algorithm [20] for the Makespan problem.
Consider the optimal task partition, previously defined in Section 8.1.1 as {S∗

1,S
∗
2, . . . ,S

∗
M}, for which w∗

M

is the maximum cycle utilization among all cores in the cluster for the optimal solution. Naturally, the total
cycle utilization of all tasks is constant regardless of how they are partitioned, and therefore it holds that

M∑
i=1

wLTF
i =

M∑
i=1

w∗
i .

Moreover, if after partitioning the tasks with LTF we have that there is only one task in resulting task set
SLTF
M , then, given that the cycle utilization of the task in set SLTF

M is the lower bound of the maximum cycle
utilization in any possible task partition (including the optimal task partition), it holds that

wLTF
M ≤ w∗

M .

Furthermore, if after partitioning the tasks with LTF we have that there are at least two tasks in resulting task
set SLTF

M , then the property presented in Equation (8.5) holds, where θLTF is the approximation factor of the
LTF scheme in terms of task partitioning, due to the approximation factor of the LPT algorithm [20] for the
Makespan problem. Finally, under this same condition, the work in [109] also proved the property presented
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in Equation (8.6). Figure 8.1 and Figure 8.2 illustrate these properties of the LTF scheme.

wLTF
M

w∗
M

≤ θLTF =
4

3
− 1

3M
(8.5)

wLTF
1

wLTF
M

≥ 1

2
(8.6)

· · ·
wLTF

1
wLTF

2
wLTF

M -1

wLTF
M

· · ·
w∗

1
w∗

2
w∗

M -1

w∗
M

Figure 8.1: Example of the cycle uti-
lization relations of the LTF scheme
when wLTF

M ≤ w∗
M .

· · ·

wLTF
1

wLTF
2

wLTF
M -1

wLTF
M ≤ wLTF

M

(
1− 1

θLTF

)

· · ·
w∗

1
w∗

2
w∗

M -1

w∗
M

Figure 8.2: Example of the cycle uti-
lization relations of the LTF scheme
when there are at least two tasks in
task set SLTF

M and w∗
M < wLTF

M .

8.1.3 Double Largest Task First (DLTF) Scheme
This section presents our task partitioning scheme for idle energy reduction, called DLTF, well-suited to
apply in combination with SFA or SVA. Task partitioning scheme DLTF considers LTF as an initial solution,
which means that after executing LTF we have that

{
SDLTF
1 = SLTF

1 ,SDLTF
2 = SLTF

2 , . . . ,SDLTF
M = SLTF

M

}
, with

the corresponding cycle utilizations 0 = wDLTF
0 ≤ wDLTF

1 = wLTF
1 ≤ wDLTF

2 = wLTF
2 ≤ · · · ≤ wDLTF

M = wLTF
M ,

ordered without loss of generality. Then, in order to reduce the energy consumption for idling under SFA
and SVA, we regroup the tasks, such that as many cores as possible are put into low-power mode during the
entire hyper-period, and this is achieved without increasing the energy consumption for execution. For such
a purpose, we define the auxiliary cycle utilization wDLTF

max as max
{
fcrit,w

LTF
M

}
, which is used as a maximum

cycle utilization for the task regrouping.
The regrouping is an iterative procedure, in which we migrate tasks from a source task set, denoted as

SDLTF
i , to a destination task set, denoted as SDLTF

j . We iterate through all the source task sets (increasingly
with respect to their cycle utilizations), through all the tasks inside every source task set, and through all the
possible destination task sets (decreasingly with respect to their cycle utilizations) for every task iterated from
the source task set. Particularly, we start by choosing the source task set SDLTF

i , such that its cycle utilization
wDLTF

i is the smallest cycle utilization among all task sets. Given that from LTF the task sets are ordered
increasingly with respect to their cycle utilizations, the first chosen source task set will be SDLTF

1 (i.e., i = 1).
We then iterate (with no specific order) through all tasks τn inside source task set SDLTF

i , where for the given
type of core q for the homogeneous system, the cycle utilization of τn is computed as eq,n

dn
. For every τn,

we further iterate through the destination task sets SDLTF
j for all j = M ,M − 1, . . . , i + 2, i + 1, i.e., we

start from the task set with the highest cycle utilization and we stop just before reaching the source task set
SDLTF
i . In case τn fits inside the destination task set SDLTF

j without exceeding wDLTF
max , i.e., if it holds that

eq,n
dn

+ wDLTF
j ≤ wDLTF

max , then we migrate τn to the destination task set SDLTF
j and update the value of wDLTF

j

accordingly. In case τn does not fit inside the destination task set SDLTF
j without exceeding wDLTF

max , then we
update j to j − 1 and try again with a new destination task set, until j reaches the value of i, point in which
we move to the next task inside the source task set SDLTF

i . This process is repeated for all the tasks inside the
source task set SDLTF

i , and then the value of i is updated to i+ 1, until i reaches M .
Note that, since before migrating a task to a specific destination task set all other destination task sets

with larger cycle utilizations have already been unsuccessfully tested, this means that this specific task will
be migrated to the destination task set with the largest cycle utilization in which the task can feasible fit.
Therefore, considering that migrating a task more than once under this policy will always fail, once a task is
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migrated from a source task set to a destination task set, the task can be marked as migrated, such that DLTF
does not attempt to migrate it again. Furthermore, given that we do not migrate a task to a destination task set
unless wDLTF

max is not exceeded, then the maximum cycle utilization among all task sets either remains constant
(in case fcrit ≤ wLTF

M ), or it can grow, but never beyond fcrit (in case fcrit > wLTF
M ). Because of this reason,

DLTF does not increase the energy consumption for execution in the cluster under either SFA or SVA, as the
voltage of the cluster and the frequency of the core with the highest cycle utilization is either unchanged or
set to more energy efficient values (more details in Section 8.1.4 and Section 8.1.5). Finally, the task sets that
had a high cycle utilization after partitioning tasks with LTF will now have a higher cycle utilization after
the regrouping procedure, and vice-versa. Most importantly, any core with a resulting cycle utilization after
regrouping equal to 0 can be further put into low-power mode for the entire hyper-period, thus saving energy
for idling. Consequently, the resulting number of cores with cycle utilization larger than 0, i.e., the number
of cores that remain active after regrouping, is defined as M 6=0. A pseudo-code for DLTF is presented in
Algorithm 7, with worst-case time complexity O

(
M2R

)
after LTF is executed. Figure 8.3 shows a brief

example comparing an initial task partition obtained by applying LTF and the resulting task partition after the
regrouping procedure of DLTF, both cases using SFA as their DVFS schedule.

Algorithm 7 Double Largest Task First (DLTF) scheme

Input: Tasks {τ1, τ2, . . . , τR};
Output: Task sets

{
SDLTF
1 ,SDLTF

2 , . . . ,SDLTF
M

}
;

1: Execute LTF for tasks {τ1, τ2, . . . , τR}; {Algorithm 6}
2: wDLTF

max ← max
{
fcrit,w

LTF
M

}
; {Set the value of the maximum cycle utilization for the task regrouping}

3:
{
SDLTF
1 ,SDLTF

2 , . . . ,SDLTF
M

}
←
{
SLTF
1 ,SLTF

2 , . . . ,SLTF
M

}
; {DLTF considers LTF as an initial solution}

4: for all source task sets, increasingly (i.e., for all i = 1, 2, . . . ,M − 1) do
5: for all tasks inside the current source task set (i.e., for all τn ∈ SDLTF

i ) do
6: for all destination task sets, decreasingly (i.e., for all j = M ,M − 1, . . . , i+ 2, i+ 1) do

{Check if task τn fits inside the current destination task set without exceeding wDLTF
max }

7: if eq,n
dn

+ wDLTF
j ≤ wDLTF

max then
8: SDLTF

j ← SDLTF
j + {τn}; {Assign task τn to destination task set SDLTF

j }
9: Remove τn from source task set SDLTF

i ;
10: break for loop j; {If a task is migrated, we continue with the next task in the source task set}
11: end if
12: end for
13: end for
14: end for
15: return

{
SDLTF
1 ,SDLTF

2 , . . . ,SDLTF
M

}
;

Just like when using LTF, given that the total cycle utilization of all tasks is constant for all possible task
partitions, under DLTF it holds that

M∑
i=1

wDLTF
i =

M∑
i=1

wLTF
i =

M∑
i=1

w∗
i . (8.7)

Furthermore, if wLTF
M ≥ fcrit, given that wDLTF

max is set to wLTF
M in this case, then no task can be migrated to

destination task set SDLTF
M . Therefore, in this case we have that SDLTF

M = SLTF
M , with wDLTF

M = wLTF
M . Moreover,

in regards to the properties of LTF that can be inherited to DLTF, the only property of LTF that does not hold
in DLTF for this case (due to the regrouping of tasks) is Equation (8.6). In other words, when wLTF

M ≥ fcrit, if
after partitioning tasks with DLTF there is only one task inside set SDLTF

M , then it holds that

wDLTF
M ≤ w∗

M ,

given that the cycle utilization of the task inside set SDLTF
M is the lower bound of the maximum cycle utilization

in any possible task partition (including the optimal task partition). For this same case in which wLTF
M ≥ fcrit,
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(a) Example: LTF and SFA
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(b) Example: DLTF and SFA

Figure 8.3: Brief example comparing an initial task partition obtained by applying LTF and the resulting
task partition after the regrouping procedure of DLTF, both cases using SFA as their DVFS schedule in this
example. All tasks share a common arrival, deadline, and period (i.e., they are frame-based tasks). In LTF,
core 2 and core 3 have to remain idle after they finish the execution of a task instance, since their idle times are
shorter than the break-even time. Under DLTF, the idle energy consumption of core 2 and core 3 is reduced,
while core 4 and core 5 are always kept in a low-power mode.

if after partitioning task with DLTF there are at least two tasks inside set SDLTF
M , then it holds that

wDLTF
M

w∗
M

≤ θLTF =
4

3
− 1

3M
. (8.8)

When wLTF
M < fcrit, given that in this case, in comparison with the original SLTF

M , we might add some tasks
into task set SDLTF

M , then most likely we will have a higher cycle utilization in task set SDLTF
M than in task set

SLTF
M . Nevertheless, in this case the value of wDLTF

M will also remain below fcrit, such that wLTF
M ≤ wDLTF

M <
fcrit, and all the cores in the cluster should be executed at fcrit in order to minimize the energy consumption

for execution. Clearly, given that in this case the optimal solution (i.e., the optimal task partition, the optimal
DVFS schedule, and the optimal DPM schedule) will consume the same energy for execution, resulting in an
approximation factor of 1, for the analysis of the approximation factor we will only focus in the case in which
wLTF

M ≥ fcrit.

8.1.4 Single Frequency Approximation (SFA) Scheme
The SFA scheme is the simplest and most intuitive policy for DVFS scheduling of performance-constrained
applications or real-time tasks. Under SFA, all the cores in a cluster use a single voltage and frequency for ex-
ecution during the entire hyper-period, instead of dynamically changing the DVFS levels at different points in
time. Particularly, SFA uses the lowest DVFS levels that satisfy the timing constraints of all the tasks assigned
to the cores inside a cluster. After the task partitioning is completed, SFA has linear time complexity O (M),
which comes only from evaluating which core in the cluster has the highest cycle utilization. Namely, given
that different tasks are assigned to different cores, the cores inside a cluster might have different frequency re-
quirements in order to meet the timing constraints. Therefore, the core with the highest cycle utilization (i.e.,
the core with the highest frequency demands) inside a cluster will determine the required execution frequency
of SFA for the entire cluster. Nevertheless, in order to be energy efficient, SFA will never select DVFS levels
that are lower than the associated critical frequency. Even though SFA is not an optimal DVFS scheduling
policy for energy minimization, it significantly reduces the management overheads for changing the DVFS
levels on the clusters, as it does not require voltage or frequency changes at runtime. Furthermore, given
that all the cores in a cluster execute at a single frequency and no frequency alignment for DVFS between
cores is needed, any uni-core DPM technique for reducing the energy consumption for idling can be easily
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incorporated individually on every core. Figure 8.4 presents a brief example of a cluster with four cores using
SFA as the DVFS scheduling policy.

Figure 8.4: SFA example for a clus-
ter with four cores. The hyper-period
of all tasks is 10 seconds. In or-
der to meet all deadlines, the fre-
quency demands of the cores are
0.2GHz, 0.4GHz, 0.6GHz, and
0.8GHz. Hence, the single frequency
of SFA is set to 0.8GHz. In order to
save energy, cores individually enter
a low-power mode when there is no
workload on their ready queues.
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The SFA scheme has been adopted by several researchers in the past (e.g., by [15] when the tasks do not
complete earlier than the estimated worst-case execution times, or by [65]). Moreover, the applicability of
SFA with slack reclamation in order to deal with early completion of tasks can be found in [15]. SFA is indeed
a good strategy when the workload is perfectly balanced throughout the cores in a cluster (i.e., when all the
cores are assigned with similar cycle utilizations). Contrarily, when the cycle utilizations of the cores inside a
cluster are skewed (i.e., one core has a high cycle utilization while all others have a very low cycle utilization),
then SFA might consume much more energy than the optimal solution, especially when the number of cores
in the cluster grows. This comes from the cases in which cores with light cycle utilizations are forced to
execute at higher DVFS levels than they require in order to meet their timing constraints.

In order to meet the timing constraints of all tasks in the cluster while attempting to minimize the energy
consumption, the frequencies used by the SFA scheme are (1) fcrit in case that wDLTF

M ≤ fcrit, and (2) wDLTF
M

otherwise. The worst-case peak power consumption on the cluster occurs when all cores execute tasks simul-
taneously, e.g., at the beginning of a hyper-period when at least one task in each core has arrival time zero, as
shown in the examples in Figure 8.3 and Figure 8.4. Hence, if from Equation (3.3) the power consumption
on a core executing at frequency f is computed as Pcore (f) = α · fγ + β · f + κ, then the peak power
consumption on the cluster for combining DLTF and SFA (i.e., DLTF-SFA), denoted as P̂DLTF

SFA and expressed
as seen in Equation (8.9), depends mostly on the number of active cores M 6=0 and the frequencies selected
by SFA. Furthermore, in case

∑M
i=1 w

DLTF
i ≤ fcrit, then DLTF will partition all the tasks into a single core,

and this becomes a single core DVFS problem. For such a case, from Equation (3.5) and Figure 3.5, we know
that running at slow frequencies might consume excessive energy due to the leakage and independent power
consumptions, and therefore all tasks are assigned to a single core that is executed at frequency fcrit.

P̂DLTF
SFA =


α · fcrit

γ + β · fcrit + κ if
∑M

i=1 w
DLTF
i ≤ fcrit

M 6=0 (α · fcrit
γ + β · fcrit + κ) if wDLTF

M ≤ fcrit

M 6=0
(
α · wDLTF

M
γ
+ β · wDLTF

M + κ
)

otherwise

(8.9)

From Equation (8.9) and by looking at the example in Figure 8.3, we can observe that under SFA, parti-
tioning tasks with DLTF can drastically reduce the peak power consumption in comparison to LTF. This
occurs thanks to the regrouping procedure that reduces the number of active cores from M to M 6=0.

With respect to energy consumption, if from Equation (3.6) the energy consumption on a core executing
at frequency f is computed as Ecore (f) = (α · fγ + β · f + κ) ∆c

f , and by considering that the total amount
of computation ∆c to be finished in a hyper-period by core i is D · wDLTF

i , then we have that the energy
consumption on core i running at frequency f during a hyper-period is computed as

EDLTF
corei (f) = D (α · fγ + β · f + κ)

wDLTF
i

f
.

94



Therefore, considering all the cores in the cluster and according to the frequencies selected by SFA, the energy
consumption in the cluster for DLTF-SFA during a hyper-period, denoted as EDLTF

SFA , can be expressed as seen
in Equation (8.10).

EDLTF
SFA =

D (α · fcrit
γ + β · fcrit + κ)

∑M
i=1 wDLTF

i

fcrit
if wDLTF

M ≤ fcrit

D
(
α · wDLTF

M
γ
+ β · wDLTF

M + κ
) ∑M

i=1 wDLTF
i

wDLTF
M

otherwise
(8.10)

From Equation (8.10) we can see that the energy consumption of DLTF-SFA only depends on the fre-
quency selected by SFA and on the total cycle utilization of all tasks, which is constant for all possible task
partitions, as shown in Equation (8.7). That is, the total energy consumption will depend on the cycle uti-
lization requirements of the core with the largest workload; however, how the rest of the tasks are partitioned
in the other cores is not relevant in this case. Furthermore, as described in Section 8.1.3, if we have that
wLTF

M < fcrit, then it holds that wLTF
M ≤ wDLTF

M < fcrit; while if we have that wLTF
M ≥ fcrit, then it holds that

wDLTF
M = wLTF

M .

Therefore, if we assume negligible overhead for entering and leaving a low-power mode (i.e., negligible
overhead for sleeping), then the total energy consumption for using LTF under SFA is the same as the total
energy consumption for using DLTF under SFA. However, when such overheads are non-negligible (i.e.,
for the practical scenario in real systems), DLTF saves some energy for idling in comparison to plain LTF.
Moreover, given that the energy consumption under SFA can be reduced when the highest cycle utilization
among all cores is reduced and both LTF and DLTF are worst-fit-decreasing heuristics that attempt to
minimize this cycle utilization, we can thus conclude that LTF and DLTF are efficient task partitioning
schemes for energy minimization under SFA.

8.1.5 Single Voltage Approximation (SVA) Scheme
The SVA scheme is inspired by the SFA scheme described in Section 8.1.4. In SVA, all the cores in a
cluster are also executed using a single voltage for execution during the entire hyper-period, particularly, the
same single voltage as in SFA, determined by the core with the highest frequency requirements (i.e., the
core assigned with the highest cycle utilization task set wDLTF

M ). However, unlike SFA, in SVA (when the
hardware platform allows it) the frequency of every core is individually chosen (kept constant during the
entire hyper-period), such that the frequency on each core is set to the lowest value that satisfies the timing
constraints of all its tasks, but possibly having different execution frequencies for different cores in the same
cluster. Hence, all the cores are executing tasks at all times in case all the tasks require their worst-case
execution times in order to finish every task instance, and there is no need for the adopted DPM technique to
place cores in a low-power mode in order to reduce the energy consumption for idling.

Particularly, as mentioned above, under SVA the voltage of the cluster and the frequencies of the cores are
kept constant during the entire hyper-period, i.e., they do not change at runtime. After the task partitioning
stage is completed, every core i is assigned with the corresponding task set SDLTF

i , with cycle utilization
wDLTF

i . Thus, under SVA, in order to just meet the timing constraints when using EDF [59] for scheduling
tasks in individual cores, the frequency of core i is set to wDLTF

i for all i = 1, 2, . . . ,M . In this way, the
highest frequency among all cores is wDLTF

M . Naturally, in order to consume less power and to save energy,
the voltage of the cluster is set to the minimum available voltage such that frequency wDLTF

M can be stably
achieved. The time complexity of SVA is O (M), where M is the number of cores in the cluster and this
complexity comes from evaluating the highest cycle utilization among all cores and choosing the individual
frequencies of every other core. Figure 8.5 presents a brief example of a cluster with four cores using SVA as
the DVFS scheduling policy.

As mentioned above, under SVA, in case all the tasks require their worst-case execution times in order to
finish every task instance, then all the cores are always busy such that they just meet their timing constraints.
This means that for such a case, the power consumption on every core, and therefore the power consumption
in the entire cluster, is constant through the entire hyper-period, resulting in a peak power consumption which
is equivalent to the average power consumption. Therefore, if from Equation (3.2) the power consumption
on a core executing at frequency f , where the voltage of the cluster is determined by frequency fcluster, is
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Figure 8.5: SVA example for a clus-
ter with four cores. The hyper-period
of all tasks is 10 seconds. In order
to meet all deadlines, the frequency
demands of the cores are 0.2GHz,
0.4GHz, 0.6GHz, and 0.8GHz. The
frequency on each core is set accord-
ing to its demands, and the voltage is
set according to 0.8GHz. All cores
are always busy such that they just
meet their timing constraints.
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computed as Pcore (fcluster, f) = α ·fcluster
γ−1 ·f +β ·fcluster +κ, then the power consumption for core i under

DLTF-SVA is
PDLTF

corei (fcluster, f) = α · wDLTF
M

γ−1 · wDLTF
i + β · wDLTF

M + κ,

such that, considering that there are M 6=0 active cores always consuming leakage and independent power, the
peak power consumption on a cluster, defined as P̂DLTF

SVA , is expressed as

P̂DLTF
SVA = α · wDLTF

M
γ−1

M∑
i=1

wDLTF
i +M 6=0

(
β · wDLTF

M + κ
)
.

In order to consider the worst cases, we have to assume that when wDLTF
M ≤ fcrit, after the regrouping with

DLTF the voltage of the cluster can be set up to the value associated with fcrit. Moreover, as already mentioned
in Section 8.1.4, in case that

∑M
i=1 w

DLTF
i ≤ fcrit, then all tasks are assigned to a single core that is executed

at frequency fcrit. Finally, P̂DLTF
SVA can be computed as shown in Equation (8.11).

P̂DLTF
SVA ≤



α · fcrit
γ + β · fcrit + κ if

∑M
i=1 w

DLTF
i ≤ fcrit

α · fcrit
γ−1

M∑
i=1

wDLTF
i +M 6=0 (β · fcrit + κ) if wDLTF

M ≤ fcrit

α · wDLTF
M

γ−1
M∑
i=1

wDLTF
i +M 6=0

(
β · wDLTF

M + κ
)

otherwise

(8.11)

Furthermore, if from Equation (3.5) the energy consumption during a hyper-period for a core execut-
ing at frequency f , where the voltage of the cluster is determined by frequency fcluster, is computed as
Ecore (fcluster, f) =

(
α · fcluster

γ−1 · f + β · fcluster + κ
)

∆c
f , by considering that the workload to be completed

on core i during the hyper-period is D·wDLTF
i , then the energy consumption for core i under DLTF-SVA during

a hyper-period is computed as

EDLTF
corei (fcluster, f) = D

(
α · wDLTF

M
γ−1 · wDLTF

i + β · wDLTF
M + κ

)
Therefore, by having the same considerations in regards to fcrit as when computing the peak power consump-
tion P̂DLTF

SVA , the total energy consumption on a cluster for DLTF-SVA during a hyper-period, defined as EDLTF
SVA ,

is expressed as shown in Equation (8.12).

EDLTF
SVA ≤



D (α · fcrit
γ + β · fcrit + κ)

∑M
i=1 wDLTF

i

fcrit
if
∑M

i=1 w
DLTF
i ≤ fcrit

D

[
α · fcrit

γ−1
M∑
i=1

wDLTF
i +M 6=0 (β · fcrit + κ)

]
if wDLTF

M ≤ fcrit

D

[
α · wDLTF

M
γ−1

M∑
i=1

wDLTF
i +M 6=0

(
β · wDLTF

M + κ
)]

otherwise

(8.12)
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8.2 Lower Bounds
This section provides a lower bound for the optimal energy consumption and for the optimal peak power
consumption for periodic performance-constrained applications or real-time tasks, which are needed to obtain
the approximation factors introduced in Equations (8.1), (8.2), (8.3), and (8.4). In order to obtain these lower
bounds, we start by unrolling all the periodic tasks executed in a hyper-period into frame-based real-time
tasks, such that all instances of all tasks (i.e., all jobs) arrive at time 0, and have a period and deadline
equal to the hyper-period D. Note that this consideration is a special case of periodic tasks (as discussed
in Chapter 3.1) that does not affect the energy or peak power consumption of DLTF-SFA of DLTF-SVA,
which implies that this approach is not pessimistic but rather a worst case. Furthermore, although neither
DLTF-SFA nor DLTF-SVA require any DVFS capabilities at runtime, for deriving the lower bounds, we
consider negligible overheads for changing the DVFS levels of the cores, as well as continuous values for the
frequencies (and the corresponding voltages) between (0,Fmax]. This approach results in a safe lower bound
for the optimal energy and peak power consumptions.

8.2.1 Lower Bound for the Energy Consumption
As described in Chapter 2.2.2, for homogeneous systems with global DVFS, negligible leakage/independent
power consumption, and negligible overheads for entering/leaving low-power modes, Yang et al. [109] have
presented an optimal DVFS schedule for energy minimization when executing periodic frame-based real-time
tasks. Their solution is based on an accelerating DVFS schedule and the deep sleeping property (which states
that every core in the system is put to sleep after executing all the workload in its ready queue), as already
shown in the example in Figure 2.4. In this solution, after the task partitioning is finished, the cores in the
cluster are ordered increasingly according to their cycle utilizations, and every periodic frame is then divided
into M fragments. During the i-th fragment, all active cores are executing at frequency fi (the voltage is set
to the minimum value such that fi can be stably achieved) during time ti. After time ti elapses, the i-th core
finishes all its workload for the current frame and it enters a low-power mode, such that there are M − i+ 1
active cores in the i-th fragment. Moreover, every active core executes ∆ci = D

(
w∗

i − w∗
i−1

)
core cycles

during time ti, such that ti = ∆ci
fi

. Similar to Figure 8.4 and Figure 8.5, a brief example of a cluster with four
cores using such an accelerating schedule as the DVFS scheduling policy is presented Figure 8.6.
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Figure 8.6: Example of an accel-
erating schedule satisfying the deep
sleeping property. The hyper-period
is 10 seconds, and the frequency
demands of the cores are 0.2GHz,
0.4GHz, 0.6GHz, and 0.8GHz. Such
a schedule can result in the optimal
solution if the DVFS levels are chosen
such that the total power consumption
is constant and the core with the high-
est cycle utilization is always busy.

Considering our general power and energy models from Equation (3.3) and Equation (3.6) (which are
more general than the model from [109] that considered negligible leakage and independent power consump-
tions), the energy consumed by the active cores running at frequency fi = ∆ci

ti
during time ti in the i-th

fragment can be computed as (M − i+ 1) (α · ∆ci
γ

tiγ
+ β · ∆ci

ti
+ κ)ti, such that the total energy consumption

for all the cores in the cluster during a hyper-period is computed as shown in Equation (8.13).

E∗
↓ =

M∑
i=1

(M − i+ 1)

(
α · ∆ci

γ

ti
γ + β · ∆ci

ti
+ κ

)
ti (8.13)

In order to obtain the lower bound for the energy consumption, we apply the Kuhn-Tucker conditions [90]
to Equation (8.13) under constraints

∑M
i=1 ti ≤ D and ti ≥ 0 for i = 1, 2, . . . ,M , such that all time
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fragments are non-negative real numbers and their summation does not exceed the hyper-period. Particularly,
the Lagrangian L is expressed as

L = −
M∑
i=1

(M − i+ 1)

(
α
∆ci

γ

ti
γ + β · ∆ci

ti
+ κ

)
ti + λ

(
D −

M∑
i=1

ti

)

= −
M∑
i=1

[
(M − i+ 1)

(
α
∆ci

γ

ti
γ + β · ∆ci

ti
+ κ

)
+ λ

]
ti + λD

= −
M∑
i=1

{
[(M − i+ 1)κ+ λ] ti + (M − i+ 1)β ·∆ci + (M − i+ 1)α · ∆ci

γ

ti
γ−1

}
+ λD

where λ is the Lagrange multiplier, and E∗
↓ (ti) is introduced inside L with a negative multiplier so that we

can use this for minimization instead of maximization. Given that all ti are time intervals which are clearly
non-negative real numbers, then further considerations about condition ti ≥ 0 are not necessary, such that the
effective necessary Kuhn-Tucker conditions for a solution to be minimal are shown in Equation (8.14).

∂L
∂ti

= 0 ∀i = 1, 2, . . . ,M

∑M
i=1 ti ≤ D λ ≥ 0 λ

(
D −

∑M
i=1 ti

)
= 0

(8.14)

In order to obtain the value of all ti and fi that minimize the energy consumption, the first-order derivative
of the Lagrangian is set to zero, i.e.,

∂L
∂ti

= (M − i+ 1)κ+ λ− (γ − 1) (M − i+ 1)α
∆ci

γ

ti
γ = 0,

from which we can derive the set of ti for all i = 1, 2, . . . ,M that minimizes the energy consumption for the
lower bound, as shown in Equation (8.15).

ti =
γ

√
α (γ − 1) (M − i+ 1)

(M − i+ 1)κ+ λ
∆ci (8.15)

Following, in order to meet Kuhn-Tucker condition λ(D −
∑M

i=1 ti) = 0 from Equation (8.14), there are
two cases. First, in case

∑M
i=1 ti < D, then λ has to be equal to 0, such that ti in Equation (8.15) becomes

ti = ∆ci
fcrit

for all i = 1, 2, . . . ,M , and all the active cores run at frequency fcrit for the entire hyper-period,
which is a feasible solution when w∗

M ≤ fcrit. Here, the physical interpretation is that, if the summation of
the duration of all i fragments is smaller than the hyper-period, then even the core with the highest workload
is not always busy in the optimal solution, and it entered a low-power mode when it finished all its workload
in a hyper-period. According to the behavior of the energy model (as shown in Figure 3.5), we know that
the optimal frequency for execution when there is negligible overhead for entering a low-power mode is the
critical frequency, and therefore, even if it is feasible to execute a core at a lower frequency, this should be
avoided from an energy efficiency point of view. Therefore, the only case in the optimal solution in which the
core with the highest workload would choose to enter a low-power mode, is in case that all the tasks assigned
to it can feasible meet their deadlines when the core always executes at fcrit.

For the second case, in which λ > 0, then to meet Kuhn-Tucker condition λ(D −
∑M

i=1 ti) = 0 it should
hold that

∑M
i=1 ti = D. Physically, this means that it is no longer feasible to meet the timing constraints of

all tasks by running all cores at fcrit. Therefore, from Equation (8.15), the equality shown in Equation (8.16)
should hold.

M∑
i=1

ti =

M∑
i=1

γ

√
α (γ − 1) (M − i+ 1)

(M − i+ 1)κ+ λ
∆ci = D (8.16)

Given that Equation (8.16) is strictly decreasing with respect to λ, and λ is the only unknown variable in this
expression, one possibility to compute the value of λ is to apply the Newton-Raphson method [7]. However,
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the Newton-Raphson method only gives numerical results for a specific case study, but there is no explicit
form to solve Equation (8.16) arithmetically. Therefore, in order to obtain an analytical expression for the
lower bound of the energy consumption which can be used for the worst-case analysis for the general cases,
we approximate E∗

↓ by defining an auxiliary frequency, denoted as fdyn, such that fcrit < fdyn < Fmax. For
such a purpose, when we have that w∗

M ≤ fdyn, then we approximate E∗
↓ by considering that all cores run at

fcrit, which although it would not be a feasible schedule, we know that it is the lowest value that the energy
consumption could ever achieve. Furthermore, it is clear that when w∗

M is high, the energy consumption
resulting from the dynamic power and leakage power play a more important role than the independent power
consumption. Hence, when w∗

M > fdyn, we approximate E∗
↓ by considering that κ = 0, such that we ignore

the effects of the independent power consumption, but Equation (8.16) can be solved arithmetically. The
idea behind using auxiliary frequency fdyn is to provide a tighter lower bound than simply choosing one
approximation over the other. Particularly, from Equation (8.16) we have that

D =

M∑
j=1

γ

√
α (γ − 1) (M − j + 1)

λ
∆cj ⇒ 1

γ
√
λ
=

D
γ
√
α (γ − 1)

∑M
j=1

γ
√
M − j + 1∆cj

and therefore, also considering that κ = 0 in Equation (8.15), and by replacing this expression of 1
γ√
λ

inside
Equation (8.15), we have that

ti =
γ
√
α (γ − 1) (M − i+ 1)

γ
√
λ

∆ci =
D γ
√

α (γ − 1) (M − i+ 1)∆ci
γ
√
α (γ − 1)

∑M
j=1

γ
√
M − j + 1∆cj

=
D γ
√
M − i+ 1∆ci∑M

j=1
γ
√
M − j + 1∆cj

such that, since ∆ci = D
(
w∗

i − w∗
i−1

)
and fi = ∆ci

ti
, the solution of ti and fi for all i = 1, 2, . . . ,M is

computed as shown in Equation (8.17).

ti =
D
(
w∗

i − w∗
i−1

)
γ
√
M − i+ 1∑M

j=1

(
w∗

j − w∗
j−1

)
γ
√
M − j + 1

and fi =

∑M
j=1

(
w∗

j − w∗
j−1

)
γ
√
M − j + 1

γ
√
M − i+ 1

(8.17)

Therefore, assuming that in case that w∗
M ≤ fdyn we approximate E∗

↓ by considering that all cores run
at fcrit, by knowing that

∑M
i=1

(
w∗

i − w∗
i−1

)
(M − i+ 1) is equal to

∑M
i=1 w

∗
i (proven by simple unrolling

of the summation), and by replacing the results from Equation (8.17) inside Equation (8.13) in case that
w∗

M > fdyn, then the lower bound for the total energy consumption for all the cores in the cluster during a
hyper-period is computed as shown in Equation (8.18).

E∗
↓ =

D (α · fcrit
γ + β · fcrit + κ)

∑M
i=1 w∗

i

fcrit
if w∗

M ≤ fdyn

D · α
[∑M

i=1

(
w∗

i − w∗
i−1

)
γ
√
M − i+ 1

]γ
+D · β

∑M
i=1 w

∗
i otherwise

(8.18)

Up to this point, we have assumed that the optimal task partition and the associated cycle utilizations
w∗

1 ,w
∗
2 , · · · ,w∗

M are known. However, since obtaining the optimal task partition is an NP-hard problem
[109], we further need to derive a lower bound for the optimal task partition. Thus, Lemma 1 presents a cycle
utilization adjustment for the optimal task partition that results in a reduced energy consumption for the lower
bound. An example of such a cycle utilization adjustment, when w∗

M ≥ wDLTF
M , is shown in Figure 8.7.

· · ·
w∗

1

w∗
2

w∗
M -1

w∗
M

· · ·

w′
1 w′

2 w′
M -1

w′
M = wDLTF

M
Figure 8.7: Example of cycle
utilizations adjustment from
w∗

1 , . . . ,w
∗
M to w′

1, . . . ,w
′
M ,

when w∗
M ≥ wDLTF

M .

Lemma 1 After applying DLTF for partitioning tasks, if we adjust w∗
1 ,w

∗
2 , . . . ,w

∗
M to w′

1,w
′
2, . . . ,w

′
M , then

the lower bound for the energy consumption E∗
↓ in Equation (8.18) by using w∗

1 ,w
∗
2 , . . . ,w

∗
M is further
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reduced by using w′
1,w

′
2, . . . ,w

′
M , in which w′

1 = w′
2 = · · · = w′

M−1 =
∑M−1

i=1 w′
i

M−1 and

w′
M =

wDLTF
M if w∗

M ≥ wDLTF
M

max
{

wDLTF
M

θLTF
,
∑M

i=1 w∗
i

M

}
otherwise.

Proof. This lemma can be first proved by reorganizing the cycle utilizations w∗
1 ,w

∗
2 , . . . ,w

∗
M to cycle

utilizations w′
1,w

′
2, . . . ,w

′
M , such that w′

M = w∗
M and w′

1 = w′
2 = · · · = w′

M−1 =
∑M−1

i=1 w∗
i

M−1 . Particularly,
the value of the first part of Equation (8.18) (in which w∗

M ≤ fdyn) only depends on the total cycle utilization,
which is constant for any task partition, i.e.,

∑M
i=1 w

∗
i =

∑M
i=1 w

′
i. Hence, in this case the adjustment of

the cycle utilizations has no impact in the value of E∗
↓ . For the second part of Equation (8.18) (in which

w∗
M > fdyn), we introduce the scaling factors r∗i and r′i, from which we can rephrase the cycle utilizations w∗

i

and w′
i for all i = 0, 1, . . . ,M as w∗

i = r∗i · w∗
M and w′

i = r′i · w′
M , respectively, where

0 = r∗0 ≤ r∗1 ≤ r∗2 ≤ . . . ≤ r∗M−1 ≤ r∗M = 1 and 0 = r′0 ≤ r′1 ≤ r′2 ≤ . . . ≤ r′M−1 ≤ r′M = 1.

Therefore, since γ > 1 and at this point we still have that w′
M = w∗

M , given a change in the cycle utilizations
from r∗1 , . . . , r

∗
M to r′1, . . . , r

′
M , such that r∗M = r′M = 1 and

∑M−1
i=1 r∗i =

∑M−1
i=1 r′i, then the value of E∗

↓ is

reduced when
∑M

i=1

(
w∗

i − w∗
i−1

)
γ
√
M − i+ 1 = w∗

M

[
1− r∗M−1 +

∑M−1
i=1

(
r∗i − r∗i−1

)
γ
√
M − i+ 1

]
is

reduced. Therefore, in order to obtain the cycle utilization adjustment that minimizes such an expression, we
formulate the following linear programming:

Minimize: 1− r′M−1 +

M−1∑
i=1

(
r′i − r′i−1

)
γ
√
M − i+ 1

such that: r′i−1 − r′i ≤ 0 for all i = 1, 2, . . . ,M − 1

M−1∑
i=1

r′i =

M−1∑
i=1

r∗i

0 ≤ r∗i ≤ 1 for all i = 1, 2, . . . ,M − 1.

We only sketch the proof for the optimization in the above linear programming. By the extreme point theorem,
if there is a bounded and feasible solution, an optimal solution can be found in one of the extreme points in
the constructed polyhedron. In this linear programming, the only extreme point happens when the constraints∑M−1

j=1 r∗j
M−1 = r′i−1 = r′i for all i = 2, 3, . . . ,M − 1 are tight. In other words, when w′

M = w∗
M is fixed,

the lower bound of the energy consumption is minimized when the cycle utilizations are balanced for the first
M − 1 task sets.

Then, further, we can easily reduce w′
M by a constant ε while increasing the other cycle utilizations

w′
1,w

′
2, . . . ,w

′
M−1 by a constant ε

M−1 . Therefore, for the first case in the statement of the lemma, in which
w∗

M ≥ wDLTF
M , we reduce w′

M (while increasing w′
1,w

′
2, . . . ,w

′
M−1) until w′

M reaches wDLTF
M , such that this

cycle utilizations adjustment from w∗
1 ,w

∗
2 , . . . ,w

∗
M to w′

1,w
′
2, . . . ,w

′
M reduces the energy consumption lower

bound E∗
↓ in Equation (8.18). An example of this cycle utilizations adjustment can be seen in Figure 8.7.

For the second case in the statement of the lemma, in which w∗
M < wDLTF

M , we know that w∗
M ≥

wDLTF
M

θLTF
due to Equation (8.8). Therefore, we can greedily reduce the cycle utilization w′

M (while increas-

ing w′
1,w

′
2, . . . ,w

′
M−1), until (a) w′

M reaches wDLTF
M

θLTF
, point in which we cannot further reduce w′

M without

violating w∗
M ≥

wDLTF
M

θLTF
; or either until (b) w′

M reaches the average cycle utilization, for which it holds that
w′

1 = w′
2 = · · · = w′

M and we cannot further reduce w′
M without having that w′

M < w′
M−1.

According to the above cycle utilizations adjustment, both cases reduce the lower bound of the energy
consumption E∗

↓ in Equation (8.18), while ensuring that w′
1 ≤ · · · ≤ w′

M . Thus, the lemma is proven.
Finally, considering the cycle utilization adjustment presented in Lemma 1, the lower bound for the en-

ergy consumption from Equation (8.18) can be further reduced, such that E∗
↓ is computed as shown in Equa-

tion (8.19), for which Figure 8.8 presents an example by considering power parameters γ=3, α=0.27 W
GHz3 ,
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β=0.52 W
GHz , and κ=0.5W, modeled for a 22 nm OOO Alpha 21264 core (as detailed in Chapter 3.3).

E∗
↓ =

D (α · fcrit
γ + β · fcrit + κ)

∑M
i=1 w′

i

fcrit
if w∗

M ≤ fdyn

D · α · w′
M

γ
[
1 +

w′
1

w′
M

(
γ
√
M − 1

)]γ
+D · β

∑M
i=1 w

′
i otherwise

(8.19)
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25

fcrit fdyn

w′
M [GHz]

E
∗ ↓

[J
]

E∗
↓ using the Newton-Raphson method

E∗
↓ from Equation (8.19)

Figure 8.8: Example of E∗
↓ as a func-

tion of w′
M , by using the Newton-Raphson

method to solve Equation (8.16), and of
the approximated lower bound from Equa-
tion (8.19), with γ = 3, α = 0.27 W

GHz3 ,
β = 0.52 W

GHz , κ = 0.5W, M = 16, D =

1 s, constant
∑M

i=1 w
′
i = 5 · 109 cycles

second , and

w′
1=w′

2= · · ·=w′
M−1=

∑M
i=1 w′

i−w′
M

M−1 .

There is an important conclusion to derive from Figure 8.8. Namely, given that E∗
↓ is in the denominator

of Equations (8.1) and (8.3), in order to derive an approximation factor without unnecessary pessimism,
the value of fdyn in Equation (8.19) should be chosen such that E∗

↓ becomes a continuous function (as later
formally proven in Lemma 3 and illustrated in Figure 8.10). Hence, we present Lemma 2, in which we choose
the value of fdyn for this condition to hold. For notational brevity, we define auxiliary function U (δ) as shown
in Equation (8.20), with δ and δmax defined in Equation (8.21). Figure 8.9 illustrates U (δ) and U (δmax) for
γ = 3.

U (δ) =
1− δ + δ ·M(

1− δ + δ · γ
√
M
)γ ≤ U (δmax) (8.20)

δ =

∑M−1
i=1 w′

i

w′
M (M − 1)

and δmax =
γ − 1 +M − γ · γ

√
M

(γ − 1)
(
M · γ
√
M −M − γ

√
M + 1

) (8.21)
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M =32

M =24

M =16

M =8

M =2

δ

U
(δ
)

U (δmax)

Figure 8.9: Example of function U (δ)
with γ = 3, for different values of M ,
where we also highlight U (δmax).

Lemma 2 The lower bound of the energy consumption E∗
↓ in Equation (8.19) is a continuous function when

the value of fdyn is equal to
fdyn = fcrit [γ · U (δ)]

1
γ−1 ,

and the maximum value of fdyn, defined as fmax
dyn , occurs at

fmax
dyn = fcrit [γ · U (δmax)]

1
γ−1 ,

with U (δ), δ, and δmax defined in Equation (8.20) and Equation (8.21).

Proof. For E∗
↓ in Equation (8.19) to be continuous, we match both parts of its expression and find the value

of w′
M for which the equality holds. That is,

α · w′
M

γ
[
1 +

w′
1

w′
M

(
γ
√
M − 1

)]γ
+ β

M∑
i=1

w′
i = (α · fcrit

γ + β · fcrit + κ)

∑M
i=1 w

′
i

fcrit
.
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Furthermore, since from Equation (3.7) the value of fcrit is computed as γ

√
κ

(γ−1)α , it holds that

α · fcrit
γ + β · fcrit + κ

fcrit
=

κ
γ−1 + κ

fcrit
+ β =

κ · γ
(γ − 1) fcrit

+ β = γ · α · fcrit
γ−1 + β,

from which the above equality becomes

α · w′
M

γ
[
1− δ

(
γ
√
M − 1

)]γ
+ β

M∑
i=1

w′
i =

(
α · γ · fcrit

γ−1 + β
) M∑
i=1

w′
i.

Then, since from Lemma 1 and Equation (8.21) it holds that
∑M

i=1 w
′
i = w′

M [1 + δ (M − 1)], we have that

w′
M

γ−1
=

γ · fcrit
γ−1 (1− δ + δ ·M)[

1− δ
(

γ
√
M − 1

)]γ = fcrit
γ−1 · γ · U (δ) ,

where this w′
M is the value of fdyn for E∗

↓ in Equation (8.19) to be continuous.
Finally, since U (δ) is a convex function with respect to δ when γ > 1, by taking the first-order derivative

of U (δ) with respect to δ, its maximum value happens when δ is δmax. Therefore, the lemma is proven.

8.2.2 Lower Bound for the Peak Power Consumption

Given that energy is the integration of power through time, when it holds that wDLTF
M ≥ fcrit, minimizing the

energy consumption while satisfying the timing constraints of all tasks is equivalent to minimizing the average
power consumption while also satisfying the timing constraints. This implies that the lower bound for the
peak power consumption, denoted as P̂ ∗

↓ , is found when the power consumption is constant during the entire
hyper-period, and equivalent to the minimum average power consumption. Namely, when wDLTF

M ≥ fcrit, we
have that E∗

↓ = P̂ ∗
↓ ·D.

However, the critical frequency fcrit is not involved when talking about power consumption, and hence
executing at low DVFS levels (as long as the timing constraints of the tasks allow it) will always result in
small power consumption values. Therefore, we only consider the part of E∗

↓ in Equation (8.18) that does not
involve fcrit. Furthermore, given that at least one core will be active at some point in time (independent of the
task partition), there will be at least a power consumption of κ also present. Finally, the value of P̂ ∗

↓ can be
computed by dividing the second part of Equation (8.18) by D, resulting in Equation (8.22).

P̂ ∗
↓ = α · w′

M
γ
[
1 +

w′
1

w′
M

(
γ
√
M − 1

)]γ
+ β

M∑
i=1

w′
i + κ (8.22)

8.3 Approximation Factor Analysis: DLTF-SFA

8.3.1 Energy Minimization Analysis for DLTF-SFA
This section presents the approximation factor analysis of DLTF-SFA in terms of energy consumption, i.e., the
worst-case behavior of DLTF-SFA for energy minimization, against the optimal solution (i.e., the optimal task
partition, the optimal DVFS schedule, and the optimal DPM schedule). For simplicity of presentation, we first
focus on deriving the approximation factor of DLTF-SFA for energy minimization when assuming negligible
overhead for sleeping, defined as AFenergy overheads

DLTF-SFA . Then, for systems with non-negligible overhead for sleep-
ing (i.e., for the practical scenario in real systems), we show how to extend our analysis to derive the approxi-
mation factor of combining DLTF-SFA with a DPM technique, specifically, the Left to Right (LTR) algorithm
from [37]. To start, after deriving the lower bound of the energy consumption (i.e., E∗

↓ ) in Equation (8.19) and
the energy consumption of DLTF-SFA (i.e., EDLTF

SFA ) in Equation (8.10), we can replace the different possible
values of E∗

↓ and EDLTF
SFA from Equation (8.19) and Equation (8.10) inside Equation (8.1). Note that expression

EDLTF
SFA in Equation (8.10) provides the energy consumption of DLTF-SFA by implicitly assuming negligible
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overhead for sleeping, and therefore, this replacement will result in an expression for AFenergy overheads
DLTF-SFA . Fur-

thermore, since as shown in Section 8.2.1 it holds that α·fcrit
γ+β·fcrit+κ
fcrit

= γ · α · fcrit
γ−1 + β, then we can

express AFenergy overheads
DLTF-SFA as a function of w′

M and wDLTF
M for a given fdyn, as shown in Equation (8.23).

AFenergy overheads
DLTF-SFA (w′

M ) ≤ max





1 if wDLTF
M ≤ fcrit

α·wDLTF
M

γ
+β·wDLTF

M +κ

wDLTF
M

(
γ·α·fcrit

γ−1+β
) if wDLTF

M > fcrit

and fcrit < w′
M ≤ fdyn(

α·wDLTF
M

γ
+β·wDLTF

M +κ
)∑M

i=1 wDLTF
i

α·wDLTF
M ·w′

M
γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β·wDLTF
M

∑M
i=1 w′

i

otherwise


(8.23)

As shown in Lemma 2, in order to derive an approximation factor without unnecessary pessimism, the
value of fdyn can be chosen such that E∗

↓ is a continuous function. Given that EDLTF
SFA in Equation (8.10) is also a

continuous function, setting fdyn = fcrit [γ · U (δ)]
1

γ−1 (from Lemma 2) will ensure that AFenergy overheads
DLTF-SFA (w′

M )
in Equation (8.23) is also a continuous function. Therefore, we now need to find the value of w′

M that
maximizes AFenergy overheads

DLTF-SFA (w′
M ) in Equation (8.23), which occurs when w′

M is equal to fdyn, as proven in
Lemma 3 and shown in the example in Figure 8.10 (where we also show poor choices of fdyn that result in
discontinuous functions and more pessimistic approximation factors). Furthermore, given that the maximum
value of fdyn occurs when δ = δmax, then it holds that the maximum value of AFenergy overheads

DLTF-SFA (w′
M ) happens

when w′
M = fmax

dyn , as also proven in Lemma 3.

Lemma 3 The maximum value of AFenergy overheads
DLTF-SFA (w′

M ) in Equation (8.23) happens when w′
M = fdyn. Fur-

thermore, given that the maximum value of fdyn occurs when δ = δmax, it holds that

AFenergy overheads
DLTF-SFA (w′

M ) ≤ AFenergy overheads
DLTF-SFA (fdyn) ≤ AFenergy overheads

DLTF-SFA

(
fmax

dyn

)
.

Proof. Given that α, β, κ, γ, and fcrit are all constants, we can easily see that AFenergy overheads
DLTF-SFA (w′

M ) is a
convex and increasing function with respect to wDLTF

M in case that wDLTF
M > fcrit and fcrit < w′

M ≤ fdyn, as
seen in the example in Figure 8.10. Furthermore, although at this point the precise relationship between w′

M

and wDLTF
M is not relevant, from Lemma 1 we know that the relationship will be somehow bounded, such that

for this case AFenergy overheads
DLTF-SFA (w′

M ) is a convex and increasing function also with respect to w′
M . Therefore, for

this case, the value of AFenergy overheads
DLTF-SFA (w′

M ) will be maximized at the border condition in which w′
M cannot

grow anymore, i.e., when w′
M = fdyn, such that it holds that AFenergy overheads

DLTF-SFA (w′
M ) ≤ AFenergy overheads

DLTF-SFA (fdyn).
Moreover, since the maximum value of fdyn occurs when δ = δmax, then the statement in the lemma holds.

For the other case, in which wDLTF
M > fcrit and fdyn < w′

M , we have shown in Lemma 1 that the lower
bound of the energy consumption is reduced, and therefore the approximation factor AFenergy overheads

DLTF-SFA (w′
M )

is maximized, when w′
1 = · · · = w′

M−1 =
∑M−1

i=1 w′
i

M−1 . From the definition of δ in Equation (8.21), this also

means that δ =
w′

1

w′
M

and
∑M

i=1 w
′
i = w′

M (1− δ + δ ·M). Hence, we can rephrase AFenergy overheads
DLTF-SFA (w′

M ) in
Equation (8.23) when wDLTF

M > fcrit and fdyn < w′
M as(

α · wDLTF
M

γ
+ β · wDLTF

M + κ
)∑M

i=1 w
DLTF
i

α · wDLTF
M · w′

M
γ
[
1 +

w′
1

w′
M

(
γ
√
M − 1

)]γ
+ β · wDLTF

M

∑M
i=1 w

′
i

=

=

(
α · wDLTF

M
γ−1

+ β + κ
wDLTF

M

)
(1− δ + δ ·M)

α · w′
M

γ−1
(
1− δ + δ · γ

√
M
)γ

+ β (1− δ + δ ·M)
=

α · wDLTF
M

γ−1
+ β + κ

wDLTF
M

α · w′
M

γ−1 + β · U (δ)
· U (δ)

From this last expression, for both possible relations of w′
M and wDLTF

M from Lemma 1, given that α, β,
γ, and M , are constants, and given that U (δ) is also constant for a given total cycle utilization, then it
holds that AFenergy overheads

DLTF-SFA (w′
M ) in Equation (8.23) is a decreasing function with respect to w′

M for the case

103



in which wDLTF
M > fcrit and fdyn < w′

M , as seen in the example if Figure 8.10. Therefore, for this case,
the value of AFenergy overheads

DLTF-SFA (w′
M ) will be maximized at the border condition in which w′

M cannot decrease
anymore, i.e., when w′

M = fdyn, such that it holds that AFenergy overheads
DLTF-SFA (w′

M ) ≤ AFenergy overheads
DLTF-SFA (fdyn) ≤

AFenergy overheads
DLTF-SFA (fmax

dyn ). Thus, the lemma is proven.
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(b) fdyn that would result in a pessimistic approximation factor
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(c) Lowest approximation factor by properly choosing fdyn such that E∗
↓ is a continuous function

Figure 8.10: Example of AFenergy overheads
DLTF-SFA (w′

M ) when γ=3, α=0.27 W
GHz3 , β=0.52 W

GHz , and κ=0.5W (i.e.,
for 22 nm OOO Alpha 21264 cores, as detailed in Chapter 3.3), for M = 16, with w′

i = 0.51 · w′
M for all

i = 1, . . . ,M − 1, and wDLTF
M = w′

M , considering different choices for fdyn.

At this point, we have to consider the specific possible relations between w′
M and wDLTF

M from Lemma 1.
For such a purpose, for expression AFenergy overheads

DLTF-SFA (w′
M ) in Equation (8.23), we proceed to replace wDLTF

M by
w′

M according to Lemma 1. For the first case, i.e., when w∗
M ≥ wDLTF

M , it holds that wDLTF
M = w′

M , such that

α · wDLTF
M

γ
+ β · wDLTF

M + κ

wDLTF
M

(
γ · α · fcrit

γ−1 + β
) =

α · w′
M

γ−1
+ β + κ

w′
M

γ · α · fcrit
γ−1 + β

.

Thus, given that according to Lemma 3 the value AFenergy overheads
DLTF-SFA (w′

M ) is maximized at fmax
dyn , then from the

definition of fmax
dyn in Lemma 2, the maximum value of AFenergy overheads

DLTF-SFA (w′
M ) when w∗

M ≥ wDLTF
M can be

computed as shown in Equation (8.24).

AFenergy overheads
DLTF-SFA (w′

M ) ≤ AFenergy overheads
DLTF-SFA

(
fmax

dyn

)
=

α · fcrit
γ−1 · γ · U (δmax) + β + κ

fcrit[γ·U(δmax)]
1

γ−1

γ · α · fcrit
γ−1 + β

(8.24)
For the second case of the relationship between w′

M and wDLTF
M from Lemma 1, i.e., when w∗

M < wDLTF
M ,

it holds that w′
M = max

{
wDLTF

M

θLTF
,
∑M

i=1 w∗
i

M

}
. Moreover, even though Lemma 2 states that U (δ) ≤ U (δmax),

for this case, the relation w′
1

w′
M

is in fact constrained, such that δ never reaches the value of δmax, as proven

in Lemmas 4 and 5. Particularly, when w∗
M < wDLTF

M , Lemma 4 proves that U (δ) ≥ 4M+1
6M , and Lemma 5

proves that U (δ) is a strictly decreasing function with respect to U (δ) when U (δ) ≥ 0.5. Therefore, since
from Lemma 4 it holds that δ ≥ 4M+1

6M ≥ 2
3 ≥ 0.5, from Lemma 5 we know that the maximum value of U (δ)

when w∗
M < wDLTF

M will be U
(
4M+1
6M

)
, as seen in Figure 8.11. In this way, fdyn will also reach its maximum

value when δ = 4M+1
6M , resulting in a less pessimistic approximation factor than simply considering fmax

dyn .
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Lemma 4 When applying DLTF for task partitioning, in case that w∗
M < wDLTF

M , it holds that

w′
1

w′
M

≥ 4M + 1

6M
,

with w′
1,w

′
2, . . . ,w

′
M defined in Lemma 1.

Proof. In case that w∗
M < wDLTF

M , by using w′
1,w

′
2, . . . ,w

′
M from Lemma 1, there are two cases to consider:

(a) w′
M =

∑M
i=1 w∗

i

M , or (b) w′
M =

wLTF
M

θLTF
. For case (a), it is clear that w′

1

w′
M

= 1. Therefore, we focus on case (b),
for which starting from Equation (8.7) and remembering that wDLTF

M = wLTF
M , we have that

wLTF
M +

M−1∑
i=1

wLTF
i = w′

M +

M−1∑
i=1

w′
i =

wLTF
M

θLTF
+ (M − 1)w′

1 ⇒ w′
1 =

wLTF
M (θLTF − 1)

θLTF (M − 1)
+

∑M−1
i=1 wLTF

i

(M − 1)

⇒ w′
1

w′
M

=
θLTF − 1

M − 1
+

θLTF

wLTF
M

∑M−1
i=1 wLTF

i

(M − 1)
.

Finally, considering Equation (8.6), it holds that

w′
1

w′
M

≥ θLTF − 1

M − 1
+

θLTF

2
=

4
3 −

1
3M − 1

M − 1
+

4
3 −

1
3M

2
=

4M + 1

6M
,

and thus the lemma is proven.

Lemma 5 Function U (δ), defined in Equation (8.20) as U (δ) = 1−δ+δ·M(
1−δ+δ· γ√

M
)γ with δ defined in Equa-

tion (8.21), is a strictly decreasing function with respect to δ for M ≥ 2, γ > 1 and U (δ) ≥ 0.5.

Proof. From Equation (8.20), illustrated in Figure 8.9, it is clear that U (δ) is a decreasing function with
respect to δ when δmax ≤ δ ≤ 1, as long as M ≥ 2, and γ > 1. By taking the first-order derivative of δmax

with respect to M from Equation (8.21), we easily prove that δmax is a decreasing function with respect to M ,
since ∂δmax

∂M ≤ 0 for all M ≥ 2 and γ > 1. Thus, for a given γ, the highest value of δmax happens when M = 2

(as seen in Figure 8.9), which we define as δmax
M=2 = γ−γ γ√2+1

(γ−1)
(

γ√2−1
) .

Moreover, by taking the first-order derivative of δmax with respect to γ from Equation (8.21), we can
also prove that δmax is an increasing function with respect to γ, since ∂δmax

∂γ ≥ 0 for all M ≥ 2 and γ > 1.
Therefore, the highest value of δmax is obtained when M ≥ 2 (i.e., for δmax

M=2), and when γ → ∞ (i.e., at
limγ→∞ δmax

M=2), which converges to 1
ln 2 − 1 = 0.443.

Finally, since δmax < 0.5 for any M ≥ 2 and γ > 1, then U (δ) is a decreasing function when δ ≥ 0.5 for
any M ≥ 2 and γ > 1. Thus, the lemma is proven.
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Figure 8.11: Example of function U (δ)
with γ = 3, for different values of
M , where we also highlight U (δmax) and
U
(
4M+1
6M

)
. From the figure we can see

that if δ ≥ 4M+1
6M , then U (δ) is maximized

at U
(
4M+1
6M

)
.

In this way, following a similar procedure as above, by replacing wDLTF
M with w′

M according to Lemma 1
when w∗

M < wDLTF
M , it holds that wDLTF

M = θLTF · w′
M , such that

α · wDLTF
M

γ
+ β · wDLTF

M + κ

wDLTF
M

(
γ · α · fcrit

γ−1 + β
) =

α · θLTF
γ−1 · w′

M
γ−1

+ β + κ
θLTF·w′

M

γ · α · fcrit
γ−1 + β

.
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Therefore, given that according to Lemma 3 it holds that AFenergy overheads
DLTF-SFA (w′

M ) ≤ AFenergy overheads
DLTF-SFA (fdyn), and

given that according to Lemma 4 and Lemma 5 the maximum value of fdyn for this case is fcrit
[
γ · U

(
4M+1
6M

)] 1
γ−1 ,

then the maximum value of AFenergy overheads
DLTF-SFA (w′

M ) when w∗
M < wDLTF

M can be computed as shown in Equa-
tion (8.25).

AFenergy overheads
DLTF-SFA (w′

M ) ≤

α · θLTF
γ−1 · fcrit

γ−1 · γ · U
(
4M+1
6M

)
+ β + κ

θLTF·fcrit

[
γ·U

(
4M+1
6M

)] 1
γ−1

γ · α · fcrit
γ−1 + β

(8.25)

Summarizing the expressions from Equation (8.24) and Equation (8.25), the approximation factor of
DLTF-SFA for energy minimization when we assume negligible overhead for sleeping, defined as AFenergy overheads

DLTF-SFA ,
is presented in Theorem 1.

Theorem 1 The approximation factor of DLTF-SFA for energy minimization, when we assume negligi-
ble overhead for sleeping, against the optimal energy consumption for the optimal task partition and the
optimal DVFS schedule, is expressed as

AFenergy overheads
DLTF-SFA ≤ max


α · fcrit

γ−1 · γ · U (δmax) + β + κ

fcrit[γ·U(δmax)]
1

γ−1

γ · α · fcrit
γ−1 + β

,

α · θLTF
γ−1 · fcrit

γ−1 · γ · U
(
4M+1
6M

)
+ β + κ

θLTF·fcrit

[
γ·U

(
4M+1
6M

)] 1
γ−1

γ · α · fcrit
γ−1 + β

 .

Proof. The theorem is simply proven by taking the maximum between Equation (8.24) and Equa-
tion (8.25).

For systems with non-negligible overhead for sleeping (i.e., for the practical scenario in real systems),
DLTF-SFA can be further combined with any uni-core DPM scheme to decide when to switch a core into a
low-power mode. Particularly, we proceed to analyze the approximation factor of combining DLTF-SFA with
the LTR algorithm from [37] for selecting the DPM schedule (i.e, LTR is used to decide whether/when each
individual core should sleep/activate), against the optimal energy consumption for the optimal solution (i.e.,
the optimal task partition, the optimal DVFS schedule, and the optimal DPM schedule). There are mainly two
cases that should be considered: (1) the total cycle utilization is smaller than fcrit, i.e.,

∑M
i=1 w

DLTF
i < fcrit,

and (2) the total cycle utilization is no less than fcrit, i.e.,
∑M

i=1 w
DLTF
i ≥ fcrit. For the first case, the DLTF task

partitioning scheme assigns all the tasks to a single core and executes them at the critical frequency, making
this a uniprocessor scheduling problem. For such a case, as proven in [37], the LTR algorithm achieves a
2-approximation from the optimal solution. For the second case, i.e.,

∑M
i=1 w

DLTF
i ≥ fcrit, for notational

brevity, we isolate certain portions of the energy consumption for a certain schedule Ψ, as done in [37]:

• energy (Ψ): The total energy consumed by schedule Ψ during a hyper-period.
• active (Ψ): The energy consumed while the system is active, i.e., the energy consumption for executing

tasks.
• idle (Ψ): The energy consumption for keeping the system active or enter and leave a low-power mode

during idle periods (depending on which action is more energy efficient).
• on (Ψ): The energy consumption for keeping the system in the on state while the system is on.
• sleep (Ψ): The energy consumption to leave the low-power mode at the end of each sleep interval.

Furthermore, we define ΨOPT as an optimal schedule, where ΨOPT,m is the corresponding schedule by
considering only the m-th core. Similarly, we define ΨSFA

LTR as the schedule that uses SFA for executing tasks
and LTR for sleeping, where ΨSFA

LTR,m is the corresponding schedule by considering only the m-th core. Using
this notation, according to Theorem 1, we know that

active
(
ΨSFA

LTR

)
≤ AFenergy overheads

DLTF-SFA · active (ΨOPT) . (8.26)
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Additionally, independently from the task execution on a single core m, according to Lemma 10 from
[37], adopting LTR on a core ensures that idle

(
ΨSFA

LTR,m

)
≤ on (ΨOPT,m) + 2 · sleep (ΨOPT,m). Therefore,

considering the summation of all the cores in the cluster, we have that

idle
(
ΨSFA

LTR

)
≤ on (ΨOPT) + 2 · sleep (ΨOPT) . (8.27)

Finally, considering Equation (8.26) and Equation (8.27), Theorem 2 presents the approximation factor of
DLTF-SFA combined with LTR for energy minimization, when considering non-negligible overhead for
sleeping.

Theorem 2 The approximation factor of DLTF-SFA combined with LTR for energy minimization, against
the optimal energy consumption for the optimal solution (i.e., the optimal task partition, the optimal DVFS
schedule, and the optimal DPM schedule), is expressed as

AFenergy
DLTF-SFA ≤ AFenergy overheads

DLTF-SFA + 1.

Proof. From Equation (8.26) and Equation (8.27), and by considering that by definition it holds that
AFenergy overheads

DLTF-SFA ≥ 1, we have that

energy
(
ΨSFA

LTR

)
= active

(
ΨSFA

LTR

)
+ idle

(
ΨSFA

LTR

)
≤ AFenergy overheads

DLTF-SFA · active (ΨOPT) + on (ΨOPT) + 2 · sleep (ΨOPT)

≤ AFenergy overheads
DLTF-SFA · active (ΨOPT) + active (ΨOPT) + idle (ΨOPT) + sleep (ΨOPT)

≤
(

AFenergy overheads
DLTF-SFA + 1

)
· active (ΨOPT) + 2 · idle (ΨOPT)

≤ max
{

AFenergy overheads
DLTF-SFA + 1, 2

}
· energy (ΨOPT)

≤
(

AFenergy overheads
DLTF-SFA + 1

)
· energy (ΨOPT) .

Therefore, the theorem is proven.

Finally, from Theorem 1 and Theorem 2, for a given hardware platform with a known power model,
functions U (δmax), U

(
4M+1
6M

)
, and θLTF depend only on the number of cores in the cluster M . Therefore,

we need to explore the impact of M on the approximation factor of DLTF-SFA for energy minimization, as
shown in Figure 8.12 based on Theorem 1 and Theorem 2. Theoretically, the approximation factor could go
up to ∞ when M → ∞. Nevertheless, in real systems, the number of cores in a cluster is not a very large
number. Particularly, we do not expect next-generation platforms to have more than 8 to 16 cores per cluster;
however, Figure 8.12 shows the approximation factor up to 56 cores for us to observe where Equation (8.24)
and Equation (8.25), inside Theorem 1, cross each other.
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Figure 8.12: Example of the ap-
proximation factor for DLTF-SFA
in terms of energy consumption
when γ = 3, α = 0.27 W

GHz3 , β =

0.52 W
GHz , and κ = 0.5W (i.e., for

22 nm OOO Alpha 21264 cores, as
detailed in Chapter 3.3).

8.3.2 Peak Power Reduction Analysis for DLTF-SFA
This section presents the approximation factor analysis for DLTF-SFA in terms of peak power reduction. i.e.,
the worst-case behavior of DLTF-SFA for peak power reduction, against the optimal peak power consumption
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for the optimal solution (i.e., the optimal task partition, the optimal DVFS schedule, and the optimal DPM
schedule). For such a purpose, we first derive Lemma 6, in which we find an upper bound for the resulting
number of active cores when using DLTF for task partitioning (i.e., M 6=0) with respect to the total cycle
utilization. Namely, in case that DLTF did not manage to regroup the tasks such that one or more cores can
be always put in a low-power mode, then the worst case for M 6=0 is clearly M , as there cannot be more active
cores under DLTF than cores in the cluster. Nevertheless, if DLTF was successful in its regrouping procedure,
then there are possibly less active cores under DLTF than total cores in the cluster, and the number of active
cores can be upper bounded according to the total cycle utilization, as detailed in Lemma 6.

Lemma 6 For a given wDLTF
M and total cycle utilization

∑M
i=1 w

DLTF
i , an upper bound of M 6=0 when using

DLTF for task partitioning can be expressed as

M 6=0 ≤

min
{
M , 2 ·

∑M
i=1 wDLTF

i

fcrit

}
if wDLTF

M ≤ fcrit

min
{
M , 2 ·

∑M
i=1 wDLTF

i

wDLTF
M

− 1
}

if wDLTF
M > fcrit.

Proof. Algorithm DLTF is mainly a first-fit bin packing algorithm. Hence, starting from the initial solution
of LTF, it attempts to pack the tasks into the minimum amount of bins of size wDLTF

max = max
{
fcrit,w

LTF
M

}
.

This implies that after the regrouping, in case that wLTF
M > fcrit in the initial solution of LTF, then task set M

remains unchanged, such that SDLTF
M = SLTF

M and wDLTF
M = wLTF

M > fcrit. Furthermore, in case wLTF
M ≤ fcrit,

then most likely SDLTF
M 6= SLTF

M , but it will hold that wDLTF
M ≤ fcrit. From the properties of the first-fit bin

packing algorithm [102], it holds that M 6=0 ≤ min
{
M , 2

∑M
i=1 wDLTF

i

fcrit

}
in case that wDLTF

M ≤ fcrit, and it holds

that M 6=0 ≤ min
{
M , 1 + 2

∑M
i=1 wDLTF

i −wDLTF
M

wDLTF
M

}
in case that wDLTF

M > fcrit. Thus, the lemma is proven.

Similarly as in Section 8.3.1, we start by replacing the different possible values of P̂ ∗
↓ and P̂DLTF

SFA from
Equation (8.22) and Equation (8.9) inside Equation (8.2), such that AFpeak power

DLTF-SFA can be expressed as shown
in Equation (8.28). Note that, since we are focusing on peak power and not on energy consumption, the
overheads for sleeping do not play any role in this analysis.

AFpeak power
DLTF-SFA ≤ max





α·fcrit
γ+β·fcrit+κ

α·w′
M

γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β
∑M

i=1 w′
i+κ

if
∑M

i=1 w
DLTF
i ≤ fcrit

M 6=0(α·fcrit
γ+β·fcrit+κ)

α·w′
M

γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β
∑M

i=1 w′
i+κ

if wDLTF
M ≤ fcrit

M 6=0
(
α·wDLTF

M
γ
+β·wDLTF

M +κ
)

α·w′
M

γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β
∑M

i=1 w′
i+κ

otherwise


(8.28)

Now, the approximation factor comes from finding the worst-case ratios for each possible condition inside
Equation (8.28), presented in the following lemmas. Particularly, Lemma 7 focuses on the case in which∑M

i=1 w
DLTF
i ≤ fcrit, Lemma 8 focuses on the case in which

∑M
i=1 w

DLTF
i > fcrit and wDLTF

M ≤ fcrit, Lemma 9
focuses on the case in which wDLTF

M > fcrit and w∗
M ≥ wDLTF

M (for the first case of the relation between w′
M

and wDLTF
M from Lemma 1), and Lemma 10 focuses on the case in which wDLTF

M > fcrit and w∗
M < wDLTF

M

(for the second case of the relation between w′
M and wDLTF

M from Lemma 1). Finally, Theorem 3 summarizes
these lemmas by taking the maximum among all of them.

Lemma 7 When
∑M

i=1 w
DLTF
i ≤ fcrit, the approximation factor of DLTF-SFA for peak power reduction is

expressed as

AFpeak power
DLTF-SFA

?1
≤ α · fcrit

γ + β · fcrit + κ

κ
.

Proof. For this case, given that α, β, κ, γ, and fcrit are all constants, it holds that α · fcrit
γ + β · fcrit + κ in

Equation (8.28) is also constant. Therefore, the worst case occurs when
∑M

i=1 w
DLTF
i → 0, such that there is

only independent power consumption in the lower bound, and thus the lemma is proven.
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Lemma 8 When
∑M

i=1 w
DLTF
i > fcrit and wDLTF

M ≤ fcrit, the approximation factor of DLTF-SFA for peak
power reduction is expressed as

AFpeak power
DLTF-SFA

?2
≤

min
{

M
w′

M
, 2(1−δ+δM)

fcrit

}
α·fcrit

γ+β·fcrit+κ
1−δ+δM

α · w′
M

γ−1 · 1
U(δ) + β + κ

w′
M (1−δ+δM)

.

For every value of M , we compute the maximum AFpeak power
DLTF-SFA

?2
among all δ and all w′

M , such that 0 ≤ δ ≤ 1

and fcrit
1−δ+δM < w′

M ≤ fcrit.

Proof. For this case, inside Equation (8.28), we replace
∑M

i=1 w
DLTF
i with w′

M (1− δ + δM), we replace

M 6=0 with min
{
M , 2 ·

∑M
i=1 wDLTF

i

fcrit

}
(according to Lemma 6), we replace w′

1

w′
M

with δ from Equation (8.21),

and we replace 1−δ+δ·M(
1−δ+δ· γ√

M
)γ with U (δ) from Equation (8.20). Thus, we reach the expression in the state-

ment of the lemma and the lemma is proven.

Lemma 9 When wDLTF
M > fcrit and w∗

M ≥ wDLTF
M , the approximation factor of DLTF-SFA for peak power

reduction is expressed as

AFpeak power
DLTF-SFA

?3
≤

min {M , 1 + 2 (M − 1) δ} α·w′
M

γ+β·w′
M+κ

1−δ+δM

α · w′
M

γ · 1
U(δ) + β · w′

M + κ
1−δ+δM

.

For every value of M , we compute the maximum AFpeak power
DLTF-SVA

?3
among all δ and all w′

M , such that 0 ≤ δ ≤ 1
and fcrit < w′

M ≤ Fmax.

Proof. For this case, similar to the proof of Lemma 8, inside Equation (8.28), we replace
∑M

i=1 w
DLTF
i

with w′
M (1− δ + δM), we replace M 6=0 with min

{
M , 2 ·

∑M
i=1 wDLTF

i

wDLTF
M

− 1
}

(according to Lemma 6), we

replace w′
1

w′
M

with δ from Equation (8.21), and we replace 1−δ+δ·M(
1−δ+δ· γ√

M
)γ with U (δ) from Equation (8.20).

Furthermore, from Lemma 1 we have that w′
M = wDLTF

M . Thus, we reach the expression in the statement of
the lemma and the lemma is proven.

Lemma 10 When wDLTF
M > fcrit and w∗

M < wDLTF
M , the approximation factor of DLTF-SFA for peak power

reduction is expressed as

AFpeak power
DLTF-SFA

?4
≤ M · α · (θLTF · w′

M )
γ
+M · β · θLTF · w′

M +M · κ
α · w′

M
γ · 1−δ+δM

U(δ) + β · w′
M (1− δ + δM) + κ

.

For every value of M , we compute the maximum AFpeak power
DLTF-SVA

?4
among all δ and w′

M , such that 4M+1
6M ≤ δ ≤ 1

and fcrit
θLTF

< w′
M ≤ Fmax.

Proof. For this case, similar to the proof of Lemma 9, inside Equation (8.28), we replace
∑M

i=1 w
DLTF
i with

w′
M (1− δ + δM), we replace w′

1

w′
M

with δ from Equation (8.21), and we replace 1−δ+δ·M(
1−δ+δ· γ√

M
)γ with U (δ)

from Equation (8.20). Moreover, according to Equation (8.6), it holds that wLTF
1

wLTF
M
≥ 1

2 if after partitioning the

tasks with LTF there are at least two tasks in resulting task set SLTF
M . Hence, for such a case it also holds that

wLTF
1 ≥ wLTF

M

2
⇒

M∑
i=1

wLTF
i ≥ wLTF

1 (M − 1) + wLTF
M ≥ wLTF

M (M − 1)

2
+ wLTF

M

⇒
M∑
i=1

wLTF
i ≥ M + 1

2
wLTF

M .
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Given that according to Section 8.1.3, when wDLTF
M > fcrit it holds that wDLTF

M = wLTF
M , and the total cycle

utilization is constant such that
∑M

i=1 w
DLTF
i =

∑M
i=1 w

LTF
i , then it holds that M ≤ 2

∑M
i=1 wDLTF

i

wDLTF
M

− 1 for all

M ≥ 1. Therefore, M 6=0 is set to M , and since M 6=0 = M is the worst case for M 6=0, then the other case in
which there is only one task in SLTF

M after applying LTF does not need to be considered.

Furthermore, from Lemma 1, we have that w′
M = max

{
wDLTF

M

θLTF
,
∑M

i=1 w∗
i

M

}
, where case

∑M
i=1 w∗

i

M is only

considered if the cycle utilization adjustment from Lemma 1 does not reach wDLTF
M

θLTF
without reducing w′

M below

the average cycle utilization. This means that w′
M =

wDLTF
M

θLTF
is the worst case for the relation between w′

M and

wDLTF
M , and hence the other case is not considered. With these considerations, AFpeak power

DLTF-SFA
?4

is expressed as

AFpeak power
DLTF-SFA

?4
≤

M 6=0
(
α · wDLTF

M
γ
+ β · wDLTF

M + κ
)

α · w′
M

γ
[
1 +

w′
1

w′
M

(
γ
√
M − 1

)]γ
+ β

∑M
i=1 w

′
i + κ

≤
M
(
α · wDLTF

M
γ
+ β · wDLTF

M + κ
)

α · w′
M

γ
(
1− δ + δ γ

√
M
)γ

+ β · w′
M (1− δ + δM) + κ

≤ M · α · (θLTF · w′
M )

γ
+M · β · θLTF · w′

M +M · κ
α · w′

M
γ 1−δ+δM

U(δ) + β · w′
M (1− δ + δM) + κ

Finally, from Lemma 4, we have that in case that w∗
M < wDLTF

M , then it holds that δ =
∑M−1

i=1 w′
i

w′
M (M−1) ≥

4M+1
6M .

Thus, the lemma is proven.

Theorem 3 The approximation factor of DLTF-SFA for peak power reduction, against the optimal peak
power consumption for the optimal solution (i.e., the optimal task partition, the optimal DVFS schedule,
and the optimal DPM schedule), is expressed as

AFpeak power
DLTF-SFA ≤ max

{
AFpeak power

DLTF-SFA
?1
,AFpeak power

DLTF-SFA
?2
,AFpeak power

DLTF-SFA
?3
,AFpeak power

DLTF-SFA
?4
}
,

according to the definitions in Lemmas 7, 8, 9, and 10.

Proof. This comes simply from taking the maximum among all cases from Lemmas 7, 8, 9, and 10.

Figure 8.13 shows some examples of AFpeak power
DLTF-SFA for different values of M .

Figure 8.13: Example of the ap-
proximation factor for DLTF-SFA
in terms of peak power consump-
tion, for different values of M ,
when γ = 3, α = 0.27 W

GHz3 , β =

0.52 W
GHz , and κ = 0.5W (i.e., for

22 nm OOO Alpha 21264 cores, as
detailed in Chapter 3.3).
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8.4 Approximation Factor Analysis: DLTF-SVA

8.4.1 Energy Minimization Analysis for DLTF-SVA
This section presents the approximation factor analysis of DLTF-SVA in terms of energy consumption, i.e.,
the worst-case behavior of DLTF-SVA for energy minimization, against the optimal solution. Similarly as in
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Section 8.3.1, we start by replacing the different possible values of E∗
↓ and EDLTF

SVA from Equation (8.19) and
Equation (8.12) inside Equation (8.3), such that AFenergy

DLTF-SVA can be expressed as shown in Equation (8.29),
for which Figure 8.14 shows an example (including an example of DLTF-SFA for comparison). Note that,
since under SVA all the cores are executing tasks at all times in case that all the tasks require their worst-case
execution times in order to finish every task instance, there is no need for the adopted DPM technique to place
cores in a low-power mode in order to reduce the energy consumption for idling, and hence the overheads for
sleeping do not play any role in this analysis.

AFenergy
DLTF-SVA ≤ max





1 if
∑M

i=1 w
DLTF
i ≤ fcrit

α·fcrit
γ−1·

∑M
i=1 wDLTF

i +M 6=0(β·fcrit+κ)(
α·γ·fcrit

γ−1+β
)∑M

i=1 w′
i

if wDLTF
M ≤ fcrit and w∗

M ≤ fdyn

α·wDLTF
M

γ−1·
∑M

i=1 wDLTF
i +M 6=0

(
β·wDLTF

M +κ
)(

α·γ·fcrit
γ−1+β

)∑M
i=1 w′

i

if wDLTF
M > fcrit and w∗

M ≤ fdyn

α·wDLTF
M

γ−1·
∑M

i=1 wDLTF
i +M 6=0

(
β·wDLTF

M +κ
)

α·w′
M

γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β
∑M

i=1 w′
i

otherwise


(8.29)
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Figure 8.14: Example of AFenergy
DLTF-SVA and AFenergy overheads

DLTF-SFA (w′
M ), when γ = 3, α = 0.27 W

GHz3 , β = 0.52 W
GHz ,

κ=0.5W, and M=16, with w′
i=wDLTF

i =0.51 · w′
M for all i=1,. . .,M − 1, and w′

M =wDLTF
M .

Now, similarly to Section 8.3.1 and Section 8.3.2, by considering Lemma 2 and Lemma 6, the approx-
imation factor comes from finding the worst-case ratios for each possible condition inside Equation (8.29),
presented in the following lemmas. Particularly, Lemma 11 focuses on the case in which wDLTF

M ≤ fcrit,
w∗

M ≤ fdyn, and
∑M

i=1 w
DLTF
i > fcrit. Lemma 12 focuses on the case in which wDLTF

M > fcrit, w∗
M ≤ fdyn, and

w∗
M ≥ wDLTF

M . Lemma 13 focuses on the case in which wDLTF
M > fcrit, w∗

M ≤ fdyn, and w∗
M < wDLTF

M . Finally,
Theorem 4 summarizes these lemmas by taking the maximum among all of them.

Lemma 11 When wDLTF
M ≤ fcrit, w∗

M ≤ fdyn, and
∑M

i=1 w
DLTF
i > fcrit, the approximation factor of DLTF-

SVA for energy minimization is expressed as

AFenergy
DLTF-SVA

?1 ≤
α · fcrit

γ−1 + 2 · β + 2·κ
fcrit

α · γ · fcrit
γ−1 + β

Proof. For this case, by replacing M 6=0 with min
{
M , 2 ·

∑M
i=1 wDLTF

i

fcrit

}
(from Lemma 6) in Equation (8.29),

we have that

AFenergy
DLTF-SVA

?1 ≤
α · fcrit

γ−1 +min
{

M∑M
i=1 wDLTF

i

, 2
fcrit

}
(β · fcrit + κ)

α · γ · fcrit
γ−1 + β

.

Given that α, β, κ, γ, and fcrit are all constants, the above expression is maximized if and only if the min
function is maximized. Hence, since 2

fcrit
is constant, and this min function simply considers the minimum

value between M∑M
i=1 wDLTF

i

and 2
fcrit

, then clearly the maximum value this function can take is 2
fcrit

, thus proving
the lemma by reaching the expression in its statement.
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Lemma 12 When wDLTF
M > fcrit, w∗

M ≤ fdyn, and w∗
M ≥ wDLTF

M , the approximation factor of DLTF-SVA for
energy minimization is expressed as

AFenergy
DLTF-SVA

?2 ≤
α · γ · U (δ) · fcrit

γ−1 + min{M ,1+2(M−1)δ}
1−δ+δM

(
β + κ

fcrit·[γ·U(δ)]
1

γ−1

)
α · γ · fcrit

γ−1 + β
.

For every value of M , we compute the maximum AFenergy
DLTF-SVA

?2 among all δ, such that 0 ≤ δ ≤ 1.

Proof. For this case, inside Equation (8.29), we replace M 6=0 with min
{
M , 2

∑M
i=1 wDLTF

i

wDLTF
M

− 1
}

(accord-

ing to Lemma 6), we replace wDLTF
M with w′

M (according to Lemma 1), and we replace
∑M

i=1 w
DLTF
i with

w′
M (1− δ + δM). Moreover, we replace w′

M with fdyn according to Lemma 2, such that E∗
↓ becomes a con-

tinuous function. Thus, considering the definitions of δ from Equation (8.21) and U (δ) from Equation (8.20),
we prove the lemma by reaching the expression in its statement.

Lemma 13 When wDLTF
M > fcrit, w∗

M ≤ fdyn, and w∗
M < wDLTF

M , the approximation factor of DLTF-SVA for
energy minimization is expressed as

AFenergy
DLTF-SVA

?3 ≤
α · γ · U (δ) · (θLTF · fcrit)

γ−1
+

M ·β·θLTF+
M·κ

fcrit[γ·U(δ)]
1

γ−1

1−δ+δM

α · γ · fcrit
γ−1 + β

,

For every value of M , we compute the maximum AFenergy
DLTF-SVA

?3 among all δ, such that 4M+1
6M ≤ δ ≤ 1.

Proof. Similar to the proof of Lemma 12, inside Equation (8.29), we replace
∑M

i=1 w
DLTF
i with w′

M (1− δ + δM),
and we replace w′

M with fdyn according to Lemma 2, such that E∗
↓ becomes a continuous function. From

Lemma 1 we have that w′
M = max

{
wDLTF

M

θLTF
,
∑M

i=1 w∗
i

M

}
, and from Lemma 4 we have that δ =

∑M−1
i=1 w′

i

w′
M (M−1) ≥

4M+1
6M . Moreover, as shown in the proof of Lemma 10, for this case it holds that M ≤ 2

∑M
i=1 wDLTF

i

wDLTF
M

− 1 for

all M ≥ 1, such that M 6=0 is set to M , which is the worst case for M 6=0. Finally, also as shown in the proof
of Lemma 10, it holds that w′

M =
wDLTF

M

θLTF
is the worst case for the relation between w′

M and wDLTF
M . Thus, the

lemma is proven.

Theorem 4 The approximation factor of DLTF-SVA for energy minimization, against the optimal peak
power consumption for the optimal solution, is expressed as

AFenergy
DLTF-SVA ≤ max

{
AFenergy

DLTF-SVA
?1
,AFenergy

DLTF-SVA
?2
,AFenergy

DLTF-SVA
?3
}
,

according to the definitions in Lemmas 11, 12, and 13.

Proof. This comes simply from taking the maximum among all cases from Lemmas 11, 12, and 13.

Figure 8.15 shows an example of AFenergy
DLTF-SVA, for a power function modeled from simulations of a 22 nm

OOO Alpha 21264 core, that results in power parameters γ=3, α=0.27 W
GHz3 , β=0.52 W

GHz , and κ=0.5W
(as detailed in Chapter 3.3). For the given hardware parameters, Figure 8.15 shows that the approximation
factor of DLTF-SVA in terms of energy consumption is at most 1.95 (2.21, 2.42, 2.59, respectively), when the
cluster has up to 4 (8, 16, 32, respectively) cores.

8.4.2 Peak Power Reduction Analysis for DLTF-SVA
This section presents the approximation factor analysis for DLTF-SVA in terms of peak power reduction. i.e.,
the worst-case behavior of DLTF-SFA for peak power reduction, against the optimal peak power consumption
for the optimal solution. Similarly as in Section 8.3.2, we start by replacing the different possible values of
P̂ ∗
↓ and P̂DLTF

SVA from Equation (8.22) and Equation (8.11) inside Equation (8.4), such that AFpeak power
DLTF-SVA can be
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expressed as shown in Equation (8.30). As in Section 8.3.2, note that, since we are focusing on peak power
and not on energy consumption, the overheads for sleeping do not play any role in this analysis.

AFpeak power
DLTF-SVA ≤ max





α·fcrit
γ+β·fcrit+κ

α·w′
M

γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β
∑M

i=1 w′
i+κ

if
M∑
i=1

wDLTF
i ≤ fcrit

α·fcrit
γ−1 ∑M

i=1 wDLTF
i +M 6=0(β·fcrit+κ)

α·w′
M

γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β
∑M

i=1 w′
i+κ

if wDLTF
M ≤ fcrit

α·wDLTF
M

γ−1 ∑M
i=1 wDLTF

i +M 6=0
(
β·wDLTF

M +κ
)

α·w′
M

γ

[
1+

w′
1

w′
M

(
γ√
M−1

)]γ

+β
∑M

i=1 w′
i+κ

otherwise


(8.30)

Now, similarly as in Section 8.3.2, the approximation factor comes from finding the worst-case ratios for
each possible condition inside Equation (8.30), presented in the following lemmas. Particularly, Lemma 14
focuses on the case in which

∑M
i=1 w

DLTF
i ≤ fcrit, Lemma 15 focuses on the case in which

∑M
i=1 w

DLTF
i > fcrit

and wDLTF
M ≤ fcrit, Lemma 16 focuses on the case in which wDLTF

M > fcrit and w∗
M ≥ wDLTF

M (for the first
case of the relation between w′

M and wDLTF
M from Lemma 1), and Lemma 17 focuses on the case in which

wDLTF
M > fcrit and w∗

M < wDLTF
M (for the second case of the relation between w′

M and wDLTF
M from Lemma 1).

Finally, Theorem 5 summarizes these lemmas by taking the maximum among all of them.

Lemma 14 When
∑M

i=1 w
DLTF
i ≤ fcrit, the approximation factor of DLTF-SVA for peak power reduction is

expressed as

AFpeak power
DLTF-SVA

?1
≤ α · fcrit

γ + β · fcrit + κ

κ
.

Proof. This proof is equivalent to the proof of Lemma 7.

Lemma 15 When
∑M

i=1 w
DLTF
i > fcrit and wDLTF

M ≤ fcrit, the approximation factor of DLTF-SVA for peak
power reduction is expressed as

AFpeak power
DLTF-SVA

?2
≤

α · fcrit
γ−1 +min

{
M
w′

M
, 2(1−δ+δM)

fcrit

}
β·fcrit+κ
1−δ+δM

α · w′
M

γ−1 · 1
U(δ) + β + κ

w′
M (1−δ+δM)

.

For every value of M , we compute the maximum AFpeak power
DLTF-SVA

?2
among all δ and all w′

M , such that 0 ≤ δ ≤ 1

and fcrit
1−δ+δM < w′

M ≤ fcrit.

Proof. This proof is similar to the proof of Lemma 8. For this case, inside Equation (8.30), we re-
place

∑M
i=1 w

DLTF
i with w′

M (1− δ + δM), we replace M 6=0 with min
{
M , 2 ·

∑M
i=1 wDLTF

i

fcrit

}
(according to

Lemma 6), we replace w′
1

w′
M

with δ from Equation (8.21), and we replace 1−δ+δ·M(
1−δ+δ· γ√

M
)γ with U (δ) from

Equation (8.20). Thus, we reach the expression in the statement of the lemma and the lemma is proven.
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Lemma 16 When wDLTF
M > fcrit and w∗

M ≥ wDLTF
M , the approximation factor of DLTF-SVA for peak power

reduction is expressed as

AFpeak power
DLTF-SVA

?3
≤

α · w′
M

γ
+min {M , 1 + 2 (M − 1) δ} β·w′

M+κ
1−δ+δM

α · w′
M

γ · 1
U(δ) + β · w′

M + κ
1−δ+δM

.

For every value of M , we compute the maximum AFpeak power
DLTF-SVA

?3
among all δ and all w′

M , such that 0 ≤ δ ≤ 1
and fcrit < w′

M ≤ Fmax.

Proof. This proof is similar to the proof of Lemma 9. For this case, inside Equation (8.30), we replace∑M
i=1 w

DLTF
i with w′

M (1− δ + δM), we replace M 6=0 with min
{
M , 2 ·

∑M
i=1 wDLTF

i

wDLTF
M

− 1
}

, we replace w′
1

w′
M

with δ from Equation (8.21), and we replace 1−δ+δ·M(
1−δ+δ· γ√

M
)γ with U (δ) from Equation (8.20). Furthermore,

from Lemma 1 we have that w′
M = wDLTF

M . Thus, we reach the expression in the statement of the lemma and
the lemma is proven.

Lemma 17 When wDLTF
M > fcrit and w∗

M < wDLTF
M , the approximation factor of DLTF-SVA for peak power

reduction is expressed as

AFpeak power
DLTF-SVA

?4
≤

α · θLTF
γ−1 · w′

M
γ
+M · β·θLTF·w′

M+κ
1−δ+δM

α · w′
M

γ · 1
U(δ) + β · w′

M + κ
1−δ+δM

.

For every value of M , we compute the maximum AFpeak power
DLTF-SVA

?4
among all δ and w′

M , such that 4M+1
6M ≤ δ ≤ 1

and fcrit
θLTF

< w′
M ≤ Fmax.

Proof. This proof is similar to the proof of Lemma 10. For this case, inside Equation (8.30), we re-
place

∑M
i=1 w

DLTF
i with w′

M (1− δ + δM), we replace w′
1

w′
M

with δ from Equation (8.21), and we replace
1−δ+δ·M(

1−δ+δ· γ√
M

)γ with U (δ) from Equation (8.20). From Lemma 1 we have that w′
M = max

{
wDLTF

M

θLTF
,
∑M

i=1 w∗
i

M

}
,

and from Lemma 4 we have that δ =
∑M−1

i=1 w′
i

w′
M (M−1) ≥

4M+1
6M . Moreover, as shown in the proof of Lemma 10, for

this case it holds that M ≤ 2
∑M

i=1 wDLTF
i

wDLTF
M

− 1 for all M ≥ 1, such that M 6=0 is set to M , which is the worst

case for M 6=0. Finally, also as shown in the proof of Lemma 10, it holds that w′
M =

wDLTF
M

θLTF
is the worst case

for the relation between w′
M and wDLTF

M . Thus, the lemma is proven.

Theorem 5 The approximation factor of DLTF-SVA for peak power reduction, against the optimal peak
power consumption for the optimal solution, is expressed as

AFpeak power
DLTF-SVA ≤ max

{
AFpeak power

DLTF-SVA
?1
,AFpeak power

DLTF-SVA
?2
,AFpeak power

DLTF-SVA
?3
,AFpeak power

DLTF-SVA
?4
}
,

according to the definitions in Lemmas 14, 15, 16, and 17.

Proof. This comes simply from taking the maximum among all cases from Lemmas 14, 15, 16, and 17.

Figure 8.16 shows some examples of AFpeak power
DLTF-SVA for different values of M .

8.5 Comparing DLTF-SFA and DLTF-SVA
Now that we have closed-form expressions for all approximation factors, this section compares the worst-case
efficiency of DLTF-SFA against the worst-case efficiency of DLTF-SVA, for an example power function
modeled from simulations for a 22 nm OOO Alpha 21264 core running an x264 application from the PARSEC
benchmark suite [4], which results in power parameters γ = 3, α= 0.27 W

GHz3 , β = 0.52 W
GHz , and κ= 0.5W
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(as detailed in Chapter 3.3). Basically, this implies merging Figure 8.12 and Figure 8.15 into a single figure,
specifically, into Figure 8.17, as well as merging Figure 8.13 and Figure 8.16 into another figure, specifically,
into Figure 8.18.

With respect to peak power reduction, Figure 8.18 shows that DLTF-SVA will always outperform DLTF-
SFA. This is an expected result, since under SVA the cores are executed at slower DVFS levels than under SFA
in order to reduce the peak power consumption. In regards to energy minimization, Figure 8.17 shows that in
the worst cases, DLTF-SFA can outperform DLTF-SVA when we assume negligible overhead for sleeping,
while DLTF-SVA can outperform DLTF-SFA when we assume non-negligible overhead for sleeping (i.e., for
the practical scenario in real systems). In practical terms, this means that if DLTF-SFA manages to sleep
efficiently, it will save more energy than DLTF-SVA at the cost of having a higher peak power consumption.
However, in case DLTF-SFA fails to sleep efficiently (i.e., if the cores mostly remain idle because there is not
enough time for them to enter the sleep mode and return to execution mode), then DLTF-SVA will save more
energy than DLTF-SFA in the worst-cases.
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8.6 Discrete Voltage and Frequency Pairs
This section extends the previous analysis to consider practical systems with discrete DVFS levels, by con-
sidering discrete voltage and frequency pairs

{
F type
q,0 ,F type

q,1 ,F type
q,2 , . . . ,F type

q,F̂ type
q

}
for core type q, as defined in
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Chapter 3.2. Since in this entire chapter we focus on homogeneous systems and thus there is only one possible
type of core q, for simplicity of presentation, we ignore parameter q such that the available discrete voltage
and frequency pairs are denoted as

{
F0,F1,F2, . . . ,FF̂

}
, where there are in total F̂ available frequencies for

execution, frequency F1 is the slowest available frequency such that F1 = Fmin, FF̂ is the highest available
frequency such that FF̂ = Fmax, and an inactive core (i.e., idle or in a low-power mode) is said to be set at
frequency F0 = 0. Given the convexity of Pcore (f), and the convexity of Pcore(f)

f for any f ≥ fcrit, the lower

bounds that consider continuous frequencies, i.e., E∗
↓ and P̂ ∗

↓ , are also lower bounds for the optimal energy
and peak power consumption when considering discrete frequencies.

Particularly for DLTF-SFA, in order to meet the timing constraints of all tasks, the discrete execution
frequency for SFA, denoted as Fi, will simply be chosen among all the available frequencies such that Fi−1 <
wDLTF

M ≤ Fi. Therefore, the peak power consumption of DLTF-SFA by running at frequency Fi is equal
to that of DLTF-SFA at frequency wDLTF

M multiplied with Pcore(Fi)

Pcore
(
wDLTF

M

) . Similarly, the energy consumption

of DLTF-SFA for execution by running at frequency Fi is equal to that of DLTF-SFA at frequency wDLTF
M

multiplied with Pcore(Fi)·wDLTF
M

Pcore
(
wDLTF

M

)
·Fi

. For a given architecture, due to the convexity of Pcore (f) and of Pcore(f)
f for

any f ≥ fcrit, the values of the ratios Pcore(Fi)

Pcore
(
wDLTF

M

) and Pcore(Fi)·wDLTF
M

Pcore
(
wDLTF

M

)
·Fi

will be larger as wDLTF
M comes closer to

frequency Fi−1, i.e., the ratios become larger when wDLTF
M is farther away from Fi. Furthermore, assuming that

frequency Fh is lowest available frequency higher than fcrit, i.e., it holds that Fh−1 < fcrit ≤ Fh, given that
SFA will attempt to run at frequency fcrit in case that wDLTF

M ≤ fcrit, the values of the ratios when wDLTF
M ≤ fcrit

are Pcore(Fh)
Pcore(fcrit)

and Pcore(Fh)·fcrit
Pcore(fcrit)·Fh

. In this way, the approximation factors of DLTF-SFA for discrete frequencies

are equal to ρenergy
SFA · AFenergy

DLTF-SFA and ρpeak power
SFA · AFpeak power

DLTF-SFA , where the values of ρenergy
SFA and ρpeak power

SFA depend
on the hardware parameters and the available frequencies, and they are computed as shown in Equation (8.31)
and Equation (8.32). For example, for a system with γ = 3, α = 0.27 W

GHz3 , β = 0.52 W
GHz , κ = 0.5W, and

available frequencies {0.1GHz, 0.2GHz, . . . , 4.0GHz}, the value of ρenergy
SFA is equal to 1.054, while the value

of ρpeak power
SFA is equal to 1.113.

ρenergy
SFA = max

{
Pcore (Fh) · fcrit

Pcore (fcrit) · Fh
, max
h<i≤F̂

Pcore (Fi) · Fi−1

Pcore (Fi−1) · Fi

}
(8.31)

ρpeak power
SFA = max

{
Pcore (Fh)

Pcore (fcrit)
, max
h<i≤F̂

Pcore (Fi)

Pcore (Fi−1)

}
(8.32)

Similarly, for SVA, when the system has discrete DVFS levels, the voltage of the cluster is set according to
Fm (i.e., to the minimum voltage at which frequency Fm can be stably achieved) such that Fm−1 < wDLTF

M ≤
Fm, while the frequency of core i is set to Fj such that Fj−1 < wDLTF

i ≤ Fj . Given that now we consider that
the cores execute at frequencies slightly higher than their cycle utilization, it no longer holds that all cores
are always busy (even if all the tasks require their worst-case execution times in order to finish every task
instance), an thus some cores will be kept idle during a short time. Therefore, by keeping the cores idle when
they finish all the workload in their ready queues (i.e., clock-gated, which is the worst case, as cores are not
put into a low-power mode even if the idle time is longer than the break-even time), the worst-case energy
consumption and peak power consumption ratio for SVA when we consider discrete DVFS levels against the
continuous cases, defined as ρSVA, can be expressed as seen in Equation (8.33).

ρSVA = max

{
α · Fm

γ−1 ·
∑M

i=1 w
DLTF
i +M 6=0 (β · Fm + κ)

α · wDLTF
M

γ−1 ·
∑M

i=1 w
DLTF
i +M 6=0 (β · wDLTF

M + κ)

}
(8.33)

There are two extreme cases for ρSVA: (1) the total cycle utilization is really small, such that the leakage
and independent energy/power consumptions dominate; or (2) the total cycle utilization is high, for which the
highest total cycle utilization is M 6=0 · wDLTF

M . Moreover, the worst case for ρSVA happens when wDLTF
M →

Fm−1 and wDLTF
i → Fj−1 for all i = 1, 2, . . . ,M − 1, as these are the cases in which the cycle utilization of

each core is further away from the next feasible frequency. Therefore, we have that ρSVA can be expressed as
seen in Equation (8.34).

ρSVA = max
1<i≤F̂

{
max

{
β · Fi + κ

β · Fi−1 + κ
,
α · Fi

γ−1 · Fi−1 + β · Fi + κ

α · Fi−1
γ + β · Fi−1 + κ

}}
(8.34)
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Finally, the approximation factors become ρSVA · AFenergy
DLTF-SVA and ρSVA · AFpeak power

DLTF-SVA, where the value of
ρSVA depends on the hardware parameters and the available frequencies. For example, for a system with
γ =3, α=0.27 W

GHz3 , β=0.52 W
GHz , κ=0.5W, and available frequencies {0.1GHz, 0.2GHz, . . . , 4.0GHz},

the value of ρSVA is no more than 1.096.

8.7 Experimental Evaluations

This section presents experimental evaluations conducted with gem5 [5] and McPAT [57]. We compare the
power and energy efficiency of DLTF-SFA and DLTF-SVA against the peak power and energy lower bounds,
as well as against each other.

8.7.1 Setup

For our experimental evaluations, we use the simulation framework described in Chapter 4 in high-level mode.
We run our simulations for a single cluster, for which we consider two different cases for the number of cores
in the cluster, specifically, 8 cores and 16 cores. We consider 22 nm OOO Alpha 21264 cores (as described in
Chapter 4.2.1), with available frequencies {0.1GHz, 0.2GHz, . . . , 4.0GHz}.

For benchmarks, we consider two representative applications from the PARSEC benchmark suite [4]
described in Chapter 4.3, specifically, x264 and bodytrack, executed as a single independent thread. Hence,
a task is an instance of one of these two applications, and by selecting different deadlines/periods we can
consider different cycle utilizations for each task. Moreover, we test 5 ·106 different combinations of tasks,
with a random number of tasks, random periods and random cycle utilizations, as well as tasks that result in
cycle utilization distributions according to the analyzed worst cases.

For each experiment, the tasks are partitioning with DLTF, and they are scheduled in each individual
core according to EDF. Under SVA, the execution frequency of each core is chosen as the closest available
frequency that is higher than or equal to the required cycle utilization in the core. Under SFA, the execution
frequency for all cores in the cluster is chosen as the closest available frequency that is higher than or equal
to the required cycle utilization of the highest loaded core in the cluster. The voltage of the cluster is chosen
as the minimum voltage for stable execution in regards to the core running at the highest frequency inside
the cluster. As discussed in Section 8.6, since cores execute at frequencies higher than their cycle utilization,
cores will be idle during short time intervals under SVA, and during longer time intervals for SFA. We assume
that the time overhead of a core for entering the sleep mode and returning to execution mode is 100ms. Under
SVA, when a core has no more workload to execute on its ready queue, the core can be simply kept idle, i.e.,
clock-gated (note that there is no restriction to further combine SVA with a DPM technique, and we only
assume that cores are kept idle in order to account for the worst cases). Under SFA, if the idle time in a core
is less than 100ms, then the core is kept idle (i.e., clock-gated, and thus consuming idle power); and if it is
larger than 100ms, then the core is put to sleep (taking it 100ms to enter the sleep mode and returning to
execution mode), consuming idle power only during 100ms.

In order to evaluate our previous analysis in Section 8.3 and Section 8.4, we also need to compare against
the peak power and energy lower bounds, for which the power values from McPAT can be modeled by power
parameters γ = 3, α = 0.27 W

GHz3 , β = 0.52 W
GHz , and κ = 0.5W (as detailed in Chapter 3.3). Furthermore,

when computing the lower bounds, we use the Newton-Raphson method [7] to solve Equation (8.16) with
200 iterations, since this is possible for concrete cases and it reduces the pessimism of our experimental
evaluations.

8.7.2 Results

Figure 8.19 and Figure 8.20 present the results for energy minimization and peak power reduction, respec-
tively, for both DLTF-SFA and DLTF-SVA against lower bounds E∗

↓ and P̂ ∗
↓ , for M = 8 and M =16. The

horizontal axis represents the cycle utilization of the highest loaded core after partitioning tasks with DLTF
(i.e., wDLTF

M ). Among all the tested cases for each frequency, we show the maximum experimental ratio be-
tween DLTF-SFA or DLTF-SVA and the corresponding lower bound. The saw-tooth shapes observed in the
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figures occur due to the regrouping done by DLTF, which reduces the resulting number of active cores with
cycle utilizations larger than 0 whenever possible (i.e., M 6=0).
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Figure 8.19: Experimental results of energy minimization for DLTF-SFA and DLTF-SVA, against the energy
lower bound.
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Figure 8.20: Experimental results of peak power reduction for DLTF-SFA and DLTF-SVA, against the peak
power lower bound.

Furthermore, Figure 8.21 and Figure 8.22 directly compare DLTF-SFA to DLTF-SVA. Both figures show
the maximum and average experimental ratios between DLTF-SFA and DLTF-SVA, and vice-versa. In Fig-
ure 8.19, for the same number of cores, we can observe that DLTF-SFA generally behaves better than DLTF-
SVA for the worst cases in regards to energy minimization. However, there are several cases in which DLTF-
SVA can be more efficient. As explained in Section 8.5, this depends on how efficiently DLTF-SFA manages
to bring cores into sleep mode. For the cases in which DLTF-SFA fails to sleep efficiently, DLTF-SVA will
save more energy. This can also be observed in Figure 8.21. Contrarily, Figure 8.20 and Figure 8.22 show
that DLTF-SVA always consumes less peak power than DLTF-SFA, both in average and for the worst cases.
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Figure 8.21: Experimental results of energy minimization comparing maximum and average ratios for DLTF-
SFA against DLTF-SVA, for an island with M=16 cores.
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Figure 8.22: Experimental results of peak power reduction comparing maximum and average ratios for DLTF-
SFA against DLTF-SVA, for an island with M=16 cores.

8.8 Summary
For performance-constrained applications or real-time tasks that are already assigned to a specific cluster (or
for systems with a global supply voltage), in this chapter we have presented the polynomial-time Double
Largest Task First (DLTF) strategy for partitioning tasks to cores based on load balancing and idle energy
reduction, and the linear-time Single Frequency Approximation (SFA) and Single Voltage Approximation
(SVA) schemes for deciding the DVFS schedule for execution. Most importantly, we have provided com-
prehensive theoretical analysis for the worst-case behavior (in terms of energy and peak power efficiency)
of combining DLTF with either SFA or SVA, denoted as DLTF-SFA and DLTF-SVA. The analysis and the
experimental evaluations show that the efficiency for energy minimization of DLTF-SVA outperforms that of
DLTF-SFA when the latter fails to efficiently bring cores to low-power modes. However, when DLTF-SFA
manages to sleep efficiently, DLTF-SVA results in higher energy consumptions. In regards to peak power
reduction, DLTF-SVA always consumes less peak power than DLTF-SFA. This occurs because the leakage
and independent power consumption are equivalent for both DLTF-SFA and DLTF-SVA in most cases (the
peak power consumption of DLTF-SFA is larger when we have low cycle utilizations), but the dynamic power
consumption of DLTF-SFA can be much larger than that of DLTF-SVA, mainly due to running cores at higher
frequencies. Therefore, DLTF-SVA is much more efficient than DLTF-SFA for peak power reduction in all
cases, both average and corner cases. Because of this reason, DLTF-SVA can potentially satisfy the power
budget under consideration for many more cases than DLTF-SFA can, also potentially resulting in lower tem-
peratures throughout the chip. Furthermore, DLTF-SVA manages to accomplish this without unnecessary
sacrifices in terms of energy consumption.

Finally, assuming architectures like the Exynos 5 Octa (5422) processor [92] (based on ARM’s big.LIT-
TLE architecture [21]), in which all cores in a cluster share a common voltage and common frequency, SFA
is used as the basic DVFS scheduling policy for the task-to-core assignment techniques for systems with mul-
tiple clusters/voltage islands, presented in Chapter 9 and Chapter 10. Moreover, Chapter 9 also extends the
theoretical analysis for SFA presented in this chapter in order to consider systems with multiple clusters/volt-
age islands.

119



120



Chapter 9

Energy-Efficient Task-to-core Assignment for Ho-
mogeneous Clustered Manycores

9.1 Overview

This chapter focuses on energy-efficient task-to-core assignment/mapping for homogeneous multicore sys-
tems clustered in multiple voltage islands, where due to the restriction that all the cores in a cluster have to
operate at the same DVFS levels at any point in time, different assignments will result in different energy
consumptions. In order for the tasks to meet their timing constraints, a particular task set (i.e., a group of
tasks assigned together on one core) has to be executed at certain DVFS levels. When several task sets are
mapped onto the same cluster, one task set might dominate the required DVFS levels and thus significantly
increase the energy consumption of the other task sets in the cluster. Furthermore, mapping tasks to a cluster
enforces the activation of the cluster, which consumes its own energy (aside from the energy consumption of
the cores). As a result, in a clustered architecture with multiple voltage islands where the objective is to min-
imize the overall energy consumption, the assignment/mapping of task sets to clusters and the corresponding
cluster activations have to be done carefully, and adopting existing system-level power management schemes
that do not consider the characteristics of such architectures may not work as well as expected.

Therefore, by using the simple Single Frequency Approximation (SFA) scheme (presented in detail in
Chapter 8) to decide the DVFS levels on individual clusters, in this chapter we explore how to map given
task sets onto cores belonging to different clusters in order to minimize the overall energy consumption [72].
Specifically, we present some simple and intuitive polynomial-time heuristics to assign given task sets onto
cores in different clusters, and we analyze the approximation factor of any mapping heuristic against the
optimal solution that results in the minimum energy consumption. Furthermore, also for given task sets,
we develop a dynamic programming algorithm, called Dynamic Voltage Island Assignment (DYVIA), that
derives optimal mapping solutions for minimizing the energy consumption when using SFA in individual
clusters. Our DYVIA algorithm has polynomial-time complexity when either the number of clusters or the
number of cores in each cluster are constant. Moreover, we also provide analysis for comparing our DYVIA
algorithm against the optimal mapping solution with the ideal DVFS schedule for every cluster. We exper-
imentally evaluate the execution time and energy efficiency of some mapping heuristics and our dynamic
programming solution on Intel’s Single Chip Cloud computer (SCC) [36]. Even though in order to derive
optimal solutions our DYVIA algorithm has higher time complexity than the evaluated heuristics, the evalu-
ations show that the execution time of DYVIA is just a few milliseconds for practical settings that consider
up to 6 clusters and 8 cores per cluster, e.g., SCC. Finally, we conduct simulations for hypothetical platforms
with several combinations for the number of clusters and the number of cores per cluster, as well as richer
DVFS and DPM features than SCC, and different policies for the partitioning of tasks into task sets.

9.1.1 Problem Definition
In this chapter, we focus on a homogeneous multicore system with M cores clustered in multiple voltage
islands, with a total of V clusters defined as {I1, I2, . . . , IV }, where all clusters have an equal number of
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cores per cluster K (i.e., according to the notation in Chapter 3.2, this means that in this chapter it holds
that K = M cluster

k = M cluster
k−1 for all k = 2, . . . ,V ), such that M = K · V . We consider that any cluster

consumes negligible power when in the inactive state, and that it consumes η amount of power when in the
active state (since there is no voltage regulator with 100% efficiency). After the assignment of task sets to
cores, we consider a cluster to be inactive if all the task sets assigned to the cluster have zero cycle utilization
(i.e., no core in the cluster is assigned any workload), and we consider it to be active otherwise. Without loss
of generality, the clusters are increasingly ordered with respect to their DVFS levels, such that I1 is the cluster
with the lowest DVFS levels and IV is the cluster with the highest DVFS levels.

There are R periodic performance-constrained/real-time tasks that have to be executed on the chip, which
we assume to be partitioned according to some task partitioning strategy (e.g., LTF or DLTF, described in
Chapter 8) into M? sets of tasks (or tasks sets), where each task set can hold one or more tasks, such that
all tasks belonging to the same task set will be mapped and executed on a single core by using preemption.
Clearly, since there are M cores in the system, in order to provide a feasible mapping, it should hold that
M? ≤M , as otherwise there would be more task sets to map than cores on the chip. Without loss of generality
and for simplicity of presentation, after the task partitioning stage, we create M −M? dummy (empty) task
sets with zero cycle utilization, resulting in task sets {S1,S2, . . . ,SM}, with corresponding cycle utilizations
w1 ≤ w2 ≤ · · · ≤ wM , where (compared to the notation from Chapter 3.1) we have omitted parameter q
as in this chapter we focus on homogeneous systems. In case a task leaves the system or a new task arrives,
then a new task partition should be obtained, and the algorithms later presented in Section 9.2 and Section 9.4
should be re-executed.

Some additional notations are necessary in order to identify the task sets assigned to each cluster. We
define set Lj = {`j,1, `j,2, . . . , `j,K} as the indexes of the task sets assigned to cluster Ij such that `j,1 <
`j,2 < · · · < `j,K for all j = 1, 2, . . . ,V . Moreover, for every `j,i it should hold that 1 ≤ `j,i ≤M , and that
`j,i is unique for all j, i. Given that the task sets are ordered with respect to their cycle utilizations, it holds
that w`j,1 ≤ w`j,2 ≤ · · · ≤ w`j,K . For example, in case that K = 3 and task sets S5, S8, and S9 are assigned
to cluster I4, then L4 is set to {5, 8, 9}, i.e., `4,1 = 5, `4,2 = 8, and `4,3 = 9.

After the task set assignment is finished and all task sets have been assigned onto cores in different
clusters, a DVFS policy has to be adopted in order to decide the DVFS levels for the individual clusters. Here,
we consider the simple and intuitive SFA scheme (presented in Chapter 8), where all the tasks assigned to
cluster Ij are executed at single frequency fj during the entire hyper-period, such that w`j,K ≤ fj so all the
tasks assigned to cluster Ij meet their timing constraints. Particularly, cluster Ij will be executed at frequency
fj = max

{
fcrit,w`j,K

}
during the entire hyper-period. As done everywhere else in this dissertation, the

supply voltage of cluster Ij is set to the lowest available value at which all cores in the cluster can stably
execute at frequency fj .

We consider a general power consumption model for individual cores in which the average power con-
sumption of a core executing a certain task at frequency f is defined as Pcore (f). Namely, compared to the
notation presented in Chapter 3.3 in which the power consumed on a core of type q while executing task τn
at frequency index j was denoted as P τn

q

(
F type
q,j

)
, here we omit parameter q since we focus on homogeneous

systems, and we assume that all tasks consume the same average power when executing at the same frequency.
For the algorithms and properties derived in Sections 9.2, 9.3, and 9.4, we assume continuous frequencies in
the range of [Fmin,Fmax]. However, all algorithms still work for systems with discrete frequencies, as shown
in the experiments of Section 9.5 and the simulations of Section 9.6.

Similar to Chapter 8, when a core finishes executing all the workload available in its ready queue, we
consider that it enters a low-power mode (e.g., sleep, power-gated, etc.) that consumes κsleep ≥ 0 power. In
this way, when a cluster is active, the minimum power consumption of any core in the cluster is κsleep. This
implies that an active cluster not only consumes η power for being active, but there is also an offset of K ·κsleep

power consumed by the cores in the cluster. Therefore, given that we can transfer this power consumption
K · κsleep to the value of power consumption η, without loss of generality, we can set η to η +K · κsleep, and
set Pcore (f) to Pcore (f)−κsleep, such that we can disregard the effect of the power consumption of a core in a
low-power mode, because it is already considered inside the new value of η. For simplicity of presentation, the
overheads of entering/leaving a low-power mode (i.e., the overheads for sleeping) are implicitly considered
negligible.

In order to analyze the quality of the proposed algorithms in terms of energy minimization, we assume that
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Pcore (f) is a convex and increasing function with respect to f , and we assume that Pcore(f)
f is a non-decreasing

function with respect to f for any f ≥ fcrit. All the theorems presented in this chapter are only based on
these assumptions for Pcore (f) and Pcore(f)

f , and therefore apply for many power models, making the derived
algorithms and obtained results very general. Specific power functions are only used in this chapter when
numerical results are required. Furthermore, as already discussed in Chapter 3.3 and Chapter 3.4, these
assumptions about Pcore (f) and Pcore(f)

f comply with most of the power models for CMOS processors adopted
in the literature, e.g, [3,12,14,15,108,109], where the most widely used power consumption function, already
shown in Equation (3.3) in Chapter 3.3, is Pcore (f) = α · fγ + β · f + κ (with α > 0, γ > 1, β ≥ 0, and
κ ≥ 0) and fcrit = γ

√
κ

(γ−1)α .

For the above models, a core belonging to cluster Ij where we execute task set Si will have an energy
consumption during a hyper-period of D ·Pcore (fj) · wi

fj
. Therefore, considering all K cores inside the cluster

and the power consumption η for keeping the cluster active, the energy consumption of cluster Ij during a
hyper-period is computed as shown in Equation (9.1).

Ej =


0 if

∑K
i=1 w`j,i = 0

D

(
η +

Pcore(fj)
fj

K∑
i=1

w`j,i

)
otherwise

(9.1)

For a fixed hardware platform with V clusters and K cores per cluster (i.e., V and K are constants, e.g.,
Intel’s SCC), the multiple voltage islands assignment problem focuses on assigning/mapping periodic real-
time task (or performance-constrained applications) onto cores and clusters, such that the overall energy
consumption among all clusters is minimized, i.e., such that

∑V
j=1 Ej is minimized according to Equa-

tion (9.1), by using SFA on individual clusters, and by assuming a given task partition {S1,S2, . . . ,SM}
as an input (i.e., the tasks are already partitioned into task sets using some task partitioning strategy, e.g.,
LTF of DLTF).

Finally, in regards to considering a given task partition as an input, for Sections 9.2, 9.3 and 9.4, we will
consider the mapping of M? already partitioned task sets together with the corresponding M −M? dummy
task sets, i.e., {S1,S2, . . . ,SM}. Nevertheless, in order to show the effects of task partitioning combined
with the task sets assignment algorithms presented in Section 9.2 and Section 9.4, we conduct simulations for
different task partitioning policies of LTF in Section 9.6 (i.e., we consider several values for M? and derive
several task partitions with LTF). As mentioned above, it should hold that M? ≤ M , as otherwise there
would be more task sets to map than cores available on the chip. However, depending on the influence of
the static/leakage power in Pcore (f) and on the value of η, for some cases, using less than M cores for task
partitioning can potentially result in energy savings by shutting down cores and clusters.

9.2 Simple Heuristic Algorithms

This section presents two simple and very intuitive algorithms to solve the multiple voltage islands assignment
problem stated in Section 9.1.1, and it also describes an algorithm based on extremal optimization extended
from [65]. These three algorithms have low time complexity; however, they derive non-optimal solutions.
Furthermore, when using SFA in individual clusters, this section also provides theoretical analysis for the
approximation factor of any task partition mapping heuristic against the optimal assignment.

9.2.1 Description of Simple Heuristic Algorithms

Consecutive Cores Heuristic (CCH)

One simple and very intuitive heuristic algorithm, which we call Consecutive Cores Heuristic (CCH), con-
sist in assigning the task sets onto cores inside clusters consecutively with respect to their cycle utiliza-
tion. Namely, we assign to cluster Ij all the task sets whose indexes are inside set Lj , such that Lj =
{(j − 1)K + 1, (j − 1)K + 2, . . . , (j − 1)K +K}, and we do this for all clusters Ij , i.e., for all j =
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1, 2, . . . ,V , resulting in linear time complexity O (K · V ). In other words, considering that every cluster
has K cores and that task sets {S1,S2, . . . ,SM} are ordered according to their cycle utilizations w1 ≤ w2 ≤
· · · ≤ wM , we assign the first K task sets to cluster I1, the second K task sets to cluster I2, and so on. For
example, if V = 4 and K = 3, CCH will assign task sets {S1,S2,S3} to cluster I1, task sets {S4,S5,S6} to
cluster I2, task sets {S7,S8,S9} to cluster I3, and task sets {S10,S11,S12} to cluster I4, as illustrated in the
example in Figure 9.1.

Figure 9.1: Example of CCH for
V = 4 and K = 3. The high of the
bars represents the cycle utilization
of the task sets, and the colors rep-
resent their cluster assignment.

S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

I4 I3 I2 I1

Balanced Utilization Heuristic (BUH)

Another simple heuristic algorithm, which we call Balanced Utilization Heuristic (BUH), consist in assigning
K consecutive task sets onto cores in cluster Ij , such that the difference between the lowest and highest
utilization task sets in the cluster is minimized. Namely, if there are still more than K task sets to be assigned,
BUH finds index h such that wh+K−1 − wh is minimized. Then, these K task sets are mapped onto one
cluster. Following, we can find a feasible mapping by removing these task sets from the problem instance,
relabeling the remaining task sets, and repeating the process until there are no unassigned task sets left.
Given that finding index h requires O (M +K) time complexity and the number of iterations is at most
V , the overall time complexity of BUH is O

(
K · V 2

)
. An example illustrating this algorithm is presented

in Figure 9.2, where task sets {S9,S10,S11} are first assigned to cluster I3, then task sets {S1,S2,S3} are
assigned to cluster I1, then task sets {S4,S5,S6} are assigned to cluster I2, and finally task sets {S7,S8,S12}
are assigned to cluster I4.

Figure 9.2: Example of BUH for
V = 4 and K = 3. The high of the
bars represents the cycle utilization
of the task sets, and the colors rep-
resent their cluster assignment.

S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

I4I3 I2 I1

Extremal Optimization Heuristic (EOH)

This algorithm, called EOH and extended from [65], performs a random search in order to improve the over-
all energy consumption, starting from an arbitrary initial solution, e.g., the assignment derived by CCH. The
algorithm is based on swapping, by selecting two task sets to swap in every iteration: an unfavorable task
set and a replacement task set. By considering two fitness functions and a power-law distribution, EOH uses
information about the system costs for selecting the task sets to be swapped. It is expected that such an ap-
proach results into a fast progress towards the final and improved solution. In addition, EOH accepts new
solutions unconditionally, therefore potentially making the algorithm easier to tune and avoiding a local min-
imum. The randomness process is repeated with a predefined number of iterations until there is no apparent
improvement. Among all the evaluated mappings, EOH returns the mapping that results in the lowest overall
energy consumption. Note that EOH is not a contribution of this chapter. We present it here for completeness,
since we later use it for comparison in Sections 9.5 and 9.6.

The main difference between the EOH implementation considered in this chapter and that of the algorithm
presented in [65], is that here we map one task set to one core, instead of just one task per core. Moreover, in
our EOH implementation we consider negligible energy consumption for the communication between tasks,
such that our fitness functions are simplified. Although EOH may help to improve the mapping solutions, in
the worst cases, the quality of the solution remains as the initial solution.
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9.2.2 Approximation Factor for Simple Heuristics
This section presents the detailed proof of the approximation factor for any task partition mapping heuristic
that uses

⌈
M?

K

⌉
clusters with non-empty task sets and SFA to decide the DVFS levels on individual clusters,

against the optimal assignment that also uses SFA on individual clusters. We denote such an approximation
factor as AFDVFS=SFA

ASG=ANY . Namely, although some heuristics might perform well for the general cases, for a given
heuristic there will exist at least one worst-case task partition for which the specific heuristic behaves poorly,
particularly, resulting in the approximation factor presented below.

We start by denoting Ej
DVFS=SFA
ASG=ANY as the energy consumption of cluster Ij that uses any task partition

mapping algorithm (hence the ASG=ANY) and that uses SFA to decide the DVFS levels of individual clusters
(hence the DVFS=SFA). For example, when using heuristic CCH, the value of Ej

DVFS=SFA
ASG=ANY represents the energy

consumption on cluster Ij when mapping the task sets with heuristic CCH and using SFA to decide the DVFS
levels on each cluster. Given that the same holds when considering any other heuristic, we do not constraint
the analysis using a more specific notation, e.g., Ej

DVFS=SFA
ASG=CCH .

From the definition of set Lj = {`j,1, `j,2, . . . , `j,K} in Section 9.1.1, task set S`j,i is assigned onto
the i-th core of cluster Ij . Hence, we denote Ej

DVFS=SFA
ASG=SFA as the energy consumption of task sets S`j,i for

all i = 1, 2, . . . ,K when using SFA to decide the DVFS levels on individual clusters, and when using the
optimal task set assignment solution under SFA (hence, the ASG=SFA). Furthermore, let Ej

DVFS=per-core
ASG=ANY be the

energy consumption of task sets S`j,i for all i = 1, 2, . . . ,K when having per-core DVFS. Given that having
per-core DVFS is the optimal solution from a DVFS perspective where the task set assignment would play no
role, then clearly Ej

DVFS=per-core
ASG=ANY is the lower bound for the energy consumption. Therefore, the approximation

factor AFDVFS=SFA
ASG=ANY can be computed as

AFDVFS=SFA
ASG=ANY =

∑V
j=1 Ej

DVFS=SFA
ASG=ANY∑V

j=1 Ej
DVFS=SFA
ASG=SFA

≤
∑V

j=1 Ej
DVFS=SFA
ASG=ANY∑V

j=1 Ej
DVFS=per-core
ASG=ANY

≤ max
j=1,2,...,V

{
Ej

DVFS=SFA
ASG=ANY

Ej
DVFS=per-core
ASG=ANY

}
.

Throughout the proof, we implicitly assume that η is equal to 0, as the optimal solution also requires to
use at least

⌈
M?

K

⌉
clusters. Moreover, given that η is a constant that appears both in the numerator and de-

nominator, the worst-case for the approximation factor occurs when η is equal to 0. The energy consumption
function for Ej

DVFS=SFA
ASG=ANY was already presented in Equation (9.1), and the energy consumption function for

Ej
DVFS=per-core
ASG=ANY (assuming η = 0) is shown in Equation (9.2), such that fj,i = max

{
fcrit,w`j,i

}
.

Ej
DVFS=per-core
ASG=ANY = D

K∑
i=1

Pcore (fj,i)

fj,i
· w`j,i (9.2)

Therefore, from Equation (9.1) and Equation (9.2), the approximation factor can be rewritten as

AFDVFS=SFA
ASG=ANY ≤ max

j=1,2,...,V


Pcore(fj,K)

fj,K

∑K
i=1 w`j,i∑K

i=1
Pcore(fj,i)

fj,i
· w`j,i

 ≤ max
j=1,2,...,V

 1 +
∑K−1

i=1

w`j,i

w`j,K

1 +
∑K−1

i=1
fj,K

Pcore(fj,K) ·
Pcore(fj,i)

fj,i
· w`j,i

w`j,K

 .

Regardless of the absolute value of the cycle utilizations and the cluster index j, the worst case for the
above relation only depends on the ratios of task sets

w`j,i

w`j,K
for every cluster. The maximal value is found

when
∑K−1

i=1

w`j,i

w`j,K
remains constant and when

∑K−1
i=1

fj,K
Pcore(fj,K) ·

Pcore(fj,i)
fj,i

· w`j,i

w`j,K
is minimized. Given

that the latter is a convex and increasing function with respect to
w`j,i

w`j,K
, we know that it is minimized when

w`j,i =
1

K−1

∑K−1
i=1 w`j,i for all j = 1, 2, . . . ,V . In other words, the maximum value of AFDVFS=SFA

ASG=ANY occurs
when the K − 1 least loaded task sets in every cluster have the same cycle utilization. Therefore, by defining
x = 1

K−1

∑K−1
i=1

w`j,i

w`j,K
as the average cycle utilization of the K − 1 least loaded task sets, the approximation

factor is computed as shown in Equation (9.3), where 0 ≤ x ≤ 1 and fx=max
{
fcrit,x · w`j,K

}
.

AFDVFS=SFA
ASG=ANY ≤ max

0≤x≤1

1 + (K − 1)x

1 + (K − 1)
fj,K

Pcore(fj,K) ·
Pcore(fx)

fx
· x

(9.3)
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The specific value of x that maximizes Equation (9.3) will depend on the power consumption model
adopted for the cores.

9.2.3 Numerical Examples for the Approximation Factor of Simple Heuristics
Given that Equation (9.3) presents the approximation factor for any task partition mapping heuristic when
using SFA to decide the DVFS levels on individual clusters, it also represents the approximation factor for
using CCH and BUH for mapping task sets to cores and clusters under SFA. In order to illustrate the worst-
case behavior derived in Equation (9.3), we provide numerical results based on a specific power consumption
function, particularly, Pcore (f) = α · f3. For such a case, Equation (9.3) can be rewritten as shown in
Equation (9.4).

AFDVFS=SFA
ASG=ANY ≤ max

0≤x≤1

1 + (K − 1)x

1 + (K − 1)x3
if Pcore (f) = α · f3 (9.4)

Following, to find the value of x that results in the worst case, denoted as xmax, we set to zero the first-order
derivative of Equation (9.4) with respect to x. From this procedure we obtain that 2 (K − 1)x3

max +3 ·x2
max−

1 = 0, and we can simply compute the value of xmax for a given value of K. Figure 9.3 presents the resulting
approximation factor in Equation (9.4), for x = xmax. The approximation factor is not bounded with respect
to the value of K, and can therefore be very large when K is large.

Figure 9.3: Approximation fac-
tor for any task partition map-
ping heuristic that uses

⌈
M?

K

⌉
clusters with non-empty task sets,
and SFA to decide the DVFS lev-
els of individual clusters, when
Pcore (f) = α · f3 with α > 0.
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The tightness of our analysis can be proven by a concrete example built according to the above conditions.
In other words, for given values of K, V , and wM , in case Pcore (f) = α · f3, the worst case occurs when
we have (K − 1)V task sets with cycle utilization equal to zero and K − 1 task sets with cycle utilization
xmax · wM , i.e., the worst case occurs when w1 = w2 = · · · = wM−K−1 = wM−K = 0 and when
wM−K+1 = wM−K+2 = · · · = wM−2 = wM−1 = xmax · wM . For example, consider a system with
V = 8 clusters, K = 8 cores per cluster, η = 0 cluster power consumption, Pcore (f) = 2 Watts

GHz3 · f
3 power

consumption per core, and a hyper-period among all tasks of D = 1 s. After the task partitioning stage,
the task sets to be assigned to the clusters have cycle utilizations w1 = w2 = · · · = w55 = w56 = 0,
w57 = w58 = · · · = w62 = w63 = 3.544 · 108 cycles

second , and w64 = 109 cycles
second . Both CCH and BUH will assign

task sets S57,S58, . . . ,S64 to cluster I8, which according to Equation (9.1) results in an energy consumption
under SFA of 6.96 J. The optimal solution however, will assign task set S57 to cluster I1, task set S58 to cluster
I2, task set S59 to cluster I3, . . ., and task set S64 to cluster I8, which results in an energy consumption of
2.62 J (which is equivalent to the energy consumption for having a per-core DVFS platform in this example).
The ratio between these two energy consumptions is 2.65, which corresponds to the result of Equation (9.4)
when K = 8 (as also seen in Figure 9.3), since for such a case we have that xmax = 0.3544.

The above example can be easily extended for any value of K, such that V ≥ K. For instance, consider
a system with V = 16 clusters, K = 16 cores per cluster, and the same η = 0, Pcore (f) = 2 Watts

GHz3 · f
3,

and D = 1 s as in the previous example. By solving 2 (K − 1)x3
max + 3 · x2

max − 1 = 0 when K = 16, we
know that for this value of K, Equation (9.4) is maximized when x = xmax = 0.2917. In other words, if
after the task partitioning stage, the task set with the highest cycle utilization is, e.g., w256 = 109, then the
worst case occurs when we have K − 1 task sets with cycle utilization 2.917 · 108 cycles

second , and (K − 1)V task
sets with cycle utilization zero, i.e., when w1 = w2 = · · · = w239 = w240 = 0, w241 = w242 = · · · =
w254 = w255 = 2.917 · 108 cycles

second , and w256 = 109 cycles
second . For this second example, both CCH and BUH will

assign task sets S241,S242, . . . ,S256 to cluster I16, which according to Equation (9.1), will result in an energy
consumption under SFA of 10.75 J. However, the optimal solution will choose to assign one non-empty task
set to every cluster, i.e., task set S241 to cluster I1, task set S242 to cluster I2, . . ., and task set S256 to cluster
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I16, resulting in an energy consumption of 2.74 J (which again is equivalent to the energy consumption for
having a per-core DVFS platform in this example). The ratio between these two energy consumptions is 3.92,
which corresponds to the result of Equation (9.4) when K = 16 (as also seen in Figure 9.3), since for such
a case we have that xmax = 0.2917. Similarly, we can extend these examples for any other value of K, such
that V ≥ K, thus proving the tightness of our analysis for CCH and BUH for all K.

9.3 Assignment Properties

This section presents some assignment properties that are later used in Section 9.4. We have two cases: (1)
when the task sets with the highest cycle utilization in each cluster are given, such that the DVFS levels of the
clusters under SFA are known, and (2) when they are not given, i.e., all cases need to be considered.

9.3.1 Given Highest Cycle Utilization Task Sets Assigned to Every Cluster

For simplicity of presentation, we first define set Y = {y1, y2, . . . , yV } containing the indexes of the task
sets with the highest cycle utilizations mapped to every cluster, such that task set Syj will have the highest
cycle utilization inside cluster Ij . In other words, the set of indexes for which it holds that yj = `j,K for all
clusters j = 1, 2, . . . ,V . Given that the clusters are ordered with respect to their DVFS levels, it holds that
y1 < y2 < · · · < yV . Clearly, task set SM will always be the highest cycle utilization task set in the highest
DVFS cluster IV , or in other words, it always holds that yV = M . Furthermore, as there are M cores in the
chip and M task sets, such that one task set is mapped to every core, and given that the task sets are ordered
according to their cycle utilizations, the highest cycle utilization task set in cluster Ij cannot be a task set with
a cycle utilization less than wj·K , as this would contradict the definition of set Y. Therefore, by definition,
we know that yj ≥ j ·K for all clusters j = 1, 2, . . . ,V , as otherwise there would be no feasible assignment
to satisfy the definition of set Y. This statement is illustrated in the example in Figure 9.4.

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 S8 S7 S6 S5 S4 S3 S2 S1

Figure 9.4: Examples of different sets Y, for a chip with V = 3 and K = 3. The task sets with highest
cycle utilizations in each cluster (i.e., the task sets whose indexes are inside set Y) are circled and colored.
Unfeasible combinations that contradict the definition of Y are crossed out. For example, if y1 < 3, we could
not assign 3 task sets to cluster I1 and still have that wy1 is the highest cycle utilization inside cluster I1. A
similar situation occurs for y2 and y3. Cases in which y3 < M , all unfeasible, are omitted from the figure.

From the above argument, in order to satisfy the definition of set Y, the possible combinations of task
sets assignments to consider can be reduced. Nevertheless, there will still exist many feasible combinations,
among which there will be one or more combinations that result in the minimum energy consumption under
SFA. For example, for V = 4 and K = 3, Figure 9.5a shows the only possible assignment combination for
the case in which Y = {3, 6, 9, 12}. Contrarily, there are three possible assignment combinations for the case
in which Y = {4, 6, 9, 12}, as seen in Figures 9.5b, 9.5c, and 9.5d. With this in mind, for a given set Y,
Theorem 6 provides an important property for assigning task sets to clusters in order to minimize the energy
consumption. For example, for the case in which Y = {4, 6, 9, 12}, Theorem 6 proves that the combination
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in Figure 9.5b will always minimize the energy consumption, and thus the combinations in Figures 9.5c and
9.5d do not need to be considered.

Figure 9.5: Examples of possible task
set assignments, for a chip with V = 4
and K = 3. Figure (a) shows the only
possible assignment combination when
Y = {3, 6, 9, 12}. Figures (b), (c), and
(d) show the three possible assignments
when Y={4, 6, 9, 12}, for which Theo-
rem 6 proves that combination (b) mini-
mizes the energy consumption.

(a) S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

(b) S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

(c) S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

(d) S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

Theorem 6 Suppose that Pcore(f)
f is a non-decreasing function with respect to f , for any f ≥ fcrit. Consider

a given set Y, where the highest cycle utilizations of clusters Ii and Ih are wyi and wyh
, respectively, and it

holds that wyi ≤ wyh
when i < h. Given that the highest cycle utilizations of the clusters are known, then the

DVFS levels of both cluster under SFA are also known, and for this case it holds that fi = max {fcrit,wyi
} ≤

fh = max {fcrit,wyh
}. Furthermore, consider task sets Sj and Sk such that wj ≤ wk ≤ wyi

≤ wyh
, where

task set Sj is assigned to cluster Ii and task set Sk is assigned to cluster Ih. From these assumptions, under
SFA and for the given set Y, swapping the assignment such that task set Sj is assigned to cluster Ih and task
set Sk is assigned to cluster Ii consumes no more energy than the original assignment.

Proof. The overall energy consumption before swapping the tasks can be computed as

Ebefore
swapping = · · ·+D · Pcore (fh) ·

wk

fh
+ · · ·+D · Pcore (fi) ·

wj

fi
+ · · · ,

while the overall energy consumption after swapping the task sets can be computed as

Eafter
swapping = · · ·+D · Pcore (fh) ·

wj

fh
+ · · ·+D · Pcore (fi) ·

wk

fi
+ · · · .

Therefore, the difference in the overall energy consumption after and before swapping can be computed as

Eafter
swapping − Ebefore

swapping = D

[
Pcore (fh)

wj

fh
+ Pcore (fi)

wk

fi
− Pcore (fh)

wk

fh
− Pcore (fi)

wj

fi

]

= D

[
Pcore (fh)

fh
− Pcore (fi)

fi

]
(wj − wk) .

Given that Pcore(f)
f is an increasing function with respect to f , it holds that Pcore(fh)

fh
− Pcore(fi)

fi
≥ 0. Moreover,

since it also holds that wj − wk ≤ 0, we have that

D

[
Pcore (fh)

fh
− Pcore (fi)

fi

]
(wj − wk) ≤ 0 ⇒ Eafter

swapping ≤ Ebefore
swapping

and thus the theorem is proven.
For example, by translating the statement in Theorem 6 to the example in Figure 9.5, the task set assign-

ment before the swapping could refer to the combination in Figure 9.5c (i.e., task set S1 assigned to cluster
I1 and task set S2 assigned to cluster I2), while the task set assignment after the swapping could refer to
the combination in Figure 9.5b (i.e., task set S1 assigned to cluster I2 and task set S2 assigned to cluster
I1). Therefore, according to Theorem 6, the combination in Figure 9.5b consumes no more energy than the
combination in Figure 9.5c. The same applies when comparing the assignment of task sets S1 and S3 in
Figure 9.5b, to the assignment of task sets S1 and S3 in Figure 9.5d, where according to Theorem 6, the
combination in Figure 9.5b consumes no more energy than the combination in Figure 9.5d.
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Algorithm 8 Optimal Greedy Algorithm for a Given Set Y

Input: A given set Y = {y1, y2, . . . , yV };
Output: The task set assignment with the minimal energy consumption based on the given set Y;

1: for all j = 1, 2, . . . ,V (i.e., for all clusters) do
2: Lj ← Syj ; {Assign task set Syj to to cluster Ij}
3: By iterating through the unassigned task sets decreasingly with respect to their cycle utilizations, assign

the K − 1 task sets whose cycle utilization is less than or equal to wyj to cluster Ij (by filling set Lj);
4: Remove assigned task sets and the cores in set Lj from the problem;
5: end for
6: return L1,L2, . . . ,LV ;

Based on Theorem 6, when Pcore(f)
f is a non-decreasing function with respect to f for any f ≥ fcrit,

and when the highest cycle utilization task sets on every cluster are already selected (i.e., when set Y =
{y1, y2, . . . , yV } is given), we can optimally solve the multiple voltage islands assignment problem under SFA
by implementing a greedy algorithm. The pseudo-code of such a greedy solution is presented in Algorithm 8.
Algorithm 8 starts by assigning the K−1 task sets with highest cycle utilizations that do not exceed wy1 onto
cores inside cluster I1. Given that now all the K cores inside cluster I1 have task sets assigned to them, we can
remove the cluster, the cores, and the assigned task sets from the input instance of the problem, thus creating
a new sub-problem with one less element inside set Y. This process is repeated for clusters I2, . . . , IV−1

until only K−1 task sets remain, which are then assigned onto cores inside cluster IV . For a given set Y, the
overall time complexity of such a greedy algorithm is O (M · V ). Finally, from Theorem 6 and Algorithm 8,
we have the following corollary that summarizes the assignment property derived in this section.

Corollary 1 For a given set Y, when using SFA to decide the DVFS levels on individual clusters, in order
to assign task sets to cluster Ij , the optimal assignment solution assigns K − 1 adjacent and consecutive
task sets with the highest cycle utilizations whose values are less than or equal to the corresponding cycle
utilization wyj

.

Example

Consider a system with V = 4 and K = 3, and a given set Y = {5, 7, 11, 12}. Under SFA, the optimal
assignment of the task sets onto cores belonging to different clusters is shown in Figure 9.6, derived through
Algorithm 8, based on Theorem 6 and Corollary 1. According to Algorithm 8, we first focus on cluster I1
(i.e., j = 1 in the figure), and assign K − 1 task sets with cycle utilizations less than or equal to wy1

onto
cores in cluster I1. In this example task set S5 has the highest cycle utilization in cluster I1 (i.e., y1 = 5), and
therefore task sets S4 and S3 are also assigned onto cores belonging to I1. Furthermore, task sets S3, S4, and
S5 are now removed from the sub-problem (colored in dark-gray and crossed out in the figure when j > 1).
In order to solve the new sub-problem, we focus on cluster I2 (i.e., j = 2 in the figure). Given that task set
S7 has the highest cycle utilization on cluster I2, task sets S6 and S2 are assigned onto cores belonging to I2.
These task sets are removed from the sub-problem (colored in dark-gray and crossed out in the figure j > 2)
and the process is repeated for j = 3 and j = 4 until all task sets are mapped.

j = 1: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

j = 2: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

j = 3: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

j = 4: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

Figure 9.6: Example of the process
executed by Algorithm 8, for V = 4
and K = 3, when Y = {5, 7, 11, 12}.
The task sets with highest cycle uti-
lizations in each cluster are circled
and colored. Every value of j rep-
resents the assignment of task sets to
cluster Ij , i.e., one iteration inside the
algorithm.
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9.3.2 All Possible Highest Cycle Utilization Task Sets
In case the highest cycle utilization task sets inside each cluster are not given, then one possibility to derive
the optimal solution is a brute-force approach that tries every possible combination for set Y and selects
the one that would result in the minimum energy consumption. Given that the number of combinations for
binomial coefficient

(
a
b

)
is upper bounded by

(
e·a
b

)b
, where e is Euler’s number, therefore, the total number

of combinations to be considered for such a brute-force approach is at most
(
K·V−K
V−1

)
≤ (e ·K)

V−1. Hence,
an algorithm that tries every possible combination for set Y and applies Algorithm 8 for each possibility will
have total time complexity O

(
eV−1 ·KV · V 2

)
. This time complexity is polynomial when V is a constant,

but it is still too high and does not solve the problem in an efficient manner.

9.4 Dynamic Programming Solution
This section details an efficient dynamic programming algorithm to solve the multiple voltage islands assign-
ment problem, called the Dynamic Voltage Island Assignment (DYVIA) algorithm.

9.4.1 Description of the DYVIA Algorithm
Our DYVIA algorithm is based on a property described in Theorem 7 and illustrated in Figure 9.7, which
comes as a direct result of Theorem 6 and Corollary 1. For simplicity of presentation, we define set L =
{`0, `1, `2, . . . , `K} (overloading in this chapter symbol L defined in Chapter 3.5) as a set containing the
indexes of the task sets assigned onto cores in a general cluster (as opposed to set Lj , defined for a particular
cluster Ij), such that `1 < `2 < · · · < `K , with `0 auxiliary and less than `1. Naturally, similar to the
definition of Lj , it will hold that w`1 ≤ w`2 ≤ · · · ≤ w`K . Furthermore, we define set Λ (i, j) as a set
that contains all possible L sets that satisfy Theorem 7. Namely, for a given (i, j), set Λ (i, j) stores all
the potentially optimal combinations, such that `0 = i − 1, `K = j, and `h = `h−1 + 1 + n · K for all
h = 1, 2, . . . ,K − 1 with n ∈ N0.

Figure 9.7: Adjacent remaining task sets
groups, with ni ∈ N0.

S`K
K · nj−1

task sets
S`K−1

· · ·
S`2

K · n1

task sets
S`1

Theorem 7 When assigning task sets with indexes L = {`1, `2, . . . , `K} onto cores in cluster Ij , in the
optimal solution that uses SFA to decide the DVFS levels on individual clusters, all the task sets assigned
onto cores in clusters I1, I2, . . . , Ij−1 will form up to j − 1 groups of remaining adjacent task sets and
every group will have a number of task sets that is a multiple of K.

Proof. From Theorem 6 and Corollary 1, it is quite clear that Theorem 7 holds for any given Y set,
including the optimal one.

Based on the property described in Theorem 7, our DYVIA algorithm can reduce the number of com-
binations to evaluate. Moreover, as any other dynamic programming algorithm, it relies on the optimality
of small sub-problems whose results are saved on a table, thus reducing the total time complexity. Specif-
ically, our dynamic programming function is defined as DYVIA (i, j), where i is the index of the first task
set to be considered in this sub-problem, and j is the index of the last task set to be considered in this sub-
problem. Namely, function DYVIA (i, j) returns the minimum energy consumption for the assignment of task
sets Si,Si+1, . . . ,Sj−1,Sj onto cores, using a number of clusters equal to v = j−i+1

K (from Corollary 1,
j − i + 1 will always be an integer multiple of K). Particularly, function DYVIA (i, j) only focuses on the
highest DVFS level cluster in the sub-problem and on the task sets S`1 ,S`2 , . . . ,S`K that are to be assigned
onto cores in this cluster. In order to derive the optimal assignment of task sets onto cores that resulted in
this minimal energy consumption after the dynamic programming algorithm finished, a standard backtracking
technique may be used, e.g., by building an additional backtracking table in which entry DYVIAback-

tracking (i, j)
contains the task sets indexes {`1, `2, . . . , `K} that resulted in the minimum energy consumption for sub-
problem DYVIA (i, j). Among task sets Si,Si+1, . . . ,Sj−1,Sj to be mapped in sub-problem DYVIA (i, j),
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those not mapped to the highest DVFS level cluster in this sub-problem are dealt with in other (smaller)
sub-problems.

From the definition, just as for any other cluster, the highest DVFS level cluster on each DYVIA (i, j)
sub-problem will hold K cores. Given that wi ≤ wi+1 ≤ · · · ≤ wj−1 ≤ wj , it is easy to see that task set
Sj is always assigned onto a core in this highest DVFS level cluster and that, according to SFA, its cycle
utilization defines the DVFS levels of the highest DVFS level cluster. Therefore, function DYVIA (i, j) has
to decide which other K − 1 task sets (among Si,Si+1, . . . ,Sj−2,Sj−1) should be assigned to the highest
DVFS level cluster in this sub-problem. To accomplish this goal, we consider all the potentially optimal
combinations that satisfy Theorem 7, i.e., we consider all L sets inside Λ (i, j).

For each possible assignment combination evaluated in a sub-problem, the energy consumption of the
highest DVFS level cluster is computed through function E (L) as shown in Equation (9.5), which is similar
to Equation (9.1), but considering set L instead of set Lj . Therefore, the total energy consumption for each
assignment combination evaluated in a sub-problem is computed as the summation of E (L) and the minimum
energy consumption of each one of the smaller sub-problems for every group of remaining adjacent task sets,
as stated in Theorem 7. Once the total energy consumption for every combination is obtained, the minimum
one is chosen as the result of the sub-problem under consideration.

E (L) =


0 if

∑K
i=1 w`i = 0

D

(
η +

Pcore
(
max

{
fcrit,w`K

})
max

{
fcrit,w`K

} K∑
i=1

w`i

)
otherwise

(9.5)

The initial conditions for building the dynamic programming table are defined in Equation (9.6), which
builds the dynamic programming table for all sub-problems with K consecutive task sets, i.e., j− i+1 = K.
The recursive dynamic programming function is defined in Equation (9.7). The pseudo-code for a bottom-up
implementation of our DYVIA algorithm is presented in Algorithm 9.

DYVIA (i, j) =


0

if i = 0, or if
∑j

h=i wh = 0,

or if 0 ≤ j < i+K − 1 ≤M

D

(
η +

Pcore(max{fcrit,wj})
max{fcrit,wj}

j∑
h=i

wh

)
otherwise

(9.6)

DYVIA (i, j) = min
∀L∈Λ(i,j)

{
E (L) +

K∑
n=1

DYVIA (`n−1 + 1, `n − 1)

}
(9.7)

Example

Following, we consider a system with V = 3 and K = 3 (i.e., M = 9), and present an example to conceptu-
ally illustrate how algorithm DYVIA works. The solution to the problem, i.e., the optimal energy consumption
under SFA, is found in entry DYVIA (1,M) of our dynamic programming table, i.e., DYVIA (1, 9) in this ex-
ample. In order to build entry DYVIA (1, 9) according to Equation (9.7), the algorithm evaluates the energy
consumption of assigning task sets according to all sets L ∈ Λ (1, 9), i.e., it checks all potentially optimal
combinations satisfying Theorem 7, as shown in Figure 9.8. As stated in Theorem 7, given that K = 3, every
sub-problem contains 3 or 6 task sets (not more, as there are 9 task sets in the main problem). For each evalu-
ated combination, i.e., for each L ∈ Λ (1, 9), function E (L) computes the energy consumption for cluster I3,
and the algorithm refers to the entries built previously in order to obtain the lowest energy consumption under
SFA for the resulting sub-problems. Sub-problems DYVIA (1, 3), DYVIA (2, 4), DYVIA (3, 5), DYVIA (4, 6),
DYVIA (5, 7), and DYVIA (6, 8) are built as initial conditions according to Equation (9.6), as done in lines
1-3 in Algorithm 9. Sub-problems DYVIA (1, 6), DYVIA (2, 7), and DYVIA (3, 8) are solved according to
Equation (9.7), as done in lines 4-10 in Algorithm 9. Finally, the main problem DYVIA (1, 9) is also solved
according to Equation (9.7), as done in lines 11-13 in Algorithm 9.
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Algorithm 9 Bottom-up implementation of our Dynamic Voltage Island Assignment (DYVIA) algorithm

Input: Number of clusters V , number of cores per cluster K, and task sets {S1,S2, . . . ,SM};
Output: The overall minimum energy consumption under SFA, and backtracking table DYVIAback-

tracking;
{First, initialize the dynamic programming table for all sub-problems with K consecutive task sets}

1: for all h = 1, 2, . . . ,K (V − 1) do
2: DYVIA (h,h+K − 1)← Result from Equation (9.6) for i = h and j = h+K − 1;
3: end for

{Secondly, fill the rest of the dynamic programming table in a bottom-up manner}
4: for all k = 2, 3, . . . ,V − 1 do
5: for all h = 1, 2, . . . ,K (V − k) do
6: Obtain all potentially optimal L sets for sub-problem DYVIA (h,h+ k ·K − 1), i.e., obtain set

Λ (h,h+ k ·K − 1) to use inside Equation (9.7);
7: DYVIA (h,h+ k ·K − 1)← Result from Equation (9.7) for i = h and j = h+ k ·K − 1;
8: DYVIAback-

tracking (h,h+ k ·K − 1) ← Set L that resulted in the minimum energy consumption when
computing Equation (9.7) in the previous step for i = h and j = h+ k ·K − 1;

9: end for
10: end for

{Lastly, compute the final solution for the dynamic programming algorithm}
11: Obtain all potentially optimal L sets for sub-problem DYVIA (1,M), i.e., obtain set Λ (1,M);
12: DYVIA (1,M)← Result from Equation (9.7) for i = 1 and j = M ;
13: DYVIAback-

tracking (1,M) ← Set L that resulted in the minimum energy consumption when computing Equa-
tion (9.7) in the previous step for i = 1 and j = M ;

14: return Minimum energy consumption under SFA DYVIA (1,M), and backtracking table DYVIAback-
tracking;

Figure 9.8: Example of algorithm DYVIA
for building DYVIA (1, 9), with V = 3 and
K = 3. Each combination corresponds to
a set L ∈ Λ (1, 9) to assign in cluster I3,
for which the algorithm evaluates the result-
ing energy, returning the minimum among
all tested cases. The task sets assigned to
I3 in a combination are boxed in light-gray
and the resulting sub-problems are colored
in dark-gray.

Combination 1: S9 S8 S7 S6 S5 S4 S3 S2 S1

Combination 2: S9 S8 S7 S6 S5 S4 S3 S2 S1

Combination 3: S9 S8 S7 S6 S5 S4 S3 S2 S1

Combination 4: S9 S8 S7 S6 S5 S4 S3 S2 S1

Combination 5: S9 S8 S7 S6 S5 S4 S3 S2 S1

Combination 6: S9 S8 S7 S6 S5 S4 S3 S2 S1

According to the example of Figure 9.8 for a system with V = 3 and K = 3, Figure 9.9 illustrates the
potentially optimal combinations that satisfy Theorem 7 for sub-problems DYVIA (1, 6), DYVIA (2, 7), and
DYVIA (3, 8), which are solved according to Equation (9.7).

DYVIA (1, 6)

Combination 1: S6 S5 S4 S3 S2 S1

Combination 2: S6 S5 S4 S3 S2 S1

Combination 3: S6 S5 S4 S3 S2 S1

DYVIA (2, 7)

S7 S6 S5 S4 S3 S2

S7 S6 S5 S4 S3 S2

S7 S6 S5 S4 S3 S2

DYVIA (3, 8)

S8 S7 S6 S5 S4 S3

S8 S7 S6 S5 S4 S3

S8 S7 S6 S5 S4 S3

Figure 9.9: Example of algorithm DYVIA for sub-problems DYVIA (1, 6), DYVIA (2, 7), and DYVIA (3, 8),
with V =3 and K=3. Each combination corresponds to a set L inside Λ (1, 6), Λ (2, 7), or Λ (3, 8) to assign
in I2, for which DYVIA evaluates the resulting energy, returning the minimum among all tested cases. Task
sets assigned to I2 in a combination are boxed in light-gray and the resulting sub-problems are colored in
dark-gray.

For the backtracking procedure, DYVIA simply stores the indexes of the combination that results in the
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minimum energy consumption for each sub-problem inside backtracking table DYVIAback-
tracking. For example,

in case that Combination 3 derives the best result for DYVIA (1, 9) in Figure 9.8, then DYVIA would store
{1, 8, 9} in entry DYVIAback-

tracking (1, 9). Once the algorithm finishes, in order to know the final assignment, we
look inside DYVIAback-

tracking (1, 9) to retrieve the indexes of the task sets that should be assigned to I3. Then,
we continue looking inside the backtracking table for the groups of unassigned consecutive task sets, which
in this case would mean to look inside DYVIAback-

tracking (2, 7) to retrieve the indexes of the task sets that should
be assigned to I2. This process is repeated until all task sets are assigned to their respective clusters. For
another example, in case Combination 4 would have derived the best result for DYVIA (1, 9) in Figure 9.8,
then DYVIA would store {4, 5, 9} in entry DYVIAback-

tracking (1, 9). For the retrieving process, after retrieving the
indexes from DYVIAback-

tracking (1, 9), we would need to look inside DYVIAback-
tracking (1, 3) and DYVIAback-

tracking (6, 8).

Due to Theorem 7, for this example with V = 3 and K = 3, DYVIA only checks among 6 potentially
optimal combinations when computing DYVIA (1, 9) through Equation (9.7), instead of the 28 brute-force
combinations for checking all possible assignments (already considering that S9 is always assigned to I3).

9.4.2 Complexity Analysis for the DYVIA Algorithm
In this section we analyze the total time complexity for building the dynamic programming table in Algo-
rithm 9. In order to compute DYVIA (1,M), all the possible combinations that satisfy Theorem 7 need to
be considered. This can be considered equivalent to choosing V − 1 groups of K task sets from a set of
(V−1)K

K + K − 1 task sets, which results in a total of
(
K+V−2
V−1

)
combinations that have to be evaluated.

Similarly, the total number of combinations that have to be evaluated for the resulting i ·K sub-problems with
(V − i)K task sets is

(
K+V−2−i
V−1−i

)
, for all i = 1, 2, . . . ,V − 1. Therefore, the total number of combinations

that needs to be evaluated when building the dynamic programming table, denoted as DYVIA#combinations, is

DYVIA#combinations =

(
K + V − 2

V − 1

)
+K

V−1∑
i=1

i

(
K + V − 2− i

V − 1− i

)
or

DYVIA#combinations =

(
K + V − 2

K − 1

)
+K

V−1∑
i=1

(V − i)

(
K − 2 + i

K − 1

)
.

By applying the Hockey-Stick Identity and Pascal’s rule [46], these last expressions can be rephrased as

DYVIA#combinations =

(
K + V − 2

K − 1

)
+K

(
K + V − 1

K + 1

)
or

DYVIA#combinations =

(
K + V − 2

V − 1

)
+K

(
K + V − 1

V − 2

)
.

Furthermore, given that the number of combinations for binomial coefficient
(
a
b

)
is upper bounded by

(
e·a
b

)b
,

where e is Euler’s number, we have that

DYVIA#combinations ≤
(
e (K + V − 2)

K − 1

)K−1

+K

(
e (K + V − 1)

K + 1

)K+1

or

DYVIA#combinations ≤
(
e (K + V − 2)

V − 1

)V−1

+K

(
e (K + V − 1)

V − 2

)V−2

.

Finally, the total time complexity of DYVIA is min
{
O
(

(e·V )K+1

KK

)
,O
((

e·K
V

)V−1
)}

, which is polyno-
mial when either V or K are constant (which is the case for a fixed architecture, e.g., Intel’s SCC), and is
more efficient than the greedy algorithm presented in Section 9.3.2.
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9.4.3 Optimal Task Set Assignment Under SFA vs. Optimal DVFS
Although DYVIA derives the optimal task-set-to-cluster assignment with respect to energy consumption when
using SFA to decide the DVFS levels on individual clusters, there may exist different assignments that result
in a lower energy consumption when each individual cluster is free to use any DVFS algorithm, e.g., the
accelerating DVFS schedule based on the deep sleeping property (every core is put to sleep after executing all
the workload in its ready queue) presented by Yang et al. [109] (discussed and illustrated in Chapter 2.2.2).
Therefore, in this section we analyze the approximation factor of DYVIA under SFA, against the optimal task
set assignment under an optimal DVFS algorithm.

For such a purpose, suppose that AFenergy
SFA is the approximation factor (by definition, the worst case) of

SFA against the optimal DVFS schedule for the task sets assigned on a single cluster. Moreover, we define
different total energy consumptions as EDVFS=SFA

ASG=DYVIA, EDVFS=optimal
ASG=DYVIA , EDVFS=SFA

ASG=optimal DVFS, and EDVFS=optimal
ASG=optimal DVFS,

where DVFS=SFA implies that SFA is used to decide the DVFS levels on individual clusters, DVFS=optimal implies
that an optimal DVFS algorithm is used to decide the DVFS levels on individual clusters, ASG=DYVIA implies
that task sets are assigned to clusters using DYVIA, and ASG=optimal DVFS implies that task sets are assigned
to clusters using an algorithm which is optimal when used in combination with an optimal DVFS algorithm
to decide the DVFS levels on individual clusters. From these definitions, the optimal energy consumption
is clearly EDVFS=optimal

ASG=optimal DVFS. When using DYVIA to assign task sets to clusters, it holds that EDVFS=optimal
ASG=DYVIA ≤

EDVFS=SFA
ASG=DYVIA, from the definition that the optimal DVFS strategy is adopted. Additionally, give that DYVIA

is optimal if individual clusters use SFA and any other task set assignment solution will consume the same or
more energy, it also holds that EDVFS=SFA

ASG=DYVIA ≤ EDVFS=SFA
ASG=optimal DVFS. Furthermore, according to the definition of the

approximation factor for the energy consumption of SFA in a single cluster, it holds that EDVFS=SFA
ASG=optimal DVFS ≤

AFenergy
SFA · EDVFS=optimal

ASG=optimal DVFS. Finally, combining these three inequalities, the approximation factor of the total
energy consumption for DYVIA under SFA, against the optimal task set assignment under an optimal DVFS
algorithm, is presented in Equation (9.8).

EDVFS=optimal
ASG=optimal DVFS ≤ EDVFS=optimal

ASG=DYVIA ≤ EDVFS=SFA
ASG=DYVIA ≤ EDVFS=SFA

ASG=optimal DVFS ≤ AFenergy
SFA · EDVFS=optimal

ASG=optimal DVFS

⇒ EDVFS=SFA
ASG=DYVIA ≤ AFenergy

SFA · EDVFS=optimal
ASG=optimal DVFS

(9.8)

Therefore, for energy minimization, the approximation factor of DYVIA under SFA, against the optimal
task set assignment under an optimal DVFS algorithm, is the same as the approximation factor of SFA for
energy minimization on a single cluster, which we have already studied in detail in Chapter 8, with the
corresponding results presented in Theorem 1 and Theorem 2, and illustrated in Figure 8.12. In this way,
Equation (9.8) extends the theoretical analysis presented in Chapter 8 in order to consider systems with
multiple clusters/voltage islands.

9.5 Experimental Evaluations on SCC
This section presents experimental evaluations conducted on Intel’s Single Chip Cloud computer (SCC).
We compare the resulting energy consumption and the required execution time of the heuristic algorithms
presented in Section 9.2, i.e., CCH, BUH, and EOH (with 200 iterations for seeking improvement from the
current solution, using CCH as initial solution), against our dynamic programming algorithm, i.e., DYVIA.

9.5.1 Setup
The experiments are conducted on Intel’s Single Chip Cloud computer (SCC) [36], a research platform that
integrates 48 cores on a single chip, where the individual IA (P54C) cores can run at frequencies between
100MHz and 800MHz. In Intel’s SCC, the cores are clustered into groups of eight cores sharing a common
voltage, while the frequency can be selected every two cores (i.e., a tile), such that there can be up to four
different frequencies inside every cluster of eight cores sharing a voltage. The voltages of the clusters and the
frequencies of the cores are managed through the Voltage Regulator Controller (VRC), which also provides
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users with the ability to read the instantaneous current consumption and voltage on every cluster, from which
we can infer the total power consumed in every cluster. A figure illustrating a block-diagram of SCC is
presented in Figure 9.10. Intel’s SCC runs a single-core Linux (kernel version 3.1.4) on every core.

Frequency Voltage

MC

MC

MC

MC

VRC System
Interface

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

Figure 9.10: Block-diagram of Intel’s SCC ar-
chitecture [36], with two IA (P54C) cores per
tile, one router (R) associated with each tile,
four memory controllers (MC) for off-die (but
on-board) DDR3 memory, and a Voltage Regu-
lator Controller (VRC) to set the voltages of the
clusters and the frequencies of the cores.

Given that algorithms EOH and DYVIA internally compute the expected energy consumption of different
task sets assignments in order to compare their energy efficiency, they both need a power consumption mod-
el/profile of the system. For such a purpose, we conduct experimental measurements on SCC to obtain such
power consumption profile, and the results are presented in Figure 9.11. The figure shows all the available ex-
ecution frequencies, their corresponding minimum voltages for stable execution1, together with the measured
idle power2 and execution power consumptions for all 48 cores. Some error is present in this power profile.
Part of it is due to the resolution of the voltage and current meters inside SCC (around 0.3W resolution), but
mostly because our SCC platform has one faulted core, and it is not possible for us to estimate the power
consumption of this core for every frequency.
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Frequency Min. Voltage Idle Power Execution Power
100MHz 0.8V 19.237213W 22.441350W
106MHz 0.8V 19.402374W 22.538383W
114MHz 0.8V 19.402374W 22.867801W
123MHz 0.8V 19.468439W 23.165997W
133MHz 0.8V 19.468439W 23.560321W
145MHz 0.8V 19.763666W 24.119624W
160MHz 0.8V 19.794633W 24.584324W
178MHz 0.8V 19.864827W 25.348004W
200MHz 0.8V 20.129086W 26.168786W
228MHz 0.8V 20.391280W 27.293623W
266MHz 0.8V 20.756701W 28.771025W
320MHz 0.8V 21.280769W 30.674611W
400MHz 0.8V 21.811671W 33.449853W
533MHz 0.8V 23.132058W 38.052265W
800MHz 1.1V 44.549986W 84.395704W

Figure 9.11: Experimental power consumption profile for Intel’s SCC.

Moreover, Figure 9.11 shows that if a core configured to execute at a high frequency is idle, it would
consume more energy than an idle core that is configured to execute at a low frequency. However, given that
it is not possible to shut down cores or clusters on the SCC, the 19.237W of idle power consumption for
always having all clusters active and all cores idle at 100MHz is an offset that no algorithm can improve.
Hence, for this power consumption profile, when algorithm EOH or DYVIA internally compute the expected

1In The SCC Programmer’s Guide v1.0, the minimum voltage for stable execution bellow 460MHz is said to be 0.7V. However, in
the RCCE manycore message passing library v2.0 provided with SCC, this was changed to 0.8V due to stability problems.

2The changes in the idle power for different frequencies, seen in Figure 9.11, are due to background processes of the operating system.
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energy consumption of different task sets assignments, we consider the values of fcrit and η both to be zero
in Equations (9.1), (9.6) and (9.7). Furthermore, in the reported results of our experimental evaluations,
this 19.237W offset is subtracted from the measurements to fairly compare the effective performance of the
different evaluated algorithms.

With regards to the tasks, we consider two different single-threaded benchmarks: (1) a Fast Fourier
Transform (FFT) digital filter, and (2) an edge detection algorithm for images. Every instance of a benchmark
represents one task, and every task is periodically executed in the assigned core. For each task instance of
the FFT benchmark, the input for the FFT filter consist of a discrete signal composed of 105 samples, at a
sampling rate of 100 kHz, of two sine waves added together (specifically, 5 kHz and 12 kHz) plus different
random noise for every run. For the tasks using the edge detection algorithm, the input is a 640×480 pixels
.bmp image, randomly chosen for every period among a database of 2500 pictures. Namely, for all tasks using
one type of benchmark, the input is randomly chosen for every period; however, the size of the input remains
constant. This is intentionally done in order to allow us to obtain a lower-bound for the worst-case execution
cycles of both benchmarks through experimental measurements on the SCC. Particularly, we execute both
benchmarks 103 times at every available DVFS level on SCC, and we use the highest measured value for each
benchmark as the lower-bound for the worst-case execution cycles for each frequency (a summary of these
experimental measurements is presented in Figure 9.12). In this way, we are able to account for the effects
of cache misses and memory access latencies, whose access time is not scaled when the frequency of a core
changes. Namely, for a given benchmark type, this implies that the worst-case execution cycles of all task
instances of this benchmark type are equivalent for two tasks that are executing at the same frequency, but
that is different for two tasks that are executing at different frequencies. In order to obtain different cycle
utilizations for different tasks, the period in which the benchmarks are executed is set according to the desired
cycle utilization by considering the measured worst-case execution cycles.

Figure 9.12: Measured ex-
perimental execution cy-
cles of the benchmarks
used for the evaluations
on SCC. Every bar repre-
sents the average execution
cycles for the given fre-
quency (among 103 runs).
The error bars represent the
minimum and maximum
(worst-case) measured exe-
cution cycles.
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Given that our SCC platform has one faulted core, there are only 47 available cores in the platform for our
experiments. In order to evaluate the energy efficiency of the evaluated algorithms for different task sets, 12
arbitrary cases are considered. Each one of the 12 cases consists of 200 tasks with different cycle utilizations,
specifically, 100 tasks of each benchmark type. The tasks are partitioned using LTF with M? = 47 (all
the available cores on our SCC). Since the benchmarks are single-threaded applications, no communication
between cores is needed after the task sets are assigned onto cores. We have integrated all the task set
mapping algorithms as a software written in C++ that runs on a single core. Each algorithm decides the task
set assignment, configures the voltage of the clusters and the frequencies of the cores according to SFA, and
finally executes the benchmarks on the corresponding cores. Given that the purpose of this experiment is to
evaluate the energy efficiency of the resulting task set assignment, we measure the total energy consumed by
all clusters in the SCC chip during 100 s after triggering the execution of the benchmarks.

9.5.2 Measurement Errors
The experimental energy consumption measurements later reported in Section 9.5.3 are obtained through
the integration of power measurements. Namely, the power consumption of all cores is measured (sampled)
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every 1ms, the total measured power is multiplied by the time elapsed since the previous measurement, and
this energy consumption value is then added to the total measured energy consumption. Furthermore, for a
given task set assignment, we can easily compute the expected energy consumption through Equation (9.1),
by considering the experimental lower-bound for the worst-case execution cycles of each task (as shown in
Figure 9.12), and the same power profile used by EOH and DYVIA to estimate the energy consumption (i.e.,
the power profile based on experimental measurements presented Figure 9.11). Naturally, for a given task set
assignment, we can expect that there will exist some difference between the measured energy consumption
and the expected energy consumption. These differences are mainly due to the resolution of the voltage
and current meters inside SCC, the presence of one faulted core in our SCC platform, the actual execution
cycles taken for a task instance to finish (which could be different from the expected worst-case execution
cycles), and the intrinsic integration error from the 1ms resolution in which we measure the total power when
computing the consumed energy.

Particularly, the voltage and current meters inside SCC have a resolution of 0.3W for every power mea-
surement. As already mentioned in Section 9.5.1, this resolution will result in some error when obtaining the
power profile in Figure 9.11, as well as in errors on the energy measurements later reported in Section 9.5.3.
The faulted core results in additional error for all measurements, given that it adds noise to the power measure-
ments, and this noise cannot be easily filtered out. Moreover, a difference between the actual execution cycles
of the tasks and our experimental lower-bound for the worst-case execution cycles (for which the expected
energy consumptions are computed) will have a clear impact in the energy consumption values. This occurs
because energy is the integration of power through time, and changes in the execution time result in changes
in the final energy consumption. Finally, as shown in the abstract example in Figure 9.13, integration error
is intrinsic to any digital energy consumption measurement in which the energy consumption is indirectly
computed by measuring power and time. Namely, energy is the integration of power through time, where
power and time are continuous magnitudes. Nevertheless, both power and time can only be measured and
quantified by discrete values, with a given resolution for each case. For example, in our experimental setup,
we are unable to measure time at intervals shorter than 1ms.
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Figure 9.13: Abstract exam-
ple of the integration error
intrinsic to digital energy
measurements indirectly
computed by measuring
power and time. The changes
in power occur every 10 μs;
however, the measurement
sample period is 1ms. In
this example, the resulting
measured energy is 1.66%
higher than the actually
consumed energy.

9.5.3 Results

For each one of the 12 cases of different benchmark utilizations, Table 9.1 presents the experimental mea-
surements of the total energy consumption on SCC, specifically, the average values among 10 consecutive
executions during 100 s each, as well as the associated expected energy consumption values (defined in Sec-
tion 9.5.2). The experimental energy consumption values shown in Table 9.1 are obtained through the inte-
gration of power measurements, as explained in Section 9.5.2.

Naturally, given that DYVIA results in the optimal task set assignment when using SFA on individual
clusters, the expected energy consumption of DYVIA is always the lowest among all algorithms. However,
for configurations where the heuristics provide good results, the experimental measurements may show values
where DYVIA has a higher energy consumption, nevertheless, this effect is only due to the measurement
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Table 9.1: Experimental mea-
surement results of the total en-
ergy consumption on SCC. For
each one of the 12 cases of
different benchmark utilizations
and for every evaluated algo-
rithm, the table shows the aver-
age energy consumption among
10 consecutive executions last-
ing 100 s each, as well as the
associated expected energy con-
sumption values.

12 Expected Energy Consumption [J] Measured Energy Consumption [J]
cases
1

2

3

4

5

6

7

8

9

10

11

12

CCH BUH EOH DYVIA
1066.3 1066.3 1066.3 1004.5

1085.6 1085.6 1085.6 1024.8

2144.8 2572.3 2144.8 2045.1

1070.9 1070.9 1070.9 1013.6

773.4 773.1 773.4 766.4

2181.9 2620.0 2181.9 2093.0

952.5 931.2 931.6 895.6

950.8 940.1 920.8 894.3

2120.4 2120.4 2026.0 2013.8

2081.9 2557.3 2081.9 2006.1

854.0 854.0 797.6 777.5

890.4 890.4 798.0 797.9

CCH BUH EOH DYVIA
1072.4 1066.3 1067.4 996.1

1050.3 1073.1 1072.9 1009.3

2068.9 2425.9 2057.3 1913.4

993.9 1029.8 990.5 961.9

787.4 798.5 771.9 811.8

2090.6 2373.6 2085.8 1981.5

943.1 919.0 933.5 882.9

941.3 916.9 922.5 888.6

2091.8 2074.5 1896.5 1974.7

2001.8 2450.4 1999.4 1820.0

744.6 751.5 713.4 728.6

904.7 883.1 810.3 800.8

errors discussed in Section 9.5.2. Specifically, the measured energy consumption values shown in Table 9.1
show a 3.62% error (in average) with respect to the expected energy consumption values.

Furthermore, for each one of the 12 cases presented Table 9.1 (expected and measured), we compute the
ratios between the energy consumption of the heuristics and the energy consumption of DYVIA, and present
the summarized results in Table 9.2. In this way, Table 9.2 presents the minimum, average, and maximum
ratios (among the 12 cases) between the energy consumption of each heuristic and the energy consumption of
DYVIA, where we can observe that the measured energy ratios are quite similar to the expected energy ratios.

Table 9.2: Summary of the experimental
energy ratios between the (expected and
measured) energy consumption of each
heuristic and the energy consumption of
DYVIA.

Algorithm

CCH
BUH
EOH

Expected Energy Ratio
Min. Avg. Max.
1.0092 1.0591 1.1159

1.0088 1.1107 1.2748

1.0002 1.0348 1.0615

Measured Energy Ratio
Min. Avg. Max.
0.9700 1.0579 1.1297

0.9837 1.1048 1.3464

0.9509 1.0324 1.0986

Finally, we conduct a separate experiment to measure the required average execution time of each task
set assignment algorithm on SCC running at 533MHz. All four algorithms need to configure the voltages of
the clusters, configure the frequencies of the cores, and assign the task sets onto cores. Therefore, we only
measure the execution time of the mapping decision process. Every algorithm is executed 104 times, resulting
in an average execution time of 0.03ms for CCH, 0.34ms for BUH, 220.52ms for EOH, and 225.78ms for
DYVIA.

9.6 Additional Experimental Evaluations

This section presents simulations for hypothetical platforms with different number of clusters and different
number of cores per cluster, such that we can analyze the energy efficiency and execution time of CCH, BUH,
EOH, and DYVIA in a more general way.

9.6.1 Setup
In order to observe the effects of the number of clusters and the number of cores per cluster on the energy
efficiency and on the execution time of the evaluated algorithms, in this section, the simulations are conducted
considering twelve hypothetical platforms with different V and K values, specifically, the platforms resulting
from the combinations of V = {2, 4, 6} and K = {2, 4, 6, 8}. The simulations are conducted on a single core
of SCC, where again the task set mapping algorithms are integrated as a software written in C++ that runs
on a single core. The main difference between the simulations conducted in this section and the experiments
conducted in Section 9.5 is that here, after each algorithm decides the assignment of the task sets to cores
and clusters, instead of actually executing the benchmarks in the corresponding cores and measuring the

138



consumed energy, the energy consumption is simply computed through Equation (9.1) by considering a power
consumption profile, i.e., we compute the expected energy consumption as described in Section 9.5.2.

Given that we would also like to test the algorithms in systems with richer DVFS and DPM features than
SCC, rather than using the power profile from Figure 9.11, we consider a power consumption profile derived
from the experimental results in [30] (a research paper of a customized version of SCC with additional DVFS
and DPM capabilities). Figure 12 (Frequency vs. voltage) and Figure 13 (Measured power vs. voltage) from
[30] have already been summarized and presented in Figure 3.4a and Figure 3.4b in Chapter 3.3. Furthermore,
Chapter 3.3 also approximated the results in Figure 3.4a using a quadratic function, and this quadratic function
was used to relate the power values from Figure 3.4b with different frequency settings. In this way, we
derived a power consumption profile which was presented in Figure 3.4c. For easy reference, the results from
Figure 3.4c are summarized here in Table 9.3 (for all 48 cores running together at the same DVFS levels).
Note that, instead of using our simulation framework based on gem5 and McPAT as described in Chapter 4,
in this section we use the power profile from Table 9.3 in order to have results that are more related to the
practical results for SCC already presented in Section 9.5.

Frequency Execution Energy for executing 108 computer
Power cycles simultaneously in all cores

242.7MHz 25.38W 10.46 J
464.5MHz 37.26W 8.02 J
686.7MHz 50.76W 7.39 J
851.6MHz 70.73W 8.31 J
936.6MHz 91.25W 9.74 J

1016.9MHz 110.15W 10.83 J
1077.8MHz 125.27W 11.62 J
1177.0MHz 161.99W 13.76 J
1267.0MHz 201.40W 15.90 J

Table 9.3: Power consumption profile de-
rived from the measurements presented in
[30] for a customized version of SCC with
richer DVFS and DPM features. Given that
for a constant number of executed cycle,
the minimum energy consumption is found
at frequency 686.7MHz, this frequency is
the critical frequency for this power profile.

For our simulations, we consider the frequencies shown in Table 9.3 as the available execution frequencies
for the cores, and divide the total execution power by 48 to obtain the power consumed by every individual
core. Furthermore, Table 9.3 also shows the total energy consumption for executing 108 computer cycles
(simultaneously in all 48 cores) at each corresponding frequency. Given that for a constant number of executed
cycles, the minimum energy consumption is found at frequency 686.7MHz, this frequency is the critical
frequency for such a power profile. Therefore, when considering this power profile, SFA will never execute
at a frequency under 686.7MHz, because even though doing so might still meet the timing constraints of all
tasks in a cluster, it would consume unnecessary energy. Finally, since the work in [30] makes no reference
to the power consumed by a cluster for been active, we assume that η = 0.

In regards to DPM, we consider that the cores can be put to a low-power mode when they have no workload
to execute in their ready queues. As discussed in Section 9.1.1, we assume that when a core is in such
a low-power mode it consumes κsleep power. Similar to the experimental measurements from Section 9.5,
the power consumption for having all the cores in the low-power mode (i.e., κsleep ·M ) is an offset that no
algorithm can improve. Therefore, in the simulations we set κsleep = 0, to fairly compare the effective energy
efficiency of the different algorithms.

For every hardware configuration (i.e., for every combination of V and K), we consider 100 different
random cases of synthetic tasks. For each case, the total amount of tasks, denoted as R, is randomly chosen
between M and 10 ·M , and the the cycle utilizations and periods of the tasks are also randomly chosen. The
tasks are partitioned using the LTF strategy described in Chapter 8. We consider two different policies to
choose the number of task sets in which to partition task with LTF (i.e., the value of M?). For the first policy,
we partition the R tasks into M? = M task sets using LTF, such that all the available cores are used. For
the second policy, we partition the R tasks into M? = 1, 2, . . . ,M task sets using LTF, then we execute the
corresponding task set assignment algorithm for each different resulting task partition (considering M −M?

dummy task sets), and finally choose the task partition that results in the lowest overall energy consumption for
the corresponding algorithm. Clearly, the second policy incurs in higher time complexity, but can potentially
save more energy.
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9.6.2 Results
First, we conduct the same experiment as done in Section 9.5.3 to measure the required average execution
time of each task set assignment algorithm on SCC running at 533MHz, for the twelve hypothetical platforms
with different V and K values. Similar to Section 9.5.3, we only measure the execution time of the mapping
decision process, and we take the average among 104 executions for each algorithm, as shown in Figure 9.14.
As expected, heuristics CCH and BUH complete their executions very quickly due to their low complexity.
As for EOH and DYVIA, the average execution time increases when the number of K or the number of V
increases. However, DYVIA proves to be much faster than EOH in all the evaluated cases, except when
V = 6 and K = 8 (i.e., the case of SCC), where EOH and DYVIA have similar execution times.
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Figure 9.14: Experimental results on SCC (running at 533MHz) of the average execution time of the evaluated
task set mapping algorithms, for twelve hypothetical platforms with different V and K values.

Secondly, Figure 9.15 presents the simulation results for energy efficiency when all the four algorithms
consider only one task partition obtained with LTF by using all the available cores (i.e., when M? = M ). In
Figure 9.15, for every different hypothetical platform, the simulation results are shown as ratios between the
energy consumption of a specific heuristic and the energy consumption of DYVIA. Given that we consider
100 different cases (in regards to the tasks) for each platform, the maximum and minimum energy consump-
tion ratios (among the 100 cases) are shown by vertical lines, while the bars represent the average energy
consumption ratios.

As expected, since DYVIA derives the optimal task set assignment when using SFA on individual clusters
and thus the heuristics never consume less energy than DYVIA, the simulation results in Figure 9.15 show
that the minimum energy consumption ratio is never lower than 1. In the average cases, we observe that all
heuristics actually behave rather well, resulting in an average energy consumption ratio for all heuristics of at
most 1.0295. In regards to the maximum energy consumption ratios, Figure 9.15 shows that the maximum
ratios increase as the value of K increases. This is an expected effect, given that lower K values imply that
the considered platform is closer to the ideal per-core DVFS architecture, and simple heuristics have higher
chances of providing reasonable solutions. Particularly, the maximum ratio can go up to 1.6507 for CCH
and BUH, and up to 1.1351 for EOH, which implies that even though the heuristics can behave well for the
average cases, there exist some corner cases for which DYVIA can save considerable amounts of energy.

Among all the evaluated cases, considering different number of cores for the task partitioning stage and
then choosing the partition that derives the lowest energy consumption resulted in insignificant improvements,
even at the cost of higher time complexity. Therefore, we omit the figures where all algorithms iterate through
M? = 1, 2, . . . ,M possible partitions, as they have no visible difference with Figure 9.15.

9.7 Summary
When using SFA to decide the DVFS levels on individual clusters, this chapter has presented several algo-
rithms to solve the multiple voltage island assignment problem. Particularly, we have presented two simple
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Figure 9.15: Simulation results for energy efficiency for twelve hypothetical platforms with different V and
K values, where the range of the energy consumption ratios of a configuration (normalized to the energy
consumption of DYVIA) is shown by the vertical line and the bar represents the average energy consumption
ratio (among the 100 evaluated cases). All four algorithms partition tasks with LTF by using all the available
cores (i.e., M? = M for each configuration).

and intuitive mapping heuristics, and we have also theoretically analyzed the worst-case efficiency of these
heuristics for energy minimization. Furthermore, we developed the DYVIA algorithm based on dynamic pro-
gramming, which derives optimal task set mapping solutions in terms of energy minimization for any task
partition. Based on the approximation factor of SFA for single clusters (presented in Chapter 8), we have the-
oretically analyzed the approximation factor of mapping task sets with DYVIA when using SFA on individual
clusters, which results in the same approximation factor as that of SFA for single clusters.

We have evaluated the energy efficiency and average execution time of the heuristic algorithms and
DYVIA on Intel’s SCC, for which DYVIA derives solutions resulting in the minimum energy consump-
tion among all the evaluated cases, by taking on average no longer than 225ms to execute. Nevertheless, due
to the limited available supply voltages for stable executions in SCC (as shown in Figure 9.11), and the lack
of DPM capabilities to put cores in low-power modes, in the experiments the heuristics consume only up to
1.35 times more energy than DYVIA.

Additionally, we conduct further simulations for twelve hypothetical platforms with different combina-
tions for the number of clusters and the number of cores per cluster, as well as richer DVFS and DPM features
than the standard SCC. The simulation results show that for such platforms, the heuristics behave well for the
average cases. However, for the worst cases, the heuristics can consume up to 1.65 times more energy than
DYVIA, and this value increases with the number of cores per cluster.

In this chapter we have also proven that the total time complexity of DYVIA is exponential with respect to
the number of clusters or the number of cores per cluster, and polynomial if either value is a constant (which
is generally the case for commercial manycore systems). Given that DYVIA is optimal under SFA, it is the
best choice to map task sets to cores and clusters, as long as its execution time is within tolerable limits. For
systems with a large number of cores per cluster (for which DYVIA might require a long execution time), the
simple heuristic CCH can be adopted, as it provides reasonable solutions in terms of energy consumption for
the general cases with extremely low complexity.

Finally, Chapter 10 removes some of the limiting assumptions made in this chapter. Namely, Chapter 10
focuses on the same problem as this chapter, but it considers heterogeneous systems, assuming different
average power consumptions for different types of tasks, and considering the raw set of tasks as an input
(instead of already partitioned tasks, i.e., given tasks sets, as an input, as done in this chapter). Nevertheless,
adding this additional complexity to the problem denies us the possibility of deriving optimal assignment
properties (like those presented in this chapter, which are the basis for our DYVIA algorithm), and therefore
Chapter 10 focuses on deriving a reasonable heuristic algorithm, rather than an optimal solution like DYVIA.
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Chapter 10

Energy-Efficient Task-to-core Assignment for Het-
erogeneous Clustered Manycores

10.1 Overview

As discussed in Chapter 1.2.1, heterogeneous multicore and manycore systems are a promising alternative
for power and energy efficiency over their homogeneous counterparts, as an application’s thread/task may
witness large improvements in computational performance and/or power when mapped to an appropriate type
of core. Given that the cores inside a cluster have to share a common voltage at any given time point, having a
system in which a cluster is composed of different types of cores is not power/energy efficient for most cases,
as different types of cores may use different voltages even when executing at the same frequency. Therefore,
throughout this dissertation (and in this chapter) we focus on architectures in which the cores inside a cluster
are homogeneous, but different clusters can have different types and numbers of cores, i.e., heterogeneous
clusters. An example of such a platform is the Exynos 5 Octa (5422) processor based on ARM’s big.LITTLE
architecture [21], with a simple block diagram already shown in Figure 1.6 in Chapter 1.2.1.

Because of the power and performance heterogeneity of the clusters, the power consumption and execution
time of a thread/task changes not only with the DVFS settings, but also according to the task-to-cluster
assignment. Moreover, given that different tasks execute different types of instructions and have different
behaviors in regards to memory accesses, executing different tasks on a given core and given DVFS levels
might anyway result in different average power consumptions, as already seen in Figure 1.3 in Chapter 1.1.2.
Hence, task partitioning, task-to-core mapping, DVFS, and DPM play a major role in energy minimization.
For periodic performance-constrained applications or real-time tasks, obtaining a task partition that results in
the minimum energy consumption (i.e., the optimal task partition for energy minimization) is known to be
an NP-hard problem [3, 18], meaning that efficient but lightweight solutions are needed. Nevertheless, the
state-of-the-art solutions [18, 24, 53, 65] remain inefficient in terms of energy minimization, as they fail to
properly handle the existence of heterogeneous clusters.

In this chapter, we present efficient and lightweight algorithms [78] focusing on overall energy minimiza-
tion for periodic real-time tasks (or performance-constrained applications) running on clustered multi-
core/manycore systems with heterogeneous voltage/frequency islands, in which the cores in a cluster are
homogeneous and share the same voltage and frequency, but different clusters may have different types and
numbers of cores and can be executed at different voltages and frequencies at any point in time. Further-
more, unlike most state-of-the-art [18,24,53,65] and our DYVIA algorithm presented in Chapter 9, in this
chapter we consider that different tasks may consume different average power values, even when running
on the same core and at the same DVFS levels.

The proposed techniques consist on the coordinated selection of the DVFS levels on individual clusters
(particularly, using the SFA scheme described and analyzed in Chapter 8), together with a task partitioning
strategy that considers the energy consumption of every task executing on different clusters and at different
DVFS levels, as well as the impact of the frequency and the underlying core architecture to the resulting
execution time. Every task is then mapped to the most energy-efficient cluster for the selected DVFS levels,
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and to a core inside the cluster such that the workloads of the cores in a cluster are balanced and all tasks meet
their deadlines. In particular, for periodic real-time tasks in heterogeneous clusters:

• For the special case in which the execution cycles of all tasks scale by constant factors between different
types of cores, and with the simplifying assumption that tasks consume equal power when running on
the same core and at the same DVFS levels, when we have a given task partition and given DVFS levels
for the clusters as inputs, we derive an optimal polynomial-time task set assignment algorithm for energy
minimization under SFA.

• For the same special case as in the previous point and based on observations from its solution, we derive
an efficient task partitioning and DVFS level selection algorithm for energy minimization when the task
partition and DVFS levels of the clusters are not given.

• Finally, we extend the previous algorithms to consider the general case in which there is no relation between
the execution cycles of a task executing in different clusters, and different tasks consume different average
power even when running on the same core and at the same DVFS levels.

10.1.1 Motivational Example
For simplicity of presentation, consider a system with two types of cores in 22 nm technology: a high per-
formance/power out-of-order (OOO) Alpha 21264 core, and a low performance/power simple in-order Alpha
21264 core (both detailed in Chapter 4). Moreover, consider an x264 application from the PARSEC bench-
mark suite (as detailed in Chapter 4.3), for which every application instance runs in a single thread and needs
to be computed under 6 s in this example. Intuitively, one could simply assume that in order to reduce the
average power consumption and to save energy, the application should be mapped to the low power core while
satisfying its timing constraint; however, this is not always the case. According to Figure 1.1 in Chapter 1.1.1
and Figure 1.3 in Chapter 1.1.2, we can observe that in order for the application to meet its deadline, it should
run at least at 0.6GHz when assigned to an OOO Alpha core, finishing in 5.46 s and resulting in an average
power consumption of 0.31W. Similarly, according to Figure 1.1 and Figure 1.3, the application should run
at least at 4.0GHz if assigned to a simple Alpha core, finishing in 5.72 s and resulting in an average power
consumption of 1.27W. From Figure 1.3, the corresponding energy consumption values are 1.67 J for the
OOO Alpha core, and 7.27 J for the simple Alpha core. In this way, to just meet its deadline, this x264 ap-
plication consumes less energy when assigned to an OOO Alpha core than when assigned to a simple Alpha
core, which is not necessarily intuitive. This occurs because the OOO Alpha cores perform better than the
simple Alpha cores and thus require slower frequencies to compute the same workload in the same time,
which in this case considerably reduces the average power consumption of the application.

Therefore, in order to minimize the energy of performance-constrained applications or real-time tasks, the
system should take into account the power consumption of different cores running at different DVFS levels,
as well as the impact of the frequency and the underlying core architecture on the resulting execution time.

Moreover, since the solutions for homogeneous clusters [24, 53, 65, 72, 107] will not necessarily derive
good solutions for the general case, and since the state-of-the-art solutions for heterogeneous clusters [18,63]
are not yet in a mature state, obtaining an energy-efficient algorithm for periodic real-time tasks on clustered
heterogeneous multicore system with multiple voltage/frequency islands remains an open problem.

10.1.2 Problem Definition
As described in Chapter 3.2, we focus on a heterogeneous multicore/manycore system clustered in multiple
voltage islands in which there are Q types of cores, V clusters, at least one cluster for each type of core (i.e.,
Q ≤ V ), every cluster k is composed of M cluster

k cores, there are in total M cores in the chip among all types
of cores (i.e., M =

∑V
k=1 M

cluster
k ), the cores in cluster k are denoted as Ck,1,Ck,2, . . . ,Ck,M cluster

k
, and we

identify the type of core of each cluster through indexes Q�
1 ,Q

�
2 , . . . ,Q

�
V (i.e., if cluster k is composed of

cores of type q then we have that Q�
k = q). Moreover, with respect to DVFS we assume that all the cores

inside a cluster share a common voltage and frequency, and that every core of type q has F̂ type
q available

frequencies, denoted as
{
F type
q,1 ,F type

q,2 , . . . ,F type
q,F̂ type

q

}
, such that F type

q,F̂ type
q

is the maximum frequency for a core of
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type q. As done everywhere else in this dissertation, for running the cores in a cluster at a desired frequency,
the voltage of the cluster is implicitly set to the minimum value that supports stable execution.

As described in Chapter 3.3, the average power consumption for executing a task on a certain cores
depends on the specific task under execution, on the type of core in which the task is executed, and on
chosen DVFS levels. Particularly, the average power consumed on a core of type q while executing one
instance of task τn at frequency index j (such that 0 ≤ j ≤ F̂ type

q ), is denoted as P τn
q

(
F type
q,j

)
. For example,

Figure 1.3 in Chapter 1.1.2 shows average power consumption values of five applications from the PARSEC
benchmark suite [4], where it can be clearly observed that different applications have different average power
consumptions, even when running on the same type of core and at the same DVFS levels.

Similar to Chapter 8 and Chapter 9, when a core finishes executing all the workload available in its ready
queue, it has to wait until more workload arrives. During this waiting interval, the core is not executing any
task, and therefore it can enter a low-power mode (e.g., sleep, power-gated, etc.) that consumes P type

inactq ≥ 0
power for a core of type q. Note that not even the optimal solutions for energy energy minimization can
optimize for P type

inactq , as this is a constant power offset for every core that is always present, which results
in a constant energy consumption per time unit for the entire chip. Given that we can transfer the power
consumption P type

inactq to some other part of the system (e.g., to the system for being active), without loss of
generality and for simplicity of presentation, we can set P τn

q

(
F type
q,j

)
to P τn

q

(
F type
q,j

)
− P type

inactq , such that we
can disregard the effect of the power consumption of a core in a low-power mode. In this way, since not even
the optimal solution can optimize for P type

inactq , we only focus on the effective optimization region and we avoid
possible masking problems in systems with large P type

inactq values.
Task τn releases an infinite number of task instances with period (and relative deadline) dn, and every in-

stance has worst-case execution cycles eq,n when being executed on a core of type q. Therefore, as described
in Chapter 3.4, given that τn is executed D

dn
times during one hyper-period, when executing on a core of type

q running at frequency F type
q,j (such that 0 ≤ j ≤ F̂ type

q ), the total energy consumed by τn during one hyper-
period is denoted as Eτn

q

(
F type
q,j

)
, computed as already shown in Equation (3.4). Furthermore, Chapter 3.4

also discussed the existence of a critical frequency for every task and core type, which for task τn running
on a core of type q is denoted as fcrit

τn
q . Namely, for a given type of core, executing a task below its critical

frequency is not energy efficient, and it should therefore be avoided when the optimization goal is minimizing
energy, even if it reduces the power consumption and meets the timing constraints of the task.

Eτn
q

(
F type
q,j

)
=

D

dn
· P τn

q

(
F type
q,j

)
· eq,n
F type
q,j

(3.4 revisited)

After the tasks are partitioned and assigned to the clusters, a DVFS policy has to be adopted in order to
decide the DVFS levels for the individual clusters. For such a purpose, just as done in Chapter 9, here we
consider the simple and intuitive Single Frequency Approximation (SFA) scheme (presented in Chapter 8).
Furthermore, the objective of this chapter is to minimize the overall energy consumption while guaranteeing
that all instances of all tasks meet their deadlines (i.e., guaranteeing that all tasks meet their minimum cycle
utilizations). Therefore, considering Equation (3.4) and by using SFA to decide the DVFS levels on individual
clusters, the total energy consumption on cluster k during the hyper-period, defined as Ecluster

k , is expressed as

Ecluster
k =

D

F type
Q�

k ,hk

·
M cluster

k∑
i=1

 ∑
∀τn∈Ck,i

P τn
Q�

k

(
F type
Q�

k ,hk

)
·
eQ�

k ,n

dn

 (10.1)

such that

F type
Q�

k ,hk−1
≤

∑
∀τn∈Ck,i

eQ�
k ,n

dn
≤ F type

Q�
k ,hk

for all k = 1, 2, . . . ,V and all i = 1, 2, . . . ,M cluster
k

with 1 ≤ hk ≤ F̂ type
Q�

k

where indexes h1,h2, . . . ,hV represent the frequency indexes selected for all clusters, and where we define
F type
Q�

k ,0
= 0 for all k = 1, 2, . . . ,V for notational purposes. Namely, since cluster k is composed of cores of

type Q�
k , there are F̂ type

Q�
k

available frequencies in cluster k (reason why it should hold that 1 ≤ hk ≤ F̂ type
Q�

k

),
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the selected frequency for cluster k is F type
Q�

k ,hk
, and the value of eQ�

k ,n represents the worst-case execution
cycles of τn when being executed on cluster k. Moreover, in Equation (10.1), ∀τn ∈ Ck,i means “for all tasks

τn assigned to core Ck,i”, such that
∑

∀τn∈Ck,i

e
Q�

k
,n

dn
is the total cycle utilization of core Ck,i, which should

be less than or equal to the selected cluster frequency F type
Q�

k ,hk
in order to guarantee that all tasks in core Ck,i

meet their timing constraints. Finally, our overall objective translates to minimizing
∑V

k=1 E
cluster
k according

to Equation (10.1).

10.2 Assignment of Given Task Sets

This section presents an assignment property when using SFA on individual clusters, which is a generalization
from the property derived in Theorem 6 and Corollary 1 in Chapter 9.3.1 (the property from Chapter 9.3.1
is for the special case of homogeneous systems with the same number of cores in all clusters, e.g., Intel’s
SCC [36]). Furthermore, in this section we consider a few simplifying assumptions, specifically, we assume
that the DVFS levels on every cluster are fixed, that the tasks are already partitioned into task sets, that the
execution cycles of all tasks scale by constant factors between different types of cores, and that all tasks
consume equal power when running on the same core type and at the same DVFS levels. Although these are
clear limitations, the assignment property derived in this section is later used as a motivation for formulating
the more general algorithms in Section 10.3 and Section 10.4.

The simplifying assumptions considered in this section lead to a new and easier notation. Particularly,
having a constant scaling factor for the execution cycles in a type of core, defined as χq for core type q, we
have that the worst-case execution cycles of τn executing on core type q can be computed as eq,n = χq · ey,n
for all core types q = 1, 2, . . . ,Q and for all tasks n = 1, 2, . . . ,R, where ey,n are the worst-case execution
cycles of τn executing on an arbitrary reference type of core y, e.g., the lowest-power cores. In other words,
there is a constant ratio between the worst-case execution cycles of any task executed on core type q and any
task executed on reference core type y, and this relation holds for all core types q by considering different
scaling factors for each type of core, i.e., different χq for all q = 1, 2, . . . ,Q. Therefore, the cycle utilization
of task set Sg running on core type q, normally computed as wq,g =

∑
τn∈Sg

eq,n
dn

, can also be computed as
wq,g = χq · wy,g , where the cycle utilization of task set Sg running on reference core type y is computed
as wy,g =

∑
τn∈Sg

ey,n

dn
. Furthermore, since in this section we are also assuming that all tasks consume

equal power when running on the same type of core and at the same DVFS levels, we have that for core
type q running at frequency index j it holds that P τ1

q

(
F type
q,j

)
= P τ2

q

(
F type
q,j

)
= · · · = P τR

q

(
F type
q,j

)
and

fcrit
τ1
q = fcrit

τ2
q · · · = fcrit

τR
q , such that we can simply refer to this power consumption as Pq

(
F type
q,j

)
and to this

critical frequency as fcritq , i.e., ignore τn from this notation. Hence, from this new notation and Equation (3.4),
the energy consumption of task τn and the energy consumption of task set Sg during a hyper-period running on
core type q at frequency F type

q,j considering the simplifying assumptions on this section, defined as Ẽτn
q

(
F type
q,j

)
and Ẽ

Sg
q

(
F type
q,j

)
, respectively, are expressed as

Ẽτn
q

(
F type
q,j

)
= D · Pq

(
F type
q,j

)
·

χj

F type
q,j

· ey,n
dn

(10.2)

and

ẼSg
q

(
F type
q,j

)
= D · Pq

(
F type
q,j

)
·

χj

F type
q,j

· wy,g (10.3)

where we denote Pq

(
F type
q,j

) χj

F type
q,j

as the energy factor of core type q running at frequency F type
q,j .

According to the definition of the energy factor, when task set Sg can be mapped on two different types
of cores running at different frequencies, mapping it to the core type with the smallest energy factor for
the given frequencies will save more energy. This occurs because the energy factor not only considers
the power consumption of the core type at the given DVFS levels, but it also considers the impact of the
frequency and the underlying architecture to the execution time.
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With this new notation, we can present Lemma 18, which provides an important property for assigning
task sets to types of cores when the task sets are given and the DVFS levels of the clusters are known, as
illustrated in Figure 10.1. Following, based on Lemma 18, Theorem 8 derives an optimal task set assignment
when the DVFS levels of every type of core are known. Finally, Observation 1 summarizes the most important
concept from Lemma 18 and Theorem 8, which although it might seem intuitive, it is an observation based
on the formal mathematical proofs in Lemma 18 and Theorem 8.

Lemma 18 Consider two clusters with different types of cores, specifically, a cluster with cores of type j
running at frequency F type

j,zj
(i.e., at frequency step zj) and a cluster with cores of type g running at frequency

F type
g,zg (i.e., at frequency step zg). Moreover, consider task sets Sq and S`, such that task set Sq has a smaller

cycle utilization than task set S` (i.e., such that wy,q ≤ wy,`), and both task sets can be mapped either to the
cluster with cores of type j or to the cluster with cores of type g while satisfying their timing constraints (i.e.,
it holds that wj,q ≤ wj,` ≤ F type

j,zj
and wg,q ≤ wg,` ≤ F type

g,zg ). Under SFA for the given frequencies, assigning
task set S` to the cluster with cores of type j and task set Sq to the cluster with cores of type g consumes (1)
more or equal energy than the opposite assignment if the energy factor of the cores of type g is lower than the
energy factor of the cores of type j for the given DVFS levels, i.e., if Pj

(
F type
j,zj

)
· χj

F type
j,zj

≥ Pg

(
F type
g,zg

)
· χg

F type
g,zg

,

and it consumes (2) less or equal energy than the opposite assignment if the energy factor of the cores of type
j is lower than the energy factor of the cores of type g for the given DVFS levels, i.e., if Pj

(
F type
j,zj

)
· χj

F type
j,zj

≤

Pg

(
F type
g,zg

)
· χg

F type
g,zg

.

Proof. The energy for assigning task set S` to the cluster with cores of type j and assigning task set Sq to
the cluster with cores of type g can be computed as

Eoriginal
assignment = · · ·+D · Pj

(
F type
j,zj

)
·
χj · wy,`

F type
j,zj

+ · · ·+D · Pg

(
F type
g,zg

)
·
χg · wy,q

F type
g,zg

+ · · · ,

while the energy for assigning task set Sq to the cluster with cores of type j and assigning task set S` to the
cluster with cores of type g can be computed as

Eopposite
assignment = · · ·+D · Pj

(
F type
j,zj

)
·
χj · wy,q

F type
j,zj

+ · · ·+D · Pg

(
F type
g,zg

)
·
χg · wy,`

F type
g,zg

+ · · · .

Therefore, the difference between Eoriginal
assignment and Eopposite

assignment is computed as

Eoriginal
assignment − Eopposite

assignment = D

[
Pj

(
F type
j,zj

)
·

χj

F type
j,zj

− Pg

(
F type
g,zg

)
·

χg

F type
g,zg

]
(wy,` − wy,q) .

Given that wy,` − wy,q ≥ 0, in case that Pj

(
F type
j,zj

)
· χj

F type
j,zj

≥ Pg

(
F type
g,zg

)
· χg

F type
g,zg

, it holds that Eoriginal
assignment ≥

Eopposite
assignment. Similarly, in case that Pj

(
F type
j,zj

)
· χj

F type
j,zj

≤ Pg

(
F type
g,zg

)
· χg

F type
g,zg

, it holds that Eoriginal
assignment ≤ Eopposite

assignment.

Thus, the lemma is proven.

Theorem 8 Suppose that, for the given DVFS levels, the types of cores can be re-ordered according to their
energy factors such that P1

(
F type
1,z1

)
· χ1

F type
1,z1

≤ P2

(
F type
2,z2

)
· χ2

F type
2,z2

≤ · · · ≤ PQ

(
F type
Q,zQ

)
· χQ

F type
Q,zQ

, where zj is the

frequency index of the DVFS levels for all cores of type j for all j = 1, 2, . . . ,Q. An optimal solution under
SFA will start with the cores of type j = 1, assigning to every cluster k with cores of type j = 1 the M cluster

k

task sets that have the highest cycle utilizations (when running on core type j = 1) that are less than or equal
to F type

1,z1
, then removing the assigned task sets from the problem, and finally repeating the process with the

remaining task sets for core types j = 2, 3, . . . ,Q.

Proof. The proof comes directly from Lemma 18, where assigning task set S` to a cluster with cores of
type j and assigning task set Sq to a cluster with cores of type g is the energy-efficient alternative in case
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(a) S6 S5 S4 S3 S2 S1 (b) S6 S5 S4 S3 S2 S1

(c) S6 S5 S4 S3 S2 S1

F type
Q�

2 ,h2
F type
Q�

1 ,h1

(d) S6 S5 S4 S3 S2 S1

F type
Q�

2 ,h2
F type
Q�

1 ,h1

cluster 1

cluster 2

Figure 10.1: Examples of four possible task set assignments, for 2 clusters with 3 cores per cluster, in which
cluster 1 runs at frequency F type

Q�
1 ,h1

and cluster 2 runs at frequency F type
Q�

2 ,h2
. The task sets are increasingly

ordered according to their cycle utilizations when running on reference core type y. Moreover, it holds that
w1,1 ≤ w1,2 ≤ w1,3 ≤ w1,4 ≤ F type

Q�
1 ,h1

≤ w1,5 ≤ w1,6 and w2,1 ≤ w2,2 ≤ w2,3 ≤ w2,4 ≤ w2,5 ≤ w2,6 ≤
F type
Q�

2 ,h2
, such that task sets S1, S2, S3, and S4 can be mapped to either cluster, but task sets S5 and S6 can

only be mapped to cluster 2. According to Lemma 18, in case that cluster 1 has a lower energy factor than
cluster 2 for the given DVFS levels, then option (c) saves more energy than option (d), option (b) saves more
energy than option (c), and option (a) saves more energy than option (b), such that assignment (a) is the more
energy-efficient option. Similarly, in case that cluster 2 has a lower energy factor than cluster 1 for the given
DVFS levels, then option (b) saves more energy than option (a), option (c) saves more energy than option (b),
and option (d) saves more energy than option (c), such that assignment (d) is the more energy-efficient option.

that wy,q ≤ wy,` and Pj

(
F type
j,zj

)
· χj

F type
j,zj

≤ Pg

(
F type
g,zg

)
· χg

F type
g,zg

. Therefore, when the DVFS levels of the types

of cores are known, assigning the highest cycle utilization task sets to the clusters with cores of type j that
has the lowest energy factor Pj

(
F type
j,zj

)
· χj

F type
j,zj

while meeting the timing constraints, consumes less or equal

energy than any other assignment. Thus, the theorem is proven.

Observation 1 An optimal energy minimization solution for assigning given task sets to different types of
cores with known DVFS levels, will assign the highest cycle utilization task sets to the types of cores that
have the lowest energy factors.

Example

Following, we present an example of the process of an algorithm based on Theorem 8 and Observation 1,
for a system with Q = 4 types of cores, V = 4 clusters (i.e., one cluster for every type of core), and 3
cores inside every cluster (i.e., M cluster

1 = M cluster
2 = M cluster

3 = M cluster
4 = 3). For the given DVFS levels

for each type of core (i.e., F type
1,z1

, F type
2,z2

, F type
3,z3

, and F type
4,z4

), the core types are increasingly ordered according
to their energy factors, such that core type 1 has a lower energy factor than core type 2, core type 2 has a
lower energy factor than core type 3, and core type 3 has a lower energy factor than core type 4. Furthermore,
for the given DVFS levels, it holds that w1,1 ≤ w1,2 ≤ · · · ≤ w1,5 ≤ F type

1,z1
≤ w1,6 ≤ · · · ≤ w1,12, that

w2,1 ≤ w2,2 ≤ · · · ≤ w2,7 ≤ F type
2,z2
≤ w2,8 ≤ · · · ≤ w2,12, that w3,1 ≤ w3,2 ≤ · · · ≤ w3,11 ≤ F type

3,z3
≤ w3,12,

and that w4,1 ≤ w4,2 ≤ · · · ≤ w4,12 ≤ F type
4,z4

, such that task sets S1,S2, . . . ,S5 can be mapped to any cluster,
task sets S6,S7, . . . ,S12 can be mapped to any cluster except cluster 1, task sets S8,S9, . . . ,S12 can only
be mapped to cluster 3 or cluster 4, and task set S12 can only be mapped to cluster 4. For such a case, when
using SFA to decide the DVFS levels on individual clusters, the optimal assignment of the task sets onto cores
belonging to different clusters is shown in Figure 10.2, based on Theorem 8 and Observation 1. Namely, we
first focus on the cores of type j = 1 with the lowest energy factor, and assign M cluster

1 task sets with cycle
utilizations (when executed on a core of type j = 1) less than or equal to F type

1,z1
onto cores in cluster 1. Then,

in this example, task sets S3, S4, and S5 are assigned onto cores belonging to cluster 1. Furthermore, task
sets S3, S4, and S5 are now removed from the problem (colored in dark-gray and crossed out in the figure
when j > 1). Continuing, we focus on cluster 2 (i.e., j = 2 in the figure), which is the cluster with the second
lowest energy factor core types, assigning M cluster

2 task sets with cycle utilizations (when executed on a core
of type j = 2) less than or equal to F type

2,z2
, specifically, task sets S2, S6, and S7, onto cores belonging to cluster
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2. These task sets are removed from the problem (colored in dark-gray and crossed out in the figure j > 2)
and the process is repeated for j = 3 and j = 4 until all task sets are mapped.

j = 1: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

j = 2: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

j = 3: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

j = 4: S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

F type
4,z4

F type
3,z3

F type
2,z2

F type
1,z1

Figure 10.2: Example of the process
of an algorithm based on Theorem 8
and Observation 1, for a system with
4 types of cores and 3 cores per clus-
ter. For the given DVFS levels, the
clusters are increasingly ordered ac-
cording to their energy factors. Every
value of j represents the core types j
in Theorem 8. The task sets assigned
to cores of type j are colored in dark-
gray and crossed out for other core
types with larger energy factors.

10.3 Special Case: Tasks Consume Equal Average Power on a Given
Core and Voltage/Frequency

This section presents a polynomial-time algorithm to solve our problem, considering the same simplifying
assumptions as done in Section 10.2, but without considering that the tasks are already partitioned into task
sets. First, in Section 10.3.1, assuming that the DVFS levels for every type of core is (preliminary) fixed,
we derive a task partitioning algorithm motivated by Observation 1 and the Largest Task First (LTF) strategy
(described in detail in Chapter 8). Secondly, in Section 10.3.2, we propose an algorithm that evaluates a finite
number of DVFS configurations for all the clusters, and chooses the most energy-efficient DVFS configuration
after applying the task partitioning strategy from Section 10.3.1. These algorithms are later extended in
Section 10.4 in order to consider the more general case in which different tasks consume different power even
when running on the same core and at the same DVFS levels, and there is no constant factor for scaling the
execution cycles among different types of cores.

10.3.1 Special Task Partitioning for Fixed Frequencies
This section presents a polynomial-time task partitioning algorithm, which we call Fixed Frequency Island-
Aware Largest Task First (FFI-LTF). The FFI-LTF algorithm is motivated by Observation 1 and the LTF
strategy for homogeneous cores. Although Observation 1 refers to task sets instead of tasks, the same basic
idea still applies when partitioning tasks. Namely, when the types of core have (preliminary) fixed DVFS
levels, in order to minimize the overall energy consumption, a good strategy is to attempt to fully utilize every
cluster increasingly with regards to the energy factors of the corresponding types of cores. The reason for
this is because a high cycle utilization task consumes more power in a high energy factor core type than it
does in a low energy factor core type. In this way, assigning high cycle utilization tasks to clusters with low
energy factor core types saves energy. Contrarily, assigning low cycle utilization tasks to clusters with high
energy factor core types (in case the clusters with low energy factor core types are already filled with high
cycle utilization tasks) has a much smaller impact on the absolute energy consumption values.

Given that obtaining the optimal task partition of periodic real-time tasks for energy minimization is an
NP-hard problem [3,18], we know that there is no polynomial-time algorithm that can perfectly fully utilize
any given cluster unlessP = NP . Hence, we apply a Worst-Fit-Decreasing heuristic like LTF to assign a task
onto a core, but choosing the types of cores increasingly with respect to their energy factors. A pseudo-code
for FFI-LTF is presented in Algorithm 10, where we assume that the (preliminary) fixed DVFS levels and
the tasks (ordered according to their cycle utilizations when running on a reference core type y) are given as
inputs. Particularly, FFI-LTF orders the types of cores increasingly according to their energy factors for the
(preliminary) fixed DVFS levels (line 1). Then, starting from the task with the largest cycle utilization on core
type y (i.e., for all n = R,R − 1, . . . , 1, in line 2), algorithm FFI-LTF attempts to assign every task τn to
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Algorithm 10 Fixed Frequency Island-Aware Largest Task First (FFI-LTF)

Input: Tasks {τ1, . . . , τR} ordered according to their cycle utilizations when running on reference core type
y such that ey,1

d1
≤ · · · ≤ ey,R

dR
, and given frequencies {F type

1,z1
,F type

2,z2
, . . . F type

Q,zQ
} for every type of core;

Output: Task-to-core assignment of all tasks, and the adjusted DVFS levels of all clusters;
1: Sort the types of cores increasingly according to their energy factors, such that P1

(
F type
1,z1

)
· χ1

F type
1,z1

≤

P2

(
F type
2,z2

)
· χ2

F type
2,z2

≤ · · · ≤ PQ

(
F type
Q,zQ

)
· χQ

F type
Q,zQ

;

2: for all n = R,R− 1, . . . , 1 (i.e., for all tasks, decreasingly according to their cycle utilizations) do
3: for all q = 1, 2, . . . ,Q (i.e., for all core types, increasingly according to their energy factors) do
4: Find core i in cluster k (i.e., Ck,i), with the smallest cycle utilization among all cores of type q. If

two or more clusters with cores of type q have a core with equal smallest cycle utilization, cluster k
is chosen as the cluster with the smallest highest cycle utilization among all cores in the cluster;

5: if task τn fits in core Ck,i without exceeding F type
q,zq (i.e., if τn can be feasibly mapped to Ck,i) then

6: Ck,i ← τn; {Assign task τn to core Ck,i}
7: break for loop q; {After a task is assigned to a core, we continue with the next task}
8: end if
9: end for

10: end for
11: According to the final task partitioning, reduce the DVFS levels of individual clusters as much as possible

while meeting the timing constraints, but not below the corresponding critical frequencies;
12: return Task-to-core assignment of all tasks, and the adjusted DVFS levels of all clusters;

the least loaded core of the cluster with the lowest energy factor core type, such that all tasks remain feasible
(i.e., the total cycle utilization of every core is no larger than the execution frequency of its cluster). Namely,
the first loop (between lines 2 and 10) iterates through all R tasks, decreasingly with respect to their cycle
utilizations when running on core type y. The second loop (between lines 3 and 9) iterates through all types
of cores, increasingly with respect to their energy factors (i.e., q = 1, 2, . . . ,Q in line 3). Following (line 4),
the algorithm iterates through all clusters with cores of type q, and selects indexes i and k such that core i
in cluster k (i.e., Ck,i), has the smallest cycle utilization among all cores of type q. In case that task τn fits
inside core Ck,i without exceeding F type

q,zq (line 5), i.e., if we can assign τn to Ck,i while satisfying the timing
constraints of all tasks mapped to core Ck,i, then we assign task τn to core Ck,i (line 6) and break the second
loop iterating through all core types (line 7), i.e., after a task is assigned to a core we move to the next task.
In case that task τn does not fit inside core Ck,i, then the algorithm tests the next core type q. Namely, when
a task does not fit on the least loaded core of the cluster with the lowest energy factor core type, FFI-LTF
attempts to assign the task on the least loaded core of a cluster with the second lowest energy factor core
type, and so on. When two or more clusters with the same core type have a core with equal smallest cycle
utilization, the task is assigned to the cluster with the smallest highest cycle utilization among all cores in the
cluster (i.e., to the cluster which can potentially be executed at the slowest frequency).

In regards to time complexity, ordering the types of cores increasingly according to their energy factors
for the (preliminary) fixed DVFS levels (line 1) has time complexity O (Q · logQ). Furthermore, in case
we do not use any special structure to keep the cores in all cluster ordered, for every task τn, the worst-case
time complexity for finding core Ck,i (in line 4) is O (M), such that the total time complexity of FFI-LTF
is O (Q · logQ+R ·M). Contrarily, in case we use a binary heap to keep the cores in a cluster ordered
according to their cycle utilizations, for every task τn, the time complexity for finding core Ck,i (in line 4) is
at most O (V ) for searching in all clusters, and the time complexity for updating the binary heap of cluster
k when assigning task τn to core Ck,i (in line 6) is O

(
logM cluster

k

)
. In order to consider the worst case,

we define M cluster
max as the maximum number of cores in any cluster, i.e., M cluster

max = max1≤k≤V

{
M cluster

k

}
,

resulting in total time complexity O
(
Q · logQ+R · V +R · logM cluster

max

)
for algorithm FFI-LTF.

Before FFI-LTF finishes, whenever possible, the (preliminary) fixed DVFS levels can be further reduced
individually for every cluster (line 11 in Algorithm 10) while still guaranteeing that all tasks meet their timing
constraints. For example, consider a cluster with available frequencies {0.1GHz, 0.2GHz, . . . , 2.0GHz},
with a (preliminary) selected frequency of 1.0GHz. For such a cluster, in case that the critical frequency of
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the cluster is smaller than or equal to 0.8GHz and if the maximum cycle utilization among all cores in the
cluster after the task-to-core assignment is 0.75GHz, the frequency of the cluster could be further reduced
to 0.8GHz. In this way, all the tasks assigned to the cluster can still meet their deadlines while the energy
consumption of the cluster is reduced. This is the reason why throughout this section we state that before
running FFI-LTF the DVFS levels of the different types of cores are (preliminary) fixed, instead of simply
stating that they are fixed.

Algorithm FFI-LTF requires a preliminary DVFS level selection for the different types of cores in order
to order the core types according to their energy factors, which depends on their DVFS levels. However,
after all the tasks are assigned to cores, this preliminary DVFS levels can be adjusted to further reduce the
overall energy consumption.

10.3.2 Potential DVFS Configurations for all Clusters in the Special Case
By using algorithm FFI-LTF described in Section 10.3.1, we can now map the tasks to cores such that the
overall energy consumption is minimized when the preliminary DVFS levels of the core types and clusters are
known. Nevertheless, different preliminary DVFS configurations for the core types/clusters may result in very
different energy consumptions. In order to find out which is the most (or at least a reasonably good) energy-
efficient DVFS configuration, more than one configuration alternative needs to be tested. A naive algorithm
would, e.g., simply apply brute-force and test all possible DVFS configurations, resulting in exponential time
complexity. Contrarily, in this section we present an algorithm, which we call Heterogeneous Island-Aware
Largest Task First (HI-LTF), that only tests a limited number of DVFS configurations, executes FFI-LTF, and
then chooses the configuration with the lowest energy consumption.

To illustrate how we can constraint the number of configurations to test, Figure 10.3 shows an abstract
example of the energy factors of three different core types running at different DVFS levels. As an initial
point, it is clear that we can disregard all the frequencies that are below the critical frequency of each type of
core, since they would not be energy-efficient choices (dashed in Figure 10.3). Now, consider two different
preliminary DVFS configurations for the different types of cores, specifically, configuration [A2,B5,C4] and
configuration [A5,B5,C4]. From Figure 10.3, we can observe that Core A is the most energy-efficient core
(i.e., the core type with the lowest energy factor) under both configurations, and it will hence be the first choice
for task assignment when executing FFI-LTF for both cases. However, given that frequency A2 is smaller
than frequency A5 and thus less tasks can be feasibly mapped to Core A when running at frequency A2 than
when running at frequency A5, after executing FFI-LTF for both configurations, Core A will generally have
less tasks and a smaller cycle utilization under configuration [A2,B5,C4] than it will under configuration
[A5,B5,C4], resulting in a higher energy consumption for Core A in the second case. Nevertheless, since
the total number of tasks to be executed remains constant, more tasks will be assigned to Core B and Core C in
configuration [A2,B5,C4] than in configuration [A5,B5,C4]. Therefore, with respect to the overall energy
consumption, configuration [A2,B5,C4] is probably less energy efficient than configuration [A5,B5,C4],
as the latter configuration assigns more tasks to a core type with a low energy factor (A5 in this example) and
less tasks to core types with high energy factors (B5 and C4 in this example) than the former configuration.
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Figure 10.3: Abstract example of
the energy factors of three hypo-
thetical core types running at dif-
ferent DVFS levels. The critical
frequencies of Core A and Core
B are A2 and B2, respectively,
hence running at frequencies A1
or B1 is not energy efficient.

Similarly, if we consider configurations [A5,B5,C4] and [A5,B6,C4], the same concepts apply and the
latter configuration will generally be a more energy-efficient alternative. Particularly, since Core A runs at
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frequency A5 in both configurations and it is the core type with the lowest energy factor in both cases, it will be
the first choice for task assignment when executing FFI-LTF, such that the same tasks will be assigned to Core
A in both configurations. Nevertheless, less tasks will generally be assigned to Core B under configuration
[A5,B5,C4] than under configuration [A5,B6,C4], such that Core B generally consumes more energy in
the second case than in the first case, while the opposite occurs for Core C. Therefore, given that the energy
factor for B6 remains smaller than that of C4, in regards to the overall energy consumption, then configuration
[A5,B5,C4] is probably less energy efficient than configuration [A5,B6,C4]. Furthermore, as explained at
the end of Section 10.3.1, it even may occur that, after executing FFI-LTF for configuration [A5,B6,C4], the
frequency of Core B is later set to B5 if its total cycle utilization allows it, which implies that considering
configuration [A5,B5,C4] is redundant.

Based on these two examples, we can express Observation 2, from which we can formulate an energy-
efficient algorithm, called HI-LTF, that only tests (at most) one DVFS configuration for every possible order
of the energy factors of the core types. A pseudo-code for HI-LTF is presented in Algorithm 11.

Observation 2 When selecting the DVFS configurations for executing algorithm FFI-LTF, the order of
the energy factors of the types of cores is generally more important than the specific DVFS level selection.
Hence, for a given order of the energy factors, only the configuration with the highest DVFS levels that
satisfies the given order can be considered, and other configurations with the same energy factor order are
generally redundant.

Algorithm 11 Heterogeneous Island-Aware Largest Task First (HI-LTF)

Input: Tasks {τ1, τ2, . . . , τR};
Output: Task-to-core assignment of all tasks, and the DVFS levels of all clusters;

1: Sort the tasks increasingly according to their cycle utilizations when running on reference core type y,
such that ey,1

d1
≤ ey,2

d2
≤ · · · ≤ ey,R

dR
;

2: for all possible energy factor orders for the types of cores do
3: {F type

1,z1
,F type

2,z2
, . . . F type

Q,zQ
} ← Select the highest frequencies for every type of core such that the order

under consideration in this iteration is satisfied;
4: Execute FFI-LTF (Algorithm 10). In case that all tasks could be feasible mapped to cores for the given

frequencies, store the results of FFI-LTF and the expected overall energy consumption for this case;
5: end for
6: return Task-to-core assignment and DVFS levels that results in the lowest overall energy consumption;

In regards to the time complexity of HI-LTF, the time complexity for ordering the tasks (line 1) is
O (R · logR), and the time complexity for executing FFI-LTF (line 4) is O

(
Q · logQ+R · V +R · logM cluster

max

)
.

Given that FFI-LTF is executed at most Q! times (the maximum number of combinations for the possible en-
ergy factor orders for the types of cores, in line 2), the total worst-case time complexity of algorithm HI-LTF is
O
(
R · logR+Q!

(
Q · logQ+R · V +R · logM cluster

max

))
. Note that for practical systems, although a chip

might have many clusters, the core heterogeneity is normally limited, i.e., Q is generally a small number, and
thus the time complexity of HI-LTF will not grow on systems with a large number of cores. For the example
in Figure 10.3, instead of having a brute-force algorithm that tests all 120 possible DVFS configurations,
algorithm HI-LTF will only test 6 configurations, particularly (increasingly according to the energy factors):
[A5,B6,C4], [B4,A5,C4], [A5,C3,B6], [C1,A5,B6], [B3,C1,A5], and [C1,B4,A5]. Note that we are
not claiming that an algorithm based on Observation 2, e.g., HI-LTF, will derive an optimal solution. In fact,
there might exist some corner cases in which a DVFS configuration not tested by HI-LTF might result in a
smaller energy consumption after running FFI-LTF, e.g., due to an imperfect task partitioning. Nevertheless,
algorithm HI-LTF will derive energy-efficient solutions for the general cases.
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10.4 General Case: Different Tasks Consume Different Average Power
on the Same Core

This section extends the algorithms presented in Section 10.3, to consider the general case in which there is
no relation in the execution cycles of a task when executed on different types of cores, and in which different
tasks consume different power even when running on the same core and at the same DVFS levels.

10.4.1 General Task Partitioning for Fixed Frequencies
In the general task model, the energy factor of a type of core changes from one task to another, and therefore
it is no longer possible to order the core types with respect to their energy factors for all tasks, as done by
algorithm FFI-LTF. Thus, the extended algorithm, called Fixed Frequency Island- and Task-Aware Largest
Task First (FIT-LTF), assigns every task to the least loaded core of the cluster with the type of core that has
the lowest energy factor for the corresponding task, such that all tasks can meet their timing constraints. In
the general case, the energy factor of task τn, executed on a core of type q running at frequency F type

q,j , is
computed as P τn

q

(
F type
q,j

)
· eq,n
F type

q,j

, which also corresponds to the energy consumption of one task instance for

these settings. A pseudo-code for FIT-LTF is presented in Algorithm 12, which has some resemblance to
Algorithm 10, where the main difference is that in FIT-LTF there is no global order of the core types with
respect to their energy factors. Therefore, the second loop (lines 3 to 10) is not interrupted once a task can be
mapped to a core, but the algorithm rather tests all Q core types and all clusters of every type of core, with
time complexity O (V ).

Algorithm 12 Fixed Frequency Island- and Task-Aware Largest Task First (FIT-LTF)

Input: Tasks {τ1, . . . , τR} ordered according to their cycle utilizations when running on reference core type
y such that ey,1

d1
≤ · · · ≤ ey,R

dR
, and given frequencies {F type

1,z1
,F type

2,z2
, . . . F type

Q,zQ
} for every type of core;

Output: Task-to-core assignment of all tasks, and the adjusted DVFS levels of all clusters;
1: for all n = R,R− 1, . . . , 1 (i.e., for all tasks, decreasingly according to their cycle utilizations) do
2: g ← 0; y ← 0; {Initialize the cluster and core indexes, such that task τn is initially unassigned}
3: for all q = 1, 2, . . . ,Q (i.e., for all core types, increasingly according to their energy factors) do
4: Find core i in cluster k (i.e., Ck,i), with the smallest cycle utilization among all cores of type q. If

two or more clusters with cores of type q have a core with equal smallest cycle utilization, cluster k
is chosen as the cluster with the smallest highest cycle utilization among all cores in the cluster;

5: if task τn fits in core Ck,i without exceeding F type
q,zq (i.e., if τn can be feasibly mapped to Ck,i) then

6: if g = 0 or P τn
q

(
F type
q,zq

)
· eq,n
F type

q,zq

< P τn
Q�

g

(
F type
Q�

g ,hg

)
·

e
Q�

g ,n

F type

Q�
g ,hg

then

7: g ← k; y ← i; {Store the indexes of the cluster and core that minimize the energy consumption
of task τn for the given DVFS levels}

8: end if
9: end if

10: end for
11: if g > 0 then
12: Cg,y ← τn; {If we found a feasible mapping (i.e., if g > 0), then assign task τn to core Cg,y}
13: end if
14: end for
15: According to the final task partitioning, reduce the DVFS levels of individual clusters as much as possible

while meeting the timing constraints, but not below the corresponding critical frequencies;
16: return Task-to-core assignment of all tasks, and the adjusted DVFS levels of all clusters;

After finding the core of type q with smallest cycle utilization (line 4), i.e., Ck,i, if task τn can be feasibly
assigned onto core Ck,i (line 5), then indexes g and y keep track of the most energy-efficient cluster and core,
respectively, in which to assign task τn (lines 6 to 8). In case there exist a feasible assignment (i.e., if g > 0
in line 11), then task τn is assigned to core Cg,y (line 12), with time complexity O

(
logM cluster

g

)
for this
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cluster, or O
(
logM cluster

max

)
in the worst-case among all clusters. Finally, the total worst-case time complexity

of algorithm FIT-LTF is O
(
R · V +R · logM cluster

max

)
.

10.4.2 Potential DVFS Configurations for all Clusters in the General Case
Given that, in the general task model, the energy factor of a type of core changes from one task to another,
therefore the reasoning of Observation 2 (which supports algorithm HI-LTF) no longer applies. Neverthe-
less, although algorithm FIT-LTF (presented in Section 10.4.1) considers the general task model, it still
requires (preliminary) fixed DVFS levels for the different types of cores as an input. Again, a naive algo-
rithm would, e.g., simply apply brute-force and test all possible DVFS configurations. Another alternative
to deal with this issue is to compute the average energy factor among all tasks for every available DVFS
level in every type of core, and then use these average energy factors to test a limited number of preliminary
DVFS configurations, similar to algorithm HI-LTF, but now executing algorithm FIT-LTF for the task-to-
core assignment, thus considering the general task model. Namely, considering the average energy factors
is only needed to select the (preliminary) fixed DVFS levels and thus reduce the time complexity; however,
the task-to-core assignment has no restrictions and can focus on the general model through algorithm FIT-
LTF. Therefore, there are only two differences between algorithm HI-LTF and its extension, called Hetero-
geneous Island- and Task-Aware Largest Task First (HIT-LTF), for which we present the pseudo-code in
Algorithm 13. The first difference is that HIT-LTF needs to obtain the average energy factors among all
tasks for every available DVFS level in every type of core, which are computed once at the start of the
algorithm (line 2 in Algorithm 13) with time complexity R ·

∑Q
q=1 F̂

type
q . The second difference is that HIT-

LTF executes algorithm FIT-LTF (line 5 in Algorithm 13) instead of executing algorithm FFI-LTF (line 4
in Algorithm 11). With these two considerations, the resulting total worst-case time complexity of algo-
rithm HIT-LTF is O

(
R · logR+R ·

∑Q
q=1 F̂

type
q +Q!

(
R · V +R · logM cluster

max

))
. The remarks made for

algorithm HI-LTF in regards to systems with large number of cores also applies to HIT-LTF. Particularly,
although a chip might have many clusters, the core heterogeneity is normally limited (i.e., Q is generally a
small number), and thus the time complexity of HIT-LTF will not grow on systems with a large number of
cores.

Algorithm 13 Heterogeneous Island- and Task-Aware Largest Task First (HIT-LTF)

Input: Tasks {τ1, τ2, . . . , τR};
Output: Task-to-core assignment of all tasks, and the DVFS levels of all clusters;

1: Sort all tasks increasingly according to their cycle utilizations when running on reference core type y,
such that ey,1

d1
≤ ey,2

d2
≤ · · · ≤ ey,R

dR
;

2: For all types of cores (Q in total) and for all available DVFS levels of each type of core (F̂ type
q available

DVFS levels for core type q), compute the average energy factor among all R tasks;
3: for all possible average energy factor orders for the types of cores do
4: {F type

1,z1
,F type

2,z2
, . . . F type

Q,zQ
} ← Select the highest frequencies for every type of core such that the average

energy factor order under consideration in this iteration is satisfied;
5: Execute FIT-LTF (Algorithm 12). In case that all tasks could be feasible mapped to cores for the given

frequencies, store the results of FIT-LTF and the expected overall energy consumption for this case;
6: end for
7: return Task-to-core assignment and DVFS levels that results in the lowest overall energy consumption;

10.5 Experimental Evaluations
This section presents experimental evaluations that compare our HIT-LTF algorithm against the intuitive
Low-Power First (LPF) scheme and against the Equally-Worst-Fit-Decreasing (EWFD) scheme [18].

The LPF scheme is a simple and intuitive scheme that iteratively assigns tasks to cores according to the
LTF strategy, by focusing on different types of cores increasingly according to their average power con-
sumption, increasing the frequencies of the clusters as much as necessary for the tasks to meet their timing

154



constraints. Particularly, LPF assigns tasks to cores decreasingly according to their cycle utilizations when
executing on reference core type y, starting with the clusters composed by types of cores that have the low-
est average power consumption, assigning tasks to the least loaded core among all clusters with this type of
core. At the beginning, the DVFS levels of these low-power clusters are set to their lowest values. When a
new task cannot fit inside any low-power cluster without violating its timing constraints, LPF increases the
DVFS levels of the clusters, one cluster at a time. When the low-power clusters are all already set to run at
their maximal DVFS levels and a task cannot fit in it without violating the timing constraints, then the task is
assigned to a cluster composed by cores with the second lowest average power consumption, and so on.

Contrarily, the EWFD scheme attempts to balance the total cycle utilization in every cluster. In EWFD
the clusters are arbitrarily ordered (e.g., increasingly according to the average power consumption of core
types of different clusters, similar to LPF), and tasks are again ordered decreasingly according to their cycle
utilizations when executing on reference core type y. According to this cluster and task order, EWFD first
chooses the lowest index cluster that can fit the largest unmapped task, and assigns the task to a core in this
cluster according to LTF. The process is then repeated for every task, while the clusters are circularly iterated
according to a Next-Fit scheme, i.e., if the last task was assigned to cluster i then EWFD tries to fit the next
task starting with cluster i+ 1.

10.5.1 Setup
For our experimental evaluations, we use the simulation framework described in Chapter 4 in high-level mode.
In our experiments we consider 4 different platforms composed by different combinations of 4 different types
of clusters, where each type of cluster is composed by a certain type of core. The first type of cluster has
8 OOO Alpha 21264 cores, while the second type of cluster has 8 simple in-order Alpha 21264 cores, both
based on simulations on gem5 [5] and McPAT [57] for 22 nm technology. The other two types of clusters
are based on real measurements (particularly, average execution time and energy consumption of several
application instances executing at different DVFS levels) on an Odroid-XU3 [26] mobile platform with an
Exynos 5 Octa (5422) [92] chip with ARM’s big.LITTLE architecture. Specifically, the third type of cluster
has 4 in-order Cortex-A7 cores, and the fourth type of cluster has 4 OOO Cortex-A15 cores. Additional
details about these cores and clusters were already described in Chapter 4.2.2. With these 4 different types of
clusters, we compose the 4 different platforms considered in our experiments, particularly, (a) a platform with
one Cortex-A7 cluster and one Cortex-A15 cluster, just like the Exynos processor; (b) a platform with one
OOO Alpha cluster and one simple Alpha cluster; (c) a platform with one Cortex-A7 cluster, one Cortex-A15
cluster, one OOO Alpha cluster, and one simple Alpha cluster; and (d) a platform with four OOO Alpha
clusters, and four simple Alpha clusters.

For benchmarks, we consider five representative applications (with different power consumptions and
execution times) from the PARSEC benchmark suite [4] (described in Chapter 4.3), specifically, blackscholes,
bodytrack, ferret, swaptions, and x264. In order to have real-time tasks, we assume that every task consists
of one randomly-selected PARSEC application running a single thread (i.e., using a uniform distribution, we
randomly choose which specific application, among the five representative applications, is executed by each
task), to which we randomly assign a deadline and period (equal to the deadline), such that every application
instance must finish before its deadline and a new task instance is periodically started. The deadline/period
for every task is randomly chosen between 2 s and 20 s, in steps of 2 s according to a uniform distribution,
such that the hyper-period D is at most 5040 s.

10.5.2 Results
As stated in Section 10.4.2, for every type of core and for all available DVFS levels on each type of core,
our HIT-LTF algorithm needs to compute the average energy factors among all tasks for each available fre-
quency in every type of core. For the given types of cores and benchmarks detailed in Section 10.5.1, the
corresponding average energy factors are presented in Figure 10.4.

We now conduct the experiments to compare the overall energy consumption achieved by each one of
the evaluated algorithms. For each one of the 4 different platforms under consideration, we conduct 104

experiments, where each experimental scenario considers a different set of R realistic PARSEC applications
converted to real-time tasks randomly, as explained in Section 10.5.1. The total number of tasks (i.e., R)
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Figure 10.4: Average energy fac-
tors of five representative ap-
plications from the PARSEC
benchmark suite, based on sim-
ulations conducted in gem5 and
McPAT (for both types of Al-
pha cores), and based on mea-
surements on the Exynos 5 Octa
(5422) processor (for the Cortex-
A7 and Cortex-A15 cores).
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(b) EWFD [18]
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(c) HIT-LTF

Figure 10.5: Detailed experimental results for one experiment with 52 random tasks when running on platform
(c). The height of the bars represents the cycles per second required by a task to meet its timing constraints
when executed on the assigned type of core (a task requires different cycles per second when assigned to
different core types) on the top figures, and the associated energy consumptions on the bottom figures. The
total energy consumption for using LPF and EWFD is 3.81x and 4.64x, respectively, higher than HIT-LTF.

is randomly chosen for each experiment between 10 and 200 tasks by using a uniform distribution. The
algorithms used for comparison are the intuitive LPF scheme and the EWFD scheme [18], both described
at the beginning of Section 10.5. According to the average power consumption of each type of core when
executing at its highest DVFS levels (as seen in Figure 1.1 in Chapter 1.1.1), LPF will attempt to assign tasks
to clusters of different types of cores in the following order: Cortex-A7, simple Alpha, Cortex-A15, and OOO
Alpha. Furthermore, we assume this to be the same arbitrary cluster order considered by EWFD.

In order to have a better understanding of how the algorithms behave, Figure 10.5 presents the detailed
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Figure 10.6: Overall energy consumption results for the 4 different evaluated platforms. The results are
presented using a normalized empirical cumulative distribution representation. Namely, by normalizing the
results to the energy consumption of HIT-LTF, each figure shows the percentage of experiments (among the
104 cases) for which the resulting energy consumption ratio for LPF or EWFD is below a specific value. For
example, for LPF on platform (d), 80% (20%) of the tested sets of tasks resulted in an energy consumption
ratio below (above) 1.82x, compared to HIT-LTF.

experimental results of all algorithms, for one specific experiment (out of the 104 experiments) with 52 ran-
dom tasks when running on architecture (c). In this experiment, the resulting overall energy consumption for
using LPF and EWFD is 3.81x and 4.64x, respectively, higher than the overall energy consumption achieved
by our HIT-LTF algorithm. Particularly, Figure 10.5a shows that LPF first fills the Cortex-A7 cluster and then
the simple Alpha cluster, both of them reaching their maximum frequencies of 1.4GHz and 4.0GHz, respec-
tively. Only then LPF assigns tasks to the Cortex-A15 cluster, which is not completely full and thus executes
only at 1.3GHz. However, the OOO Alpha cluster remains entirely empty. Similarly, Figure 10.5b shows that
EWFD attempts to balance the load among all clusters by using its Next-Fit scheme, such that all clusters have
several tasks assigned to them. Nevertheless, due to the incorrect premise that naive load balancing among
heterogeneous clusters is an energy-efficient approach, EWFD ignores the actual energy consumption of the
tasks on different types of cores and thus assigns many tasks to the Cortex-A15 cluster, which is actually (in
average) the less energy-efficient cluster as seen in Figure 10.4. On the other hand, Figure 10.5c shows a truly
energy-efficient assignment achieved by our HIT-LTF algorithm. First of all, according to Figure 10.4, we can
observe that the Cortex-A15 cluster is always less energy efficient than the Cortex-A7 and the simple Alpha
clusters, since there is no overlap of their energy factors with respect to the y-axis for any frequency. Contrar-
ily, the energy factor of the Cortex-A15 cluster can be smaller than that of the OOO Alpha cluster when the
Cortex-A15 cores execute at low DVFS levels and the OOO Alpha cores execute at high DVFS levels, i.e.,
there is some overlap of their energy factors with respect to the y-axis for a few frequencies. However, given
that the performance of these two types of cores is similar for the same execution frequencies (as already
seen in Figure 1.1 in Chapter 1.1.1), and since for similar frequencies the OOO Alpha cores are more energy
efficient than the Cortex-A15 cores (as seen in Figure 10.4), then the Cortex-A15 cluster will generally be the
last choice in which HIT-LTF attempts to assign tasks. In fact, this happens to be the case in Figure 10.5c,
where we can observe that the Cortex-A15 cluster remains empty. Furthermore, given that HIT-LTF assigns
each task according to its specific energy consumption on different types of cores, we can also see that, e.g.,
tasks τ2, τ19, and τ43 are assigned to the OOO Alpha cluster running at 0.8GHz, consuming considerably
less energy than the assignment of these same tasks under LPF or EWFD.

Finally, Figure 10.6 and Figure 10.7 present a summary of all 104 experimental results by using a normal-
ized empirical cumulative distribution representation and a box plot representation, respectively. Both figures
use energy consumption ratio as their metric, which represents the ratio between the overall energy consump-
tion of LPF or EWFD and the overall energy consumption of our HIT-LTF algorithm. In Figure 10.6a and
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Figure 10.7: Summarized overall
energy consumption experimental
results for the 4 different evalu-
ated platforms (as detailed in Sec-
tion 10.5.1). The results are pre-
sented in a box plot representa-
tion (whiskers represent maximum
and minimum ratios), normalized
with respect to the overall energy
consumption of our HIT-LTF algo-
rithm.
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Figure 10.7, we can observe that for platform (a), the LPF scheme achieves the exact same results that our
HIT-LTF algorithm for all cases. The reason behind this results becomes clear by referring to the average en-
ergy factors in Figure 10.4, where we can again see that the Cortex-A15 cluster is always less energy efficient
than the Cortex-A7 cluster, as there exist no overlap of their energy factors with respect to the y-axis for any
frequency. This implies that HIT-LTF will always attempt to first assign a task to the Cortex-A7 cluster, and
a task would only be assigned to the Cortex-A15 cluster when its deadline cannot be satisfied. Given that this
is precisely what LPF does, for this special case both algorithms always derive equivalent solutions. For the
other three platforms, i.e., platform (b), (c), and (d), Figure 10.6 and Figure 10.7 show that there are a few cor-
ner cases in which HIT-LTF consumes slightly more energy than both state-of-the-art approaches. However,
among all 104 experiments, LPF and EWFD consume in average 1.31x and 1.36x more energy, respectively,
than our HIT-LTF algorithm, which translates to an average of 25% energy savings when comparing HIT-LTF
to both state-of-the-art solutions. Moreover, when the cluster heterogeneity grows (i.e., when we consider
more types of cores on a platform), as is the case in platform (c), there are cases in which LPF and EWFD
consume up to 5.62x and 7.96x more energy, respectively, than our HIT-LTF algorithm, which translates in
up to 82% and 87% energy savings, respectively.

10.6 Summary
In this chapter, by removing some of the limiting assumptions made in Chapter 9, we have presented an
efficient task-to-core assignment/mapping algorithm for energy minimization of periodic real-time tasks (or
performance-constrained applications) on clustered multicore systems with heterogeneous voltage/frequency
islands, that uses the SFA scheme (described and analyzed in Chapter 8) to decide the DVFS levels on in-
dividual clusters once the task-to-core assignment is finished. Unlike most works in the literature, we have
considered that different tasks may consume different amounts of average power, even when running on the
same core and at the same DVFS levels. Our proposed solution, called HIT-LTF, tests a limited number of
different DVFS levels for the clusters, according to the possible orderings of the clusters in regards to their
energy efficiency. Moreover, HIT-LTF also takes into account the energy consumption of assigning a task
to different clusters for the DVFS levels under consideration, such that it is able to choose the most energy-
efficient cluster for every task. Our experimental evaluations show that our HIT-LTF technique behaves much
better than the state-of-the-art solutions, resulting in average in 25% less energy consumption (and up to 87%
for some cases), while guaranteeing that all tasks meet their deadlines.
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Chapter 11

Conclusions

11.1 Dissertation Summary

In this dissertation, we have focused on two of the most relevant problems related to power management
on multicore and manycore systems, particularly, performance optimization under power/thermal constraints,
and energy minimization under performance constraints.

In the first part of the dissertation (Chapters 5, 6, and 7) we focus on performance optimization under
power/thermal constraints. Particularly, Chapter 5 showed that using a single and constant per-chip or
per-core power budget as an abstraction from thermal problems (e.g., TDP), is a pessimistic approach for
manycore systems. To solve this problem, we have presented a novel thermal-aware power budgeting concept
called Thermal Safe Power (TSP), which is an abstraction that provides safe and efficient per-core power
budget values as a function of the number of simultaneously active cores. Using TSP results in high total
system performance, while the maximum temperature in the chip remains below the critical threshold level
that triggers DTM. Furthermore, TSP can also serve as a fundamental tool for guiding task partitioning, core
mapping, DPM, and DVFS algorithms on their attempt to achieve high predictable performance under thermal
constraints.

In Chapter 6, we have shown that management decisions which are typically used to optimize resource
usages (e.g., task migration, DPM, DVFS, etc.), may result in transient temperatures that are much higher than
their associated steady-state temperatures. Motivated by this observation, we have presented a lightweight
and accurate analytical method, called MatEx, which is based on matrix exponentials and linear algebra,
that can be used for estimating/predicting transient thermal peaks, as well as computing any future transient
temperatures without requiring incremental computations.

Furthermore, in Chapter 7 we have presented seBoost, an efficient and lightweight boosting technique
that uses MatEx for future transient temperature estimation. Our seBoost technique guarantees meeting any
performance requirements surges that can occur at runtime, and this is achieved by executing the boosted
cores at the required DVFS levels for the entire boosting intervals, while throttling down the non-boosted
cores. In order to minimize the performance losses of the applications being executed on the non-boosted
cores, the throttling down levels are chosen such that the maximum temperature throughout the chip reaches
the critical threshold temperature precisely when the boosting is expected to expire.

In the second part of the dissertation (Chapters 8, 9, and 10) we focus on energy minimization under
performance constraints. Specifically, for performance-constrained applications or real-time tasks that are
already assigned to a specific cluster (or for systems with a global supply voltage), in Chapter 8 we have pre-
sented the polynomial-time Double Largest Task First (DLTF) strategy for partitioning tasks to cores based on
load balancing and idle energy reduction, as well as the linear-time Single Frequency Approximation (SFA)
and Single Voltage Approximation (SVA) schemes for deciding the DVFS levels for execution. In SFA, all
the cores in a cluster run at a single voltage and frequency, such that all tasks meet their performance/timing
constraints. In SVA, all the cores in the cluster also run at the same single voltage as in SFA; however, the fre-
quency of each core is individually chosen, such that the tasks in each core can meet their performance/timing
constraints, but without running at frequencies higher than absolutely necessary. Most importantly, we have
provided comprehensive theoretical analysis for the worst-case behavior (in terms of energy and peak power
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efficiency) of combining DLTF with either SFA or SVA, proving them to be simple, practical, and efficient
solutions for commercial systems that have a limited number of cores in every cluster.

Moreover, for homogeneous multicore systems clustered in multiple voltage islands, when using SFA to
decide the DVFS levels on individual clusters, in Chapter 9 we focus on task set assignment/mapping. Par-
ticularly, we have presented two simple and intuitive mapping heuristics, and we have theoretically analyzed
the worst-case efficiency of these heuristics for energy minimization. More importantly, we developed an
algorithm based on dynamic programming, called Dynamic Voltage Island Assignment (DYVIA), which de-
rives optimal task set mapping solutions in terms of energy minimization for any task partition. Based on the
approximation factor of SFA for single clusters, we have also extended the theoretical analysis from Chap-
ter 8, and presented the approximation factor analysis of mapping task sets with DYVIA when using SFA on
individual clusters, which results in the same approximation factor as that of SFA for single clusters.

Finally, Chapter 10 removes some of the limiting assumptions made in Chapter 9, particularly, by con-
sidering heterogeneous systems, assuming different average power consumptions for different tasks (even
when running on the same core and at the same DVFS levels), and considering the raw set of tasks as an
input (instead of already partitioned tasks, i.e., given tasks sets, as an input, as done in Chapter 9). In this
way, in Chapter 10 we have presented an efficient task-to-core assignment/mapping algorithm for energy
minimization on clustered multicore systems with heterogeneous voltage/frequency islands, called Heteroge-
neous Island- and Task-Aware Largest Task First (HIT-LTF), that uses the SFA scheme to decide the DVFS
levels on individual clusters. Algorithm HIT-LTF tests a limited number of DVFS levels for the clusters,
according to the possible orderings of the clusters in regards to their energy efficiency. Furthermore, HIT-LTF
takes into account the energy consumption of assigning a task to different clusters for the DVFS levels under
consideration, such that it is able to choose the most energy-efficient cluster for every task.

11.2 Current Impact of our Contributions

Several of the contributions presented in this dissertation, already published in peer-reviewed international
conferences and journals, have already made some impact in the community and are being used by re-
searchers.

For example, the work in [47] presents a centralized greedy runtime mapping technique for homogeneous
multicores which is based on our TSP power budgeting approach (presented in Chapter 5). Specifically, the
techniques presented in [47] consist of greedily mapping multi-threaded applications by first selecting the
coolest squared region in which to map an application, and then deciding the specific mapping inside the
region to distribute heat as much as possible. In this way, the algorithm can derive a mapping that results in
higher per-core power budgets than standard concentrated mappings which focus on optimizing the inter-task
communication latency. The DVFS levels of the cores are then selected to satisfy the computed TSP budgets
for the derived mapping.

The work in [88] presents a multi-objective dynamic power management method based on a control
approach, that simultaneously considers a limited power budget (either TDP or our TSP power budgeting
technique, presented in Chapter 5), the dynamic behavior of workloads, the utilization and power consumption
of individual cores, and the load of the NoC. Authors assume to have per-core DVFS and per-core power
gating, both utilized to optimize the performance. In order to prevent sharp power budget violations when
new applications are mapped to the system at runtime, this work also proposes a disturbance rejecter that
pro-actively scales down the activity of already-running applications.

The work in [23] presents a power-aware non-intrusive runtime testing approach for manycore systems.
During the idle periods of different cores, the proposed approach schedules software based self-test routines,
considering that cores should be tested at different DVFS levels, while limiting the delays for the execution of
true workloads, and by satisfying the power budgets derived by our TSP power budgeting approach (presented
in Chapter 5). Based on a device aging model, a test criticality metric is used to select the cores to be tested
at a given point in time.

The work in [111] presents a hierarchical management strategy, called FoToNoC, based on a folded torus-
like NoC for manycore systems. Namely, FoToNoC consist in a superposition of regular and application-
specific NoC topologies, such that physically distributed cores can be interconnected with reduced intercom-
munication costs and organized in logically condensed virtual NoC clusters, in order to enable the distribution
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of active cores throughout the chip for reducing the chip’s temperature without incurring in high communi-
cation costs. For their work, authors use our MatEx transient temperature computation tool (presented in
Chapter 6) to enable runtime thermal supervision inside FoToNoC.

11.3 Future Works
For performance optimization under power/thermal constraints, our future work will involve deriving central-
ized thread-to-core mapping and DVFS level selection algorithms for heterogeneous systems based on the
TSP concept. Furthermore, we will consider extending our TSP technique to work on distributed systems,
which will serve as a basis for us to also derive distributed thread-to-core mapping and DVFS level selection
algorithms. In regards to MatEx, our plans are to extend our tool to account for the dependency between
leakage power consumption and temperature, thus increasing the accuracy of MatEx by removing the cur-
rent pessimistic assumption of modeling power consumption at the critical temperature. Moreover, aside of
offering MatEx as an open-source software tool, we also plan to develop an open-source RTL hardware im-
plementation of MatEx to serve as a hardware accelerator, which can be used at runtime on systems with a
very large number of cores.

For energy minimization under performance constraints, our future work will focus on extending the algo-
rithms and analyses presented in this dissertation to consider task dependency and intertask communications,
which might play an important role in task scheduling and on the overall energy consumption. We would
also like to extend our contributions to consider a sporadic real-time tasks model (more general than peri-
odic real-time tasks), where the deadline and period of a task are not necessarily equivalent, and where tasks
only provide the minimum arrival rate between task instances (rather than a precise period). Furthermore,
besides considering EDF for dynamically scheduling tasks inside individual cores, we will also like to extend
our analysis of SFA and DYVIA to consider some fixed-priority scheduling policies, e.g., rate-monotonic
scheduling or deadline-monotonic scheduling.
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ai,j Element in row i and column j inside the thermal capacitance matrix A, such that 1 ≤ i ≤ N and
1 ≤ j ≤ N . 33

AFDVFS=SFA
ASG=ANY Approximation factor for any task partition mapping heuristic that uses

⌈
M?

K

⌉
clusters with

non-empty task sets, when using SFA to decide the DVFS levels on individual clusters, against the
optimal assignment that also uses SFA in individual clusters. 125, 126

AFenergy overheads
DLTF-SFA Approximation factor (i.e., the worst-case behavior) of DLTF-SFA for energy minimization

in relation to the optimal task partitioning and optimal DVFS solution for energy minimization (i.e., the
task partitioning and DVFS solution that result in the minimum energy consumption) when we consider
negligible overheads for sleeping. 102–104, 106, 107, 111

AFenergy
DLTF-SFA Approximation factor (i.e., the worst-case behavior) of DLTF-SFA for energy minimization in

relation to the optimal task partitioning and optimal DVFS solution for energy minimization (i.e., the
task partitioning and DVFS solution that result in the minimum energy consumption). 88, 107, 116

AFpeak power
DLTF-SFA Approximation factor (i.e., the worst-case behavior) of DLTF-SFA for peak power reduction in

relation to the optimal task partitioning and optimal DVFS solution for peak power reduction (i.e., the
task partitioning and DVFS solution that result in the minimum peak power consumption). 88, 89,
108–110, 116

AFenergy
DLTF-SVA Approximation factor (i.e., the worst-case behavior) of DLTF-SVA for energy minimization in

relation to the optimal task partitioning and optimal DVFS solution for energy minimization (i.e., the
task partitioning and DVFS solution that result in the minimum energy consumption). 88, 89, 111, 112,
117

AFpeak power
DLTF-SVA Approximation factor (i.e., the worst-case behavior) of DLTF-SVA for peak power reduction in

relation to the optimal task partitioning and optimal DVFS solution for peak power reduction (i.e., the
task partitioning and DVFS solution that result in the minimum peak power consumption). 88, 89, 109,
112–114, 117

α For the approximated power consumption on a CMOS core, a constant including the effective switching
capacitance, the average activity factor of the core, and a scaling factor for the linear relationship
between the voltage of the cluster and the highest frequency in the cluster (i.e., Vdd ∝ fcluster). 28–31,
89, 94–117, 123, 126

areacore
m Area of core m (among all M in the chip). 27

areatype
q Area of a core of type q. 27, 50, 51

B−1 Matrix B−1 = [̃bi,j ]N×N is the inverse of matrix B. 33, 34, 36, 46, 50, 182
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B Matrix B = [bi,j ]N×N that contains the thermal conductance values between vertical and lateral neighbor-
ing thermal nodes of an RC thermal network. 33, 36, 62, 63, 68, 181, 182

b̃i,j Element in row i and column j inside matrix B−1, such that 1 ≤ i ≤ N and 1 ≤ j ≤ N . 33, 34, 43, 46,
49, 50

bi,j Element in row i and column j inside the thermal conductance matrix B, such that 1 ≤ i ≤ N and
1 ≤ j ≤ N . 33

β For the approximated power consumption on a CMOS core, β · fcluster ≥ 0 represents the leakage power
consumption on the core. 28–31, 89, 94–99, 101–117, 123

C Matrix of an RC thermal network, such that C = −A−1B. 33, 36, 62, 63, 182, 184, 185

D Hyper-period, i.e., the least common multiple among all periods of all R tasks. 25, 26, 29, 30, 94–99, 101,
102, 123, 125, 126, 128, 131, 145–147, 155, 183, 186

dn Period and implicit deadline of task τn. 25, 26, 29, 30, 89, 91, 92, 145, 146, 189

δ Variable of auxiliary function U (δ), used to choose a value of fdyn such that E∗
↓ becomes a continuous

function, in order to derive an approximation factor without unnecessary pessimism. 101–105, 109,
110, 112–114, 182

δmax Value of δ that maximizes auxiliary function U (δ), used to choose a value of fdyn such that E∗
↓ be-

comes a continuous function, in order to derive an approximation factor without unnecessary pes-
simism. 101–105

DYVIA (i, j) Dynamic programming function, where i is the index of the first task set to be considered in
this sub-problem, and j is the index of the last task set to be considered in this sub-problem, such
that function DY V IA (i, j) returns the minimum energy consumption for the assignment of task sets
Si,Si+1, . . . ,Sj−1,Sj onto cores, using v = j−i+1

K clusters (from Corollary 1, j − i + 1 will always
be an integer multiple of K). 130–133, 182

DYVIAback-
tracking (i, j) Backtracking table in which entry DYVIAback-

tracking (i, j) contains the task sets indexes {`1, `2, . . . , `K}
that resulted in the minimum energy consumption for sub-problem DYVIA (i, j). 130, 132, 133

DYVIA#combinations Total number of combinations that algorithm DYVIA needs to evaluate when building its
dynamic programming table. 133

Ecore (f) Approximated energy consumption on a CMOS core for the case in which the core runs at the same
frequency which determines the voltage of the cluster, where f is the execution frequency of the core.
30, 31, 89, 94

Ecore (fcluster, f) Approximated energy consumption on a CMOS core for the general case of having voltage
scaling at a cluster level and frequency scaling at a core level, where fcluster is the highest execution
frequency among all cores in the cluster (thus setting the voltage of the cluster), and f is the execution
frequency of the core. 30, 89, 96

eCt Matrix exponential eCt =
[
eCt

i,j

]
N×N . 63

EDVFS=optimal
ASG=DYVIA Total energy consumption when using an optimal DVFS algorithm to decide the DVFS levels

on individual clusters, and when using DYVIA for assigning task sets to clusters (i.e., the optimal task
set assignment solution under SFA). 134

EDVFS=optimal
ASG=optimal DVFS Total energy consumption when using an optimal DVFS algorithm to decide the DVFS

levels on individual clusters, and when assigning task sets to clusters by using an algorithm that is
optimal when using an optimal DVFS algorithm to decide the DVFS levels on individual clusters. 134

182



EDVFS=SFA
ASG=DYVIA Total energy consumption when using SFA to decide the DVFS levels on individual clusters,

and when using DYVIA for assigning task sets to clusters (i.e., the optimal task set assignment solution
under SFA). 134

EDVFS=SFA
ASG=optimal DVFS Total energy consumption when using SFA to decide the DVFS levels on individual clus-

ters, and when assigning task sets to clusters by using an algorithm that is optimal when using an
optimal DVFS algorithm to decide the DVFS levels on individual clusters. 134

Ej
DVFS=SFA
ASG=CCH Energy consumption of cluster Ij when using the CCH task partition mapping algorithm to map

task sets to cores and clusters, and when using SFA to decide the DVFS levels on individual clusters.
125

Ej
DVFS=per-core
ASG=ANY Energy consumption of cluster Ij when using any task partition mapping algorithm to map

task sets to cores and clusters, and when having per-core DVFS, which will result in the lower bound for
the energy consumption since having per-core DVFS is the optimal solution and the task set assignment
plays no role for such a case. 125

Ej
DVFS=SFA
ASG=ANY Energy consumption of cluster Ij when using any task partition mapping algorithm to map task

sets to cores and clusters, and when using SFA to decide the DVFS levels on individual clusters. 125

Ej
DVFS=SFA
ASG=SFA Energy consumption of cluster Ij when using SFA to decide the DVFS levels on individual

clusters, and when using the optimal task set assignment solution under SFA. 125

eq,n Worst-case execution cycles of task τn when being executed on a core of type q. 25, 26, 29, 30, 89, 91,
92, 145, 146, 189, 190

E (L) Energy consumption of the highest DVFS level cluster for each combination, which is similar to Equa-
tion (9.1), but for set L instead of set Lj . 131

E∗
↓ Lower bound for the optimal energy consumption for the optimal task partition and any feasible DVFS

schedule during a hyper-period D. 88, 89, 97, 99–104, 111, 112, 116, 117, 173, 182, 189

E∗
OPT Optimal energy consumption for the optimal task partition and optimal DVFS schedule during a hyper-

period D. 88, 89

Ẽτn
q

(
F type
q,j

)
Energy consumed during one hyper-period for executing task τn on a core of type q at frequency

index j (such that 0 ≤ j ≤ F̂ type
q ) in case that all tasks consume equivalent power when executing at the

same frequency on a core of type q, i.e., P τ1
q

(
F type
q,j

)
= P τ2

q

(
F type
q,j

)
= · · · = P τR

q

(
F type
q,j

)
= Pq

(
F type
q,j

)
.

146

Ẽ
Sg
q

(
F type
q,j

)
Energy consumed during one hyper-period for executing task set Sg on a core of type q at fre-

quency index j (such that 0 ≤ j ≤ F̂ type
q ) in case that all tasks consume equivalent power when execut-

ing at the same frequency on a core of type q, i.e., P τ1
q

(
F type
q,j

)
= P τ2

q

(
F type
q,j

)
= · · · = P τR

q

(
F type
q,j

)
=

Pq

(
F type
q,j

)
. 146

Eτn
q

(
F type
q,j

)
Energy consumed during one hyper-period for executing task τn on a core of type q at frequency

index j (such that 0 ≤ j ≤ F̂ type
q ). 30, 145

EDLTF
SFA Total energy consumption during a hyper-period D for partitioning tasks with DLTF and selecting the

DVFS schedule with SFA. 88, 95, 102, 103

EDLTF
SVA Total energy consumption during a hyper-period D for partitioning tasks with DLTF and selecting the

DVFS schedule with SVA. 89, 96, 111

η Amount of power consumed by a cluster for being in the active state (since there is no voltage regulator
with 100% efficiency) when at least one core inside the cluster has to execute some workload. 122,
123, 125, 126, 131, 136, 139

183



fcluster For the approximated power consumption on a CMOS core, fcluster is the highest execution frequency
among all cores in the cluster, and therefore determines the minimum voltage of the cluster for stable
execution. 28–31, 89, 95, 96

fcrit
τn
q Critical frequency of task τn running on a core of type q, that minimizes the energy consumption for

execution when the overhead for entering/leaving a low-power mode can be considered negligible. 30,
145

fcritq Critical frequency on a core of type q in case that all tasks consume equivalent power when executing
at the same frequency on a core of type q, i.e., in case that P τ1

q

(
F type
q,j

)
= P τ2

q

(
F type
q,j

)
= · · · =

P τR
q

(
F type
q,j

)
= Pq

(
F type
q,j

)
such that fcrit

τ1
q = fcrit

τ2
q · · · = fcrit

τR
q = fcritq . 146, 184, 187

fcrit Critical frequency for the energy model in Equation (3.6) (focusing on homogeneous systems and as-
suming that all tasks have similar average activity factors), that minimizes the energy consumption for
execution when the overhead for entering/leaving a low-power mode can be considered negligible. 31,
89, 91–96, 98, 99, 101–106, 108–114, 116, 122, 123, 125, 128, 129, 131, 136, 190

fmax
dyn Maximum value of the auxiliary frequency used to obtain an analytical expression for the lower bound

of the energy consumption which can be used for general cases. 101, 103, 104

fdyn Auxiliary frequency used to obtain an analytical expression for the lower bound of the energy consump-
tion which can be used for general cases. 99–104, 106, 111, 112, 173, 182, 189

F core
i,F̂ core

i

Maximum frequency for core i. 27, 78

F̂ core
i Number of available frequencies for core i. 27, 78

Fmax Maximum frequency when considering homogeneous systems. 90, 97, 99, 109, 114, 116, 122

Fmin Minimum frequency when considering homogeneous systems. 90, 116, 122

F type
q,F̂ type

q
Maximum frequency for a core of type q. 27, 90, 115, 144

F̂ type
q Number of available frequencies for cores of type q. 27–29, 144, 145, 154, 183, 187

G Column vector G = [gi]N×1 that contains the values of the thermal conductances between each thermal
node and the ambient temperature of an RC thermal network. 33, 34, 36, 46, 62, 68

Γ−1 Matrix Γ−1 = [Γ̃i,j ]N×N represents the inverse of matrix Γ. 63, 65

Γ Matrix Γ = [Γi,j ]N×N represents a matrix containing the eigenvectors of matrix C for a given thermal
model. 63, 65, 184

γ For the approximated power consumption on a CMOS core, γ > 1 is a constant related to the hardware (in
CMOS processors, γ is generally modeled equal to 3). 28–31, 89, 94–117, 123

Hρ Auxiliary matrix Hρ =
[
hρ
q,i,j

]
Q×Z×M type

q
, used to compute the maximum amount of heat that any mq

cores of type q can contribute to the temperature on node i, for all core types q = 1, 2, . . . ,Q. 50, 51

H Auxiliary matrix H = [hi,j ]Z×M , used to compute the maximum amount of heat that any m cores can
contribute to the steady-state temperature on thermal node i. 46–48

Imax Maximum chip current constraint for the entire chip that cannot be exceeded (e.g., from the capacity of
the power supply or the wire thickness). 28, 76–78, 80

K Set K = {k1, k2, . . . , kM} that contains all the indexes of the thermal nodes that correspond to cores
(among all cores, ignoring the types of the cores). 34, 43, 46, 47

184



K Total number of cores inside every cluster/island, for a system in which all the clusters have equal number
of cores per cluster/island. 122–133, 138–141, 181, 182, 185

Kq Set Kq =
{
kq1, k

q
2, . . . , k

q

M type
q

}
for all core types q = 1, 2, . . . ,Q, that contains the indexes of the thermal

nodes that correspond to cores of type q. 34, 50

κ For the approximated power consumption on a CMOS core, κ ≥ 0 represents the independent power
consumption attributed to maintaining the core in execution mode (i.e., the voltage and frequency inde-
pendent part of the power consumption). 28–31, 89, 94–99, 101–117, 122, 123, 139

L Set L = {`1, `2, . . . , `Z} that includes all the indexes of the thermal nodes that correspond to blocks in the
floorplan (as opposed to thermal nodes that represent the heat sink, internal nodes of the heat spreader,
the thermal interface material, etc.). 34, 41, 43, 45, 46, 49, 50, 75, 77, 80, 130

λ Lagrange multiplier inside the Lagrangian used when applying the Kuhn-Tucker conditions. 98, 99

L Lagrangian used when applying the Kuhn-Tucker conditions. 98

L Set containing the indexes of the task sets assigned to a general cluster (as opposed to set Lj , defined for
the particular cluster Ij), such that `1 < `2 < · · · < `K , with `0 auxiliary and less than `1. 130–132,
183, 185

Lj Set containing the indexes of the task sets assigned to cluster Ij such that `j,1 < `j,2 < · · · < `j,K for all
j = 1, 2, . . . ,V , it holds that `j,i ∈ [1,M ], and `j,i is unique for all j, i. 122, 123, 125, 129–131, 183,
185

Λ (i, j) Set that contains all possible L sets that satisfy Theorem 7, i.e., Λ (i, j) stores all the potentially
optimal combinations, such that `0 = i− 1, `K = j and `h = `h−1 + 1 + n ·K for 0 < h < K with
`h < j and n ∈ N0. 130–132

Λ Diagonal matrix λ=diag
(
eλ1·t, eλ2·t, . . . , eλN ·t), where λ1,λ2, . . . ,λN are the eigenvalues of matrix C

for a given thermal model. 63

M Total number of cores in the system. 25–28, 34, 43, 44, 46–49, 51, 55, 88, 121–124, 126, 127, 129,
131–133, 139–141, 144, 150, 181, 184–186, 190

M? Total number of task sets in which some task partitioning algorithm partitions the tasks. 122, 123, 125,
126, 136, 139–141, 181

M Total number of task sets in which we partition the tasks. 25, 26, 89–119, 173, 189, 190

m Set m = {m1,m2, . . . ,mQ} that represents the number of active cores for core types {1, 2, . . . ,Q},
respectively. 41, 42, 49–51, 186, 187

M cluster
k Total number of cores inside cluster/island k. 26, 88, 122, 144, 145, 147, 150, 185

M cluster
max Maximum number of cores inside a cluster among all clusters, i.e., M cluster

max = max1≤k≤V

{
M cluster

k

}
.

150, 152, 154, 185

M 6=0 When partitioning tasks using DLTF, the resulting number of cores after regrouping with cycle utiliza-
tion larger than 0, i.e., the cores that remain active. 92, 94, 96, 108–114, 116, 118

M type
q Total number of cores of type q. 26, 27, 34, 50, 51, 184, 185, 190

N Total number of thermal nodes in the RC thermal network, such that there are at least as many thermal
nodes in the RC thermal network as blocks in the floorplan, i.e., N ≥ Z. 32–34, 43, 44, 46–51, 63–67,
75, 77, 181, 182, 184–189
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Ω Auxiliary matrix Ω = [Ωi,j ]N×N , used to speed-up the computation of the transient temperatures in MatEx.
64, 65, 67, 69, 186

Ωk,i Element in row k and column i inside auxiliary matrix Ω, such that 1 ≤ k ≤ N and 1 ≤ i ≤ N . 64–67

P Column vector P = [pi]N×1 that contains the values of the power consumption on every node of an RC
thermal network. 33, 34, 62–65

Pblocks Column vector Pblocks =
[
pblocks
i

]
N×1 that represents the power consumption on other blocks in the

floorplan that do not correspond to cores, (e.g., a block of an L2 cache). 34, 42–44, 46, 47, 49

Pcore (f) Approximated average power consumption on a CMOS core for the case in which the core runs at
the same frequency which determines the voltage of the cluster, where f is the execution frequency of
the core. 29, 89, 94, 116, 122, 123, 126, 128, 129

Pcore (fcluster, f) Approximated average power consumption on a CMOS core for the general case of having
voltage scaling at a cluster level and frequency scaling at a core level, where fcluster is the highest
execution frequency among all cores in the cluster (thus setting the voltage of the cluster), and f is the
execution frequency of the core. 28, 89, 96

P core
inactj Power consumption of core j (among all M in the chip) when the core is inactive (i.e., idle or in a

low-power mode). 49, 51

P core
inactm Power consumption of core m (among all M in the chip) when the core is inactive (i.e., idle or in a

low-power mode). 28

P core
inact Power consumption of an inactive core (i.e., idle or in a low-power mode) for the special case of

homogeneous manycore systems. 28, 43, 44, 46, 47, 51

P core
max

ρ (m) Auxiliary function used to assist in deriving the amount of power density that any m = {m1,m2, . . . ,mQ}
active cores are allowed to consume, such that the total power consumption precisely reaches the value
of Pmax. 51

P core
max

ρ (X) Auxiliary function used to assist in deriving the amount of power density that the active cores in
mapping X are allowed to consume, such that the total power consumption precisely reaches the value
of Pmax. 49

P core
max (m) Auxiliary function used to assist in deriving the amount of power that any m active cores are

allowed to consume, such that the total power consumption precisely reaches the value of Pmax. 44, 47,
48

Pcores Column vector Pcores = [pcores
i ]N×1 represents the power consumption on the cores. 34

P ρ
equal For a heterogeneous or homogeneous manycore system, power density on all active cores when we

assume that all active cores have equal power density at a given point in time. 49, 50

Pequal For a homogeneous manycore system, power consumption of all active cores when we assume that all
active cores are consuming equal power at a given point in time. 43–48, 57

P̂ ∗
↓ Lower bound for the optimal peak power consumption for the optimal task partition and any feasible

DVFS schedule during a hyper-period D. 88, 89, 102, 108, 112, 116, 117

Pmax Maximum chip power constraint for the entire chip that cannot be exceeded (e.g., from the capacity of
the power supply or the wire thickness). 28, 36, 42–44, 47–51, 76–78, 80, 186, 187

P̂ ∗
OPT Optimal peak power consumption for the optimal task partition and optimal DVFS schedule during a

hyper-period D. 88, 89
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Pq

(
F type
q,j

)
Average power consumption on a core of type q running at frequency index j (such that 0 ≤ j ≤

F̂ type
q ), in case that all tasks consume equivalent power when executing at the same frequency on a

core of type q, i.e., in case that P τ1
q

(
F type
q,j

)
= P τ2

q

(
F type
q,j

)
= · · · = P τR

q

(
F type
q,j

)
= Pq

(
F type
q,j

)
such

that fcrit
τ1
q = fcrit

τ2
q · · · = fcrit

τR
q = fcritq . 146, 183, 184, 187

P τn
q

(
F type
q,j

)
Average power consumption on a core of type q when executing task τn at frequency index j

(such that 0 ≤ j ≤ F̂ type
q ). 28–30, 122, 145, 153

Prest Column vector Prest = [prest]N×1 that represents the power consumption of thermal nodes that are on
the floorplan (e.g., internal thermal nodes of the heat sink), for which it holds that prest

i =0 for all i. 34

P̂DLTF
SFA Total peak power consumption for partitioning tasks with DLTF and selecting the DVFS schedule

with SFA. 88, 89, 94, 108

P̂DLTF
SVA Total peak power consumption for partitioning tasks with DLTF and selecting the DVFS schedule

with SVA. 89, 96, 112

P ρ
TSP (X) Per-core power density budget for each active core in the specified core mapping (independent

of the type of core), that results in a maximum steady-state temperature among all cores which does
not exceed the critical threshold temperature for triggering DTM, for heterogeneous or homogeneous
manycore systems. 41, 48, 49

PTSP (X) Per-core power budget for each active core in the specified core mapping, that results in a maximum
steady-state temperature among all cores which does not exceed the critical threshold temperature for
triggering DTM, for homogeneous manycore systems. 41–45

P ρ?
TSP (X) Per-core power density budget for each active core in the specified core mapping (independent of

the type of core) while ignoring Pmax, that results in a maximum steady-state temperature among all
cores which does not exceed the critical threshold temperature for triggering DTM, for heterogeneous
or homogeneous manycore systems. 49

P ?
TSP (X) Per-core power budget for each active core in the specified core mapping while ignoring Pmax,

that results in a maximum steady-state temperature among all cores which does not exceed the critical
threshold temperature for triggering DTM, for homogeneous manycore systems. 42–44

P ρ worst
TSP (m) Per-core power density budget (independent of the type of core) for each active core in any

possible core mapping with m = {m1,m2, . . . ,mQ} active cores for core types {1, 2, . . . ,Q}, re-
spectively, that results in a maximum steady-state temperature among all cores which does not exceed
the critical threshold temperature for triggering DTM, for heterogeneous or homogeneous manycore
systems. 42, 49, 51

Pworst
TSP (m) Per-core power budget for each active core in any possible core mapping with m simultaneously

active cores, that results in a maximum steady-state temperature among all cores which does not exceed
the critical threshold temperature for triggering DTM, for homogeneous manycore systems. 41, 44, 45,
47, 48, 55

P ρ?worst
TSP (m) Per-core power density budget (independent of the type of core) for each active core in any

possible core mapping with m = {m1,m2, . . . ,mQ} active cores for core types {1, 2, . . . ,Q}, respec-
tively, that results in a maximum steady-state temperature among all cores which does not exceed the
critical threshold temperature for triggering DTM while ignoring Pmax, for heterogeneous or homoge-
neous manycore systems. 50, 51

P ?worst
TSP (m) Per-core power budget for each active core in any possible core mapping with m simultane-

ously active cores while ignoring Pmax, that results in a maximum steady-state temperature among all
cores which does not exceed the critical threshold temperature for triggering DTM, for homogeneous
manycore systems. 47, 48
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P type
inactq Power consumption of a core of type q when the core is inactive (i.e., idle or in a low-power mode).

28, 50, 51, 145

Q Number of different types of cores in the system. 26, 27, 34, 41, 42, 49–51, 144, 146–148, 150, 152–154,
184–187, 190

Q�
k Index identifying the types of cores inside cluster/island k. 26, 144–146

R Total number of tasks to be executed. 25, 26, 88, 90, 92, 122, 139, 146, 149, 150, 152–155, 182–184, 187,
190

ρenergy
SFA Worst-case energy consumption and peak power consumption ratio for SFA when we consider discrete

DVFS levels against the continuous cases. 116

ρpeak power
SFA Worst-case energy consumption and peak power consumption ratio for SFA when we consider

discrete DVFS levels against the continuous cases. 116

ρSVA Worst-case energy consumption and peak power consumption ratio for SVA when we consider discrete
DVFS levels against the continuous cases. 116, 117

SDLTF
i Task set assigned to core i after partitioning the tasks using the DLTF strategy. 91, 92, 95

SLTF
i Task set assigned to core i after partitioning the tasks using the LTF strategy. 90

Si Task set assigned to core i. 26, 123, 130, 131, 182, 189, 190

T′ Column vector T′ = [T ′
i (t)]N×1 that accounts for the first-order derivative of the temperature on each

thermal node of an RC thermal network with respect to time. 33, 62, 188

T Column vector T = [Ti (t)]N×1 that represents the temperatures on the thermal nodes of an RC thermal
network. 33, 62, 63, 188

Tamb Ambient temperature. 32–34, 43, 44, 46, 47, 49, 50, 62–64, 75

TDTM Critical temperature which serves as thermal threshold for triggering DTM. 36, 41–45, 47–50, 52–54,
56, 59, 75–80

T ′
i (t) Element in row i of the column vector T′, i.e., the first-order derivate of the temperature on thermal

node i with respect to time, such that 1 ≤ i ≤ N . 33

T ′
k (t) Element in row k of the column vector T′, i.e., the first-order derivate of the temperature on thermal

node k with respect to time, such that 1 ≤ k ≤ N . 66, 67, 172

Tsteadyi Element in row i of the column vector Tsteady, i.e., the steady-state temperature on thermal node i,
such that 1 ≤ i ≤ N . 33, 34, 41, 43, 45–47, 49, 50

Tsteadyk Element in row k of the column vector Tsteady, i.e., the steady-state temperature on thermal node k,
such that 1 ≤ k ≤ N . 64–68, 75, 77, 80

Ti (t) Element in row i of the column vector T, i.e., the temperature on thermal node i, such that 1 ≤ i ≤ N .
33

Tk (t) Element in row k of the column vector T, i.e., the temperature on thermal node k, such that 1 ≤ k ≤
N . 62–67, 77

Tinitk Element in row k of the column vector Tinit, i.e., the initial temperature on thermal node k at time zero,
such that 1 ≤ k ≤ N . 68

Tinit Column vector Tinit = [Tinitk]N×1 that contains the initial temperatures on all nodes of an RC thermal
network at time zero. 33, 63–65, 188

188



Tk

(
t↑k
)

Maximum temperature on thermal node k, which occurs at time t↑k. 63, 65, 67, 68

T ′′
k (t) Second-order derivate of the temperature on thermal node k with respect to time, such that 1 ≤ k ≤ N .

67

t↑k Time point in which the temperature on thermal node k reaches it maximum value. 63, 65–67, 172, 189

Tsteady Column vector Tsteady =
[
Tsteadyi

]
N×1

that represents the steady-state temperatures on the thermal
nodes of an RC thermal network. 33, 34, 63–65, 188

τn Periodic real-time task n with implicit deadline. 25, 26, 28–30, 89–92, 122, 145, 146, 149, 150, 153,
182–184, 187, 189

θLTF Approximation factor of the LTF strategy in terms of task partitioning, due to the approximation factor
of the LPT algorithm for the Makespan problem. 90, 91, 93, 100, 104–107, 109, 110, 112, 114

U (δmax) Maximum value of auxiliary function U (δ), used to choose a value of fdyn such that E∗
↓ becomes

a continuous function, in order to derive an approximation factor without unnecessary pessimism. 101,
104–107, 173

U (δ) Auxiliary function used to choose a value of fdyn such that E∗
↓ becomes a continuous function, in order

to derive an approximation factor without unnecessary pessimism. 101–105, 109, 110, 112–114, 173,
182, 189

uτn (t) Instantaneous activity factor of a core executing task τn at time t. 28

V Total number of clusters/islands in the system. 26, 121–133, 138–141, 144–146, 148, 150, 152–154, 185,
190

Vdd Supply voltage of a core. 10, 28, 181

Vth Transistor threshold voltage. 10, 28

W Number of iterations used when applying the Newton-Raphson method. 67

w′
i Cycle utilization (unit cycles

second ) of task set Si that results in a lower bound of the optimal energy consumption
for the optimal task partition and the optimal DVFS schedule for homogeneous systems. 100–105, 108,
110–114

w∗
i Cycle utilization (unit cycles

second ) of task set Si that results in the optimal energy consumption for the optimal
task partition and the optimal DVFS schedule for homogeneous systems. 89, 97, 99, 100, 104, 105,
110, 112, 114

wDLTF
i Cycle utilization (unit cycles

second ) of task set Si when partitioning tasks using the DLTF strategy for ho-
mogeneous systems. 91, 92, 94–96, 103, 106, 108–114, 116

wLTF
i Cycle utilization (unit cycles

second ) of task set Si when partitioning tasks using the LTF strategy for homoge-
neous systems. 90, 92, 105, 109, 110

wq,i Cycle utilization (unit cycles
second ) of task set Si running on a core of type q, computed as

∑
τn∈Si

eq,n
dn

. 26

w′
M Maximum cycle utilization (unit cycles

second ) among all task sets Si that results in a lower bound of the optimal
energy consumption for the optimal task partition and the optimal DVFS schedule for homogeneous
systems. 99–106, 108–114, 173

w∗
M Maximum cycle utilization (unit cycles

second ) among all task sets Si that results in the optimal energy con-
sumption for the optimal task partition and the optimal DVFS schedule for homogeneous systems.
89–93, 98–101, 104–106, 108–114, 173

189



wDLTF
M Maximum cycle utilization (unit cycles

second ) among all task sets Si when partitioning tasks using the DLTF
strategy for homogeneous systems. 91–96, 99, 100, 102–106, 108–114, 116, 117, 173

wLTF
M Maximum cycle utilization (unit cycles

second ) among all task sets Si when partitioning tasks using the LTF
strategy for homogeneous systems. 90–93, 95, 105, 108–110, 173

wM Maximum cycle utilization (unit cycles
second ) among all task sets Si running on a homogeneous system. 122,

124, 126

wDLTF
max Auxiliary cycle utilization used as a maximum cycle utilization for the task regrouping procedure of

DLTF, computed as wDLTF
max = max

{
fcrit,w

DLTF
M

}
. 91, 92, 108

X Column vector X = [xi]M×1 for a particular mapping of active cores (among all cores, ignoring the types
of the cores), where xi = 1 means that core i corresponds to an active core, while xi = 0 means that
core i corresponds to an inactive core. 27, 41–46, 48, 49, 186

Xq Column vector Xq = [xq
i ]M type

q ×1 for all types of cores q = 1, 2, . . . Q, which represents a particular
mapping of active cores of type q, where xq

i =1 means that core i corresponds to an active core of type
q, while xq

i =0 means that core i corresponds to an inactive core of type q. 27

χq Constant scaling factor for the worst-case execution cycles of all tasks executing on cores of type q in
relation to the worst-case execution cycles of the same tasks executing on an arbitrary reference type of
core y, such that eq,n = αq · ey,n for all core types q = 1, 2, . . . ,Q and for all tasks n = 1, 2, . . . ,R.
146–148, 150

Y Set Y = {y1, y2, . . . , yV } containing the indexes of the task sets with the highest cycle utilizations
mapped to every cluster, such that task set Syj will have the highest cycle utilization inside cluster
Ij . 127–130

Z Total number of blocks in the floorplan, such that Z −M is the number of blocks corresponding com-
ponents other than cores, e.g., L2 caches and memory controllers. 27, 32, 34, 44, 46–51, 184, 185,
190
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