

Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers

Production method

Piezo settings influence the

drop shape, drop size,

drop velocity and target

Ink-jet Pixdro LP50:

accuracy.

T. Eiselt ^{a,d}, J. Preinfalk ^b, U. Gleißner ^d, U. Lemmer ^{b,c}, T. Hanemann ^{a,d}

^a Institute for Applied Materials, Karlsruhe Institute of Technology, Germany
^b Light Technology Institute, Karlsruhe Institute of Technology, Germany
^c Institute of Microstructure Technology, Karlsruhe Institute of Technology, Germany
^d Department of Microsystems Engineering, IMTEK / Albert-Ludwigs-University, Germany

Summary

The target of this project is to create <u>optically diffusing films</u> to increase the extraction efficiency of <u>optical components</u>. The layer should show the following properties:

- Homogeneous and transparent layer
- High scattering
- Adjustable refractive index

Introduction

 With a scattering layer more light couples out from the OLED

Materials

The three basic materials:

The additives are:

Viscosity behavior

- Viscosity is a key criterion for production method (screen printing or inkjet)
- Viscosity decreases with increasing temperature

Adjustable refractive index

- Polarizable π-electrons influences the refractive index [1]
- 9-Vinylcarbazole has a high number of π-electrons

Increasing 9-vinylcarbazole content in polymer, increases the refractive index

Figure 4: Inkjet printer Pixdro LP 50

Figure 5: Piezo settings for the developed TE-Bisphenol A Gly. ink (left) and the resulting drop shape (right)

UV exposure (Hoenle, 405 nm, 10 min):

Figure 6: Inkjet printed scattering layer on a glass substrate

Optical characterization

Important factors are haze and transmission:

Haze = Degree of scattering in %

Conclusion

A <u>simple method</u> to produce highly diffusing optical layers with high refractive index has been presented. These optical films can be used to increase the extraction efficiency of optical components. Films with a <u>refractive index of 1.62</u> at 589 nm and 20°C were successfully produced.

Acknowledgements

The authors acknowledge financial support by the German Federal Ministry of Education and Research (BMBF) under the contract FKZ 13N12240 (project "OLYMP").

References

[1] T. Hanemann and K. Honnef, "Viscosity and refractive index adjustment of poly (methyl methacrylate-co-ethyleneglycol dimethacrylate) for application in microoptics." Polymers for Advanced Technologies 26.4 (2015): 294-299.

