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Zusammenfassung

Viele Probleme in der Informatik lassen sich auf eine Partitionierung oder eine
Clusterung eines Graphen reduzieren. Geméafl der klassischen Definition, besteht
Graph aus Knoten und Kanten, wobei Kanten exakt zwei Knoten verbinden. Hy-
pergraphen heben diese Beschrinkung auf und erlauben es, dass Kanten beliebig
viele Knoten verbinden. Aktuelle Ergebnisse motivieren den Einsatz von Hyper-
graphen zur Modellierung von Problemen in der Informatik, da diese sich mithilfe
von Hypergraphen besser und intuitiver reprasentieren lassen. Diese Arbeit gene-
ralisiert Label-Propagation, einen Graphenclusteringalgorithmus, an Hypergra-
phpartitionierung. Wir schlagen drei Varianten von Label-Propagation vor, die
durch graphenbasierte Hypergraphmodellierung motiviert sind. Diese evaluieren
wir als Clusteringalgorithmen in der Coarseningphase der Multilevel-Partitioning-
Heuristik. Desweitern benutzen wir Label Propagation in der Uncoarsening- und
Refinementphase als schnellen Lokale-Suche-Algorithmus. Wir vergleichen unse-
re Algorithmen mit den Hypergraphpartitionierern hMetis und PaToH, die dem
aktuellen Stand der Technik entsprechen. Unsere Algorithmen erreichen die be-
sten Ergebnisse fiir grofleres k£ auf einem VLSI Benchmark: fiir £ = 128 haben
die durch unsere Algorithmen berechneten Partitionen 2% weniger Schnittkanten
als die Partitionen von hMetis und 4% weniger Schnittkanten als die Partitionen
von PaToH.






Abstract

Many problems in computer science can be represented by a graph and reduced
to a graph clustering or k-way partitioning problem. In the classical definition,
a graph consists of nodes and edges which usually connect exactly two nodes.
Hypergraphs are a generalization of graphs, where every edge can connect an
arbitrary number of nodes. Recent results suggest that some problems in com-
puter science are better and more intuitively modeled with hypergraphs instead
of graphs. This thesis investigates the adaptation of label propagation, a graph
clustering algorithm, to hypergraph partitioning. We propose three adaptations
of label propagation which are motivated by graph-based hypergraph modeling
and evaluate them as coarsening strategies in a direct k-way multilevel hyper-
graph partitioning framework. Furthermore, we propose a greedy local search
algorithm inspired by label propagation for the uncoarsening and refinement
phase of the multilevel partitioning heuristic. We compare our algorithms to the
state-of-the-art hypergraph partitioners hMetis and PaToH. Our results imply
that the utilization of label propagation in the multilevel hypergraph partition-
ing scheme is promising, as we outperform both hMetis and PaToH on VLSI
instances for larger values of k: for k = 128 our proposed algorithms produce 2%
better cuts than hMetis and 4% better cuts than PaToH.
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1  Introduction

Hypergraphs are a generalized form of graphs where an edge can connect more
than two nodes. Since every graph can be modeled as a hypergraph, every
application of graphs is also an application of hypergraphs. In addition, Estrada
and Rodriguez-Velazquez [20] present examples for social, biological, ecological,
and technological systems, where normal graphs are unable to represent the
structural information of the system. They show that hypergraphs can be used
for a better representation of those systems. Moreover, hypergraphs allow an easy
and intuitive modeling of various problems in computer science which include
computer vision [2], machine learning [1,61], data analysis [46], circuit layout [7],
and scientific computing [18].

All of these problems can be (partially) reduced to a clustering or k-way par-
titioning problem of a hypergraph. Given a hypergraph, a k-way partition is
an assignment of the nodes to k disjoint, nonempty sets, called blocks. Usually,
we seek a k-way partition that optimizes an objective. A widely used objec-
tive is the hypergraph cut — the sum of hyperedge weights which span multiple
blocks. Usually, constraints are imposed on the partition: for example, the pre-
dominant constraint is the balance constraint, which demands balanced blocks,
i.e. the weight of an arbitrary block must not differ greatly from the weight of
other blocks. For most objectives it is shown that if this constraint is enforced,
the k-way partitioning problem becomes NP-complete for both hypergraphs and
graphs [22,37]. The clustering problem can be seen as a partitioning problem,
where k, the number of blocks, is unknown beforehand. Clustering problems
usually impose different constraints and optimize different objectives than graph
partitioning.

The arguably most successful heuristic for the k-way partitioning problem is
called the multilevel partitioning scheme [13,27]. It is used by both state-of-
the-art graph and hypergraph partitioners. On an abstract level, the scheme
can be divided into three phases: coarsening phase, initial partitioning phase,
and uncoarsening phase. First, the (hyper)graph is successively contracted in
the coarsening phase, until it is small enough to be feasibly partitioned in the
initial partitioning phase. The employed coarsening strategy has a large impact
on the overall quality of the partition. If the smaller graphs don’t exhibit similar
structural properties as the original graph, the quality of the overall partition will
decline. In the uncoarsening and refinement phase the contraction is reversed
and the initial partition is projected to the next finer graph. During this phase
a local search algorithm is applied, which improves the quality of the partition
induced by the coarser graph.

1.1. Problem Statement

Label propagation [47] is a well known graph clustering algorithm which operates
in passes, each of which has a linear running time complexity. A constant number
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of iterations suffices for a nearly converged, good solution [47]. Therefore, label
propagation has a near-linear time complexity on graphs. Recent studies show
that label propagation can be successfully used within a multilevel graph parti-
tioning algorithm: Meyerhenke et al. [41] utilize the algorithm as a coarsening
strategy and a fast local search strategy. Their results imply that label propa-
gation has much potential on very large, irregular graphs, like social networks.
The goal of this thesis is the generalization of label propagation to hypergraphs
while still conserving the near-linear time complexity of the algorithm. We fo-
cus thereby on the hypergraph k-way partitioning problem. Like Meyerhenke et
al. [41], we utilize label propagation both as a coarsening strategy as well as a
local search strategy in the multilevel partitioning heuristic.

1.2. Contributions

We propose and evaluate various adaptions of label propagation as a coarsening
strategy which are motivated by graph-based hypergraph modeling. We consider
the two most common transformations of hypergraphs to graphs. Utilized in la-
bel propagation, one results in non-linear running time and good solution quality
whereas the other results in linear running time but worse solution quality. In
addition, we propose a probabilistic version of label propagation which has a
linear running time and produces good results. Furthermore, we develop a fast
and greedy local search algorithm which is inspired by label propagation. We
propose three configurations (LPFast, LPEco, LPBest) of a direct k-way hyper-
graph partitioning framework called KaHyPar [28] which utilize these algorithms.
We compare these configurations on various hypergraphs originating from very
large scale integration (VLSI) problems and sparse matrices (SPM), and compare
ourselves to the prominent state-of-the-art hypergraph partitioners, hMetis [32]
and PaToH [18]. Our algorithms perform especially well for larger k£ on VLSI in-
stances. For k > 64 both LPEco and LPBest outperform hMetis and PaToH on
a VLSI benchmark in terms of solution quality. Furthermore, LPEco dominates
hMetis in both partition quality and running time on this benchmark set for
k = 128: LPEco computes 7% better cuts and is 2.5 times faster than the direct
k-way variant of hMetis and computes 2% better cuts and is 1.5 times faster
than the recursive bisection variant of hMetis. In case of SPM instances, our al-
gorithms produce better partitions than the direct k-way variant of hMetis and
the default preset of PaToH for k > 64, but are outperformed by the recursive
bisection variant of hMetis and the quality preset of PaToH.

1.3. Outline

The thesis is organized as follows: Chapter 2 covers basic hypergraph related nota-
tions and formally defines the hypergraph k-way partitioning problem. Chapter 3
provides an overview over related work. Chapter 4 describes our modifications to
the label propagation algorithm for it to be applicable to hypergraphs. Chapter 5
gives insight on the implementation details. Chapter 6 evaluates our algorithm
and presents a comparison with other state-of-the-art algorithms. Finally, Chap-
ter 7 gives a conclusion and provides an outlook for future work.



2  Preliminaries

This chapter introduces basic concepts and terminology used throughout this
thesis. Furthermore, the most prominent partitioning objectives and transfor-
mations from hypergraphs to graphs are introduced in the latter part of this
chapter.

2.1. Definitions and Terminology

Definition 2.1.1 (Hypergraph). Formally, an unweighted hypergraph [14] is de-
fined as a tuple H = (V, F) with

o aset of hypernodes, i.e. V.= {vy,...,v,}, |V]| = n,
o« a set of hyperedges, i.e. E ={e1,...,en}, |[E|=m,Vee E: Q0 #£eCV.

In literature, hyperedges are also referred to as nets. In case of weighted hy-
pergraphs, we extend the tuple with two weight functions, i.e. H = (V) E,c,w)
with:

e node weights, i.e. c: V — Ry,

o edge weights, i.e. w: E — Ryg.

The weight of a hypernode v € V' is ¢(v) and the weight of a hyperedge e € E
is w(e). We extend ¢(-) and w(+) to sets, i.e.:

(V') =Y c(v) and w(E'):= > wle).

veV’ ecE’

Note that each unweighted hypergraph H = (V, E) can be transformed to a
weighted hypergraph H' = (V, E,c,w) with ¢ = 1 and w = 1. For the sake of
generality, we will only consider weighted hypergraphs.
Two hypernodes v;,v; € V are adjacent iff there exists a hyperedge which
contains them both:
dec E:v;€eNvj €e.

A hyperedge e € FE is incident to a hypernode v € V| iff v is present in e:
v Ee.

Given a hyperedge e € F, the elements in e are called pins. In this thesis we
use pinsle| for the pins of the hyperedge e and hyperedges[v] for the incident
hyperedges of hypernode v € V. We extend hyperedges|-] and pins[-] to sets, i.e.:

hyperedges|V'] .= {hyperedges[v] | v € V'} and pins[E'] := {pins|e] | e € E'}

For a given hypernode v, we define its degree as the number of hyperedges it
is incident to:
deg(v) :=|{e € E | v € e}|.
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H=(V,E, cw)
V' = {v1, v2, U3, 4, V5, Vs, U7 }
E = {e; = {v1,v9,v3},

€a = {02,03}7

es = {1, va, v4},

eq = {v4, v5, v6, V7 },

€5 = {U53U67U7}}

Figure 2.1.: An example hypergraph. Hypernodes are depicted as circles and hy-
peredges are illustrated as different colored areas. All hypernodes and
all hyperedges have weight one. For the sake of simplicity, hypernodes
and hyperedges are not annotated with their respective weight.

Analogously, the size or cardinality of a hyperedge e € E is the number of its
pins: |e|. Figure 2.1 shows an example hypergraph. It has seven hypernodes and
five hyperedges, all having weight one. Hypernodes are depicted as circles and
hyperedges are illustrated as different colored areas.

Definition 2.1.2 (Contracting hypernodes). Given a hypergraph H = (V, E, ¢, w)
and two hypernodes v, u € V a contraction of v and u merges the two hypernodes
into a single hypernode v’, with ¢(v') := ¢(v) + ¢(u) and replaces v and u with
v’ in all hyperedges. Formally, if we contract v and u the resulting hypergraph
H = (V',E' ¢, w) is defined as

Vii=(VUu{v'}\ {v,u}
E :={e€e E|v,ué¢e}t U

{e\{vHhU{v'} |ee E,veet U
{e\{uph)U{v'} |e€ E,uce}

c(w) = {c(w) if wé {v,u}

c(v) +c(u) ifw=1"

Note that through contractions the formation of parallel hyperedges, i.e. hyper-
edges containing the same pins, is possible. Usually, these parallel hyperedges
get merged into a single hyperedge which has the accumulative weight of all
parallel hyperedges. For the sake of simpler definitions we won’t merge parallel
hyperedges.

We extend the concept of hypernode contraction to hypernode sets by selecting
a representative u from the set, and successively contracting every other hypern-
ode v from the set with u. Note that with this extension we also define hyperedge
contraction, since a hyperedge is a set of hypernodes.
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Definition 2.1.3 (Hypergraph k-way partitioning problem). Given a hyper-
graph H = (V, E,c,w) and k > 1, a k-way partition of Hisaset II = {V3,...,Vi}
of blocks with:

* U§:1 Vi=V,
e ViCVandV;#0 for 1 <i <k,
e ViNV; =0 Vi,j:1<i<j<k.
We usually seek a partition which optimizes an objective (see Section 2.2).

A partition I satisfies the balance criterion iff

c(Vi)) <(1+ €)C<kv) + mea‘icc(v) = Lypaz, fori=1,2,....k

for some parameter ¢ > 0. In this case, we call II an e-balanced k-partition
of H. Like graph partitioning problems [22], the computation of an e-balanced
k-way partition of a hypergraph optimizing an objective is NP-hard [37] for most
objectives. Given a k-way partition of H, we define an indicator function \(-) for
the hypernodes. Given a hypernode v € V| it returns the block of the hypernode:

AV —={1,...,k}
YoeV: Av):=j

Definition 2.1.4 (Connectivity, Connectivity Set). Given a k-way partition
IT = {Vi,...,Vi} of a hypergraph H = (V, E,c,w), we define the connectivity
set of a hyperedge ¢ € E as:

connectivity set(e) := {V; € Il | v € pinsle] : v € V;}
The cardinality of a connectivity set is called connectivity:
connectivity(e) := |connectivity_set(e)|

In other words: the connectivity of a hyperedge is the number of different blocks
which are connected by the hyperedge.

A hyperedge e; € E with connectivity(e;) > 1 is called a border hyperedge,
whereas a hyperedge e; with connectivity(e;) = 1 is called internal hyperedge.
We denote the set of all border hyperedges as

B(II) := {e € E | connectivity(e) > 1}
and the set of all internal hyperedges as
I(I1) := {e € E | connectivity(e) = 1}.

The set B(II) can also be interpreted as the cut-set induced by partition II.

Given a hypergraph H = (V, E, c,w), a clustering of H is similar to a k-way
partition. We want to divide the hypernodes into disjoint blocks, whilst opti-
mizing an objective. However, in difference to a k-way partition, the number of
blocks is not known beforehand. The objectives [46,61] that are optimized in a
clustering problem are different from the objectives used in the k-way partition-
ing problem. Note that we can not enforce a balance criterion on a clustering,
since the number of clusters and therefore the average cluster size is not known
beforehand. The resulting sets are called clusters.
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2.2. Partitioning Objectives

This section focuses on the different objectives used in hypergraph k-way parti-
tioning. We provide an overview of the most prominent objectives. For more
information on this topic, we refer the reader to [7,31,45]. In the following, we al-
ways assume that IT = {V},..., Vi } is an e-balanced k-partition of a hypergraph
H=(V,E, cw).

2.2.1. Hypergraph Cut

The most prevalent partitioning objective is called hypergraph cut [18,24,32] and
is the canonical extension of the standard cut definition in graphs to hypergraphs.
Each hyperedge containing at least two pins in different blocks contributes its
weight to the hypergraph cut:

hRCut(H,II) == > w(e). (2.2.1)

e€B(II)

In other words: the hypergraph cut is the weighted sum of all hyperedges that
need to be removed to produce £ disjointed parts. In this case the objective is
the minimization of the function hCut(H,IT).

2.2.2. Sum of External Degrees

We define the external degree of a hyperedge e € FE as connectivity(e) iff the
edge spans multiple blocks, and zero otherwise, i.e.:

connectivity(e) if connectivity(e) > 1

extDeg(e) := {

0 else.

The sum of external degrees (soed) [31] is then defined as:

soed(H,II) := > w(e) - extDeg(e). (2.2.2)

ecE

In case of the objective induced by the sum of external degrees, we want to
minimize the function soed(H, IT).

2.2.3. (K — 1) metric

The (K — 1) metric [24] is very closely related to the sum of external degrees:

Kmi1(H,1I) := ) w(e) - (connectivity(e) — 1). (2.2.3)

eclE

In case of the objective induced by the (K — 1) metric, we want to minimize the
function Km1(H,1I).
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2.2.4. Absorption

The absorption objective [7,52] maximizes the sum of weighted fractions of hy-
peredges “absorbed” by the blocks:

|pinsle] NV;| — 1

absorption(H, 1) := > w(e). (2.2.4)
V;ell ecl |6| -1
pinsle]NV;#0

Imagine a block V; and a hyperedge e;, where one pin of the hyperedge is in block

V;. The absorption for this hyperedge in this block would be 0, increasing by

“:](Fi)l for each other pin belonging to the same block. The maximal value for the

absorption of the hyperedge is w(e;), occurring when all pins of the hyperedge
belong to the same block.

2.3. Graph-based Hypergraph Modeling

Since graphs are well studied, a straightforward way to solve the hypergraph k-
partitioning problem is to transform the hypergraph to a graph (conserving the
properties of the hypergraph regarding the objective) and partition that graph
using state-of-the-art graph partitioners like Metis [33] or KaHIP [50].

Generally speaking, hypergraphs can be transformed into graphs by replacing
each hyperedge with a weighted graph, where the edge weights are a function of
the hypergraphs original weights. This graph is called a cut-model [29]. However,
Ihler et al. [29] show that a general cut-model which has the same cut as the
hyperedge can’t exist for an arbitrary partition and hyperedges with cardinality
greater than three. In other words: the weight of the cut in the cut-model
can not have the same weight as the hyperedge cut (for all possible cuts in the
cut-model). Therefore, if we choose to solve the k-way hypergraph partitioning
problem via a transformation to a graph, it may result in worse solutions, since
the graph does not perfectly mimic the properties of a hypergraph. Furthermore,
the graph modeling the hypergraph has usually far more edges, resulting in a
more complex problem instance.

Graph-based hypergraph modeling is mostly used in the machine learning com-
munity, where hypergraphs model higher-order relationships [1,2]. Instead of a
k-way partition, the problem is to find a good clustering. There are two major
classes of cut-models: Clique Ezpansion [1,62] and Star Expansion [1,62].

2.3.1. Clique Expansion

In the clique expansion cut-model, each hyperedge is replaced with a clique, i.e. a
hyperedge e € E with \e[ = n is modeled by an n-clique (a completely connected
graph with n nodes and ““%— edges) Each hypernode becomes a node, keeping
its weight. Usually, the Welght of the edges in the clique is uniformly distributed.
Formally:
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Definition 2.3.1 (Clique Expansion). Given a hypergraph H = (V| E, ¢c,w) we
define the graph after performing clique expansion on H as G = (V, E', ¢, ')
with:

E'":={(u,v) | Je € E : u € pins[e] Av € pins[e]}
Vd:=(u,v) € E': WJ(d)=p- >  wle)),

ecE
u,vEpinsle]

with p being a constant.

Hypergraphs resulting from machine learning problems often exhibit k-unifor-
mity [2], i.e. each hyperedge has size k. Usually, p is being selected in respect of
k and n = |V]|.

Note that more complicated weighting functions exist [26,29,37]: A popular
weighting function is proposed by Lengauer [37]. Edges in the clique resulting
from a hyperedge e € E receive weight “:‘(f)l. In the case of overlapping hy-
peredges, the score is added up accordingly. However, the selection of the best

weighting factor is a research field for itself [26,29].

2.3.2. Star Expansion

The star expansion cut-model class inserts a new node for each hyperedge, where
each pin of the hyperedge becomes an adjacent node to the “hyperedge-node”.
Thus, we get a bipartite representation of the hypergraph, since two “hyperedge-
nodes” can not be adjacent. Formally:

Definition 2.3.2 (Star Expansion). Given a hypergraph H = (V| E,c,w) we
define the graph after performing star expansion on H as G = (V', E', ¢,')
with:

VI'=VUE
E'":={(u,e) | e € E: u € pinsle]

Vd:= (u,e) € E': w/(d) := wlfj)



2.3.2 STAR EXPANSION

Figure 2.2.: Clique expansion of the example hypergraph (Figure 2.1). FEach hy-
peredge gets replaced by a clique. The weight of overlapping is added
up. The thick lines represent heavier edges.

Star expansion Rearrangement

U7

Figure 2.3.: Star expansion of the example hypergraph (Figure 2.1). Fach hyper-
edge gets replaced by a new node, with edges being added between
the “hyperedge-node” and its pins. In the star expansion, these edges
have a weight which correlates with the initial hyperedge size. Edges
originating from a small hyperedge have therefore a larger weight and
are represented by thicker lines. The rearrangement is depicted for
emphasis on the bipartite nature of the graph.






3 Related Work

This chapter presents the related work of this thesis. In Section 3.1 the multilevel
partitioning scheme is discussed in detail with examples for its utilization. Sec-
tion 3.2 describes the common coarsening schemes employed in the coarsening
step of the multilevel partitioning scheme. The usual initial partitioning tech-
niques are mentioned in Section 3.3. In Section 3.4 we introduce local search
techniques, which are utilized in the uncoarsening/refinement step of the par-
titioning scheme. In Section 3.5, a special case of the multilevel partitioning
scheme which maximizes the number of levels, is introduced. The most widely
used state-of-the-art hypergraph partitioners, PaToH and hMetis, are covered
in Section 3.6. Finally, in Section 3.7 we provide a detailed explanation of the
original label propagation algorithm and a brief overview of its applications. Note
that since the focus of this thesis is hypergraph partitioning, we omit graph par-
titioning techniques and applications. For a survey on this topic, we refer the
reader to [16].

3.1. Multilevel Partitioning Scheme

The multilevel partitioning scheme [13,27] (Figure 3.1) is a well known and com-
mon heuristic for the graph partitioning problem and the hypergraph partitioning
problem. It consists of three phases:

(i) coarsening phase
(ii) initial partitioning phase

(ili) uncoarsening/refinement phase

Coarsening Phase. This phase successively coarsens the hypergraph until it is
small enough to be efficiently partitioned with an initial partitioning algorithm.
The goal of the coarsening, besides the reduction of the size of the hypergraph,
is the conservation of structural properties. This is important, since neglecting
these properties in the coarsening scheme results in a worse overall quality of the
solution. The coarsening is usually realized via hypernode contractions.

The objective of this phase is the maximization of the number of hyperedges
with cardinality one and the minimization of the size of hyperedges. We want to
maximize the number of hyperedges with size one, because these edges can not
be cut in the coarser graphs and can be omitted in the next level (simplifying
the problem instance). Furthermore, the usual local search algorithms used in
the uncoarsening and refinement phase (Fiduccia-Mattheyses derivations) work
worse if the hypergraph has many large hyperedges. Therefore, we also want to
reduce the size of hyperedges. There exists a large amount of different coarsening
schemes. We cover the most prominent in Section 3.2.
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Initial Partitioning Phase

Figure 3.1.: The multilevel partitioning scheme consists of three phases: coarsen-
ing phase, initial partitioning phase and uncoarsening and refinement
phase. The input (hyper)graph is successively coarsened in the coars-
ening phase until it is small enough to be feasibly partitioned in the
initial partitioning phase. During the uncoarsening and refinement
phase the partitioning is being successively projected to the next finer
level, while a local search algorithm improves the solution.

Initial Partitioning Phase. In this phase, an initial partitioning algorithm com-
putes a partition of the coarsest graph, i.e. the assignment of vertices to blocks.
The usual approaches for the computation of the initial partition are a random
assignment of nodes to blocks, or grow-based algorithms. In case of the lat-
ter, blocks are grown from randomly selected nodes. We discuss the different
approaches used in this phase briefly in Section 3.3.

Uncoarsening/Refinement Phase. During this phase, the solution of a coarser
graph is projected to the next finer graph. After that, a local search algo-
rithm refines the projected partition. The usual approaches can be divided
into Kernighan-Lin (KL) derived heuristics and approaches derived from the
Fiduccia-Mattheyses (FM) heuristic. We will explain the original heuristics in
Section 3.4.

In Algorithm 1, the pseudocode for the multilevel partitioning scheme is shown.
Lines 3-6 belong to the coarsening phase, line 7 to the initial partitioning phase,
and lines 8-12 to the uncoarsening and refinement phase.

12
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Algorithm 1: Multilevel Partitioning

Input: (hyper)graph G, number of desired blocks &, maximal imbalance
Output: partition of G into k parts

repeat // coarsening phase
| G < coarsen(G, k)

until G is small enough

P < initial partitioning(G,k,¢) // initial partitioning phase

repeat // uncoarsening and refinement phase

G < uncoarsen(G, k)

P« refine(P, G, k,¢)
until G is completely uncoarsened
return P

© 0 N O Ut s W N

3.2. Coarsening Schemes

Generally, the coarsening schemes used in the coarsening step of the multilevel
partitioning heuristic can be divided into two groups: matching-based coarsening
and agglomerative coarsening. Matching-based coarsening contracts matchings,
i.e. disjoint pairs of hypernodes. Therefore, the number of hypernodes in the
subsequent level gets reduced at most by a factor of two.

In agglomerative coarsening disjoint sets of hypernodes are contracted. In
the following we refer to these sets as clusters. There is one problem with this
approach. If not controlled, the number of hypernodes in subsequent levels gets
possibly reduced by a large factor, since a cluster can get arbitrarily large. This
results in very heavy hypernodes in the coarser levels and a small number of levels
overall. These nodes negatively impact the quality of the partition: In the initial
partitioning phase, they make it difficult for the initial partitioning algorithm
to produce a good balanced partitioning. Furthermore, the movement of these
very heavy nodes is restricted in the refinement phase, since the partition should
remain balanced. A usual solution for this problem is a penalty for large clusters
during coarsening: When a hypernode determines its affiliation to a cluster, the
score receives a penalty dependent on the cluster size.

There exists a numerous amount of selection criteria when determining which
hypernodes should be matched/clustered. In the following we will focus on
the strategies utilized in the prominent state-of-the-art hypergraph partitioners
hMetis and PaToH. For a more in depth look into selection criteria, we refer the
reader to [7].

3.2.1. Edge Coarsening

Edge Coarsening [6,32,60] is a matching-based coarsening strategy and is sup-
ported in hMetis. It selects random pairs of nodes that are present in the same
hyperedge. Essentially, it performs clique expansion on the hyperedges. On this
representation it then computes a random matching and contracts this match-
ing. However, this transformation of the hypergraph to a graph is done implicitly
during the matching step.

13



3.2 (COARSENING SCHEMES

There exists a variation of edge coarsening called heavy-edge coarsening. In-
stead of randomly selecting a hypernode for matching, it selects the unmatched
hypernode that is connected via the edge with the largest weight. The weight

w'(v,u) of an edge connecting two nodes v and u is the sum of all hyperedge

w(e)
lel-1

weights which contain these two nodes, where each hyperedge e contributes
the weight:

ecl
u,vEpinsle]

3.2.2. Hyperedge Coarsening and Modified Hyperedge Coarsening

Hyperedge coarsening [32] is an agglomerative coarsening scheme which contracts
hyperedges that do not share common hypernodes. In this scheme, all hyperedges
are initially sorted in decreasing hyperedge weight order. Hyperedges with the
same weight are sorted in increasing size order. Then, the hyperedges are visited
in this order and for each hyperedge that only contains unclustered hypernodes,
the hypernodes are clustered. Therefore, hyperedge coarsening tries to eliminate
hyperedges with large weight and those of small size. After all hyperedges have
been visited, all hypernodes that were clustered are contracted. Hypernodes that
were not clustered are simply copied to the next level.

Hyperedge Coarsening is able to drastically reduce the total hyperedge weight
that is left exposed in coarser graphs. Still, it is possible that we ignore many
hyperedges, because some of their pins have already been clustered. This leads to
two problems: First, the size of hyperedges may not decrease sufficiently, and the
weight of hypernodes (i.e. the number of hypernodes that have been contracted)
may differ greatly, which impedes the initial partitioning algorithm.

These problems are addressed in the modified hyperedge coarsening scheme [32].
This scheme first performs hyperedge coarsening. After contraction, each non-
contracted hyperedge is visited and all hypernodes that do not belong to any
other contracted hyperedge are clustered. These hypernodes will then also be
contracted before the descent to the next coarser level. Both hyperedge coarsen-
ing and modified hyperedge coarsening are implemented in hMetis.

3.2.3. First Choice

Edge coarsening, hyperedge coarsening and modified hyperedge coarsening all
share one characteristic, namely that they all find maximal independent groups
of hypernodes. Therefore, as soon as some set of hypernodes get matched, no
additional hypernodes can be matched to this particular set. Karypis [31] real-
ized that this approach may destroy some cluster structures that naturally exist
in the hypergraph. An example for such naturally occurring cluster structures
is shown in Figure 3.2. This observation led to an agglomerative coarsening
scheme called first choice [31]. First choice is derived from the heavy-edge coars-
ening scheme (Section 3.2.1). Again, this scheme visits all hypernodes in random
order. However, for each hypernode it considers all adjacent hypernodes, disre-
garding whether they have already been matched or not. Therefore, hypernodes
are matched which are connected via the heaviest edge (in the clique-expanded
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Edge Coarsening contract

Figure 3.2.: Edge Coarsening can destroy naturally existing cluster structures
in hypergraphs. In the left image, the initial hypergraph is de-
picted. In the middle image, the matchings returned by edge coars-
ening are pictured as black lines.  The order of the wvisit was
v3, Uy, V1, Vg, Us, Ug, Us, Vg, V19, V7. Since already matched hypernodes
are ignored in this scheme, in the middle image we only enumerate
hypernodes if they were not matched at the moment of the visit. The
rightmost image shows the hypergraph after contraction. We merge
parallel hyperedges for the sake of simplicity. The heavier hyperedges
are drawn thicker. The hypergraph originates from [31].

graph), breaking ties in favor of unmatched nodes. This leads to arbitrarily large
groups of hypernodes which will be contracted.

One problem with this approach is that the size of successive coarser graphs
may decrease by a large factor, potentially limiting the effect of local search.
Karypis solved this problem by stopping the coarsening process as soon as the
size of the next coarser graph would decrease by a bigger factor than 1.5 — 1.8.

3.2.4. Heavy Connectivity Coarsening

Heavy connectivity coarsening [18] is a general term for a matching-based and
an agglomerative coarsening scheme utilized by PaToH. They are called heavy
connectivity matching (HCM) and heavy connectivity clustering (HCC). Their
objective is to find highly connected hypernode clusters.

The matching-based clustering works as follows: It visits all hypernodes in
random order and checks if the current hypernode u has already been matched.
If that is not the case, it chooses the unmatched adjacent hypernode v which
shares the maximal number of incident hyperedges with wu:

|hyperedges[u] N hyperedges[v]). (3.2.1)

The agglomerative variant of the clustering works very similar to the matching-
based, but allows for more than two hypernodes to be clustered together. At the
beginning of the coarsening, it assumes that each hypernode u constitutes a
singleton cluster C, := {u}. It visits all hypernodes in random order. If the
current hypernode u has already been clustered (|C,| > 1), that hypernode is
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3.2 (COARSENING SCHEMES

ignored. Otherwise, it considers all adjacent hypernodes of u and selects the
hypernode which maximizes the following selection criterion:

re |hyperedges[u] N hyperedges|C, ]|
rg max ;
%GV C<Cv U {Cu})

The division by ¢(C, U {C,} is a penalty for large clusters which restricts the
formation of heavy hypernodes on the next coarser level. After the clustering, all
clusters are contracted. Note that after one iteration no more singleton clusters
remain (assuming there are no isolated hypernodes).

(3.2.2)

3.2.5. Absorption Clustering

Absorption clustering [18] is a general term for clustering schemes that optimize
the absorption metric [7] (See Section 2.2.4). PaToH currently supports three
such schemes:

« absorption matching
« absorption clustering using nets
« absorption clustering using pins

All variants visit all hypernodes in random order and select an adjacent hypern-
ode or a cluster (in case of agglomerative schemes) that maximizes a selection cri-
terion. After the computation of the matching or clustering, all matched/clustered
hypernodes are contracted. In case of absorption matching the selection criterion
is

arg max > wie) (3.2.3)
VeV e€hyperedges[u]N
hyperedges|v]

for unmatched hypernodes v, u. This selection criterion favors hypernode pairs

which are connected via many, heavy, small hyperedges. Note that this coarsen-
ing strategy is identical to heavy edge coarsening strategy in hMetis.
Absorption clustering using nets is the agglomerative version of absorption

matching. It uses a very similar selection criterion to Equation 3.2.3:

arg max > (3.2.4)

VeV e€hyperedges[u]N

hyperedges[Cly]

with the difference that the similarity is computed to clusters, and single node

clusters are allowed to be matched to already matched hypernodes. Ties are
resolved in favor of unmatched nodes.

The last absorption clustering scheme is called absorption clustering using pins
and is the default coarsening scheme in PaToH. For this variant, the similarity
between a hypernode v and a cluster C, is

w(e)

arg max > lenC,| - ——. (3.2.5)

veV e€hyperedges[u]N |6| —1

hyperedges|Cy]

In other words: Absorption clustering using pins accumulates the score (Equa-
tion 3.2.3) for each pin of the hyperedge that is part of the cluster.
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Algorithm 2: Best Choice Coarsening
Input: hypergraph H = (V. E,c,w),|V]| =n,|E|=m
Output: coarser hypergraph H' = (V' E' ¢, w')
1 pq < new PriorityQueue
2 foru eV do
3 (u,v,d) < (u, p(u), d(u,v)) // the closest hypernode and their score
4 pq.insert(u, v, d)

5 while H'is not small enough do

6 (u',v',d") < pq.pop // get the currently best score
7 | H < contract(u,v) // contract the two nodes
8 update (pq, u’) // update all neighbors of the new node

3.2.6. Best Choice

Best choice is a clustering technique which was introduced by Alpert et al. [4]
and has since then been heavily used in the Very-Large-Scale Integration (VLSI)
domain [42,54,56]. They implement their methodology within a leading indus-
trial placement tool called CPLACE [8]. The quality of the placement is then
measured by the final placements wire length. Note that best choice is not used
within the multilevel partitioning scheme [4]. Nevertheless, this algorithm can
be utilized as coarsening strategy and the results of Alpert et al. [8] indicate
that best choice outperforms edge coarsening and first choice in both quality
and performance. Best choice is structurally different to the other agglomerative
coarsening schemes presented before. It successively contracts hypernodes during
computation, whereas the other coarsening schemes first compute a clustering
and contract it afterwards.
This coarsening scheme (re)defines the weight of a hyperedge e as

wie) = ). (3.2.6)

€]
The weight of a hyperedge therefore gets inversely scaled by the number of hyper-
nodes it connects. Then, the clustering score for two hypernodes u, v is defined

as ©
w(e
d(u,v) := > —_.
e€hyperedges[u]N C(u) + C(U)
hyperedges[v]
In other words: The clustering score is proportional to the total sum of hyperedge
weights between v and v and inversely proportional to the summed weight of u
and v. Note that if two hypernodes get contracted, the weight of the resulting
hypernode is equal to the sum of its uncontracted parents.
The closest object to a hypernode u is defined as the adjacent hypernode v,
which has the maximal clustering score d(u,v), i.e.
plu) :=v <& argmax d(u,w) =wv.
wEhyperedges|u]
The idea behind best choice clustering is to always contract hypernodes which
have the maximal clustering score. This can be achieved with a priority queue,
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whose entries are tuples (u, v, d), with v denoting the closest hypernode of u and
d := d(u,v) being their clustering score and the key for priority queue. The
pseudocode for the algorithm is shown in Algorithm 2.

Best choice works in two phases. In the beginning, each hypernode is inserted
with its closest partner and their score into the priority queue. In the second
phase, the tuple (u,v,d) with the highest score is removed and the hypernodes
u, v are contracted. At this point, it is possible that the closest hypernodes
of u and v’s neighbors have changed. Therefore, the closest hypernodes in the
priority queue for the neighbors need to be updated.

The update step has a large negative impact on the running time, because
for hypergraphs with large hyperedges, many entries in the priority queue are
updated in each step. Alpert et al. [4] propose a heuristic that deals with this
problem. Statistical analysis of the priority queue management [4] shows that

(i) A tuple might be updated a number of times before it reaches the top, thus
rendering the first update unnecessary.

(ii) In 96% of all updates, the new score decreased [4].

Motivated by these observations, they propose a lazy update technique. In the
beginning all objects in the priority queue are marked as valid. The update step
in line 7 (Algorithm 2) invalidates all neighbors of the contracted nodes. If the
topmost object in the priority queue is marked as invalid, its closest object is
recalculated and reinserted into the priority queue. Alpert et al. demonstrate
that the lazy update technique leads to a drastic decrease of the running time.

3.3. Initial Partitioning

In the initial partitioning phase the goal is the computation of the initial partition,
i.e. to assign hypernodes of the coarsened hypergraph to blocks.

The straightforward approach is to continue the coarsening of the hypergraph,
until only & hypernodes remain. This, however, very often results in a highly
unbalanced initial partition [58]. This is a problem, because now, the local
search algorithm needs to be very effective, since it needs to restore the balance.
Moreover, the improvement of the uncoarsening and refinement phase is limited
because a lot of moves are infeasible due to the violation of the balance constraint.

There are three general methods which are used for the computation of the
initial partition:

(i) random assignment of nodes to blocks

(ii) grow based heuristics

(iii) spectral methods

hMetis [32] supports three different initial partitioning schemes, which are
based on the principle of recursive bisection: balanced random bisection [34],
Graph Growing Partitioning algorithm (GGP), and Greedy Graph Growing Par-
titioning algorithm (GGGP) [34].

In case of balanced random bisection the hypernodes are randomly assigned to
one of the two blocks, respecting the balance constraint. In contrast, GGP selects
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a hypernode and gathers half of the hypernodes in terms of weight as follows: It
grows a set of nodes around the randomly chosen hypernode in a breadth-first
search fashion until the weight of the set is half of the total hypernodes weight.
GGGP is an improvement on the GGP algorithm. As in GGP, it starts with
a random hypernode and grows a block around it. The growing process is in
contrast to GGP greedy, i.e. all border hypernodes are ranked according to the
decrease in cut, if the hypernode were to be added to the block.

GGGP is less subject to the initial choice of the hypernode than GGP. However,
this comes with the penalty of increased running time. Therefore, fewer initial
runs can be performed with GGGP than GGP if we want to keep a similar
running time. Nevertheless, the experiments conducted by Karypis et al. [32]
suggest that GGGP still achieves a better result.

Karypis et al. [32] argue that the quality of the initial partition may not reflect
the quality of the overall partition, i.e. given two initial partitions P, and P, it
is possible that P, has a worse quality than P;, but the final partition based on
P; has a better quality than the one based on P;. This is the main reason why
exhaustive enumeration is usually not used as the initial partitioning algorithm.
Even if the initial partitioning algorithm would compute the optimal partition
of the coarsest hypergraph, the used computational time is often better utilized
in the uncoarsening and refinement phase, thus leading to a better partition.

Instead, Karypis et al. propose to perform a fixed number of initial partitions
and successively propagate partitions whose cut is within the best 2% of the best
cut at the current level.

PaToH supports a numerous amount of different initial partitioning schemes,
which are all either based on random assignment, breadth-first search, or GGGP.
For a more in depth overview of the possible initial partitioning heuristics, we
refer the reader to [15].

3.4. Refinement Techniques

This section introduces the Kernighan-Lin (KL) heuristic and the Fiduccia-Matt-
heyses (FM) heuristic, which can both be used as a local search strategy. The
refinement techniques utilized in hMetis and PaToH are either derived from the
FM heuristic or from the KL heuristic.

3.4.1. Kernighan-Lin

The initial version of the Kerningham-Lin algorithm [35] refines a perfectly bal-
anced (¢ = 0) bisection of a graph where all nodes have uniform weight. There
exist adaptions of the algorithm for e-balanced bisections and nodes with differ-
ent weights. Furthermore, Schweikert and Kernighan [51] propose an adaptation
to hypergraphs. The initial version of the algorithm has a non-linear running
time (|E|*log|E|) [15] and is therefore rarely used in practice. Hence, we will
discuss it only briefly. For an in depth look at the different adaptations and
optimized implementations, we refer the reader to [15].

The main idea is to define a gain(-,-) function for pairs of hypernodes in
different blocks. This function denotes the improvement of the objective function
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Algorithm 3: KL algorithm

Input: hypergraph H = (V, E, ¢, w), perfectly balanced bisection Vi,V of H
Output: Refined bisection V/, V; of H

1 V) +—W // initialization
2 Vi Vs
3 repeat
4 for 1 </ <|V]|/2 do
// find equally heavy, non-locked hypernodes that mazimize gain
vy, 8 arg max gain (v, vf)
vi/EVl’,vJ:EVé,
c(vf):c(vf)
5 ¢" + gain(v,vf)
6 Vi VI \ {vf} U{of} // swap blocks of v}, v}
7 Vi Vi\{vi} u{vf} // swap blocks v}, v}
8 | lock vy, v // don’t consider v{,v§ in next iterations
V1/2
9 pos < argmax y. ¢ // when was the best solution seen
ko k=1
pos
10 maz_gain < Y. ¢~ // the improvement of the best solution
k=1
11 if max_gain > 0 then
12 for |V|/2 > k > pos do // rollback to the best solution
13 Vi VI\{of} U {v}} // swap blocks of v}, v}
14 Vi Vi\ {of} U {v}} // swap blocks of vf, vl
15 else
16 for |V]/2>k >0do // undo all swaps
17 Vi VI {of} U {of}
18 Vi = Va\ {vf} U {of}
19 until max gain <0 // continue as long we improve the bisection

20 return V/, Vi

(in our case the cut), if the two hypernodes swap the block they belong to. Note
that since the algorithm assumes that the partition is perfectly balanced, and
always swaps two nodes with the same weight, the partition remains perfectly
balanced.

The algorithm operates in passes (one pass is lines 4-18 in Algorithm 3), in
which two nodes with the highest gain are greedily swapped. Once a node has
been moved, it is ignored in the current pass. Note that the gain can become
negative. Next, the overall best partition encountered in this pass is determined
and the algorithm checks if the score was positive (the bisection was improved).
If so, KL performs a rollback to the bisection with this score and starts a new
pass. In Algorithm 3 the pseudocode for the KL algorithm is shown.
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Figure 3.3.: The data structure proposed by Fiduccia and Mattheyses [21].

3.4.2. Fiduccia-Mattheyses

There exist many adaptations and improvements to the KL heuristic. The most
prominent is the Fiduccia-Mattheyses algorithm [21]. This adaptation reduces
the complexity of KL for both graph and hypergraph partitioning. Their main
contribution is the introduction of a data structure (called bucket priority queue),
which allows for an efficient computation of the node with the maximal gain.
Furthermore, they modify the KL heuristic in such a way that they no longer
swap pairs of nodes but only move a single node.
The data structure supports four operations:

(i) determine the gain of a vertex
(ii) insert and remove gain elements
(iii) find the elements with the maximal gain

(iv) find the elements with the second highest gain

In Figure 3.3, the proposed gain list structure is shown. It consists of two arrays.
The first has size 2pmaz+1, pmax denoting the maximal possible gain. Each entry
in this array holds a linked list with all nodes that have the gain corresponding
to this entry. The other one holds for each vertex a pointer to its position in
one of the linked lists. Furthermore, the index (gain) of the first non-empty
linked list is stored explicitly. In case of a bisection, there are two such data
structures. One stores for each vertex its gain in case it is moved to the first
block, whereas the second one stores its gain in respect to the second block. The
first three operations have a constant time complexity, whereas the localization of
the elements with the second highest gain is linear in the number of the maximal
possible gain.

One problem with the data structure is that the maximal possible gain is depen-
dent on the maximal degree of a hypernode (= max d(v) - maxw(e)). Therefore,
if the hypergraph contains hypernodes with a wide range of hypernode degrees
much space is wasted in the first array. There exist optimized variations of this
data structure which cope with this problem, e.g. with the utilization of a binary
search tree and a hash map the time complexity for the second operation becomes
logarithmic in the number of non-empty lists. The other operations have a con-
stant time complexity. For more information on this and further optimizations
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Algorithm 4: FM algorithm
Input: hypergraph H = (V, E, ¢, w), bisection V;, V;, of H, max. imbalance &
Output: Refined bisection Vi, V5 of H

1 repeat

2 initialize the two gain tables

3 for 1 <i<|V]|do

4 select unlocked node v € V| such that its gain is maximal and after
the transfer the graph has imbalance < e

5 transfer v to the other block

6 foreach unlocked vertex v' € V' adjacent to v do

7 L update the gain tables for v/

8 | lockw

9 j < number of transfers maximizing the gain maz_gain

10 if maz_gain > 0 then // rollback to the best solution

11 L Alter the bisection V;, V5 according to j

12 else

13 L Undo all swaps in this iteration

14 until max_gain <0 // continue as long we improve the bisection

15 return V4, V5

we refer the reader to [15,45].

Algorithm 4 outlines the pseudocode for the FM algorithm. Let £ := Y . |e]
be the number of pins of the hypergraph. The initialization step has a complex-
ity of O({), the localization of the node with the maximal gain has amortized
constant complexity O(1), the update step has a constant time complexity per
node, and is triggered at most |e| times per incident hyperedge e € E. The
amortization works as follows: Let v, w be two subsequent hypernodes that both
have maximal gain. The cost for the update of the pointer pmax is bound by
O(deg(v) + deg(w)). This cost, however, is amortized, since the gain values of all
neighbors of v and w need to be updated. Therefore the total running time of a
single pass of the FM algorithm is amortized O(¢), which is a vast improvement
when compared to the KL algorithm, which was O(|E|*log |E|).

Note that the FM algorithm performs random tie-breaking, i.e. if multiple
moves have the maximal gain, one of them gets selected at random. An adapta-
tion of FM which employs a different kind of tie-breaking is proposed by Krish-
namurthy [36]. He utilizes the concept of “level-gains” for the computation of a
bipartition of a hypergraph. His adaptation has a running time of O(¢-¢), where
¢ denotes the number of pins and £ the number of gain levels. His experimental
results imply that the utilization of this tie-breaking improves the quality of the
FM algorithm.

In its initial version the FM algorithm refines a bipartition of a hypergraph.
Note that this concept can also be extended to k-way local search in a k-way
partition: Hendrickson et al. [27] adapt FM to k-FM for graphs. They use
k(k — 1) gain tables (Figure 3.3), one for each type of move (from block i to
block j). Their approach has a complexity of O(k|E]|).
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Finally, Sanchis [48] also utilizes k(k — 1) priority queues and extends the
concept of level gains to a k-way partition of a hypergraph. Her k-way local search
algorithm has a running time of O(&lk(log k + & + max,cy deg(v) - max.cpw(e))),
¢ denoting the number of gain levels and ¢ denoting the number of pins.

3.5. n-Level Partitioning Scheme

An extreme variant of the multilevel partitioning scheme is called the n-level
partitioning scheme [44]. The main difference between them is that the n-level
scheme contracts only two nodes at each level, whereas the multilevel partition-
ing scheme contracts an arbitrary amount of nodes at each level. The central
idea behind this approach is to make subsequent levels very similar. This leaves
the local search algorithm much room to improve the quality of the partition.
Furthermore, instead of the computation of a matching or clustering in the coars-
ening step, they can greedily select two nodes according to a rating function, thus
simplifying the coarsening. Another difference to other coarsening strategies is
that with the utilization of a priority queue, the global best pairs of hypernodes
(according to a rating) are contracted, whereas the other coarsening strategies
have a very local view.

3.6. State-of-the-art Hypergraph Partitioners

The most prominent and widely used state-of-the-art hypergraph partitioners are
hMetis [31] and PaToH [18]. They both implement the multilevel partitioning
scheme, which is explained in Section 3.1.

3.6.1. hMetis

hMetis was proposed by Karypis et al. in [32] with the focus of partitioning VLSI
instances. Hypergraph partitioning is extensively applied in the field of VLSI,
where the goal is the placement of thousands of transistors onto a single chip.
The usual metric of a placement is called wirelength and measures the total wire
length of the circuit. A good placement is important because it impacts

(i) the timing performance of the chip,
(ii) the power consumption of the chip,
(iii) the total area of the chip.

A circuit can easily be modeled by a hypergraph: Each gate is represented by
a hypernode and all inputs to the gate are grouped into a single hyperedge. A
gate thereby realizes a logical operation, e.g. XOR. This problem can (partially)
be solved with a k-way partition of the hypergraph.

hMetis supports both direct k-way partitioning and recursive bisection. Recur-
sive bisection first computes a bisection of the hypergraph, i.e. £ = 2. Next, it
recursively bisects the two disjoint graphs induced by the partition. If k = 27,
it needs to perform n — 1 recursions to achieve k different blocks. Note that
recursive bisection is also able to solve the k-partitioning problem if k£ is not a
power of two. This is achieved by modifying size ratios of the bisection.
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In case of direct k-way partitioning, hypernodes are directly assigned to one
of the k different blocks. Furthermore, hMetis currently! supports 11 coarsening
schemes and 7 refinement schemes. They contain multiple variants of the ideas
which we cover in Section 3.2 and Section 3.4.

3.6.2. PaToH

Sparse matrices can also be easily modeled as hypergraphs. Given a matrix A;;,
the rows/columns are interpreted as hyperedges. One goal is the parallelization
of various operations on the matrix, like the dense-vector sparse matrix product.
PaToH was proposed by Catalyrek and Aykanat in [18] as a framework which
optimizes the total communication volume for a k-way partition. The total com-
munication volume is thereby the amount of data transfers necessary to finish the
operation on a matrix while dividing its data onto k processing units. PaToH?
uses recursive bisection for the computation of the partition and currently® sup-
ports 17 different coarsening schemes, 13 initial partitioning algorithm variants,
and 10 refinement schemes. Many of them are very similar, we cover their basic
variants in Section 3.2 and Section 3.4.

3.7. Label Propagation

Label propagation was first introduced by Raghavan et al. [47] as an algorithm for
community structure detection (or clustering) in large-scale graphs. Algorithm 5
outlines the pseudocode of original label propagation on graphs proposed in [47].
The time complexity for each iteration is

O(n+m), (3.7.1)

since every node is visited once and every edge twice. This results in a near-linear
time complexity for the complete algorithm, if the number of maximal iterations
is controlled. According to Raghavan et al. [47], 95% of all nodes have the same
label that the maximum number of their respective neighbors have by the end
of the fifth iteration.

Algorithm 5: Label propagation
Input: graph G = (V, E),|V| =n,|E|=m

Output: labelll...n] // the labels for each node
1 forv eV do
2 L label[v] v // initialization

3 while not converged and num_iterations < max_iterations do
4 for v € V in random order do
5 L label[v] «— arg max, score(v,0) // choose “best” adjacent label

"http://glaros.dtc.umn.edu/gkhome/fetch /sw/hmetis/hmetis-2.0prel.tar.gz
2Version 3.2: http://bmi.osu.edu/umit/software.html
3http://bmi.osu.edu/umit /PaToH /manual.pdf
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3.7 LABEL PROPAGATION

Figure 3.4.: Non-convergence of the naive label propagation algorithm for an un-
weighted graph. We want to determine the new label for node v. Both
adjacent labels (depicted as different colors) have the same score. Due
to the random tie-breaking, the label of v will alternate between these
two labels.

The usual choice for the score function in line 6 is the sum of edge weights,
which connect the node to the same label, i.e.

score(v,0) = > wle). (3.7.2)
e=(v,u)€E
label[u]=0
Ties are broken randomly among all candidates with the maximal score. In case
of an unweighted graph, the score simply counts the number of edges connecting
the node to that label (w = 1).

Ideally, the algorithm converges after a constant number of iterations. Fig-
ure 3.4 shows an example where the naive version of the algorithm does not
converge, because node v alternates between two labels with equal score. Ragha-
van et al. therefore propose a different stopping criterion: They stop the iterative
process as soon as every node has a label with the maximal number of occurrences
among its neighbors. After the execution of the algorithm, all nodes sharing the
same label are assumed to belong to the same cluster.

Since its introduction, the label propagation algorithm has become very pop-
ular in the field of machine learning. Kang et al. [30] use a modified version of
the algorithm in the domain of multi-labeled learning. Their proposed frame-
work, Correlated Label Propagation (CLP), is an improvement to the kernel-
based k-Nearest Neighbors (KNN) approach for multi-label learning. In contrast
to standard label propagation, CLP co-propagates multiple labels in each step.
Zheng-Yu et al. [43] use label propagation as a semi-supervised learning algorithm
for the word sense disambiguation (WSD) problem. The goal is the assignment
of appropriate sense to an occurrence of a word in a given context. Their al-
gorithm fully realizes a global consistency assumption (similar examples should
have similar labels) and outperforms support vector machines (SVM) when only
a few labels are available. Tang et al. [53] annotate large quantities of images by
label propagation over nosily tagged web images. They construct a sparse KNN-
graph with both labeled and unlabeled images and propagate the noisy tags to
the unlabeled nodes. Their semi-supervised approach significantly outperformed
the traditional methods for image annotation. Zhang and Wang [59] also use
label propagation as a semi-supervised learning algorithm. They propose a lin-
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ear neighborhood model, in which each data point can be reconstructed from its
neighborhood. Their approach shows promising results for both synthetic and
real world data. An extension to label propagation is proposed by Gregory [25].
His algorithm is able to detect overlapping communities and performs especially
well in large networks.

The peer pressure algorithm proposed by Gilbert et al. [23] is very similar to
label propagation: A subset of all nodes is selected as leaders. Each node in the
graph should have at least one leader in its neighborhood. Then, every node in
the graph elects a leader, selecting a cluster to join. In the last step, each node
switches its vote to the most popular leader in its neighborhood.

Label propagation is also used in the field of graph partitioning. Ugander and
Backstrom [55] propose a balanced label propagation algorithm for the partition-
ing of large graphs. They modify the initialization step of the algorithm. The
number of initial labels is equal to the number of desired blocks. The initial
labels of the nodes are being randomly selected among this number, respecting
the constraints imposed on the block sizes. Utilizing linear programming, their
algorithm is able to enforce various constraints on the block sizes (including the
balance constraint).

Furthermore, label propagation can be utilized in the coarsening phase and
the uncoarsening phase of the multilevel partitioning scheme [41]. In the coars-
ening phase, nodes sharing the same label are contracted. If left unmodified, the
algorithm can produce very large clusters, resulting in very heavy nodes at the
coarsest level. These nodes negatively impact on the quality of the partition,
since they restrict effectiveness of the local search algorithm in the uncoarsening
step. The heavy nodes can not be freely moved between partitions, because their
move would violate the balance constraint. Therefore, Meyerhenke et al. [41] in-
troduced a size constraint. With this constraint, labels forming a too large cluster
are ignored in line 6 of Algorithm 5, i.e. the score function becomes

0 if labellv] = o,

score(v, o) i e:(E)GEw(e), else if cluster_size(o) + ¢(v) < U, (373)
label[u]=0
-1 else.

for some parameter U.

In addition, label propagation can be parallelized: Meyerhenke et al. [40] pro-
pose a parallel version of size-constrained label propagation, which scales well
for huge instances. Again, they utilize their parallel implementation in the
coarsening phase and the refinement phase of a multilevel graph partitioning
framework. Finally, Akhremtsev et al. [3] propose a shared memory parallelized,
(semi-)external variant of size-constrained label propagation. Their implemen-
tation achieves high-quality partitions while having a running time which is
comparable to an efficient internal memory implementation, thus allowing the
computation of partitions for huge graphs on commodity hardware.
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4 Label Propagation in Hypergraphs

This chapter discusses our adaptions of label propagation to hypergraphs in the
coarsening step of the multilevel partitioning scheme. The straightforward way to
perform the adaptation is to transform the hypergraph in a graph and perform
label propagation on that graph. In Section 2.3.2 we explain the two usual
expansions of the hypergraph called clique expansion and star expansion. First,
we investigate how label propagation performs on graphs resulting from these
expansions. Next, we propose a probabilistic version of label propagation which
maintains linear running time complexity per iteration. This chapter concludes
with on overview of extensions to our proposed algorithms and the utilization of
label propagation in the refinement step of the multilevel partitioning scheme.

4.1. Label Propagation on the Clique Expanded Hypergraph

Clique expansion replaces each hyperedge of size n with a n-clique. As mentioned
in Section 2.3.1, given a hypergraph H = (V, E, ¢, w), the usual edge weights in
the clique originating from a hyperedge e € F are:

w(e)
e[ -1

(4.1.1)

Besides these weights, we will further investigate how various other uniform
and non-uniform edge weights impact the running time and the quality of the
clustering.

Note that the default coarsening algorithms (first choice — Section 3.2.3, and
absorption clustering using pins — Section 3.2.5) in hMetis and PaToH can be rein-
terpreted as algorithms on the clique expanded hypergraph, where each edge in a
clique resulting from a hyperedge e € F has the weight shown in Equation 4.1.1.

Since we want to utilize label propagation in the coarsening step of a multilevel
hypergraph partitioning framework, we need to make sure that the weights of the
hypernodes in the coarser graph are controlled. Like Meyerhenke et al. [41], we
impose a size constraint on the clusters, i.e. a tuning parameter U controls the
maximal cluster weight. A node ignores labels of clusters whose weight exceeds
U, if the node changes its affiliation to that cluster.

In Algorithm 6 the pseudocode for label propagation on the clique expanded
hypergraph is shown. Note that the clique expansion is done implicitly in lines 6-
8. For each hypernode we compute a score for each adjacent label. Out of these
labels, we select the one with the maximal score. In case of multiple labels having
the maximal score, each label gets picked with equal probability. We evaluate a
total number of 24 different score functions divided into three classes, which are
used in line 9 of Algorithm 6:
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4.1 LABEL PROPAGATION ON THE CLIQUE EXPANDED HYPERGRAPH

Algorithm 6: Label Propagation on the Clique Expanded Hypergraph

Input: hypergraph H = (V. E,c,w),|V]| =n,|E|=m
Output: label[l...n]

1 forve V do
2 L label[v] v

// labels for each hypernode

// initialization

3 while not converged and num_iterations < max_iterations do

4 for v € V in random order do

5 tmp_scores|label[v]] < 0 // holds scores for adjacent labels
6 for e € hyperedges[v] do

7 for p € pinsle],p # v do

8 if ¢(v) + é(label[p]) < U then // size constraint check
9 | tmp_scores[label[p]] += score(v, p, e)

10 | label[v] - argmax, tmp_scores|o] // choose max score label
Class 1

o scorei(v,p,e):

o scorex(v,p,e):

o scorez(v,p,e):

Class 2

o scoreq(v,p,e) :

« scores(v,p,e) :

o scoreg(v,p,e):

28

~ [{1abellp] | p € pinsle]}

scorey (v, p, e)

0

scorey(v, p, e)

0

scores(v, p, e)

0

if label[p] =

max |{v € pinse] | label[v] = o}|
else.
if label[p] =

max [{v € pinsle] | 1label[v] = o}|
else.
if label[p] =

max [{v € pinsle] | 1label[v] = o}|

else.



4.1 LABEL PROPAGATION ON THE CLIQUE EXPANDED HYPERGRAPH

Class 3
score; i, := score;(v,p, e) - Yg(v,p, €) (1<i<3),

and ¥ (v, p, e) being one of the following:

1 1

o ¢1(U,pa 6) = C(U) ] é(label[p]) ° ¢4(’U>pv 6) T log(C(U) . é(label[p]))
1 1

* el pe) = e P in(e), d(1abel )
1 o Yg(v,p,e) = !

o U3(v,p,e) = )

+ ¢(1abel[p]) max(c(v), &(1label[p]))

with ¢(1abel[p]) counting the weight of all hypernodes which have the same label
as p:
¢(label[p]) := c({v € V | 1abel[v] = label[p]|}).

We investigate three main score functions, scoref 233(-,-, ), whose modified
versions are found in the second and third class. All three score functions assign
a uniform weight for all edges in the clique: score;(-,-,-) assigns each edge in
the clique the weight of the original hyperedge, whereas scorey(-,-,) uses the
widespread (hMetis, PaToH) weight shown in Equation 4.1.1. The last score
function in the first class, scores(-,-,-) penalizes hyperedges that span many
labels. The incentive behind scores(-,-,-) is that hyperedges spanning many
labels most likely will still be there in the coarser hypergraph. Seeing as we
want to reduce the complexity of the problem, i.e. to minimize the weight of
hyperedges exposed in the coarser hypergraph, we prefer hyperedges with fewer
labels so it is more likely that all pins of these hyperedges settle on the same
label. Note that scores(-, -, -) assigns a non-constant uniform weight for the clique
edges, since the number of labels present in a hyperedge changes over the course
of an iteration.

The score functions of the second class use scoreg; 2.31(+, -, -) as weight, but only
assign these weights to clique edges whose nodes have the most prevalent label
in the original hyperedge. Note that these score functions assign a non-uniform
weight to the clique edges. The motivation behind this approach is to improve
the convergence rate of label propagation, since only a subset of all incident
labels of a hyperedge contribute to the overall score.

Finally, the score functions of class three are further modifications of the
score functions of class one, scoref193)(+,-,+). They are inspired by Osipov and
Sanders [44] and discourage the formulation of large clusters and therefore result
in non-uniform edge weights in the clique expanded hypergraph. The motivation
behind only medium- and small-sized clusters is that they ease both the initial
partitioning algorithm and the local search algorithm, since moderately heavy
hypernodes can be moved more freely. We consider six different modifications,
which are classified by the second index of the score function. The evaluation of
all these score functions is presented in Chapter 6.
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4.2 LABEL PROPAGATION ON THE STAR EXPANDED HYPERGRAPH

Running Time Complexity. The main downside to label propagation on the
clique expanded hypergraph is the non-linear running time per iteration. Given
a hypergraph H = (V, E, ¢,w) with |V| = n being the number of hypernodes, the
running time for a single iteration of Algorithm 6 is:

On+ > le[*) (4.1.2)

eceE

This proposition applies, because the graph resulting from clique expansion has
n nodes and 3 ¢ |e|* edges. Our algorithm operates on this graph, visiting each
node once and each edge twice (once for each of its incident nodes), resulting in
the aforementioned running time.

One way to reduce this running time is to ignore large hyperedges in the clique
expansion. hMetis employs this approach and ignores all hyperedges e € E
with |e| > 50 in their standard configuration’. Note that the focus of hMetis
is partitioning VLSI instances where such large hyperedges are seldom (since
most gates have few inputs). In the general case, omitting hyperedges which
are larger than a constant leads to a systematic error: Consider a hypergraph
where all hyperedges have cardinality bigger than this constant. In this graph,
we would ignore all hyperedges, which results in no coarsening at all. Instead,
we try a different approach, ignoring all hyperedges whose cardinality is larger
than the 5%-quantile of all hyperedge cardinalities in the hypergraph. While this
does not change asymptotic upper bound for the running time of our algorithm
(consider again a graph where all edges have uniform cardinality), it significantly
decreases the running time if there are only few very large hyperedges.

4.2. Label Propagation on the Star Expanded Hypergraph

Star expansion replaces each hyperedge with a vertex and connects all pins of
the hyperedge to that vertex. As mentioned in Section 2.3.2, the edge weights
of the “star graph” resulting from a hyperedge are usually uniformly distributed.
Given a hypergraph H = (V, E, ¢,w), this weight was originally [1]:

wle) (4.2.1)

Note that in contrast to clique expansion, star expansion is not frequently used
in the field of hypergraph partitioning. This is because the topology of the star
expanded hypergraph does not represent the original topology of the hypergraph
correctly, e.g. if two hypernodes were connected by a hyperedge in the original
hypergraph, they will be not adjacent in the star expanded graph. This results
in a loss of quality. Still, we show in the latter part of this section that label
propagation on the star expanded hypergraph has a linear time complexity, which
is why we further investigate this expansion type.

In Algorithm 7 the pseudocode for label propagation on the star expanded
hypergraph is shown. Note that we perform star expansion implicitly. Further-
more, as in Algorithm 6, we impose a size constraint on the clusters. In contrast

Wersion 2.0prel: http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download

30


http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download

4.2 LABEL PROPAGATION ON THE STAR EXPANDED HYPERGRAPH

Algorithm 7: Label Propagation on the Star Expanded Hypergraph
Input: hypergraph H = (V. E,c,w),|V]| =n,|E|=m

Output: label nodes|l...n] // the labels for each hypernode
1 forz e VULE do
2 if x € V then label nodes[v] < v // initialization hypernodes
3 | else label edges|e] < ¢ // initialization hyperedges
4 while not converged and num_iterations < max_iterations do
5 for x € VUE in random order do
6 if 2 € V then // x is a hypernode
7 tmp_scores([label_nodes|z]] <~ 0  // scores for adjacent labels
8 for e € hyperedges|x] do
9 if ¢(x) + ¢(label_edgesle]) < U then // size constraint
10 | tmp_scores[label_edges|e]] += score(z, €)
1 | label nodes[z] < arg max, tmp_scores[o]
12 else // x is a hyperedge
13 tmp_scores[label edges|z]] <~ 0  // scores for adjacent labels
14 for p € pins[z] do
15 | tmp_scores|label nodes[p]] += score(p, )
16 | label_edges[z] < arg max, tmp_scores[o]

to label propagation on the clique expanded hypergraph, we allow hyperedge-
nodes to change their label disregarding the size constraint. The reason being
that hyperedge-nodes are a representation of hyperedges of the original hyper-
graph and don’t contribute their weight to the final clustering and therefore have
no impact on the quality of the partitioning. As with label propagation in the
clique expanded hypergraph (Section 4.1), we will consider various score func-
tions, which are used in line 10 and line 15 in Algorithm 7. Again, each node
selects the label that has the maximal score with random tie-breaking.

Class 1
o scorei(v,e) = w(e)

w(e)

le]

o scorey(v,e) :=

Class 2

score; (v, w) - & (w) if v is a hyperedge-node

score; g (v, w) 1= {

score; (v, w) - (v, w)  else

with ¥ (+) and & (-, -) being defined as follows:
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4.3 PROBABILISTIC LABEL PROPAGATION

1 1

* fl (U) = ¢(label_nodes(v]) * wl (U’ w) = c(v)é(label_edges|w])

¢ 52(,0) = é(labeliiodes[v})2 ¢ wz(v’ w) = (c(v)é(label{edges[(,u]))2

* 63(7)) = é(labelj}odes[v}) * 2/}3(1]’ U}) = c(v)+é(labelliedges[w})

¢ 54(1}) = log(é(labellinodes[fu})) ¢ @ZJ4(U, w) = log(c(v)é(lableliedges[w]))
* 55(1)) = é(labeljlodes[v}) * ¢5<U, U}) = min(c(v),é(la‘ieliedges[w]))
o &(v) = L o Ys(v,w) = !

¢(label_nodes|v]) max(c(v),é(label_edges|w]))

with é(1label[p]) counting the weight of all hypernodes that have the same label
as p:
¢(label[p]) := c({v € V | 1abel[v] = label[p]|}).

Note that since hyperedge-nodes do not have a weight in our model, we need
a case differentiation in the second score function class. Like in Section 4.1, the
score functions of the second class discourage the formulation of large clusters.

Running Time Complexity. The main advantage of label propagation on the
star expanded hypergraph is its linear running time complexity. Given a hyper-
graph H = (V, E, c,w) with |V| = n being the number of hypernodes, |E| = m
the number of hyperedges and > cp|e] = ¢ being the number of pins, the re-
sulting graph from star expansion has n + m nodes and ¢ edges. Since every
node gets visited exactly once and every edge twice (once per incident node), the
total running time for one iteration of label propagation on the star expanded
hypergraph is:

O(n+m+1). (4.2.2)

As mentioned before, the downside of this approach is the expected quality loss
when compared with clique expansion, since star expansion adds previously non-
existent nodes to the graph and therefore modifies the topology of the original
hypergraph.

4.3. Probabilistic Label Propagation

Label propagation on the clique expanded hypergraph promises good results for
the cost of a non-linear running time, whereas label propagation on the star
expanded hypergraph has a linear running time with the expectation of worse
quality. This section discusses our approach, which tries to combine both worlds.
That is, a linear time algorithm that operates on the clique expanded hypergraph.
The main idea behind our approach is to only look at a fixed number of pins for
each hyperedge, i.e. to reduce the hyperedge size to a fixed constant. These pins
are chosen uniformly random in the beginning of each iteration. From now on,
we refer to these randomly chosen pins as the sample for a hyperedge. We prove
that score computation on a hyperedges’ sample is an unbiased estimator for the
score distribution for the labels within a hyperedge. Before getting to the actual
proof, we cover notations and definitions.
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4.3 PROBABILISTIC LABEL PROPAGATION

Definition 4.3.1 (Binomial Coefficient). Given k,n € Ny with 0 < k < n, the
binomial coefficient is defined as

(0) = o

One of the most frequent application of the binomial coefficient is in the field
of combinatorics: Given a set containing n distinct objects, (Z) is the number of
all possible distinct k-element subsets of that set.

Definition 4.3.2 (Unbiased Estimator). An estimator is a function which infers
the value of some unknown parameter in a statistical model of a universe D using
a random sample X1, ..., X, of elements of D. More formally: An estimator is a
function that maps the space of all possible samples to a set of sample estimates.
Note that if the sample used is a random variable, the estimator becomes a
random variable itself. An estimator ¥(Xj,...,X,,) for a parameter v is called
unbiased if its expected value is v for all possible values of ~:

E(y (X1, ..., X0)) =~

Given a hypergraph H = (V, E,c,w), a hyperedge e € E, and labels for the
pins of e, we show that inferring the score distribution for the labels within e on
the basis of a random sample of the pins is an unbiased estimator of the actual
label scores of e. For this purpose we reinterpret e as an urn with a total number
of |e| different colored balls, which represent the labels present in this hyperedge.

More formally: We set D := pins[e] and draw a sample X = (X1,..., Xg) of
size S from elements of D without replacement, each with the same probability.
Let D; denote the subset of all elements in D with label ¢ and let d; := |D;]
denote the total number of elements (pins) in D with label i. Therefore,

[V] n

i=1 =1

Next, we define |V| random variables Y = (Y1,...,Y}y|), which count the total
number of elements in the sample with label j using a sum of indicator variables,
showing whether X; has label j:

l@:zZl(label[Xi]:j), 1<j< |V

with
Y; =5

1

n

J

Lemma 4.3.3 (Probability Mass Function of Y;). Given d;, the number of pins
with label j in hyperedge e, the sample size S and |e|, the probability of there
being exactly y pins in the sample with label j is:

;i\ (lel—d;
P(Y; = y) = (1’)((5)9) (4.3.1)
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4.3 PROBABILISTIC LABEL PROPAGATION

The probability mass function for Y; is then defined as:
fr(y) =P(Y;=y), yeNy, 0<y<S (4.3.2)

Proof. Y; is the number of pins in the sample of e with label j and d; is the total
number of pins in e with label j. The elements in the sample are thereby chosen
at random, without replacement and all pins in e have the same probability of
being chosen.

Therefore, the nominator of Equation 4.3.1, ( ) |fg| ‘; computes the total
number of ways to select y pins with label 7, and S Y pins that don’t have label
j. Since the order in which the pins are chosen is ignored and we only count the
number of pins with a specific label, we need to divide this number by the total

number of ways to draw S many pins from e. This leads to Equation 4.3.1. [

In literature, the distribution of Y; is known as the hypergeometric distribu-
tion [39] parametrized with |e|,d;, and S.

Lemma 4.3.4 (Expected Value of Yj).

Proof. See Appendix A or [39)]. O

In Algorithm 8 the pseudocode for our probabilistic label propagation in hy-
pergraphs is shown. Note that it is very similar to Algorithm 6. The main
differences are that we sample each hyperedge in each iteration in line 5 and
then use the sampled pins instead of all pins in line 9. Furthermore, we perform

Algorithm 8: Probabilistic Label Propagation
Input: hypergraph H = (V, E, c,w),|V| =n, |E| =

Output: labelll...n] // the labels for each hypernode
1 forv eV do
2 L label[v] < v // initialization

w

while not converged and num_iterations < maz_iterations do

4 foree€ E do

5 L drawNewSample(e) // draw new samples in each iteration
6 for v € V in random order do

7 tmp_scores|label[v]] < 0 // holds scores for adjacent labels
8 for e € hyperedges[v] do

9 for p € sample(e),p # v do // use pins in sample
10 if ¢(v) + ¢(label[p]) < U then // size_constraint check
1 L | tmp_scores[label[p]] += score(v, p, e)

12 mazx_label < arg max, tmp_scores|o| // choose mazx score label
13 if gain(v, maz_label) > 0 then // check if new label makes sense
14 L label[v]| «— maz_label
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4.3 PROBABILISTIC LABEL PROPAGATION

a check in line 13, which validates if the new label makes sense, since it is possible
that the samples for the incident hyperedges were drawn poorly, i.e.:

0 if label[v] = o
gain(v, o) = > —w(e) if label[v] is the only label in e
echyperedgesiv] | y(e)  if 1abel[v] occurs once and o occurs in e
(4.3.3)
The function gain(-,-) becomes negative if there are many hyperedges that do
not contain the new label. This results in new cut hyperedges, which we want
to avoid. As in Algorithm 6 and Algorithm 7, each hypernode chooses the label
that has maximal score in its neighborhood, with ties being broken randomly.
Next, we modify the score functions used in the label propagation on the
clique expanded hypergraph (Section 4.1) in line 11 in such a way that the
score distribution in the sample becomes an unbiased estimator for the score
distribution in the overall hyperedge:

Lemma 4.3.5 (Unbiased Score Estimation in the Sample of a Hyperedge).
Given a hypergraph H = (V, F, c,w), a hypernode v € V| an incident hyperedge
e € E of v, and the sample for e, sample(e) with size S, we define the score for
p € sample(e) as:

e
score, (v, p, €) == scorey(v, p,e) - ‘S” ze{l,... 12} (4.3.4)
These modified score functions are unbiased estimators for the score functions
presented in Section 4.1.

Proof. Consider label propagation without size constraint on the clique expanded
hypergraph: Given a hypernode v € V and a hyperedge e € F, the final score
for a label 7 in e is:

total score_clique(v,i,e) == > score(v,p,e), (4.3.5)

pEpinsle],
label[p]=t

where score(v, p, e) is one of the scores defined in Section 4.1. The size constraint
is left out for the sake of simplicity, since it unnecessarily enlarges Equation 4.3.5
and does not change our argumentation.

Let Y; and d; be defined as above (with Y; counting the total number of pins
the sample of e with label ¢ and d; counting the total number of pins in the
hyperedge e with label 7). Note that since all utilized score functions only use
the label of a pin, we can rewrite Equation 4.3.5:

total_score_clique(v,i,e) := d; - score(v,n, e), (4.3.6)
with 1 € pinsle] : 1label[n| = i denoting one arbitrary pin of e with label i. On

the other hand, the total score for a label 7 in hyperedge e in the probabilistic
algorithm is:
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total score_sample(v,i,e) : = > score(v,p,e) (4.3.7)
pEsample(e),
label[p]=1
= lel > score(v,p,e) (4.3.8)
S
pEsample(e),
label[p]=1
= |;‘ -Y; - score(v,n, e), (4.3.9)

with n € sample(e) : 1abel[n] = ¢ denoting one arbitrary pin in the sample of e
with label 7. The expected value of this score is:

_ Ll

E(total_score_sample(v,i,e)) = 5 E(Y;) - score(v,n, e) (4.3.10)
di

= |;’ S el score(v,n, €) (4.3.11)

=d; - score(v,n, €) (4.3.12)

= total_score_clique(v, i, e). (4.3.13)

The first equality holds because of the linearity of the expected value and the
second equality holds because of Lemma 4.3.4. O

Running Time Complexity. Given a hypergraph H = (V, E, c,w) with |[V| =n
being the number of hypernodes, > ..z |e] = ¢ being the number of pins, and
sample size S, the total running time for one iteration of probabilistic label
propagation is:

O(E|-S+n+1-5). (4.3.14)

The term comes together as follows: In each iteration we first sample all hyper-
edges. This is bound by the number of samples for each hyperedge |F|-S. Next,
consider the graph where all hyperedges are removed and each pin in a hyperedge
e € E gets an edge to all pins in the sample of e (See Figure 4.1). Note that since
this transformation is done implicitly we can not merge parallel edges. Therefore,
this graph has n nodes and m = ¢ - .S edges. One iteration of our probabilistic
label propagation can be reinterpreted as usual label propagation on this graph.
The running time for one iteration of label propagation on a graph with n nodes
and m edges is O(n+m) (Equation 3.7.1). In conclusion, Equation 4.3.14 follows.

4.4. Algorithmic Extensions

This section discusses our algorithmic extensions for label propagation in hyper-
graphs. We first investigate how the order of traversal affects the quality and
running time of our proposed algorithms in Section 4.4.1. We discuss and adapt
the V-cycle technique, which achieves a better quality of the partitioning for the
cost of an increased running time in Section 4.4.2. Next, we propose an adap-
tive stopping critereon in Section 4.4.3. Finally, this section concludes with the
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4.4.1 NODE ORDERING

Figure 4.1.: One iteration of probabilistic label propagation on a hypergraph H =
(V,E,c,w) can be reinterpreted as label propagation on a subgraph
of the clique expanded hypergraph. On the left a hyperedge e; =
{v1,...,v10} is shown. The samples are depicted in red with three
being the sample size. On the right, the subgraph is shown. Note that
every node besides the nodes in the sample has a degree of three (for
this hyperedge). The nodes in the sample ignore all edges that don’t
connect two nodes in the sample. The thick lines represent the non
tgnored edges.

adaptation of label propagation in hypergraphs as local search strategy in the
refinement step of the multilevel partitioning scheme (Section 4.4.4).

4.4.1. Node Ordering

All our proposed label propagation adaptations visit the hypernodes in random
order and determine the new label for the hypernode according to a score function
on adjacent hypernodes and the hyperedge connecting them. Instead of a random
traversal, Meyerhenke et al. [41] propose to use an ordering induced by the node
degree (increasing). The motivation behind this ordering is that if nodes with a
small degree determine their new labels before nodes with a large node degree,
the latter already see a cluster structure in their neighborhood when they are
visited. This likely results in a better clustering. We adapt their approach to
hypergraphs and investigate the impact of other orderings. Given a hypergraph
H = (V,E,c,w) and a hypernode v € V| we evaluate the following orderings
in Chapter 6:

e order; (v

o ordery(v + Zhyperedges['u] |€|

deg(v)
deg(v)
deg(v) - (Xhyperedgesto l€)
deg(v)
deg(v)

o ordery(v

(v) :=
(v) =

o orders(v) :=
(v) = * (Lhyperedgestv) l€])
(v) =

e orders(v : log(Zhyperedges[v] |€|)

37



4.4 ALGORITHMIC EXTENSIONS

order;(+) is the ordering employed by Meyerhenke et al. [41], whereas the other
ordering functions penalize hypernodes whose incident hyperedges have a large
cardinality. Note that in case of label propagation on the star expanded hyper-
graph, we need to modify this orderings for hyperedge-nodes:

|w| if w is a hyperedge-node

L] d =
order,(w) {deg(w) else

[w] + X pepinsiu] deg(v) if w is a hyperedge-node

deg(w> + Zeehyperedges[w} ’€| else

[w] - (Xoepinsiu) de9(v)) if w is a hyperedge-node

deg(w) ’ (Zeehyperedges[w] ‘6|) else

wl]? - (Zvepins{w} deg(v)) if w is a hyperedge-node

d@g(U))Q ’ (Zeehyperedges[w] |€D else

[w| - 10g(X e pinsu] deg(v)) if w is a hyperedge-node
deg(w) ’ 1Og(Ze€hyperedges[w] |€|) else

4.4.2. V-cycles

V-cycles or iterated multilevel algorithms is a term which generally describes
the usage of an already computed partition during the multilevel partitioning
scheme, i.e. during the coarsening and refinement phase. It was introduced by
Walshaw [57] and further augmented by Sanders and Schulz [49] to more complex
cycles called W-cycles and F-cycles.

In V-cycling, the multilevel partitioning scheme is repeated several times and
once a partition is computed, edges that span multiple partitions are ignored
during coarsening, i.e. these edges won’t be contracted or, as in our case, pins
belonging to a different block than the node are ignored in the score computation.
Furthermore, once a partition is computed in the first iteration, we don’t use the
initial partitioning algorithm, but simply assign nodes to the current partition
in subsequent iterations. Note that the quality of the partition can’t decrease in
subsequent iterations. This is because contractions are only performed inside the
partition, the partition of the previous iteration is inherited, and the local search
algorithm in the refinement phase only improves the partition. This leads to
high quality partitions. The number of V-cycles is thereby a tuning parameter.

4.4.3. Adaptive Stopping Rule

In the original version of label propagation [47] the stopping criteria are the
maximal number of iterations and the check if all nodes have a label that the
maximal number of their respective neighbors belong to. In hypergraphs, the
validation of the latter constraint is not feasible, since the running time for this
step is

O(n+ Y lef*). (4.4.1)

ecE
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Algorithm 9: Label Propagation as Local Search Strategy
Input: hypergraph H = (V, E, c,w), partition IT = {V;, ..., Vi },

uncoarsened hypernodes {wy, ..., w;}

Output: II' = {V4,..., Vi} // refined partition
1 Q1+ {ws,...,w;} // set of nodes for the current iteration
2 Qg+ {} // set of nodes for the next iteration
3 while Q; # {} and num_iterations < max_iterations do
4 for v € Q; in random order do
5 tmp_gains[A(v)] < 0 // holds gains for incident blocks
6 for b € incident blocks do
7 for e € hyperedges[v] do

// enforce balance criterion
8 if ¢(v) + ¢(b) < Lyax then
9 | tmp_gains(b] += gain(v,e,b)  // gain if v’s block was b
10 max_block <— choose_block(tmp_gains) // choose block with max gain
11 if A(v) # maz_block then // check if v changes its block
12 move v to max_block
// add adjacent pins to next iteration

13 for e € hyperedges[v] do Qs = Qo pinsle]
14 Q; «+ {}
15 | swap(Qi, Q2)

The proposition applies, because the verification of these criteria can be reinter-
preted as one traversal on the clique expanded hypergraph, which has n nodes
and Y. |e]? edges.

We propose a different stopping rule: Our adaptations of label propagation
to hypergraphs perform at most a constant number of iterations and stop if less
than 5% of all hypernodes changed their label in the last iteration.

4.4.4. Label Propagation as Local Search Strategy

This section discusses our adaptation of label propagation as local search strategy
in the refinement phase of the multilevel partitioning scheme. Meyerhenke et
al. [41] proposed to use label propagation as a fast alternative to Kerninghan-
Lin (KL) and KL-variants like Fiduccia-Mattheyses (FM). Instead of evaluating
multiple scores, we will use only one that represents the improvement of the
quality of the partition, if the current hypernode were to change its affiliation to
the block represented by this label. This score will be referred to as the gain of a
label. In Algorithm 9 the pseudocode for label propagation based local search is
shown. Note that there are many differences to the usual label propagation. First,
we don’t iterate through all hypernodes of the hypergraph, but only consider
those which have been uncontracted (in the first iteration) or have a neighbor
that has changed its block (consecutive iterations). For the sake of simplicity of
the next argument, assume that there is no tie-breaking. Therefore, the block of
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a hypernode remains unchanged, if all adjacent hypernodes did not change their
block. So there is no need to iterate through all hypernodes, but only a subset
of them. This idea is implemented with two hypernode sets which represent
the currently active hypernodes and hypernodes that could possibly change their
block in the next iteration, because one of its neighbors has changed its block.
After the end of one iteration, we clear the first set and swap it with the second
one.

Furthermore, we need to modify the size constraint, since we want to enforce
an e-balanced partitioning. This is done in line 8 of the algorithm. As mentioned
above, we need to modify our score function to reflect our partitioning objective.
Since we use the hypergraph cut objective, our goal is to minimize the sum of
all hyperedge weights that span multiple blocks. Therefore, given a block and a
hyperedge, our gain function in line 9 returns change of the cut for this hyperedge,
if the current node were to change its block, i.e.:

—w(e) if  connectivity(e) = 1 and
block ¢ connectivity_set(e)
gain(v, block, ) := w(e) else if connectivity(e) = 2 and

{p € pinsle] | A(p) = A(v)} =1

0 else
(4.4.2)
with A(+) denoting the indicator function, which returns the block of a hypernode.
Finally, we employ a different type of tie-breaking (if multiple blocks have
the maximal score). As usual, we determine which labels have the maximal
score. Out of these, we randomly select one that would reduce the connectivity
of incident hyperedges the most:

1 Procedure choose_block(label_scores|])

2 maz_labels «— {o | o = argmax, label_scores|[o]} // maz score labels
3 max_reduce <— {o € maz_labels | o = arg max, decrease(o)}

// return random block with max connectivity decrease
4 return random_element(max_reduce)

with decrease(o) denoting the connectivity decrease in the hypergraph, if the
current hypernode would choose block o. A move of a hypernode v € V' to block
o thereby decreases connectivity of a hyperedge e € F, iff v is the only pin of e
that belongs to block A(v) and there exist nodes that belong to block ¢ in e.
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5 Implementation Details

This chapter presents implementation specific details of our proposed adaptations
for label propagation in hypergraphs. First, we discuss various representations
of hypergraphs in memory in Section 5.1. Next we discuss the sampling process
for our probabilistic label propagation algorithm in detail in Section 5.2. The
chapter concludes with the description of our maximal connectivity tie-breaking
for label propagation as local search strategy (Section 5.3).

5.1. Representation of Hypergraphs

This section focuses on the representation of hypergraphs in memory, i.e. how
hypergraphs should be represented to allow efficient storage and processing. In
the following, H = (V, E,c,w) denotes an arbitrary hypergraph and n = |V,
m = |E| for the number of hypernodes and hyperedges respectively. Through-
out this section, we assume that hypernode weights and hyperedge weights are
constant for all hypernodes and hyperedges respectively, i.e. ¢ = 1 and w = 1.
Therefore, we do not need to store these weights explicitly. For general hyper-
graphs not fulfilling this property, the weights can be stored efficiently in two
arrays hypernode_weights[l ...n] and hyperedge_weights[l ... m)].

5.1.1. Incidence Matrix

A straightforward representation for hypergraphs is the incidence matriz [14,20],
Q(H), which has n rows and m columns. An entry g;; in the matrix is one, iff v
is incident to the hyperedge e; and zero otherwise. Formally:

Definition 5.1.1. Given a hypergraph H = (V, E, ¢,w) with n hypernodes and
m hyperedges we define the incidence matriz of H as Q(H) = (q;;) € Z™™
with:

1 if v; € pinsle;
0 else.

Thus, every boolean matrix can be reinterpreted as a hypergraph. The only
difference to the incidence matrices originating from graphs is that each column
can have more than two non-zero entries, since a hyperedge can connect more
than two nodes. The memory consumption with this approach is

o(Vv1-E).

The representation of hypergraphs as an incidence matrix does not lose any
information about the topological properties of the hypergraph. Still, the mem-
ory consumption is very large. Figure 5.1 shows the incidence matrix for the
example hypergraph (Figure 2.1).
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Figure 5.1.: The incidence matrix, Q(H), for the example hypergraph (Figure 2.1).
This matrixz has n rows, one for each hypernode and m columns, one
for each hyperedge. An entry e;; in the incidence matriz is one iff v;
is incident to ej and zero otherwise. The sum of non-zero entries in
each column corresponds to the size of the hyperedge being represented
by the column. Analogously, the sum of non-zero entries in each row
corresponds to the hypernode degree of the hypernode represented by
this row.

5.1.2. Incidence Array

Like adjacency arrays for normal graphs, the incidence array allows for a compact
representation of the hypergraph. We transform the hypergraph to its bipartite
representation (Section 2.3.2), replacing each hyperedge with a new node and
connecting each pin to it. Next, we represent this graph as an adjacency array.
For the sake of clarity, we split the vertex array into two, one for the hypernodes
and one for the “hyperedge-nodes”. Formally:

Definition 5.1.2. Given a hypergraph H = (V, E, ¢,w) with n hypernodes, m
hyperedges, and ¢ pins, we define the incidence array as a tuple

(VA[1...n+1,IE[l...m+1,BA[l.. ¢+ 1], IE[l...(+ 1))

with four arrays:
o« vertex array (VA[l...n +1])
o incident edges array (IE[1.../¢+ 1])
o edge array (EA[l...m+ 1))
« incident vertices array (IV[L...¢+ 1])
with:
Vv, € Vi hyperedges[v;] = {IE[z] | VA[v;] < < VAvi44]},
Ve; € E : pinsle;] = {IV[z] | EAle;] < v < EAle;q]}.

In other words: for a hypernode v; all incident hyperedges are stored in the
incident edges array, IE[VA[v;] ... VA]v;41 —1]]. For a hyperedge e;, all incident
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Figure 5.2.: The incidence array for the example hypergraph (Figure 2.1). Analo-
gous to a adjacency array for graphs, the incidence array stores the
incident hyperedges and pins for each hypernode and each hyperedge.

pins are stored in the incident vertices array, IV[EAle;] ... EA[e;1; — 1]]. The
memory consumption with this approach is

O(V|+ > deg(v) + |E|+ > _ le]) = O(n + m + 2¢).

veV eclE

Figure 5.2 shows the incidence array for the example hypergraph (Figure 2.1).
We will use the incidence array as hypergraph representation, since its memory
consumption is small (linear in the number of pins) and allows for efficient access
to incident hypernodes and hyperedges and adjacent hypernodes.

5.2. Uniform Sampling of Pins in a Hyperedge

In our probabilistic version of label propagation (Algorithm 8) we first draw
a sample for each hyperedge at the beginning of each iteration. This section
discusses our implementation of this sampling.

Note that all our considered score functions only utilize the label of a pin.
Therefore we first need to decide what we want to store in the sample: The pins
or their labels. Both approaches have benefits and drawbacks. If we decide to
store pins in the samples, it is likely that our algorithm suffers from many cache
misses. This is because the labels for hypernodes are stored separately in an array.
Since hypernodes are usually part of multiple hyperedges, they occur multiple
times as a pin. Therefore, we cannot rearrange the order of hypernodes in the
labels array to correspond to the order of pins in the sample for all hyperedges.
This results in random access to the labels array if we iterate through all pins in
the sample.

We can solve this problem if we directly store the labels in the samples for each
hyperedge. However, this approach duplicates information: We still have an ar-
ray which holds the labels for each hypernode. Furthermore, each hyperedge
stores the labels of the current sample. This is a problem, because we need to
make sure that the labels in all hyperedges are consistent with the labels stored
in the array, i.e. if a hypernode changes its label, we need to update its label
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Figure 5.3.: If we don’t utilize the current labels in label propagation, oscillations
occur. Fach of the three images depicts a segment of a hypergraph
through different iterations of label propagation, whereby the labels
of each hypernode are color-coded. Both v, and vy will change their
label to the label of vs in all iterations, because they are connected to
vs via two different hyperedges. If we only use the ’old* labels (i.e.
the labels in the beginning of each iteration), vs will also change its
label, because it is the last hypernode with its old label. This leads to
oscillations.

in all incident hyperedges where the hypernode was part of the sample. This is
necessary because if we neglect this update step, oscillations occur (Figure 5.3)
which impede the quality of the clustering. However, this update step needs fur-
ther information, which needs to be stored for each hyperedge. Apart from that,
this update step comes with an additional computational cost: After computing
the new label for a hyperedge, we need to visit all incident hyperedges and up-
date the label in the sample (if the hypernode was sampled in this particular
hyperedge).

We implemented the second approach. In the following we give a brief overview
on the used data structures. Given a hypergraph H = (V, E, ¢,w) and the sample
size S, we store for each hyperedge e € E:

e an array with the incident labels (incident_labelsll...|e|]),
 an array with the sampled labels (sample|l...min(S, |e])]),

 an array that holds the location of the label found in incident_labels]i|
in the sample, (loc_incident_labels_in_sample[l...|e[]),

o a hash map label_ count_map which returns, given a label, the number of
incident pins with this label.

Furthermore, for each hypernode v € V' we store:
 an integer representing its label (label),

e an array, loc_incident_edges|l... deg(v)], holding the location of this
hypernode’s label in the array incident_labels][:| in the incident hyper-
edges.

The hash map label count_map is mainly used for the validation of a new label
in the probabilistic version of label propagation (Equation 4.3.3). Note that if a
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hypernode v changes its label, the update step can be efficiently performed with
the loc_incident_labels_in_sample|-] and loc_incident_edges|-| data struc-
tures as follows: We iterate through all incident hyperedges e € hyperedges|v] of v
and check whether v was part of the sample. This can be done by validating the
loc_incident_labels_in_sample[loc_incident_edgesle]] entry, i.e. if it is a
valid index in the sample. If this is the case, we simply update the entry in the
sample|-| array pointed to by this index and in incident_labels[:]. Finally, we
need to update the hash map, since the number of pins has changed for this hyper-
edge. Overall, all update steps for a single iteration take O(3,cy deg(v)) = O(¢)
time, where ¢ is the number of pins.

Next, given these data structures per hyperedge and per pin, we explain how
our uniform selection of labels for the sample is implemented. Let e € E
be a hyperedge that we want to sample and z := min(S, |e|) the number of
samples. We draw x random numbers 64, ...,60, , whereby the i-th number is
drawn uniformly from [1, |e| — i + 1], e.g. the first number is selected uniformly
from [1, |e|]. Then, we add incident_labels[d;| as the i-th label to the sam-
ple. Next, we swap incident_labels[le| — i + 1] with incident_ labels[d,].
This has to be done because we sample without repetition (Section 4.3) and
it eases the computation of the other samples. Since the information stored
for hyperedges needs to be consistent with the information stored for hyper-
nodes, we also need to swap loc_incident_labels_in samplel|e| — i + 1] with
loc_incident_labels_in_sample[f;] and update the location information for
this hyperedge in the sampled pin (in its loc_incident_edges[:] array). All in
all, the total time consumption for the sampling of a hyperedge e € F is bound
by O(min(S, |e])).

5.3. Global Maximal Connectivity Decrease Tie-Breaking

In our version of label propagation as local search strategy (Algorithm 9) we em-
ployed a more sophisticated tie-breaking rule: In case of multiple labels (blocks)
having the maximal score, we select the one which leads to the maximal connec-
tivity decrease in the hypergraph.

The general work flow of this algorithm can be divided into two parts: For
each active hypernode we iterate through all incident hyperedges and compute for
each incident block the gain we would obtain if we were to move this hypernode
to that block. The result of this computation is stored in the tmp_gains[l...k]
array. In the second step we select the block that has the maximal gain and use
the aforementioned tie-breaking rule.

For an efficient computation of the global maximal connectivity decrease we
first assume that each move of a hypernode v increases the global connectivity
by deg(v) for all blocks. Furthermore, we use an array that contains temporary
values per block, which will be used for the computation of the global connectivity
decrease if v is moved to a block (tmp_decrease[l...k]). This array is initialized
with our assumption, —deg(v), for each block. Next, while we iterate through
the incident hyperedges e € hyperedges[v] and incident blocks of v in the first
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part of the algorithm, we modify this array:

tmp_decrease|block| += con_decrease(e, v, block) (5.3.1)
with
Lif  [{p € pinsle] | A(p) = A(v)}| = 1 and
block € connectivity_set(e)
con_decrease(e, v, block) :== {1 else if {p € pinsle] | AM(p) = A(v)}| > 1 and
block € connectivity_set(e)

0 else

(5.3.2)
Finally, let x denote the number of incident hyperedges of v, where v is the last
pin belonging to the block of wv:

= |{e € hyperedges[v] | [{p € pinsle] | A(p) = A(v)}| = 1} (5.3.3)
The global connectivity decrease for a move of v to block b is then given as:
K + tmp_decrease[b) (5.3.4)

In the following, we argue why Equation 5.3.4 holds. In the beginning we
assume that each hyperedge increases its connectivity by one if v were moved to
a different block. Given a hyperedge e and a block b, there are three possibilities:
First, our assumption was right and if v was moved to the block, the connectivity
of the hyperedge would increase by one. This is exactly then the case if v was
not the last pin in the hyperedge belonging to the old block and there are no
pins in the hyperedge belonging to the new block. Formally:

{p € pinsle] | A(p) = A(v)}| >1 A b¢ connectivity_set(e). (5.3.5)

In this case, there is no need to modify the entry of our array. The next possibility
is that our assumption was wrong and the connectivity of the hyperedge remains
unchanged. This is the case if either there are other pins besides v belonging to
the old block and there exist pins in the hyperedge belonging to the new block,
or if v was the last pin belonging to the old block and no other pin belongs to
the new block. Formally:

{p € pinsle] | A(p) = A(v)}| >1 A b€ connectivity_set(e) vV  (5.3.6)
{p € pinsle] | A(p) = A(w)} =1 A b ¢ connectivity_set(e). (5.3.7)

In this case, since the connectivity of the hyperedge doesn’t change, we need to
increment the entry tmp_decrease[b]. Note that in Equation 5.3.2 we only check
for the first condition. We will explain the reason for this shortly, but first let us
consider the third possibility: The connectivity of e gets reduced by one. This is
then the case if v was the last pin of e belonging to the old block and there exist
pins in e belonging to the new block, b. Formally:

H{p € pinsle] | A(p) = A(v)}|=1 A b€ connectivity_set(e). (5.3.8)
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Algorithm 10: Computation of Connectivity Decrease of a Move
Input: hypergraph H = (V, E, ¢,w), partition IT = {V;, ..., Vi }, node v
Output: connectivity decrease per block, tmp_decrease|:]

1 tmp_decrease[l...k] = [—deg(v) ... — deg(v)]

2 k<0

3 for e € hyperedges[v] do

4 if |p € pins[e] | A(p) = A(v)| =1 then

5 L k+=1

for b € connectivity_set(e) do
L tmp_decrease[b] +=1

~N O

8 tmp_decrease[l... k] +=[k...K]

In this case we also need to change the entry tmp_decrease[b]. Since we assumed
that e gets its connectivity increased by one, we need to add two to that entry.
Plus one since the connectivity does not increase and plus one because it actually
decreases. Note that in Equation 5.3.2 we check for this condition but only
increment the entry by one. We will now explain our reasoning for this.
It is possible that v is the only pin in a hyperedge belonging to the old block,
A(v). Formally:
{p € pinsle] | Ap) = A@)}] = 1. (5.3.9)

In this case the connectivity of this hyperedge can not increase regardless of
the new block. This is a problem, since in the beginning we assumed that the
connectivity of each hyperedge increases. To cope with this problem we count the
number of such hyperedges with x and add this number to the final connectivity
decrease.

However, it is possible that we count the decrease multiple times. Namely, if
the move decreases the connectivity (Equation 5.3.8) and if the move doesn’t
increase connectivity, but v was the last pin with the old block (Equation 5.3.7).
In both cases, we need to adjust the value in tmp_decrease([b] by -1. Considering
these modifications we gain Equation 5.3.2 and Equation 5.3.4. In Algorithm 10
the (optimized) pseudocode for the computation of tmp_decrease|:| is shown.
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6 Evaluation

This chapter presents the evaluation of our adaptation of label propagation to
hypergraphs. First, we describe the hardware details of the machine used for
the evaluation in Section 6.1. Next, we cover usual benchmark data sets used
in hypergraph partitioning in Section 6.2. In Section 6.3 we briefly cover the
architecture of the multilevel partitioning framework in which we integrated label
propagation as coarsening strategy as well as local search strategy. The chapter
concludes with an overview of parameter optimization in Section 6.4 and the
presentation of experimental results in Section 6.5.

6.1. Platform Description

We implemented our proposed algorithms in C++4, compiled them with gcc ver-
sion 4.9.2 and all optimization flags turned on: -std=c++14 -03 -mtune=native
-march=native. The utilized system is running Red Hat Enterprise Linux
(RHEL) 6.4 with the 2.6.32-431.46.2.€16.x86 64 kernel. It has two Octa-core
Intel Xeon processors E5-2670 (Sandy Bridge) which run at a clock speed of 2.6
GHz and have 8x256 KB of level 2 cache and 20 MB level 3 cache. The system
machine has 64 GB of main memory.

6.2. Data Sets

The most widely used data sets for evaluation in hypergraph partitioning can
be divided into two groups: hypergraphs originating from VLSI instances and
hypergraphs originating from sparse matrices.

6.2.1. VLSI Instances

As mentioned in Section 3.6.1, in case of VLSI instances each hypernode repre-
sents a gate and hyperedges groups inputs/outputs of gates together. The most
popular benchmark data sets of this kind is the ISPD98 Circuit Benchmark
Suite [5] and the MCNC benchmark suite [38]. In Table 6.1 and Table 6.2 the
general properties of the hypergraphs in the IPSD98 benchmark suite and the
MCNC benchmark suite are shown. Note that the MCNC benchmark suite has
some very small hypergraphs. We will ignore these instances in our evaluation.
For a more detailed analysis (e.g. average hypernode degree, average hyperedge
size) of these hypergraphs see Appendix C.

6.2.2. SPM Instances

Sparse matrix instances are also widely used for evaluation of hypergraph parti-
tioning. Given a matrix A € Z"*™ we thereby usually interpret columns or rows
as hyperedges as follows: The hyperedge representing row/column ¢ contains all
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6.2 DATA SETS

Hypergraph 14 [E]  |pins]
ibm01 12752 14111 50566
ibm02 19601 19584 81199
ibm03 23136 27401 93573
ibm04 27507 31970 105859
ibm05 29347 28446 126308
ibm06 32498 34826 128182
ibm07 45926 48117 175639
ibm08 51309 50513 204890
ibm09 53395 60902 222088
ibm10 69429 75196 297567
ibm11 70558 81454 280786
ibm12 71076 77240 317760
ibm13 84199 99666 357075
ibm14 147605 152772 546816
ibm15 161570 186608 715823
ibm16 183484 190048 778823
ibm17 185495 189581 860036
ibm18 210613 201920 819697

Table 6.1.: The ISPD98 Circuit Benchmark Suite contains 18 hypergraphs.

Hypergraph V] £ |pins|
fract 149 147 462
primaryl 833 904 2910
struct 1952 1920 5471
primary2 3014 3029 11219
industryl 3085 2593 8837
biomed 6514 5742 21040

industry?2 12637 13419 48158
industry3 15433 21940 65920
avgsmall 21918 22124 76231
avqlarge 25178 25384 82751
golem3 100312 144949 337892

Table 6.2.: The MCNC Circuit Benchmark Suite contains 11 hypergraphs. We
use the five largest hypergraphs for evaluation, since the computation
of a 32-way or 64-way partition does not make sense for too small
hypergraphs. The selected hypergraphs are highlighted.

hypernodes j, where A;; (hyperedges represent rows) or A;; (hyperedges repre-
sent columns) is a non-zero entry. Note that each adjacency matrix of a graph
can therefore be reinterpreted as a hypergraph. Hypergraph partitioning of SPM
instances can be used for parallel sparse-matrix vector multiplication [18], paral-
lel sparse matrix reordering [17], and parallel computation of the block-diagonal
form of the matrix [10], which can be used to solve linear programming problems.
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6.2.2 SPM INSTANCES

Hypergraph V] E| |pins|
add20 2395 2395 17319
add32 4960 4960 23884
besstk33 8738 8738 591904
Aelt 15606 15606 107362

vibrobox 12328 12328 342 828
bcsstk29 13992 13992 619 488
memplus 17758 17758 126 150
bcsstk30 28924 28924 2043492
bcsstk31 35588 35588 1181416
bcsstk32 44609 44609 2014701
finan512 74752 74752 596 992

Table 6.3.: The 11 hypergraphs originating from sparse matrices in Walshaw’s
Graph Partitioning Archive. We ignore the smaller hypergraphs in
our evaluation. The selected instances are highlighted.

A very popular collection of partitioning problems is Walshaw’s Graph Partition-
ing Archivel. It consists of 34 graphs that have been very popular as benchmarks
for graph partitioning algorithms. Out of these graphs, there are 11 which origi-
nate from sparse matrices. These graphs are shown in Table 6.3. As with VLSI
instances, we ignore smaller instances. The selected instances are highlighted
in Table 6.3.

Furthermore, there exists a huge collection of sparse matrices, called The Uni-
versity of Florida Sparse Matrix Collection [19]. As of February 20152 it contains
2547 problems. Hence, it is impractical to consider all contained matrices for
evaluation. Instead, we select a subset of those matrices which were used in one
of the DIMACS Implementation Challenges®. These challenges take place regu-
larly and address various graph problems including the shortest path problem,
the traveling salesman problem, graph partitioning, and graph clustering. As of
now, there were 11 DIMACS implementation challenges held, out of which the
10th [11,12] is the most relevant to this thesis, since it addresses graph partition-
ing and graph clustering. The selected hypergraphs are shown in Table 6.4 and
will be used for evaluation of our proposed algorithms.

Thttp://staffweb.cms.gre.ac.uk/ c.walshaw/partition/
2http://www.cise.ufl.edu/research /sparse/matrices/
3http://dimacs.rutgers.edu/Challenges/
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6.3

INTEGRATION IN A k-WAY MULTILEVEL PARTITIONING FRAMEWORK

Hypergraph V] |E] |pins|
af shell9 504 855 504855 17588875
audikw_1 943 695 943695  T7651847
ldoor 952203 952203 46522475
ecology?2 999999 999 999 4995991
ecology1 1000000 1000000 4996 000
thermal2 1228045 1228045 8580313
af shell10 1508065 1508065 52672325
G3_circuit 1585478 1585478 7660 826
kkt_power 2063494 2063494 14612663
nlpkkt120 3542400 3542400 96845792
cagelb 5154859 5154859 99199551
nlpkkt160 8345600 8345600 229518112
nlpkkt200 16240000 16240000 448225632
nlpkkt240 27993600 27993600 774472352

Table 6.4.: The 14 hypergraphs selected from the University of Florida Sparse
Matrix Collection and used in the 10th DIMACS challenge.

6.3. Integration in a k-way Multilevel Partitioning Framework

We integrate label propagation in a direct k-way multilevel partitioning frame-
work called KaHyPar (Karlsruhe Hypergraph Partitioning) [28]. This frame-
work implements direct k-way partitioning and utilizes the classical multilevel
partitioning scheme, but also supports variations of it, like n-level partition-
ing [44]. Mainly, there are three modules:

o The coarsening module
o The initial partitioning module

e The refinement module

The framework is very versatile, because the modules can be exchanged indepen-
dently. For example, the coarsening module can coarsen the hypergraph in such
a way that between each level we either contract only a single pair of hypernodes
(n-level) or we contract a complete cluster (agglomerative coarsening). We use
the first approach, i.e. we contract two nodes in a level of the multilevel partition-
ing scheme. Furthermore, KaHyPar supports V-cycling and allows for multiple
runs of the initial partitioning algorithm.

We evaluate label propagation on the clique expanded hypergraph (Section 4.1),
label propagation on the star expanded hypergraph (Section 4.2), and probabilis-
tic label propagation (Section 4.3) as coarsening strategies. Note that since we
perform n-level coarsening, we do not contract entire clusters but pairs of hyper-
nodes which belong to the same cluster. The selection of these pairs is thereby
random, i.e. we randomly select a cluster which was not completely contracted
and two random hypernodes belonging to this cluster. These hypernodes are
contracted and the process is repeated as long as there exists a cluster which was
not completely contracted. If the hypergraph is still too large after all clusters
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6.4 PARAMETER OPTIMIZATION

have been contracted, we repeat the process, i.e. we compute a new clustering
on the coarser hypergraph with label propagation and successively contract that
clustering. As initial partitioners we use and evaluate both hMetis [31] and Pa-
ToH [18]. Finally, we use our proposed fast local search algorithm based on label
propagation as refinement strategy (Section 4.4.4).

6.4. Parameter Optimization

Utilized in the multilevel partitioning scheme, our proposed algorithms have a
large amount of parameters which need to be optimized. These parameters can
be divided into three groups: parameters for the coarsening phase, parameters
for the initial partitioning, and parameters for the refinement phase. We will
optimize each parameter set individually, since the optimization of all parameters
at once is not feasible due to the large parameter space. Furthermore, we select a
subset of our benchmark data set and use only those hypergraphs for tuning. We
select all hypergraphs from our data sets which have less than 50 000 hypernodes.
Due to space constraints, we will only provide a brief overview over the results
of the parameter optimization in this section. For more detailed results on all
tuned parameters see Appendix D.

To ease the parameter tuning process, we select a default set of parameters.
In detail: ¢ = 0.03, k € {2,4,8,16,32,64}, sample size = 20, maximal num-
ber of iterations for label propagation in the coarsening step = 3, the number
of hypernodes to stop coarsening = 100k, no node ordering, size constraint =
Linas 55 = ((1 +5)¥ +maxyey ¢(v))- 55, hMetis as initial partitioning algorithm,
and the maximal number of iterations for label propagation as refinement strat-
egy = 3. We partition each hypergraph 10 times with different random seeds
and compute the arithmetic mean for the cut and partition time over these 10
runs. Next, we compute the geometric mean over all instances and k, using the
arithmetic mean per instance.

6.4.1. Coarsening Phase

First of all we need to determine which variant of label propagation with which
score functions and which node ordering we should use. Table 6.5 compares the
partition time and cut of the best score function per label propagation variation.
The tables showing the detailed results for each variant and each score function
are provided in Section D.1. Note that label propagation on the star expanded
hypergraph is inferior to label propagation on the clique expanded hypergraph
and probabilistic label propagation in terms of solution quality and running

Best Score per Variation ‘ Cut Partition Time
clique expanded variant, scorep s | 2537.61 4.24
probabilistic variant, scores 2539.79 4.31
star expanded variant, score; 5 2639.77 11.46

Table 6.5.: Comparison between the best score function for each variant of label
propagation as coarsening strategy.
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6.4 PARAMETER OPTIMIZATION

time. The slower running time is mainly because of the local search algorithm
in the refinement phase. Star expansion changes the topological properties of
the hypergraph. Our employed local search algorithm finds many hypernodes
which improve the quality of the partitioning if they change their partition, since
the quality of the initial partitioning suffers from the topological change. This
results in a larger running time.

Furthermore, there are six score functions (Table 6.6), which are very close in
terms of quality and running time for both probabilistic label propagation and
label propagation on the clique expanded hypergraph. These score functions are
scoreg,1, SCOTE 3, SCOTEY 6, SCOTE 1, SCOTE3 3, Scores . We keep these score functions
for both variants, discard all other score functions, and won’t further consider
label propagation on the star expanded hypergraph as coarsening algorithm.

It is noteworthy that even though label propagation on the clique expanded
hypergraph has a slower theoretical running time, the practical running time of
the partitioning is very close to the running time of the variation which used
probabilistic label propagation as coarsening strategy. On the one hand, this is
because the hypergraphs utilized in the parameter tuning all have fairly small
hyperedges and on the other hand because the update step in the probabilistic
variant also comes with a computational cost which can be omitted in the other
variant.

Next, we need to determine how the different node orderings impact our al-
gorithms. The running time for the two remaining variants benefits from node
ordering, regardless of which type. We select scores 3(-) and ordery(-) as parame-
ters for both probabilistic label propagation and label propagation on the clique
expanded hypergraph, since this configuration combines near best quality with
near fastest running time. The full tables depicting the comparison of different
node orderings are shown in Section D.2.

Variant and Score Function Cut Partition Time
clique expanded variant, scorep s | 2537.61 4.24
probabilistic variant, scores 2539.79 4.31
clique expanded variant, scorey; | 2541.68 4.77
clique expanded variant, scores; | 2541.78 4.65
probabilistic variant, scores 3 2542.97 4.03
clique expanded variant, scoreyq | 2545.53 4.39
probabilistic variant, scorey g 2545.94 4.28
clique expanded variant, scorezs | 2546.98 4.21
probabilistic variant, scores 2547.11 4.29
probabilistic variant, scores g 2555.44 4.33
clique expanded variant, scoresg | 2556.41 4.27
probabilistic variant, scores s 2557.69 3.99

Table 6.6.: The 12 best scores over all variations of our algorithms for the coars-
ening phase. Note that all scores are very close in terms of the cut
and partition time.
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6.4.2 INITIAL PARTITIONING

Now we tune the sample size and the maximal number of label propagation
iterations. For both coarsening variants the solution quality increases with the
maximal number of label propagation iterations. Recall that we use an adaptive
stopping criterion: we stop label propagation if less than five percent of all
hypernodes change their label. This results in only minor changes for both the
solution quality and total running time starting at five iterations. Furthermore,
in case of probabilistic label propagation, the solution quality increases with the
sample size. The improvement diminishes starting at a sample size of 25 (even
though the maximal hyperedge size in the tuning set is 585). For figures depicting
these results in detail see Section D.3.

Finally, the last parameters left to optimize in the coarsening phase are the size
constraint and the number of hypernodes when the coarsening process should
stop. It should be noted that the results of this parameter tuning are very
similar for probabilistic label propagation and label propagation on the clique
expanded hypergraph. The coarsening threshold parameter ¢ has thereby more
impact on the quality of the partitioning, whereas the size constraint parameter
U has a larger impact on the total running time. Note that the partition time
increases with larger values of . This is counterintuitive because we stop the
coarsening process earlier for larger values of ¢ and therefore spend less time for
the coarsening. However, this can be explained because for small hypergraphs
(as in our case) the running time of the initial partitioning algorithm dominates
the running time of the coarsening phase and the refinement phase. Hence, if
we stop the coarsening process early, the initial partitioning algorithm needs to
partition a larger hypergraph, which results in the aforementioned observation.
Further details are shown in Section D.4.

6.4.2. Initial Partitioning

We use hMetis [31] or PaToH [18] as initial partitioning algorithm. Both hyper-
graph partitioners have many configuration parameters. For the sake of simplicity
we will use the default parameters for hMetis and in case of PaToH, we utilize
the default parameters of the quality preset. Note that in case of hMetis we
need to modify our balance constraint, since hMetis computes the partitioning
via recursive bisection in the default case. In this case, the imbalance parameter
of hMetis specifies the maximal difference between each successive bisection, e.g.
a value of five leads to a 45-55 split at each bisection. In detail: if we provide
hMetis with a value of b, the maximal allowed partition size is

b ng(k)
V) - (0.5 4+ © 4.1
(V) - (054 15) (6.4.1)

for a k-way partitioning of a hypergraph ‘H = (V, F,c,w). Note that in our
notation, the maximal allowed partition size is

Linaz = (1+¢) - Ci/) + max ¢(v). (6.4.2)

veV
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6.4 PARAMETER OPTIMIZATION

Given the maximal imbalance ¢, we determine the imbalance parameter of hMetis
as follows:

(1+¢)- Ci/) + max c(v) = c(V)-(0.5+ 180)10g2(k) (6.4.3)
& Z °) ma}i’f‘;;(w)wgiw — 0.5+ 180 (6.4.4)
= p=100- (U Z 2 4 maxcv(%c(v))wg% —0.5) (6.4.5)

Besides the choice of the initial partitioning algorithm, we evaluate how the
number of runs of the initial partitioning algorithm impacts the quality and
running time of our algorithms. There are mainly three things that should be
noted: first, the main difference between hMetis and PaToH is the running time.
The computation of a partitioning took almost twice as much (for both coarsen-
ing variants) if we used hMetis as initial partitioner. This effect increased with
multiple runs of hMetis. Besides that, utilizing hMetis increased the quality of
the partitioning slightly (~ 2% in the geometric mean over all £ and all tuning
instances). Furthermore, multiple runs of the initial partitioning algorithm im-
proved the solution quality marginally for both hMetis and PaToH. The figures
showing these results in detail are found in Section D.5.

6.4.3. Refinement Phase

In the refinement phase, we have only one tuning parameter: the number of max-
imal iterations for label propagation based local search algorithm. Again, the
parameter tuning results for both variants (probabilistic and clique expanded)
are very similar in terms of partition quality and running time. For both ini-
tial partitioning algorithms (hMetis and PaToH), the solution quality does not
improve significantly after five iterations. The maximal number of label propaga-
tion iterations as local search strategy has nearly no impact on the the running
time. This can be explained by the choice of hypergraphs for parameter tun-
ing. Since all these hypergraphs are fairly small, the most expensive part of the
computation is the initial partitioning algorithm. Furthermore, our refinement
algorithm has a very local view on the hypergraph, since only two hypernodes
are uncontracted at each level. This results in only a few iterations of refinement
before a local minimum is found. Since our refinement algorithm is greedy, we
stop the refinement process before the maximal number of iterations is reached.
Therefore, additional label propagation iterations in the refinement phase have
nearly no impact on the total partition time (for smaller hypergraphs). Note
that this effect is not present for large hypergraphs. Further results are shown
in Section D.6.

6.4.4. V-cycles

The last parameter left is the number of V-cycles. Recall that the V-cycle tech-
nique repeats the multilevel partitioning scheme multiple times utilizing the com-
puted partition in the latter iterations. Our experiments imply that the quality of
the partitioning increases only marginally after five V-cycles for both coarsening
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variants (label propagation on the clique expanded hypergraph and probabilistic
label propagation) and both initial partitioning algorithms (hMetis and PaToH).
The figures depicting these results in detail are found in Section D.7.

Concluding, we propose three configurations of KaHyPar which utilize label
propagation: LPFast, LPEco, and LPBest (Table 6.7). FastLP is the fastest vari-
ant and sacrifices solution quality for running time. The other extreme is BestLP,
which sacrifices running time for the best possible solution quality. EcoLLP tries
to combine both worlds, resulting in a good trade off between running time and
solution quality.

Parameters LPFast LPEco LPBest
Coarsening Variant Probabilistic Probabilistic Clique Expanded
Score Function scores s scorey s scorey 3
Node Ordering ordery ordery ordery
Sample Size 20 25 -
Number of Iterations in Coarsening 2 3 7
Size Constraint Loz - % Loz - % Loz - %
Coarsening Threshold 50k 170k 210k
Initial Partitioning Algorithm PaToH hMetis hMetis
Number of Initial Partitionings 1 1 3
Number of Iterations in Refinement 3 5 10
Number of V-cycles 1 5 10

Table 6.7.: Proposed parameter sets for KaHyPar.

6.5. Experimental Results

We evaluate our proposed configurations on the data sets described in Section 6.2
and compare ourselves against hMetis* and PaToH®. In hMetis we use the preset
for recursive bisection (from now on referred to as hMetis-RB) and direct k-way
partitioning (from now on referred to as hMetis-k). PaToH ignores the random
seed parameter if any preset is used. Therefore, we compare our algorithms
against both the quality preset of PaToH (from now on referred to as PaToH-Q)
and the default configuration of PaToH (from now on referred to as PaToH-D).

We exclude cageld, nlpkkt160, nlpkkt200, and nlpkkt2/0 from the following
comparisons. This is because PaToH-Q and PaToH were the only algorithms
which could partition these hypergraphs in reasonable time. It took both hMetis
variants more than 18 hours to compute a single partition of cagel5 for k = 2.
Furthermore, nlpkkt200 and nlpkkt240 could not be partitioned with hMetis be-
cause the required amount of memory exceeded the available amount of memory
on our machine. LPFast could not partition nlpkkt160, nlpkkt200, nlpkkt240
since PaToH (used as initial partitioning algorithm) crashed during computa-
tion. Finally, LPEco and LPBest also could not partition nlpkkt160, nlpkkt200,
and nlpkkt240 in reasonable time.

Unless mentioned otherwise, for the following comparison we partition the
remaining hypergraphs in k& € {2,4,8,16,32,64,128} parts with 10 different

4Version 2.0prel: http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
5Version 3.2: http://bmi.osu.edu/umit/software.html
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random seeds each and allow a maximal imbalance of ¢ = 0.03. We compare geo-
metric means of the best cut, the average cut, and the average execution time for
each k. The full table listing detailed per-instance results is found in Appendix E.
It should be noted that in our experiments hMetis-k was the only algorithm that
often produces imbalanced partitions (especially for & > 64): Out of 2800 cases
569 partitions (~ 20%) are imbalanced (up to 11.8% imbalance). Furthermore,
in 26 out of 280 possible partitioning problems (40 hypergraphs and 7 differ-
ent values for k) hMetis-k could not produce an e-balanced partition during 10
runs. The complete table showing these results in detail is found in Appendix E.
Since we don’t exclude imbalanced partitions from our comparison, hMetis-k has
therefore a slight advantage over the other algorithms.

Evaluation of KaHyPar Configurations. Table 6.8 shows the comparison be-
tween our proposed algorithms. LPEco is nearly 2.5 times faster than LPBest
while only having ~ 1% worse solution quality. LPFast on the other hand is
nearly 16 times faster than LPBest and produces partitions which are around
10% worse. Note that the relative decrease in solution quality of the average cut
of LPFast in respect to LPBest decreases with larger k.

LPBest LPEco LPFast

k| best cut avg cut avg t[s] | best cut[%] avg cut[%] avg tls] | best cut[%)] avg cut[%] avg t[s]

21 121798  1272.09 22.35 +0.48 +1.15 12.47 +6.18 +12.32 2.73

4| 2576.76  2706.19 31.27 +1.12 +1.13 14.60 +7.66 +12.32 2.85

8| 4428.51  4583.05 42.08 +0.81 +1.24 16.73 +8.63 +11.33 3.02
16 | 6766.00  6928.05 53.95 +0.85 +1.01 20.26 +8.15 +9.58 3.38
321 9509.01  9659.07 75.57 +1.90 +1.92 27.50 +8.46 +9.78 3.77
64 | 13184.85 13313.25 98.04 +0.72 +0.92 36.06 +7.03 +7.85 4.30
128 | 17307.54 17440.95 134.83 +0.97 +1.00 47.25 +7.20 +7.52 5.10
avg | 5H735.03  5887.33 55.32 +0.98 +1.20 22.47 +7.61 +10.09 3.51

Table 6.8.: Detailed comparison of our proposed algorithms over all benchmark
instances. Note that cut values are shown as percentual increases in
respect to the values obtained by LPBest.

Comparison to other Hypergraph Partitioners. Recall that during parameter
tuning we only considered hypergraphs that have less than 50000 hypernodes.
For the following comparisons we focus on the instances that were not part of our
parameter tuning set. This is because we want to avoid the effect of overtuning
our algorithms to a specific set of hypergraphs.

In Table 6.9 the comparison of our algorithms with the state-of-the-art hyper-
graph partitioners (hMetis and PaToH) is shown. Note that LPFast is dominated
by PaToH-D and PaToH-Q, as they both have a smaller running time and pro-
duce better cuts. LPBest on the other hand is dominated by hMetis-RB and
hMetis-k. Finally, LPEco computes better partitions as PaToH-Q and PaToH-D
(with a slower running time) and has a faster running time than hMetis-k and
hMetis-RB (with worse solution quality). In the following we therefore focus on
LPEco.

More in-detail comparison of LPEco against hMetis-k, hMetis-RB, PaToH-Q),
and PaToH-D is shown in Table 6.10. Note that relative partition quality of
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Algorithm  avg cut  best cut avg tls]
LPBest 11368.65 11097.79  184.42
LPEco 11540.71 11248.80 75.80
LPFast 12624.92 12041.04 12.33
hMetis-RB  10665.85 10519.09  165.43
hMetis-k 10892.03 10726.42 98.27
PaToH-QQ  11551.88 11551.88 9.90
PaToH-D  12147.36 11627.19 2.39

Table 6.9.: Comparison of our algorithms with PaToH and hMetis on larger hy-
pergraphs.

LPEco to the competition improves for larger k: for k = 2, LPEco only computes
better partitions than PaToH-D, whereas for £ = 128 LPEco is outperformed
only by hMetis-RB.

LPEco hMetis-k hMetis-RB PaToH-Q PaToH-D

k| avgcut avgt[s] | avg cut[%] avgt [s] | avg cut[%] avgt[s] | avg cut[%] avg t[s] | avg cut[%] avg ts]

2| 223540 51.36 -4.14 53.86 -6.83 58.57 -2.27 3.10 +2.95 0.83

4] 4791.03 56.18 -4.36 64.11 -6.27  108.02 +1.27 5.91 +6.22 1.49

8 | 8200.48 59.50 -4.60 74.62 -5.48  151.22 -0.16 8.53 -+6.06 2.09
16 | 12727.65 67.02 -2.95 90.74 -4.29 19151 +0.13 11.16 +5.90 2.66
32 | 18938.05 80.14 -2.68 116.75 -4.59  229.27 -0.44 13.94 +4.07 3.22
64 | 27420.42 97.40 -0.62 156.61 -3.21  266.28 —+0.50 16.17 +5.64 3.77
128 | 37659.85  128.61 +1.35 207.10 -1.55  303.20 +1.53 19.05 +6.00 4.31
avg | 11540.71 75.80 -5.62 98.27 -7.58  165.43 +0.10 9.90 +5.26 2.39

Table 6.10.: Detailed comparison of LPEco, hMetis, and PaToH on larger in-
stances. The average cuts for hMetis and PaToH are shown as per-
centual increases in respect to the values obtained by LPEco.

Per Benchmark Set Comparison. Recall that our benchmark set consists of
both VLSI and SPM instances. We now examine the hypergraph partitioners in
respect to these hypergraph classes. Table 6.11 shows detailed results for the hy-
pergraph partitioners on the complete VLSI benchmark set. LPEco outperforms
both hMetis presets and both PaToH presets for £ > 64. Our algorithm achieves
the best results for k = 128, where it produces 7% better cuts than hMetis-k and
2% better cuts than hMetis-RB, while being 2.5 times and 1.5 times faster (re-
spectively). LPEco also produces 4% better cuts than PaToH-Q and 7% better
cuts than PaToH-D.

In Table 6.12 detailed results of the hypergraph partitioners on the complete
SPM benchmark set are shown. Note that LPEco performs much worse on this
benchmark set. Again, our algorithm improves for larger k. But in difference
to the VLSI benchmark set (Table 6.11), LPEco produces worse partitions than
hMetis-RB and PaToH-Q regardless of k. We have two explanations for the large
differences in solution quality of the two benchmarks. First, in contrast to VLSI
instances, SPM instances may not any deeper cluster structure, as they result
from various scientific computational problems.

Therefore, if not size-constrained, label propagation (like in the graph case [47])
would find the strongest connected components of the hypergraph. Since we em-
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6.5 EXPERIMENTAL RESULTS

LPEco hMetis-k hMetis-RB PaToH-Q PaToH-D

k| avg cut avg t[s] | avg cut[%] avg t[s] | avg cut[%] avg t[s] | avg cut[%] avg t[s] | avg cut[%] avg t]s]

2| 875.82 4.39 -6.57 5.34 -7.83 6.25 -2.12 0.49 +5.64 0.10

4] 1787.85 5.21 -6.61 7.25 -5.20 11.63 +1.16 0.88 +10.30 0.16

8 | 2837.64 6.14 -4.52 10.22 -3.62 16.45 +2.87 1.24 +10.73 0.22
16 | 4081.31 7.75 -2.43 15.36 -2.11 21.35 +2.34 1.55 +9.18 0.28
32 | 5402.97 11.23 +1.33 24.34 -0.23 26.27 +3.79 1.92 +9.16 0.34
64 | 6982.90 16.23 +4.16 39.31 +0.98 31.64 +4.21 2.20 +8.49 0.40
128 | 8693.29 22.91 +7.31 57.01 +2.32 37.83 +4.13 2.58 +7.77 0.46
avg | 3460.94 8.93 -1.17 16.49 -2.30 18.71 +2.32 1.37 +8.74 0.25

Table 6.11.: Detailed comparison of LPEco, hMetis, and PaToH on all VLSI
benchmark instances. The average cuts for hMetis and PaToH are
shown as percentual increases in respect to the values obtained by

LPEco.
LPEco hMetis-k hMetis-RB PaToH-Q PaToH-D

k| avgcut avgtls] | avg cut[%] avg t[s] | avg cut|%] avg t[s] | avg cut[%] avgt[s] | avg cut[%] avg tls]

2| 2165.05 51.22 -4.04 58.66 -7.31 66.61 -4.14 4.23 -0.65 1.33

41 4868.89 58.87 -4.77 70.07 -6.76  125.30 -1.98 7.61 +0.71 2.35

8| 9025.19 64.98 -3.26 83.43 -6.64 178.63 -3.71 11.17 +1.28 3.30
16 | 14515.12 74.30 -0.50  102.56 -4.83  226.64 -1.95 14.43 +3.29 4.19
32 | 22168.83 92.42 -0.61  134.80 -5.60  272.00 -2.69 17.92 +1.24 5.02
64 | 32571.72  106.22 +1.33 185.46 -4.47  316.34 -1.55 20.34 +3.40 5.82
128 | 45795.63  125.80 +1.61  240.44 -2.50  357.27 -0.64 24.10 +3.41 6.58
avg | 12422.99 78.26 -1.49  111.29 -5.46  194.12 -2.39 12.42 +1.80 3.63

Table 6.12.: Detailed comparison of LPEco, hMetis, and PaToH on all SPM
benchmark instances. The average cuts for hMetis and PaToH are

shown as percentual increases in respect to the values obtained by
LPEco.

ploy a size-constrained version of label propagation, these strongly connected
components are represented by many labels. This results in the fact that hy-
pernodes with the same label may not share any structural properties besides
the belonging to the strongly connected component. Therefore, in case of SPM
instances, our coarsening schemes could produce subpar coarsenings.

Second, our employed refinement algorithm has only a very local view (since
we uncontract two hypernodes at each level) and is greedy. That is, we only
change the block of a hypernode if an improvement of the cut is found (or the
total connectivity of the hypergraph is decreased). SPM instances nearly always
consist of uniform, large hyperedges. This results in many blocks in the con-
nectivity set of hyperedges. Therefore, our refinement algorithm performs many
zero gain moves which do not benefit the solution quality, but possibly prohibit
moves on a coarser level of the hypergraph. One solution to this problem is to
implement level-gains [36] which would prioritize zero gain moves better than
our currently employed connectivity decrease tie-breaking.
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7  Conclusion

In this thesis we investigate the application of label propagation to hypergraph
partitioning, especially to the popular multilevel partitioning heuristic. We con-
sider label propagation as coarsening strategy in the coarsening phase and as a
local search algorithm in the refinement phase. During the coarsening, we thereby
compute a size-constrained clustering of the hypergraph. The hypernodes inside
a cluster are then pairwise contracted. We propose three different adaptations of
label propagation to hypergraphs, two of which can be seen to operate on graphs
modeling the hypergraph. One of them has a non-linear running time and good
solution quality, whereas the other one has a linear running time, but suffers
from quality loss. The third adaptation is a randomized version of label prop-
agation which has good solution quality and linear running time. Furthermore,
we propose a greedy local search algorithm based on label propagation.

We integrate our algorithms in a multilevel direct k-way hypergraph partition-
ing framework KaHyPar and propose three configurations of that framework:
LPFast, LPEco, and LPBest. We compare our algorithms against the state-of-
the-art hypergraph partitioners hMetis and PaToH on hypergraphs originating
from popular benchmarks for both VLSI and SPM. In hMetis we consider both
the recursive bisection variant as well as the direct k-way partitioning variant.
In PaToH, we consider both the default preset and the quality preset.

Our algorithms achieve the best results for £ = 128 on a VLSI benchmark
set, where LPEco produces 7% better cuts than the direct k-way partitioning
variant of hMetis and 2% better cuts than the recursive bisection variant of
hMetis, while being 2.5 times and 1.5 times faster (respectively). Furthermore,
LPEco outperforms both variants of PaToH, resulting in 4% better cuts than
the quality preset of PaToH and and 7% better cuts than the default preset
of PaToH. On the SPM benchmark set, LPEco produces better cuts than the
direct k-way variant of hMetis and the default preset of PaToH for k > 64, but is
outperformed by the recursive bisection variant of hMetis and the quality preset
of PaToH.

7.1. Future Work

Since the introduction of label propagation [47], the algorithm has risen to promi-
nence, especially in the field of machine learning [30, 43, 53]. It comes as no
surprise that many problems [1,2,61] are easily and better modeled [2] with a
hypergraph than a graph. These problems can (partially) be solved with a clus-
tering of this hypergraph. With minor modifications, our proposed label propa-
gation adaptations can also be applied to hypergraph clustering. However, since
the objective of a partitioning generally differs from the objective of a clustering,
further score functions for incident labels need to be engineered and evaluated.
Furthermore, our coarsening algorithms can be seen to operate on a graph
modeling the hypergraph. We consider two graph classes: in the first, each
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7.1 FuUTURE WORK

hyperedge is replaced by a clique. In the second, each hyperedge is replaced by
a node with all incident nodes being connected to the new node. These are but
only two models for graph based hypergraph modeling. It is interesting if there
exist other types of hypergraph expansion that would benefit the quality and
running time of our proposed algorithms.

Moreover, we use label propagation in a direct k-way partitioning framework.
The experimental results of hMetis imply that the computation of a k-way par-
titioning via recursive bisection often results in better quality. Therefore, it is
interesting to evaluate whether the same observation applies to our algorithms.

Our algorithms perform considerably worse on SPM instances than on VLSI
instances. The utilized SPM benchmark set contains thereby different problem
kinds, e.g. optimization problems; 2D /3D problems, and structural problems. It
should be noted, that our benchmark set does not cover all problem kinds present
in the Florida Sparse Matrix Collection. Future work could further investigate
the performance of label propagation in each problem kind and whether problem
kinds exist, where label propagation performs well.

Utilizing two kinds of labels like Tang et al. [53], label propagation could also
be used for the computation of an initial partition: All but k- o hypernodes, «
being a tuning parameter, are initialized with an “empty” label. The remaining
hypernodes get one of k labels assigned at random. If we now perform label
propagation as long as empty labels remain, the resulting clusters become the
blocks of the partition. This process can be repeated multiple times if the initial
attempt resulted in a bad partition.

Another interesting adaptation to the initial label propagation algorithm is
proposed by Kang et al. [30] and could easily be applied to hypergraphs. Instead
of propagating one label, each hypernode could store, update and propagate
multiple labels at once.

Our greedy size-constrained label propagation based refinement algorithm only
prioritizes zero gain moves based on the global connectivity decrease of the move.
Another approach based on level-gains is proposed by Krishnamurthy [36]. Our
greedy local search algorithm can be further extended to use level-gains. The
prioritization of zero gain moves should lead to an improvement of the overall
solution quality, especially for SPM instances.

Finally, our proposed algorithms have the potential to be parallelized, since
each hypernode selects its new label based on a score distribution among the
present labels in its neighborhood.
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A Proof for the Expected Value of Hy-
pergeometric Distributions

Let Y; be a random variable which follows a hypergeometric distribution param-
eterized with e;, d;, S. Recall that in our case ¢; is the size of a hyperedge which
has d; pins with label j. We draw a sample of size S. Y counts then the number
of pins in the sample having label j.

The probability mass function for Y; is (Lemma 4.3.3):

s s (4 (ei—dj
L= )= <y)<<eJ3y) (8.2)
y=0 y=0 S
c a\ (b—a
= 1—Z(i>(cz) a,b,ceNg,b>a>c>0 (A.3)

The equality in Equation A.2 holds per definition, because fy,(y) is a probability
mass function and therefore must sum up to 1 over its domain of definition. Since
d;,e;, and S can be chosen arbitrarily, we can infer Equation A.3. This equality
is also known as vandermonde’s identity [9] in literature.

Lemma (Expected Value of Y}).

Proof. Let Yj, e;,d;, and S be defined as above. The mean of a random variable
X is per definition: Y1 | 2;P(z;) with z1,...,x, being the possible values of X.
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APPENDIX A. PROOF FOR THE EXPECTED VALUE OF HYPERGEOMETRIC

DISTRIBUTIONS
Therefore:
S S d;\ (ej—d;
)= 30 By =) = 3y )
= (%)
d;\ (ej—d;
(:) z:ly . (y)<(e]5>y )
y= S
0, S
= g
4 (&0 (%M%EZ%?))
=9 €; yzl (2:11)
€ | =0 lc’
(Equa?i(l)n A.S)
W g b
€j

The equalities hold, because:

(1) the first term (y = 0) is 0

n n! n-(n—1)! n (n—1
2) (k:):(n—k:)!k!:k-((n—l)—(k—l))!(k—l)!:k: (k:—l
(3) substituting i :=y —1,a:= (d; — 1),b:=(e; — 1),c:= (S — 1)

(4) vandermonde’s equality.
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B Hypergraph Format

Hypergraphs are usually stored in the Metis [33] format. In this format, a hyper-
graph H = (V, E, c,w) is stored in a plain text file containing |E| + 1 lines if the
hypernodes are unweighted and |E|+|V|41 lines in case of weighted hypernodes.
Any line stating with '%* is considered to be a comment and therefore ignored.
The first non-comment contains either two or three integers. The first integer is
the number of hyperedges |E|. The second integer is the number of hypernodes
|V|. The optional third integer denotes the type of the hypergraph:

e 0: unweighted hypergraph

e 1: hypergraph with edge weights

e 10: hypergraph with node weights

e 11: hypergraph with node weights and edge weights

In case of an unweighted hypergraph the third integer can be omitted. Following
this header the next |E| lines represent the hyperedges. For each hyperedge, the
corresponding line contains all pins of the hyperedge. In case of a hypergraph
with edge weights, the first integer in each line denotes the weight of the hyper-
edge. In particular, the ¢-th line contains the pins of the ¢ —1-th hyperedge. Note
that the hypernodes start with the integer one.

If the hypergraph has node weights, after these |E| lines follow |V| lines with
one integer each. This integer denotes the weight of the hypernode. In particular,
the (|E|+ j)-th line represents the weight of hypernode j — 1. Figure B.1 shows
a hypergraph and its representation in this format.

G—IyperGraphFilew
5 7 11 — Header

371 2 3

Hyperedges with weight

N O
-3

Hypernode weights

’U5|1 ’U7|4 L J

Figure B.1.: A hypergraph and its representation in the Metis format
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C Detailed Hypergraph Properties of our
Benchmark Set
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DETAILED HYPERGRAPH PROPERTIES OF OUR BENCHMARK
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D Parameter Tuning

This section contains further results of our parameter tuning without comment.
To ease the parameter tuning process, we select a default set of parameters. In
detail: ¢ = 0.03, & € {2,4,8,16,32,64}, sample size = 20, maximal number
of iterations for label propagation in the coarsening step = 3, the number of
hypernodes to stop coarsening = 100k, no node ordering, size constraint = L4, -
5 = ((1 +6)% +max,ey ¢(v)) - 55, hMetis as initial partitioning algorithm, and
the maximal number of iterations for label propagation as refinement strategy =
3. We compare thereby the geometric mean of the total partition time and the

cut using 10 partitioning trials per hypergraph and k.

D.1. Score Function Comparison

Score Function Cut  Partition Time
scorez,3 2537.61 4.24
scorea, 1 2541.68 4.77
scores,1 2541.78 4.65
scorez 6 2545.53 4.39
score3 3 2546.98 4.21
scores, 6 2556.41 4.27
scoresz 2 2580.48 5.48
scorez 2 2580.49 5.48
scorea, 5 2649.89 3.77
scores 2682.72 3.59
scores, s 2732.65 3.84
scores 2764.08 3.64
scorey 2 2948.78 5.63
scores 2962.48 6.02
scorey 1 2983.93 4.60
scoreg 4 2984.47 6.48
score 6 3003.50 4.40
score3 4 3019.20 6.44
scoreg 3052.83 6.25
score1,3 3107.08 3.86
scorey 4 3244.90 5.79
scoreq 3416.82 6.25
scorey 5 3424.22 3.81
scorey 3452.21 3.71

Table D.1.: Comparison of the various score functions for label propagation on
the clique expanded hypergraph.
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D.1 ScorRk FuNcTiON COMPARISON

Score Function Cut  Partition Time
scorea. 5 2639.77 11.46
scorez 3 2658.96 7.23
scores 2672.45 3.70
scorez, 1 2706.08 11.50
scorez, 6 2714.86 6.80
scorez 2 2808.63 11.64
score1,3 2834.39 8.28
scoreq 1 2856.63 16.35
scorel 6 2887.43 7.10
scorez 4 2928.62 4.32
scorey 5 2938.20 15.30
scorey 2 2944.36 15.29
scorey 2980.34 4.06
score1 4 2986.45 4.32

Table D.2.: Comparison of the various score functions for label propagation on
the star expanded hypergraph.

Score Function Cut Partition Time
scoreg 1 2539.79 4.31
scorey 3 2542.97 4.03
scorey 6 2545.94 4.28
scores 1 2547.11 4.29
scores g 2555.44 4.33
scores 3 2557.69 3.99
scorez o 2579.51 5.28
scores o 2590.12 5.25
scorea 5 2650.26 3.62
scorey 2671.71 3.20
scores 2732.90 3.76
scores 2766.98 3.34
scorea 4 2778.71 5.46
scores 4 2825.46 5.53
scorey 2 3002.69 6.00
scores 3042.30 5.33
scoreq 1 3050.77 4.77
scorey 6 3077.55 4.73
scoreq 3 3119.13 4.10
scoreg 3145.06 5.57
scorey 4 3183.81 5.65
scorey 5 3356.52 3.83
scorey 3373.94 3.41
scorey 3413.64 5.53

Table D.3.: Comparison of the various score functions for probabilistic label prop-
agation.
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D.1 ScorRE FuNcTION COMPARISON

Variant and Score Function Cut Partition Time
clique expanded variant, scorep s | 2537.61 4.24
probabilistic variant, scores 2539.79 4.31
clique expanded variant, scorey; | 2541.68 4.77
clique expanded variant, scores; | 2541.78 4.65
probabilistic variant, scores 3 2542.97 4.03
clique expanded variant, scoreyq | 2545.53 4.39
probabilistic variant, scores ¢ 2545.94 4.28
clique expanded variant, scoress | 2546.98 4.21
probabilistic variant, scores 2547.11 4.29
probabilistic variant, scores g 2555.44 4.33
clique expanded variant, scoresg | 2556.41 4.27
probabilistic variant, scores s 2557.69 3.99

Table D.4.: The 12 best scores over all variations of our algorithms for the coars-
ening phase. Note that all scores are very close in terms of the cut
and partition time.

7



D.2 NODE ORDERING COMPARISON

D.2. Node Ordering Comparison

Cut
score, (-,-) 2537.19  2540.27  2544.46  2538.65  2538.58  2538.28 2562
score,s(-,-)  2531.98  2540.75  2536.64  2540.44  2534.59  2535.88 2556
score, (-,-) = 2543.65 2542.79  2541.61
2550
scorey (-,-)  2540.74 - 2541.43  2543.73 --
| 2544
2538

no order order,(-) order,(-) order;(-) order,(-) order;(-

Figure D.1.: The impact of different node orderings on the cut for label propaga-
tion on the clique expanded hypergraph as coarsening strateqy. We
select scorea 3(+) and ordery(-) as the best parameters for this variant.

Total Partition Time [s]

4.6

score, 4

score; 4

4.4

4.0

3.8

no order order,(-) order,(-) order,(-) order,(-) order;(-

Figure D.2.: The impact of different node orderings on the total partition time for
label propagation on the clique expanded hypergraph as coarsening
strategqy. We select scoreas(-) and ordery(-) as the best parameters
for this variant.
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D.2 NODE ORDERING COMPARISON

Cut

scorezl( +)  2542.40 2539.49 2546.14 2542.10 2541.68 2541.66
2562

score, (-, ) 2545.70 2539.49 2542.26 2536.01 2535.02 2541.03

score,(-,-) | 2546.97 | 2548.96 - 2545.80  2547.83  2548.65
© 2550

score, (-,-) = 2546.65 2546.52  2547.14 254557  2547.00

score, 4+, -) 2567.88 - 2560.66 | 2559.09 | 2565.35 2544

no order order,(-) order,(-) order,(-) order,(-) order;(

2556

T

scoreg (-, -)

Figure D.3.: The impact of different node orderings on the cut for probabilistic
label propagation as coarsening strategy. We select scoress(-) and
ordery(+) as the best parameters for this variant.

Total Partition Time [s]

score, (-, -) 4.41 3.99 3.98 3.96 3.96 3.96 4.35
score, 5( -, -) 4.02 3.69 3.67 3.65 3.64 3.66 420

score, (- +) 4.38 3.91 3.95 3.92 3.90 3.91
[ 405

scorey (-, -) 4.45 3.97 4.03 4.01 3.99 4.00
3.90

scoreg 4( -, ) - 3.66 3.68 3.68 3.64 3.68
3.75

scorey (-, -) 4.38 3.95 3.98 3.99 3.97 3.97

no order order,(-) order,(-) ordery(-) order,(-) order;(-)

Figure D.4.: The impact of different node orderings on the total partition time
for probabilistic label propagation as coarsening strateqy. We select
scorea 3(+) and ordery(-) as the best parameters for this variant.
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D.3 SAMPLE SIZE AND MAXIMAL NUMBER OF ITERATIONS FOR LABEL
PROPAGATION IN COARSENING PHASE

D.3. Sample Size and Maximal Number of Iterations for
Label Propagation in Coarsening Phase

Cut
|2552
PRI 254454 2538.80 2538.08 2537.22 2537.51 2537.67 2537.44 2537.63 2537.41 2537.76 2537.58 ;zzj
2540

1 2 3 5 7 10 15 20 25 30 40 50
maximal number label propagation iterations in coarsening

Figure D.5.: The cut for different number of maximal iterations of label propaga-
tion on the clique expanded hypergraph as coarsening strategy.

Total Partition Time[s]

4.35
4.20
3.61 3.72 3.87 4.04 4.27 4.31 4.34 4.48 4.05
3.90
3.75
3 5 7 10 15 20 25 30 40 50

maximal number label propagation iterations in coarsening

-
N

Figure D.6.: The total partition time for different number of maximal iterations
of label propagation on the clique expanded hypergraph as coarsening
strategy.

Cut

~ MEVEPBUM 264770 260013  2590.14 258151  2576.68  2568.96  2563.99  2558.44  2555.64  2554.70  2552.27 3000

~ EVPEWEN 2639.07 2586.98  2569.84  2562.66  2557.43  2555.27  2554.27  2544.33  2540.04  2539.82  2543.76
2
o EEUEFEN 2647.85 2587.22  2571.63  2556.59  2552.08  2547.09  2542.99 253513  2536.74  2538.95  2532.20
2
© 2900
o
O n 2656.18  2590.14  2567.46  2560.42  2553.93  2551.96  2538.33  2536.67  2537.42 253541  2539.56
c
n
s
=~ ELIIGNN 266049 258537 257075  2557.12 255517  2551.93  2541.22  2539.27 253638  2536.37  2542.20
2 =
§ o QEUEELNM 267225 258732  2568.49  2557.66  2553.66  2549.35 254140  2539.85  2537.26 253617  2541.13 E 2800
8 |
)
2
s 2669.76  2594.32  2567.63  2559.20  2552.98  2550.25  2541.68  2539.85  2536.84  2536.00  2541.59
Q
3
o 2 2674.67 2591.38 2567.72 2553.64 2554.71 2548.60 2542.93 2539.81 2537.15 2536.23 2541.17
é 2700
2 0 EEMUEEE 2673.85 259401  2564.88  2555.98  2556.21  2549.76 254226  2539.95  2536.84  2536.12  2541.16
®
£
é 8 3025.41 2672.87 2596.46 2561.56 2554.21 2558.46 2548.96 2542.75 2539.94 2536.75 2536.01 2541.42
£

< 2682.83  2594.07  2564.33  2558.47  2556.66  2549.57  2541.79  2539.88  2537.06  2536.17  2541.28 2600

2 2690.66  2599.96  2565.93  2558.25  2560.51  2549.77  2541.88  2539.87  2536.95 253625  2541.08

1 2 3 5 7 10 15 20 25 30 40 50
sample size

Figure D.7.: The cut for different number of mazimal iterations and sample sizes
of probabilistic label propagation as coarsening strategy.
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D.3 SAMPLE SIZE AND MAXIMAL NUMBER OF ITERATIONS FOR LABEL
PROPAGATION IN COARSENING PHASE

Total Partition Time[s]
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maximal number label propagation iterations in coarsening

4.77 4.64 4.48 4.00 3.97 4.02 4.02 4.02
6.0

312 4.96 4.69 4.13 4.01 4.01 4.02 4.03

S2 5.20 4.80 4.21 4.05 4.06 4.04 4.05

5.63 5.41 4.90 4.33 4.08 4.09 4.07 4.08
4.5

6.01 5.77 5.11 4.49 4.15 4.16 4.12 4.13

6.36 6.14 S22 4.59 4.22 4.19 4.13 4.13

7 10 15 20 25 30 40 50

sample size

Figure D.8.: The total partition time for different number of maximal iterations
and sample sizes of probabilistic label propagation as coarsening strat-
eqy. The large partition time in the left corner is explained by the
fact that we select only one sample per hyperedge: we perform the
maximal number of label propagation iterations, since many hypern-
odes change their label (due to the bad sample) and our stopping rule
therefore does not stop the coarsening process early.
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D.4 SizE CONSTRAINT AND COARSENING THRESHOLD

D.4. Size Constraint and Coarsening Threshold

In our algorithms, the coarsening threshold for a k-way partitioning is t - k for
a tuning parameter t. This means that we leave the coarsening phase, if the
total number of hypernodes falls below this threshold. The size constraint for
the clusters is controlled by a parameter U and is %((125) (V') + max,ey ¢(v))
and denotes the maximal weight of all hypernodes sharing the same label. We
consider only values of U which are below ¢, because otherwise the size constraint

doesn’t allow to reach t - k coarse hypernodes.

Cut

2600

Sl 2673.03

2 2595.81

2539.93 2547.96 2553.26 2548.28 2541.28

30

2580

70

90

2560

~

- E 2532.59 2534.97 2545.91 2538.75 2541.33 2527.96

130

2527.82 2530.13 2534.52 2531.81 2537.04 2527.09 2521.65

2540

150

2520.01 2520.40 2525559] 2526.05 2533.43 2526.17 2521.22 2518.91

170

2515.09 231152 2518.34 2517.72 2527.34 2521.62 2523.74 2518.31 2514.53

250930  2508.82 251020  2509.60  2520.66 251681  2519.17 251801  2514.04  2509.09 2520

190

2505.66 2505.05 2506.92 2506.01 2517.03 2509.52 2515.98 2516.69 2513.41 2508.98 2500.43

210

10 30 50 70 90 110 130 150 170 190 210
U

Figure D.9.: The impact on the cut of different coarsening thresholds and different
size constraints for label propagation on the clique expanded hyper-
graph as coarsening strategy.
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D.4 SizE CONSTRAINT AND COARSENING THRESHOLD

Total Partition Time [s]

10

2.53

a 2.65 3.46
2 2.98 3.42 4.24
R 3.17 3.51 4.16 4.82 6
2 3.51 3.70 4.20
-3 3.73 3.87 4.28
2 3.87 3.97 432
3 4.08 414 4.4
S 4.34 4.39 4.63 4
& 4.46 4.51 4.70
2 458 4.60 4.79
10 30 50

Figure D.10.: The impact on the total partition time of different coarsening thresh-
olds and different size constraints for label propagation on the clique
expanded hypergraph as coarsening strategy.
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D.4 SizE CONSTRAINT AND COARSENING THRESHOLD

Figure D.11.:

84

Ratio of Exposed Hyperedge Weights of the Coarsest Hypergraph to Initial Exposed Hyperedge Weights

S 0.241
a 0.254 0.316

2 0.277 0.318 0.356

70

0.295 0.323 0.356

90

0.317 0.333 0.359

110

0.329 0.340 0.362

130

0.341 0.350 0.368

0.353 0.359

110

190 170 150

210

10

0.48

0.44

0.40

T D

0.32

The ratio between the sum of exposed hyperedge weights in the coars-

est hypergraph to the sum of exposed hypergraph edges in the initial
hypergraph for different coarsening thresholds and different size con-
straints for label propagation on the clique expanded hypergraph as
coarsening strateqy. First, note that the ratio correlates with the
total partition time: if less hyperedge weights are exposed, our algo-
rithm has a faster running time. This is because for small hyper-
graphs the running time for the initial partitioning algorithm dom-
inates the other phases. Second, our algorithm performs better if
the ratio is not reduced too much. This is explained by the fact that
if we coarsen too long, many structural properties of the hypergraph

get destroyed in the coarser hypergraphs.



D.4 SizE CONSTRAINT AND COARSENING THRESHOLD

Cut
o
S
2600
o
m
o
2
° 2580
4
- E 2537.48 2545.43 2547.13 2544.29 2547.03 2530.52 - 2560
| ]
E 2531.87 2539.45 2539.95 2538.17 2542.15 2531.65 2524.60
E 2523.26 2531.40 AIELAS 2532.85 2537.88 2529.17 2524.62 2520.23 2540
E 2517.33 2525.20 2524.53 2526.25 2531.66 2523.27 2520.67 2520.31 2516.93
E 2513.58 2517.75 2515.99 2519.63 2527.00 2518.59 2515.16 2515.31 2515.65 2510.03
2520
E 2512.84 2515.68 2512.94 2516.81 2525.27 2514.91 2513.75 2510.31 2511.83 2510.48 2503.58

10 30 50 70 90 110 130 150 170 190 210
U

Figure D.12.: The cut for different coarsening thresholds and different size con-
straints for probabilistic label propagation as coarsening strategy.

Total Partition Time [s]

=1 2.41

2 2.52 3.35

a 2.83 331 4.12

2 3.01 3.38 3.98

S 3.37 3.57 4.03
-3 3.54 3.72 4.09

] 3.68 3.82 4.15

3

2 3.90 4.01 4.28

3

R 411 4.20 4.43

5

& 4.24 4.33 454

3

o

2 4.35 4.42 4.61

10 30 50 70 20 110 130 150 170 190 210

Figure D.13.: The total partition time for different coarsening thresholds and dif-
ferent size constraints for probabilistic label propagation as coarsen-
ing strategy.
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D.4 SizE CONSTRAINT AND COARSENING THRESHOLD

Ratio of Exposed Hyperedge Weights of the Coarsest Hypergraph to Initial Exposed Hyperedge Weights

S 0.241

a 0.254

a 0.277

70

0.295

0.318

90

=2 0327
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0.341

130

150
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190

0.380

0.384

210
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Figure D.14.
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0.318 0.356
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o IS 3

0.350

0.359

0.372

0.382

0.32
0.467 0.482 0.497
110

The ratio between the sum of exposed hyperedge weights in the coars-
est hypergraph to the sum of exposed hypergraph edges in the ini-
tial hypergraph for different coarsening thresholds and different size
constraints for probabilistic label propagation as coarsening strat-
egy. The same observations as in the clique expanded variant apply:
First, note that the ratio correlates with the total partition time: if
less hyperedge weights are exposed, our algorithm has a faster run-
ning time. This is because for small hypergraphs the running time
for the initial partitioning algorithm dominates the other phases.
Second, our algorithm performs better if the ratio is not reduced
too much. This is explained by the fact that if we coarsen too long,
many structural properties of the hypergraph get destroyed in the
coarser hypergraphs.
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D.5 INITIAL PARTITIONER COMPARISON

D.5. Initial Partitioner Comparison

€

S Cut

j -

S I 2570
B~ 2572.95 | 2570.90 | 2571.57 | 2571.55 | 2571.21 2560
2

c - 2550
(@]

*% L 253480 2530.69 2528.86 2528.12  2527.58 2540
o C

— 2530
©

= 1 2 3 4 5

£

number of initial partitionings

Figure D.15.: The cut for different initial partitioners and multiple runs of the
initial partitioner with label propagation on the clique expanded hy-
pergraph as coarsening strateqy.

e

S Total Partition Time [s]

= 9.0
>3

© 1.96 2.40 2.80 3.11 3.41 7.5
O a

£ 0 6.0
[

(@)
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Figure D.16.: The total partition time for different initial partitioners and mul-
tiple runs of the initial partitioner with label propagation on the
clique expanded hypergraph as coarsening strategy.
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D.5 INITIAL PARTITIONER COMPARISON
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Figure D.17.: The cut for different initial partitioners and multiple runs of the
initial partitioner with probabilistic label propagation as coarsening

strateqy.
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Figure D.18.: The total partition time for different initial partitioners and multi-
ple runs of the initial partitioner with probabilistic label propagation
as coarsening strateqy.
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D.6 MAXIMAL NUMBER OF ITERATIONS FOR LABEL PROPAGATION IN
THE REFINEMENT PHASE

D.6. Maximal Number of Iterations for Label Propagation in
the Refinement Phase
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Figure D.19.: The cut for different initial partitioners and different mazximal num-
ber of iterations for label propagation as local search algorithm and
label propagation on the clique expanded hypergraph as coarsening
strateqy.
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Figure D.20.: The total partition time for different initial partitioners and dif-
ferent maximal number of iterations for label propagation as local
search algorithm and label propagation on the clique expanded hy-
pergraph as coarsening strategy. The minuscule change in the total
partition time is because first, the running time of the initial par-
titioning algorithm dominates. Second, our greedy local search al-
gorithm has only a very local view on the hypergraph and therefore
does not perform the maximal number of iterations, since a local
minimum s easily found.
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Figure D.21.: The cut for different initial partitioners and different mazximal num-
ber of iterations for label propagation as local search algorithm and
probabilistic label propagation as coarsening strateqy.
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D.7 V-CYCLES
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Figure D.22.: The total partition time for different initial partitioners and dif-
ferent maximal number of iterations for label propagation as local
search algorithm and probabilistic label propagation as coarsening
strategy. As with the clique expanded variant, the minuscule change
in the total partition time is because first, the running time of the
initial partitioning algorithm dominates. Second, our greedy local
search algorithm has only a very local view on the hypergraph and
therefore does not perform the mazimal number of iterations, since
a local minimum is easily found.

D.7. V-cycles
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Figure D.23.: The cut for different initial partitioners and different numbers of V-
cycles utilizing label propagation on the clique expanded hypergraph
as coarsening strateqgy.
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Figure D.24.: The total partitioning time for different initial partitioners and dif-
ferent numbers of V-cycles utilizing label propagation on the clique
expanded hypergraph as coarsening strategy.
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D.7 V-CYCLES
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91



E Detailed Results

In this section we provide further results without comment.

92

imbalance imbalance
Hypergraph k max avg | count Hypergraph k max avg | count
32 | 0.0301 0.0301 1 8 | 0.0354 0.0352 2
ibmO1 64 | 0.0700 0.0500 10 16 | 0.0628 0.0465 9
128 | 0.1000 0.0711 9 avgsmall 32 | 0.0628 0.0530 10
ibm02 64 | 0.1010 0.0730 10 64 | 0.0758 0.0630 10
128 | 0.0974  0.0805 10 128 | 0.0930 0.0738 10
{bm03 64 | 0.0414 0.0414 2 32 | 0.0501 0.0501 1
128 | 0.1050 0.0635 8 golem3 64 | 0.0370 0.0360 2
ibmo4 64 | 0.0349 0.0326 2 128 | 0.0804 0.0455 9
128 | 0.0512 0.0434 3 16 | 0.0481 0.0418 2
ibm05 64 | 0.0545 0.0436 2 industry?2 32 | 0.0684 0.0494 6
128 | 0.0870 0.0630 6 64 | 0.0758 0.0561 10
16 0.0595  0.0595 1 128 0.0909 0.0616 10
ibm06 64 | 0.0965 0.0598 8 32 | 0.0393 0.0373 2
128 | 0.0787 0.0543 10 industry3 64 | 0.0744 0.0613 6
32 0.0348 0.0348 1 128 0.0826  0.0562 10
ibm07 64 | 0.0404 0.0390 2 G3 circuit 64 | 0.0404 0.0404 1
128 | 0.0474 0.0446 2 - 128 | 0.0348 0.0348 1
16 | 0.0561  0.0492 4 audikw_1 128 | 0.0442 0.0389 2
ibm08 32 | 0.0661 0.0661 1 16 | 0.0519 0.0519 1
64 | 0.0798 0.0611 4 Kkt,_power 32 | 0.0530 0.0449 6
128 | 0.0948 0.0628 5 - 64 | 0.0720 0.0519 8
16 0.0321 0.0321 1 128 0.1177  0.0965 10
ibm09 32 | 0.0467 0.0416 4 32 | 0.0665 0.0562 4
64 | 0.0611 0.0493 7 Idoor 64 | 0.0763  0.0457 7
128 | 0.0981 0.0601 9 128 | 0.0774  0.0620 10
16 0.0320 0.0315 2 32 0.0352  0.0352 1
ibm10 32 | 0.0516 0.0498 2 thermal2 64 | 0.0471  0.0429 2
64 | 0.0645 0.0485 6 128 | 0.0496 0.0395 6
128 0.0866  0.0516 7 32 0.0411 0.0388 6
ibmil 64 | 0.0644 0.0477 8 bcsstk29 64 | 0.0639 0.0425 10
128 | 0.1178 0.0875 10 128 | 0.0727 0.0527 10
ibm12 64 | 0.0432 0.0369 3 32 | 0.0631 0.0537 2
128 | 0.0594  0.0450 3 bcsstk30 64 | 0.0553 0.0465 2
32 | 0.0600 0.0469 2 128 | 0.0708 0.0476 8
ibm13 64 | 0.0509 0.0489 3 32 | 0.0701 0.0571 4
128 | 0.0653  0.0486 8 bcesstk31 64 | 0.0844 0.0655 10
32 | 0.0377 0.0352 2 128 | 0.1111 0.0846 10
ibm14 64 | 0.0581 0.0466 5 16 | 0.0531 0.0531 1
128 0.0789  0.0609 8 besstk32 32 0.0746  0.0466 6
32 | 0.0438 0.0438 1 64 | 0.0946 0.0673 10
ibm15 64 | 0.1006 0.0660 3 128 | 0.0917 0.0719 10
128 0.0879  0.0639 10 8 0.0396  0.0396 1
ibm16 128 0.0809 0.0577 7 16 0.0514  0.0389 6
ibm17 128 | 0.1131 0.0715 3 memplus 32 | 0.0703 0.0560 10
16 | 0.0456 0.0456 1 64 | 0.0827 0.0680 10
. 32 | 0.0688 0.0443 4 128 | 0.0935 0.0763 10
ibml8 64 | 0.0887 0.0481 8 brob 64 | 0.0881 0.0544 1
128 | 0.0802  0.0589 9 Vibrobox 128 | 0.0619  0.0515 5
8 | 0.0407 0.0407 1
16 | 0.0540 0.0437 8
avqlarge 32 | 0.0889 0.0576 10
64 0.0838  0.0602 10
128 | 0.0914 0.0685 10
Table E.1.: The imbalanced partitions computed by hMetis-k.
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Table E.2.: Detailed results of the various hypergraph partitioners.

LPFast LPEco LPBest hMetis-k hMetis-RB PaToH-Q PaToH-D
k |Hypergraph |best cut avg cut avg t[s]|best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s]|best cut avg cut avg t[s]
2 [ibmO01 283 300,6 0,16 263 274,4 0,75 223 264,3 1,09 203 206,3 0,86 203 203,1 1,17 252 252 0,15 265 290,3 0,03
2|ibmO02 375 435,7 0,31 362 388,9 1,57 362 389,9 2,90 351 359,7 2,82 344 349,4 3,97 375 375 0,21 369 401,5 0,04
2|ibmO03 1050 1184,2 0,35 994 1030,9 1,82 984 1012,6 3,47 959 962,4 2,60 957 960,2 2,93 989 989 0,25 990 1016,5 0,04
2 |ibm04 640 692,6 0,41 597 613,5 1,92 601 621,3 3,85 581 585,5 2,82 580 583 3,22 628 628 0,30 599 634,4 0,05
2 |ibm05 1766 1869,1 0,52 1728 1765 2,73 1726 1748,4 5,25 1726 1729,7 6,11 1721 1726,3 6,81 1730 1730 0,28 1740 1757,8 0,07
2 |ibm06 1029 1114,4 0,54 1000 1037,4 2,66 1017 1039 4,66 984 998,7 3,92 981 988,8 4,67 1051 1051 0,38 990 1058,6 0,07
2|ibmO07 1016 1220,9 0,76 971 1051,6 3,98 994 1019 8,55 953 970,5 5,63 925 950,8 6,66 1002 1002 0,37 997 1028,4 0,08
2 [ibmO08 1200 1260,1 0,91 1177 1188,1 4,74 1176 1180,4 11,11 1144 1151,4 6,76 1141 1145 9,05 1165 1165 0,46 1157 1220,1 0,10
2|ibmo09 644 7773 0,89 627 635,5 4,19 625 639,2 6,81 627 632,1 5,08 627 631,6 5,39 638 638 0,49 639 683,9 0,10
2|ibm10 1461 1772,3 1,39 1328 1410,1 7,51 1326 1375,8 15,55| 1317 1340 9,54| 1328 13407 10,44| 1658 1658  0,73| 1517 1763,6 0,14
2|ibm11 1097 1214,7 1,27| 1078 11015 6,61 1079 11719 13,08| 1063 1068,8 7,11| 1065 10677 8,02| 1105 1105 0,57| 1078 1184,9 0,12
2|ibm12 2235 2333,4 1,53 2070 2106 8,36 2057 2111,2 19,21 1995 2052,3 13,14 1951 1969 15,14 1988 1988 0,74 2071 2180,8 0,16
2|ibm13 877 986,9 1,76 835 885,4 9,86 842 882,8 11,48 833 843,4 11,26 837 850,4 10,52 891 891 0,70 877 1134,5 0,16
2|ibm14 2078 2227,8 3,37 2010 2099 19,16 1975 2087,6 36,99 1874 1911,1 21,05 1869 1881,2 23,80 2107 2107 1,26 2086 2292,7 0,28
2|ibm15 2808 3184,4 4,25 2782 2838,1 22,92 2754 2859,3 42,64 2781 2837,3 28,91 2744 2808,6 29,75 2768 2768 1,56 2790 3149,2 0,35
2|ibml6 2364 2522,3 4,84 2065 2298,5 27,17 2003 2164,9 62,07 2006 2046,8 30,84 1913 1978,5 34,61 2080 2080 1,30 2128 2314,3 0,42
2|ibm17 2732 3422,3 5,37 2463 2769,5 30,06 2462 2519,5 63,73 2318 2354,4 42,23 2317 2343,7 46,42 2535 2535 2,03 2462 2721,8 0,47
2|ibm18 2020 2211,5 5,31 1858 2036,1 29,79 1686 1825 69,60 1873 1983,2 37,12 1683 1878,7 40,41 2001 2001 1,78 1739 2054,4 0,46
2 |avqglarge 160 204,9 0,41 144 157,6 1,37 166 170 8,67 142 143 0,69 141 141,9 0,93 152 152 0,51 149 167,1 0,04
2| avgsmall 162 230,8 0,38 143 153,8 1,32 154 159,1 10,00 142 144,1 0,67 142 142,3 0,83 165 165 0,49 149 168,9 0,03
2| golem3 1353 1376 1,65 1333 1343,5 7,76 1333 1345,8 10,27 1333 1338,7 5,63 1329 1336 6,26 1347 1347 0,60 1340 1350,5 0,13
2| industry2 211 2458 0,17 191 216,1 0,63 183 190,4 1,71 187 194,2 0,82 178 185,5 1,14 190 190 0,12 197 257,6 0,03
2 |industry3 295 321,6 0,21 293 306,8 0,65 286 306,1 0,88 282 282,6 1,04 282 282 1,35 284 284 0,12 282 293,9 0,03
2| G3_circuit 2481 2637,3 106,27 2356 2518,5 555,35 2262 2505 845,47 2326 2412,8 282,62 2142 2142 258,41 2430 2430 9,74 2208 2355,2 2,15
2 |af shelllO 5440 5831,5 88,05 5290 5388 430,70 5270 5325 439,52 5250 5294 382,75 5250 5250 359,60 5290 5290 21,47 5250 5392 10,57
2 | af _shell9 2010 2101,5 12,93 1910 1987,5 58,15 1875 1964 79,14 1850 1896 111,56 1770 1770 102,96 1855 1855 6,13 1830 1911 2,46
2 |audikw_1 11502 11841,3 96,08 10761 11112 536,43 10680 11083,8 1082,36 10914 11083,2 676,12 10986 11140,2 865,87 10860 10860 97,02 10962 11199,3 37,39
2 | ecologyl 2036 2074,4 44,92 2000 2010,8 239,95 2000 2015,4 319,52 2000 2000,2 104,63 2000 2000 127,21 2000 2000 3,24 2000 2007,2 1,03
2 | ecology?2 2022 2072 44,97 2000 2018,2 219,80 2000 2019 280,82 2000 2000 106,11 1998 1998,6 129,93 2000 2000 3,34 2000 2024,4 1,04
2 [ kkt_power 9898 11709 189,99 9731 9779,1 642,16 9731 9798,9 709,36 8104 8699 382,56 8104 8219,4 437,80 10050 10050 54,02 9853 10509,5 9,74
2 |1door 3500 3693,2 40,99 3304 3421,6 204,16 3311 3355,1 242,99 3276 3327,8 327,59 3206 3273,9 353,13 3584 3584 23,44 3381 3520,3 12,75
2 | nlpkkt120 74372 86123,5 854,23 70890 75026 4079,82 70015 72921,8 9079,01 70606 71812,6 5618,75 58 560 58560 4735,45 58560 58560 94,77 60208 64489,8 32,81
2| thermal2 1064 1160,7 71,22 1010 1064,4 387,75 1002 1057 799,66 973 998,9 236,38 964 978,1 258,10 990 990 9,29 980 997,8 2,27
2 | besstk29 378 405,3 0,50 360 382,2 1,46 377 387,4 1,66 360 363,6 2,70 360 360 3,17 360 360 0,42 372 387 0,12
2 | besstk30 553 639.6 1,06 528 579.9 295 527 561,4 5,12 535 544.5 5.73 527 552,8 7,59 578 578 1,28 528 577.9 0,56
2 | besstk31 746 801,1 1,00 678 771,1 3,80 669 735,5 5,56 674 695,6 8,44 667 672,7 9,85 678 678 0,69 665 744,7 0,22
2| besstk32 1016 1074 1,02 846 919,4 3,63 868 940,3 4,98 986 1029,1 9,77 958 1036,9 14,18 918 918 1,40 966 1032,9 0,39
2| finan512 146 147 1,73 146 147,1 4,01 146 147,2 5,31 146 146,8 7,65 146 146,3 9,37 148 148 0,50 147 147,9 0,15
2 | memplus 2904 2958,5 0,35 2888 2914,4 1,64 2863  2883,1 2,98 2696 2710,8 1,63 2465 2513,7 2,23 2983 2983 0,22 2922  3051,2 0,06
2 | vibrobox 2333 2476,4 0,76 2119 2305,1 3,62 2092 2312,4 4,03 1990 1990 4,81 1990 1990 5,51 1990 1990 0,51 1990 2213,3 0,13
4 [ibmO1 572 679,8 0,18 544 615,2 0,97 585 618,2 1,83 495 520,4 1,48 535 537,2 2,50 640 640 0,23 546 656,5 0,04
4 |ibmO02 730 824,6 0,33 716 766,6 2,23 665 726,5 4,49 648 681,8 4,01 703 714,7 6,93 705 705 0,40 689 839,2 0,08
4 |ibmO03 2006 2113,3 0,37 1777 1870,7 2,29 1730 1818,3 5,17 1670 1697,6 3,51 1703 1733,5 5,27 1887 1887 0,47 1832 1991,6 0,07
4 |ibmO04 1823 1947,6 0,41 1778 1826,2 2,29 1665 1803,4 6,13 1651 1673,2 4,08 1692 1711,4 6,53 1815 1815 0,55 1830 1906 0,09
4|ibm05 3378 36132 0,55 3034 3141,4 2,96 3038 3121,2 8,78 3045  3065,6 8,82 3091 3113,7 11,29 3145 3145 0,64 3162 32115 0,12
4|ibm06 1542 1717,2 0,58 1529 1612,6 3,17 1516 1541,3 6,45 1495 1515,5 5,58 1696 1727,8 8,46 1546 1546 0,59 1573 1826,4 0,11
4|ibm07 2432  2691,8 0,83 2300 2366,5 4,66 2244  2319,2 10,70 2235 2256,7 7,63 2216 2258,7 12,55 2364 2364 0,71 2380 2524,4 0,14
4|ibmo08 2503 26197 1,01 2422 2441,9 5.54| 2410 2427.9 13,31 2382 24074 9,92 2468 24756 15,85| 2470 2470  0,94| 2510 2627,6 0,18
4 |ibm09 1779 1922,8 0,93 1734 1779,6 5,11 1731 1776 9,36 1700 1726,6 6,65 1734 1746 11,29 1868 1868 0,89 1821 2178,8 0,16
4 |ibm10 2678 3347,8 1,42 2520 2680,8 8,21 2507 2652,9 20,04 2423 2488,8 11,84 2481 2551,3 20,45 2861 2861 1,25 2775 3139,7 0,25
4 |ibml1l 2820 3077,4 1,35 2529 2626,1 7,51 2510 2596,8 15,68 2484 2513,8 9,33 2492 2530,5 15,50 2755 2755 1,13 2810 3038,2 0,21
4 |ibm12 4333 4775 1,63 4067 4316 9,03 4133 4316 22,78 3994 4046,7 14,84 3918 3984,7 24,89 4848 4848 1,35 4323 4603,4 0,27
4|ibm13 2363 2769,8 1,77 2031 2116,7 10,42 1965 2086,6 22,05 1845 1901,3 13,15 1953 1971,3 20,01 2182 2182 1,27 2016 2402,2 0,28
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Table E.2.: Detailed results of the various hypergraph partitioners.

LPFast LPEco LPBest hMetis-k hMetis-RB PaToH-Q PaToH-D
k |Hypergraph |best cut avg cut avg t[s]|best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s]|best cut avg cut avg t[s]
4 [ibm14 3763 4039 3,48 3464 3574 19,64 3470 3568,5 47,85 3370 3436,8 26,24 3379 3433,2 40,62 3568 3568 2,23 3541 3981,2 0,50
4 |ibm15 5276 5584,9 4,35 4865 5198,9 24,27 4 866 5112,8 56,85 4836 4911,2 33,44 4825 4984,8 52,91 5245 5245 2,61 5599 5970,5 0,63
4|ibm16 4805 5121,1 4,99 4442 4726,4 27,77 4365 4600,4 67,84 4175 4276,6 38,70 4180 4261,8 63,24 4622 4622 3,37 4586 4986,1 0,74
4|ibm17 6527  7370,7 5,55 5791 6336,4 30,66 5832 6133,3 77,94 5685 5900,3 52,25 5665 5727,9 82,20 5783 5783 3,57 6388  7024,5 0,85
4|ibm18 3592  3800,4 5,46 3310 3417,8 30,08 3153  3376,6 74,64 3111 3208,8 46,38 3191 3228,5 77,44 3950 3950 3,29 3866 4150 0,81
4 |avqlarge 331 355,6 0,47 292 304,9 1,93 278 308,4 8,51 254 273,6 1,08 271 276,7 1,70 330 330 0,57 302 330,4 0,04
4 | avgsmall 302 332,8 0,46 285 305,9 1,67 288 299,4 11,18 254 282,2 0,91 250 274,5 1,52 301 301 0,54 299 329,6 0,04
4|golem3 2272 23235 1,66 2218 22403 9,50| 2218 22423 15,98 2232 22488 6,89 2225 2230 10,87| 2244 2244  1,06| 2271 22955 0,22
4 |industry2 364 437,5 0,18 343 382,5 0,82 322 368,4 2,21 324 340,8 1,31 320 360,8 2,23 366 366 0,21 395 442,6 0,06
4 |industry3 799 923,3 0,23 733 775,3 1,21 726 773,5 2,72 740 771,6 1,86 742 744,3 2,93 753 753 0,24 754 847,6 0,05
4 | G3_circuit 6035 6483,1 106,58 5927 6167,8 567,52 5755 5978,3 1024,33 5778 5927,6 312,77 5278 5278 488,09 6640 6640 15,21 5680 6268,8 3,87
4 |af _shell10 12535 13198 88,13 11790 11987,5 449,58 11510 11754,5 768,89 11335 11614 466,23 10905 11043 688,74 11840 11840 40,62 11495 11879,5 20,57
4 |af _shell9 5025 5186,5 12,80 4545 4705 66,38 4530 4647 81,07 4495 4535 116,57 4370 4 380 194,86 4550 4550 11,87 4 500 4719 4,72
4 [audikw_1 34587 35327,1 101,78 32961 33747 681,29 32850 33267,6 2976,99 33396 33673,2 729,31 33864 34680,9 1699,25 34800 34800 191,89 34200 34970,1 73,00
4 | ecologyl 3981 4109,5 44,99 3860 3960,7 246,00 3830 3908,8 463,95 3842 3877,4 144,87 3667 3777,7 234,12 3938 3938 7,60 3745 3977,5 1,81
4 | ecology?2 3973 4099,7 45,08 3884 3961,2 244,98 3872 3922,7 404,61 3843 3872,6 136,97 3757 3848 233,99 3945 3945 7,35 3919 3982,8 1,82
4 | kkt_power 20222 27774,9 193,02 18263 20193,7 955,16 18872 20365,4 1787,55 18616 19437 413,41 17538 17981,7 766,20 23246 23246 62,85 18923 21236,7 16,21
4 |1door 7119 7476,7 41,17 6748 6892,9 209,17 6489 6782,3 429,12 6510 6645,8 370,63 6538 6640,2 629,39 7266 7266 59,89 6790 7282,1 24,89
4 | nlpkkt120 155966 165572,3 861,28 | 144505 150469,1 4160,38 | 136494 141991,2 8955,70| 141014 143655,9 5680,63| 116152 116211,2 8574,06| 119387 119387 236,32| 125448 134492,7 59,39
4 | thermal2 3268 3499,9 71,25 3090 3301,8 388,06 3037 3244 873,17 2984 3022,9 257,54 2891 2915,1 488,52 3035 3035 17,43 2989 3039,9 4,14
4 | besstk29 1182 1260,8 0,51 1116 1149,6 2,19 1170 1191 2,25 1092 1104 3,17 1086 1088,4 6,84 1158 1158 0,58 1146 1198,2 0,22
4 | besstk30 1630 1779,4 1,11 1518 1614 4,49 1502 1594,6 7,31 1488 1544,7 7,03 1524 1598,1 18,56 1572 1572 2,46 1576 1657,5 1,08
4 |besstk31 1814 2010,9 1,02 1681 1800 5,04 1714 1806,8 7,33 1660 1711,8 11,37 1687 1720 19,21 1975 1975 1,69 1725 1953,3 0,42
4 | besstk32 1720 2199 1,04 1711 1971,6 4,70 1720 2040,4 5,63 1693 1764,8 11,84 2118 2207,2 27,52 1696 1696 1,82 1707 2134,8 0,74
4 |finan512 292 309 1,74 293 294,4 4,08 292 301,7 5,47 293 294,3 8,14 292 293,2 18,01 296 296 0,93 295 303,2 0,27
4| memplus 4990 5087,3 0,35 4741  4964,9 1,47| 4621 4896,2 4,34 4133 41471 2,25 3974 40695 3.20| 4422 4422 0.26| 4354 44882 0,07
4| vibrobox 4036 4353,2 0,86 3831 39614 3,03| 3848 39857 6,00| 3796 37985 7,79 3598 3604 9,73| 3660 3660 0,73| 3642 39455 0,18
8|ibmO01 934 1019,8 0,18 831 904 1,58 831 883,3 4,01 809 820,2 2,52 808 823,4 3,80 875 875 0,34 920 978,2 0,05
8 |ibm02 2248 23454 0,44 1932 2104,3 2,83 2054 2145 7,37 2013 2069,9 7,78 2005 2054,3 10,37 1963 1963 0,69 1986 21625 0,11
8|ibm03 2823 2908 0,43 2631 2732,7 2,55 2618 2699,4 6,23 2427 24479 5,68 2504 2521,6 7,63 2704 2704 0,61 2869 3012,9 0,10
8 |ibm04 3127 3212,3 0,51 2967 3027,5 3,20 2905 3001,9 8,23 2808 2859,2 6,48 2850 2909 9,37 3009 3009 0,75 3165 3269,8 0,12
8 |ibm05 4844 5090 0,64 4573 4709,4 3,92 4489 4698,6 9,76 4408 4486,5 12,84 4489 4553,5 14,03 4698 4698 0,86 4764 4884,8 0,15
8|ibmO06 2442 2516,5 0,68 2425 2453,4 4,28 2411 2441,1 9,70 2408 2419,4 8,60 2435 2457,2 11,24 2530 2530 0,84 2482 2582,6 0,14
8 |ibmO07 3663 3888,2 0,87 3535 3621,7 4,94 3496 3565,1 16,38 3366 3434,7 10,71 3459 3513,9 16,22 3584 3584 1,17 3780 3908,8 0,20
8 |ibm08 3798 3864,3 1,05 3557 3609,2 5,90 3522 3592,2 19,17 3539 3588,1 13,87 3679 3703,6 21,80 3735 3735 1,36 3785 3982,8 0,25
8 |ibm09 2990 3213,4 0,96 2740 2856 6,24 2720 2816,1 14,18 2658 2723,8 8,96 2719 2737,7 15,79 2953 2953 1,22 3024 3199,8 0,23
8|ibm10 4415 5033,4 1,53 4263 4504,3 8,66 4331 4470 27,12 4056 4136,8 16,65 4216 4298 28,35 4658 4658 1,84 4463 4939,3 0,34
8|ibmll 3887 4172,8 1,38 3732 3925,5 7,92 3642 3839 21,92 3572 3644,7 11,96 3750 3793,4 22,51 3826 3826 1,48 4024 4253,3 0,29
8|ibm12 6452 7093,6 1,69 6175 6442,1 9,48 6142 6 386,6 29,64 5999 6135,3 17,70 6139 6235,6 33,33 6287 6287 1,97 6641 7048,6 0,38
8|ibm13 3717 4043,2 1,90 3099 3287,6 10,88 3067 3252,3 27,67 2891 3012,2 17,10 3053 3094,5 28,35 3718 3718 2,05 3245 3867,6 0,39
8|ibm14 5699 6092,9 3,55 5342 5448,2 21,76 5286 5400,5 55,45 5078 5185,3 31,15 5070 5295,5 59,06 5879 5879 3,28 5688 6151,5 0,70
8|ibm15 7712 8003,6 4,44 6719 7020,8 25,95 6648 6899,3 65,87 6523 6741,4 38,98 6639 6740,3 71,35 7735 7735 3,97 TT72 8430,8 0,87
8|ibm16 7740 8274 5,09 6989 7240,2 30,24 7034 7119,8 77,57 6737 6903,8 43,75 6927 6982,3 87,30 7911 7911 4,84 7860 8237,4 1,03
8|ibm17 11171 12089,4 5,70 9977 10312,3 33,42 9966 10149,9 85,44 9551 9897,6 59,47 9654 9775,6 116,90 10142 10142 5,35 10691 11805,1 1,18
8|ibm18 6599  7131,7 5,58 6050 6414,1 31,59 5890  6201,5 87,62 5773  6098,6 52,15 5934 6111,5 102,37 6582 6582 4,68 6817  7168,1 1,11
8 |avqlarge 449 492,8 0,54 382 408,8 2,26 383 406,3 9,54 397 417,7 1,68 407 411,8 2,60 485 485 0,64 457 511,1 0,05
8 | avgsmall 463 474 0,51 387 416,2 2,09 396 424,2 9,70 381 422,4 1,54 391 407,7 2,33 466 466 0,59 475 508,7 0,05
8| golem3 2955 2993,3 1,69 2885 2915,5 9,70 2885 2896,4 17,59 2884 2900,1 8,12 2874 2879,7 15,37 2939 2939 1,40 2953 2977,2 0,31
8 |industry2 786 823,2 0,19 695 713,2 1,40 693 713,7 3,61 601 635,1 2,31 633 651,5 3,30 712 712 0,30 713 766 0,07
8 |industry3 1618 1749,2 0,26 1530 1589,3 1,45 1530 1544,4 5,77 1561 1582,7 3,25 1524 1535,9 4,63 1617 1617 0,35 1579 1697,7 0,07
8 | G3_circuit 11265 11711,4 106,76 10607 10912,2 568,80 10556 10730,4 1260,45 10394 10635,7 328,02 9609 9685,4 657,37 10471 10471 20,22 10 546 11002 5,35
8 |af _shelll0 23370 23996 88,38 22100 22192,5 450,28 21500 21870,5 893,20 21440 21694 527,40 20655 21340,5 973,74 21595 21595 64,59 21545 22617,5 30,28
8 |af_shell9 9690 9847,5 12,87 8995 9196,5 67,85 8845 8979,5 127,34 8830 8903 145,23 8515 8540,5 286,05 8825 8825 17,52 8915 9321 6,94
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Table E.2.: Detailed results of the various hypergraph partitioners.

LPFast LPEco LPBest hMetis-k hMetis-RB PaToH-Q PaToH-D

k |Hypergraph |best cut avg cut avg t[s]|best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s]|best cut avg cut avg t[s]

8 [audikw_1 82548 84649,2 112,91 77712 78523,5 948,86 76767 T7647,8 6317,91 77688 T8567,6 741,06 80445 81373,5 2433,03 79962 79962 280,54 80547 82917 106,80

8 | ecologyl 7611 7847,3 45,02 7228 7562,9 246,34 7057 7333,7 520,66 6994 7069,2 165,81 6668 7042,8 324,69 7372 7372 10,67 7346 7654,5 2,49

8 | ecology?2 7639 7912,6 45,27 7172 7547,2 245,22 7214 7549,4 532,64 7040 7102,3 153,97 6717 7249,3 324,76 7671 7671 8,78 7090 7610 2,50

8 | kkt_power 36541 50151,2 196,59| 35544 41052,5 1031,97| 35733 41691,8 2221,08| 33947 35911,9 436,46| 33212 33944,1 1064,56| 38654 38654 99,68 35970 39119,2 21,40

8 |ldoor 13321 13689,9 41,16 12439 12716,2 208,96 11816 12189,1 451,14 11039 11777,5 384,03 11921 12149,2 903,98 12222 12222 79,74 12607 13221,6 36,66

8 | nlpkkt120 232762 245806,8 868,95| 216473 220911,2 4137,79| 203959 210088,4 8992,77| 210257 214035,5 5720,41| 172792 172947,4 11642,52| 174576 174576 348,70| 184414 195314,1 83,48

8 | thermal2 7789 8270,2 71,50| 7269 73857 383,47| 7068 7216,9 900,86 7046 7091,9 261,67| 6799 68224 671,76| 7037 7037 25,09| 7080 7302,3 5,80

8 | besstk29 2410 2486,4 0,54 2310 2349 2,58 2334 2359 3,70 2298 2351,4 4,68 2220 22374 11,11 2428 2428 1,11 2469 2536,3 0,33

8 | besstk30 3515 3708,8  1,15| 3202 33977 5,53| 3247 33859 9,84| 3206 3323,6 9,92| 3264 3336,1 27,85| 3394 3394  4,72| 3402 3672,7 1,59

8| besstk31 3669 3964,9 1,03 3390 3455,6 6,41 3377 3467,2 11,38 3361 3425 13,05 3244 3391,7 29,20 3494 3494 2,37 3602 3867,4 0,62

8| besstk32 4025 4335,7 1,07 3836 3937,7 5,91 3689 3920,5 8,16 3752 3979,8 14,75 3792 4089,4 40,24 4125 4125 2,77 3804 4276,6 1,08

8| finan512 588 618,1 1,75 585 595,1 4,15 585 588 8,59 589 590 9,95 584 585,1 27,23 592 592 1,53 591 621,1 0,41

8 | memplus 6044 6134,6 0,38 6037 6236,5 1,78 5821 6055 5,45 5023 5057,5 3,22 5061 5118,6 4,12 5101 5101 0,35 5132 5230,8 0,08

8 | vibrobox 5497 5757,6 0,95 4876 5103,5 4,77 4903 4978,2 12,75 5932 6018,6 13,48 4867 4913 13,32 4897 4897 0,84 5027 5248,1 0,22
16 [ibmO1 1379 1409,3 0,25 1270 1321,9 1,94 1279 1311,8 5,05 1267 1275,7 4,97 1273 1291,8 5,23 1348 1348 0,42 1392 1443,5 0,07
16 | ibm02 3602 3686,3 0,58 3465 3499,2 6,24 3409 3462,5 17,47 3410 3448,6 14,26 3452 3470,4 13,31 3398 3398 0,84 3448 3549,2 0,14
16 | ibm03 3548 3652,4 0,53 3353 3415,4 4,39 3352 3401,2 12,07 3291 3317,9 9,69 3246 3298,4 9,85 3584 3584 0,70 3662 3756,2 0,13
16 | ibm04 4157 4252,6 0,54 3967 4033,7 3,30 3880 3935,7 15,59 3882 3946,3 10,33 4031 4058,1 12,31 4035 4035 0,92 4217 4346,5 0,15
16 | ibm05 5903 6096,6 0,70 5612 5744,6 4,18 5510 5578 17,44 5769 5870,3 18,56 5472 5543,5 16,42 5519 5519 0,98 5631 5798,5 0,17
16 | ibm06 3428 3507,2 0,70 3246 3355,8 4,76 3248 3289,1 18,90 3262 3336,9 13,54 3370 3379,8 14,11 3421 3421 1,00 3472 3624,9 0,18
16 | ibmO07 5138 5239,2 1,03 4835 4922,6 7,03 4828 4897,2 18,06 4744 41793,6 16,07 4761 4791,9 21,52 5147 5147 1,42 5210 5353 0,25
16 | ibm08 4950 5102,5 1,24 4772 4812,6 8,16 4690 4746 21,53 4687 4832,9 19,69 4 888 4954,3 26,81 5090 5090 1,72 5111 5260,1 0,31
16 | ibm09 4411 4516,4 1,08 4093 4177,3 6,89 4007 4118,1 17,16 3886 3967,7 13,33 3982 4016,1 20,96 4201 4201 1,57 4228 4610,7 0,29
16 [ ibm10 6 889 7134,2 1,78 6264 6604,4 11,78 6185 6456,3 30,46 5884 6024,1 22,86 6151 6275,1 35,83 6667 6667 2,31 6597 6 867,6 0,43
16 |ibm11 5715 5997,3 1,58 5348 5445,6 10,36 5360 5463 27,01 5276 5349,9 17,40 5301 5540 29,17 5608 5608 2,02 5813 6071,7 0,37
16 |ibm12 9058 9547,6 1,93 8587 8823 12,56 8389 8828,2 32,60 8256 8336 23,97 8374 8489,7 43,83 9098 9098 2,37 9426 9687,8 0,48
16 |ibm13 6401 6632,2 1,98 5734  5867,2 14,20 5567  5838,3 36,99 5541 5599,4 24,46 5610 5658,2 38,34 5968 5968 2,85 6156  6560,2 0,50
16 |ibm14 8993  9586,1 3,86 8596  8812,7 23,26 8426  8704,4 59,39 8360  8460,7 40,37 8451 8531,8 74,65 9050 9050 4,53 9186  9529,7 0,88
16 |ibm15 9397 10180,1 4,70 8884 9299 27,06 8764  9311,4 71,49 8743  8923,7 49,68 8740  9043,2 90,86 9930 9930 5,08 10117 10765,2 1,07
16 |ibm16 11984 12538,4 5,48 11425 11716,8 31,94 11368 11479,8 81,93 10783 10975,9 54,81 10859 11007,3 108,34 11379 11379 5,94 11724 12324,1 1,28
16 |ibm17 17344 18043,3 6,14 15182 15703,4 35,15 15218 15540,5 89,09 14734 15086,7 71,92 15080 15313 146,84 16543 16543 7,01 16125 17402,6 1,47
16 |ibm18 9785 10134,2 5,90 8880 9057 35,61 8744 8940,8 91,10 8907 9094,8 65,77 9027 9175,2 126,69 9576 9576 5,94 9796 10285,8 1,38
16 | avqlarge 678 710,2 0,69 612 623,1 3,12 593 608,7 11,07 623 639,4 2,90 602 624,4 3,63 688 688 0,69 722 757,8 0,07
16 | avgsmall 678 719,4 0,62 606 626,2 2,73 595 615,4 11,16 624 643,1 2,83 599 620,3 3,28 637 637 0,68 693 752,6 0,06
16 | golem3 3768 3805,1 1,74 3668 3699,3 10,36 3651 3682 25,71 3677 3697,8 10,43 3657 3678,1 19,73 3732 3732 1,84 3805 3822,2 0,39
16 | industry2 1122 1180 0,24 1012 1047,5 1,63 1027 1063,2 4,44 985 999,8 4,31 952 969,5 4,46 1068 1068 0,35 1061 1119,8 0,09
16 | industry3 2505 2553,6 0,34 2350 2391,9 2,62 2314 2354,7 7,04 2292 2356,5 5,76 2279 2320 6,37 2405 2405 0,48 2396 2522,7 0,10
16 | G3_circuit 18 830 19361 107,30 17188 17807,7 570,19 17209 17589,6 1257,87 17314 17453,6 336,14 15951 16027,4 819,39 17847 17847 26,85 17358 18374,9 6,68
16 | af_shelll0 37470 38299 88,64 34 580 35008 451,76 33780 34266 944,65 33990 34218,5 551,03 33050 33530 1258,71 33690 33690 78,21 35105 35834 39,81
16 | af_shell9 18020 18469,5 13,04 16775 16988,5 69,35 16 660 16 797 147,18 16410 16616 154,85 16190 16260,5 371,48 16 700 16700 27,20 16915 17353,5 9,12
16 |audikw_1 134394 136075,5 127,16| 128532 130377 1402,83| 128250 129184,2 13937,32| 129114 130464,6 768,66| 133719 136167,6 3020,54| 133212 133212 364,56| 135351 137769,9 138,22
16 | ecologyl 11753 11969,9 45,28 11460 11558,9 246,70 11252 11415,1 545,22 11283 11365,9 173,90 10559 10955,2 397,33 11182 11182 13,91 11748 11914,1 3,14
16 | ecology2 11776 11985,2 45,46 11408 11553 246,85 11187 11400,8 545,20 11293 11372,3 174,72 10334 10964,9 402,93 11741 11741 12,26 11748 119422 3,15
16 | kkt_power 76825 93215,4 203,36 61505 69895 1051,66 60690 70784 2475,85 59227 63293,4 550,10 54068 54696,8 1311,94 64547 64547 145,94 61163 68433,8 25,66
16 | ldoor 22834 23963,8 41,35 20979 21696,5 210,07| 20811 21084 475,48 | 20944 21203 386,94| 20587 21132,3 1095,73| 22001 22001 88,92| 22344 23104,9 48,16
16 | nlpkkt120 359489 375222,8 881,47| 329150 340738,1 4178,32| 324474 328624,9 9130,27| 332833 336909,4 5918,25| 286134 286 609,6 14444,24| 288506 288506 420,81| 303593 311787,2 106,30
16 | thermal2 12874 13168,1 71,67| 11875 12082,5 389,45| 11790 119254 903,75 11800 11891 266,80 11485 11571,2 808,48 | 11826 11826 32,29| 12076 12354,9 7,29
16 | besstk29 3900 3985,2 0,56 3654 3754,1 2,52 3706 3756,7 5,07 3828 3898,4 7,87 3726 3774,6 15,42 3870 3870 1,41 3920 4003,1 0,42
16 | besstk30 7013 7355 1,43 6558 6724,8 8,84 6627 6703,6 21,42 6 884 7207,3 14,39 6844 7069,3 35,28 6817 6817 5,66 7120 7601,5 2,04
16 | besstk31 6480 6592,1 1,14 5812 5950,4 6,89 5880 5979,5 17,10 5875 5961,4 18,30 5832 5922,8 38,89 6171 6171 2,64 6402 6702,5 0,82
16 | besstk32 7003 7293 1,12 6403 6 589,6 6,36 6541 6652,8 13,19 6536 6863,3 18,31 6518 6711,1 53,60 6801 6801 4,02 6875 7181,9 1,41
16 |finan512 1174 1208,6 1,87 1172 1178,7 5,77 1175 1179,6 10,93 1180 1180,9 14,34 1168 1172,1 37,34 1183 1183 2,22 1184 1264,8 0,55
16 | memplus 6538 6 689,7 0,56 6 544 6659,5 2,68 6417 6578 6,05 5703 5736,6 5,52 5719 5774,6 4,94 5756 5756 0,41 5733 5900 0,09
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Table E.2.: Detailed results of the various hypergraph partitioners.

LPFast LPEco LPBest hMetis-k hMetis-RB PaToH-Q PaToH-D
k |Hypergraph |best cut avg cut avg t[s]|best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s]|best cut avg cut avg t[s]
16 | vibrobox 6454 6 588,1 1,20 6271 6 300,3 7,74 6230 6281,2 16,42 7293 7 381,9 22,74 6018 6174,8 16,89 6284 6284 1,06 6477 6 557,5 0,25
32 [ibmO01 1800 1838,7 0,35 1702 1719 4,22 1672 1699,3 11,92 1733 1752,4 9,02 1715 1732,1 6,95 1803 1803 0,54 1814 1893,6 0,09
32 |ibm02 4675 4759,9 0,63 4471 4501,6 7,01 4 366 4419,4 33,23 4650 4760,9 22,34 4462 4498,7 15,51 4469 4469 1,04 4582 4664 0,16
32 |ibm03 4256 4370,4 0,57 4084 4122,8 4,98 4097 4115,2 13,51 4194 4213,3 15,78 4080 4134,8 12,15 4254 4254 0,97 4 369 4460,3 0,15
32 |ibm04 5358 5497,7 0,69 5097 5140,3 6,52 5006 5072 18,10 5072 5095,2 17,78 5128 5165,2 14,99 5342 5342 1,23 5456 5572 0,18
32 |ibm05 6529 6603,5 0,79 6130 6211,4 7,12 5992 6181,1 19,11 6703 6814,7 27,63 6255 6347,3 19,11 6637 6637 1,15 6265 6443 0,20
32 |ibm06 4479 4530,9 0,87 4235 4286,8 8,14 4203 4250 22,55 4433 4504,3 21,68 4341 4394,3 17,35 4544 4544 1,42 4561 4692 0,23
32 |ibmO07 6 549 6723 1,08 6227 6263,5 11,89 6117 6210,7 32,94 6359 6409,8 25,78 6378 6416,2 25,56 6488 6488 1,70 6754 6871,7 0,31
32 |ibm08 6371 6 569,1 1,35 6113 6154,4 13,85 6040 6115,4 38,34 6307 6355,7 30,41 6329 6428 32,33 6684 6684 2,16 6510 6705,6 0,37
32|ibmo09 5894  6048,7 1,31 5504  5564,4 11,74 5506  5543,2 31,97 5447  5496,7 22,85 5503 5564 26,98 5803 5803 2,06 6124  6189,1 0,36
32|ibm10 9560  9887,5 1,87 8964 9163 13,17 8628  8795,2 55,53 8531 8634,5 35,36 8638 8799,5 44,20 8988 8988 2,98 9197  9479,4 0,53
32|ibm11l 8249 8493 1,65 7617 7753 11,51 7465  7587,6 46,33 7536 7595,2 28,34 7600  7634,9 35,87 7841 7841 2,59 8179  8363,6 0,46
32 |ibm12 11929 12460 2,03 11122 11376,3 13,95 10820 11010,7 58,42 10820 10939,3 37,38 11049 11155,1 51,46 11676 11676 3,14 11956 12331,6 0,58
32 |ibml13 8313 8701,9 2,26 7874 8089,2 15,71 7815 8060,4 40,46 7696 7848 38,06 7743 7903,8 48,26 8578 8578 3,26 8406 8820,5 0,61
32 |ibm14 14583 14971,6 4,03 13180 13318,6 31,91 13086 13234,5 84,40 12735 12878,2 56,96 12759 12890,7 89,16 13666 13666 5,55 13805 14253,2 1,07
32 |ibm15 15162 15665,3 5,23 13969 14212,3 35,46 13675 14042,8 93,50 13477 13729,1 69,06 13441 13604,1 110,93 14927 14927 6,38 15069 15671,5 1,28
32 |ibml6 16971 17728,1 5,75 15711 16177,6 41,84 15533 15997,6 110,00 15493 15638,1 73,34 15562 15777,9 128,19 16464 16464 7,37 17030 17371,5 1,52
32 |ibml7 22593 23057,4 6,64 20263 20658,9 46,20 19918 20311,5 122,12 19776 19936,2 94,44 20105 20303,1 166,76 20886 20886 8,62 21811 23072,8 1,75
32 |ibml18 14223 14818,3 6,21 13385 13711,5 38,84 13367 13449,6 124,72 13453 13651,3 88,16 13479 13853,2 151,33 14060 14060 7,48 14567 14946,9 1,64
32 |avqlarge 912 938,3 1,00 841 850,5 4,98 831 847 12,25 924 937.6 5,82 846 867,5 4,94 966 966  0,79| 1016 1033.4 0,09
32 | avgsmall 932 960,6 0,95 847 855,1 4,68 840 852,9 13,81 939 951.,5 5,48 849 869,3 4,49 913 913 0,74 979  1041,9 0,08
32 | golem3 4639 4682,8 1,84 4482 4534,2 11,77 4477 4 506,2 28,74 4542 4 581,6 14,06 4455 4494,5 23,66 4600 4600 2,08 4697 4742,5 0,48
32 |industry?2 1365 1423,5 0,31 1298 1324,4 3,30 1282 1306,2 9,33 1401 1442,1 7,73 1276 1314,2 5,60 1355 1355 0,40 1403 1436,7 0,10
32 |industry3 3213 3389,8 0,37 3028 3055,8 5,20 3005 3049,7 14,67 3075 3123,9 10,62 3052 3076,7 8,23 3133 3133 0,62 3183 3323,1 0,13
32| G3_circuit 26812 27891,4 107,90 25695 26528,1 573,57 24957 25407,3 1266,65 25584 26043,4 347,24 23917 24199 957,99 25967 25967 37,99 26286 27726,2 7,96
32| af_shelll0 57665 58527,5 89,36 54405 54844 454,47 53230 53698,5 949,77 52340 53208 560,08 51995 52919 1512,51 53340 53340 98,12 54020 55063,5 49,17
32 | af_shell9 29810 30166 13,15 27580 27859 69,47| 27100 27 500 158,59| 26850 27113,5 164,40 26800 26957,5 452,62 27250 27250 32,65 27800 282255 11,28
32 |audikw_1 198723 201496,2 149,44 190776 193411,5 1932,98 | 187203 189367,2 23068,90| 190656 192657,6 819,98| 200793 202715,1 3517,65| 196476 196476 442,18| 200628 203876,4 167,05
32| ecologyl 18394 18671,6 45,38 17650 18050 249,11 17607 17898,9 550,53 | 17365 17500,8 185,62 15605 16779,4 460,38 | 17960 17960 17,36| 17958 18433,1 3,79
32 | ecology?2 18446 18706,1 45,59 18039 18259,9 248,89 17574 17880 550,89 17099 17404,1 183,80 15831 16546,1 473,67 18366 18 366 17,10 18017 18382,6 3,81
32 | kkt_power 167253 179554,3 211,10| 123626 131495,5 1087,20 95772 99721,1 2533,78| 106753 111711,5 619,80 86610 87692,9 1545,61| 103367 103367 159,05| 107817 111476,4 29,37
32 |ldoor 37800 39208,4 41,75 35819 36388,1 211,70 35511 35973 478,16 34797 35707,7 393,46 35595 35980,7 1276,01 36862 36862 111,35 37198 38202,5 59,42
32 | nlpkkt120 505421 515469 896,67 | 466449 471456,7 4244,98| 450516 458640,2 9248,88| 458401 465345,2 5918,25| 396606 397339,2 16197,80| 403292 403292 524,99| 421811 433883,7 127,39
32 | thermal2 20961 21278,6 71,93 19697 19820 391,16 19465 19586,1 909,24 19436 19537,5 273,79 19116 19195,3 918,85 19559 19559 38,47 20014 20253 8,70
32 | besstk29 5340 5498,5 0,65 5262 5408,8 3,38 5313 5404,9 6,17 5427 5520,6 14,21 5296 5393,8 19,68 5525 5525 1,69 5668 5808,1 0,50
32 | besstk30 11066 11433,3 1,66 10 249 10387 13,68 10 149 10 300 37,13 11020 11370,8 27,42 10957 11161,9 42,62 10942 10942 6,81 11001 11415,9 2,43
32 | besstk31 9678 10018,7 1,39 9202 9342,9 12,99 9096 9216,3 31,23 9370 9701,3 29,68 9081 9299,1 48,96 9382 9382 3,87 9681 10070,8 1,00
32 | besstk32 10676 10918,2 1,30 10032 10232,3 10,11 10082 10219,7 21,10 10562 10848,5 27,56 10207 10504,7 67,01 10551 10551 4,71 10703 11113 1,72
32 |finan512 2352 2402,1 1,99 2348 2351,2 13,72 2347 2352,1 34,87 2357 2360,7 29,79 2336 2342,4 50,54 2366 2366 2,95 2366 2366,8 0,72
32 | memplus 6908 7098 0,55 7022 7158,9 4,32 6977 7117,5 10,88 6389 6419,5 12,38 6273 6290,2 5,87 6359 6359 0,45 6400 6475,5 0,09
32 | vibrobox 7392 7516 1,44 7157 7223,9 8,76 7121 7178,6 19,39 8440 8492,9 38,58 6905 6989,5 20,24 7172 7172 1,26 7242 7342,9 0,28
64 [ibmO1 2351 2387,3 0,38 2240 2259,3 5,18 2224 2235,6 14,84 2359 2375,1 14,77 2289 2295 8,90 2388 2388 0,60 2412 2455,2 0,11
64 | ibm02 5401 5438,1 0,78 5184 5248,6 12,73 5213 5233 37,30 5879 5911,5 35,45 5310 5337,6 17,61 5344 5344 1,13 5364 5449,7 0,19
64 |ibm03 4966 5038,5 0,74 4791 4828,3 10,05 4765 4793,7 28,98 5121 5151,5 26,28 4891 4923 14,83 4973 4973 1,08 5118 5191,7 0,18
64 | ibm04 6418 6491,8 0,92 6133 6169,2 12,90 6087 6126,8 36,99 6445 6507,2 28,23 6329 6 387,2 17,98 6496 6496 1,40 6652 6744 0,22
64 | ibm05 6940 7067,6 0,85 6525 6617,3 13,84 6 540 6 568,7 39,63 7646 7670,7 42,89 6 887 7048,5 21,89 6895 6895 1,18 6914 7018,9 0,22
64 | ibm06 5410 5458,9 0,92 5186 5221,6 14,95 5147 5186,4 43,50 5720 5759,4 37,38 5317 5359,6 21,27 5487 5487 1,38 5648 5706 0,26
64 |ibmO07 8062 8195,7 1,32 7636 7739,3 13,63 7605 7691,5 37,56 8056 8136,3 41,33 7940 7997,9 30,78 8196 8196 2,03 8326 8396,9 0,36
64 |ibm08 8094 8218,3 1,61 7837 7902,5 15,71 7875 7906,9 43,22 8301 8333,3 48,88 8259 8330,4 36,68 8320 8320 2,39 8480 8566,7 0,43
64 | ibm09 7830 8042,7 1,42 7414 7504,6 13,86 7380 7499,4 38,11 7483 7520,9 39,77 7445 7527,5 32,99 7864 7864 2,27 8158 8327 0,43
64 [ibm10 12691 12827,9 2,33| 11795 11933,9 23,49| 11710 117845 65,36 11837 11918,8 56,46 | 11781 11883,5 51,55 12303 12303 3,31 12559 12709,9 0,62
64 |ibm11 10592 10723,4 2,03 9934 10007,8 19,77 9813 9914,6 54,50 9907 10004,1 46,51 9809 10013,9 43,55 10284 10284 3,16 10778 10938,5 0,54
64 |ibm12 15561 15928,3 2,49 14795 14995,4 25,09 14718 14821,2 68,41 14525 14635,8 60,06 14551 14755,3 59,03 15335 15335 3,74 15979 16210 0,67
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Table E.2.: Detailed results of the various hypergraph partitioners.

LPFast LPEco LPBest hMetis-k hMetis-RB PaToH-Q PaToH-D
k |Hypergraph |best cut avg cut avg t[s]|best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s]|best cut avg cut avg t[s]
64 [ibm13 12881 13071,1 2,72 12183 123279 27,14 12098 12215,9 75,15 12159 12243,5 61,83 12161 12254,3 57,84 12892 12892 3,94 13201 13380,5 0,72
64 |ibm14 19165 19495,2 4,60 17934 18164,5 35,45 17816 18024 93,49 17823 17917,1 87,22 17781 17857,7 104,04 18573 18573 6,64 19111 19332,5 1,23
64 |ibm15 20854 21057,9 5,49 19125 19505,4 38,88 19002 19268,2 100,80 18949 19101,7 102,89 18768 18994,7 128,36 19793 19793 7,75 20327 21040 1,51
64 |ibm16 22999 23504,3 6,38 21377 21619,2 46,11 21011 21356,1 119,53 20969 21124,2 106,24 20939 21193,5 147,66 21937 21937 8,59 22734 23133 1,75
64 |ibm17 28768 29291,9 7,26| 26887 27165,7 50,66 | 26817 26970,6 131,99| 26051 26237,3 134,78| 26505 26792,6 185,28 | 29612 29612 10,14| 29665 30102,9 1,99
64 |ibm18 19976 20263,6 6,91 18706 18925,6 52,32| 18489 18854,3 136,94| 18656 18822,1 126,46| 18790 19058,1 171,99| 19571 19571 8,91| 20018 20491,1 1,87
64 | avqlarge 1214 1232,9 1,49 1142 1156,6 8,96 1132 1144,1 24,02 1330 1344,2 11,21 1170 1176 6,77 1267 1267 0,89 1314 1342 0,11
64 | avgsmall 1215 12279 1,45 1156 1167,5 8,40 1140 1154 24,15 1329 1340,3 10,90 1178 1190,7 6,24 1243 1243 0,85 1304 1341,4 0,11
64 | golem3 5950 5989 1,91 5751 5768,6 12,66 5715 5748,9 41,20 5777 5835,6 21,92 5673 5714,5 29,22 5838 5838 2,47 5986 6029,3 0,58
64 | industry?2 1733 1766 0,36 1672 1700,4 3,97 1660 1680,3 11,42 1822 1839,1 12,21 1701 1722 7,08 1778 1778 0,51 1788 1823,6 0,11
64 | industry3 4215 4302,7 0,52 3986 4010,4 6,47 3971 3988,3 18,50 4204 4223,1 18,18 4053 4075,6 10,51 4178 4178 0,72 4237 4329,9 0,15
64 | G3_circuit 41885 42587,7 109,11 39761 40684,2 579,18 39105 39951,9 1282,35 40243 40573 372,30 37935 38199,1 1050,94 41219 41219 38,08 40717 42387,1 9,24
64 | af_shelll0 84240 85429,5 90,12 79105 79689,5 461,83 78295 78 560 963,35 78030 78754,5 571,85 76 905 77646 1751,95 78110 78110 118,82 81065 81562 58,40
64 | af_shell9 45415 45762 13,65 42200 42832,5 73,60 41765 42270,5 165,74 41850 42005,5 176,20 41 560 41805 531,32 42580 42580 36,31 43355 43647,5 13,42
64 |audikw_1 279999 283434 180,40| 269121 270977,1 2938,52| 265482 265963,5 45301,95| 270621 273032,7 940,62| 282318 284542,8 3974,58 | 272472 272472 482,41 | 283095 287144,1 192,87
64 | ecologyl 27056 274074 45,91 25967 26182,1 255,00 25789 25917,1 564,65 25315 25594,8 197,76 23216 23875,5 529,98 25247 25247 20,00 26517 27073,4 4,47
64 | ecology?2 27139 27480,6 45,91 26116 26294,5 251,75 25746 25838,3 564,53 25277 25609,2 199,53 23349 23902,6 537,28 25951 25951 20,23 26460 26950,5 4,48
64 | kkt_power 239253 257409,2 217,19| 162022 167248,8 1106,68| 160131 165885,8 2651,58| 163635 172896,8 708,97| 133652 136666,4 1727,55| 153857 153857 182,53| 164257 170326,1 32,32
64 | ldoor 58807 60022,6 42,44 55937 56369,6 215,83 54684 55269,2 497,57 55209 55837,6 411,61 55461 56001,4 1484,94 57050 57050 129,05 57855 58896,6 70,43
64 | nlpkkt120 649470 654203,1 912,59| 594773 600479,5 4302,61| 577788 583528,5 9365,74| 594092 599176,4 6210,84| 503760 504 327,9 18099,16| 519271 519271 579,15| 543153 562896,9 147,18
64 | thermal2 31071 31388,3 72,38| 29332 29636,1 394,39 29048 29117,2 939,54 | 29036 29289,5 287,47| 28494 28591,2 1028,03| 29339 29339 43,19| 30298 30678,7 10,10
64 | besstk29 7459 75974 0,69 7169  7340,7 4,64 7355  7390,2 8,97 7254  7314,3 29,18 7115 7242 23,36 7731 7731 1,83 7758  7890,2 0,56
64 | besstk30 15094 15335,6 2,14| 14488 14690,7 19,47| 14305 144525 55,46 | 15927 16072,5 49,40 15219 15488 49,36 | 14859 14859 7,29| 15461 15832,5 2,70
64 | besstk31 13882 144825 1,46 13260 13473,2 15,91 13234 13326,3 41,97 13889 14021,9 55,40 13101 13325,2 59,77 13846 13846 4,57 14088 14578,7 1,17
64 | besstk32 15800 16123,1 1,36 14511 14780,3 12,30 14558 14753,2 29,30 15521 15812,9 44,46 14940 15135,5 77,41 15273 15273 6,02 15809 16073,9 2,00
64 | finan512 9709 10091,8 2,53 9169 9207,8 24,66 9116 9183,7 69,62 9063 9077 61,78 8915 8946,5 67,39 9142 9142 4,04 9605 10188,2 0,92
64 | memplus 7411 7507,6 0,60 7493 7591,2 4,56 7464 7617,8 11,62 6962 7020,2 38,08 6701 6782,5 7,08 6914 6914 0,50 6 880 6940 0,11
64 | vibrobox 8179 8249,5 1,64 7959 8012,4 9,33 7923 7990,7 22,38 9635 9683,8 59,93 7831 7878,7 23,64 7971 7971 1,25 8023 8135,4 0,31
128 |ibmO1 2996  3021,3 0,59 2870 2892,4 6,43 2853  2879,1 18,72 3100 3113,6 20,21 2955 2972,3 11,42 2973 2973 0,74 3087 3113,9 0,13
128 |ibmO02 6030 6051,9 0,85 5881 5910,9 14,28 5854 5894,7 41,34 6771 6788,2 42,91 6065 6111,4 20,17 6027 6027 1,24 6122 6173,4 0,21
128 |ibmO03 5877 5939,2 0,81 5668 5687,5 12,12 5632 5672 34,91 6204 6291,5 36,66 5801 5846,3 17,85 5951 5951 1,24 5990 6074,4 0,21
128 |ibm04 7576 7653,6 1,00 7248 7283,9 15,30 7201 7227,6 44,11 7916 7971 40,62 7564 7639,6 22,02 7683 7683 1,57 7811 7946,3 0,25
128 |ibmO05 7182 7256,2 1,00 7019 7098,2 15,87 7017 7043,7 45,72 8691 8747,6 57,79 7479 7580,8 24,36 7300 7300 1,32 7418 7525,3 0,25
128 |ibmO06 6445 6497,6 1,25 6263 6287,1 17,96 6203 6241,9 53,12 7206 7232,4 53,47 6456 6502,5 24,91 6613 6613 1,65 6702 6768,3 0,30
128 |ibmO07 9564 9665,8 1,71 9236 9299,6 24,90 9157 9256,6 72,43 10126 10201,9 60,66 9570 9636,4 35,39 9826 9826 2,42 9914 10024,1 0,41
128 [ ibm08 9764 9829,1 1,99 9542 9597,8 27,53 9431 9504,5 79,25 10250 10363 68,22 9971 10039,3 41,49 10035 10035 2,64 10092 10232,6 0,48
128 | ibm09 10067 10178,8 1,91 9562 9595,1 27,25 9492 9553,9 80,06 9955 10007,3 59,20 9843 9923,8 39,40 10006 10006 2,79 10348 10513,1 0,49
128 |ibm10 15719 15937,1 2,48 14900 14998,2 26,98 14430 14580,3 120,25 15234 15294,6 85,60 15000 15061,3 59,78 15254 15254 3,97 15744 15867,1 0,71
128 |ibm11 13818 14025,5 2,21 12938 12998,2 34,68 12850 12948,6 100,10 13372 13441,3 71,95 13131 13230,4 50,79 13478 13478 3,65 13884 14197,8 0,63
128 |ibm12 19486 19667,2 2,69 18685 189254 28,20 18435 18 524 131,18 19270 19358,4 93,87 18676 18832,8 70,08 19162 19162 4,34 19639 19888,5 0,76
128 |ibm13 16403 16661,7 2,91 15622 15753,6 31,37 15394 15506,4 131,64 16248 16326,3 90,36 15707 15822 66,48 16486 16486 4,78 16835 17051,3 0,82
128 |ibm14 23969 24307,3 5,43 22559 22851,9 56,06 22431 22682,2 157,41 23243 23412,9 125,75 22990 23141 117,75 23647 23647 7,61 24331 24605,2 1,39
128 |ibm15 27330 27727,6 6,51 25512 25618,4 63,46 25270 25480,3 177,05 25574 25715 147,45 25192 25305,9 149,80 26720 26720 8,96 27554 27858,8 1,72
128 |ibm16 28867 29088,1 7,47 26923 27025,7 71,57 26728 26905,3 198,67 27602 27784 152,48 27223 27444 167,45 28115 28115 9,72 28983 29347,1 1,97
128 |ibm17 37590 38030,3 8,46| 35226 354825 83,99| 35035 35218,7 235,25| 35531 35617,8 192,30 35274 35571,8 210,12| 37172 37172 11,39| 38086 38546,3 2,22
128 |ibm18 26249 26419,1 7,45 24146 24531,6 80,03 23908 24362,3 220,78 25285 25391,5 176,25 24773 24911,4 191,64 25584 25584 10,17 25887 26294,4 2,10
128 |avqlarge 1573 1591,6 2,20 1556 1585,9 14,72 1563 1573,1 34,68 1769 1776,9 19,63 1640 1657,3 9,57 1733 1733 1,01 1767  1793,3 0,14
128 |avgsmall 1544 1581,8 2,16 1549 1561,6 13,63 1534 1543,8 35,11 1722 1745,2 18,04 1618 1627,1 8,74 1680 1680 1,08 1687 1724,9 0,13
128 | golem3 7614 7669,7 2,22 7359 7389 18,57 7286 7331,5 51,53 7501 7548,1 34,33 7279 7320,7 35,40 7514 7514 3,11 7775 7837,7 0,71
128 |industry2 2035 2069,4 0,47 1942 1978 4,95 1939 1959,6 14,20 2315 2340,5 16,74 2032 2076 9,08 2057 2057 0,59 2117 2145,3 0,13
128 |industry3 5309 5350,7 0,80 5040 5090,5 8,04 5012 5055,7 23,04 5269 5294,4 24,44 5066 5090,5 13,58 5253 5253 0,94 5339 5406,1 0,18
128 | G3_circuit 68075 68693 111,20 65205 65770,2 597,77 64618 64956,1 1335,13 65227 65704,9 421,42 63095 63867,4 1193,03 66471 66471 52,01 67727 68680,7 10,64
128 | af shell1l0 123 985 124 945 91,28 | 116215 117071,5 469,05| 114685 115262 1000,78| 112770 114015 606,54| 114345 114926,5 1982,89| 115410 115410 138,47| 118340 118801,5 67,56
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Table E.2.: Detailed results of the various hypergraph partitioners.

LPFast LPEco LPBest hMetis-k hMetis-RB PaToH-Q PaToH-D
k |Hypergraph |best cut avg cut avg t[s]|best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s] |best cut avg cut avg t[s]|best cut avg cut avg t[s]
128 | af_shell9 66 365 66978 14,03 62720 63148,5 81,47 61915 62190,5 193,42 61405 61782,5 206,49 62220 62553,5 607,81 62765 62765 42,48 63 985 64 528 15,56
128 |audikw_1 383058 385398 232,69| 368523 370497,3 4617,00| 365031 365223 75958,25| 374292 377195,1 1164,06| 385416 387915 4324,49| 375576 375576 568,18| 388149 389672,4 215,12
128 | ecologyl 39333 39764,2 46,45 37991 38324,1 260,00 37225 374819 581,86 36548 36921,3 224,26 33163 34163,7 594,17 37054 37054 23,18 38747 39317,4 5,19
128 | ecology?2 39557 39851,5 46,60 37964 38236,3 259,96| 37283 375354 581,82| 36351 36938,5 225,02| 33510 34196,3 593,44| 37974 37974 21,99| 38037 38970,9 5,21
128 | kkt_power 395744 406125,4 222,61| 215979 219527,6 1148,15| 215514 219559,2 2730,85| 235792 241952,6 847,12| 201856 204049,2 1884,65| 223054 223054 211,62| 240786 245974,2 34,89
128 | 1door 89194 90356 43,12 83755 84236,6 225,67| 82418 82989,9 529,62 | 84168 84784,7 441,99| 83860 84725,2 1629,32| 86359 86359 158,38| 87087 88189,5 81,19
128 | nlpkkt120 866 898 876305,9 935,67 808394 812933,4 4414,33| 773812 777508,6 9849,49| 795836 801331,9 6702,57| 713933 714740,7 19430,12| 721912 721912 649,47 | 748049 757780,6 166,38
128 | thermal2 46 460 46 650,8 73,19 44086 44282,4 406,71 43 639 43 888 956,65 43546 43780,7 314,43 43097 43219,2 1091,11 44048 44048 52,66 45139 45511,4 11,51
128 | besstk29 10094 10215,4 0,82 9979 10048,7 5,72 9953 10076,8 12,99 9979 10088,8 38,06 10764 10847,6 25,66 9865 9865 2,06 10004 10058,6 0,61
128 | besstk30 20277 20506,7 2,51 19503 19708,4 25,27 19113 19276,6 68,51 21288 21493,1 74,78 20657 20921 53,13 19633 19633 8,11 20146 20339 2,90
128 | besstk31 19045 19205,5 2,12 18418 18565,7 19,16 18167 18367,3 53,12 19180 19311,3 92,71 18150 18260,6 69,10 18828 18828 5,41 19438 19548,3 1,33
128 | besstk32 21582 21701,9 1,91 20345 20582 15,27 20390 20658,8 37,01 21788 21972,9 76,66 20343 20853,1 91,15 21315 21315 7,41 22008 22326,3 2,27
128 | finan512 21415 21736,5 3,59 18230 18374,2 49,80 18168 18 301 143,97 18136 18148,3 110,18 17792 17921,2 86,43 19319 19319 5,13 20962 21736,5 1,10
128 | memplus 7799 7833,3 0,75 7773 7818,3 6,13 7792 7827,6 14,72 7547 7570,1 68,98 7317 7364,1 8,72 7288 7288 0,56 7288 7333,3 0,12
128 | vibrobox 9051 9145,9 2,06 8932 8971,7 11,55 8880 8925,9 28,38 10344 10389,5 79,75 8722 8793,8 27,26 9011 9011 1,59 8957 9054,8 0,33
LPFast LPEco LPBest hMetis-k Hmetis-RB PaToH-Q PaToH

k| best cut avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s] | best cut avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s]

2| 1293.23 1428.75 2.73| 1223.84 1286.66 12.47| 1217.98 1272.09 22.35| 1195.01 1215.84 14.79| 1171.85 1188.72 17.09| 1248.28 1248.28 1.23| 1228.67 1324.22 0.29

4| 2774.10 3039.49 2.85| 2605.61 2736.83 14.60| 2576.76 2706.19 31.27| 2514.55 2577.15 19.02| 2526.13 2576.26 31.93| 2731.73 2731.73 2.20| 2668.52 2904.13 0.50

8| 4810.66 5102.52 3.02| 4464.57 4640.02 16.73| 4428.51 4583.05 42.08| 4341.92 4455.04 24.95| 4325.87 4411.86 45.33| 4641.06 4641.06 3.16| 4657.01 4946.72 0.70

16| 7317.29 7592.07 3.38| 6823.37 6998.15 20.26 | 6766.00 6928.05 53.95| 6766.14 6885.27 34.42| 6653.30 6768.89 58.27| 7032.57 7032.57 3.99| 7160.38 7462.80 0.88

32]10313.29 10603.99 3.77| 9690.10 9844.74  27.50| 9509.01 9659.07  75.57| 9749.54 9894.00 50.37| 9447.11 9594.02 70.93| 9941.56 9941.56 4.96[10128.06 10408.10 1.07

64114112.04 14358.19 4.30|13279.17 13436.25 36.06|13184.85 13313.25 98.04[13706.44 13832.35 76.00|13109.44 13251.74 84.1813667.30 13667.30 5.66|14012.64 14282.06 1.25

128 |18554.30 18752.95 5.10|17474.79 17614.94  47.25|17307.54 17440.95 134.83|18334.40 18469.49 105.10[17500.24 17658.21  98.24|17980.32 17980.32 6.67|18415.08 18653.36 1.43

avg| 6171.60 6481.10 3.51| 5791.09 5957.75 22.47| 5735.03 5887.33 55.32| 5782.92 5879.75 37.13| 5653.77 5740.09 50.57| 5975.10 5975.10 3.50| 6017.61 6299.44 0.78

Table E.3.: The geometric mean over all instances for the different hypergraph partitioners.

thereby aggregated the 10 runs into one using the arithmetic mean.

For each k and each hypergraph we

SLINSHY ddTIVLA{ "H XIANHddY



66

LPFast

LPEco

LPBest

hMetis-k

Hmetis-RB

PaToH-Q

PaToH

k|best cut avg cut avg t[s||best cut avg cut avg t[s]|best cut avg cut avg t[s]|best cut avg cut avg t[s]|best cut avg cut avg t[s]|best cut avg cut avg t[s]|best cut avg cut avg t[s]
2| 880.19 996.57  0.91| 830.74 875.82  4.39| 825.76 863.61 9.27| 805.44 818.27  5.34| 795.00 807.23  6.25| 857.24 857.24  0.49| 842.03 925.21 0.10
4| 1822.06 2010.90  0.96| 1697.61 1787.85  5.21| 1673.39 1761.27 12.82| 1621.32 1669.64  7.25| 1658.05 1694.81 11.63| 1808.58 1808.58  0.88| 1787.82 1971.91 0.16
8| 2967.95 3151.12 1.04| 2721.47 2837.64 6.14| 2714.17 2809.38  17.08] 2633.93 2709.41  10.22| 2689.61 2734.88  16.45| 2919.18 2919.18 1.24| 2941.88 3142.10 0.22
16| 4270.90 4430.79 1.20| 3981.37 4081.31 7.75| 3936.68 4036.35  22.29| 3913.44 3982.33  15.36| 3930.48 3995.17  21.35| 4176.69 4176.69 1.55| 4261.77 4456.03  0.28
32| 5681.28 5850.93 1.38| 5324.89 5402.97  11.23| 5253.74 5339.78  33.10| 5405.15 5474.79  24.34| 5316.36 5390.77  26.27| 5607.52 5607.52 1.92| 5727.04 5898.00  0.34
64| 7295.49 7406.63 1.64| 6907.98 6982.90  16.23| 6866.08 6929.25  45.23| 7220.50 7273.33  39.31| 6982.09 7051.27 31.64| 7276.81 7276.81 2.20| 7451.60 7575.75  0.40
1281 9008.54 9108.99  2.01| 8622.40 8693.29  22.91| 8552.14 8619.49  68.44| 9269.70 9328.75 57.01| 8825.19 8895.39  37.83| 9052.08 9052.08  2.58| 9246.67 9368.79  0.46
avg| 3583.64 3780.89 1.26| 3361.16 3460.94  8.93| 3331.49 3422.53 24.04| 3363.46 3420.31 16.49| 3332.54 3381.40 18.71| 3541.13 3541.13 1.37| 3573.94 3763.46  0.25

Table E.4.: The geometric mean over the VLSI instances for the different hypergraph partitioners. For each k and each

hypergraph we thereby aggregated the 10 runs into one using the arithmetic mean.

LPFast LPEco LPBest hMetis-k Hmetis-RB PaToH-Q PaToH
k| best cut  avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s]| best cut avg cut avg t[s]
2| 2176.48 2326.04 12.17| 2067.14 2165.05 51.22| 2060.61 2148.23 73.52| 2037.90 2077.55 58.66| 1980.83 2006.74 66.61| 2075.51 2075.51 4.23| 2048.63 2151.00 1.33
4| 4899.06 5315.33 12.40| 4652.17 4868.89 58.87| 4620.80 4838.67 104.47| 4553.23 4636.54 70.07| 4465.32 4539.88 125.30| 4772.54 4772.54 7.61| 4587.87 4903.26 2.35
8| 9246.60 9794.51 12.75| 8722.29 9025.19 64.98| 8588.53 8886.18 142.49| 8538.36 8730.82 83.43| 8228.11 8425.68 178.63| 8690.43 8690.43 11.17| 8669.51 9140.67  3.30
16|15160.37 15732.06  13.73]14142.98 14515.12  74.30{14078.19 14389.33 178.36/14192.07 14442.03 102.56|13561.49 13813.91 226.64|14231.84 14231.84 14.43|14448.24 14993.32 4.19
32|23106.99 23706.00 14.69(21782.95 22168.83  92.42{21219.90 21537.67 230.92|21655.85 22033.55 134.80(20563.98 20927.14 272.00|21572.95 21572.95 17.92|21903.28 22443.83 5.02
64|34455.22 35159.46  15.75|32148.62 32571.72 106.22|31875.23 32208.85 279.18|32623.19 33005.53 185.46|30743.05 31116.21 316.34|32065.58 32065.58  20.34|32930.00 33677.79  5.82
128149315.59 49814.02  18.00|45443.53 45795.63 125.80(44921.31 45257.49 337.43|46132.73 46535.03 240.44|44187.60 44650.63 357.27|45503.00 45503.00 24.10|46768.95 47357.19 6.58
avg|12876.32 13437.23  14.09(12089.86 12422.99  78.26(11958.86 12264.01 170.83|12038.60 12237.62 111.29|11559.07 11745.03 194.12|12126.57 12126.57 12.42|12177.64 12646.65 3.63

Table E.5.: The geometric mean over the SPM instances for the different hypergraph partitioners. For each k and each
hypergraph we thereby aggregated the 10 runs into one using the arithmetic mean.
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