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Hydration free energy estimation of small molecules from all-atom simulations was widely investigated

in recent years, as it provides an essential test of molecular force fields and our understanding of

solvation effects. While explicit solvent representations result in highly accurate models, they also

require extensive sampling due to the high number of solvent degrees of freedom. Implicit solvent

models, such as those based on the generalized Born model for electrostatic solvation effects and a

solvent accessible surface area term for nonpolar contributions (GBSA), significantly reduce the number

of degrees of freedom and the computational cost to estimate hydration free energies. However, a

recent survey revealed a gap in the accuracy between explicit TIP3P solvent estimates and those

computed with many common GBSA models. Here we address this shortcoming by providing a

thorough comparison of the performance of three implicit solvent models with different nonpolar

contributions and a generalized Born term to estimate experimental hydration free energies. Starting

with a minimal set of only ten atom types, we demonstrate that a nonpolar term with atom type

dependent surface tension coefficients in combination with an accurate generalized Born term and fully

optimized parameters performs best in estimating hydration free energies, even yielding comparable

results to the explicit TIP3P water model. Analysis of our results provides evidence that the asymmetric

behavior of water around oppositely charged atoms is one of the main sources of error for two of the

three implicit solvent models. Explicitly accounting for this effect in the parameterization reduces the

corresponding errors, suggesting this as a general strategy for improving implicit solvent models. The

findings presented here will help to improve the existing generalized Born based implicit solvent models

implemented in state-of-the-art molecular simulation packages.

The estimation of hydration free energies (HFEs) from all-atom
molecular simulations has been widely investigated in recent
years.1–7 Improvements in methods and computational resources
allow precise computation of these values in explicit solvent models
with statistical errors of the same order of magnitude as experi-
mental errors. This accuracy allows validation and identification
of systematic force field errors for molecular simulations via the

comparison of computed HFEs to experimental values.8,9 The
accuracy of these force fields is of interest to pharmaceutical
research, where prediction of bioavailability and binding affinity
of small organic molecules to target proteins has become an
important goal in the process of drug discovery.10–12

Based on sampling of the phase space in vacuum and solution,
the free energy difference of hydration may be computed using
methods such as free energy perturbation,13 thermodynamic
integration,14 the Bennett and multistate Bennett acceptance
ratio,15,16 or the weighted histogram analysis.17 Unfortunately,
the high number of degrees of freedom of an explicit solvent
representation requires extensive sampling, and depending on
the phase space overlap, sampling of additional intermediate
states, to yield well-converged results.18 In addition to methods
based on MD-simulations, a wide variety of QM-based
methods19,20 or classical models21 have been used to model
solvation effects.

Implicit solvent models integrate out the solvent degrees of
freedom and therefore significantly reduce the amount of
sampling required for the computation of HFEs. One common
approach is to treat the solvent as a continuous dielectric
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nonpolar contribution are commonly referred to as GBSA models
in the literature.

Following the suggestion of Knight et al.7 we also investigate
how the model of Eisenberg and McLachlan39 or Ooi et al.40 is
able to improve the accuracy of computed HFEs.

DGNP2 ¼
XNatoms

i 1

giAi (5)

Within this model, the global surface tension g is replaced with
one surface tension gi for each atom type.

The last extension of the nonpolar model investigated here
uses not only a SASA based term as in eqn (4). In addition, the
solvent accessible volumes (SAV) Vi of the atoms buried inside
the solvent accessible surface are subject to a pressure p to
model repulsive solute–solvent interactions.42 The Born radii Ri

together with an offset B describe attractive dispersion inter-
actions between solvent and solute via the factor ai as proposed
in the literature.5,41–46

DGNP3 ¼ g
XNatoms

i 1

Ai þ p
XNatoms

i 1

Vi

XNatoms

i 1

ai
Ri þ Bð Þ3

(6)

There are two new global parameters p and B, and one
additional parameter ai for each atom type. Table 1 summarizes
the free parameters, the models to which they belong, and the
number of these free parameters.

The Born radii in eqn (2), (3) and (6) are computed with the
PowerBorn method by Brieg et al., which results in errors of
DGGB of about one percent in comparison to Poisson–Boltzmann
calculations.33 Since DGelec is of the order 10 kcal mol�1 for the
molecules discussed in this work, the errors by approximating
DGelec by DGGB are negligible. This approximation is also sup-
ported by the findings of Rizzo et al. that computing HFEs
with Poisson–Boltzmann methods or GB models leads to highly
correlated results.1 SASA and SAV are computed with the analytical
PowerSasa method by Klenin et al.64 The evaluation of the energy
terms in eqn (2) and (4)–(6) for a given structure or trajectory is then
straightforward. We have coded a small C++ program that reads a
parameter file, the molecule files of the data set in PQR format and
the corresponding AMBER trajectories. It assigns the atom types
and parameters to the corresponding molecules and can compute
the solvation free energies for each investigated model according to

eqn (1), (2) and (4)–(6). The PQR input files of the data set were
generated from the mol2 files contained in the database using the
AMBER Tools package of AMBER 10.

Database and model parameterization

We use the database of small organic molecules published by
Mobley et al.4 using AM1-BCC charges65,66 and GAFF67,68 para-
meters. The duplicates pointed out by Knight et al.7 in the 2009
version of the dataset were removed, resulting in a database
size of 499 molecules, which was used for parameterization of
the model. The 144 molecules added subsequently to the
dataset69 were used to validate the transferability of the models
(for 22 molecules the GAFF forcefield parameterization failed,
so that only 122 molecules were considered). The molecular
dynamics (MD) trajectories used in this work were also pro-
vided by David Mobley (Mobley Lab Resources: http://moble
ylab.org/resources.html)3

The computation of HFEs requires the computation of
DGSFE in eqn (1) for all snapshots in the vacuum and implicit
solvent trajectories and for each molecule. To save computation
time, we only fit single conformation solvation free energy (SFE)
to the corresponding experimental values. According to Mobley
et al.,3 the lowest energy snapshot from the vacuum trajectories
should yield single conformation SFEs in close agreement with
the HFEs for most molecules in the database. To extract the
lowest energy snapshot from the vacuum trajectory for each
molecule, we recomputed their energies with AMBER 10. How-
ever, we caution that while this approach may be justified for
the particular set of molecules discussed here, the equivalence
of SFE and HFE is far from trivial as discussed in ref. 20 and 70.

The model parameterization is carried out in two stages. At
first, we use a particle swarm algorithm implemented in the
ArFlock library71 for global optimization to reduce the root
mean square error between the single conformation SFEs and
the experimental HFEs (RMSESFE). This optimization is run
using different sets of swarm parameters to ensure proper
sampling of the free parameter space. In the second step, the
results are subject to local minimization using Powell’s method
as implemented in the SciPy package72 due to the faster
convergence to local minima of this method.

Table 2 gives an overview of valid ranges for the free
parameters. Running the particle swarm optimization requires
all free model parameters to be of the same order of magnitude
for good convergence. The parameters ri, pr, and B are of the
order of O(1). However, the model parameters g, gi, ai and p are
not of order O(1) according to.

Table 2, wherefore they are chosen via an exponential
mapping

x = 10x̃ (7)

where x is the absolute value of the model parameter and x̃ is of
the order O(1).

As a starting point for the parameterization of the models,
we have chosen atom types according to the identity of the
chemical elements, which we consider the minimal set of
reasonable parameters. The molecules in the database consist

Table 1 This table gives an overview over the free model parameters
contained in the three different investigated implicit solvent models
GBNP1, GBNP2, and GBNP3. An ‘‘X’’ in column three to five shows that
this parameter is present in the corresponding model. The number of free
parameters is also given

Free model
parameter

Relevant
equations GBNP1 GBNP2 GBNP3

Number of
parameters

ri (2), (3) and (6) X X X 10
pr (2), (3) and (6) X X X 1
g (4) and (6) X X 1
gi (5) X 10
p (6) X 1
ai (6) X 10
B (6) X 1



of ten different elements, thus the number of atom types is in 
our implicit solvent models is ten, unless specified otherwise.

Computation of hydration free energies

The hydration free energy (HFE), also referred to as the solvation free 
energy of water, is the free energy difference between the vacuum 
state and the solvated state. It does not require the solute to be in a 
fixed conformation. In contrast to the SFE, it also accounts for 
conformational and entropic changes of the solute upon solvation. 
We use the multistate Bennett acceptance ratio as implemented 
in pyMBAR16 to compute HFEs. As phase space samples, we use 
the vacuum and implicit solvent trajectories provided by David 
Mobley.3,69 We recomputed bonded and non-bonded energies 
for all trajectories using AMBER 10. SFEs for all trajectory snap-
shots were computed as described in the sections ‘‘Implicit 
Solvent Models’’ and ‘‘Database and Model Parameterization’’.

Different implicit solvent models may result in different 
trajectories and therefore different HFEs. The generation of 
new trajectories would require a molecular simulation package 
that contains all three investigated models. While the GBNP1 
model is common in simulation packages such as AMBER or 
CHARMM,73 these packages do not provide the GBNP2 and 
GBNP3 models to our knowledge. To generate new trajectories, 
it would be necessary to implement, test, and validate the 
GBNP2 and GBNP3 models into a molecular simulation pack-
age, which is beyond the scope of this work. Since the change of 
the HFEs by using a different implicit solvent model to generate 
the trajectory was shown to be very small for the majority of 
molecules in the considered database,7 we will neglect that change 
for this work. To validate if that is indeed the case, we can compare 
the single conformation SFEs to the HFEs computed from the 
whole trajectories. This comparison should show good agreement 
if the neglected change is small. The reason is that the single 
conformations were taken from the vacuum trajectories, which do 
not depend on the implicit solvent model.

Results and discussion

In the following section, we first report the results of the 
parameterization procedure, followed by an in-depth analysis 
of the performance of the three different models, which has led 
to a refinement of the atom types used in the parameterization 
of the nonpolar terms. Finally, we tested the performance of the 
model using an independent set of molecules to assess the 
transferability of the results.

We have performed the parameterization procedure as 
described in the methods section. The ESI† contains the best

parameter set for each model. In addition, it contains average
values and standard deviations of all free model parameters for
the ten best parameter sets of each investigated model that
were generated by the parameterization procedure.

With the best parameter set of each model, we have computed
hydration free energies (HFEs) for all molecules in the database,
which is also explained in the methods section. Our chosen
approach relies on the fact that reusing existing implicit solvent
trajectories introduces no large errors in our computed HFEs. This
is the case if the single conformation solvation free energies (SFEs)
agree well with our computed HFEs. We tested this assertion and
find good agreement for the majority of the database with only few
exceptions. The detailed analysis can be found in the ESI.†

To assess the performance of the investigated implicit GB
based solvent models in estimating experimentally measured
HFEs, we computed the root mean square errors RMSEHFE and
squared Pearson correlation coefficients R2 of the computed
HFEs in relation to experimental data. The GBNP1 model, whose
nonpolar term is likely the most-widely used in GB based implicit
solvent models, yielded a RMSEHFE = 1.30 kcal mol�1 and R2 =
0.826. For GBNP2 the results are RMSEHFE = 0.99 kcal mol�1 and
R2 = 0.900, and for GBNP3 RMSEHFE = 1.19 kcal mol�1 and
R2 = 0.853. The corresponding data is shown in Fig. 1. As indicated
by the much lower RMSEHFE and the higher correlation coefficient,
the GBNP2 model outperforms its two competitors significantly,
suggesting that the NP2 nonpolar model of eqn (5) in combination
with a GB model is best suited for accurate estimation of small
molecule HFEs.

Although the comparison between SFEs and HFEs in the ESI†
resulted in root mean square errors of up to 0.42 kcal mol�1,
these differences are not reflected in the comparison of SFEs or
HFEs to experimental data. The corresponding root mean square
errors RMSESFE and RMSEHFE are nearly identical (see Fig. 1).
Mobley et al. found that differences between SFEs and HFEs
for implicit solvent models with a moderate performance of
RMSEHFE E 2 kcal mol�1 were not reflected in the comparison of
SFEs or HFEs to experimental data.3 Our results demonstrate
that this statement also holds for implicit solvent models with
RMSEHFE as low as 1.0 kcal mol�1.

Knight et al.7 found in their survey of computing HFEs using
common GB based implicit solvent models on the same mole-
cule database, that the GBSW model74 has the lowest RMSEHFE =
1.52 kcal mol�1, and the GMBV23 model had the best correlation
coefficient with R2 = 0.809. All these results were achieved with
the nonpolar model NP1 of eqn (4) and an optimized value of g.
Comparison to our results shows that all three of our investi-
gated models using optimized parameters outperform the
models considered in that survey. Even our worst performing

Table 2 Free parameters of the implicit solvent models investigated in this work, their units, and valid parameter ranges for the model parameterization
procedure. Atom type specific parameters are marked with an index i

Parameter ri [Å] pr [Å] g [kcal mol 1] |gi| [kcal (mol Å2) 1] p [kcal (mol Å3) 1] ai [(kcal Å3) mol 1] B [Å]

Description Atomic
radius

Probe
radius

Global SASA
tension

Atomic SASA
tension

Global SAV
pressure

Atomic dispersion
coefficient

Born radii
offset

Minimum 0.5 0.5 10.0 6 10.0 6 10.0 6 10.0 6 0.0
Maximum 5.0 3.0 10.01 10.01 10.01 10.06 5.0



GBNP1 model’s RMSEHFE is at least 0.2 kcal mol�1 lower than
that of GBSW or any other implicit solvent model considered in
that survey. Therefore, we conclude that optimization of atomic
radii and GB parameters together with nonpolar parameters
such as g in eqn (4) is one key to success for improving small
molecule HFE estimates of commonly used GB based implicit
solvent models. Exchanging the nonpolar term to the NP2 model
in eqn (5), based on the proposals of Eisenberg et al.39 and Ooi
et al.,40 provides further significant improvements in accurately
estimating HFEs of small molecules.

Comparison of computed HFEs using the explicit TIP3P
water model resulted in an RMSEHFE = 1.26 kcal mol�1 and
R2 = 0.888 as reported by Mobley et al.,4 and accounting for the
duplicates in the database as pointed out by Knight et al.7 The
GBNP1 model with optimized parameters is unable to close the
accuracy gap to the explicit TIP3P water model with the given
number of atom types and free parameters. Although the
GBNP3 model has a slightly smaller RMSEHFE than TIP3P, the
squared Pearson correlation coefficient R2 is still smaller than that
of TIP3P, despite having 12 more free parameters than GBNP1.
However, the GBNP2 model’s RMSEHFE is 0.27 kcal mol�1 smaller
than that of TIP3P and the correlation between computed and
experimental data is also higher. This demonstrates that with a
minimal reasonable set of optimized parameters, the combination
of the NP2 nonpolar model (eqn (5)) with an accurate GB term
(eqn (2)) is able to estimate HFEs as accurately as models with
explicit TIP3P solvent for the given database.

Considering that the GBNP3 model has the largest number
of free parameters and the supposedly most elaborate nonpolar
model investigated in this study, its surprisingly moderate
performance requires further investigations. Therefore, we group

the molecule database into ten sets corresponding to the ten atom
types. Each set only contains molecules that have at least one atom
of the corresponding atom type. We can then investigate for which
atom type subsets the current parameterization exhibits the largest
error. Table 3 lists the number of molecules containing at least one
atom of the specified atom type as well as the root mean square
errors for the atom type subsets. Only eight out of the ten subsets
are shown in Table 3. Carbon and hydrogen are excluded from this
analysis, as they are contained in nearly every molecule in the
database. Therefore, the root mean square errors for these two
elements are unlikely to show any significant differences compared
to those for the full database.

Next to carbon and hydrogen, oxygen is the most abundant
atom type followed by nitrogen. All other atom types are rather
rare in the database, thus one should be careful when drawing
conclusions from these small subsets. For GBNP1 and GBNP3,
molecules containing nitrogen have the largest root mean
square error, molecules containing fluorine the second largest
error and molecules containing oxygen have only the third
largest. In contrast, the corresponding errors for GBNP2 are
significantly lower. The discussion of the root mean square errors
in Table 3 (see ESI†) suggests that one reason for the moderate
performance of GBNP3 and GBNP1 is the parameterization of
nitrogen atoms. This group shows the highest root mean square
error and a relatively high abundance in the database.

The results of this analysis suggested that the errors could
be significantly reduced by introducing a new atom type for
nitrogen atoms with positive partial charge. We have again carried
out the parameterization procedure for the three GBNP models
with the additional atom type. We will refer to these models as
GBNP1*, GBNP2*, and GBNP3* respectively. Fig. 2 shows that the

Fig. 1 Comparison of computed hydration free energies (HFEs) to experimental HFEs for the small molecule database using optimized parameters for
the GBNP1 model (A), GBNP2 model (B), and GBNP3 model (C). The root mean square error for the data shown in the graphs is denoted as RMSEHFE and
the corresponding squared Pearson correlation coefficient is R2. The root mean square error between the single conformation solvation free energies
and the experimental HFEs that resulted from the parameter optimization procedure is denoted as RMSESFE.

Table 3 Root mean square errors in kcal mol 1 for each implicit model and atom type except carbon and hydrogen. The values in parentheses for
fluorine exclude hexafluoropropene, which shows a significant error between computed implicit as well as explicit hydration free energies and the
corresponding experimental value, because of an wrong experimental value in the database76

Atom type All O N F Br S I Cl P

Subset size [#] 499 227 86 26 23 21 11 8 2
GBNP1 [kcal mol 1] 1.30 1.65 1.93 1.67 (1.37) 0.69 1.08 1.21 0.66 0.74
GBNP2 [kcal mol 1] 0.99 1.13 1.14 1.70 (1.51) 0.50 0.71 1.15 0.40 0.96
GBNP3 [kcal mol 1] 1.19 1.41 1.76 1.56 (1.04) 0.56 0.84 1.18 0.24 0.82



Fig. 2 Comparison of experimental hydration free energies to hydration free energies computed with the GBNP3 model using only one nitrogen atom
type (A), and the GBNP3* model with two nitrogen atom types for either positive or negative partial charged nitrogen atoms (B). Only molecules
containing nitrogen are considered. Their colors and symbols correspond to the Amber GAFF atom types67 68 listed in the figure legend. The panels also
show the respective root mean square errors (RMSE) and squared Pearson correlation coefficients (R2).

Table 4 Performance comparison of the three implicit solvent models before and after introducing a new atom type for nitrogen atoms with positive
partial charges to account for the asymmetric behavior of water around opposite charged ions. The number of atom types is denoted as N. Values for the
explicit TIP3P water model7 are also given as a reference

Parameterization Implicit (N 10) Implicit (N 11) Explicit

Model GBNP1 GBNP2 GBNP3 GBNP1* GBNP2* GBNP3* TIP3P7

RMSESFE [kcal mol 1] 1.32 1.00 1.21 1.17 1.00 1.04
RMSEHFE [kcal mol 1] 1.30 0.99 1.19 1.16 0.96 1.01 1.26
R2 0.826 0.900 0.853 0.860 0.903 0.894 0.888

Fig. 3 Comparison of implicit solvent model hydration free energies vs. experimental hydration free energies for the test set of 122 molecules, which
were not used to parameterize the models. Molecules containing nitrogen atoms with a partial charge larger than 0.3e are indicated in red, molecules
containing carbon atoms with a partial charge larger than 0.8e are indicated in green, respectively. All data is detailed in the ESI.†



errors for the different AMBER nitrogen types with the GBNP3* 
model have improved in comparison to GBNP3. The HFEs of 
molecules containing ‘‘n3’’, ‘‘no’’ and ‘‘nh’’ atom types agree much 
better with the experimental HFEs. The root mean square error for 
the molecules containing nitrogen drops from 1.76 kcal mol�1 to 
1.13 kcal mol�1 for GBNP3* due to the enhanced parameterization 
with the additional atom type.

Table 4 shows the effects of the new parameterization on the 
achieved model results and errors of the computed HFEs for the 
whole molecule database. The GBNP1* and GBNP3* model’s 
RMSESFE, RMSEHFE and R2 improve significantly, while the 
parameterization result RMSESFE for GBNP2* shows practically 
no improvement. However RMSEHFE and R2 improve slightly. 
This is not surprising, since nitrogen had no large error for 
GBNP2 without the additional nitrogen atom type (see Table 3), 
which is related to the fact that the radii for oppositely charged 
nitrogen atoms are similar. A detailed analysis of the data for the 
new models is provided in the ESI.†

In order to test the transferability of the models to molecules 
not contained in the parameterization dataset, we have computed 
the HFE for the set of 122 molecules which were not in the 20094 

version of the database that was used for parameterizing the model 
(see Fig. 3 and Table 5; data for each molecule in the ESI†). As for 
the parameterization set, we find significantly better performance 
for the new models, which distinguish between nitrogen with 
positive and negative partial charge. This is most apparent for 
the GBNP2 models where the error drops from 4.65 kcal mol�1 for 
GBNP2* to 1.68 kcal mol�1 for GNPB2 (for the parameterization 
range), rivaling that of the explicit water model. This indicates that 
the additional terms in part compensate for deficiencies in the GB 
model. This is also illustrated in Fig. 3, where we have highlighted 
the charged molecules.

Conclusions

A survey by Knight et al.7 of common GB based implicit solvent 
models to estimate hydration free energies (HFEs) of small 
organic molecules revealed an accuracy gap between these 
models and explicit TIP3P water estimates. We have investigated 
how to improve the implicit solvent model estimates by assessing 
the performance of three GB based implicit solvent models with 
different nonpolar solvation terms using a minimal set of atom

types. All models were parameterized by fitting single conformation
solvation free energies (SFEs) to experimental HFEs of a large
database of small molecules to enable a fair comparison between
the three models.

The most commonly used nonpolar term in combination
with a GB model (GBNP1 model, eqn (2) and (4)) and our
optimized parameters performs adequately in estimating HFEs
for the small molecule database both for the test and the
training set. However, comparisons to other common GB based
implicit solvent models investigated by Knight et al.7 demonstrate
that optimization of all model parameters together, e.g. atomic
radii and the surface tension coefficient, can still leads to a
significant accuracy improvement of the computed HFEs. Adding
the solvent accessible volume to model nonpolar repulsion and
Born radii to model solute–solvent dispersion interactions (GBNP3
model, eqn (6)) as proposed in the literature5,41–45,77 further
improved the accuracy of estimating HFEs, but at the expense of
a much larger set of free parameters in the model.

Exchanging the nonpolar term to that proposed by Eisenberg
et al.39 and Ooi et al.40 with atom type dependent surface tension
coefficients (GBNP2 model, eqn (5)) resulted in the most accurate
estimates of HFEs when compared to experimental data. The
root mean square error for the training/test sets is RMSEHFE =
0.99/1.68 kcal mol�1 and the squared Pearson correlation
coefficient is R2 = 0.90/0.81 with our optimized set of para-
meters for ten different atom types. This model yields results
that are comparable to the explicit solvent TIP3P estimates for
the given database, which yielded RMSEHFE = 1.26 kcal mol�1

and R2 = 0.888.4,7

A detailed error analysis provided evidence that deficiencies
of the GB model for oppositely charged atoms is the main
source of error for the GBNP1 and GBNP3 models. This effect is
not accounted for in the parameterization of the models. The
errors in the GBNP2* model are significantly smaller and
methods that are able to decompose the contributions to the
solvation energy at the QM-level61,78 are required to investigate
the physical reasons for these deviations. Accounting for this
asymmetric behavior in the parameterization via a new atom
type resulted in better agreement between estimated HFEs and
experimental values for all models, suggesting this as a general
strategy for improving any GB based implicit solvent model.

It has been argued by Mobley et al., that parameterization of
implicit solvent models by fitting single conformation SFEs to
experimental HFEs could cause significant problems if errors
between computed and experimental HFEs reach those between
SFEs and HFEs.3 However this is not the case for the models
investigated here and for other commonly available GB based
methods investigated by Knight et al.7 While there are models in
the literature that report estimation of HFEs with errors as low as
0.3 kcal mol�1, these errors were derived using either much smaller
databases48,49,75 or a very large set of over 40 atom types47 and are
therefore not directly comparable to the results in this work. Thus,
we believe that parameterization of implicit models to single
conformation SFEs is still viable and an especially cheap method
to improve the accurate estimation of HFEs using common GB
based implicit solvent models significantly.

Table 5 Model performance for the test set of 122 molecules, divided into
two subsets, covering the range of HFE over which the models were
parameterized and all models, respectively. All data is detailed in the ESI

Model

Parameterization range All molecules

RMSD
R2

RMSD
R2in kcal mol 1 in kcal mol 1

GBNP1 2.05 0.801 2.59 0.765
GBNP2 4.65 0.513 4.52 0.647
GBNP3 2.57 0.718 2.83 0.749
GBNP1* 2.41 0.791 2.76 0.786
GBNP2* 1.68 0.815 2.23 0.803
GBNP3* 2.39 0.779 2.53 0.803
TIP3P 1.74 0.829 2.05 0.824
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