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Abstract. To enable data locality, we have developed an approach of adding coordinated
caches to existing compute clusters. Since the data stored locally is volatile and selected
dynamically, only a fraction of local storage space is required. Our approach allows to freely
select the degree at which data locality is provided. It may be used to work in conjunction with
large network bandwidths, providing only highly used data to reduce peak loads. Alternatively,
local storage may be scaled up to perform data analysis even with low network bandwidth.

To prove the applicability of our approach, we have developed a prototype implementing
all required functionality. It integrates seamlessly into batch systems, requiring practically no
adjustments by users. We have now been actively using this prototype on a test cluster for HEP
analyses. Specifically, it has been integral to our jet energy calibration analyses for CMS during
run 2. The system has proven to be easily usable, while providing substantial performance
improvements.

Since confirming the applicability for our use case, we have investigated the design in a
more general way. Simulations show that many infrastructure setups can benefit from our
approach. For example, it may enable us to dynamically provide data locality in opportunistic
cloud resources. The experience we have gained from our prototype enables us to realistically
assess the feasibility for general production use.

1. Introduction
End user data analysis tasks in HEP are commonly processed by hundreds of jobs on a batch
cluster, reading data over network from file servers. As we have shown in earlier work [1, 2], an
analysis on a modern institute cluster easily saturates network capacity. With moving simulation
jobs to opportunistic resources [3], we expect saturation from analysis jobs to be more frequent.
To enable e�cient analyses in the future, we therefore investigated data locality as a means to
eliminate dependency on network resources.

Data locality approaches reduce overall remote I/O by executing jobs as close as to their
input data as possible. Ideally, the machine executing a job and hosting its data are the same.
Several frameworks such as Hadoop [4] already provide data locality based processing, and have
proven the feasibility of this approach.

However, we have found such frameworks to be inadequate for end user analyses. For example,
the extent of software modifications required would e↵ectively eliminate portability to and from
other infrastructure. Thus, we have developed an alternate approach to data locality that
integrates into regular batch processing.
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Our approach uses coordinated caches to provide data
locality for a fraction of data. This exploits that at
any time, only a few sets of data contribute to overall
throughput (see Figure 1). By eliminating remote
accesses to them, network capacity remains available for
less frequently used data. This is a similar strategy to
the current mixture of simulation and analysis tasks.

We have implemented a prototypical middleware [5],
targeting the HTCondor batch system [6]. This
prototype is deployed on a portion of the local KIT
CMS analysis groups’ batch system. It has since
been successfully used for the CMS Jet Energy Scale
calibration analyses performed at KIT.

In this paper, we focus on discussing advantages
and disadvantages of our approach and prototype.
Section 2 details the features inherent to our approach in
general. In section 3, we discuss our current prototype
implementation. Finally, Section 4 provides a short
conclusion.

Figure 1: Read accesses from jobs
to skim versions: Over time, users
create new skims for their analyses.
Only some of these are used frequently,
however. Often, it takes several
intermediate iterations before a skim
is replaced.

2. Coordinated Caching in Batch Systems
Individual features of our approach have been subject of past research. Coordinated caching has
been shown to be e↵ective in distributed systems, e.g. web services [7]. Applicability of data
locality frameworks for HEP has been investigated in abundance [8, 9]. Limited data locality
via a middleware has been attempted using cache servers [10]. Other caches for batch processing
provide applications used across several jobs [11, 12] Our work is set apart mainly by the scope
in terms of size and subjects of caching.

2.1. Scope and Granularity
Our approach is to have a single cache target the batch system as a data consumer. This sets us
apart from coordinated caches that target data providers such as web services. The systen itself
can be compared to a scaled up operating system page cache. A page cache targets applications
accessing blocks via read system calls to process files. Our cache targets workflows accessing
files via jobs to process datasets. Under the hood, the system is composed of several caches, one
on each worker node. These are joined together by a coordination service.

The biggest advantage is the scaled up decision layer, selecting files for caching. Even in a
small cluster, using a few cores for managing the caches is negligible overhead. Likewise, storing
file meta-data in the scale of MB is negligible compared to file sizes at the scale of GB. Since
jobs operate on the scale of minutes to hours, the system does not need to respond any faster.
This allows for sophisticated caching logic.

The biggest challenge originates from our cache volume being actually several distinct
volumes. Coordinating these is not a technical challenge, but a scheduling problem. Since
we want to avoid remote accesses, jobs and data must be closely aligned.

2.2. Data Selection and Hit Rates
Using coordinated caches for data locality adds another dimension to data handling. It is not
su�cient to have a file anywhere in the cache. Instead, it must be available on the host jobs
are trying to access it from. This is the key reason why coordination is required for distributed
caching of unique input to be e↵ective. If files and jobs were placed randomly, the chance of a file
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and corresponding job being on the same worker node is inversely proportional to the number of
nodes. When a job requires several files, the expected fraction of files locally available converges
to the inverse number of nodes. Even for small clusters, this makes the impact of uncoordinated
caching negligible.

In most setups, network throughput still is substantial. To maximize overall throughput,
it is best not to read everything from cache, but instead read some data over network. This
can easily be achieved by caching only a portion of the data deemed relevant. There are two
extremes to this: On one end, caches provide just enough data to not overburden the network.
This maximizes cache volume, as only a fraction of each dataset must be provided. On the other
end, caches provide as much data as possible, freeing the maximum of network resources. This
is optimal if there are many workflows unsuitable for caching, as these can use the network fully.

2.3. User Workflow Integration
Being designed as a cache, our system relies on intercepting access requests. This contrasts with
dedicated data locality solutions, which require explicit requests to the middleware.

As we treat the entire job as an access, requests are intercepted at di↵erent points. On
the one hand, jobs are intercepted as meta-data in the batch system. This provides extensive
information, e.g. estimated runtime. On the other hand, the file accesses of jobs executing on
worker nodes are intercepted. This implements the actual rerouting to local data.

Intercepting requests has the advantage of being transparent to end users. It does not make
a technical di↵erence to jobs whether our system is present. The only notable di↵erence is an
increase in performance if files are provided from our cache. This ensures optimal portability.

The downside of a transparent system is that it cannot directly interact with user workflows.
For example, data locality frameworks actively set job input to match the distribution of
datasets. Our system instead has to optimize data placement to match the splitting already
used by jobs.

3. HTDA Prototype
Our approach is prototypically implemented as the High Throughput Data Analysis
middleware [5]. At its core is a generic node application, which is deployed on worker nodes and
service machines. The HTDA nodes implement all facilities to join together to a single pool.

Each node runs one or several modules which implement the actual services:

• A Provider on each worker node, which adds, maintains and removes local copies of files.

• A Locator per submission node, which tracks the files available on worker nodes.

• A Coordinator per pool, which decides what files to cache and where to do so.

We have deployed our middleware on a portion of the local KIT CMS HTCondor cluster.
The HTDA section is composed of 4 worker nodes (see Table 1) running Provider nodes. A
total of 7 file servers mounted via NFS are used.

Table 1: Test Cluster Worker Node

OS Scientific Linux 6 (Kernel 2.6.32) or CentOS 7 (Kernel 4.4.2)
CPU 2x Intel Xeon E5-2650v2 @ 2.66GHz (à 8 cores, 16 threads)

Memory 8x 8GB RAM
SSD 1x Samsung SSD 840 PRO 512GB or

2x Samsung SSD 840 EVO 256GB
Network 1x Intel X540-T1 (10GigE/RJ45)
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3.1. Middleware Performance
Being a prototype, we have implemented the middleware in Python. This is motivated by
the need for rapid development and ease of maintenance. The prototype makes heavy use
of abstraction, both between node and module as well as between modules themselves. The
implementation is mature enough for stable deployment and operation.

Experiences in terms of system requirements have been unexpectedly good. The only
performance critical component, the Provider node, has negligible overhead (see Table 2). Its
CPU consumption is linear to the frequency of validating files. For our tests, this was once every
5 minutes. Since files are rarely deleted by users before being discarded by our cache, this could
be reduced by at least one magnitude.

Table 2: Module Resource Consumption, according to the ps utility

module CPU RSS

Provider 3.5% 120MB
Locator 1.0% 60MB
Coordinator 14.1% 1GB

3.2. Request Interception
We have implemented the interception of requests via two means: Job meta-data is intercepted
via hooks in the HTCondor job router daemon. Application access to data is intercepted on the
worker node by a union file system.

Using hooks in the job router has several advantages over the common method of parsing
the job queue. Most importantly, we do not have to repeatedly scan the queue for jobs. The
selection and tracking is e�ciently handled by HTCondor itself. The hooks are automatically
called on job submission and removal as well as regularly while it is running. This allows for all
our services to be event driven.

Since the hooks connect to the pool, communication can easily be optimized. Our hooks
are executed often, but skip several updates after updating a job successfully. This naturally
leads to spreading out requests if our system cannot service them fast enough. Additionally,
hooks can address any end-point of the pool for load balancing. Finally, we can limit how many
jobs are connected to our system by HTCondor at any time. We can thus handle an arbitrary
number of queued jobs.

The downside is that only one type of hook may be active per job. Using hooks, it is not
possible to track one job by multiple systems, e.g. our cache and an opportunistic resource
provider. This would require creating an intermediate hook calling the services’ hooks.

Intercepting read requests via a union file system has proven ideal for performance. We have
used Another Union File System in all our setups. It performs the redirection to cache or storage
inside the VFS layer of the kernel. Any overhead from this is too small to measure. It is worth
noting that this technique is not production ready on Scientific Linux 6. The combination of its
kernel and the available AUFS 2 may deadlock. However, we have since switched to CentOS 7
and AUFS 4, which works flawlessly.

3.3. Compatibility with Volatile Resources
The HTDA middleware is robust against nodes unexpectedly entering and leaving the pool.
Any node may keep on functioning on its own. Provider nodes maintain existing files, allowing
Locator and Coordinator nodes to work with their last known state for some time. This makes
the system intrinsically suitable for deployment on opportunistic resources.

For better adaptability to such resources, the handling of file meta-data and ownership may
be improved in the future. At the moment, we assume reading from remote caches has no
benefit over reading from the original source. Thus files and their meta-data are owned by the
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Provider maintaining them. To allow shared caches accessed from multiple hosts, it would be
better to have both owned by the cache device. An attached Provider would take ownership
only temporarily. If the opportunistic worker node hosting it shuts down, the data may persist
on the shared device and a new Provider may take ownership.

4. Conclusion
Data locality is an important approach for scalable data analysis. To integrate data locality into
HEP workflows, we have created a new approach to transparently enhance batch systems. This
is based on a pool of coordinated caches, providing files used by jobs locally on worker nodes.

There are several advantages intrinsic to our approach, which make it suitable for use in HEP.
Since we target the batch system as a consumer, our system must only provide frequently used
data. An arbitrary number and volume of data servers may provide infrequently used data. The
system is by design transparent to users and existing workflows. It can thus be added seamlessly
to existing infrastructure without negative side e↵ects.

We have implemented our system as a prototype and successfully used it for CMS run 2
analyses. Being the first of its kind, there are several features that may be improved or expanded
in the future. These mainly concern the applicability to other setups, such as opportunistic
resources or shared cache volumes. The system itself is mature enough for active use in dedicated
batch systems.
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