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Abstract. For data centres it is increasingly important to monitor the network usage, and
learn from network usage patterns. Especially configuration issues or misbehaving batch jobs
preventing a smooth operation need to be detected as early as possible. At the GridKa data
and computing centre we therefore operate a tool BPNetMon for monitoring traffic data and
characteristics of WLCG batch jobs and pilots locally on different worker nodes. On the one
hand local information itself are not sufficient to detect anomalies for several reasons, e.g. the
underlying job distribution on a single worker node might change or there might be a local
misconfiguration. On the other hand a centralised anomaly detection approach does not scale
regarding network communication as well as computational costs. We therefore propose a
scalable architecture based on concepts of a super-peer network.

1. Introduction
Misbehaving batch jobs can be a notable issue in batch systems as they can negatively affect
other batch jobs. Especially negative effects on network traffic rates have potential to increase
the walltime enormously. E.g., batch jobs report their results and therefore rely on the network.
However, existing monitoring solutions do not provide network metrics distinguished by batch
job. Therefore, a network traffic monitoring tool BPNetMon with process level resolution has
been developed and put into operation at the GridKa data and computing centre [1]. It monitors
information on UNIX process level with a focus on network traffic. By tracking the call hierarchy
of single processes started by a batch job, information can be aggregated on batch job level.

Especially in the field of high energy physics the tool is useful to gain insights into the
workflows of pilots [2]. Pilots form a virtual overlay batch system [3]. They load batch jobs,
following payloads, from an external batch system queue. This happens independently from the
underlying batch system. While this improves scheduling for the users, the information available
to the underlying system is drastically reduced.

These information can also be monitored with BPNetMon. As all monitoring information
are reported in a tree data structure, relevant information on payload level can be extracted by
identifying the parent process. With access to details on payload level, we now want to introduce
an online anomaly detection, that enables a near real time recognition of anomalous payloads. A
working anomaly detection on payload level ensures an equal and undisturbed usage of resources
for all users of the batch system.
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Figure 1. Number of processes to consider when analysing CMS payloads. The mean number
of processes is around 2,300 whereas the maximum number recorded is up to 3,600,000 processes.
This requires a good scalability. In addition, there is evidence for clusters of similar payloads
based on their process count.

2. Problem description
The following discussions and assumptions are mainly based on monitoring data from the CMS
collaboration [4]. In addition, only pilots are considered. Statistics are based on data that has
been collected offline on one of the 600 worker nodes of the GridKa data and computing centre.
The selected worker node offers 24 job slots. The data has been collected over a period of 12
months from July 2014 to June 2015.

2.1. Anomaly detection
The basis to detect anomalous batch jobs is knowledge about normal behaviour. As normal
behaviour is unknown, it first needs to be learned. To define normal behaviour we consider
majority of batch jobs as normal. Only a small fraction are outliers. If this holds true, normal
behaviour can be defined based on natural breaks regarding the distribution of process count per
payload. Given the dataset of payloads for CMS collaboration of one worker node, we therefore
distinguish five groups of payloads describing normal behaviour (compare Figure 1). For each
of those groups, the average payload is calculated. This average is called a prototype in the
following.

A prototype is the representative for the whole group and can be used to measure the distance
to a running batch job. Based on that distance, one can decide if the batch job belongs to that
group, and therefore behaves normally. Otherwise it can be treated as an outlier.

2.2. Distance measurement for trees
As the batch job monitoring works on process level, we deal with tree data structures. To
measure distances between trees there exist many solutions in literature, e.g. the tree edit
distance [5]. The distance is given by the number of operations required to transform one tree
T1 with n nodes into another tree T2 with m nodes. Operations permitted are the deletion,
addition, and relabelling of nodes. State of the art algorithms of tree edit distance require
O(n3) time and O(nm) space resources [6].

However, these algorithms are designed to measure exact distances for static trees. Our use
case requires an efficient solution that works on an event stream Ejob = 〈e1, . . . , en〉 with bounded
memory and CPU resources. The events given by Ejob describe a tree Tjob = 〈T1, . . . , Tn〉 of a
batch job that is dynamic over time. Distances repeatedly need to be calculated to a given set of
prototype trees P = {Tprototype,1, . . . , Tprototype,i}. Complexity for exact distance measurements
for i prototypes extends to O(in3) time and O(inm) space requirements. Therefore an
incremental distance measurement is preferred.
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2.3. Exemplary demonstration
Let us consider to perform anomaly detection for an average payload with 2, 300 processes for
5 groups of normal behaviour based on tree edit distance. We first need to measure distances
to each of the 5 prototypes. We require resources for 5 · 2, 300 · 2, 300 = 26, 450, 000 objects in
average for one event at a time.

As there are up to 24 job slots per worker node, we need to consider up to 24 · 26, 450, 000 =
634, 800, 000 objects. In addition, we still need to store the data per process per payload and
prototype. On average, each process requires 38 B of memory. This requires a total memory
of 2.00 MB for payload as well as 0.42 MB for prototype storage and 2.36 GB for distance
calculations.

Taking into account, that memory should not exceed 4.00 GB one out of the 24 payloads with
40, 400 processes already exceeds the given limits. This is the case for 1.10 % of the payloads
on the given worker node. Hence, it is practically impossible that limits are not exceeded when
running on 600 worker nodes with tree edit distance.

2.4. Requirements
In summary, different aspects need to be considered to put a scalable architecture for online
anomaly detection into practice. First, algorithmic complexity to determine distances between
trees is of interest. So far, no sufficient scalable algorithm has been identified. Currently we
are testing an incremental distance measurement approach that looks promising. It is based on
lossy compression of trees and the usage of hash tables.

Second, the learning of prototypes needs to be considered. This can be done offline on a
central node before distributing the prototypes to the different worker nodes. But it might also
be considered to have different prototypes per worker node.

Most importantly the uninterrupted operation of the batch system is key. Both, a low
communication overhead as well as low memory consumption and CPU load on worker nodes
are crucial.

3. A scalable architecture for online anomaly detection
Currently the monitoring tool BPNetMon is deployed on two racks, each consisting of 32 worker
nodes. Each worker node provides 24 job slots. The tool is operated as a sensor that transfers
monitoring events to a central instance for further offline analysis and prototype learning. An
online anomaly detection has not been deployed yet. Following, we will discuss feasible options
for deployment and summarise advantages and disadvantages of the presented architectures.

3.1. Centralised systems
The initial situation enables a centralised system with one central server. The main task of
the central server is the anomaly detection. Necessary calculations do therefore not interfere
with batch jobs that are running on the worker nodes. We also benefit from data consistency,
coherence, and a centralised prototype model. However, we expect very high CPU load as well as
memory demands on that central server. The current setup already requires the parallel analysis
of 64 · 24 = 1, 536 payloads. Based on a tree edit distance, the distance calculations themselves
require around 151 GB of memory. A scaling to the whole GridKa data and computing centre
can therefore not be achieved.

Based on measurements for several months we simulated the network overhead for such a
centralised system. We want to ensure that the tool generated traffic does not exceed 3.00 % of
traffic that is induced by batch jobs and system relevant processes. The simulation shows that the
tool generated traffic exceeds the threshold (compare Figure 2). Actually the simulation showed,
that the threshold is exceeded in 10.44 % of all monitoring intervals. To ensure scalability, a
preselection of data should be performed on the different worker nodes.
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Figure 2. Simulated traffic overhead for a centralised system. The tool generated traffic should
not exceed 3.00 % of batch job induced traffic. As shown, the generated traffic exceeds the
threshold. In addition, the simulation showed that this is the case in 10.44 % of all monitored
time intervals. To minimise this overhead, a preselection of data is required.

The setup consisted of 10 worker nodes and one central instance. The different hosts were
connected by 1 Gbit/s full-duplex ethernet connections. Randomly a replay from log files was
started to induce network activity for the different worker nodes. We first considered base traffic
for batch jobs and system relevant processes. In addition we simulated the events produced by
BPNetMon and transfered those to the central host.

3.2. Hierarchical systems
To tackle the disadvantages of centralised systems we can introduce additional layers of local
servers. Each local server groups several worker nodes. Worker nodes still send monitoring
information to their associated server. The local servers collect information from a group of
worker nodes and perform a preselection of received data. Selected data are then send to the
central server. The central server performs anomaly detection on a reduced set of data. Hence, a
logical hierarchy is implemented that allows further scalability. As information flow is retained,
data consistency, coherence, and a centralised prototype model are ensured.

A hierarchical system offers improved scalability over centralised system but still requires
additional hardware for servers. However, chances for a failure of the whole anomaly detection
process are reduced but the detection may still fail for groups of worker nodes.

3.3. Peer-to-peer systems
A more flexible architecture regarding the failure of the whole system or groups of worker nodes
is a peer-to-peer system. In peer-to-peer systems any node can exchange data with any other
node. Here, every node performs a local anomaly detection and reports its results.

While peer-to-peer systems enable horizontal scalability, we need to deal with high CPU load
and memory demands on the worker nodes. In addition, the learning of prototypes needs to be
handled as there is no central instance. Either a central server needs to take over calculation of
prototypes and therefore needs to gather monitoring information from worker nodes (see 3.4),
or different prototype models are used on each worker node.

When using differing prototypes, anomalies depend on their local context. The local context
is given by the results from neighbouring worker nodes e.g. worker nodes of the same rack. One
batch job does not necessarily have to be an anomaly inside the system, when it is different from
currently known prototypes on one single worker node. It might be consistent with prototype
models on differing worker nodes. Therefore, before results are reported, the local context can
be considered for local anomaly detection.
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3.4. Hybrid peer-to-peer systems
A hybrid peer-to-peer system additionally introduces a central server. As already mentioned for
peer-to-peer systems, a central server can take over responsibility to calculate and distribute the
prototype model. Besides this, a hybrid peer-to-peer system can be used to centralise anomaly
detection on the central server. Worker nodes are then responsible for performing a preselection
of data to reduce communication overhead. Again, the central server becomes a single point of
failure and bottleneck of the system.

3.5. Super-peer systems
A final architecture to consider is a super-peer system. Super-peers act as a centralised server
to a subset of worker nodes. Different super-peers are connected to each other as peers. In
addition, the subsets of worker nodes are also connected to each other as peers. Worker nodes
perform preselection of data and report to their super-peer. The super-peers perform the actual
anomaly detection for their associated set of worker nodes.

Super-peers are a temporarily used resource and therefore an interesting option for
opportunistic resources. The already established monitoring of batch jobs allows the recognition
of unsaturated worker nodes. Those include worker nodes that wait until all batch jobs are
finished to e.g. perform software updates. The resources of such a worker node can be
temporarily utilised as a super-peer. As soon as that state is dropped, data is lost and the
associated worker nodes need to report their data to another super-peer.

4. Conclusion
To perform an online anomaly detection on payload level, a scalable architecture is required.
Particularly given that batch jobs need to run uninterrupted even though distance measurements
and anomaly detection require high computational cost and memory demands.

The most promising architecture combines elements from a hierarchical system as well as
a super-peer system. A temporary utilisation of unsaturated worker nodes with additional
central server components as fallback instances when resources need to be dropped brings a high
flexibility. Hence, data consistency and coherence can be guaranteed. In addition, a modular
software design that allows the distribution of different algorithmic steps such as preselection
and anomaly detection, enables a good utilisation of that flexibility. On this way, variations
such as anomaly detection based on local contexts can be explored.
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