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Abstract

A holistic approach to determine the optimum number of phases m of an m-phase motor in combination

with an m-leg inverter for electric vehicle applications is presented. The optimum offers a significant

improvement of the torque and power by approximately 9.6% over the whole operating range in com-

parison to a 3-phase motor and therefore enhances the power and torque density without expanding the

design parameters of the machine.

Introduction

Usually, 3-phase permanent magnet synchronous motors (PSM) with buried magnets are used in drive-

trains for electric vehicles (EV). These PSMs offer a high power density and high efficiency as well as

an adequate operating range for EVs including a large field weakening range. As the operating distance

is crucial to the EVs, the weight and the costs of batteries and drivetrain components have to be reduced.

Multi-phase electric machines are an interesting alternative to conventional three-phase machines to meet

these targets [1]. The torque of a machine at the same volume is enhanced by using a larger number of

phases [2]. Simultaneously, the torque ripple can be minimized [3].

According to these aspects of the electric machine, multi-phase inverters have been discussed and their

advantages regarding control and output voltage have been compared to three-phase inverters [4]. A

better utilization of the DC link voltage UDC is possible and harmonics in the phase current could be

reduced. In this paper, both components of a drivetrain for an EV are taken into account in order to eval-

uate the increase of the torque-speed range enabled by multiple phases of motor and power electronics.

The following analysis identifies the optimum number of phases to utilize the limited space. The consid-

erations are restricted to an odd phase number, because the phase shift is then uniformily distributed by

2π/m [5].

First, the benefits and challenges for the power electronics realized by an m-leg inverter regarding its

losses and chip area are discussed. An m-phase space vector pulse width modulation for driving the

semiconductor switches is examined with respect to the possible utilization of UDC and the common

mode voltage u0 in the next Section. After that, the limit values of the motor characteristics are bench-

marked by the winding factor and the harmonic content of the phase currents. Due to the results of each
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Fig. 1: 9-leg inverter with a common floating neutral point N

Section, it is shown that it is not promising to increase the phase number above a certain value. Finally,

the choice of the optimum number of phases in combination with the electromagnetic finite element sim-

ulation of the motor shows a significant increase in the maximum torque over the complete speed range.

This expansion of the operating range yields higher power density of the entire drive system.

Power Electronics

For operating the m-phase motor, an extension of the three-leg inverter to an m-leg inverter is necessary,

where all phases of the motor are star-connected at the neutral point N. Consequently, the inverter itself

consists of m half bridges with transistors e.g. IGBTs (insulated-gate bipolar transistors) T1 −T18 and

free-wheeling diodes D1 −D18, as depicted in Fig. 1.

With a simple power loss model of the used semiconductors, the quantity of the losses depending on

the phase number m is determined. It is assumed that the total chip area of the semiconductors is kept

constant for every different number of m, which means that the chip area for one pair of IGBT and diode

is reduced by the factor m, while the current density is constant, since the current per phase I(m) is

proportional by 1/m and therefore the total current is IΣ = m · I(m). Hence, the active power Pel becomes

independent of m, as UDC is constant:

Pel = m ·U · I (m)cos(ϕ) =U · IΣ · cos(ϕ) (1)

with the power factor cos(ϕ) and the phase voltage U . On a physical consideration on the power elec-

tronics level by using IGBTs and diodes with a smaller chip area, the resistances of IGBT and diode

increase proportional by m, as the resistance per area rT/D is constant, and the recovery charge of a

diode decreases with 1/m, while the threshold voltage UT/D0 remains approximately constant [6]. As the

switching energies can be calculated in a worst-case assumption by the area spanned by the linearization

of rise and fall of voltage and current [6, 7] while the switching time stays constant, the switching energy

reduces with 1/m. If the current changing speed stays the same while reducing the current, the decrease

is even greater than 1/m.The losses Pv in an m-leg inverter with IGBT-semiconductors consist primarily

and in a good approximation of conduction and switching losses [7]:

Pv = m ·
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with the switching frequency f and the operating point dependent values k1,k2,k3, which are constant in

this case. Since the conduction losses and switching losses per leg are decreasing by 1/m, they become
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Fig. 3: Inner circle of the polygon with 2m edges

for m = 9 is bigger than for m = 3

constant for m phases. Consequently, the increase in phases does not effect the losses of the power

electronics in case of these approximations and therefore, they do not need taken into account for the

further considerations.

M-Phase Space Vector Pulse Width Modulation (SVPWM)

In order to achieve a high utilization of UDC, a space vector pulse width modulation (SVPWM) is exam-

ined [4]. Here, the amplitude of the phase voltage û regarding the fundamental frequency is limited to

the inner circle of the polygon. This polygon is spanned by the 2m edges of the maximum space vectors

according to the examples with m = 3 in Fig. 2 and m = 9 in Fig. 3. As it can be seen in the figures,

the more phases there are the more edges of the polygon exist which offer a better approximation of the

inner circle resulting in a larger radius. This advantage of an improved utilization of the DC link voltage

UDC due to an m-leg inverter and an m-phase machine is shown in [3, 4]. In this paper, the reachable limit

for this inverter with SVPWM is examined further. There are 2m space vectors which can be calculated

by the Clarke-transformation [8] of the voltage of each leg with the values of ±UDC/2 shifted by the

phase angle of 2π/m. Since the maximal attainable modulation factor of a SVPWM is requested, the

space vectors u with the maximum magnitude are deduced and evaluated. The space vectors u can be

described as

u =
2

m

m

∑
k=1

αke j 2π
m
(k−1) (3)

with αk =±UDC/2. By examining (3), it is obvious that the maximum space vectors can be calculated if

(m−1)/2 vectors with an angle β with π/2 ≤ β ≤ 3/2π to the resulting space vector u have a negative

prefactor αk while the prefactors αk of the other (m+ 1)/2 vectors are positive. By normalizing (3) by

UDC and rearranging it to represent only the space vector with maximal length, (3) becomes
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m
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m
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2
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The maximum magnitude of u for an infinite number of phases m therefore yields
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By the SVPWM, the inner circle of the polygon with 2m-edges spanned by the space vectors can be

realized as output phase voltage regarding the fundamental frequency. The formula of the inner circle

rmax for m → ∞ is:

rmax,m→∞ = lim
m→∞

(∣
∣u′
∣
∣cos

( π

2m

))

=
2

π
·1 =

2

π
(6)

That means that 2/π ·UDC is the theoretical limit of the amplitude of the phase voltage. This is the same

fundamental phase voltage, which can be achieved by 2m-step mode respectively block commutation

but with higher harmonics [4]. In Table I the maximum possible modulation index rmax by space vector

modulation is listed for different numbers of m. While the magnitude of the space vector u is decreasing

if the number of phases m rises, the possible modulation index rmax is increasing until the limit of 2/π is

reached.

Besides, a zero-component, the common mode voltage u0, belongs to each space vector. u0 can be

calculated with

u0 =
1

m

m

∑
k=1

αk (7)

Since m is an odd number and u0 of the maximum vector u consists of (m−1)/2 positive and (m−1)/2

negative αk, (7) becomes

u0(u) =±
1

m

UDC

2
(8)

That means, that the peak-to-peak-value of u0, u0,pp, is dependent on 1/m. Compared to a 3-leg-inverter,

u0,pp of a 9-leg-inverter with the described SVPWM can be reduced by 67%. This leads to smaller

capacitive leakage currents, which cause current stress in bearings resulting, for example, in degradation

[9]. In Table II the relation of m and u0,pp and the percentage gain representing the reduction of the

peak-to-peak-value is listed.

Table I: The possible modulation by SVPWM regard-

ing |u|max and inner circle radius rmax.

m phases |u|max rmax Percentage

3 0.667 0.577 90.7%

5 0.647 0.616 96.7%

7 0.642 0.626 98.3%

9 0.640 0.630 99.0%

11 0.639 0.632 99.3%

∞ 2/π ≈ 0.6366 2/π 100%

Table II: The peak-to-peak-value u0,pp of u and

the percentage gain compared to m = 3.

m phases u0,pp Percentage

3 0.333UDC 0%

5 0.200UDC 40.0%

7 0.143UDC 57.1%

9 0.111UDC 66.7%

11 0.091UDC 72.7%

∞ 0 100%

Motor Characteristics: Number of Slots, Winding Factor and Harmonics

In the previous Sections, it has been shown that there are limits for the losses of the power electronics

as well as for the maximum possible modulation index. In order to find the optimum configuration of

the motor, the interaction of the number of slots N, the winding factor ξ and the occurring harmonics



are examined further. If the design is built of distributed full-pitch windings, the winding factor of the

fundamental wave 1ξ [5] is calculated by

1ξ =
sin
(πqp

N

)

qsin
(πp

N

) (9)

with the number of pole pairs p and the number of slots per pole and phase q. When q and m tend to

infinity in order to calculate the lowest winding factor possible, equation (9) becomes:

lim
m→∞

(

lim
q→∞

1ξ

)

= lim
m→∞

(

2msin
(

π
2m

)

π

)

= 1 (10)

Additionally, it becomes evident that not only the behavior of 1ξ is significantly improved by increasing

m but also occurring harmonics of air-gap field can be reduced. The effects of these harmonics can be

taken into account with the double-linkage leakage σo [10]:

σo = ∑
ν 6=1

1

ν

(
νξ
1ξ

)2

(11)

Equation (11) was solved in [10] for m → ∞ and different values for q. It was stated that (11) converges

towards zero for m → ∞. Furthermore, it was shown that σo is decreasing with q but even more with

m and that it is therefore advantageous to increase m at the expense of q. In Table III, this relation is

depicted, whereas σo,max is the maximum σo for a certain m with q = 1. It is evident that with a higher

phase number m, the damping of the fundamental wave is reduced and simultaneously the occurring

higher harmonics can be lowered significantly. Yet, each of them is limited.

Table III: The relation of m, the maximum double-linkage leakage σo,max, 1ξ(q → ∞) and N.

m phases σo,max
1ξ(q → ∞) N for p = 2

3 0.0966 0.955 12

5 0.0336 0.984 20

7 0.0170 0.992 28

9 0.0102 0.995 36

11 0.0068 0.997 44

∞ 0 1 ∞

Determining the optimal phase number

The limits presented before are used to identify the optimum number of phases by introducing a quality

criterion J is defined to judge all influences for this purpose. In order to seperate positive δP(m) and

negative influences δN(m), J is divided into two parts:

J(m) = δP(m)+δN(m) (12)

δP(m) sums up the limit values for rmax, u0,pp, 1ξ(q → ∞) and σo,max. This is done by rearranging the

equations characterizing the limits of each aspect to get the percentage change of increasing m compared

to m = 3:

δP(m) = qSVPWM ·δSVPWM +qξ ·δξ +qu0
·δu0

+qσo,max
·δσo,max

(13)

Thus, δSVPWM characterizes this change concerning rmax while δξ, δu0
and δσo,max

do the same for 1ξ(q →
∞), u0,pp and σo,max with their quality factors qSVPWM, qξ, qu0

and qσo,max
.
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Fig. 4: The result of the quality criterion J for an odd number of phases and equally distributed quality

factors, which is an exemplary choice depending on development criteria. For m → ∞, J converges to 1.

As a degree of the growing costs regarding the number of slots N, the change of the slot number δN is

introduced as

δN(m) = 1−
N(m = 3)

N(m)
(14)

with m = 3,5,7, ...,∞. The result of J for an odd number of phases and all quality factors by 0.2 is

depicted in Fig. 4. J decreases for small numbers of m, since δP(m) is the dominating part of J, but for

m > 9 J starts to increase until one, as the number of needed slots, δN, increases more strongly than the

gain caused by δP(m).

Comparison of the simulation results of a 3-phase and 9-phase PSM

Assuming the conditions of the previous section, the optimal number of phases is m = 9, which is evident

by considering the differences to m = 3. Because σo.max is already reduced by almost 90% compared

to m = 3, while the winding factor can only decrease to 99,5% of the maximal attainable value. Due to

the 9-leg inverter with SVPWM, 99% of the maximal DC link voltage can be used compared to 90.7%

with the 3-leg inverter. In contrast, the number of slots has already tripled for q and p staying the same.

In order to show the expansion of the operating range by using a 9-phase machine, a 3-phase PSM with

two pole pairs and 36 slots was converted into a 9-phase PSM. Only the winding of the motor has to be

changed in that manner that the electric loading, the current density and the resulting number of turns w

stay constant.

The simulation was performed in FLUX2D by calculating the optimal control of the current according

to the ”Maximum Efficiency Control” method [11]. Both designs are depicted in Fig. 5 and Fig. 6. Due
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Fig. 6: Design of the 9-phase machine



to the reduced harmonics, the torque ripple is lowered and the mean torque is magnified by 5% in the

normal operating range. This benefit is independent of the inverter. If the better utilization of UDC by the

9-phase SVPWM is taken into account, the torque can be increased with the same DC link averagely by

12.2% in the field weakening range. The total benefit of the 9-phase motor is depicted in Fig. 7.

If the overall losses occurring in the machines of the two designs are compared and the relative reduction

of the losses due to the 9-phase configuration is calculated, the result can be seen in Fig. 8. The effect

can result in a loss reduction of over 15% in the field weakening area, as there is less current needed to

reach the same operating point compared to the 3-phase configuration. But the benefit can be seen in a

decreased manner nearly over the whole operating area.

Table IV: Electrical Machine Data

3-phase PSM 9-phase PSM

p 2 2

q 3 1

UDC 400 V 400 V

û 230 V 251 V

Î 339 A 113 A

w 18 18

Table V: Results

3-phase PSM 9-phase PSM

Maximal Torque 235 Nm 247 Nm

Maximal Power 101 kW 112 kW
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Conclusion

In this contribution, the optimum combination of an m-leg inverter with SVPWM and an m-phase PSM

for EV-applications was examined. It is shown, that there are limit values for the use of the inverter

as well as for the motor, which lead to an optimal interaction between the inverter and the machine.

The phase number with the best cost-value-benefit with the presented quality criterion is m = 9. This

solution is evaluated by the comparison of a 3-phase and a 9-phase machine with the same geometry.

The modification of the windings to 9 phases and the use of a 9-leg inverter yield a maximum increase

of the torque by 13.7% and an enhancement of the power by 10.8%. Simultaneously, the losses in the

machine are reduced by maximally 27.5%
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