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Preface

The state of the art in optical characterization of materials is advancing
rapidly. New insights into the theoretical foundations of this research
field have been gained and exciting practical developments have taken
place, both driven by novel applications and innovative sensor tech-
nologies that are constantly emerging. The big success of the interna-
tional conferences on Optical Characterization of Materials in 2013 and
2015 proves the necessity of a platform to present, discuss and eval-
uate the latest research results in this interdisciplinary domain. Due
to that fact, the international conference on Optical Characterization of
Materials (OCM) took place the third time in March 2017.

The OCM 2017 was organized by the Karlsruhe Center for Spectral
Signatures of Materials (KCM) in cooperation with the German Chap-
ter of the Instrumentation & Measurement Society of IEEE. The Karl-
sruhe Center for Spectral Signatures of Materials is an association of
institutes of Karlsruhe Institute of Technology (KIT) and the business
unit Automated Visual Inspection of the Fraunhofer Institute of Op-
tronics, System Technologies and Image Exploitation IOSB.

Despite the conference’s young age, the organizing committee has
had the pleasure to evaluate a large amount of abstracts. Based on the
submissions, we selected 20 talks complemented by 12 poster presen-
tations and several practical demonstrations.

The present book is based on the conference held in Karlsruhe, Ger-
many from March 22–23, 2017. The aim of this conference was to bring
together leading researchers in the domain of Characterization of Ma-
terials by spectral characteristics from UV (240 nm) to IR (14 μm), mul-
tispectral image analysis, X-ray methods, polarimetry, and microscopy.
Typical application areas for these techniques cover the fields of, e.g.,
food industry, recycling of waste materials, detection of contaminated
materials, mining, process industry, and raw materials.

The editors would like to thank all of the authors that have con-
tributed to these proceedings as well as the reviewers, who have in-
vested a generous amount of their time to suggest possible improve-
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ments of the papers. The help of Henning Schulte and Johannes Meyer
in the preparation of this book is greatly appreciated. Last but not least,
we thank the organizing committee of the conference, led by Britta Ost,
for their effort in organizing this event. The excellent technical facilities
and the friendly staff of the Fraunhofer IOSB greatly contributed to the
success of the meeting.

March 2017 Jürgen Beyerer
Fernando Puente León

Thomas Längle
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Employing NIR-SWIR hyperspectral imaging
to predict the smokiness of scotch whisky

Julius Tschannerl1, Jinchang Ren1,3, Frances Jack2, Stephen Marshall1

and Huimin Zhao3,4

1 University of Strathclyde, Hyperspectral Imaging Centre, Dept of EEE
16 Richmond St, Glasgow G1 1XQ, UK

2 Scotch Whisky Research Institute, The Robertson Trust Building, Research
Avenue North, EH14 4AP Edinburgh, UK

3 Guangzhou Key Laboratory of Digital Content Processing and Security
Technologies, Guangzhou, 510665, China

4 School of Electronic Information, Guangdong Polytechnic Normal
University, Guangzhou, China

Abstract Scotch Whisky makes a significant contribution to the
UK’s food and drinks export. The flavour of this high quality
spirit is derived naturally from the whisky making process, with
smoky aromas being a key character of certain Scotch whiskies.
The level of smokiness is determined by the amount of phenolic
compounds in the spirit. Phenols are introduced by exposing the
barley malt to peat smoke during the kilning process. The cur-
rent techniques to determine the levels of phenols, such as High
Performance Liquid Chromatography (HPLC), are time consum-
ing as they require distillation of the malt prior to analysis. To
speed up this process and enable real-time detection before pro-
cessing, the possibilities of Near-infrared to Short-wave-infrared
(NIR-SWIR) Hyperspectral Imaging (HSI) to detect these phe-
nols directly on malted barley are explored. It can be shown that
via regression analysis, various levels of phenol concentration
used as working levels for whisky production could be estimated
to a satisfying degree. To further optimise industrial application,
a hyperspectral band selection algorithm is applied that yields
good results and reduces computational cost and may open pos-
sibilities to employ multispectral rather than hyperspectral cam-
eras in future applications.

Keywords: Hyperspectral imaging, scotch whisky, near-infrared.
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1 Introduction

Over the last couple of years, an increasing interest in Hyperspectral
Imaging (HSI) for applications other than remote sensing can be ob-
served. Applications include e.g. food inspection [1], medical applica-
tions [2] and artwork inspection [3]. The main reason for its popularity
is its rapid data acquisition and the non-destructive nature of the same.
As opposed to regular spectroscopy techniques, data is acquired at a
relatively high frame rate incorporating not only spectral but also spa-
tial information. HSI is able to gain information about the chemical
composition of the imaged objects without altering the integrity of the
objects. The potential as a non-destructive, real-time chemical analy-
sis technique stirs an increasing industrial interest in HSI as it can be
seemlessly integrated into the processing chain.

Scotch whisky is a high quality spirit drink exclusively produced in
Scotland in a manner specified by law. According to data collected by
the Scotch Whisky Association from January to December 2014, 99 mil-
lion cases of 12 40 % vol. bottles were exported which made up around
a quarter of the UK food and drink exports [4]. These figures justify a
high interest in maintaining its high quality standards.

One distinct feature of certain Scotch Whiskies are their smoky char-
acteristics. Large parts of Scotland are covered by peat bogs. Dried peat
has a long history of being used as a fuel in Scotland. Exposing malted
barley that is used for whisky production during the kilning process
to the smoke of burning peat introduces the typical smoky aroma. The
smoking process can be seen in Figure 1.1. Phenolic compounds in
the smoke adhere to the surface of the grain and carry through the
process into the spirit. The phenol levels are used as a marker to the
degree of smokiness of whisky. The following eight phenolic com-
pounds can be found in scotch whisky. Phenol, Guaiacol, m/p-Cresol,
o-Cresol, 4-Methyl-Guaiacol, 4-Ethyl Guaiacol and 4-Ethyl Phenol. The
levels are measured in mg/kg or ppm respectively and measured is
the total number, i.e. the sum of the concentrations of the individual
compounds. Phenol levels are varied depending on desired smokiness.
It is important from a flavour point of view to be able to control these
levels, to avoid having to blend final spirits to obtain the aroma re-
quired. Measuring the levels of phenols in malt currently requires a
pre-processing step. The malted barley is finely ground, water added
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(a) (b)

Figure 1.1: (a) Burning peat (b) Barley being exposed to peat smoke.

and then steam distilled. The levels of phenols in the distillate are
measured using High Performance Liquid Chromatography (HPLC)
or other colorimetric methods. It would be of significant benefit to the
whisky industry to be able to determine the phenol levels directly in
the malted barley, before any processing has been applied.

Phenolic compounds in grapes have previously successfully been de-
tected by HSI [5]. This work aims to explore possibilities of determin-
ing phenol levels in malted barley by means of Near-infrared to Short-
wave-infrared (NIR-SWIR) HSI in a potentially industry based appli-
cation. In addition to a detection before processing of the malt, HSI
offers a potential real-time detection of phenol levels, whereas HPLC
needs at least a couple of days in a lab to be performed. To show this,
the following things are explored in this study: By means of HSI and
multivariate data analysis, it is attempted to determine different levels
of phenol concentration in barley malt. To further optimise the process
for industrial application, a band selection algorithm is evaluated for
suitability on this data that enables faster processing and multispectral
data acquisition in future applications.
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2 Sample preparation and data acquisition

As mentioned above, the peatiness of the barley is measured in ppm.
This study looked initially at difference between extreme samples; un-
peated malt with 0 ppm phenols versus heavily peated malt containing
120–130 ppm total phenols. The desired working levels for the actual
whisky production ranges from 0 to about 50 ppm where these levels
are usually divided into three classes as follows:

1. Lightly peated: 1 – 5 ppm

2. Medium peated: 6 – 15 ppm

3. Heavily peated: 16 – 50 ppm

These levels are created by mixing unpeated barley malt with the very
heavily peated to equivalent parts. The concentration of the very heav-
ily peated malt is determined by HPLC. Where HPLC measures the
average concentration of phenols in a batch of barley grains, HSI can
only measure spectra on various spatial points. As seen in Figure 1.1,
the barley is spread out in a large pool and smoked from below and
each individual grain is exopsed to the smoke to a different degree.
The amount of phenols that adhere to the surface also vary within one
grain depending on its orientation and batches with a low amount of
phenols only include very little grains with phenols on the surface.
This needs to be considered when measuring the concentration with
an imaging device as only the surface of the grains can be measured.

For initial tests of detectability, a batch of grains with no phenols
and barley with a concentration of about 120 ppm have been produced
and imaged. Three different batches of barley with 3, 12 and 30 ppm
have then been created to cover the three working levels of phenols.
The barley has been placed in a tray as seen in Figure 1.2 and imaged
with a pushbroom NIR-SWIR HSI camera. The camera has a spec-
tral range of 900 – 1700 nm and scans 320 pixels with 256 bands per
line. The samples have been illuminated with two halogen lightbulbs
on each side which have been diffused to minimise specular reflec-
tions and shadows. However, due to the curved surface of the grains,
differences in intensity and different spectral reflections cannot be com-
pletely avoided. Six different samples of each level have been imaged.
Since the measured phenols will most likely vary strongly between the
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pixels, the mean of subsets of all pixels per sample was taken. The sub-
sets consist of randomly selected pixels within each samples to avoid
localised effects of phenol accumulation or absence. 50 subsets per
sample have been generated, resulting in 300 observations per phenol
level.

3 Spectral pre-processing

To compensate for variations in the lighting between different samples
and spatial variations along the scanned line, the raw measured signal
S can be calibrated and converted to percent reflectance spectra R with
the following formula, shown in [6]:

R =
S − D
W − D

× 100 % (1.1)

D is a dark current image acquired by minimising the camera’s sensor
exposure to any radiation. This is to estimate the sensor’s shot noise.
W is a white reference imaged acquired by imaging e.g. a Spectralon
plaque which exposes almost lambertian scattering over the desired
spectral range. This helps to approximate the maximum reflectance
measured at each wavelength.

A number of spectral pre-processing techniques have been analysed
in [7] for NIR spectra including various techniques for de-noising [8].
Most popular ones include conversion to Standard Normal Variate
(SNV) and 1st and 2nd derivatives using Savitzky-Golay filters. SNV
transforms the data to zero mean and unit variance. This removes
an additive baseline and can in theory be used to compensate for slight
intensity variations due to shadow effects on uneven surfaces and com-
pensate for scattering effects [7]. In practice however, no general opti-
mal pre-processing procedure can be established and most researchers
try various combinations and use the ones that yield the best results for
the specific application. In this case, pre-treatment with SNV yielded
the best regression results, as is later shown in Section 5.
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The SNV of a reflectance spectrum R is defined as follows:

RSNV =
R − μ

σ
(1.2)

where μ represents the mean and σ the standard deviation of all mea-
sured spectra.

4 Band selection

One major disadvantage of hyperspectral data is its high dimension-
ality. While it is often desired to maintain a relatively high spatial
resolution for optimal identification of the measured objects, the spec-
tral information can in most cases be reduced. Hyperspectral cam-
eras cover a wide, continuous range of spectral bands but in many
applications, only certain wavelengths are of particular interest. Ad-
ditonally, adjacent bands usually carry redundant information and the
well known curse of dimensionality may even decrease the discrim-
inability if too many bands are included. Different feature extrac-
tion techniques [9–11], predominantly Principal Component Analysis
(PCA) and variations [12] have widely been successfully applied to
hyperspectral data to reduce the dimensionality. The disadvantage of
feature extraction however is that new features are generated by e.g
linearly combining spectral bands and the resulting features are no
longer physically interpretable and linked to specific chemical proper-
ties of the imaged objects.

Various feature selection techniques have been developed over the
last decades [13] that try to select an optimal subset of features for a
specific application. In [14] a new unsupervised band selection algo-
rithm for hyperspectral images is introduced. Based on information
theory, the following criterion is defined to evaluate the fitness of a
selected subset of features:

max

(
s

∑
m=1

H(Xim)−
2

s − 1 ∑
1≤m1<m2≤s

I(Xim1
; Xim2

)

)
(1.3)

where s is the number of desired features, H(Xim) the entropy of the
mth feature in the subset Xi and I(Xim1

; Xim2
) the mutual information



Prediction of smokiness of scotch whisky with HSI 7

between the two features. The criterion maximises the information
carried by each feature in the subset individually while minimising
the redundant information carried by the whole subset. The crite-
rion is therefore called Maximum-Information-Minimum-Redundancy
(MIMR). To optimise the maximisation function, an adapted version of
the Clonal Selection Algorithm (CSA) is employed as a heuristic. As
shown in [14], the MIMR-CSA algorithm outperforms state of the art
algorithms in classification applications for hyperspectral remote sens-
ing data. Its suitability for regression is to be tested here.

5 Data analysis and results

To visually inspect if there are any spectral differences in the NIR de-
tectable, three batches of unpeated malt and heavily peated barley with
a phenol concentration of about 120 ppm have been imaged and the
mean spectra pre-processed with SNV have been plotted. This can be
seen in Figure 1.2. The spectra show a very similar shape but differ in
intensity in some spectral regions, especially in bands between 950 and
1120 nm. These differences are likely to be the result of slight shift into
“red” of the peated barley. The smoked grains tend to be a bit more
brown than the unsmoked grains.
Support Vector machines have been applied successfully to HSI data
for classification in the past [15] and new techniques including multi-
kernel learning [16] and deep-learning based approaches [17] show that
there is more potential for improved algorithms. To estimate the phenol
concentration, Support Vector Regression (SVR) has been applied. SVR
has been chosen as it has shown good results for regression analysis on
hyperspectral data in the past [18–20], is especially capable of handling
non-linearities within the data [21] and only needs a relatively small
training data set to deliver robust results [22]. A Radial Basis Func-
tion kernel (RBF) has been used whose parameters have been tuned
via grid search. The goal here is not to determine the most effective re-
gression method but to prove the feasibility of phenol level estimation
through regression analysis. Although the division of phenol concen-
trations in three levels would imply a classification approach, future
applications may include a more detailed estimation of the concentra-
tion rather than grouping it in high, medium and low levels. Thus,
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(a) (b)

Figure 1.2: (a) Barley samples. Unpeated grains are on the left column and
very heavily peated on the right. (b) Spectra acquired by taking the mean over
all three samples of each class and applying SNV as pre-treatment.

it is to determine the effectiveness of regression for this application.
To evaluate the regression results, the Coefficient of Determination (r2)
has been calculated as follows:

r2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)

(1.4)

where yi is the actual value, ŷi the predicted value, ȳi the mean of all
original values and n the number of samples. Additionally, the Root
Mean Squared Error (RMSE) has been calculated. A 20/80 % train-
ing/testing set has been used and split randomly. To compensate for
statistic variations between the selected training sets, this process has
been repeated 10 times. MIMR-CSA has been applied with an increas-
ing number of features starting from two to 256. MIMR-CSA has been
applied three times on each of those selected sets resulting in a total
number of 30 repetitions per number of selected features. The results
of the regression can be seen in Figure 1.3.
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(a) (b)

Figure 1.3: Regression results with increasing amount of selected features for
phenol level prediction with SVR. (a) r2 values stabilise around a value of 0.77
(b) The RMSE stabilises around a value of around 5 ppm.

6 Conclusion and future work

While it could be shown that some spectral differences between peated
and unpeated barley can be detected with NIR-SWIR HSI, it is not yet
clear if these differences derive from chemical absorption of the phenol,
from physical scattering or from colour differences. Scattering effects
have been tried to be minimised via spectral pre-processing. It could
be shown that the measured spectra of three different phenol levels can
to a certain extent be detected via regression analysis. It is likely that
the differences detected are caused by colour information rather than
spectral absorption of the phenols, but this cannot be verified at this
stage. These three levels represent general working levels for whisky
production. A minimum RMSE of about 5ppm is still a relatively high
number considering the working range of the three classes. Additional
samples, especially in more levels of concentration in between the cur-
rent ones are likely to decrease this value. Applying a state-of-the-art
band selection algorithm for hyperspectral data on this dataset showed
that most information needed for regression lies in only about 75 of
the 256 bands. This number is still too high for determining selected
bands for a multispectral camera, but the computational cost can be
drastically reduced. The presented results encourage us to put more
work into the phenol detection via HSI.
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Abstract The standard analytical methods for the determination
of total protein content, which is an important measure of qual-
ity in many food products, can be easily miss leaded by adding
nitrogen deriving from different source driving to serious adul-
teration of the various foods. Therefore, there is an immense
need to develop rapid method to detect multiple adulterations
with handheld instruments. The objective of the present work
is to develop multivariate models for simultaneous prediction of
melamine and urea in wheat gluten samples with a handheld
NIR scanner. Wheat gluten samples from ten different man-
ufacturers from different part of the world were mixed with
melamine and urea in different ratios to provide a robust enough
sample set for spectral data acquisition. In spite of the natural
separation based on the geographical origin of the gluten sam-
ples it was possible to build accurate models for simultaneous
quantification of common food adulterants, melamine and urea,
in multiple mixtures of gluten. The results show Tellspec En-
terprise Food Sensor as a rapid, cost effective and user friendly
tool can be used for the determination of melamine and urea
adulteration in wheat gluten down to 1 % concentration.

Keywords: Adulteration, near infrared spectroscopy, principal
component analysis, partial least square regression.
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1 Introduction

Protein content is very important in many food products due to its
high impact on the sensory and rheological characteristics, moreover,
due to its nutritional value [1]. Therefore, total protein content has
been used as a measure of quality of many raw, intermediate and fi-
nal products in the food industry. Standard analytical methods for
total protein determination are based on measurement of nitrogen con-
tent (e.g. Kjeldahl, Dumas), thus, cannot distinguish if nitrogen derives
from different source [2,3]. This fact leads to adulteration of the various
foods with nitrogen reach compounds. Urea and melamine are known
to be commonly used adulterants which can cause intoxication as the
example showed in China in 2008. The addition of these chemicals
cannot be detected by the standard methods. There are available an-
alytical methods such as gas chromatography (GC), high-performance
liquid chromatography (HPLC) and more [4–6] to quantify the specific
adulterants but these methods are specific, expensive and laborious.
Therefore, the development of cost-effective and rapid measurement
techniques to identify and quantify melamine and urea as food adulter-
ants are desired [7]. Mid- (MIR) and near-infrared (NIR) spectroscopy
was found as an effective tool to detect melamine in dairy products,
such as infant formula, milk powder, or liquid milk [8]. Surface en-
hanced Raman spectroscopy was also showed to be applicable to screen
foods and detect melamine contamination in wheat gluten, chicken
feed, cakes and noodle with lower than 1 % accuracy [9]. NIR spec-
troscopy combined with PLS-DA was also used to identify the pres-
ence of melamine in milk [10]. Yang et al. [11] showed mid-infrared
spectroscopy can be used to quantify urea with linear model due to
its molecular fingerprint in mid-infrared region. Near-infrared Raman
spectroscopy was presented as applicable method for quantitative de-
termination of urea adulteration in milk [12]. Several reports show NIR
spectroscopy has been successfully applied for the detection and quan-
tification of simultaneous detection of mixed adulterations, too [13].
However, there is an immense need to develop rapid method to detect
multiple adulterations with handheld instruments. The objective of the
present work was to develop multivariate models for simultaneous pre-
diction of melamine and urea in wheat gluten samples based on data
acquired with handheld NIR scanners and a user friendly mobile app.
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2 Materials and Methods

Wheat gluten samples from ten different manufacturers were mixed
with melamine (M) and urea (U) in different ratios to get total con-
tamination from 0 to 18 % based on the following; M:U = 1:1 in 1, 2,
5, 10, 18 %; M:U = 2:1 in 2, 5, 10, 15 %; M:U = 1:2 in 2, 5, 10, 15 %;
only U in 0.5, 1, 2, 4, 8 %; and only M in 0.5, 1, 2, 4, 8 % concentration.
Total number of samples analyzed was 219. The samples were stored
and scanned in plastic bags. The NIR spectra of the samples were col-
lected with two Tellspec Enterprise Food Sensor g1 scanners (scanner
1 and scanner 2) (Tellspec Inc., Toronto, Ontario, Canada) in several
sessions acquiring multiple spectra per sample in each session, with 2
nm spectral step in the 950–1630 nm spectral interval. Various sam-
ple pre-processing methods and multivariate data analyses techniques
were used to process the spectral data. Principal component analysis
(PCA) [14] was used to describe multidimensional patterns of the data
and to discover outliers. Partial least squares regression (PLSR) was
used for quantitative models [15] to evaluate the relationship between
the melamine or urea concentration and NIR spectra. The PLSR models
were optimized for both scanners separately by using cross-validation,
where data of single samples with their repeats were left out of the cal-
ibration and were used for validation, iteratively. Finally, the trained
models of scanner 1 were tested with data of scanner 2, and vice versa,
to achieve independent prediction.

3 Results and Discussion

Smoothed (Savitzky-Golay filter) and normalized average spectra of
pure melamine, urea and wheat gluten samples were calculated and
plotted to test the performance of the handheld NIR scanners for
the detection of the absorption peaks of the tested main chemicals
(Fig. 2.1).

Average absorbance spectrum of melamine shows peaks at 1021,
1473, 1494 and 1522 nm, while that of urea at 1031, 1231, 1305, 1413,
1470, 1499 and 1529 nm and of wheat gluten at 1029, 1205 and 1506
nm which is in a good harmony with the results available in the corre-
sponding references [16–18].
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Figure 2.1: Smoothed (Savitzky-Golay filter) and normalized average spectra
of pure melamine (nmelamine = 50), urea (nurea = 50) and wheat gluten (ngluten
= 1675) samples acquired with scanner 1 with their assigned absorption peaks.

The calculation of PCA models were performed both merging the
data of scanner 1 and scanner 2 and separately to discover the mul-
tidimensional patterns of the spectral datasets. Results of PCA calcu-
lated on the averaged, smoothed (Savitzky-Golay filter) and pretreated
spectra of pure and adulterated wheat gluten samples using the range
between 950 and 1630 nm acquired with scanner 1 is shown in Fig. 2.1.
Score plot of PC1 and PC2 presenting more than 60 % of the spec-
tral variation presents good tendency of separation based on the to-
tal gluten content of the pure and adulterated wheat gluten samples
(Fig. 2.2 a) mainly based on PC1. Separation of two main groups was
observed in the PCA score plots in the case of data of both scanners
(Fig. 2.2 b, for scanner 1). The grouping of samples was caused by
the spectral differences of the wheat gluten samples originated from
Europe and Asia.

Further analysis were performed coloring the PCA scores based on
melamine or urea concentration and results showed separation based
on the concentration of the adulterants in PC1 and PC2 plain similar to
the result of separation of the different concentration wheat gluten. The
wavelengths having highest importance of the separation of the sam-
ples containing different concentration of adulteration i.e. melamine
and/or urea, can be discovered based on the loadings of the PCA mod-
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Figure 2.2: PCA score plots (PC1-PC2) of pure and adulterated wheat gluten
samples calculated by the averaged, smoothed (Savitzky-Golay filter) and pre-
treated spectra of the 950–1630 nm range (n = 2314) acquired with scanner 1. a)
Represents the score plot colored by wheat gluten concentration. b) Represents
the score plot colored by origin of wheat gluten samples.

els (Fig. 2.3 for scanner 1). Loadings of PC1 and PC2 beside others
highlights the importance of 1030, 1218, 1302, 1326, 1468, 1490 and
1532 nm which are in the ranges of the absorption peaks of the main
components of the mixtures i.e. wheat gluten, melamine and urea.

The pattern encoded in the spectral dataset revealed by the ex-
ploratory data evaluation gives the rise to build regression models
for simultaneous quantification of melamine and urea concentration
in wheat gluten samples.

Results of the PLSR model built to predict melamine concentration
based on data of scanner 1 is shown in Fig. 2.4 a,. High coefficient
of determination (R2) was found in model training (R2tr = 0.9877) and
as well as in cross-validation (R2cv = 0.9858). The error of training
(RMSEC) and cross-validation (RMSECV) were 0.3182 and 0.3429 %,
respectively. The independent prediction performed with the data of
scanner 2 (Fig. 2.4 b,) also proved the high accuracy and robustness of
the model (R2

pr = 0.9818 and RMSEP = 0.39 %). Similar results could
be achieved with the model built on the data of scanner 2; parameters
of the model, validation and prediction are R2tr = 0.9815, RMSEC =
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Figure 2.3: PCA loadings plot (PC1-PC3) of pure and adulterated wheat gluten
samples calculated by the averaged, smoothed (Savitzky-Golay filter) and pre-
treated spectra of the 950–1630 nm range (n = 2314) acquired with scanner
1.

0.3927 % and R2cv = 0.9798, RMSECV = 0.104 % and R2
pr = 0.9775 and

RMSEP = 0.43 %, respectively.
Models built to predict urea concentration were also found to be

reliable. PLSR model built on the data of scanner 2 showed slightly
better accuracy than that of scanner 1 (Fig. 2.5).

The coefficient of determination for the training (R2tr) and for
the cross-validation (R2cv) were found 0.9163 and 8773, respectively
(Fig. 2.5 a,), while for the independent prediction based on the data
collected with scanner 1 (R2

pr) was 0.9034 (Fig. 2.5 b,). The average
prediction error of training (RMSEC = 0.8944 %) and cross-validation
(RMSECV = 1.0597 %) as well as of independent prediction (RMSEP
= 0.9607 %) confirmed that the determination of urea concentration in
wheat gluten powder is also possible with 1 % average prediction er-
ror beside the changing concentration of melamine with the handheld
food scanner.

Regression coefficient vectors of PLSR models provide information
about the wavelengths of highest importance in the quantitative
regression models (Fig. 2.6).
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Figure 2.4: Calibration, cross- and independent validation of PLSR on
melamine concentration in wheat gluten samples. a) Results of calibration
model (blue color) and cross-validation (red color) built on data of scanner 1.
b) Results of independent prediction based on data of scanner 2.

The coefficient vector of the regression model built for the determina-
tion of the melamine concentration in wheat gluten samples (Fig. 2.6
a,) proves the high importance of the wavelengths 1472, 1492 and 1522
nm which are the characteristic absorption peaks of melamine. The
wavelengths found in the regression vector of the urea model (Fig. 2.6
b,) at 1042, 1224, 1304 nm and in the range between 1468 and 1538 nm
also obviously present that the spectra of the adulterated wheat gluten
samples acquired with the handheld food scanner hold the information
of the absorption of urea.

4 Conclusions

Spectra of pure melamine, urea and wheat gluten samples showed that
the handheld NIR scanner is applicable to accurately measure the char-
acteristic absorption peaks of the tested chemicals. Results of principal
component analysis presented good tendency of separation based on
the total gluten content of the pure and adulterated gluten samples
based on their NIR spectra. Separation of two main groups was ob-
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Figure 2.5: Calibration, cross- and independent validation of PLSR on urea
concentration in wheat gluten samples. a) Results of calibration model (blue
color) and cross-validation (red color) built on data of scanner 2. b) Results of
independent prediction based on data of scanner 1.

served in the PCA score plots, which was caused by the spectral dif-
ferences of the gluten samples originated from Europe and Asia. In
spite of this natural separation it was possible to gain robust models
to predict melamine and/or urea concentration accurately. Accurate
models were built for simultaneous quantification of melamine and
urea, in multiple mixtures of gluten. The achieved results prove that
the Tellspec Enterprise Food Sensor as a rapid, cost effective and user
friendly tool can be used for simultaneous quantification of the most
common food adulterants in wheat gluten powders at or lower than
1 % adulteration level.
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Abstract There is an expressed need for non-destructive user-
friendly tools that can help customers and various stakeholders
of the food market to identify and qualify samples rapidly and
accurately. The identification of high quality meat cuts and the
determination of aging are important challenges where hand-
held near infrared spectroscopy can provide perfect solutions.
The objective of this study was to develop multivariate models
for differentiation of beef cuts and prediction of the aging time
based on the NIR spectra acquired with a handheld Tellspec En-
terprise Food Sensor. Sirloin and tenderloin samples were stored
at 4°C in plastic bags for 10-day period during two experiments,
and spectra were recorded daily. The investigated sirloin and
tenderloin samples were separated in principal component anal-
ysis, and it was possible to use the principal components in a
supervised classification (linear discriminant analysis) to build
model on meat authentication. 85.37 % of the sirloin and tender-
loin samples were classified correctly in independent validation
tests. Multivariate calibration on aging was developed for the
separate meat types. After omitting the first and last days of the
experiments, accurate calibration models were built on the aging
of beef samples. Accordingly, 1.1 or 1.5 days of precision was
achieved during independent predictions for aging time of sir-
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loin or tenderloin, respectively. Our results proved that the Tell-
spec Enterprise Food Sensor provides the possibility for rapid
and non-destructive determination of meat type and stage of ag-
ing.

Keywords: Portable, near infrared spectroscopy, meat, classifica-
tion, calibration, storage.

1 Introduction

The quality of beef highly depends on the cut [1] and aging time [2].
Consumers are willing to buy valid product of known origin if it has
special palatability or nutritional merit, even if it has a higher price [3].
Among other motives, the high commercial value of meats which are
more valued by consumers leads to an expressed need for fast, ac-
curate and objective methods to identify the different types of meats
by species and cuts, and to determine the post mortem aging time.
Near infrared (NIR) spectroscopy as a cost effective analytical method
is widely used in food industry for measurement of quality attributes.
The NIR technique is a rapid and non-destructive method requiring
little or no sample preparation, still, it provides high accuracy in many
applications. Contrary to wet chemistry, no reagents are required and
no waste is produced.The first application of NIR technique to detect
properties of meat was reported five decades ago [4], and thirty years
later on-line applications were developed for food industry [5]. NIR
spectroscopy is among the most progressive methods frequently used
for qualitative and quantitative analyses of various meats [6]. Nowa-
days, the miniaturized NIR spectrometers are used in many fields of
research, however, there is still a vast need for simple low cost NIR
instruments usable by non-technical personnel in everyday situations.
The goal of the present study was to develop multivariate models for
differentiation of different beef cuts and prediction of the aging time
based on the NIR spectra acquired with a handheld scanner.

2 Materials and methods

Twelve slices of beef tenderloin (n = 6) and sirloin (n = 6) were stored
at 4°C in sealed plastic bags over a 10-day period (Fig. 3.1). Meats
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Figure 3.1: (a): Beef tenderloin; (b): sirloin samples of the experiment 1, pre-
pared for storage.

Figure 3.2: (a): The Tellspec Enterprise Food Sensor handheld NIR spectrom-
eter; (b) the acquired spectra (n = 600) of tenderloin and sirloin samples of
experiment 1.

were purchased from a Hungarian slaughter house, slices were cut and
packed right after dissection, following a 24 hours post slaughter chill-
ing. The experiment was performed twice with one month difference
(experiment 1 and experiment 2) in order to validate the quantitative
and qualitative NIR models using independent data (total n = 24).

The NIR spectrum of each slice was acquired through the plastic
bag, using a Tellspec Enterprise Food Sensor (Tellspec Inc., Toronto,
Ontario, Canada) (Fig. 3.2a). Spectra of each slice were recorded daily
with 2 nm spectral step in the 950–1630 nm spectral interval, using
the Tellspec application for mobile devices. Figure 3.2b shows the raw
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spectra of experiment 1 (n = 600). Various sample pre-processing meth-
ods and multivariate data analysis techniques were used to process the
spectral data [7]. Principal component analysis (PCA) was used to
detect spectral outliers and describe the multidimensional pattern of
the dataset [8]. Supervised classification models were built with linear
discriminant analysis (LDA) to perform pre-defined grouping of ten-
derloin and sirloin samples based on the spectral properties [7]. Partial
least squares regression (PLSR) was used to develop NIR calibration
models on the aging [9]. Cross-validation was used for optimization of
the models, when data of single days were left out of the calibration
and were used for validation, iteratively. Independent validation was
applied between the two experiments when models of one experiment
were tested with the data of the other experiment. Data processing and
evaluation was done with the R Project (www.r-project.org).

3 Results and discussion

Considerable spectral difference was observed between the NIR spectra
of tenderloin and sirloin, and according to aging of the meat samples.
Daily NIR data (smoothed and normalized) were evaluated with PCA
to see the spectral differences of the two meat cuts. PCA score plot
of Fig. 3.3a shows the separation of tenderloin and sirloin samples on
one day. The separation is along PC1 that describes 92.5 % of the total
spectral variation. PC1 loading was dominated by fat (C-H) absorp-
tion region around 1210 nm, showing the differences in intramuscular
fat content of the two meat types. NIR data of the whole experiments
were evaluated with PCA to check the spectral variation according to
aging. Figure 3.3b shows the PCA score plot of the sirloin samples
of experiment 1. Colors indicate the date of aging (from red to blue),
showing that PC2 covering 17.8 % of total spectral variation highlights
the spectral regions changing considerably during aging. PC2 load-
ings highlighted water absorption bands in 1380 and 1450 nm regions
showing the changes of water structure.

The separation of the two cuts in the PCA score plot considering
the whole dataset of experiment 1 is shown in Fig. 3.4a. The PCA
scores were used as input variables to build the LDA models provid-
ing orthogonal variables for identification of sirloin or tenderloin spec-
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Figure 3.3: (a): PCA score plot showing data of one day with a clear separation
of the tenderloin and sirloin samples along PC1; (b): PCA score plot of the
sirloin samples of experiment 1 showing the trend of aging along PC2.

tra. The models were calculated on one of the two experiments and
were tested with the data of the other experiment (Fig. 3.4b). The ra-
tios of the correctly classified samples during the LDA model building
processes were 93.55 % and 93.23 % for experiment 1 and experiment
2, respectively. The hit ratios of the two validation tests of the LDA
models were 83.76 % and 86.97 %, respectively.

The PLSR calibration models on aging were prepared with sirloin
and tenderloin spectra separately. Models were trained on one of the
two experiments applying cross-validation based optimization where
one day’s data were left out iteratively, and spectra of the other ex-
periment were used for independent predictions to validate the model.
More accurate predictions were achieved for sirloin then for tenderloin.
The root mean square error of prediction (RMSEP) was less than 2 days
for sirloin, and 2.5 days for tenderloin. As Fig. 3.5 shows, non-linear
change of the meat samples was observed during aging. Accordingly,
PLSR models were built on the middle of the investigated period (2-9
days), and average accuracy (RMSEP) of the independent predictions
improved to 1.13 days for sirloin and 1.48 days for tenderloin (Fig. 3.6).

4 Conclusions

The aging and the type of the meats have significant effect on the NIR
spectra recorded with the handheld Tellspec Enterprise Food Sensor.
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Figure 3.4: (a): PCA score plot of the beef spectra recorded in experiment 1,
showing the difference of sirloin and tenderloin along PC1 that describes 80 %
of the total spectral variation; (b): results of the classification of sirloin and ten-
derloin samples when the LDA model was built on the spectra of experiment
2, and it was validated with 86.97 % hit ratio using the independent samples of
experiment 1.

The investigated sirloin and tenderloin samples were separated based
on the spectral information related to C-H bonds, i.e. intramuscular
fat. It was possible to use the principal components in a supervised
classification to build model on meat authentication. 85.37 % of the sir-
loin and tenderloin samples were classified correctly in independent
validation tests. Meat type has bigger effect on the NIR spectra when
compared to the effect of meat aging, thus, it is reasonable to calibrate
on aging within the separate meat types (sirloin or tenderloin). Due to
the non-linear changes of meat during the aging process, it was possi-
ble to achieve calibration models on meat aging with an accuracy of 2
or 2.5 days for sirloin or tenderloin, respectively. To decrease the non-
linearity, calibration models were built after omitting the initial and
final days of the experiments. This resulted 1.1 or 1.5 days of precision
during independent prediction for aging time of sirloin or tenderloin,
respectively. Our results proved that the Tellspec Enterprise Food Sen-
sor provides the possibility for rapid and non-destructive determina-
tion of meat type and days of storage, i.e. stage of aging.
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Figure 3.5: (a): Calibration (blue) and cross-validation (red) results of the PLSR
model prepared on aging days of sirloin samples of experiment 2; (b): pre-
diction results of the above mentioned PLSR model when sirloin samples of
experiment 1 were used as independent sample set. (R2tr/cv/pr: coefficient
of determination in calibration training/cross-validation/independent predic-
tion, RMSEC/RMSECV/RMSEP: root mean square error of calibration/cross-
validation/prediction, LV: number of latent variables).
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Abstract To speed-up monitoring of the hygienic status of meat,
fast and non-invasive measuring techniques are required. The
feasibility of a hand-held fluorescence device (freshdetect) was
investigated to quantify the bioburden of minced pork meat. In
total, 144 minced pork samples from 18 batches were stored at
2°C for up to 8 days. Fluorescence spectra, L*a*b* colour and to-
tal viable mesophilic plate counts (TVC) were measured in par-
allel during this period. Correlation of the fluorescence spectra
with log(TVC/g) using partial least squares regression yielded
cross-validated predictions with R²cv = 0.72 and a prediction er-
ror of RMSECV = 0.97 log(TVC/g). Cross-validated limits of
detection and quantification were determined as 1.03 and 3.38
log(TVC/g), respectively. This would allow for a quantification
well below the alarm threshold of 5.7-6.7 log(TVC/g). The spec-
tra correlated also well with storage time (R²cv = 0.81), but less
strong with L*a*b* colour.

Keywords: Meat inpection, fluorescence spectra, minced pork.

1 Introduction

Minced meat is a very perishable commodity requiring special atten-
tion with respect to hygiene requirements and control of bioburden.
Conventional analysis of bioburden is based on destructive sampling
and methods such as colony counts or flow cytometry which are labour
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intensive, time consuming and expensive. With these restrictions, they
are only suitable for a random monitoring, but not for on-line con-
trol. In this regard, spectroscopic methods are a promising alternative
as they are fast, non-destructive and allow for on-line applications. A
number of spectroscopic methods such as fluorescence, FT-IR, NIR or
Raman have been shown to be suitable for an assessment of the micro-
bial status of meat.

Fourier transform infrared (FT-IR) spectroscopy using attenuated-
total reflectance (ATR) was proven to rate the microbial cell density
on minced beef [1], minced pork [2] or beef fillets [3–5]. Quantifi-
cation was shown using partial least squares regressions (PLSR) and
artificial neural network (ANN) models. While FT-IR is fast and non-
invasive, a number of drawbacks are limiting the applicability of the
mid-infrared technology in practice. For example, the ATR crystal is
brittle, toxic and water is strongly interfering. Complementary infor-
mation to the mid-infrared is obtained with Raman spectroscopy, but
avoiding interference from water and the material restrictions of IR.
Microbial spoilage of pork was qualitatively detected with a handheld
Raman scanner [6, 7] and it was shown that PLSR models were able to
predict microbial spoilage as accurately from Raman spectra as from
the FT-IR spectra [8].

Similarly, NIR hyperspectral imaging was shown to allow for a pre-
diction of bacterial surface counts [9–11]. With pork (n = 51) as exam-
ple, NIR-hyerspectral imaging proved feasibility of predicting biobur-
den with R²cv = 0.82 and a prediction error of 0.83 log(TVC/cm²) [10].

The prediction of bacterial surface counts by fluorescence spec-
troscopy is based on different fluorophors depending on the excitation
wavelength [12–16]. With 280 and 380 nm, fluorescence of NAD(P)H,
flavins, Lipids and porphyrins are excited and used for the correla-
tions [14]. The authors obtained prediction errors below one log-
unit, but the number of samples was very low (n = 28). Using syn-
chronous fluorescence spectroscopy with excitation between 250 nm
and 500 nm, aromatic amino acids were excited. Given a low num-
ber of samples (n = 21) rather optimistic prediction errors of 0.2 log
TVC/cm² were reported [15]. Oto et al. have correlated tryptophan
and NADPH fluorescences of pork (n = 23) with ATP content and
bioburden based on excitation-emission matrices (EEM) resulting in
cross-validated coefficients of determination of R²cv of 0.84-0.88 [13].



Assessment of bioburden 35

Similarly, Yoshimura et al. employed EEM data exploiting signals of
a variety of fluorophores to quantify bioburden of beef samples (n =
60) [12]. This work showed that five endogeneous fluorophors (tryp-
tophan, NAD(P)H, retinol, flavins und porphyrins) were used in the
predictive models. The authors achieved in a calibration range of 1.8 to
7.8 log(TVC/cm²) errors of prediction of 0.8 log(TVC/cm²). However,
acquisition of excitation-emission matrices is time-consuming and thus
difficult to transfer into a rapid application. An approach which is con-
centrating specifically on the fluorescence of porphyrins [16] has the
advantage that the detection system can be less complicated and speed
up the measurement. Schneider et al. have shown that protoporphyrin
XI as well as the zinc and magnesium complexes thereof are suitable
for a detection of meat spoilage [16, 17].

To transfer these techniques from the laboratory to real-world pro-
cesses, portable devices were developed. In a generic approach, the
development of mobile instrumentation for fluorescence, reflectance
and Raman spectroscopy was pursued [18]. Two prototype instruments
were developed from this project: a handheld Raman probe head [6,19]
and a prototype mobile fluorescence device [17]. The latter used a blue
ray laser diode with emission at 405 nm for excitation and an 18 around
1 fibre-optic probe head for delivery and collection of the signals. The
fluorescence signals were bandpass-filtered to 570–650 nm to detect
specifically the fluorescence of porphyrins, namely protoporphyrin IX
and Zn-protoporphyrin IX [17]. The freshdetect device is a further
development of this fluorescence device. It is robust and handheld,
uses 405 nm excitation, fibre-optic signal collection, and the fluores-
cence signals are recorded by a miniaturised spectrometer in the range
460 to 900 nm. Ait-Kaddour et al. developed a portable spectrofluo-
rimeter based on three UV excitation wavelengths (280, 320 and 380
nm) delivered by a fibre-optic probe which was connected to a minia-
ture spectrograph [14]. The authors investigated the quantification of
spoilage of minced beef vacuum-packaged and stored at 5°C and 15°C
over a period of eleven days on the basis of one mixed sample (n =
1) and 28 measuring days. Based on this small sample, quantification
was shown feasible with cross-validated coefficients of determination
ranging from 0.5 to 0.99.

The transfer to robust and portable devices, however, is still an ongo-
ing challenge since they require in general a calibration for their specific
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applications. Previous work has mainly focused on demonstrating the
feasibility and evaluating performance. In general, however, data sets
were too small to allow for robust predictions. Therefore, further work
is required to enlarge the field of applications and to build up larger
data sets for robust calibration of the devices.

The aim of this work was to show the feasibility of quantifying the
bioburden of minced pork with a new prototype of the hand-held
freshdetect device. Minced pork was chosen for the experiment be-
cause of its relevance as a very perishable commodity. Particularly
with regard to the coarse mixture of lean meat and fat, the textural in-
homogeneity of minced meat is a challenge for the detection method.
As this inhomogeneity can also be monitored by the colour, the inter-
dependence between fluorescence spectra, colour and bioburden was
also investigated.

2 Materials and methods

To standardise origin and age of the meat, cuts from 18 female pigs, all
crossbred of German landrace and Piétrain were obtained directly from
an abattoir at day 1 after slaughtering. Cuts from the leg were chosen
which are commercially used for minced meat. In total 18 batches
(1 per animal) of minced pork were prepared from these cuts on day 1
after slaughtering using a Carneoline FW N/22/82 (Bizerba, Germany)
mincing machine with 3 mm sieves. From these batches, 144 samples (8
per animal) were prepared in 6 measuring series and they were stored
in petri dishes at 2°C from 1 to 8 days allowing for bacterial growth.

Fluorescence spectra, colour and total viable mesophilic plate counts
(TVC) were daily measured during this period. Eight fluorescence
spectra and 5 white light spectra were recorded per sample with the
freshdetect device (Freshdetect GmbH, Germany) with an excitation
wavelength of 405 nm or a white light LED and spectra were recorded
from 460 nm to 900 nm. As a reference, colour readings with three
repetitions each were taken at 5 different positions with a Minolta
Chromameter CR-400 using the following settings: D65, 2° observa-
tion angle and normalization to a white standard (Y = 88.3, x = 0.3191,
y = 0.3367). On each measuring day, microbial reference analyses were
performed in duplicate with 5 cm2 sub-samples which were taken from
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Table 4.1: Summary results of the bioburden log(TVC/g) of 144 samples.

the minced meat in the petri dishes. The subsamples were weighed, ho-
mogenized in peptone water and analysed with the plate count method
according to §35 LMBG, DIN 10161 part 1.

Dark spectra were subtracted before fluorescence spectra were aver-
aged per sample and normalized in intensity using the fluorescence at
612 nm of a lumilass-R7 filter as standard. The fluorescence spectra
were pre-processed by Savitzky-Golay smoothing (order 0, filter width
15), standard normal variate (SNV) and mean-centering and then they
were correlated with the logarithm of the bioburden using partial least
squares regression (PLSR) using MATLAB 7.9.0 R2009b software (The
Mathworks Inc., Natick, MA, USA) and PLS Toolbox 7.5 (Eigenvector
Research Inc., Wenatchee, WA, USA). For cross-validation of the mod-
els, the random subset method with 10 data splits and 20 iterations was
employed.

3 Results and discussion

The kinetics of bacterial growth during storage and the distribution
of the bioburden per day are shown in Fig. 4.1. Data are not normal
distributed (see Tab. 4.1). Therefore, the median is used to describe the
trends. The initial bioburden of the samples started at 4.34 log(TVC/g)
at day 1 and bacteria grew up to 7.40 log(TVC/g) on day 8 (Fig. 4.1).
The bacterial growth was lagging during the first 3 days with 0.05 log
units per day (dotted line). Exponential growth started at day 4 at a
rate of 0.96 log units per day (dashed line, Fig. 4.1). On average, the
critical threshold of 5.7 log(TVC/g) was reached at day 6.

The fluorescence spectra correlated well with bioburden, R²cal = 0.80
(see Tab. 4.2 and Fig. 4.2). The cross-validated PLSR model (R²cv =
0.72) was able to predict the logarithm of total viable counts with an
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Figure 4.1: Bioburden of minced pork versus storage time at 2 °C. Lag and
exponential phases are indicated by dotted and dashed lines.

RMSECV = 0.97 log (TVC/g) which is close to the error of the refer-
ence method. The congruence between calibration (filled circles) and
cross-validation (open circles) was in general good. However, larger
discrepancies were observed at bioburdens larger than 8 log(TVC/g).
This could be due to an underrepresentation of such high bioburdens
in the data set. On the other hand, bioburdens at this level are read-
ily perceived organoleptically. In any case, the lower range, especially
around and below the alarm thresholds, is most relevant for the appli-
cation.

To estimate the suitability of this PLSR calibration, the limits of de-
tection (LOD) and of quantification (LOQ) were calculated according
to DIN 32465 at a 95% confidence level as LOD = 1.03 log(TVC/g) and
LOQ = 3.38 log(TVC/g). This would allow for a quantification well
below the alarm threshold.

The fluorescence spectra even correlated better with the storage time
(R²cv = 0.81), while the correlation with L*a*b* colour was less strong,
see Tab. 4.2. A cross-correlation of the five parameters showed medium
to strong interdependences between the parameters, see Tab. 4.3. Stor-
age time showed strong positive correlation with bioburden and neg-
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Figure 4.2: PLSR prediction of the bioburden using fluorescence spectra of the
freshdetect device versus measured bioburden, filled circles: calibration, open
circles: cross-validation, colours are encoding the storage time.

Table 4.2: Results of PLSR correlations of fluorescence spectra with bioburden
(log(TVC/g)) and storage time (d) and of white light spectra with L*a*b* colour.

ative correlation with the a* value. Bioburden was also moderately
negative correlated with the a* value. The b* value was moderately
correlated with storage time and a*, but faintly with bioburden. It is
very likely that much of this interdependence is due to the measur-
ing protocol which links ageing of the samples to the development of
bioburden and changes of the colour parameters. On the other hand,
the L* showed almost no correlation with bioburden or storage time.
This could be interpreted as if there was no correlation or as the vari-
ance in the L* incurred by the coarse mixture of meat and fat was so
high that a possible correlation with storage time or bioburden was lost.
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Table 4.3: Correlation coefficients of the cross-correlations of bioburden, stor-
age time and L*a*b* colour.

The measuring and sampling protocol has to be changed to overcome
some of these interdependences.

4 Summary

In this feasibility study which was based on 144 samples generated
from 18 independent batches, the freshdetect device proved suitable
for a non-invasive evaluation of the microbial status of minced pork.
The LOD was determined as 1.03 log(TVC/g) and the LOQ as 3.38
log(TVC/g), respectively. Thus, the quantification of the bioburden
was shown to be feasible with an error of 1.0 log(TVC/g) at a 95%
probability level well below the alarm threshold of 5.7 log(TVC/g).

The results of this study are preliminary as only one crossbred (the
most common one) was used as source of meat. The number of animals
and independent samples, however, is larger than in most of the pre-
viously published studies. Furthermore, the measuring protocol has to
be altered to reduce the interdependence of storage time with bacterial
growth and changes in the colour. Future work will have to confirm
the validity of the PLSR correlation with independent samples and to
improve the robustness of the model by complementing the data set
with samples covering more biological variance (different animals and
origins).
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Abstract Increasing waste of electrical and electronic equipment
(WEEE) is a major challenge of today’s society. It affects society
in several ways and needs to be solved to prevent loss of im-
portant materials and to reduce environmental contamination.
Tackling this challenge requires affordable and reliable techno-
logical solutions, which enable recycling in a cheap and easy
manner.

One step to be taken is the recycling of printed circuit board
assemblies (PCBAs), which are common in many of the high
level devices such as computers or mobile phones. PCBAs in-
clude a huge amount of different components and thus belong
to the most heterogeneous waste a recycler has to handle. The
approach described in this paper is directed towards a reduction
of the diversity by identification of specific components on the
PCBA, which contain specific materials of interest. These com-
ponents are then available for automated, selective disassembly.

In this contribution classification results of a special descriptor
developed for printed circuit boards are shown for three differ-
ent classification algorithms. The descriptor is based on rather
discriminative simple geometric and color features. The neces-
sary data is obtained by a pilot setup, which is also described
briefly, and processed with Waikato Environment for Knowledge
Analysis (WEKA), a tool for processing big data.

Keywords: Machine learning, big data, descriptor, classification.
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1 Introduction

During the last 20 years the amount of technology used daily has ex-
perienced a huge increase. This is not only manifested by the suc-
cess of modern IT companies, but also by the massive amounts of per-
sonal electronic devices such as smartphones or computers used widely
throughout the population. In particular, the timespan for new tech-
nologies to be in widespread use is decreasing, which can be seen by
the rising number for tablet users which increased by a factor of 21.4
within the last seven years [1]. The downside of this development is
the increase in waste from discarded technological products. Due to
the wide distribution of such systems and their short life cycles this
becomes an increasingly more severe problem. For instance in more
than 86 % of the German households there is currently at least one per-
sonal computer [2]. The total amount of WEEE per person amounted
to 21.6 kg in Germany in 2014 [3].

Parts of this waste contain high amounts of precious metals and rare
earth elements, notably the electronic components like those on PCBAs.
The current recycling rates for these elements from this type of elec-
tronic waste are rather low, which can be seen in [4]. The recycling rate
of tantalum, for example, is close to zero, although tantalum is used
in capacitors of a certain shape and type mounted typically to special
PCBAs [5]. By specifically targeting such components in the extraction
process, it will be possible to recover a fraction of the PCBA waste with
a high yield of these elements, which then can be chemically repro-
cessed.

For this purpose, we developed a pilot plant for detecting specific
types of components on PCBAs. It consists of a sensor system placed
over a conveyor belt and is described in the following chapter. The
output of the sensory unit is processed with different algorithms to au-
tomatically detect the type and position of certain components on the
PCBA. The automatic detection process can be based on different ap-
proaches of machine learning. This contribution examines three typical
ones with respect to their detection rate.
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2 Measurement setup

The setup used for this study consists of an industrial camera and an
entry level line scanner. Both units are synchronized and placed con-
secutively over a conveyor belt. The resolution of the camera is 6.5
pixels per mm. The line scanner reaches a resolution of 0.2 mm in z
direction with a lateral resolution of 3 measurements per mm. The
setup can be seen in figure 5.1 and is also described in detail in [6].
The calculation of the height of components on the PCBA is based on
trigonometry and shown in [7].

Conveyor band

Line scanner Industrial cameraPCBA

Data synchronization

Component identification

Figure 5.1: Scheme of the pilot plant.

3 Features and descriptors

The first step in detecting components on PCBs is to select a few dis-
tinct discriminative features to reduce the amount of data in the eval-
uation process. These features have to represent the components in
a low-dimensional feature space in a way that the component classes
are distinguishable among themselves. After testing complicated fea-
ture descriptors like Histogram of Oriented Gradients (HOG), Principle
Component Analysis (PCA) or Local Binary Patters (LBP) the presented
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approach was chosen. It yields good results with rather simple features
based on shape, area overlap, total area, color, and height.

To extract the features of each component on the PCBA, the 2D and
3D data streams are cut, synchronized and preprocessed with different
algorithms. The preprocessing of the images comprises a separation of
the components from the PCB plane, a filtering using customized mor-
phing operations, and the application of a Binary Large OBject (BLOB)
algorithm. The preprocessing methodology is also described in detail
in [8].

The output of these algorithms are point-clouds made up of individ-
ual 2D and 3D measurements, which can be exemplarily seen in figures
5.2a and b. Each cloud represents one component, for example a chip
or a capacitor.

(a) Cut color image. (b) Morphed component binary image.

Figure 5.2: Preprocessed 2D and 3D data.

Based on these clouds the shape (i.e., rectangular or circular), the
fitting in this shape, the average color (RGB), the cloud size and the
mean height are calculated and put into a single descriptor pictured
in figure 5.3a. The descriptor function is denoted as Φ and enables a
distinct mapping to the subspace shown in figure 5.3b.

4 Classifiers

In machine learning applications a model is built in order to achieve
the best possible classification. For this purpose, two data sets, namely
train data and test data are required to create and validate the model.
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5 Results

The classification of the proposed descriptor yielded promising results.
The evaluation was conducted using the software WEKA produced by
the Waikato University of New Zealand. It allows for an easy and par-
allel evaluation of various classification algorithms [9]. For comparing
the different classifiers one can choose from several options. The most
common parameters are the receiver operating characteristics (ROC)
and the corresponding area under the curve (AUC), respectively. Fur-
thermore Cohen’s kappa coefficient as well as the precision-recall curve
(PRC) can be applied.

The ROC is a normalized curve with the true positives (TP) on the
y-axis and the false positives (FP) on the x-axis. TPs are the members
of a class A which are also correctly classified as member of A. FPs are
members of other classes, e.g., B or C, but are classified as members of
A. Usually, every classifier has some kind of hard threshold for separat-
ing the results into classes, which can be chosen. Each threshold leads
to a different TP and FP rate. Therefore, varying the threshold gener-
ates the ROC curve. The AUC is now computed by calculating the area
under the ROC curve using integration. The AUC typically varies from
0.5, which means guessing the classes, to 1, which stands for an excel-
lent result. The kappa coefficient measures the agreement of a classifier
with the ground truth with regard to the agreement by chance. The re-
sult is also normalized by the agreement by chance leading to a typical
output range from 0 to 1, whereby 1 means total agreement. The PRC
is a plot with the precision on the y-axis and the recall on the x-axis.
Precision describes the ratio of TPs to the sum of TPs and FPs, whereas
recall is the ratio of TPs of a class to the sum of its members. For eval-
uation the AUC is also calculated. The values range from 0 to 1 with 1
denoting a perfect result. The results are shown in tables 5.1 and 5.2.
Table 5.1 shows the confusion matrix for the classification result of the
proposed descriptor using a RF and five distinct classes. In table 5.2
the outcome for all three classifiers is characterized by the values of κ,
ROC AUC, and PRC AUC. Both the ROC AUC and PRC AUC yield
class-wise results. Therefore, only worst class results are displayed.
Overall, the best outcome (highest values) is obtained for the classifier
RF. The results were based on a total of 939 instances using two thirds
for training and one third for testing.
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Table 5.1: Confusion matrix generated by RF for five classes and unclassified.

a b c d e f ← classified as
45 0 0 0 0 0 a = electrolytic capacitor
0 8 0 0 0 0 b = tantalum capacitor
0 1 118 1 3 3 c = integrated circuit
0 0 0 7 2 1 d = oscillator
0 0 1 0 47 4 e = plug
3 0 2 0 7 66 f = unclassified

It is evident that the RF yields the best results. It is also the fastest
classification algorithm and can be parallelized easily. In a probable
business case, i.e., the identification of tantalum capacitors, the classi-
fication rate is even better. The main reason for this behavior is the
existence of only one class and its opposite. Compared with the multi
class classification the RF reaches 0.93 for κ and 0.99 for ROC AUC
and PRC AUC. The next steps to be taken are a testing of features
with a medium complexity, e.g., histograms, and an expansion of the
database.

Table 5.2: Comparison of classifiers.

κ ROC AUC PRC AUC
RF 0.88 0.98 0.93

SVM 0.84 0.92 0.67
ANN 0.79 0.86 0.70

6 Summary

In order to cope with the global future demand of rare earths, it is ur-
gent to raise the corresponding recycling rates. This paper proposed
an approach for the recovery of valuable materials from PCBAs. It
is based on a targeted optical identification of components containing
valuable resources on PCBAs. These may then be selectively removed
from the PCBA yielding a recyclable amount of materials. This ap-
proach requires the setting up of an automated selective disassembly
plant. The identification can be based on an automatized recognition
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plant using 2D and 3D sensors. The synchronized and preprocessed
data is transformed into a subspace such that the quantity of infor-
mation is reduced. The transformation is performed by the presented
feature descriptor Φ, which consists of only the relevant component
attributes (shape, fitting, area, color and height). This data functions as
input for machine learning algorithms (SVM, ANN and RF) to evaluate
their classification rate. In the application of the descriptor function Φ
for PCBAs, the RF leads to the best results for a data set consisting of
five distinct classes and unclassified components.

A future industrial implementation of this detection methodology
combined with an automated disassembly plant represents a promis-
ing step towards the recycling of rare earths, especially the critical tan-
talum.
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laser-induced breakdown spectroscopy
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Abstract Single-shot LIBS was applied for inline quality inspec-
tion of RCA (4–12 mm) transported on a conveyor belt at 0.5 m/s
and 30 tonnes/hour under industrial operational conditions.
Major granular contaminants, e.g. brick, gypsum, rebar, plas-
tic and wood were classified of which classification errors were
within the regulated contamination limits (e.g. 0.2–2 cm3/kg for
float and 1–5 wt% for sink contaminants). To this end, we first
designed a LIBS prototype (without auto-focusing) with a large
depth field (± 4 mm) complying with the stream surface height
fluctuations to increase the single-shot sampling rate up to 95 %.
Second, PLS-DA classification model was validated using manu-
ally prepared material batches. The quality (cm3/kg or wt%) of
new concrete cast using these material batches, e.g. mechanical
strengths were correlated with the LIBS data (number of classi-
fied LIBS spectra). It is shown that the LIBS technology is poten-
tially capable of providing efficient, automated real-time quality
inspection on RCA in-situ.

Keywords: LIBS, single-shot, inline, classification, recycling, ag-
gregate.

1 Introduction

Construction and demolition waste (C&DW) is characterized by high
volumes (> 300 Mt/year in EU27 in 2012 1) at low material value per

1 Eurostat
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unit mass. In general, the profit margins in industrial C&DW recycling
and the markets for the recyclable materials are under pressure 2. This
may largely be attributed to the fact that the quality of the recovered
materials by the traditional industrial recycling processes is uncertain
at best. This applies especially to RCA that can potentially be reused in
the manufacturing of new concrete, which secondary materials are the
main target in this work. The way forward to a successful concrete re-
cycling operation is to maintain high throughputs in processing while
assuring a consistent RCA product quality that can be proven to com-
ply with accepted standards. This strategy will lead to higher volumes
of RCA’s to become available as cost effective, high-quality secondary
building materials for new concrete production.

To realise the strategy, reliable and efficient quality control technol-
ogy is required in-situ, i.e. in conjunction with the primary process.
The control technology must automatically and continuously check the
product stream of concrete aggregates for levels of cross-contamination
that are left from the building demolition process and are not properly
mitigated by the specialised aggregate cleaning technologies. However,
to date, the lack of efficient inline quality inspection capability has been
a major obstacle.

In this study, a sensor platform based on LIBS was developed and
demonstrated for inline quality inspection on RCA at industrial scale.
Material batches with known contamination levels were manually pre-
pared to test if the partial least squares discriminant analysis (PLS-DA)
model can achieve classification errors of major contaminants within
their contamination limits according to the standard. Moreover, the re-
lation between the LIBS and the quality data of the new concrete cast
using these RCA batches was investigated.

2 Inline LIBS prototype-integration into the closed-loop
recycling of RCA

Similar to the LIBS setup in [1], Fig. 6.1 shows the schematic of LIBS
sensor platform designed for inline inspection of the 4-12 mm RCA.

2 In the Netherlands, recycled concrete aggregates are sold for 12 euro /tonne on aver-
age to replace primary river gravel in new concrete. The processing costs are about
8-10 euro /ton and material transport adds 0.10-0.15 euro /ton/km.
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The surface roughness of RCA transported on the conveyor is deter-
mined by a laser triangulation sensor as ± 4 mm. An optimised mis-
match between the focuses of the laser and the parabolic mirror enables
enough depth of view to prevent the need for an auto-focusing lens sys-
tem. The Nd:YAG 1064 nm laser fires at the maximum repetition rate
of 100 Hz at a fixed point perpendicular to the belt to ablate a small
amount of material from the aggregate that passes the focus of the
laser lens. This produces a tiny cloud of plasma (∼ 1mm diameter) just
above the aggregate surface. This very short-lived plasma (microsec-
onds) cools down and transmits light with a spectrum that is charac-
teristic for the material. After implementing a supervised classification
algorithm using a reference LIBS spectral database, the acquired LIBS
spectrum uniquely identifies the material at hand.

Still, several challenges had to be addressed to bridge the gap be-
tween laboratory research into LIBS that lead to an industrial adapta-
tion towards a robust and compliant LIBS platform for inline inspec-
tion of RCA. The LIBS prototype was shielded and encased to protect
it from weather influences and ADR dust as shown in the bottom-left
inset in the inset of Fig. 6.1. The platform was set up in mechanical iso-
lation from the ADR machine that produced quite heavy vibrations by
being mounted on top of a stack of large concrete blocks resting directly
on the ground. The incident laser beam and plasma light collection unit
were guided by a sealed metal tube onto the RCA stream on the con-
veyor belt. This laser tube also provided a safe working environment
for the personnel in accordance with class 4 laser safety regulation. A
fast camera was integrated into the LIBS platform to be able to monitor
the amount of material on the conveyor belt (belt speed ± 0.5 m/s) and
to check the laser-optics settings. The inline LIBS prototype platform,
consisting of hard- and software, has been demonstrated in Hoorn, the
Netherlands on 10th June 2016 to collect and analyse LIBS data in a
real-scale industrial concrete recycling plant, and was operated above
the ADR coarse output (4-12 mm) conveyor belt that carried 30 tons of
RCA per hour 3.
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Figure 6.1: Principle and deployment of the inline LIBS platform into the
closed-loop recycling of RCA. Inset photos: installation and implementation
of inline LIBS sensor platform in Hoorn, the Netherlands on 10th June 2016.

3 Results and discussions

In parallel to the in-situ demonstrations, special batches of recycled
aggregates (cf. Tab. 6.1 and Fig. 6.3a) were prepared and inspected
using this LIBS platform. Several RCA batches were prepared as fol-
lows: 300 kg demolition concrete (0-44 mm) was sieved manually to
4-16 mm to obtain 160 kg materials. This was equal-partitioned into 4
fractions of 40 kg according to the European standard EN 932-2 [2]. Of
each of these fractions, 10 kg was subjected to handpicking to deter-
mine the material composition according to the European EN standard
933-11 [3]. The major components in the sink fraction (0.63 ± 0.23 wt%)
were brick, glass, PVC, rebar and gypsum. The major components in
the float fraction (1.29 ± 0.24 cm3/kg) were wood and foam. The re-

3 Video available at: https://www.youtube.com/watch?v=lHp3G-lOoOs
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Table 6.1: Five sets of self-made RCA (4-16 mm, 30 kg) with varying contami-
nation levels.

#Sample Sink [wt%] Float [cm3kg−1] Comments
1 Reference 0.63 ± 0.23 1.29 ± 0.24 Recycled aggregate
2 Low sink,
high float < 1 2 Add extra 30 cm3 float

3 High sink,
high float 5 2 Add extra 30 cm3 float

and 1.5 kg sink
4 High sink,
low float

5 < 0.2
Clean the float,
add 1.5 kg extra sink

5 Low sink,
low float

1 < 0.2
Clean the sink and float,
add 0.3 kg gypsum

Table 6.2: PLS-DA classification errors using 15 components.

PVC brick RCA glass gypsum foam wood rebar
PVC 678 0 0 0 0 0 0 0
brick 0 676 0 0 0 0 0 2
RCA 0 0 678 0 0 0 0 0
glass 0 2 0 676 0 0 0 0

gypsum 0 0 1 0 677 0 0 0
foam 0 1 0 0 0 676 1 0
wood 1 0 0 0 0 3 674 0
rebar 0 0 0 0 0 2 0 676

maining 30 kg of each of the four fractions were modified manually as
shown in Tab. 6.1 to improve the detectability of pollutant levels with
LIBS and also to enhance the likely correlation with the quality of the
produced new concrete samples.

3.1 PLS-DA classification model

We used a PLS-DA model [4]4 to determine the sensitive LIBS param-
eters by minimising the classification errors. To this end, we collected
training datasets (i.e. LIBS data from reference aggregate batches and
materials with well-known material composition) by selectively intro-

4 using plsregress function, MathWorks® Matlab 2015b
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Figure 6.2: LIBS spectra (normalised to maximum as 100% and the occurrence
of emission lines [%] observed for RCA, natural gravel (as a reference), and
various pollutants handpicked from the concrete aggregates.

ducing more data variations, such as using larger optics-to-sample-
surface distances or adding more material types. Each single-shot
LIBS spectrum was normalised to its integral over the full wavelength
range [5]. LIBS measurements were repeated three times per material
batch, and each time 6000 single shot LIBS spectra were acquired at a
rate of 100 per second while the laboratory conveyor belt shown was
feeding at 30 kg/minute. Their raw LIBS spectra were shown in Fig.
6.2, in which emission lines with larger spectral occurrence > 95 %
(ratio of the number of spectra with identifiable emission line to the
total spectra) were also shown underneath each LIBS spectrum. The
emission line determination was described in [5]. It is noted that RCA
is a new type of material of which the LIBS spectrum is more Ca-line-
rich in comparison with that of gravel. During the collection of training
data, we purposely introduced sample surface fluctuations larger than
±20 mm to emulate the fluctuations observed under real-scale oper-
ations. The multi-classification PLS-DA model was trained using 60
components which results in a mean-square error of 0.104 with 5-fold



Quality inspection on RCA using LIBS 59

Figure 6.3: (a): Number of contaminants identified by LIBS, normalised to the
total number of identified spectra. Results are for the five batches specified in
Tab. 6.1, as shown in the photos underneath. The sink fraction contained PVC,
brick, glass, gypsum, and rebar, while the floats contained wood and foam.
The error bar represents 1STD, related to three duplicate measurements. (b):
New concrete cubes cast using forenamed material batches and inherent sink
and float contaminants. Quality tests on concrete cubes using five material
batches (c): mechanical strength and (d): workability tests.

cross-validation. The classification errors are presented in Tab. 6.2. It
is noted that the false-positive and false-negative errors for wood par-
ticles are 0.15 % (foam) and 0.59 %, respectively.

3.2 Relating LIBS parameters to the achieved quality
of the new concrete

We first determine the contamination levels including composition and
contents of the RCA’s (4-16 mm) using LIBS. The results are shown in
Fig. 6.3a as percentages of classified spectra, which agree rather well
with the known material compositions. It is noted that the 1 % count
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ratio of floats corresponds to 2 cm3/kg float contaminants and 1 %
count ratio of sink materials corresponds to 1 wt% sink contaminants.
The last two batches were cleaned using a sink-float separation before
adding extra contaminants to reach the desired contaminant composi-
tion. Therefore, the float contents in those batches are lower than the
float contents of the original coarse aggregates batch from which they
were derived.

We then investigate the influence of contamination levels on the qual-
ity of the newly produced concrete cubes shown in Fig. 6.3b. The clas-
sified number of shots for each type of material proved proportional
to the particle size, regardless of its specific shape. Furthermore, the
number of particles can simply be transferred into contents (wt%) or
volume percentages (cm3/kg) since the average mass densities of all
the materials are known.

To test the quality of the concrete cubes the following quality param-
eters were selected: 2 day and 28 day mechanical strengths were tested
in the ENCI quality assessment lab 5, the electrical resistivity was mea-
sured using a two-electrode method (TEM), and the workability was
determined using slump and flow tests. The recipe used to produce
the C30/37 XC3 F4 class strength concrete was as follows: a mixture
of cement using CEM I 52.5 N (80 kg/m3) and CEM III/B 42.5 N LH
HS/SR (240 kg/m3); 5 batches of coarse aggregate (915 kg/m3); river
sand (805 kg/m3); water-to-cement ratio of 0.54, and super-plasticizer
(1.92 kg/m3). Per batch 30 kg was used for 6 test cubes (150 mm) to de-
termine the workability and mechanical strength (Fig. 6.3c). The error
bar represents one standard deviation as obtained from three concrete
cubes per type of test. The white bar indicates the 2-day compres-
sive strength; the dark grey bar the 28-day compressive strength and
the dashed bar the resistivity using TEM. In the workability tests (Fig.
6.3d), the dashed bar indicates the slump workability, and the light grey
bar the flow workability. It is clearly shown that the trends of the 2- and
28-day mechanical strength and TEM values are similar. The resistivity
may be assumed inverse proportional to chlorides ingress rate at room
temperature [6]. The reference sample shows the highest strength and
largest resistivity. The high-sink, low-float batch shows the second best
performance, where the brick is the major sink contaminant. This in-

5 Company webpage: http://www.enci.nl/nl
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Figure 6.4: (a): Percentages of classified contaminants of each sampling burst
in RCA over time. (b): Total number of classified contaminants in RCA.

dicates that brick degrades the strength and resistivity only to a small
degree. The low-sink, low-float batch consisting of 1 wt% gypsum in-
dicates that gypsum affects the concrete strength and resistivity more
than brick, despite the fact that the gypsum contents were lower. Com-
pared with brick and aggregate, gypsum is more brittle and its breaks
down easily during the mixing procedure for making cement paste.
According to its high workability, the gypsum batch may absorb less
water. The second and third batch show similar strength and resistiv-
ity, indicating that the float contaminants are the major components
that degrade concrete performance. They may also reduce water ab-
sorption when looking at the high workability.

3.3 Inline LIBS classification results on RCA

During the Hoorn demonstration, 60 tonnes of coarse aggregate prod-
ucts was processed by the ADR and inspected by the LIBS platform.
Fig. 6.4a shows the classified numbers of LIBS spectra [%] in real-time
over 82 sampling bursts. In total, 195235 LIBS single-shot spectra were
collected of which 184920 shots could be properly classified, amount-
ing to a 95 % success rate in LIBS sampling. As indicated in Fig. 6.4b),
125064 were classified as concrete aggregates, 2334 as brick, 6468 as
gypsum, 4122 as steel rebar, 398 as foam, 318 as wood and 153 as PVC
plastic. Using the previously determined correspondence between 1 %
LIBS classification percentage and 1 cm3/kg concentration of float con-
taminant, and taking wood as the most critical float contaminant in the
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RCA market, the identified particles content accounted for 0.172 % of
all particles which corresponds to a wood volume contamination level
of < 0.2 cm3/kg of aggregate product. This level complies with cate-
gory FL0.2 according to European-EN standards [3,7] for floating pollu-
tants in concrete. It is remarked that this level complies accurately with
the handpicking and float analysis results for a 10 kg sampler from the
demonstration site.

4 Summary

In this present work, a LIBS prototype was set up for RCA recycling
that achieved a sampling rate of 95 % by virtue of its long depth of
field, corresponding to the surface roughness of RCA (± 4 mm). Using
normalised LIBS spectra as inputs, a PLS-DA multi-classification model
was trained and validated on manually prepared RCA batches with dif-
ferent contamination levels (1-5 wt% for sink and 0.2-2 cm3/kg for float
contaminants). Same batches were then employed to cast into the new
concrete, and their quality data were well-correlated with their LIBS
classification results. Finally, this LIBS technology was employed for
inline quality inspection of RCA (4–12 mm) at industrial scale (through-
put of 30 tonnes per hour at transport speed of 0.5 m/s).
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Abstract Dual Energy X-ray imaging is a method to provide
quantitative information about the examined material. With
Fraunhofer EZRT’s Dual Energy technique it is possible to deter-
mine the concentration of a specific material in an object. This is
realized through the Fraunhofer Dual Energy algorithm, which
is using two X-ray spectra and/or spectral detector efficiencies
for Dual Energy X-ray imaging. In this way, an areal mass den-
sity is obtained and the fraction of the mass of two given mate-
rials that differ in atomic number can be determined. This infor-
mation can be used for material characterization. So X-ray Dual
Energy can also be useful in industrial applications, for exam-
ple to reduce the contamination of wood chips by plastic pieces.
In general, differentiation is difficult in terms of gray values or
shape. Here the Dual Energy method shows advantages. An
overview on the method will be given as well as an introduction
to current and future fields of application. The results from the
test case of differentiating wood from plastics are presented and
discussed.

Keywords: X-ray, dual energy, concentration of materials, sepa-
ration of materials, material characterization, transmission imag-
ing, radiographic imaging.
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1 Introduction

Dual Energy X-ray imaging has proven to be valuable technique to
acquire quantitative material properties from computed tomography
(CT) or radiographic images. In contrast to standard measurements it is
able to provide additional information about the atomic number (Z) or
the density of the irradiated material. Since the 70’s [1] these methods
have been developed and evolved. Its main applications lies in medical
and security applications like airport cargo scanner but it has not yet
been commonly used in non-destructive testing (NDT). Its ability to
determine the concentration of distinct materials within certain types
of material compositions has widened its usage to different branches
of application like sorting and recycling.

Dual Energy images are created by acquiring two X-ray images of
the same sample at different spectral parameters. While standard X-ray
images only allow to separate different materials on their attenuation
of the X-rays and thereby struggle with varying radiation thicknesses,
Dual Energy methods enable one to separate certain materials inde-
pendently of the irradiated thickness of the specimens. Furthermore
Dual Energy can be used to enhance the contrast of different materials
which provide only low contrast in conventional X-ray imaging.

The ability to derive quantitative information from the images can
also be used to calculate the concentration of materials in relationship
to the entire specimen. This is of particular interest for several applica-
tions [2]. It can also be used to assert the presence of materials within
hosting materials like diamonds in kimberlite [3].

2 Motivation

Single-variety separation of plastics is a crucial task for the sorting in-
dustry. This is especially true for black plastics which cannot be sep-
arated by optical techniques. Besides that, plastic contaminations in
streams of material are challenging to detect and separate for other
applications as well. In streams of biowaste for example plastic con-
taminations represent a crucial problem for the quality of biogas or hu-
mus production. Likewise the lumber industry is challenged by plastic
leftovers or compound materials within the processed timber streams.
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While the separation of wood from plastics provided promising results,
some kinds of plastics could not be separated from wood. In order to
categorize different types of plastics which can be separated from those
which can’t, very pure specimens of different plastics were measured
and analyzed.

3 Dual Energy Method

Dual Energy in sorting or recycling tasks is primarily used to derive
physical quantities from X-ray images. This is based on the fact that
the total attenuation coefficient depends on the energy of the X-ray as
well as on the penetrated material. In order to acquire X-ray images
sufficient for Dual Energy algorithms at least two images of the same
object with different spectral parameters have to be acquired. Different
spectral parameters can be achieved by either changing the acceleration
voltage of the tube (kV-Switching), using different filter materials for
each image or by using a Dual Energy detector which is capable of ac-
quiring two images at the same time. Changing the filter between two
acquisitions is hard to achieve in industrial sorting environments and
is therefore impracticable. Rapid kV-Switching is possible in sorting
applications but requires exact timing of the system and is limited in
regards to belt speed and lifetime of the system. It is however used for
Dual Energy attempts for CT. The commonly used method for sorting
on belt or chute systems is therewith the usage of Dual Energy detec-
tors. When processing Dual Energy algorithms, information based on
the penetrated material can be obtained. In fact Fraunhofer EZRT Dual
Energy algorithm is able to derive the areal density ρ for two materials
from those measurements. Based on this calculated areal density it is
possible to calculate the concentration of one of this materials within a
compound of different materials.

This is based on Lambert-Beer’s law describing the attenuated inten-
sity after an object as

I = I0 ∗ exp(−μ′ ∗ α) (7.1)

where μ′ is the attenuation coefficient, α the areal density and I0 the
non-attenuated intensity. While penetrating more than one material at
a time, the attenuation coefficients sum up. Acquiring two (or more)
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images at different spectral parameters leads to a set of similar equa-
tions which describe the extinction of the same material at different
energies. This leads to

Ik = I0k ∗ exp(−μ′
jk ∗ αj) (7.2)

where k indexes different energies and j being the index of the material.
This approach summarizes all X-ray attenuation effects which includes
Compton scattering and photo-electric absorption.

When using a non-monochromatic X-ray source the intensity cap-
tured by the detector can be described utilizing the detector efficiency
D(E) and the emitted spectra S(E)

I0 =
∫

dE ∗ S(E) ∗ D(E) (7.3)

In order to utilize this attempt the used spectra and the detector effi-
ciency has to be known. This dates can be achieved by simulation or
measurement techniques. While measuring is tougher than simulation
it may lead to better results. Using this in the equation above leads to:

I =
∫

dE ∗ exp(−μ′(E) ∗ α) ∗ S(E) ∗ D(E) (7.4)

With obtained spectra S(E) and detector efficiencies D(E) the areal den-
sities αj can be calculated. This requires a selection of materials up-
front. Using this for two materials leads to two equations with can be
solved under certain conditions and result in two areal densities for
those chosen materials. This also enables the calculation of material
concentrations.

4 Measurement setup and specimens

In order to perform measurements based on industrial environment
the specimens were measured in movement using a drawer system
mounted on a linear xy-axis system. The system as well as the used
Dual Energy line scan detector (C10800-09FCM-C) were provided by
Hamamatsu. All tests were performed using a high power X-ray source
with an acceleration voltage up to 225 kV. To compare also the method
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of kV-Switching to the results gathered from the Dual Energy detector,
repetition measurements with varying kV were used. All specimens
where analyzed using 50kV, 70kV and 100 kV. Dual energy measure-
ments where performed analyzing all three different spectra. For rapid
kV-switching the acquired projections where registered and only the
low-energy channel was used to compare different accelerating volt-
ages. The first application to be analyzed was the detection of contam-
ination of wood by plastic pieces. In this case the type of the plastics
is unknown. It is not necessary to identify different types of plastics,
only the separation from wood is important. In order to characterize
different types of plastics and make a assertion about which can be sep-
arated from wood, pure plastic specimens of the following types were
analyzed as well. Table 7.1 describes the different types of plastics used
for the analysis.

Table 7.1: Different types of plastics used for the analysis.
Specimen Density ρ Grain size

[g/cm³] [μm]
UHMW-PE 0.94 150

UPVC 1.4 250
PS 1.05 250

PMMA 1.19 600
PTFE 2.2 675

5 Results

To separate plastic leftovers from wood the provided pieces were irra-
diated and analyzed. Figure 7.1 shows the plastic pieces on the left and
the wood chips on the right. Both materials provide a similar contrast
in a standard X-ray radioscopy image. A differentiation between both
materials can hardly be achieved.

The resulting X-ray Dual Energy image of higher Z material is shown
in Figure 7.2. While the lower Z-materials blur out of the image, higher
Z-materials appear brighter. All plastics except the one in the upper left
corner appear bright in contrast to the wood, which appears dark in
this image. Using Dual Energy analysis the differences between atomic
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7 Outlook

As indicated by the results, it is not ultimately clarified that all sorts of
plastics and wood can be separated. Though the results are promising,
there have to be further investigations with real industrial specimens.
To find out if the results are reliable enough for industrial applications,
the influence of the height of the object has to be clarified.

Another point which should be examined is the influence of the
speed of the system to the accuracy of the imaging. The standard
industrial belt systems use high speeds (approximately 3-3.5 m/s). In-
creased belt speed may lead to a lower SNR in the acquired images and
therewith reduce the precision of the attached Dual Energy algorithms.

Also the measurements comparing kV-Switching and Dual Energy
imaging need to be investigated further to get a reliable information
about the advantages of each method for industrial applications. The
results with the used Dual Energy line scan camera showed no advan-
tages using kV-switching, but these could possibly be achieved using
other types of detectors or sources. The respective advantages and pos-
sibilities of these two methods are thus under investigation.
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Abstract Food has been subject to various characterization
methods for centuries. Optical characterization methods like
spectroscopy were implemented long ago. Different require-
ments arise from integrity (contaminations, foreign objects,
spoilage) and quality (composition) issues. In our modern
world, automated optical tools are being used for several tasks,
in particular for testing raw materials and for in-line monitoring
of food processing. In the future new options for optical food
analysis and inspection will arise. On site testing from “field to
fork” drives the development of mobile analysis units for har-
vesting, transportation, storage and distribution, which will en-
able a more detailed control during processing. In addition, the
consumer is interested in an on-site analysis using household
or mobile devices. Here, market opportunities for hardware in-
tegrators, software engineering and data service providers are
identified.

Keywords: Food analysis, NIR spectroscopy, product develop-
ment.

1 Introduction

The most common method of analyzing food is organoleptic testing. A
person is testing food without any technical means by assessing food
with the human organs of perception. Thus, food is characterized by
its taste, odor, appearance, color and texture. However, this method
is subjective and highly related to the tester’s practical experience and
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capabilities. In the worst-case this method might be hazardous to the
tester’s health or even lead to death. Therefore, objective and quanti-
tative methods for analyzing food are in great demand. Various ap-
proaches have led to the development of electronic noses [1] and elec-
tronic tongues [2], but both still have a far way to go to mimic the
human nose and tongue.

Food condition is affected by the complex chemical composition of
the food and can be addressed by optical characterization methods like
spectroscopy. Especially optical vibrational spectroscopy has the po-
tential for a rapid quantitative detection of food quality and food fraud
both in the laboratory and in mobile applications along the food sup-
ply chain [3]. Two aspects are generally considered: First, microbio-
logical and toxicological properties must be granted by the producer
and distributor. Especially food spoilage due to microbes [4] and other
biological [5] and chemical hazards [6] throughout the food chain are
the most significant threats to food security within Europe. Here, so-
phisticated methods are required to meet the very low detection limits.
Second, quality issues [7] such as ripeness, freshness and nutritional
facts (i.e. sugar, carbohydrate, protein, fat and water) will differ and
may change between processing and consumption. A favorable op-
tion to evaluate food composition is near infrared spectroscopy (NIR).
Technically, the spectral range from 1000 to 2300 nm is most interesting.
Relevant data is usually available in the 1100 to 1800 nm range, which
can be addressed using standard sensors without compulsory detector
cooling.

With the knowledge about suitable optical methods for food quality
determination and their potential to go into the field it becomes impor-
tant to draw a road map for the market entry. Based on the roadmap
goals and tasks can be derived for the next steps in development. This
concerns both hardware, software and data base. Thereby and by of-
fering suitable solutions the application will be opened not only to
dedicated food specialists but for also for common use.



Food analysis and NIR spectroscopy 77

2 How to analyze food

2.1 Basics

Based on a suitable sample preparation method, there is a large variety
of analytical techniques available today. These range from biological
(e.g. PCR, immunology) to separation (e.g. liquid or gas chromatogra-
phy), spectroscopic (e.g. mass spectrometry, fluorescence, near-/mid-
infrared, NMR), rheological (e.g. viscometry), thermal (e.g. DSC), ra-
diochemical (e.g. isotopic) and electrochemical techniques (e.g. voltam-
metry) [A. Cifuentes 2012]. Spectroscopic techniques are based on en-
ergy selective interaction between electromagnetic radiation and the
sample (or in the case of mass spectrometry on energetic filtering of
sample constituents). Electromagnetic radiation in the infrared region
(λ = 0.78 μm – 100 μm) interacts with molecules and leads to an en-
ergetic excitation of the molecules depending on the specific molecu-
lar structure. In the near-infrared (NIR, λ = 0.78 – 3.0 μm) and mid-
infrared (MIR, λ = 3.0 – 30 μm) region this interaction leads to vibra-
tional and rotational excitations of the molecules. “Nowadays, spectro-
scopic techniques based on infrared region are one of the most numer-
ous in the food analysis. Thus, infrared spectroscopy is frequently used
for quality control of food including analysis of honey . . . or muscle
food . . . ”. [8]. NIR spectroscopy can contribute valuable information to
food quality analysis. However, contaminations at low concentrations
(ppm and below) must be detected via more sophisticated methods,
which might be too expensive for widespread consumer use.

Different system approaches have been presented for NIR spec-
tral analysis: Classical spectrometers offer superb performance but
are bulky, expensive and sensitive towards environmental conditions.
Diode array spectrometers with reduced size reveal favorable perfor-
mance but still the cost issue limits their applications within NIR-
based food sensing systems. Low cost devices have been realized us-
ing MEMS technologies. Filter based systems (e.g. Spectral Engines,
Hamamatsu), digital light processors (e.g. TellSpec), scanning grating
(Hiperscan) are some examples for miniaturized systems. However,
spectral analysis means more than just applying a spectrometer. The
evaluation of NIR spectra requires chemometric modelling based on
reference data. In addition, database access is indispensable when ap-
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Table 8.1: Hardware parameters of different NIR spectrometer devices.

plying this method in the field. Therefore, progress in this area must
coincide with hardware development.

For a future platform, the following components and requirements
in addition to the spectrometer unit itself have to be taken into ac-
count: suitable light source(s), appropriate optical coupling with mini-
mal losses, an integrated computational device for data acquisition and
post-processing, data base access, internal memory or online data com-
munication. Options could be systems mounted to machines as well as
portable devices or even integration into smart phone or tablet. In the
latter case size issues become relevant (see Tab. 8.1). The development
effort for the next generation MEMS spectrometer is expected to be in
the range of 0.5 Million Euros, the integration of SCS including ASIC
design is expected at 3 million Euros, the development cost for spec-
trometer integration into a mobile phone needs to be specified yet.

2.2 Miniaturized spectrometer suitable for food analysis

Much work has been done to miniaturize NIR spectrometers in the past
years. In particular, obtaining the relevant spectral range (λ = 950 - 1900
nm) with a suitable spectral resolution (better than 10 nm) while keep-
ing the signal-to-noise ratio (SNR) sufficient (3.5 a.u. corresponding to
12 bit data depth) is a challenging task (here a.u. denotes absorbance
unit, which is used in practice – however the ratio between incoming
and transmitted radiation is dimensionless).

An example of how small an NIR spectrometer can be realized was
demonstrated by Fraunhofer IPMS (see Fig. 8.1) with the stacked-
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Figure 8.3: NIR spectra (acquired with scanning grating technology in diffuse
reflectance mode) of milk mixtures with fat content in the range from 0.5–30 %
vol.

with decreasing price and reasonable total cost of ownership. Besides,
sterilization and cleaning in process must be taken into account.
Handheld analyzers – expert systems
A suitable system integration including light source, data interface
and power management is required. Rough environmental conditions
must be considered. Developments in this market area are already in
progress.
Integrated devices – consumer use
Spectral analyzers may be integrated e.g. into scales at the point of sales
or into kitchen equipment like mixers or refrigerators. A major issue
beside the data base will be the proper measurement of the relevant
data. Here user guidance for inhomogeneous objects combined with
intelligent software may help for proper measurement quality.
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Figure 8.5: Food value chain and potential fields of application for optical NIR-
spectroscopy as smart monitoring technology.

In-line monitoring is driven by increasing requirements due to legisla-
tive changes [11]. There is a growing demand to access food quality,
e.g. freshness and ripeness of fruit, at the Point-of-Sales. Finally, several
mobile phone manufactures and their optical system integrators have
signaled interest in NIR spectroscopy but the cost requirements are
tough to meet. Within the next years business opportunities arise for
those who provide systems within an acceptable cost and price range.

3.3 Development goals in the field of MEMS based solutions

Based on feedback from the agricultural and mobile phone market first
steps have been implemented for two new MEMS based approaches.
The required specifications of below approaches are the result of dis-
cussions with agricultural machinery manufacturers and suppliers in
the US and Europe.
a) The next generation MEMS spectrometer is aiming at the handheld
market. The outer dimensions should not exceed 50 x 50 x 30 mm³.
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Table 8.2: Requirements for NIR spectroscopy within the food value chain.
Requirements  
for NIR system 

Style Size 
[cm³] 

Sensi vity 
[a.u.] 

Environmental 
condi ons   

Es mated 
Cost [€] 

Field  
(soil, water, 
fer lizer, manure) 

tractor mounted 9000 4.5-5.0 harsh (rough 
handling, vibra on, 
temperature, dirt) 

5000 

Plant/crop mu ple (e.g. UAV) 75 3.5 light weight 100 
Harvest tractor mounted 800 4.0 harsh 500 
Animal handheld or wearable 75 3.5 corrosive, dirt 100 
Processing in-line  800 4.0 steriliza on 

compa ble 
500  

Storage handheld or in-line  75 3.5 low temperature 500 
  

Distribu on handheld and integrated 
(e.g. scales) 

75 3.5 moderate 50 

Consumer mobile phone, 
refrigerator,  kitchenware 
(e.g. mixer) 

< 2 3.0 low cost 5 

The target performance will be similar to the commercial available SGS
1900 system (, i.e. λ = 950 .. 1900 nm, 10 nm spectral resolution and
3.5 a.u. information depth) but with reduced outer dimensions.
b) An extremely miniaturized MEMS spectrometer for the potential use
in mobile phones could have a very flat layout with 15 x 10 x 6 mm3,
possibly even slightly thinner. If necessary and affordable, the spectral
range can be 1000–1900 nm with 10 nm resolution and at least 3 a.u.
performance. However, reduced parameters will possibly be sufficient
and less demanding.

3.4 Other options

Besides MEMS based spectrometers, there are other options for NIR
spectral analysis. Diode array spectrometers with a fixed grating were
the first step to miniaturization. Here, expensive detector materials, e.g.
extended InGaAs, have limited the cost reduction. Assuming 10 nm
spectral resolution and a minimum of 3 detector elements for this wave-
length interval, the 900 – 1000 nm range corresponds to 256 or 512 ele-
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Table 8.3: Requirements and development goals for different market tiers.
Market er Requirement / Development 

High-end for harsh 
environment 

Full 16 bit performance needed corresponding to 4.5 … 5 a.u.,  
tough shock survival, size less cr cal 
Currently: diode array spectrometers (e.g. Zeiss Corona or Foss) 
Es mated cost reduc on from 15-30 k€ to 1 k€ in 5-8 years 

In-line process control 
device 

14 bit performance corresponding to 4 a.u., 
Currently: either diode array spectrometer (see above & e.g. Avantes, OceanOp cs) 
or MEMS based system (Hiperscan) 
Size reduc on is preferred, but cost has to reach level below 500 € within the next 
3-5 years 

Handheld / integrated 
PoS System 

12 bit performance, i.e. 3.5 a.u. 
Currently: for example “Phazir” handheld from Thermo sher 
Size target is below 75 cm³, price target below 100 € in 3-5 years with es mated 
further decrease to 50 € region 

Consumer New development 
Price below 5 €, size smaller 2 cm³, thickness requirement for mobile phone is 
below 6 mm 
Performance and me to market are to be de ned 
Huge investments necessary in technology development, integra on, … 

ments in total. Today a typical width of 50 μm is used for each element
to grant good SNR properties. This leads to a width of 12 – 25 mm of
the sensitive area, which must be granted by the systems optical design.
Lower requirements and performance may only demand 5 nm interval
per pixel, 25 μm element width and 128 elements for 600 nm free spec-
tral range. Thus the sensitive area could be shrunk to 3.2 mm. Still the
question of prices for high volume production remains a challenge.

Cost may be reduced by applying single detector and a digital light
processor (DLP). Although a DLP might be too large for mobile phone
applications, the approach is suitable for handheld and in-line devices.

Interferometer based systems such as Fabry-Perot filters have been
presented (e.g. Spectral Engines, Hamamatsu). These have a small form
factor and reasonable price but still insufficient free spectral range and
possibly limitations to vibration and shock in mobile and handheld
systems. Filter based solutions with individual filters on each element
of a detector array share the same cost issue like fixed grating spec-
trometers.
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3.5 Recent developments

The scanning grating technology implemented at Fraunhofer IPMS is
facing new developments heading for compact and ultra-small opti-
cal setups. The key to a cost efficient assembly is the alignment and
reduction of the optical components cost. The actual hybrid mounted
“stacked component” spectrometer SCS prototype requires complex off
axis mirrors for the folded optical path. As of today, these mirrors have
been fabricated by ultra-precision technologies from aluminum. Plastic
or glass molding technologies do not meet the optical requirements to-
day. Here, a joint development of optical layout and mirror technology
might lead to a cost efficient way to build this device in high volume.

4 Summary and Outlook

Food safety and food quality are important topics for the individual
consumer and to our society in general. Thus analytical methods for
food analysis are of growing importance driven both by environmental
and legislative requirements. In this context fast and non-invasive tech-
niques are in favour. These requirements are fulfilled by optical meth-
ods. Vibrational spectroscopy is a strong tool for analysis of organic
materials and especially near-infrared (NIR) spectroscopy is a suitable
and promising candidate. It has been shown that miniaturized NIR
spectrometers can be realized using MEMS technology. Several sys-
tems designs are presented and optimization required to match with
size and cost requirements has been discussed. To reach deployment in
challenging environmental conditions and in larger volume there is still
development investment necessary. Ultimately, for a broad implemen-
tation of food analyzing systems mobile phones offer a very promising
platform. However, the application software must display the relevant
data in a way that is applicable for the non-scientific user. A joined ef-
fort of hardware, software and database providers may open the door
for widespread usage of MEMS-based NIR food analyzers and will
lead to new market opportunities.
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Abstract A new optical approach for determining the abun-
dances of substances in mixtures is presented. By using
specifically designed spectral filters, it is sufficient to acquire
monochrome images whose intensity quantitatively depicts the
abundance of the respective material.
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1 Introduction

Hyperspectral images allow for the extraction of rich information about
the considered scene. The downside of hyperspectral imaging, how-
ever, is the high cost for acquisition devices and the subsequent elabo-
rate image processing hardware and software. In this paper, we inves-
tigate an alternative approach to spectral unmixing based on recorded
images. Spectral unmixing denotes the process of extracting the mate-
rial abundances in mixtures. Bypassing the need for acquisition, pro-
cessing and information extraction, we use programmable spectral fil-
ters that allow for the acquisition of a single intensity image. When
the spectral filter is chosen adequately, this image encodes the spatial
abundance of the considered target spectrum. We present filter de-
sign methods that take the spectral variability of the target spectra into
account.
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2 Spectral filter design methods

The optical measurement of material abundances in mixtures uses
specificially designed spectral filters. Their calculation is described in
this section. Their implementation will be discussed in Section 4. Each
of the following methods for the analytical design of spectral filters is
based on the linear mixing model (LMM)

yij =
p

∑
k=1

aijk mk + εij = ŷij + εij , (9.1)

where yij denotes the spectrum at pixel i, j of the hyperspectral image
Y ∈ Rnx×ny×Λ and Y ≥ 0, measured at Λ wavelengths. The spectra
of the p pure materials assumed to be present in the observed scene
are described by mk, whereas the aijk denote the corresponding abun-
dances. To account for a physically meaningful representation, the
abundances are commonly restricted by the constraints ∑

p
k=1 aijk = 1

and aijk ≥ 0 ∀i, j, k. Both measurement noise and deviations from solely
linear mixing are taken into account by εij.

The following methods for the design of spectral filters assume that
the mk are known, whereas Y is not recorded and, consequently, not
available for any subsequent derivations. Particularly, for each material
k, a collection of n spectra mkl (l = 1, . . . , n) exists in addition to the
corresponding mean spectrum m�

k . The differences between the mkl
within the collection are mainly the result of chemical, microscopic and
macroscale geometric effects. The so-called endmember variability [1]
denotes this variability of pixel spectra of the same pure material and
will be considered by an instability index [2, 3], which is used as a
preprocessing step for the endmember collections in some of the next
derivations of the spectral filters.

Following the LMM (9.1), the mathematical derivation of material
abundances results in

aijk = fT
k yij =

p

∑
k=1

aijk fT
k mk , (9.2)

where fk denotes the spectral filter used to obtain the abundances of
the pure material k assuming εij = 0. The determination of the abun-
dances in (9.2) will be performed optically. It should be noted that
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(9.2) obviously stipulates both fT
k mk = 1 and fT

k mj = 0 for k 
= j and
j = 1, 2, . . . , p. However, not only εij 
= 0, but also the endmember vari-
ability substantially hamper that these conditions be exactly fulfilled.

As a general method for deriving fk, we consider the least-squares
estimator. Using (9.1) and performing some further calculations, omit-
ted for the sake of space, leads to

aij =

⎡
⎢⎣

aij1
...

aijp

⎤
⎥⎦ =

⎡
⎢⎣

fT
1
...

fT
p

⎤
⎥⎦ yij =

(
MTM

)−1
MTyij , (9.3)

where M =
[
m1, . . . , mp

]
holds and

(
MTM

)−1 MT is called the
Moore–Penrose pseudoinverse of M.

The design of spectral filters according to (9.3), where M is replaced
by M� =

[
m�

1, . . . , m�
p

]
, describes the first method considered for the

optical determination of material abundances. The spectral filters de-
rived by this method are denoted as pseudoinverse spectral filters fPS

k .
In contrast, the following methods first apply the spectral manipulation
C yij = C Maij, where C ∈ RΛ×Λ denotes a non-orthogonal matrix.
Then, the spectral filters are derived by

ãij =

⎡
⎢⎣

ãij1
...

ãijp

⎤
⎥⎦ =

⎡
⎢⎣

f̃T
1
...

f̃T
p

⎤
⎥⎦ yij =

(
(CM)T CM

)−1
(CM)T Cyij (9.4)

denoting a similar approach as (9.3).
Searching for a meaningfully defined C, [3] proposes to account for

the shape of mk in order to improve the estimates of the material abun-
dances. Spectral differences Δmki = mki+1 − mki (i = 1, . . . , Λ − 1)
leading to spectra Δmk are calculated therefor. This can be performed
by a suitably chosen C. Applying the differences on material spectra
tends to significantly increase the endmember variability. To mitigate
this drawback, we smooth each spectrum beforehand by applying the
discrete cosine transform [4] first and then removing coefficients rep-
resenting high frequencies. Note that the discrete cosine transform is
a linear transformation and, consequently, can be integrated into an



92 W. Krippner et al.

appropriate C. The spectral filters, named differential filters Δf̃k in the
following, finally result by using C = CdiffCdct

TCsmCdct, where Cdct ∈
RΛ×Λ denotes the discrete cosine transform matrix. Csm ∈ RΛ×Λ de-
notes the identity matrix, where csm,nn = 0 for n = m, . . . , Λ for the
m highest frequencies that belong to sharp edges of mk and therefore
should be suppressed. The matrix Cdiff ∈ RΛ×Λ is used to derive Δmk,
where Δm�

k denotes the differences of the mean spectra that are con-
sidered for Δf̃k. Cdiff consists of ones on the main diagonal and −1 on
the first diagonal above the main diagonal.

The next methods for the derivation of the spectral filters extend fPS
k

and Δf̃k to incorporate the endmember variability contained within the
collections of the pure materials. In detail, the endmember variability
is valued by the instability index, abbreviated with ISI, and defined as

ISIλ =
Δwithin λ

Δbetween λ
=

P
P − 1

P−1

∑
k=1

P

∑
r=k+1

1.96 (σkλ − σrλ)∣∣Rmean,kλ − Rmean,rλ

∣∣ (9.5)

for each wavelength λ = 1, . . . , Λ. In this equation, Rmean,kλ denotes the
mean reflectance value of class k at wavelength λ and σkλ the standard
deviation of class k at the same wavelength.

The variability at wavelength λ within each collection of spectra re-
ferring to a certain material class is taken into account by Δwithin λ,
whereby the sum of the one-sided 95 % confidence interval is used un-
der the assumption that each collection contains normally distributed
spectra. Conversely, Δbetween λ accounts for the distances between the
mean spectra of the pure materials k and r at wavelength λ, i.e., m�

kλ
and m�

rλ. Using (9.5) allows to assess the endmember variability at each
wavelength. A large value of ISIλ indicates a greater value of Δwithin λ

than the value of Δbetween λ. Wavelength λ should consequently be dis-
carded for the design of the spectral filters.

To incorporate the ISI index into the filter design (9.4), we propose
two different versions of the transformation matrix C. The first one
uses (9.5) for defining additional weightings for each wavelength by

CISI =

⎡
⎢⎢⎢⎣

ISI−1
1 0 . . . 0

0 ISI−1
2 0 . . . 0

...
. . . . . . . . .

...
0 . . . 0 ISI−1

Λ

⎤
⎥⎥⎥⎦ ∈ RΛ×Λ , (9.6)
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whereas the second one not only considers these weightings, but also
completely removes wavelengths corresponding to high values of (9.5)
by using CISI,Thresh = CThreshCISI. Here, CThresh ∈ RΛ×Λ denotes a unit
matrix with cThresh,ii = 0 if ISIλ > τ holds. For the threshold τ we
consider a multiple of the mean of the ISI, τ = c μISI and c > 0.

Combining CISI and CISI,Thresh with fk and Δf̃PS
k is achieved by

setting C = CISI, C = CISI,Thresh and C = CISICdiffCdct
TCsmCdct,

C = CISI,ThreshCdiffCdct
TCsmCdct, respectively, and yields the spectral

filters denoted by f̃PS,ISI
k , f̃ISI,Th

k , Δf̃ISI
k and Δf̃ISI,Th

k .
In total, 6 types of spectral filters have been presented. The following

section shows our approach for their optical implementation, whereas
in Section 4, each of them is applied experimentally to evaluate its
performance in estimating material abundances.

3 Optical implementation of spectral filters

In order to realize the spectral filters derived in the previous section,
we customize the measuring system which is normally used to record
common hyperspectral images. The following measuring approach re-
sults in an innovative procedure for deriving material abundances in
mixtures.

Hyperspectral images are obtained by first discretizing the consid-
ered wavelength range into a finite number of wavelength channels.
The scalar images, which finally form a hyperspectral image by ar-
ranging them to a stack, are then measured with a constant exposure
time in each wavelength channel. Thus, each wavelength is weighted
equally. Conversely, to optically realize the designed spectral filters,
we adjust the exposure time of each wavelength channel with respect
to the spectral filter coefficients. Large values in the magnitudes of
the coefficients result in higher exposure times and vice versa. Even-
tually, the grayscale intensity images only have to be summed up in
order to obtain spatial estimates for the material abundances. Note
that keeping the camera shutter open during the complete measuring
time even supersedes the need for recording numerous grayscale im-
ages and summing them up, and directly yields the intensity image
showing the material abundances. Because of hardware restrictions,
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this advanced exposure technique has not been investigated experi-
mentally yet, though.

Since negative values of spectral filter coefficients may occur,
whereas physically meaningful exposure times are restricted to positive
values, the spectral filters have to be split into a positive and a negative
part, fk = f+k + f−k , where f+kλ ≥ 0 and f−kλ < 0 hold for λ = 1, 2, . . . , Λ.
Hence, instead of fk, two grayscale images are recorded that represent
the optical realization of f+k and f−k . As mandatory postprocessing step,
they have to be subtracted.

4 Experimental evaluation

For the evaluation of the optical determination of material abundances
in mixtures we used an experimental setup consisting of a 300 W
Xenon lamp as the light source, an EMCCD camera (Andor iXon3897)
and a spectral filter, namely an acousto-optical tunable filter (AOTF,
Gooch&Housego HSi-300), which allows to tune the mean wavelength
and bandwidth of each wavelength channel. The following evaluations
consider the wavelength range between 450 and 810 nm, in which the
sampling is accomplished in steps of 4 nm resulting in 91 wavelength
channels.

As samples we examine mixtures of color powders and mixtures cre-
ated by a laser printer with reference to an artificially derived image.
The additional investigation of the second mixture scheme results from
former examinations, which exhibit significant violations of the LMM
by mixtures of color powders. In contrast, the printed mixtures approx-
imate the LMM sufficiently well due to the fact that they were designed
aiming for meeting assumptions belonging to the LMM, such as that
spectral mixing occurs only on the macroscopic scale [5]. The determi-
nation of the material abundances with the printed mixtures remains
challenging because the number of raw materials is increased by a fifth
color.

Since in each mixture regions including a single material are present,
spectra of the corresponding pixels are used to build the collections of
spectra of pure materials. The mean spectra and variances are shown
in Figures 9.1 and 9.2. Note that the spectrum of color 5 exhibits a re-
markable similarity to the spectrum of color 2, whereas the pure spec-
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Figure 9.1: Powder mixtures: mean spectra (left), 20 pixel samples of pure
spectra as an excerpt of the used collections (right).

tra within the mixture of the color powders are visually more distin-
guishable. The variances demonstrate notable endmember variability
throughout the considered wavelength range. Using the information
about ultramarine, Figure 9.3 illustrates the normalized (i.e., the max-
imum value is normalized to 1) spectral filters following from Section
2. Though the spectral filters aim for estimating the abundances of the
same material, their shapes vary substantially.
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Figure 9.2: Printed mixtures: mean spectra (left), 20 pixel samples of pure
spectra as an excerpt of the used collections (right).
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The assessment of the spectral filters’ performance in accurately esti-
mating material abundances is conducted using the root mean square

error eθ = 1
nxny

√
∑nx

i=1 ∑
ny
j=1 θ2

ij where θij denotes the angle between the
estimated abundances âij and the true abundances aij (ground truth)
at pixel i, j, calculated by θij = âT

ijaij/‖âij‖‖aij‖. The root mean square
error is invariant to the normalization of âij [6] and therefore provides
qualitative results. It will be used to evaluate both the optically de-
termined abundances and the abundances derived by mathematically
applying the spectral filters on recorded full hyperspectral images of
the mixtures.

Tables 9.1 and 9.2 show the results of eθ for both mixing schemes. In
addition, the intensity images following from the use of the spectral fil-
ters for ultramarine and color 3, as illustrative examples, are presented
in Figure 9.4. The evaluation exhibits slight differences of eθ with re-
spect to the application of different spectral filters for the determination
of material abundances.

Figure 9.4 allows the implication that the optical use of spectral fil-
ters based on shapes of the pure spectra leads to the largest deviations
comparing with the derived results. Probably, the differences depend
on the shape of the spectral filters. As a consequence, efforts for more
detailed investigations focusing on the capability of the optical imple-
mentation of different types of shapes of spectral filters including com-
parisons with derived results, should be taken in future work.
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Figure 9.3: Ultramarine: spectral filters using the original spectra (left) and
their differences (right).
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Powder derived Powder optical Printed derived Printed optical

Figure 9.4: The two left columns show the ultramarine abundances, while the
two right columns show the abundances of color 3. Top row: ground truth,
second row: pure pseudoinverse (fPS

k ), third row: differences (Δf̃k), fourth row:
ISI index (f̃PS,ISI

k ), fifth row: ISI index with differences Δf̃ISI
k , sixth row: ISI

index with threshold (f̃ISI,Th
k ), last row: ISI index with threshold and differences

(Δf̃ISI,Th
k ).

5 Summary

The use of spectral filters for directly acquiring abundances in mix-
tures using grayscale images has been shown both theoretically and
experimentally. Various filter design methods demonstrating some of
the possibilities for incorporating additional information have been de-
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Table 9.1: Powder mixtures: root mean square error.

fPS Δf̃ f̃ISI Δf̃ISI f̃ISI,Th Δf̃ISI,Th

eθ optical 0.0001 0.0020 0.0001 0.0023 0.0001 0.0023
eθ derived 0.0011 0.0010 0.0011 0.0013 0.0011 0.0013

Table 9.2: Printed mixtures: root mean square error.

fPS Δf̃ f̃ISI Δf̃ISI f̃ISI,Th Δf̃ISI,Th

eθ optical 0.0017 0.0013 0.0016 0.0015 0.0012 0.0015
eθ derived 0.0013 0.0010 0.0011 0.0013 0.0001 0.0013

scribed, e.g., the ISI index has been used that evaluates endmember
variability. Although the results point into the right direction, filter
design improvements have to be achieved in future. One possibility
would be to include the conditions that the abundances of each pixel
should be nonnegative and sum to one.
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Abstract This paper represents an image-based tool for quan-
titative characterization of the dissolution behaviour of fused
tungsten carbides (FTC) in weld pool. For the metallographical
investigations with microscopic images, a method for automatic
detection of hard phases is proposed to quantify the amount and
distribution of FTCs in the matrix material. With this tool, the
dependence of the hard phase characteristic on the welding pa-
rameters was investigated.

Keywords: metallography, welding process, image segmenta-
tion.

1 Introduction and motivation

In order to increase the wear resistance of tools underlying severe abra-
sive stresses (e.g. mining and oil drilling industry), fused tungsten car-
bides (FTC) embedded in a ductile Ni-base alloy become more and
more important as hardfacing material. FTCs comprise an eutectoid
morphology of mono-tungsten carbide (WC) and di-tungsten carbide
(W2C), whereby high cooling rates during the manufacturing process
are necessary in order to stabilise both phases below 1300°C [1]. The
benefit is a combination of high hardness and fracture toughness, ex-
ceeding the tribological properties of other commercial available hard
phases [2].
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Due to the manufacturing process, the weldability of FTC poses a chal-
lenge, as these hard phases have a strong liability to thermally in-
duced dissolution reducing the wear performance of the hardfacing
alloy [1,3–5]. In this context, the main reasons for the FTC degradation
were not completely understood yet, so that several hypotheses cur-
rently exist referring to the high weld pool temperatures and dilution
rates of the weld. Indeed, a deep understanding of the mechanisms
is necessary in order to improve both welding process properties and
hardfacing alloys [6–9].

In order to quantify the dissolution behaviour of FTC in dependence
on the welding parameters, a software was developed, enabling a reli-
able detection of the hard phases in the cross section of the weld and
thus giving a statement about the relation between the welding process
parameters (welding feed speed, welding voltage and welding speed)
and the content of the hard phases.

2 Experimental procedure

Figure 10.1: Definition of the dilution rate.

For metallographical investigations, three cross sections per sample
were extracted at a weld seam length of 40, 50, 60 mm and finally
grinded as well as polished in a multi-staged procedure. Macroscopi-
cally, the dilution rate A is of main interest, as defined in figure 10.1.
The metallographically obtained contrast facilitated the detection of the
hard phases by means of the developed program and hence a calcula-
tion of the percentage amount with respect to the weld surface (FE+FA).
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Figure 10.2: Detection of fused tungsten carbide (FTC) in the cross section of a
hardfacing layer.

culated image resolution is 2.7 μm / pixel. The detection of the dark
contrasted hard phases can be realized by adjusting the lower and up-
per threshold and thus localizing the relevant brightness intensity, see
figure 10.2. Moreover, an algorithm for automatic hard phase detection
is developed and will be extensively described in section 3.
Furthermore, the size distribution of the hard phases can be repre-
sented as histogram with user-defined class width, as shown in figure
10.3. The histogram offers another method for the characterisation of
the microstructure of hard phases.

3 Automatic detection of hard phases

3.1 Evaluation of single methods

The hard phases are detected using image segmentation method. Gen-
erally, unsupervised methods for image segmentation could be divided
into three classes: threshold-based, edge-based and region-based seg-
mentation. In the first class, a set of threshold values is used to label
different image regions and thus identifiy the target areas. A clas-
sical method for the automation of threshold selection is the Ostu’s
method [10], in which the optimal thresholds are determined by min-
imizing the within-class variance. The edge-based methods extract at
first the outer contour of objects using different edge detectors [11].

Through the calibration via the scale on the microscopic image, the cal-
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Figure 10.3: Histogram of hard phase sizes.

A considerable operator is the Canny detector for its ability in noise
reduction and edge localization. Then, the small disconnectivities in
the edges labeled by edge detectors must be eliminated so that closed
region boundaries could be formed and identified as object regions. In
the class of region-based methods, the active contour method is widely
used. Starting from a set of initial object points, the neighboring pix-
els that satisfy a decision criterion are gradually added to the growing
object region. As criterion, there is the region-based energy model [12]
and the edge-based model [13]. The key step in the active contour
method is a suitable selection of initial points to present the object
property.

Besides these unsupervised methods, learning-based methods could
be also used for image segmentation using support-vector-machine [14]
or neural network [15]. But these methods need a high time expendi-
ture for the collecting and labeling of training data. Therefore, only the
unsupervised methods are taken into consideration within the frame-
work of this work.

The challenge in the automation of hard phase detection is that the
hard phases feature only a weak intensity contrast and the edge tran-
sition is irregular in part. With test images in grayscale, the Otsu’s
method, the Canny edge detector and the active contour method are
individually evaluated first of all. With the fact that the central ar-
eas of hard phase, the edge transition areas and the background build
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approximately three classes, the Ostu’s method is implemented with
three levels. Furthermore, the resulting hard phase map is used as
initial mask in the active contour method, in which the region-based
energy model is used in order to overcome the irregularity of edge
transition behavior.

To oppress the small-scale noise textures in background which could
lead to false connections of separate hard phases, the Canny edge de-
tector is implemented with increasing σ values and the resulting edge
maps are pixelwise summed to generate an integral map. It is assumed
that pixels with high integral indices refer to true edges, because the
peak locations of small-scale edges become unreliable or disapperare
with large σ values [16]. Then, the small fractures in the contours are
removed with morphological bridge operator, and the hard phase areas
are identified with hole filling operation.

From the results in figure 10.4, it can be seen that the Otsu’s method
can only achieve a coarse segmentation with much noise and plenty of
false connections between large particle areas, probably due to the in-
homogeneity of intensity distribution. In contrast, the Canny detector
based method can realize a clean seperation of different particle areas,
but some large particles are missed, because there are significant weak
points on their contours that are not identified by the edge detector, so
that closed boundaries cannot be builded at these areas.

Using the hard phase map obtained with the Otsu’s method as initial
mask, the active contour method achieves an improved segmentation
result, as shown in figure 10.4 c. However, there remain still some noise
and false connectivities. Therefore, an improved initial mask with less
noise and false connectivites is needed to achieve a better segmentation
result.

In section 3.2, a hybrid method will be described, which combines
the aforementioned single methods into a complex procedure and
could achieve an improved performance.

3.2 Proposed hybrid method

Figure 10.5 illustrates the proposed method that is based on the active
contour method for the detection of hard phases. For the performance
enhancement of the active contour method, the initial mask that is ob-
tained with the Ostu’s threshold is processed with erosion and opening
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Figure 10.6: Detected hard phases with the proposed method.

with a rising dilution rate and a decrease of the hard phase content in
the weld. However, metallographic investigations give only a qualita-
tive statement concerning the relation between process parameters and
microstructure.

Figure 10.7: Influence of process parameters on the dilution and the hard phase
characteristic.

Taking all investigated process parameters into account, the detection
of the hard phase content finally evinced a dependency on the dilution
rate, as depicted in figure 10.8. Maximum contents of app. 40 % at a
dilution rate below 5 % could only be realized in between a narrow
process window, including low wire feed speeds (vGMAW = 4 m/min)
and welding voltages UGMAW (UGMAW = 18 to 20 V). In return, a rising
dilution rate of up to app. 40 % is synonymous with an almost complete
extinction of FTC in the matrix.
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Figure 10.8: Relation between the hard phase content and the dilution rate.

Hence, by means of the developed software tool it could be proofed
quantifiably, that the FTC dissolution shows a systematic dependency
on the dilution to the substrate material (dilution rate), see figure 10.8.
In contrast to the metallographic analysis, as shown in figure 10.7, this
finding enables a specific adjustment of the welding process improving
the wear performance of Ni-FTC hardfacings.

In the future, investigations based on histogram of hard phase size
will be also performed to characterise the influences of welding param-
eters on the size distribution of hard phases.
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Abstract Sensor-based sorting provides state-of-the-art solu-
tions for sorting of cohesive, granular materials. Systems are
tailored to a task at hand, for instance by means of sensors and
implementation of data analysis. Conventional systems utilize
scanning sensors which do not allow for extraction of motion-
related information of objects contained in a material feed. Re-
cently, usage of area-scan cameras to overcome this disadvantage
has been proposed. Multitarget tracking can then be used in or-
der to accurately estimate the point in time and position at which
any object will reach the separation stage. In this paper, utilizing
motion information of objects which can be retrieved from mul-
titarget tracking for the purpose of classification is proposed. Re-
sults show that corresponding features can significantly increase
classification performance and eventually decrease the detection
error of a sorting system.

Keywords: Optical inspection, sensor-based sorting, multitarget
tracking, classification.
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1 Introduction

Sensor-based sorting technology enables the separation of a material
feed into different classes. Typically, systems are used to remove low-
quality or potentially dangerous entities from a feed. Applications are
found in food processing [1], waste management [2], as well as sort-
ing of industrial minerals [3]. The sorting process is commonly subdi-
vided into the stages feeding, presentation, data analysis, and physical
separation. Systems further differ in regard to the applied transport
mechanism, sensors, and separation mechanism. A widespread setup
regarding these components consists of a conveyor belt, line-scan cam-
eras operating in the visible spectrum, and compressed air nozzles.
Whenever an object is to be removed from the feed, it is deflected dur-
ing a flight phase by activating corresponding nozzles. Hence, errors
in sorting occur whenever an object to be accepted is falsely deflected
and contrariwise. Which of these two errors is of higher importance
depends on the sorting task at hand. However, both result from var-
ious errors that may occur, such as sensor errors, detection errors, or
errors in physical separation.

For conventional systems utilizing scanning sensors, it is desired to
achieve perfect flow control, i.e. the material moves with a defined,
constant velocity. This is due to a delay between presentation and
physical separation. Between these two points in time, no further in-
formation about an object can be obtained. Therefore, all objects are
required to reach an expected velocity in order to be able to reliably
predict the point in time as well as the position when the particles
reach the array of air nozzles and hence minimize the error in physical
separation. For certain products, this is a very hard task. In order to
be able to also sort products for which perfect flow control is infea-
sible to achieve, replacing line-scan sensors by area-scan sensors has
recently been proposed [4]. A sufficiently high frame-rate provided,
objects can be observed at multiple points in time. By applying multi-
target tracking, the velocity of the object can be determined. This way
imperfection in flow control can be compensated and potential errors
in physical separation can be reduced.

In this paper, it is demonstrated that information derived from track-
ing of the objects can also increase detection performance. More pre-
cisely, integral features such as the velocity are derived from the tracks.
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These features can then be used to characterize objects contained in the
feed. Therefore, classification can be performed on the basis of phys-
ical motion behavior and hence non-optical properties. To our best
knowledge, this is the first time such an approach has been proposed
for sensor-based sorting. Results show the approach can significantly
increase classification performance for certain products.

2 Related work

Sensor-based sorting is a field of growing importance with widespread
applicability. Corresponding systems can be used stand-alone, e.g. to
clean a feed from impurities, or as a step of more complex sorting pro-
cesses [2]. In many cases, systems are tailored to a specific task at hand
and hence exploit knowledge about the material to be processed. This
includes the selection of appropriate sensors [5] and possibly illumi-
nation [6]. State of the art systems employ scanning sensors such as
line-scan cameras. Consequently, the material is required to be in mo-
tion, which is achieved by a corresponding transport mechanism. For
instance, systems include a conveyor belt or the material is running
down a slide or chutes. Derivation of the sorting decision, which typ-
ically can be regarded as an accept or reject task, is performed via data
analysis. For cohesive, granular materials, arrays of compressed air
nozzles are used for the task of physical separation. In optical sorting,
sensor data can be interpreted as an image, hence image processing is
performed. This includes segmentation of the image data, detecting
regions containing objects, and classification of those [7]. For the latter,
color related properties are often used [8].

Recently, replacing line-scan sensors by area-scan sensors has been
proposed [9]. By obtaining sensor data for multiple points in time for
each object contained in the feed, multitarget tracking can be utilized
to gain insight into the trajectory of an object [4]. This eventually al-
lows decreasing the error in physical separation since more accurate
assumptions regarding the point in time as well as the position when
an object reaches the separation stage can be employed. This paper
extends these works by also utilizing motion information for the dis-
crimination of objects.
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3 Motion-based discrimination of products

The proposed approach aims at increasing detection performance by
incorporating motion-related characteristics of individual objects of the
feed. In the following, the methodology for deriving such features as
well as the evaluation setup considered in this paper are presented.

3.1 Methods

In sensor-based sorting, the main direction in which objects are moving
is defined by the system setup. For instance, using a conveyor belt,
objects mainly move with the running direction of the belt. In order
to obtain data that can be used for characterisation of objects based on
their movement, it is required that each individual object is observed
by the camera multiple times. Considering an area-scan sensor, this
can be achieved by a sufficiently high frame rate.

From the image data, the position of objects, e.g. the centroid of the
2D projection, can be determined. This results in a set of points for each
obtained frame. By applying multitarget tracking, information about
the same object in successive frames can be combined into a track.
Briefly, a standard Kalman filter is used for state estimation includ-
ing the 2D position as well as velocity for both direction components
as state variables. Also, an algorithm solving the Linear Assignment
Problem is used for the association between retrieved measurements
and existing tracks. A detailed description of the system is provided
in [4,9]. Eventually, the path of each individual object can hence be de-
scribed by a list of centroid measurements. However, these may vary
in length due to different number of observation time points for the
objects.

In the course of this work, basic motion-related key figures based on
velocity and acceleration are manually selected. With respect to veloc-
ity, one temporally global as well as several temporally local features
are considered. In this context, a global feature refers to information
obtained for the entire observation sequence of an object. Local fea-
tures are based upon 2 successive measurements for velocity related
features and 3 for acceleration related features. The final feature vector
is of dimensionality 14 and is a composite of the following numerical
values:





114 G. Maier et al.

(a) Wooden spheres (b) Wooden hemispheres

Figure 11.2: Frames captured on the conveyor belt. The red, arrowed lines
illustrate the resulting tracks in terms of associated measurements.

The conveyor belt has a total length of 60 cm. A crucial parameter
for flow control is the length of the belt. Therefore, different lengths
were imitated by mounting the camera at different positions along the
belt at a fixed distance. More precisely, data was collected for 3 loca-
tions which are described in the following. The first section, hereafter
referred to as feeding, is located right after objects enter the belt from
the slide and covers the first ∼11 cm. Hence, this location simulates
the shortest belt considered in this evaluation. The second section is lo-
cated at the middle of the belt, covering the area reaching from ∼23 cm
to ∼34 cm, and is referred to as center in the remainder. Lastly, the
third section called edge covers the last ∼8 cm of the belt.

Each of the following processing steps were performed offline
subsequent to image recording. First, basic image processing routines
are required to extract the midpoints of potentially contained objects in
each frame. For this purpose, the fact that a stable background as well
as illumination exists in the scene is exploited. Utilizing a background
subtraction approach, regions of the frame containing objects can be
extracted and their midpoints calculated. This centroid’s information
is then fed into the multitarget tracking system, which outputs a list
of tracks and the associated measurements for each data set. From
this data, the feature vectors as described in the previous section are
calculated.
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results as shown in Figure 11.4 (b) allow for several conclusions. In
general, wooden spheres and hemispheres can be detected the most ac-
curately for all considered camera positions. It also becomes clear that
classification performance increases with the length of the belt used
for transportation. The latter is especially noteworthy since it leads to
the conclusion that the differences in the adaption to belt velocity re-
veals properties which allow discrimination of the different products.
A possible explanation, which is yet to be confirmed, is that at the be-
ginning of the belt, the motion of objects is rather random due to the
feeding process. In summary, results show that motion-based features
are expressive key figures which can allow discrimination of products.
Therefore, it is assumed that combining traditional features, such as
color-based and geometric, with motion related ones results in a signif-
icant increase in classification performance and therefore minimization
of the detection error in sensor-based sorting.

Furthermore, Figure 11.5 provides insights regarding the errors
made during classification. For instance, from the confusion matrices,
it can be seen that for the position feeding many wax beads are falsely
classified as wooden hemispheres, while this error almost disappears
for the position edge. However, the number of cotton balls mistakenly
hold as wooden hemispheres can be observed to be almost equal for
both positions.

5 Conclusion

In this paper, it was shown that motion-based features provide a power-
ful tool to discriminate certain products in sensor-based sorting. There-
fore, the presented approach contributes towards minimizing the de-
tection error. The approach was validated experimentally on the basis
of real world data obtained using a miniature sorting system. Results
indicate that the difference in adaption to the velocity of the conveyor
belt reveals the most insightful properties that allow discrimination of
the products.



Due to the success of the method, it is intended to explore more
complex motion-based features in the future. For instance, informa-
tion regarding changes in direction and spin may lead to even better
results. Also, for application in an industrial setting, further potential
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Inline density measurement for rock wool
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Abstract Distinguishing the density of rock wool is an impor-
tant part in its production process. One available common op-
tion for inline measurements of the density is based on X-rays.
Due to huge security requirements in realising such measure-
ments, this method is very complex and expensive. This paper
investigates a method to find a relationship between radar based
measurements and the density of rockwool. This is shown by
evaluating the measurements of amplitude and phase of several
rock wool samples with different densities. The results show a
linear dependency of the measured phase values and the surface
weights of the given samples.

Keywords Rock wool density, radar, SAMMI, surface weight.

1 Introduction

The density of rock wool is one of the distinctive features for this com-
mon product. The quality of the material depends, among other cri-
teria, on the weight per sqm and the homogeneity. Unfortunately, the
same material properties which make rock wool a perfect isolation ma-
terial for buildings make it difficult to measure the density and the
density distribution of the product. Typically the weight is measured
with an electronic balance after the production process. Because of the
good isolation properties, typical inline measurement sensors like op-
tical camera systems, ultrasonic sensors or thermal flow thermography
cannot be used. The only technical approaches which are available on
the market are density measurement systems based on X-rays. Based
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on the security requirements, the integration of X-ray systems into a
running production process is complex. High frequency sensors of-
fer an alternative for contactless inline density measurements and use
non-ionizing radiation.

2 Hardware concept

To develop a cheap millimeter wave imaging system, it is necessary to
minimize the number of active high frequency channels. The small-
est number possible is a single channel sensor in combination with a
2D-mechanical scanner concept. The reduction of channels is possi-
ble through the fast measurement speed of high frequency systems.
High frequency systems typically use no detector concepts, which al-
low update rates between several thousands and a hundred thousand
measurements per second. Most scanning approaches move the high
frequency sensor around the DUT in a reflection or transmission con-
figuration. For a first test series, a rotating antenna concept was used
to create a transmission image for one single frequency.

In combination with a focusing antenna, a lens system or a near field
probe, these system concepts produce high resolution millimeter wave
images. SAMMI [1] (see Figure 12.1) is based on a continuous wave
(CW) signal system concept. The system can be roughly divided into
three modules. There is a rotating transmitter module (TX), a rotating
receiver module (RX) and in each case a stationary part for frequency
generation and the processing of the received signals. In the trans-
mitter path an active triple stage TX module is used to multiply and
amplify the frequency up to 78 GHz. In the receiver path the received
signal is converted down using a mixer. The stationarily generated fre-
quency is used as LO and fed into the RX-Module. In the stationary RF
processing, an IQ-Mixer is used for down-converting the received sig-
nal. Subsequently, the I- and Q-signals are fed to the ADC. The digital
backend consists of two analogue digital converters (ADC), which are
controlled and read out simultaneously by a digital logic built up on
a field programmable gate array (FPGA). The arc, which is traversed
by the antenna configuration eight times a second, has a diameter of
300 mm, corresponding to a circumference of 942 mm. To achieve an
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etc. The antennas mounted in the system are dielectric waveguides
with their tips cut in an appropriate angle. The outer dimensions cor-
respond to the inner dimensions of classical waveguides. Angle and
length of the tips determine the gain of the waveguides, similar to
horn-antennas. The advantage of this kind of antenna is the flexibility
of the waveguide. As the wave is guided mostly outside the waveg-
uides, the antennas are placed very carefully to avoid any contact with
other parts of the measurement system. This system was connected to
a vector network analyzer, which allows the measurement of a wider
frequency spectrum.

3 Test samples

For a first test series, four samples with different densities were se-
lected. All probes have the same thickness and structure. The only
difference is the density of the four samples (see Table 12.1).

Table 12.1: Samples for the test measurement.

mineral wool weight [g] surface [m2] Surface weight [kg/m2]

D1 35.1357 0.0225 1.5616
E1 29.8223 0.0225 1.3254
B1 40.7342 0.0225 1.8104
C1 43.8869 0.0225 1.9505

4 Measurements

Especially the amplitude measurements show only minimal differences
between the wool samples. Like measurements with X-ray systems,
the attenuation coefficient for all samples is very low and differences
between the samples are very small. In contrast to the amplitude mea-
surements, the phase results show a strong dependence on the density
of the investigated material samples (compare Figure 12.2).

For a deeper analysis, we compare a measurement along a reference
line (see figure 12.3). The comparison of the attenuation shows a strong
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To evaluate how useful the mean value for the determination of the
surface weight is, an average phase value over a test area is formed.
The four selected test areas have equal dimensions. Figure 12.5 shows
the four mean values. When comparing the values with the surface
weight from table 12.1, a linear relationship between the mean values
and the different material densities can be observed, visualized through
the trend line in figure 12.5.

5 Summary

The paper demonstrates that the density distribution of stone wool
can be measured by high frequency signals. In this the distinguished
amplitudes show only small differences between the samples with dif-
ferent surface weights. But the analysis of the phase information offers
a good alternative. Thus it was shown that the phase is related to the
surface weight.
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Abstract Near-infrared (NIR) spectroscopy became a wide-
spread technology for qualitative and quantitative material anal-
ysis. New fields of application of this technology, e.g., quanti-
tative food analysis for consumers, increase demand for multi-
product calibration models. Conventional multivariate calibra-
tion methods, such as partial least squares regression (PLSR),
are reported to show weakness in predictive performance [1].
Preliminary studies in multi-product calibration for quantitative
analysis of food with near-infrared spectroscopy showed good
results for memory-based learning (MBL) and a classification
prediction hierarchy (CPH) [2]. In this study, three varieties
of apples, pears and tomatoes with known °brix value are an-
alyzed with NIR spectroscopy in the range from 900 nm to 2400
nm. Predictive performance of a linear PLSR model, two non-
linear models (CPH and MBL) and different preprocessing tech-
niques are tested and evaluated. For error estimation, leave-one-
product-out and leave-one-out cross-validation are used.

Keywords: NIR, chemometrics, nutrition, multi-product calibra-
tion.

1 Introduction

Near-infrared spectroscopy became a widespread technology for qual-
ity inspection and optical sorting issues. Due to its ability for nonde-
structive quantitative and qualitative analysis, it can be found in pro-
duction chains and in laboratories. Unlike mid-infrared, quantitative
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information can not be read directly from the spectrum. Mathematical
methods and models, called chemometric methods, must be applied to
gain information. For quantitative analysis in NIR spectroscopy par-
tial least squares regression and principal component regression are
gold standard methods [3]. With increasing interest in new areas of
application, such as the handheld food scanners for consumers [4, 5],
the requirements for chemometric methods changed. In contrast to
laboratory tasks, there is no prior knowledge about the samples being
scanned. Robust multi-product calibrations are necessary. Preliminary
studies in memory-based learning and a classification prediction hier-
archy showed promising results [2]. In this experiment, those two non-
linear methods and a linear PLSR model were tested and evaluated.
The task was to predict the °brix value, which is highly correlating to
sugar content, for three apple varieties, tomatoes and pears. To this
end, hyperspectral short wave infrared (SWIR) images were used. Five
preprocessing techniques and combinations of them were tested: first
and second derivative, standard normal variate transformation (SNV),
multiplicative scatter correction (MSC) and absorbance transformation.

2 Material and methods

2.1 Data acquisition

Three varieties of apples (Jonagold, Gala and Elstar) were used to get
product separation on different levels. For a separation on a higher
product level, tomatoes and pears were added to the samples. Each
fruit was cut into two halves, the ripest and the most unripe half. A
SWIR line camera was used to obtain hyperspectral reflectance images
in the range of 900 nm to 2400 nm. Six halogen lamps in bright field
constellation were used as light source. Dark and white reference im-
ages were acquired at the beginning of each measurement and used for
reflectance calculation. For the white reference image, a white teflon
bar was used. A total amount of 124 pear, 454 apple (146 Elstar, 146
Gala, 162 Jonagold) and 90 tomato images were taken. After the hy-
perspectral image acquisition of each half, its middle third part was
extracted and pressed to juice. The °brix value for each half was deter-
mined with a refractometer.
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2.2 Data processing

After defective pixel elimination, reflectance calculation and segmenta-
tion, the median spectrum from each image was calculated. A median
spectrum is more robust against outliers and other influences than the
raw point spectra. The median spectra serve as basis for further pre-
processing and analysis.

Preprocessing was used to remove scatter effects or to extract differ-
ent features. First two derivatives, SNV and MSC are used as well as
absorbance transformation in combination with the other preprocess-
ing techniques.

PLSR A conventional PLSR from the R-Package PLS [6] was used
as linear calibration. The number of components was chosen via leave-
one-product-out (LOPO) and leave-one-out (LOO) cross-validation. All
data were pooled to one dataset for training and validation to test
multi-product prediction performance.

MBL In contrast to so called eager learning, like PLSR, there is no
offline training in memory-based learning or lazy learning. To predict
the response variable(s) for a sample, a distance metric is used to find
nearest neighbours in the training data. A regression model is trained
with those nearest neighbours on demand (see Fig. 13.1). Parameters to
set are among others the distance metric to find the nearest neighbours,
the number of neighbours, the regression algorithm and the use of
the dissimilarity matrix. The used R-package resemble [7] offers three
kinds of distance metrics and four regression methods (see [7] for more
details). It is also possible to use the distance information as additional
predictor variables or as weights for weighted regressions.

CPH Another approach for multi-product calibrations is classification
prediction hierarchy (CPH). For each class or subclass, a specialized
regression model is trained. For prediction, the optimal model is cho-
sen by a classifier. Then the regression model predicts the response
variable. Due to the bad results for applying a specialized model to
another class than it was trained on [2], the models are evaluated only
with LOO cross-validation.
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Figure 13.2: Leave-one-product-out cross-validation with k classes.

formation and MSC as preprocessing. The RMSECV is 1.13 °brix with
6 components.

MBL Memory-based learning calibrations were tested with LOPO
cross-validation to estimate the ability for predicting unknown mate-
rials. Only little improvement to the PLSR model is possible with a
MBL calibration that uses euclidean distance for dissimilarity calcula-
tion, PLSR as regression algorithm with 8 components for prediction,
dissimilarity matrix as additional predictor variables and 300 nearest
neighbours. Samples were preprocessed by an absorbance transforma-
tion. The root mean square error of cross-validation was 1.11 °brix (see
Fig. 13.4 left).

CPH Linear discriminant analysis was used to classify and to choose
prediction models. Best models were obtained with 6 components
PLSR and MSC preprocessing for pears, 12 components PLSR and ab-
sorbance transformation for Elstar apples, 13 components PLSR and
absorbance transformation for Gala apples, 17 components PLSR and
SNV after absorbance transformation for Jonagold apples and 7 com-
ponents and SNV after absorbance transformation for tomatoes. With
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Figure 13.3: Left: best PLSR °brix calibration model, validated with LOO
cross-validation, absorbance transformation as preprocessing. Right: best PLSR
°brix model, validated with LOPO cross-validation, absorbance transformation
and MSC as preprocessing.

those specialized models a RMSECV of 0.73 °brix was reached in LOO
cross-validation (see Fig. 13.4 right).

4 Conclusion

In contrast to the study of Micklander et al. [1], where PLSR calibra-
tions showed weakness in prediction compared to nonlinear methods
as local regressions and neuronal nets, a linear multi-product calibra-
tion for °brix value on apples, pears and tomatoes shows comparable
accuracy to nonlinear models. MBL and CPH can only reach little
improvement in predictive performance. A hierarchical calibration,
such as the classification prediction hierarchy, can increase accuracy in
°brix prediction for apple varieties, pears and tomatoes from 0.78 °brix
to 0.73 °brix.
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Figure 13.4: Left: best MBL °brix calibration for LOPO with 300 nearest neigh-
bours and absorbance transformation as preprocessing. Right: best CPH °brix
model, validated with LOO cross-validation.

Memory-based learning as multi-product calibration approach reaches
little better result for leave-one-product-out cross-validation than the
pooled PLSR model. The RMSECV for best PLSR model is 1.13 °brix
while MBL reaches 1.11 °brix. Especially memory-based learning has
a high calculation effort by calculating big dissimilarity matrices for
nearest neighbour search, which slows down prediction. As you can
see in Fig. 13.3 right, the outer classes, pears and tomatoes, have a
higher error and a higher deviation than the apple varieties in a LOPO
cross-validation. When predicting in a LOPO cross-validation, the
model has to extrapolate the response variable, which might cause the
higher error, as conventional regression models are said not to be able
to extrapolate without loss in accuracy [8]. Same effects are noticeable
for MBL calibrations (Fig. 13.4).
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Abstract In the last few years, the non-invasive infrared reflec-
tography (IRR) imaging technique has been improved by means
of the multispectral option both in the VIS and in the NIR range
in order to achieve more reliable and accurate results. Hence, the
collected data can be visualised and studied both in the spatial
and in the spectral domain, being processed as reflectographic
images or as punctual reflectance spectra of the materials com-
posing the painting.

This work presents the formulation and application of an easy-
to-use methodology to identify and map the original artist’s
pigments in ancient paintings starting by a set of spectral data
acquired with multispectral imaging technique in the VIS-NIR
range. The preliminary results shown are obtained on a paint-
ing by Vittore Carpaccio, belonging to the collection of Gallerie
dell’Accademia in Venice, Italy.

Keywords: Multispectral imaging, VIS-NIR, ancient paintings.

1 Introduction

1.1 Infrared reflectography

Since its introduction in the first half of the twentieth century [1], and
the following work of Van Asperen de Boer [2], Infrared Reflectography
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(IRR) has been increasingly employed for the analysis of ancient paint-
ings, and becoming routinely utilized either in situ or in conservation
laboratories as a major non-invasive imaging tool for the diagnostic
process before any planned intervention.

This technique is based on the ability of NIR wavelengths (0.8 – 2.5
μm) to penetrate the pictorial layers – thanks to the partial transparency
of most of the pigments in this spectral region – down to the prepara-
tory ground (consisting in chalk or gypsum and glue) that is generally
highly reflective, and thus allowing the detection of features beneath
the paint surface, such as, for instance, the underdrawing (executed
by means of a carbon black medium) that results in absorption. These
differences in reflectivity also allow the detection of pentimenti, retouch-
ings, paint losses, paint integrations and subsequent restorations.

The traditional reflectographic imaging method is performed in
wide-band modality by irradiating the artwork with a single large band
in the NIR range and by acquiring the backscattered radiation with
suitable devices, and so obtaining an IR image, called reflectogram.

The capability to detect underlying features relies on the composi-
tion (materials and technique) of the investigated painting as well as
on the characteristics of the employed imaging system [3].
Down the years, different NIR imaging devices have been used and
implemented for IRR analyses, such as the early PbO-PbS Vidicon
cameras used by Van Asperen De Boer [4], Si-based CCD cameras [5],
up to the most recent scanning systems with InGaAs or PtSi detec-
tors [6].

1.2 Multispectral imaging in the VIS-NIR range

In the last few years, the application of the multispectral imaging (al-
ready employed in geophysical remote sensing [7]) in the field of cul-
tural heritage has improved the traditional wide-band IRR [8] [9], al-
lowing the most effective range of wavelengths to be tailored to fit the
specific case.

Multispectral imaging in the VIS-NIR is performed by irradiating the
painting with a broadband source and by collecting the backscattered
radiation within narrow spectral VIS-NIR bands. This spectral imag-
ing technique allows the simultaneous collection of both spectral data
and spatial information (high-resolution images), thus the result of the



Characterization of artist’s materials in ancient paintings 139

acquisition is a multiband stack of VIS and NIR images, which can be
processed to extract the information [10]. The so-called multispectral
cube (Fig. 14.1) can be analysed as a set of wavelength resolved im-
ages in NIR range (multi-NIR reflectography) or as a series of spatially
resolved point reflectance spectra, one for each sampled pixel on the
surface, both in the VIS and NIR range (VIS-NIR spectrometry) [6].

Figure 14.1: Multispectral cube.

In the multi-NIR reflectography method, the visualization of images in
each band separately is useful for a manual inspection of the varied
reflectance changes of particular areas. Thus, specific hidden features
not visible or barely visible in wide-band modality can be detected.

The VIS-NIR spectrometry approach allows the use of the multispec-
tral imaging for the non-invasive pixel-by-pixel qualitative recognition
of similar-appearing pigments exploiting their VIS to NIR differences
in diffuse reflection spectra [11].

The extraction of the reflectance spectra from the multispectral
cube can be made by means of specific scripts or dedicated software.
Then, in principle, a comparison between the obtained spectra and
reference spectra (e.g. from punctual spectrometry techniques) helps
to successfully assign each acquired spectrum to the correspondent
pigment.
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The identification of pigments by means of VIS-NIR spectrometry de-
pends on the spectral range and on the spectral resolution of the device,
as well as on the characteristics of the reflectance spectra of the mate-
rials under investigation. A spectral resolution in the device of about
100 nm seems to be sufficient to discriminate most of ancient pigments,
which exhibit variations larger than 100 nm in the spectrum [12], other-
wise, more sophisticated tools, i.e. hyperspectral devices, are necessary
for pigments identification [13].

In the study of real paintings’ reflectance spectra, pigments identi-
fication is not so straightforward, because the paint layering and the
penetration depth of IR radiation through the layers must be taken
into consideration, as these variables could lead the acquired spectra
not matching the reference ones perfectly.

2 Materials and methods

2.1 The VIS-NIR multispectral scanner

The image dataset was acquired using the multispectral VIS-NIR tech-
nology, a multiband scanner available by the Iperion CH infrastruc-
ture [14].

The detection unit of the Iperion CH scanner includes a 16 channels
IR module (750–2500 nm) and a 16 channels VIS module (380–780 nm),
thus providing a set of 32 spatially-registered images at each acquisi-
tion. The detectors are Si (380–1000 nm) and InGaAs (1050–2500 nm)
photodiodes equipped with interferential filters with a spectral width
that ranges from about 20 to 30 nm for the VIS module and from 66 to
120 nm for the IR module. The image data acquired by the multiband
scanner are aberration-free and hardware registered, not requiring any
post-processing to be corrected or aligned.

2.2 Methodology

In this work, it is discussed a reliable and simple methodology for op-
tical characterization of the original artists’ pigments in ancient paint-
ings, starting from the multispectral imaging in the VIS-NIR range and
exploiting the dual approach of this technique.



Characterization of artist’s materials in ancient paintings 141

To achieve this result, it was necessary to provide a set of reference
material reflectance spectra in the same range.

The data analysis workflow is structured as follows:

1. Retrieving (and/or implementing) a spectral reference database

2. Process the spectral library for an effective comparison with the
spectra extrapolated from the multispectral cube of the scanner

3. Visualization of the RGB image in the VIS range to choose the ar-
eas suitable for pigments discrimination (ROI, region of interest)

4. Material segmentation to optically discriminate the identified pig-
ments in the image

5. Validation by means of further complementary analysis (e.g. XRF
spectrometry)

Since the production of a spectral database using the same in-
strument employed to collect the multispectral cube is not easy and
straightforward, the pipeline here developed uses reference spectra
from third party database. In this paper it has been used the FORS
database of CNR IFAC [15].

Different devices with different optical configurations and resolu-
tions have been employed to record the reference spectra and the mul-
tispectral stack, and this raises the issue of the effectiveness of the com-
parison between the acquired data.
To overcome this problem, here it has been developed and followed
a workflow to homogenize the resolution of the two instruments: the
spectra retrieved from the database has been downsampled to the res-
olution of the multispectral scanner by averaging the reference spec-
tra values in the bandwidth computed at full width at half maximum
(FWHM) of the transmittance of each filter of the multispectral scanner:

1
λ f − λi

∫ λ f

λi

λ dλ

where λi and λ f are the bandwidth limits.
The figure 14.2 shows the reference spectrum, the reflectance

recorded for each scanner band, and the computed average reflectance
in the bandwidth interval of each single band.
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The minimum distance is calculated using the following formula:

1
N

N

∑
n=1

√
(xcube − xre f )2

where N is the number of bands and x is the reflectance values of the
single pixel of the band n of the hyper-spectral cube and the reference
database. The SAM algorithm has been implemented referring to [16].

While for the SAM method no normalization has been necessary to
achieve an effective classification, for the minimum distance method
a min-max normalization of the spectra has been performed before
computing the distances.

The pixel is attributed to the pigment whose reference spectra shows
the lowest spectral distance and/or the lowest spectral angle.

In the end, the attribution can be eventually validated comparing the
results with other data, for instance performing XRF analysis over the
different areas.

Figure 14.3: RGB visible image of the selected ROI under study.
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Observing the VIS RGB image, red is present in virgins’ dresses, in
Pope, clerics and laics’ choir dresses, in cardinals’ birettas (hats) and in
the flags.

In spite of the colouristic effects Carpaccio reached with red pig-
ments, from previous studies made on other paintings it is known that
his technique in red painted areas is, in fact, simple. He used to obtain
the desired effect with the application of only one or two brushstrokes.
In red painted layers, all the pigments commonly in use in that period
were found: cinnabar, red lead, red ochre, red lake and, less exten-
sively, realgar. Vermilion or red ochre were often used as first paint
layers, over which red lake was applied as a glaze in the shadows. Red
lead was mostly employed alone [17, 18].

The proposed methodology allowed the identification and mapping
of different pigments: the minimum distance algorithm succeed in the
attribution of vermilion, red ochre and red lake, but failed in identi-
fying red lead, while the SAM algorithm distinguished an area where
this pigment is present. XRF analysis3 on red areas confirmed the at-
tributions.

A comparison between the results obtained by the XRF and those
achieved by means of the algorithms here used suggests that spectral
angle algorithm performs generally better than the minimum distance
one. However, the minimum distance algorithm provides some further
information: studying the spectral distance plot (Fig. 14.5), it can be
observed an area in Orsola’s dress where the distances between the
spectra is grater and this area has been identified as a restored area
where several retouches have been made. The same plot also high-
lights the uncertainty of the attribution of the black stripe at the end of
Pope Ciriaco’s cloak, here attributed to verdigris, while it is probably
composed of a black pigment (visually comparing it to other dark areas
in the painting).

The preliminary results presented in this work demonstrate the po-
tentiality of the spectral imaging in the VIS-IR range for an effective
characterization of the artist’s materials in ancient paintings. Further
work will be carried out in the framework of an interdisciplinary col-
laboration with the museum operators.

3 Dr. Enrico Fiorin personal communication (2015)
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Abstract In the last years, demands on high quality products in-
creases dramatically, e.g. in textile industry. In order to produce
high functional textiles a numerous of chemical agents have to
be applied to the fabrics, in several wet chemical treatments, in
the production process. One auxiliary agent is the size. Sizes
are colorless, water soluble substances which improve the me-
chanically stiffness of threads during weaving process. Usually,
sizes have to be wash out of the fabric before further processing
since they may affect the following production steps. Up to now,
offline process control methods e.g. extraction of the size are the
state of the art of process control in textile industry. It is obvi-
ous, that the time consuming and punctual analytical methods
are no more seasonable for an optimal process control. Thus,
alternative process control methods were on demand.

This paper presents a study of the potential of NIR hyperspec-
tral imaging for in-line analysis in textile technology. Applica-
tion weights and spatial distribution of sizes on polyester fabric
are investigated by NIR hyperspectral imaging. In a prelimi-
nary study a calibration to the application weight of the size was
prepared and a PLS model was established. This PLS model
was applied for the quantitative monitoring of the colorless size
across the fabrics. Additionally, contaminants on the textile were
visualized by NIR chemical imaging. Thus, NIR hyperspectral
imaging is presented as a fast, precise and powerful analytical
method which also fulfills the requirements of textile industry.
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1 Introduction

In textile technology, fabrics or threads were usually treated with var-
ious chemical agents in order to improve stiffness of the threads or
to obtain a specific functionality of the refined textile. These chemi-
cal substances can be divided into two main categories: finishes and
auxiliary agents. Finishes are responsible for the final characteristic of
the textiles and remain on the fibers, whereas auxiliary agents such as
sizes are employed to improve the mechanically stiffness of the threads
during weaving process and have to be washed out before further pro-
cessing.

Both finishes and sizes are usually water soluble, colorless sub-
stances, which are applied to the fabrics or threads in a wet chemical
process. Both fabrics and threads are pulled through a bath, in which
the specific agent is dissolved. Afterwards, excess water is squeezed
out and fibers are allowed to dry before further processing. Commonly,
fabrics or threads pass several impregnation or washing steps until a
finished functional textile is engendered. After each dipping step not
only the quantitative amount of chemical substances at the fibers is
essential for the final product quality, but also its homogeneous distri-
bution is a basic requirement of a high quality product.

It is obvious, that a visual inspection of the distribution of the agents
is hardly possible due to the colorless character of the finishes and
auxiliary agents. Up to now, the common method for process control
is a cost-intensive and laborious work, in which random samples are
cut out of the fabric and weighted. Additionally, the specific substance
may be also extracted from the textile in analytical laboratories in order
to confirm the determined application weight. In the last decades, this
kind of off-line process control was the state of the art and was thus
considered as a sufficient method.

Nowadays, the requirements regarding the quality of specific prod-
ucts permanently increase. Therefore, powerful methods for process
control become more and more important. It is nowhere near enough
to determine merely the application weight, but the spatial distribu-
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tion of the substances is also of great interest for the textile industry.
Furthermore, contaminations of the textile web may occur during pro-
cessing, when liquids, e.g. finishes, sizes, greases or machine oil, drop
down from other parts of the machine. Again, these contaminants are
either colorless or have pale color and are hence, invisible or at least
difficult to detect by the eyes. Furthermore, the blots may strongly af-
fect further processing such as printing, finishing or lamination. Thus,
detection and possibly identification of the contaminants as well as
monitoring of their distribution on the textile web is essential for an
optimal process control.

In general, spectroscopic methods are commonly used for process
control, since they are practicable, fast and mostly contact-free analyt-
ical methods. In particular, NIR spectroscopy is employed for product
control in agriculture, food and chemical industries for the last three
decades [1–6]. With the development of NIR multispectral cameras, the
scope of NIR spectroscopy was enlarged. Up to now, NIR hyperspectral
cameras may be used as process control instruments, since the monitor-
ing of the spatial distribution of compounds or parameters of interests
is a great benefit. On the basis of chemometric approaches powerful
calibration models can be developed, which enable both the identifica-
tion of different compounds as well as quantitative monitoring of the
distribution of specific agents across the web. Nowadays, research ar-
eas employing NIR chemical imaging as analytical technique cover a
wide range. Among others, monitoring of foods, medical or chemical
products should be mentioned [7–11].

In textile industries, NIR spectroscopy was occasionally applied for
the analysis of textile blends or for the determination of the concentra-
tion of some processing additives [12–14]. In a previously published
paper, in-line analysis of textile laminates, especially the monitoring
of the homogeneity of adhesive layers between the textile fabrics, by
NIR chemical imaging was described [15]. However, the distribution
of auxiliary agents on textile fabrics has never been analyzed before by
NIR spectroscopy or hyperspectral imaging. The present paper is fo-
cused on the analysis of sizes as well as the detection of contaminants
on textile webs by NIR chemical imaging.
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2 Experimental

Sample preparation Polyester fabrics investigated in this study were
kindly provided by a textile finishing company. Sizes were applied
to the fabrics by padding the fabrics in a size-containing solution in a
laboratory foulard (HVF 58401, Werner Mathis AG, Oberhasli, Switzer-
land). Subsequently, fabrics were spanned in a tentering frame (LTE-S
54101, Werner Mathis AG) and were dried at 100°C. The size of the
fabrics was approximately 100 x 170 mm. The application weights of
the size were determined by a textile laboratory (CHT/Bezema, Tübin-
gen, Germany) by extracting the size from the fabric with petrol ether.
These application weights were used as reference data for chemometric
calibration models.

Hyperspectral camera and chemical imaging A NIR hyperspectral
camera system KUSTA1.9MSI (LLA Instruments GmbH, Berlin, Ger-
many) was employed for recording NIR spectra. The NIR camera was
installed above a conveyor with a black polyurethane belt with a width
of 500 mm (Axmann Fördersysteme GmbH, Zwenkau, Germany). The
sensor of the camera is based on an InGaAs photodiode array (192 x
96 pixels) with Peltier cooling. It covers a spectral range from 1320 –
1900 nm. A NIR objective F2.0/15 mm purchased from Specim (Oulu,
Finland) was used for imaging. The line speed of the conveyer belt
was set to 10 m min−1. With this setup, a lateral resolution of 2.6 mm
per pixel is achieved. Further details about the measuring system are
described in [15].

The partial least squares (PLS) algorithm was employed for chemo-
metric calculations. The software package KustaSpec 16.6.3 was
provided by the manufacturer of the camera system. Details about the
creation of the specific PLS model are described in the Results and
Discussion section. Chemical images were generated on the basis of
the NIR spectra by applying the optimized PLS model.
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3 Results

As it was mentioned in the Introduction section, the control of the
impregnation or washing steps in textile industry is usually done by
gravimetric determination of the application weight or by extraction of
the agents from the textile, respectively. Both procedures are laborious
and cost intensive. Therefore, there is great interest in an alternative
process control method, which is easier, faster, cheaper and which can
be used in-line. NIR spectroscopy in combination with chemometric
approaches usually fulfills these requirements with respect to fast and
powerful in-line measurements of various parameters of interest. How-
ever, the prediction of the application weight of size on polyester fabrics
by NIR hyperspectral imaging was expected to be a very challenging
task, since the absorbance of NIR light by the fabric is commonly much
stronger than that of the size. Thus, this paper presents a preliminary
study on the determination of the application weight of size by NIR
hyperspectral imaging. Results of a more comprehensive study of the
determination of the application weight of e.g. several auxiliary agents
by NIR hyperspectral imaging will be published elsewhere.

Samples were prepared by padding polyester fabrics in size solu-
tion in a foulard. In a second step, some of the sized samples were
washed in a desizing solution also in the foulard. After drying, ap-
plication weights of both sized and desized fabrics were determined
by an analytical laboratory. The application weight of the sized and
the washed fabrics were determined to be ˜19 g m−2 and ˜2 g m−2, re-
spectively. For spectroscopic investigations, approximately 26000 NIR
spectra per sample were collected with a NIR hyperspectral camera.
Subsequently, the samples were divided into 10 rectangular regions by
defining a grid of 5 columns x 2 rows. The spectra in each rectangle
(˜ 2600) were averaged. This procedure resulted in 10 averaged spec-
tra that were assigned to the application weight of the sample. In this
way, an unintended but unavoidable variation of the size on the fabric
is included in the calibration, which leads to a more stable PLS model
than without inclusion of the variance. The PLS model was calculated
on the basis of the test set calibration method. Samples were split into
two independent sets, a calibration set and an internal test set. In or-
der to optimize the PLS model, different preprocessing methods were
applied to the spectral data such as baseline correction, differentiation
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or normalization. For further processing, a PLS model with a high co-
efficient of determination (0.94) and a low root mean square error of
prediction (RMSEP) of 1.3 g m−2 was chosen. This model was based
on baseline corrected spectral data, and the spectral range was limited
to 1325–1841 nm. The optimum number of eigenvectors was found to
be three.

The prediction power of the PLS calibration model was tested with
independent test samples, which were prepared in analogy to the cali-
bration samples. The application weight of the size was predicted from
the NIR spectra using the PLS calibration. All values of the predicted
application weight (26000) of each sample were averaged. Data ob-
tained by the PLS model and the application weights determined by
the external laboratory were compared. Results are shown in Tab. 15.1.

Table 15.1: Comparison of the application weights determined by an external
laboratory and the values of the application weight predicted by the PLS model

Sample State of the
fabric

Reference data [g m−2] Predicted
application
weight from
NIR [g m−2]

Difference [g m−2]

1 sized 18.9 18.1 -0.8
2 sized 18.9 18.5 -0.4
3 desized 2.0 2.4 0.4
4 desized 2.0 2.6 0.6

It is obvious that the predicted values and the reference data of the
application weight show a close correlation. This result clearly demon-
strates the feasibility of the determination of the application weight
of the size on sized or desized polyester fabrics by NIR hyperspectral
imaging in combination with powerful chemometric models. Chemi-
cal images of two samples (one sized and one desized polyester fabric)
were calculated on the basis of the NIR spectra by applying the PLS
model. In Fig. 1.1 and 1.2 the chemical images of the two fabrics are
presented.

A homogenous distribution of the size on the fabric can be easily ob-
served in the chemical images of the sample. Monitoring of the spatial
distribution of a parameter of interest such as the local concentration
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Figure 15.1: Chemical image of a polyester fabric before washing off the size.
The application weight of the size was determined to be ∼ 19 g m−2.

Figure 15.2: Chemical image of a polyester fabric after washing off the size.
The remaining application weight of the size was determined ∼ 2 g m−2.

of sizes or other finishing agents is a great milestone for the textile in-
dustry. Up to now, off-line process control methods, e.g. extraction of
the substances, provide only punctual, time-delayed as well as cost in-
tensive results. Thus, using NIR hyperspectral cameras in combination
with powerful PLS models provides a powerful tool for in-line process
control in textile industry.

Nevertheless, NIR hyperspectral imaging does not only enable the
monitoring of the spatial distribution of an auxiliary agent etc., but
allows also – after a specific calibration procedure – the detection of
impurities on the fabric. Fig.1.3 presents an example of a fabric con-
taminated with blots of an auxiliary agent dripped to the washed and
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Figure 15.3: Contaminations on a dried fabric. Blots of a colorless auxiliary
agent may affect further processing of the textile, e.g. finishing or lamination.

squeezed textile web.The blots are not visible to the eyes, that is, the
fabrics show a homogenous surface. NIR hyperspectral imaging for
process control enables fast as well as spatially resolved detection of
impurities or inhomogeneity on the textile web. Thus, contaminants
may be detected efficiently. In this way, waste or products with insuffi-
cient quality will be reduced or avoided.

4 Summary

In this study, it was demonstrated that parameters such as the appli-
cation weight or the distribution of impurities can be visualized with
high precision by NIR chemical imaging. In this way, in-line moni-
toring using NIR hyperspectral cameras has a great potential to open
up a new area of process control in textile industry, but also in other
branches.
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Abstract A proposal for an overhead line monitoring system us-
ing infrared imaging is presented as a thermal characterization
of a target far from the imaging sensor. The thermal image is
used to measure the clearance from conductor to ground, which
allows the transmission system operators to regulate the power
transmission to prevent possible dangerous events. If the line is
too elongated due to high temperatures, the possibility of electri-
cal sparks with objects near the line increases. Additionally, this
system can detect hot spots in the connectors and ice loads over
the line if the position of the field of view is changed. The design
of this system is described in detail, as well as some simulations
and experimental results are shown to illustrate the capabilities
of the proposed system.

Keywords: Overhead line monitoring system, infrared camera,
clearance measurement, hot spot, ice detection.

1 Introduction

Electricity has become a basic need for the modern society and the elec-
tric network is used to transport it from power plants to consumers.
This medium must be safe and employed in an efficient way for eco-
nomic reasons. Therefore the transmission system operators (TSO) use
monitoring systems to maintain the state of the transmission lines un-
der supervision. Using sensors and optimal control, the capacity of the
existent network can be increased up to 20 % [2], reducing the need
to construct new lines [3]. Moreover, these monitoring systems help
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prevent premature conductor aging due to high temperatures or an
electrical discharge with objects below or near the line (clearance to
ground too low).

The state-of-the-art of overhead line monitoring systems (OLMS)
shows different ways to measure the conductor parameters: Indirect
methods, which use only weather data to estimate the conductor tem-
perature, or direct methods, which include sensors installed on the
lines, suffering from electromagnetic interference and lacking of energy
due to the need to use induction from the line as power source [2, 4].
This paper proposes a new idea for the OLMS, to overcome the inac-
curacy of the indirect methods and the problems of sensors installed
on a high voltage line: the use of an infrared camera installed on the
transmission tower and a passive target attached to the conductor.

The IR-camera will be installed pointing to the target, which must
have high thermal conductivity to follow the conductor temperature
along time. The target must also have a high emissivity in order to be
visible for the camera and to increase the accuracy of the temperature
measurement. Based on these conditions, the material and geometry
of the target as well as the camera selection are discussed in this paper.

In section 2 the thermal behavior of the overhead lines and its rela-
tionship with the elongation of the conductor is explained. In section
3 the proposed design is described in detail and the criteria for the
selection of a target and a camera are discussed. Moreover, some simu-
lations and experimental results are shown in section 4 to illustrate the
capabilities of the proposed system.

2 Decrease of clearance for high conductor temperatures

The conductor temperature increases proportional to the current
square value but also depends on ambient factors as eq. 16.1 shows
[2, 5]. The conductor heat losses are on the left side of this equation:
convection qc, which depends on the wind speed and direction; radi-
ation qr, whose value depends on the emissivity ε of the conductor;
and the conductor heat storage, where Cp is the heat capacity of the
conductor material and m the mass per unit length of the conductor.
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The heat gains are on the right side of eq. 16.1: solar radiation qs and
the ohmic heat gain depending on the current flowing through the line
and its temperature dependent resistance.

qc + qr + mCp
dTavg

dt
= qs + I2R(Tavg) (16.1)

The convection heat loss is the greatest term in eq. 16.1. This means
that the wind plays an important role in the value of the conductor
temperature. The wind direction and velocity normally changes along
the line, i.e. a homogeneous conductor temperature cannot be expected.
To illustrate this, the study made in [6] demonstrates how a punctual
temperature measurement can deviate from the mean conductor tem-
perature. This demonstration was done using punctual temperature
sensors installed at several points of a line during a period of 12 hours.
The result was a deviation of around ±40◦C from the mean conduc-
tor temperature value [6]. This means that a single point temperature
measurement cannot represent the temperature of the whole line.

On the other hand, as the conductor temperature increases so does its
length. The relationship between them is linear and is shown in eq. 16.2
[7]. The constant α is the thermal expansion coefficient of the material
and means how easy the conductor elongates for a change of 1K from
the reference temperature Tc,re f . Greater values of α correspond to
more elongation of the conductor from the same reference length Lre f .

L = Lre f (1 + α(Tc − Tc,re f )) (16.2)

If the conductor length increases, the clearance from the line to ground
decreases. The distance from the span (S, straight line between con-
nectors) and the minimum point of the conductor curve is called the
sag D. The sag plus the clearance to ground corresponds to the total
height of the conductor connectors The relationship between sag and
conductor temperature is shown in the eq. 16.3 [7] as an approximated
version only valid for level spans (both poles are at the same height).

D ≈
√

3S
8
[Lre f (1 + α(Tc − Tc,re f ))− S] (16.3)

As an example, the sag of an ACSR Drake 403 mm2 26/7 with 300m of
span in the temperature range from −15◦C to 80◦C goes from 6.4 m to
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9.1 m, that means a change of 2.7 m. The conductor length, on the other
hand, increases 30 cm in the same temperature range. This increment
in length could mean a dangerous situation for a transmission line and
its surroundings, depending on the line case and weather conditions.

3 Concept description

This article proposes a new design for OLMS: Infrared imaging for a
remotely detection and characterization of a target to determine the
elongation of a transmission line in real time. Ice load and hot spots
detection can also be derived from the same infrared image. Knowing
the ambient temperature as well as the clearance to ground, ice loads
can be estimated [8]. On the other hand, hot spots on the connections
between conductor and insulator can also be detected using servomo-
tors to change remotely its point of view: from the target to the line
connections and vice versa. Hot spots are produced by damages on the
conductor connectors. They mean loss of energy through heating and
a fast detection of them avoids a break of the line [9]. With this system
the TSOs can perform remotely manual checks of the line connections
when considered appropriate, using the sensor unit already installed.

The camera is mounted on the transmission tower, therefore the need
to power-off the line for installation is completely eliminated (normally
a disadvantage of state-of-the-art systems with electrical sensors di-
rectly installed on the line). The passive target can be hanged on
the overhead line using a hot stick, which reduces the system instal-
lation time. These advantages, the fact that there is just one sensor
installed on the tower to measure clearance, ice loads and hot spots
and the possibility to calculate the conductor temperature (if the cur-
rent is known1), make this system a competitive solution compared to
the state-of-the-art overhead line monitoring systems.

Clearance measurement can be done through the detection of the
position of the target from the images produced by the IR camera.
Since the target is following the conductor temperature, which is nor-
mally well above ambient temperature, the target can be seen by the
IR-camera even at night without the need of extra-illumination. The

1 A current sensor can be also installed in the tower if the TSO is not able to give a
real-time current value.
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advantage of using a target hanged on the line is the increment of the
detection area from the conductor diameter (0.5 to 5 cm for Aluminum
Conductor Steel Reinforced (ACSR)) to the target diameter, reducing
the required resolution of the camera, i.e. reducing costs.

3.1 Target design

To design the target several parameters must be considered:

• High thermal conductivity: to maintain the target at a higher
temperature than the surrounding ambient.

• High emissivity: To allow the detection of the target by the IR
imaging device.

• Type of the line: Single conductor or a bundle.

• Low cost and weight.

The architecture proposed for the target is shown in figures 16.1 and
16.2. On the left side there is a target for the case of a single conduc-
tor and at the right side the quad-bundle2. In both cases they have a
circular and symmetric form.

Figure 16.1: Target design for the
single conductor case.

Figure 16.2: Target design for the
quad-bundle case.

2 In practice there are also bundles of two or three conductors, but for simplicity is only
considered the four conductors bundle (quad-bundle).
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The materials with highest thermal conductivity are the diamond and
the copper. To keep the costs as low as possible, copper is the best op-
tion to construct the target (with a thermal conductivity of 400 W/m°C
and a cost of around 4.2 Euro/kg). The disadvantage of it is its low
emissivity (high reflectivity instead), i.e. for an infrared camera it will
be invisible as long as it is not reflecting any IR-light coming from
other objects. In this case a high emissivity coating like the offered by
the company Aremco [10] can be used to cover it completely.

To determine the size of the quad-bundle target, the fact that nor-
mally the distance between conductors is 45 cm must be considered.
In that case and supposing 3 cm for the conductor diameter, then the
target diameter should be at least 68 cm. To reduce weight a meshed
inner structure is proposed.

3.2 Camera selection

To select a appropriate camera the following criteria must be consid-
ered:

• Operating wavelength: Since normally the temperature of the
conductor cannot exceed 80°C, the target temperature will be al-
ways below that value and then the imaging device can work in
the long wavelength infrared range (LWIR, from 8 to 14 μm).

• Cooled or uncooled camera: Since the imaging in this system
should work in the LWIR range, to reduce costs and energy con-
sumption an uncooled camera is chosen.

• Number of pixels: The resolution of the clearance measurement
depends on this parameter. The number of pixels should be
enough to have at least a pixel for a change of sag of 2 cm (equiv-
alent to approximately ΔT = 1◦C). To cover 3 m of change in
clearance with this resolution, at least 150 pixels are needed in
the vertical direction.

• Field of view (FOV): Since the target will be at a distance around
100 m to 150 m from the camera, the FOV must be narrow enough
to have the target covering the most part of the image. For 150
m a FOV of 5◦, for 100 m a FOV of 7◦ (considering a camera of
640x480 pixels and a resolution of 2cm per pixel).
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4 Simulations and experiments

The thermal behavior of the target was simulated using the simula-
tion software ANSYS. A conductor temperature was specified as the
boundary condition of the target holes where the overhead line should
be placed. The graphs in figures 16.3 and 16.4 show how the quad-
bundle target follows the conductor temperature in the natural and
forced convection cases3, respectively. In both cases the ambient tem-
perature was fixed at 22°C and the beginning temperature of the target
is 50°C.

Figure 16.3: Natural convection of the quad-bundle target.

Figure 16.4: Forced convection of the quad-bundle target.

3 Natural convection means almost no wind (less than 0.5 m/s) and forced convection
corresponds to an effective wind velocity of 0.5 m/s or more [5].
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In the natural convection case the target is able to follow better the con-
ductor temperature as in the forced convection case. This is due to the
fact that the target transfers more heat to the ambient because of forced
convection. This result says that the camera will not be able to measure
most of the time an accurate conductor temperature, because the tar-
get will not have a homogeneous temperature as long as the conductor
temperature and the ambient conditions are changing. However, the
goal of this system is not to measure temperature but to do a target
recognition from an infrared image and hence to determine the clear-
ance from the transmission line to ground. The achievement of this
is possible as long as the mean target temperature is higher than the
ambient temperature, which will happen providing that the conductor
is under electrical load.

The automatic recognition of the target hanging from the conductor
and its position measurement is made using image processing applied
to the captured infrared data. As a general idea, the program should
recognize the circular form of the target and return important param-
eters as the center of the circle and its radius. Using this information
and knowing the camera parameters (FOV, number of pixels) as well as
the distance camera to target, the distance from conductor to ground
can be calculated.

A first version of the image processing program for this application
was done making use of Matlab. Using this high level approach the
capabilities of target detection algorithms can be tested. After that the
algorithm can be programmed to be executed by the embedded system
used in the overhead line monitoring system (a microcontroller, a DSP
or a FPGA, for example).

The algorithm used to acquire the following results is based on the
circular Hough transform [11]. Several images of a hot target (around
60°C) at different positions to the camera were captured with an in-
frared camera FLIR A655sc with a 24,6 mm lens (FOV: 25°×19°) and
640×480 pixels.

From the captured images and knowing the radius of the target (7
cm) the distance from the camera to the target was calculated by the
software and compared to the distance measured by hand. The man-
ual measurement had a precision of 5 mm and the distance target to
camera was between 1.17 m and 1.19 m at each image. The mean er-
ror obtained was 9.4 mm between calculated and measured distance,
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Figure 16.5: Target partially outside of the camera FOV and still recognized by
the circular hough transform programmed in Matlab.

which corresponds to a 0.8 % of error. This result is considered interest-
ing because this error includes a target partially outside of the camera
FOV, which was still recognized by the software (see figure 16.5).

5 Summary

In this article a new approach for overhead line monitoring systems
was presented: the use of an infrared camera to measure the clearance
of the transmission line to ground, by detecting a target hanged on the
conductor. With the results obtained was shown that the implementa-
tion and use of the proposed system is possible. The next step is the
implementation of the idea on overhead lines, which implies new chal-
lenges as harsh weather conditions and the proximity to high voltage
conductors.
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7. Cigré, “Sag-tension calculation methods for overhead lines,” Cigré, techre-
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Abstract New methods using MIR, NIR and Raman spec-
troscopy in combination with various chemometric algorithms
are presented which allow monitoring numerous plant samples
very efficiently within a short time. Today portable FT-IR spec-
trometers are available which only need sample amounts of a
few microliters or milligrams. In most cases, the measurements
can be performed directly and non-destructively on the individ-
ual plant tissues or plant extracts. Generally, with IR and Raman
spectroscopic techniques spectra are obtained which present
characteristic key bands of individual plant components. These
bands provide important information about the chemical compo-
sition of the investigated samples. Based on such markers spec-
troscopic analyses in principle allow the discrimination of dif-
ferent species, and even to classify chemotypes among the same
species. Combination of vibrational spectroscopy and hierarchi-
cal cluster analysis provides a fast, easy and reliable method for
chemotaxonomic characterization. The ability to rapidly mon-
itor various plant components makes it possible to efficiently
select high-quality single plants from wild populations as well
as progenies of crossing experiments. Furthermore, the vibra-
tional spectroscopic methods can also be used by the processing
industry in order to perform fast quality checks of incoming raw
materials as well as continuous controlling of production pro-
cesses.
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1 Introduction

Quality control of cultivated plant species as well as products derived
from them usually comprises correct botanical identification of the
plant material as well as quantification of the individual active prin-
ciples. Furthermore, residues (e.g. organic solvents) and contaminants
(e.g. pesticides and heavy metals) are determined applying various so-
phisticated analytical techniques. For this, testing of plant material
such as phytopharmaceutical products is usually performed in accor-
dance with validated standard methods described in the Food Chem-
ical Codex, the European Pharmacopeia, the United States Pharma-
copoeia and others. Contrary to this approach, there is some need to
apply also various rapid high-throughput methods aiming to charac-
terise simultaneously several quality parameters and to reduce efforts
for sample preparation to a minimum. In this context new vibrational
spectroscopy methods (MIR, NIR and Raman spectroscopy) in combi-
nation with various chemometric algorithms are presented which allow
efficient monitoring of numerous plant samples within a short time. Es-
pecially Raman spectroscopy has been found to be a reliable and non-
destructive method for rapid discrimination of different plant species
or chemotypes if characteristic key bands can be observed in the spec-
trum. But also NIR and ATR-IR spectroscopy have made the handling
of powdered as well as liquid samples very quick and simple. Today
portable IR and Raman spectrometer systems are available which only
need sample amounts of a few microliters or milligrams for analysis.
In most cases, vibrational measurements can be performed directly on
plant tissues as well as on fractions isolated from the plant material
by hydro-distillation or solvent extraction. Based on individual marker
bands, spectroscopic analyses in principle allow the discrimination of
different species, and even to classify chemotypes among the same
species. Combination of vibrational spectroscopy and hierarchical clus-
ter analysis provides a fast, easy and reliable method for chemotaxo-
nomic characterization. The ability to rapidly monitor various plant
components provides the possibility to efficiently select high-quality
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single plants from wild populations as well as progenies of crossing
experiments. Today, vibrational spectroscopy is already introduced in
industry in order to perform fast quality checks of incoming raw ma-
terials and continuous controlling of production processes.

This review presents an overview of some selected applications for
NIR, ATR-IR and Raman spectroscopy useful to characterize plant raw
materials and extracts produced therefrom.

2 Proteins and amino acids

Several Raman vibrational modes support the interpretation of various
amino acids and proteins occurring in plant tissue. In this context, the
following three signals are of main interest for the identification of dif-
ferent protein backbone confirmations: amide I to be detected between
1680–1600 cm−1 (stretching vibration of C=O), amide II observed in the
range between 1580 and 1480 cm−1 and amide III to be found between
1300 and 1230 cm−1 (both associated with coupled C-N stretching and
N-H bending vibrations of the peptide group). Also IR spectroscopy
was successfully applied to investigate amino acids and proteins in the
plant material as for instance to analyze the distribution of lysine in
barley [1].

Applying Raman microspectroscopy the individual content of pro-
tein in wheat kernels was measured with high spatial resolution [2].
Specific amino acid structure elements such as S-S and S-H groups
of cystine and cysteine, aromatic rings of tryptophan, tyrosine and
phenylalanine and the imidazole ring of histidine also provide helpful
information for a reliable interpretation of the registered Raman and
IR spectra. Identification of compounds containing disulfide bonds
can be successfully obtained by using FT-Raman spectroscopy, because
the S-S stretching band is polarized and very prominent in the Ra-
man spectra while the IR intensity is usually week due to its nonpo-
lar nature [3]. Also sulfhydryl groups show comparatively strong S-H
stretching modes in the Raman spectrum which occur in the region
between 2550 and 2580 cm−1.
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3 Lipids and fatty acids

Applying discriminant analysis (DA) and principal component anal-
ysis (PCA) it has been shown that commercial vegetable oils such as
extra virgin olive oil, groundnut oil, corn oil, grape seed oil, olive oil,
rape seed oil, sunflower oil, and walnut oil can be properly identi-
fied. Furthermore, it has been found that the frequency of concrete
absorption bands in the fingerprint region (700–1500 cm−1) provides
direct information about the ratio between saturated and cis monoun-
saturated fatty acid acyl groups. Stretching vibrations of trans and
cis olefinic double bonds have been observed around 3025 and 3006
cm−1, respectively. Beside C-H stretching vibrations between 3000 and
2850 cm−1, the C=O group of triglycerides shows strongest absorption
bands at approx. 1746 cm−1 [4]. A partial least squares (PLS) cali-
bration model for the prediction of the peroxide value was developed
based on spectral information in the range between 3750-3150 cm−1

which exhibits the characteristic hydroperoxide absorption bands, cen-
tered at 3444 cm−1 [5]. The reproducibility of this FTIR method was
found to be more reliable than the usually applied chemical titration
method.

The intensities of Raman bands near 1660 cm−1 and 1670 cm−1 have
been assigned to the individual cis and trans isomer contents, present
in various edible oils [6]. It has been also reported that the ratio of scat-
tering intensity arising from the C=C stretching vibration (1600 cm−1)
to that obtained from the CH2 scissoring mode (1444 cm−1) was used
to reliably predict the iodine values of triglycerols and unconjugated
vegetable oils. These Raman measurements are extremely useful for
quality control purposes in the food industry, particularly the option
to perform remote on-line control measurements through optical fibers
to monitor simultaneously the degree of unsaturation and isomer for-
mation during hydrogenation processes of edible oils.

Raman spectroscopy has been also applied to study the arrangement
of the acylglycerol molecules, which leads to different melting behav-
ior and other properties of oils. Especially the C-H stretching region
(signals at 2850 cm−1 and 2885 cm−1) in the Raman spectrum pro-
vides valuable information on the environment of hydrocarbon chains
in lipids due to different liquid-crystalline lipid-water phases [7].
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4 Carbohydrates

Most FT Raman spectra obtained from measurements of various mono-
, di-, oligo- and polysaccharides show characteristic bands which can
be used for discrimination purposes. The spectrum of sucrose presents
the characteristic bands of α-glucose (847 cm−1) and β-fructose (868
cm−1); in the spectrum of maltose besides α-glucose signals the band
due to β-glucose (898 cm−1) can be seen, whereas cellobiose shows only
a signal at 885 cm−1 representative for the β-anomer. Distinctive bands
at 1462 cm−1, 1126 cm−1, 840 cm−1, due to sugar vibrational modes,
can be used to determine the distribution of these components in var-
ious plant tissues such as carrot roots [8]. ATR-IR spectroscopy com-
bined with PLS algorithm allows the quantification of the three main
monosaccharides (glucose, maltose and fructose) in glucose syrups [9].
Furthermore, infrared spectroscopy has been successfully applied for
monitoring wine fermentation. A reliable PLS calibration model was
developed and proved to be effective for analyzing cv. Cabernet Sauvi-
gnon for e.g. glucose and fructose content [10].

Generally, FT Raman spectroscopy was found to be a powerful
tool for investigation of higher plant cell walls and their components
providing complementary information to that obtained by FT-IR mi-
crospectrometry [11].

Amylose and amylopectin can be also successfully analyzed by ap-
plication of Raman spectroscopy. It has been reported that the struc-
tural differences of both starch materials can be detected in the C-H
stretching region between 2700 and 3100 cm−1 [12].

5 Phenolic substances

Most studied plant secondary metabolites are flavonoids, which show
a wide distribution in each part of vascular plants. Here, individual
flavonoid types can be modified by hydroxylation, methylation, acyla-
tion, and glycosylation.

Anthocyanins belong to the most important group of plant pigments
that are visible to human eyes. In general, their concentration in most
fruits and vegetables varies between 0.1 and 1 g/100g dry matter. Res-
onance Raman (RR) spectroscopy has been applied to determine the
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influence of glycosylation on the benzopyrylium part of the flavonoid
molecule, and provided some characteristic spectral features of these
phenomena [13,14]. In this context, characteristic spectral features were
observed in the spectral range between 500 and 900 cm−1. When the
C(5) position of the anthocyanin molecule is glycosylated, significant
perturbations of spectral features between 640 and 750 cm−1 are visi-
ble, but they depend also on the nature of the individual sugar. Res-
onance Raman spectra obtained directly from vacuoles of the skin of
cv. Pinot noir wine berries (Vitis vinifera) showed that its main pig-
ment is malvidin 3-glucoside, which occurs in the quinonoidal base
form inside the skin whereas in the outer face of the skin it is mainly
present in the flavylium form [15]. In the epidermis of petals of the
common mallow (Malva sylvestris), only malvidin 3,5-diglucoside has
been detected, entirely in the cationic flavylium form [15].

Several phenolic compounds biosynthesized in the phenylpropane
pathway such as anethole, eugenol, carvacrol, and thymol, have been
identified as major essential oil components. They are widely used in
the production of perfumes, flavorings and phytopharmaceuticals or
as additives for pet food relating to their antibiotic properties.

Both IR and Raman spectroscopies allow identifying these sub-
stances. They demonstrate strong IR bands due to C-H wagging vi-
bration between 800 and 920 cm−1, whereas in the FT-Raman spec-
trum ring deformation vibration is observed between 740 and 760
cm−1 [16–18]. Significant differences are seen for isomeric compounds
like thymol /carvacrol in FT-Raman as well as in ATR-IR spectra. In
FT-Raman spectra ring vibration of thymol is seen at 740 cm−1, while
for carvacrol this signal is shifted to 760 cm−1. In the ATR-IR spectrum
the most intense bands are seen at 804 cm−1 (thymol) and 811 cm−1

(carvacrol) [16, 17].
FT-Raman spectroscopy was also used for investigation of curcumin,

which is a valuable dyeing component of curcuma root (Curcuma
sativa). The most intense bands appearing at 1630 and 1601 cm−1 can
be assigned to the benzene ring, whereas bands at 1185 and 965 cm−1

are due to COC and COH vibrations [19]. The presence of characteristic
curcumin bands in the spectrum of curcuma roots provide very good
pre-conditions to apply selective Raman maps in order to determine
the curcumin distribution in a sprouting curcuma root [20].
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6 Terpenoids

Terpenes occurring in flowers, stems, leaves, and roots of numerous
plant species are frequently used in perfume compositions as well as in
flavours of food-stuffs or mouth care products. For numerous essential
oil plants such as basil (Ocimum basilicum) [21], fennel (Foeniculum
vulgare) [20, 22], oregano (Origanum vulgaris), thyme (Thymus vul-
garis) [16–18, 23–25], marjoram (Origanum majorama) [16, 17], pepper
(Piper nigrum) [26], chamomile (Chamomilla recutita) [20,23], eucalyp-
tus species [27] and various citrus fruits [28] calibration models have
been developed which allow to quantify valuable components and to
discriminate different chemotypes.

Acyclic monoterpenes show the most intense bands due to stretch-
ing vibrations of C=C bonds at about 1670 cm−1 in the Raman spec-
trum, whereas IR spectra are more miscellaneous. Both, monocyclic
and bicyclic terpenes, demonstrate strong IR bands due to C-H wag-
ging vibration between 800 and 920 cm−1, however by using Raman
spectroscopy differentiation between these groups is more clear. Ring
deformation vibration observed in the FT-Raman spectrum of monocy-
cles between 740 and 760 cm−1, in the case of bicycles is shifted about
hundred to lower wavenumbers and can be therefore recognized in the
range between 645 and 666 cm−1 [16–18]. Significant differences are
seen for structural isomers like α-terpinene/γ-terpinene in FT-Raman
as well as in ATR-IR spectra. In the FT-Raman spectrum characteristic
C=C stretching vibrations appear at 1611 cm−1 for α-terpinene and at
1701 cm−1 for γ-terpinene reflecting the difference between a conju-
gated and a nonconjugated system, respectively.

More than 600 carotenoids have been found in plants, but only α, β
and a few other carotenes (not lycopene and lutein) can be converted
into vitamin A by human beings. Although these natural pigments
occur in plants as minor components at the ppm level a very sensi-
tive detection can be achieved by Resonance Raman in the visible re-
gion, when the wavenumber of the laser excitation coincides with an
electronic transition of the individual carotenoid [29, 30]. FT-Raman
spectroscopy also gives a strong enhancement of carotenoids due to
the known pre-resonance effect; furthermore disturbing fluorescence
effect of biological material usually observed when laser excitation is
performed in the visible range, is avoided. Strong bands of carotenoids
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are observed in the Raman spectrum within the 1500–1550 and 1150–
1170 cm−1 ranges due to in-phase C=C (v1) and C-C stretching (v2)
vibrations of the polyene chain. Additionally, in-plane rocking mode
of CH3 groups attached to the polyene chain and coupled with C-C
bonds are seen as a peak of medium intensity in the 1000–1020 cm−1

region. It has been shown that the wavenumber location of these bands
is strongly dependent on the length of the carotenoid chain, and gen-
erally, carotenoids with 11, 9, 8, 7 conjugated C=C bonds have their
characteristic bands at about 1510, 1524, 1530, 1536 cm−1 [31, 32].

7 Alkaloids

In spite of the fact that alkaloids show a broad range of different chem-
ical structures only a few vibrational measurements of these plants
substances have been published. FT Raman spectra obtained from
green berries of pepper (Piper nigrum), ground black pepper and black
pepper oleoresin predominantly show significant key signals of piper-
ine [26]. Apart from the intense –C-H stretching vibrations between
2800 and 3100 cm−1, the main Raman signals occur in the fingerprint
range between 1100 and 1630 cm−1. On the basis of ATR-IR and Ra-
man measurements chemometric equations have been developed for
calibration of piperine content in pepper samples, showing a compara-
tively high prediction quality [26].

Both, ATR-IR technique and FT Raman spectroscopy have been
demonstrated to be very promising tools for fast and reliable determi-
nation of the main alkaloids (morphine, codeine, papaverine, thebaine
and noscapine) occurring in poppy plant material and related pharma-
ceutical products [32]. Raman spectra in the fingerprint range between
700 and 1500 cm−1 show numerous sharp bands which are mainly as-
signed to deformation and stretching vibrations of the alkaloid ring
system. Raman spectra obtained from poppy milk presents most rel-
evant morphine bands (e.g. peaks at 631, 1620, 1642, 3044 and 3073
cm−1) and aqueous-ethanolic extracts prepared from unripe poppy
capsules show several specific peaks which can be assigned to vibra-
tional modes of the mentioned alkaloid substances.

Guarana seeds, which represent an important product of the Ama-
zonian rain forest, were also successfully analyzed by FT Raman spec-
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troscopy aiming to determine the individual content of the main alka-
loids (caffeine, theophylline and theobromine) [33]. The discrimination
between anhydrous caffeine and it’s monohydrate form was presented
as a key band at 1656 cm−1 and it’s relative intensity compared to the
1698 cm−1 signal, both of which are CO stretching modes. The occur-
rence of these bands in the Raman spectrum of guarana methanolic
extracts confirms that this product contains anhydrous caffeine. Theo-
bromine was distinguished from caffeine and theophylline by the pres-
ence of a band at 620 cm−1, whereas the other two alkaloids have a
strong feature at 556 cm−1 and a medium doublet for caffeine to be
seen at 643 and 741 cm−1 [33].

8 Polyacetylenes

Generally, polyacetylene spectra show strong and polarized bands,
due to the triple bonds in the molecule, in the region around 2200
cm−1. As has been discussed earlier [34], the number of triple bonds
as well as substituents influence the frequency of the polyacetylene
-C≡C- stretching modes. Thus, the spectral position of -C≡C- vibra-
tions and pattern of Raman bands usually provide enough information
to recognize the type of substitution and to support the identification of
polyacetylenes [3]. Generally, for compounds containing a -C≡C-C≡C-
grouping, the vibrational modes are described as asymmetric and sym-
metric -C≡C-C≡C- stretching, and accordingly they are IR and Raman
active, respectively. The characteristic, strong and polarized, symmetric
stretch of the R-C≡C-C≡C-R’ structure should be seen in the interval
of 2257-2251 cm−1 in the Raman spectrum [10].

It has been shown that by using Raman spectroscopy it is possible
to distinguish the main polyacetylenes occurring in carrot as well as in
ginseng roots. Carrot polyacetylenes possess a similar molecular struc-
ture with two adjacent triple bonds substituted with one -OH group
(falcarinol) and two –OH groups (falcarindiol) and show their charac-
teristic -C≡C- mode in the Raman spectrum at 2258 and 2252 cm−1, re-
spectively [35, 36]. In ginseng roots, beside falcarinol, its epoxy deriva-
tive (panaxydol) occurs in higher amounts, and can be characterized
by the strong Raman signal at 2260 cm−1 [37]. Falcarinol and panaxy-
dol are among the most bioactive polyacetylenes isolated from ginseng
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and hence they are very important in relation to their anti-cancer effect
and other pharmacological properties of ginseng roots. Furthermore,
falcarinol and falcarindiol contribute strongly to the bitter taste of car-
rot [38,39], but may also have some negative effects when administered
in high doses [40].
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Inline monitoring of structural quality
and thermal conductivity of plastics

in the hot extrusion process
by means of infrared thermography
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Abstract In a joint project called ”Sensoren und Auswerte-
strategien zur autonomen Überwachung von kontinuierlichen
Kunststoffprozessen” (KontiSens), the Fraunhofer Institute for
Chemical Technology (ICT), the WKI, and partners from indus-
try work on the development of sensors and evaluation strategies
for the autonomous monitoring of continuous plastics produc-
tion processes. The task of the WKI is to develop a monitoring
technology based on infrard imaging for the production of insu-
lating materials by hot extrusion.

Keywords: Thermography, thermal conductivity, insulating ma-
terials, image processing, hot extrusion.

1 Introduction

Hot extrusion is a widespread production process for plastics products
with a cross-section which is constant lengthwise. The raw material
is melted and pushed through the extrusion tool with a speed in the
range of one metre per minute. Extrusion gives a very smooth surface
and is able to process brittle materials such as expanded polystyrene.
However, changes in the composition of the raw materials and varia-
tions in temperature and pressure can result in structural defects such
as air inclusions or in an inhomogeneous distribution of material pa-
rameters such as thermal conductivity.
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When the product leaves the extrusion tool, heat is dissipated by heat
flows from the interior to the surfaces. The heat flow pattern in de-
fective areas is different from that in good parts of the structure, if the
defects differ in thermal conductivity and/or thermal capacity from the
faultless material. This is especially true for air inclusions and density
fluctuations. The different heat flows are mirrored in the temperature
distribution on the product’s surface. These temperature patterns and
consequently the defects can be made visible with an infrared camera
(thermography). Since infrared thermography is an imaging technique,
many established procedures and algorithms from conventional image
processing for automatic defect recognition can be adopted.

Furthermore, the thermal conductivity of the material can be char-
acterized by means of thermography if it is subjected to a sequence
of laser pulses. The laser pulses heat up the insulating material lo-
cally and generate a characteristic temperature profile. After the pulse,
horizontal and vertical heat flows broaden the temperature profile and
decrease its peak height.

2 Theory

The idea of thermography for structural quality control is to generate
temperature differences between ”good” and ”bad” regions which can
subsequently be detected by infrared imaging. The flow of heat in solid
matter in the absence of internal heat sources is described by Fourier’s
law:

∇(∇κT)) =
∂T
∂t

with the heat diffusivity κ defined by

κ =
λ

ρCsp

where λ is the thermal conductivity, ρ the mass density, and Csp the
specific heat capacity. In order to have heat flows (∇T 
= 0), one needs
a change of temperature in time (∂T/∂t 
= 0). A change of temperature
in time can conveniently be achieved by letting cool down the material
which was heated in a preceding production step (passive heat flow
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thermography). The monitoring of material coming out of an extrusion
machine is a typical example for this method.

For a laser beam with intensity distribution I(x,y) moving in x direc-
tion at speed v with radial symmetry and diameter d, the maximum
temperature in the irradiated area is given by [1]

Tmax = T0 +
ε

2λπd

�
A

I(u, v)e−Pn [r−(x−u)]

r
du dv

where T0 is the environment temperature and ε the absorbtivity of the
material. The Peclet number Pn is defined by

Pn =
2dv

κ

The dimensionless variables u and v are the coordinates x and y di-
vided by the beam diameter. The denominator of the integrand r is
given by

r =
√
(x − u)2 − (y − v)2

It can be easily seen that the maximum temperature is inversely pro-
portional to the thermal conductivity. If all other parameters are kept
constant, monitoring the maximum temperature is sufficient to dis-
cover any changes in thermal conductivity.

Another way to do this is to observe the evolution of temperature
over time. For a Dirac pulse with specific energy Q0 in J/m2, the surface
temperature as a function of time is given by [2]

T(t) = T0 +
Q0

2
√

πκt

By fitting a appropriate function to the observed temporal evolution of
the laser spots, κ can be obtained.

If the thermal pulse meets an interface between materials with dif-
ferent values of κ,the pulse is partially reflected with the reflection co-
efficient given by

R =
1 −

√
κ2
κ1

1 +
√

κ2
κ1
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Figure 18.1: Setup used for the first experiments

This allows again for finding structural inhomogeneities in the direc-
tion of the laser beam which would change the surface temperature as
a function of time in the described way.

3 Experimental

A first set of experiments was executed in co-operation with the Laser
Zentrum Hannover e. V. on ready-made samples at room temperature.
The aim of these experiments was to check if temperature profiles gen-
erated by laser beams can be recorded with an infrared camera and
automatically extracted by image processing with sufficient precision.

In order to simulate the transport through the extrusion machine, a
small conveyor belt was adjusted to have a transport velocity of 3 me-
tres per minute. A pulsed solid state laser with a wavelength of 960
nm and a maximum power of 25 W was used to thermally excite the
samples while they were moving along the laser beam on the conveyor
belt. Pulse rate and spot diameter were 1 Hz and 1 cm, respectively. An
infrared camera manufactured by IRCAM GmbH (Erlangen, Germany)
recorded thermal images of the excited samples. In such a way, thermal
signatures of up to four laser spots on the samples could be registered.
The camera had an infrared detector made in InSb technology with 512
x 640 pixels with a noise equivalent detection threshold of 15 mK. It
was operated at rate of 25 frames per second. The setup is illustrated
in figure 18.1. The amount of heat absorbed depended strongly on the
colour of the sample.
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Figure 18.2: Passive thermography using the extrusion machine

A certain white material showed a temperature rise of only 2.5 K
whereas some other (greenish) material was already melted in the cen-
tre of the laser spots.

A second set of experiments was carried out using the extrusion ma-
chine of Fraunhofer ICT in Pfinztal, Germany (figure 18.2). The objec-
tive was to check if structural inhomogeneities in the extruded material
can be seen by passive heat flow thermography.
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Figure 18.3: Typical infrared image from the initial, middle and final section of
the series (right to left)

4 Image Processing for Data Extraction

The aim of the image processing part of the work was to write an algo-
rithm which can extract the spatial intensity profiles of the laser spots
over time automatically. This is of course necessary in the final applica-
tion of the method, but even in the development stage it is not feasible
to extract the information manually since every single measurement
has typically more than 200 frames. For the sake of robustness, the
algorithm should get as much information as possible from the image
series itself. Only the following assumptions were made:

• The laser spots are brighter than their immediate surrounding,
but not necessarily the brightest items in the image.

• The laser spots are moving through the field of view from left to
right at constant speed and with constant distance.

• The laser spots are more or less round.
A typical infrared image series has an initial section, when the object
under inspection enters the field of view, a middle section, and the final
section, when the object leaves the field of view. Figure 18.3 shows one
image for each section. The laser spots are clearly visible and show
decreasing intensity from the left part of an image to the right part, as
expected.

Of course it is much easier to identify the spots in the middle section
of the series. However, in the test measurements of the development
stage this section represents only a small part of the complete series.
Concentrating on the middle section would thus lead to a huge loss of
information. Consequently, the extraction algorithm uses the middle
section in a first run to identify preliminary information of the peaks
with respect to position, gray value, and size.
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Figure 18.4: Measured and fitted mean intensities of an image series for the
estimation of begin and end of the middle section

These information is then extrapolated to the complete series in order
to help identifying the spots in every single image.

Thus, the first step of the work is to find the begin and the end
of the middle section. For this purpose, the algorithm calculates the
average intensities for the single images as a function of time. In the
middle section the average intensity is more or less constant while it
increases in the initial phase and decreases in the final phase. By fitting
a trapezoidal function to the data, the middle section can be identified
(figure 18.4). In the second step the average of the frames in the middle
section over time is calculated and subtracted from the series in order
remove the background. A typical image after background removal is
shown in figure 18.5. The laser spots are not averaged out completely
since the number of frames is too small, but the important thing is
that the intensity in the spot region oscillates over time due to the
movement of the spots whereas it is constant in the rest. This can
be used to identify the upper and lower boundary of the region where
the spots are.

In particular, the algorithm uses the PARAFAC method to analyse
the temporal behaviour of the pixels over time. PARAFAC is similar to
the better known Principal Component Analysis (PCA), but calculated
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Figure 18.5: Typical image after background removal

in a different way. Whereas PCA diagonalises the covariance matrix,
PARAFAC minimizes the error matrix. The result for the third com-
ponent is shown in figure 18.6. The region of the moving spots is
now determined by calculating the maximum of each row and fitting a
Gauss profile to the result. Only this part of the image is considered in
the subsequent calculations.

The next step is to segment the laser spots by a simple gray value
threshold obtained by Otsu’s method. In order to remove parasitic
objects from the resulting binary image, elongated objects are identified
and removed. After this, the image is morphologically opened, and
only those objects are kept which exceed the average object size.

By this means the algorithm can find almost every peak. However,
it sometimes misses a peak close to the right edge of the image and
sometimes finds an object which is not a peak. This is a consequence
of the decrease in spot intensity on the way through the field of view.
But a simple linear fit to the estimated spot positions over time allows
not only the identification of missing spots and outliers, but also calcu-
lating an individual region of interest for each single spot. Within these
regions of interest, the spots can again be identified by thresholding,
but with much better results due to the smaller area.
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Figure 18.6: Third PARAFAC component of the time dependent iniensities of
each pixel

Using this methods, the spot positions within the complete series can
be found and used for the final step, the extraction and storage of the
two-dimensional intensity profiles around the spots.

5 Results

A typical result from passive thermography using the extrusion ma-
chine is shown in figure 18.7. The structure shown in the image is most
likely due to unwanted density inhomogeneities. Figure 18.8 shows a
typical intensity profile of a peak. The raw data are displayed in the
left part while smoothed data are shown in the right part. Smoothing
was achieved again using the PRAFAC algorithm assuming a three-
dimensional model (two spatial coordinates, one time coordinate).

Peak intensities as a function of frame number are exemplarily
shown in figure 18.9. It can be seen that the curves for four peaks
are close to each other whereas two peaks have higher intensities. It
is not yet clear if this is due to changes in heat diffusivity or in laser
power.
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Figure 18.7: Inhomogeneities in extruded material in the infrared image

6 Summary and Conclusion

It was shown that structural inhomogenities in extruded plastics can
be found using passive heat flow thermography. Furthermore, the in-
tensity profiles of laser induced hot spots can be recorded with in-
frared imaging and extracted automatically with sufficient precision.
In the forthcoming phases of the project, both passive thermography
and laser stimulation will be carried out inline using an extrusion ma-
chine. Furthermore, thermal properties will be measured by standard
methods and compared against the results of thermal stimulation by
laser.
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1. G. R. B. E. Römer and J. Meijer, “Metal surface temperature induced by
moving laser beams,” Optical and quantum electronics, vol. 27, no. 12, pp.
1397–1406, 1994.

2. D. P. Almond and P.-M. Patel, Photothermal Science and Techniques. London,
UK: Chapman and Hall, 1996.



Inline monitoring of the hot extrusion process 191

Figure 18.8: Typical peak form with raw data (left) and smoothed data (right)

Figure 18.9: Typical peak intensities as a function of frame number
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Abstract The possibility to develop a sensor based procedure
in order to monitor plastic presence in the marine environment
was explored in this work. More in detail, this study was ad-
dressed to detect and to recognize different types of microplas-
tics coming from sampling in different sea areas adopting a new
approach, based on HyperSpectral Imaging (HSI) sensors. More-
over, a morphological and morphometrical particle characteriza-
tion was carried by digital image processing. Morphological and
morphometrical parameters, combined with hyperspectral imag-
ing information, give a full characterization of each investigated
particle, concurring to explain all the transportation, alteration
and degradation phenomena suffered by each different polymer
particle. Obtained results can represent an important starting
point to develop, implement and set up monitor strategies to
characterize marine microplastics. Moreover, the procedure de-
veloped in this work is fast, not expensive and reliable, making
its utilization very profitable.

Keywords: Hyperspectral imaging, microplastics, marine envi-
ronment.
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1 Introduction

Plastic debris in the marine environment are considered as a global
problem: the increasing plastic production and its improper disposal
when plastics become wastes heighten the build-up of these materials
in the environment, contaminating especially oceans [1]. Recent studies
have shown as five large-scale accumulation regions of floating plastic
debris exist in the oceans [2]. Once in the sea water, plastics undergo
degradation processes (i.e. UV radiation, atmosphere oxidative prop-
erties and seawater hydrolytic properties) that induce their fragmenta-
tion, leading to an increasing amount of small plastic particles, called
microplastics. Microplastics are defined as “plastic particles smaller
than 5 m” according to the International Research Workshop on the
Occurrence, Effects and Fate of Microplastic Marine Debris in Septem-
ber 2008 [3]. Due to their small size, microplastics can easily enter in
the marine food chain, being ingested by marine biota [4]. The persis-
tence of microplastics in the sea fauna (i.e. mussels) has implications for
predators, including birds, crabs, starfish, predatory whelks [5] and hu-
mans. Microplastics can absorb persistent bio-accumulative and toxic
compounds from seawater before being transferred to the marine or-
ganisms as food [6] causing health problems in each step of the food
chain. In particular, toxic chemicals as persistent organic pollutants
(POPs) are endocrine disruptors that produce dangerous effects. More-
over, some researches highlighted as the microplastics presence in the
circulatory system can impede blood flow, damaging cardiac activity
and tissues vascularization but also the ingested plastic can abrade the
gut cavity [7]. Several studies indicate microplastic toxicological risks
but concentrations in nature are not well known [8]. In order to obtain
a better knowledge of the impacts due to the microplastics presence
in the marine environment, most studies have focused on quantifying
their abundance. A detailed monitoring of microplastics from the sea
water is thus needed, in order to assess a reliable evaluation of the
marine situation in terms of plastic presence [4]. Indeed, quantitative
measurements are important in order to assess the risk and to realize
monitoring purposes, but also to allow temporal and spatial compari-
son of pollutants [9]. In this work, the classical digital imaging and the
innovative hyperspectral imaging approaches were combined in order
to obtain a full classification of marine microplastic samples. A mor-
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phological and morphometrical analysis by digital images was coupled
with the investigation of hyperspectral images that allows to identify,
to recognize and to classify different types of polymers starting from
known reference plastics. The fulfillment of a fast and non-destructive
monitoring system, able to characterize and recognize different types
of marine microplastics, can make the successive operations, aiming to
prevent and combat their production and spread, much more effective
and targeted.

2 Materials and methods

2.1 Samples

The investigated marine microplastic samples were collected from the
Mediterranean Sea along the northern coast of the Adriatic Sea and off
the coast of Forlı̀-Cesena and Ferrara areas, during two measurement
campaigns carried out by ISPRA (Italian National Institute for Envi-
ronmental Protection and Research) and ARPAE (Regional Agency for
Prevention, Environment and Energy of Emilia-Romagna, Italy), in Oc-
tober 2014 in the framework of the international project called Derelict
Gear Management System in the Adriatic Region – DeFishGear, funded
with the financial assistance of the IPA Adriatic Cross-Border Coop-
eration Programme [10]. The investigated area was divided in two
transects, Cesenatico and Porto Garibaldi, and a station called Lido di
Volano: the sampling was carried out in the first few meters of wa-
ter column where the particles tend to float on the surface. For each
transect, samples were collected at 500 m, 3 km, 10 km and 20 km off
shore, while for the sampling at Lido di Volano station microplastics
were taken at 10 km off shore. The collected number of microplas-
tic samples was 643: 469 in the Cesenatico transect, 153 in the Porto
Garibaldi transect and 21 in the Lido di Volano station. According to
the particle shape, samples were classified as filaments, films, foam,
fragments, granules, other, pellets and uncategorized. For the analyses
shown in this work, fragment class was selected and 293 samples were
thus analyzed (Table 19.1).

The 293 microplastic samples were grouped in about 10–12 particles
and they were acquired by digital camera and hyperspectral imaging
working in the short wave infrared range (1000–2500 nm) (Figure 19.1).
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Table 19.1: Total and percentage number of microplastic samples belonging to
the fragment class in each transect/station.

Cesenatico Porto Garibaldi Lido di Volano
Transect Transect Station

N° fragments 186 97 10
% fragments 64 33 3

Figure 19.1: Marine microplastics from the Cesenatico Transect sample.

In total 25 digital images for morphological and morphometrical analy-
sis and the corresponding 25 hyperspectral images were thus obtained.

In order to recognize the polymer type of each microplastic fragment,
the SWIR spectra of virgin polypropylene (PP), virgin polyethylene
(PE) and virgin polystyrene (PS) samples coming from an industrial
production plant were used as references. Comparing the particle spec-
tra with those of known reference polymers, the identification of poly-
mer constituting the analyzed microplastic samples was performed. A
classification model was also built and validated applying it on hyper-
spectral images rapresenting marine microplastics (Figure 19.2).

2.2 Image acquisition systems

Both classical and hyperspectral imaging acquisitions were carried out
at “RawMaLab” (Raw Materials Laboratory) of the Department of
Chemical Engineering, Materials & Environment (Sapienza – Univer-
sity of Rome, Italy). In order to acquire digital images of microplas-
tic samples for morphological and morphometrical analyses, a Nikon
D5200 camera was adopted.
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Figure 19.2: Virgin PP, PE and PS samples used as references for the identifica-
tion of microplastics.

The 25 digital images thus obtained were processed adopting the
Image-Pro Plus software by Media Cybernetics. More in detail, the
following parameters were measured for each fragment particle:

• Area (mm2);

• Axis major (mm);

• Axis minor (mm);

• Diameter max (mm);

• Diameter min (mm);

• Diameter mean (mm);

• Perimeter (mm);

• Roundness as the ratio between the perimeter2 and the 4π · area;

• Fractal dimension.
The 25 hyperspectral images were acquired using the SISUChema

XLTM Chemical Imaging Workstation (Specim, Finland) (Figure 19.3),
equipped with an ImSpectorTM N25E imaging spectrograph (Specim,
Finland) working in the short wave infrared range (SWIR: 1000–2500
nm). The analytical station is controlled by a PC unit equipped
with specialized acquisition/pre-processing software (ChemadaqTM),
to handle the different units and the sensing device constituting the
platform and to perform the acquisition and the collection of spectra.
Images were acquired scanning line by line the samples, with a width
of 320 pixels and a number of frames variables according to the desired
length. Calibration for black and white references was automatically
performed.
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a b

Figure 19.3: An overview of the SISUChema XLTM chemical imaging worksta-
tion (Specim, Finldand) (a) and a detail of the macro lens acquiring microplas-
tics (b).

The analyzed images were acquired with a macro lens and a field of
view of 10 mm. 256 wavelengths were collected. Spectral data analyses
were performed using PLS-ToolboxTM under Matlab® environment.

The procedure for the analysis of the hyperspectral data was devel-
oped in different steps. First of all, Regions Of Interest (ROIs) were
selected on each acquired particle in the hyperspectral images in or-
der to obtain SWIR spectra to compare with plastic reference spectra
for a preliminary sample identification. Starting from reference plas-
tics of known type, Principal Component Analysis (PCA) was applied
in order to perform an exploratory analysis, useful to set the classes
for the further classification purpose. In order to build a classifica-
tion model, Partial Least-Squares Discriminant Analysis (PLS-DA) was
adopted and it was validated applying the model to the hyperspectral
images.

3 Results

3.1 Morphological and morphometrical analysis

Morphological and morphometrical results obtained for the investi-
gated microplasic particles are reported in Table 19.2, in terms of mean,
standard deviation, max and min values.
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Table 19.2: Total and percentage number of microplastic samples belonging to
the fragment class in each transect/station.

Cesenatico Porto Garibaldi Lido di Volano
Mean St.Dev Max Min Mean St.Dev Max Min Mean St.Dev Max Min

Area (mm2) 3.68 4.28 24.65 0.27 3.01 4.52 37.07 0.26 5.04 7.83 26.11 0.47
Axis Max (mm) 2.75 1.51 8.74 0.82 2.24 1.29 7.54 0.15 2.75 1.97 7.3 0.84
Axis Min (mm) 1.51 0.81 4.99 0.31 1.38 0.92 6.57 0.3 1.74 1.28 4.73 0.74

Diameter Max (mm) 2.83 1.59 9.74 0.83 2.29 1.31 8.19 0.68 2.58 1.88 6.96 0.98
Diameter Min (mm) 1.35 0.72 4.42 0.11 1.23 0.8 5.29 0.22 1.5 1.15 3.99 0.56

Diameter Mean (mm) 1.87 0.95 5.49 0.56 1.63 0.98 6.76 0.56 2.02 1.47 5.61 0.77
Perimeter (mm) 7.79 4.2 22.89 2.13 6.4 3.91 27.77 1.92 8.12 5.69 21.18 2.75

Roundness 1.78 2.8 39.21 0.36 1.45 0.35 3.22 1.08 1.59 0.82 3.91 1.17
Fractal Dimension 1.06 0.02 1.13 1.01 1.07 0.04 1.41 1.02 1.06 0.02 1.1 1.02

Area ranges between 0.26 and 37.07 mm2, Axis Major between 0.15 and
8.74 mm, Axis Minor varies between 0.30 and 6.57 mm, Diameter max
ranges between 0.68 and 9.74 mm, Diameter min between 0.11 and
5.29 mm while Diameter mean is between 0.56 and 6.76 mm, Perimeter
ranges between 1.92 and 27.77 mm. The mean value for the Roundness
is around 1.6: only a very elongated particle was found in the Cesen-
atico transect with 39.21 as Roundness value. The Fractal Dimension of
the analyzed microplastics ranges between 1.01 and 1.41 with a mean
value of 1.06.

Starting from the mean diameter of each analyzed particle, according
to the ranges set by literature for microplastics [11–13] as small (0.35–
1.00 mm), medium (1.00–4.75 mm) and large (4.75–5.00 mm), samples
were grouped and counted (Figure 19.4). Medium particles are the
most abundant in each transect/station, followed by the small ones.
Large microplastics, with mean diameter ranging between 4.75-5.00
mm and more than 5.00 mm, are very few and they are concentrated
into the Cesenatico transect mainly. The low presence of large parti-
cles is probably due to all the degradation processes occurred in the
sea water (i.e. UV radiation and seawater wavy motion) inducing their
fragmentation.

3.2 Hyperspectral imaging

In order to collect microplastic particle spectra, some ROIs (Regions of
Interest) were selected in each of the 25 HSI acquisitions (Figure 19.5).
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Figure 19.4: Microplastic particle number (%) grouped in small, medium and
large per each transect/station according to [11–13].

The analyzed microplastics were classified as PE, PP and PS: 245 are
PE particles, 32 are made of PP and 1 particle is constituted by PS (Ta-
ble 19.3). 14 particles are not identified because of their black color
that makes difficult the spectrum recognition. In Cesenatico transect,
samples are more affected by the presence of unidentified particles.
After the preliminary analysis that allowed to identify the most abun-
dant polymers in the microplastic samples, a procedure for automatic
recognition of plastic types was carried out.

Table 19.3: Number of particles and percentage values constituted by PE, PP,
PS and unidentified (NI) for each transect/station.

Cesenatico Porto Garibaldi Lido di Volano
n°particles % n°particles % n°particles %

PE 160 86 75 77 10 100
PP 12 6 20 21 0 0
PS 0 0 1 1 0 0
NI 14 8 1 1 0 0
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Figure 19.5: An example of the ROI selection on a SWIR-HSI image.

The acquired raw and preprocessed spectra of PP, PE and PS references
plastics are reported in Figure 19.6. After pre-processing stage, PCA
was applied as exploratory data analysis. The analysis of the score
plot allows to identify three different groups according their spectral
signature.

In Figure 19.7 score plot PC1-PC2 obtained after removal of some
border pixels is shown. All the pixels represented in Figure 19.7 were
selected as training dataset for PLS-DA model.

The obtained values of Sensitivity and Specificity are shown in Ta-
ble 19.4.

Table 19.4: Sensitivity and specificity for the PLS-DA model built for the recog-
nition of microplastic types: PP, PE and PS.

Sensitivity Specificity
Calibration Cross validation Calibration Cross validation

PE 1.000 1.000 0.999 0.999
PP 1.000 1.000 1.000 1.000
PS 1.000 1.000 1.000 1.000



202 G. Bonifazi et al.

a

b

Figure 19.6: Raw spectra (a) and preprocessed spectra (b) after the applica-
tion of 2nd derivative and mean center algorithms of PE, PP and PS reference
samples.

The results in terms of “class most probable” predictions are shown
in Figure 19.8: the class with the highest probability is assigned to
each pixel in the image. Obtained results are very good, allowing to
distinguish 3 PP particles, 9 PE particles and 1 PS particle clearly.
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Figure 19.7: PC1-PC2 score plot as resulting after pixels removal from the
training dataset in the SWIR wavelength field (1000–2500 nm).

a b c

Figure 19.8: Digital image (a), hyperspectral image (b) and prediction map (c)
obtained as result of the PLS-DA classification model.

4 Conclusions

The study was carried out to obtain a full characterization of marine
microplastics in order to monitor their presence in the marine environ-
ment. A morphological and morphometrical analysis was combined
with SWIR-HSI analysis in order to evaluate particle sizes, shapes and
polymer types. Moreover, a SWIR-HSI based procedure was developed
in order to implement an automatic recognition of PP, PE and PS in a
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hyperspectral image representing microplastic particles coming from
sea water. More in detail, Partial Least-Squares Discriminant Analysis,
after application of Principal Component Analysis, was used to build a
model able to recognize/classify PP, PE and PS particles. The proposed
HSI-based approach presents a lot of advantages: it is reliable, fast and
non-destructive, allowing low-cost analysis. As confirmed by the re-
sults, the HSI can be profitably utilized to clearly discriminate PP, PE
and PS in the analyzed samples. Obtained results can be considered
as an important starting point to develop monitor strategies for marine
microplastic characterization. Further studies will be devoted to corre-
lation between morphological and morphometrical parameters and the
different degradation processes of marine microplastics related to the
polymer types.
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Abstract Cascading of waste wood requires a concept for recov-
ery of solid timbers from deconstruction as a source of clean
and reliable secondary feedstock for new wood and wood-based
products. An essential requirement for the re-use of wood is a
sufficient quality of the near-surface areas that must be free of
contaminations like coatings or any wood preservatives. Due
to the absence of industrial established automatic testing and
sorting methods the possible potential for material re-use of re-
covered wood in the sense of cascading is not utilized so far.
Hyperspectral-Imaging (HSI) is a promising method to improve
the situation. In the study on hand results according to detec-
tion accuracy and limitations of NIR-SWIR-HSI are presented.
As input material solid waste wood (e.g. different kinds of hard
wood, soft wood, wood with paint or other coatings, particle
boards, and medium density fibreboards) obtained from decon-
structions is considered. First, the spectral structures of some
different kinds of wood and contamination are examined. De-
sired are the so-called fingerprints according to significant char-
acteristics in the spectra. The results have been incorporated in
a database as training set. For classification tasks some deci-
sion trees based on PLS-DA (Partial Least Squares Discriminant
Analysis) were exploited. These decision trees are then passed
to an industrial NIR-SWIR-Hyperspectral-Imager for generating
chemical images of the contaminated wood samples. Results
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of some sorting experiments are presented. The aim of the
tests was to find the limits for sorting throughput and purity.
The tests revealed that the spectral differences are mostly large
enough for automatic wood classification and sorting operations
even at presence of inorganic wood preservatives. In this case
the detectability and accuracy of classification depends much on
preservative concentrations.

Keywords: NIR-SWIR-HSI, recovered wood, sorting, recycling.

1 Introduction

Cascading use can be defined as the efficient utilization of resources
by using residues and recycled materials to extend total biomass avail-
ability within a given system [1, 2]. For wood this mainly requires a
concept for recovery of solid timbers from deconstruction or demoli-
tion waste as a source of clean and reliable secondary feedstock for
new wood and wood-based products [3–5]. The re-use of wood pre-
supposes a sufficient quality of the near-surface areas that must be free
of contaminations like plastics, coatings or any wood preservatives that
are used to extend the service life by preventing biodegradation.

Due to the absence of industrial established automatic testing and
sorting methods the potential for material re-use of recovered wood in
the sense of cascading is not utilized so far as it would be possible.
Waste wood of lower grades e.g. often is a mixture of wood particles
with contamination and/or coatings and pure wood particles which
could be used as high grade wood – if there were suitable techniques
to sort out the particles of lower grade. In addition to cascading use of
wood, the production of energy (or better conversion) by combustion of
demolition wood – as it is still the preferred method to exploit this kind
of waste in most countries – needs an effective presorting. When e.g.
CCA treated wood is burned, the resulting ash contains high amounts
of chromium, copper and arsenic, may posing an environmental prob-
lem [6].

Crucial steps in the re-use of used wood are detection and sorting
out of above mentioned contaminated items. Powerful in-line methods
are required to perform the task. A holistic solution with industrial im-
portance is not known until now. The separation of treated wood and



HSI for recovery of waste wood 209

other contaminations from clean wood is today mainly based on visual,
mechanical, magnetic or gravity sifting techniques and is done at dif-
ferent steps along the recycling chain. Sensor based automatic sorting
techniques are the only solution to achieve higher levels of recovery
and quality of waste wood from demolition and to increase consider-
ably the proportion of a high value material use of waste wood.

NIR spectroscopy (NIRS), especially the NIR imaging techniques
(Hyperspectral-Imaging (HSI) [7]), is best suited for the automated on-
line sorting of high volumes of waste wood. It has a high discrimi-
nation power for organic contaminations and the necessary measuring
speed and spatial resolution. In a recently published review on appli-
cations of NIRS in wood science and technology it is pointed out that
on-line or at-line monitoring in wood industry is in a starting posi-
tion. It is desired to bring HSI into industrial applications for the wood
branch as next step [8].

The study on hand aims to support this task. Results according to
detection accuracy and limitations of NIR-SWIR-HSI are presented. As
input material solid waste wood (e.g. different kinds of hard wood, soft
wood, wood with paint or other coatings, particle boards, and medium
density fibreboards) obtained from deconstruction is considered. Spec-
tral measurements on the input materials in reflection mode have been
incorporated into a database as training set. For classification tasks
some decision trees based on PLS-DA (Partial Least Squares Discrimi-
nant Analysis) were exploited. These decision trees are then passed to
an industrial NIR-SWIR-Hyperspectral-Imager for generating chemical
images of the contaminated wood samples. Discussion of some sorting
experiments sums up the study.

2 State of the art

Matured timbers are divided into different quality groups, in Ger-
many [9] e.g. into classes AI (quasi natural wood), AII (used wood
without preservative treatments and without halogenated organic coat-
ings), AIII (used wood with halogenated organic coatings but without
preservative treatments), and AIV (preservative treated wood, except
PCB waste wood). Unification of quality groups AII and AIII is in a
state of thinking about. A fifth group, referred to as PCB waste wood,
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falls within the scope of PCB/PCT (polychlorinated biphenyls / ter-
phenyls) waste and should not be considered here deeper because it is
quantitatively not of importance for re-use.

For recycling the reclaimed wood of categories AI, AII, and after ex-
tensive detachment of coatings also AIII can be used. The two biggest
challenges are therefore the detection of halogenated organic coatings
(mainly PVC coatings) that must be removed from AIII wood for re-
use and the detection of wood preservatives to classify a piece as AIV
wood, respectively. For these tasks, there are a number of “classical”
analysis methods like Ion-Mobility Spectrometry (IMS) [10, 11], Ther-
mography [12], Color Indicator Techniques [13], Laser-Induced Break-
down Spectroscopy (LIPS), and X-ray Fluorescence Analysis (RFA)
[6, 14, 15]. The main disadvantages of all of these analytical methods
are that they are either not space-resolved or too slow for on-line oper-
ations. One promising method for both space-resolved and fast on-line
detection is NIRS in connection with digital image processing. This
combination is called Hyperspectral [16] or Chemical Imaging, respec-
tively.

As standalone method, NIRS for detection of wood preservatives is
known for over two decades [17]. The non-destructive method has
been refined continuously [18–25]. But NIRS only provides a mean
spectrum (average measurement) of a sample, irrespective of the area
of the sample scanned. As the spectra collected are averaged to pro-
vide a single spectrum, the information on spatial distribution of con-
stituents within the sample is lost. The development of NIR-HSI, which
combines NIRS with digital imaging, enables both spatial (localization)
and spectral (identification) information to be obtained simultaneously.
HSI thus have the potential of describing distribution of constituents
within a sample. More than one decade after the release of the first af-
fordable digital cameras that were sensitive enough for the NIR spectral
range [26], HSI also appeared in the focus of wood research in a labora-
tory scale [27–30]. The complex of waste wood analysis by HSI regard-
ing detection of contaminations and preservatives is a quite new field
of applications and so far just applied on AIII and AIV wood [29, 30].
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SWIR-HSI is suitable to differentiate between various organic and in-
organic wood preservatives qualitatively as well as quantitatively. As
one result it could be claimed that it was possible to classify the spec-
tra according to the chemical compositions at the surfaces of investi-
gated sample/preservative combinations. Surprisingly this was found
to be true not only for organic preservatives, but also for most inor-
ganic ones. An explanation for this finding could be the formation of
chemical reactions between the inorganic preservatives and the wood
constituents, leading to significant changes in the spectral fingerprints.
In at least the case of Cu(II) sulfate the preservatives could be detected
quantitatively by NIR-SWIR-HSI.

3 Experimental details and results

For extension and curing of the findings in [29, 30] the authors have
launched two experimental series, one in laboratory scale (WKI study)
and the other in industrial scale (RTT/PTS study). The first series con-
sidered the detection ability of VIS-invisible organic wood preserva-
tives while the second ones deals with measuring of real world waste
wood samples of different types and with different contaminations. In
both cases the same kind of NIR-SWIR hyperspectral camera (RED-EYE
2.2) has been used. The RED-EYE 2.2 camera from inno-spec GmbH
(Germany) is sensitive in the wavelength range from 1.100 nm to 2.200
nm. It consists of a transmission grating based spectrometer and a
cooled extended InGaAs detector with 256 x 320 pixels (spectral x spa-
tial). The full-frame-rate is 330 Hz. In both series spectral images were
acquired using the push-broom imaging principle [7]. Samples were
scanned over conveyor belts with 50 and 200 cm width at speeds of 10
and 200 cm/sec, respectively. For illumination halogen lamps powered
with 250 W have been used. Due to the slower conveyor belt speed of

as ranging from the end of the visible spectrum (around 800 nm) to 1.700 nm. The
SWIR portion of the spectrum ranges from 1.700 nm to around 2.500 nm. A uniform
definition does not exist until today. Sometimes the whole region from 800 to 2.500
nm (12.500 to 4.000 cm-1; 120 to 375 THz) is called NIR range.

1 By agreement, the NIR portion of the electro-magnetic spectrum is typically defined

The investigations in [29, 30] employed a NIR-SWIR-Hyperspectral-
Imager1. A key objective of the research was to find out whether NIR-
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3.1 WKI study – laboratory scale

PCP (pentachlorophenole) and Lindane (hexachlorcyclohexan) were
the most widely used wood preservatives in the 1960s until the 1980s.
Lindane was also used as insect repellent (insecticide). Much demo-
lition wood from this period is surface contaminated with these toxic
ingredients. The preservatives are invisible and have been usually ap-
plied in rather low concentrations, typically in the range of milligrams
of the agent (without solvent) per kg of wood.

Figure 20.1: (left) Scene with wood samples; three without (from top No. 1, 3,
5), and two with PCP-Lindane treatment (from top No. 2, 4); the yellow box
marks the area under evaluation. (right) Results of classification by principal
component PC 1, areas probably without treatment are marked by black frames
(see text).

the laboratory equipment (10 cm/sec to 200 cm/sec for the industrial
equipment) the sample illumination was stronger in the first experi-
mental series.
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scene comprising approx. 35 % of each sample’s width (yellow box)
was taken from the HSI and analyzed using the commercial software
Evince from Prediktera (Sweden).

PCP-Lindane and other organic wood preservatives like tolylfluanid
or tebuconazole show specific absorptions in a NIR range between ap-
prox. 1.300 nm and 2.100 nm [30]. Therefore it is useful to limit the
range for HSI data evaluation to these bands and, if possible, to exclude
the strong absorption band of water at around 1.900 nm. A principal
component analysis (PCA) of the hyperspectral image in Fig. 20.1 (left)
was carried out for the wavelength range 1.600 nm to 1.800 nm. Fig-
ure 20.2 shows the loadings for the first PC (principal component) –
the maxima near 1600 nm correspond to expected absorptions typical
for PCP-Lindane around this wavelength [30].

Figure 20.2: Loadings plot of PC 1 for wavelength range 1.600 nm to 1.800 nm.

The scatter plot of the PCs 1 and 2 (Fig. 20.3) shows no significant clus-
ters, which could be used for a clear treated/untreated classification of
the samples. But according to Fig. 20.2 information of the PCP-Lindane
content can be expected in PC 1, and the values of PC 1 are suitable
to classify the pixels in the HSI. At a certain level of the PC 1 value
the segmentation correlates well with the apriority classification of the
samples. Dark green dots in Fig. 20.3 and black borders in Fig. 20.1
(right) mark the pixels with probably low PCP-Lindane content.

For simulation planed samples of spruce wood, artificial treated with
PCP-Lindane together with untreated reference samples were placed
on a plywood background (Fig. 20.1, left) and scanned using the above
mention experimental setup for series one. A region-of-interest of the
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tion model must be re-calibrated for new wood material and/or other
preservatives. Therefore, the findings can be considered just as a first
step – there are several problems to solve for using NIR-SWIR-HSI to
classify wood pieces by their content of organic preservatives and to
apply this for industrial sorting applications.

Figure 20.3: Scatter diagram of PC1 / PC2, classified pixels marked as in
Fig. 20.1 (right).

3.2 RTT/PTS study – industrial scale

The objectives of second experimental series were the development and
testing of NIR-SWIR-HSI measuring methods for the detection of con-
taminations on surfaces of real world waste wood. Especially in focus
have been contaminations with paint or other coatings, wood products
others than solid wood, e.g. MDF (medium density fibreboard), and
extensive investigations on different wood material types, e.g. soft and
hard wood. To be not beyond the topic and scope of the OCM confer-
ence only the developed methodology for the detection and separation
of different types of wood materials that are painted with different
coatings is described subsequently.

From evaluation of series one it can be concluded that PCP-Lindane
in the samples has been detected because wood species and surface
properties were the same for all pixels in the HSI. However, these re-
sults are valid only for these conditions and material and the classifica-
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Figure 20.4: Samples of different wood material types and an extra piece of
plastics (right, PS).

On the basis of a previously created database of well pre-treated spectra
a multi-stage hierarchical PLS-DA decision tree as it is self-explanatory
shown in Fig. 20.5 has been applied.

Figure 20.5: Multi-stage hierarchical PLS-DA classification tree.

This decision tree is then passed to an industrial sorting machine with
a NIR-SWIR-Hyperspectral-Imager for generating chemical images of
the wood samples (Fig. 20.6).

From a typical mixture of demolition waste wood randomly five dif-
ferent samples were chosen: hard wood (LH), soft wood (NH), wood
with paint or other coatings (FA), particle board (SPAN) and medium
density fibreboard (MDF), respectively (Fig. 20.4).
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Figure 20.6: Chemical Image of samples from Fig. 20.4.

From Fig. 20.6 it can be slightly derived, that by applying of appropri-
ate procedures of MIA (multivariate image analysis [7,29]) a separation
of items and thus an automatic sorting by NIR-SWIR-HSI support is a
capability.

4 Summary and Conclusions

The main objective of the study on hand was the extension and curing
of published results in [29, 30] that deal with the applicability of NIR-
SWIR-HSI for the fast detection and sorting of waste wood treated with
wood preservatives. It should also be studied whether the developed
recognition procedures can satisfy high requirements from industry
in terms of accuracy and robustness. Demonstrated on example of
toxic PCP-Lindane (today banned as preservatives, however much of-
ten present in waste wood from demolition) it was found, that in case of
VIS-invisible impregnated waste wood with rather low concentrations
of the agent a classification is anyway possible. Nevertheless, much at-
tention must be payed on spectroscopy, chemometrics and multivariate
image analysis, respectively. Some pre-skills about the spectral struc-
ture of the possible types of impregnation seem to be essential. The
perceptibility of organic coatings on different timber and wood prod-
ucts was proven on an industrial scale. As a side effect, even the type
of wood material can be determined by NIR-SWI-HSI support.
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Abstract This paper presents the development of a novel line-
camera device in the THz-domain which is capable of measur-
ing minute differences in broadband spectral fingerprints of non-
conducting materials. The primary focus is sorting black plastics
in industrial recycling contexts, where large scale sorting of dif-
ferent types of black plastics remains a challenge. The system
operates from 84 GHz to 96 GHz. As the relevant plastics exhibit
no specific absorption lines in this frequency range, a broad-
band approach is necessary to accumulate slight differences in
dielectric properties into enough entropy that a machine learn-
ing algorithm can be trained to differentiate between different
materials even in the presence of contaminants such as flame re-
tardants, color pigments and dirt. Preliminary results suggest
that the blackValue® THz sensor system is capable of achieving
these goals.

Keywords: THz imaging, black plastics.

1 Introduction

The thermal recycling of plastics is no longer seasonable for modern in-
dustrialized countries; in 2011 unfortunately around 56 % of all plastic
scrap in Germany was recycled thermally. These 3 million tons of plas-
tic scrap are an untapped treasure for a resource deficit country. Non
perfect sorting results in low-grade plastics granulate which in turn
can only be used to produce lower grade products. Today recycled ma-
terial is mixed together with new raw material to create a high-grade
granulate. The drawback of this procedure is, that for 1 t recycled ma-
terial between 2 t and 3 t new material is needed. For a 100 % material
recycling strategy a mono-fraction sorting system is the key to success.
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Modern recycling systems use hyperspectral camera systems to distin-
guish between different plastics. Because of the high carbon content
in black plastics most of the photons of optical detector systems are
absorbed. For efficient sorting systems new sensor concept are needed.

Test measurements and publications in the last few years have shown
the feasibility of plastics separation using THz systems. While plastics
can be identified using their distinct absorption lines in the infrared
region, in the lower THz region they exhibit no such behavior [1]. To
choose the optimum frequency range, a selection of machine learning
algorithms was trained with test data sets acquired in the first phase
of the project. Test series with commercial systems show that better
sorting results can be realized using higher frequency ranges as well
as more bandwidth for the analysis. With a limited number of classes,
test sets and a first prototype algorithm a probability between 85 % and
95 % for identification was realized [2]. The chosen frequency range
is a compromise between the need to design an economically priced
commercial system while simultaneously achieving a high purity level.

2 Measurement principle

The blackValue® THz line scan camera system utilizes a stepped-
frequency continuous-wave (SFCW) approach. The transmitter illu-
minates the particles traveling on the conveyor belt with 128 equally
spaced frequency lines in the lower THz region ranging from 84 GHz
to 96 GHz, yielding a usable bandwidth of 12 GHz. The receiver uses a
quadrature mixer to downconvert the received signal to an intermedi-
ate frequency (IF) of 3 MHz. This IF signal is sampled using a 25 MSps
analog to digital converter (ADC). Only a single sample is captured per
frequency step as the information contained in the quadrature signal
(I, Q) allows for the reconstruction of instantaneous magnitude A(t)
and phase Φ(t) of the received signal: A(t) =

√
I(t)2 + Q(t)2, Φ(t) =

arctan I(t)/Q(t). The sample instant has to be timed precisely as a sam-
ple captured early or late exhibits artifacts stemming from the system
still settling on the current frequency or the most recent frequency step,
respectively.
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While this approach requires careful timing, it enables us to decrease
the acquisition time for a complete measurement frame (128 frequency
steps, arbitrary number of sets of 4 channels multiplexed in time) to
less that 1.4 ms.

Unless filtered in the analog domain, each sample contains the noise
integrated over the whole analog bandwidth of the ADC, thus rais-
ing the overall noise floor and decreasing system signal-to-noise ra-
tio (SNR). This effectively puts a lower bound on the IF frequency as
lower frequency filters require larger components, making designs be-
low 1 MHz impractical. At higher IF frequencies, sampling jitter leads
to inaccuracies in the captured phase of the IF signal.

As the system is intended for recycling applications, a large band-
width of additives, material mixes and impurities is to be expected in
the measured goods. A simple fingerprint analysis comparable to ab-
sorption line evaluation is not sufficient to achieve satisfactory sorting
results in the used frequency domain. Therefore, a machine learn-
ing algorithm is trained to perform the actual classification based on
the captured and normalized magnitude and phase information. The
principle was demonstrated in [3], while [2] performed measurements
using the precursor of our current system.

3 Hardware concept

Typical conveyor belt speeds for this application are in the range of
2.5 to 3 m/s. As the system should be able to provide a resolution of
around 1 line per millimeter a measurement-rate of up to 3000 mea-
surements per second has to be achieved. This yields in a interval of
less than 333 μs available for the generation of all frequency-lines in the
desired range and the synchronous sampling of the down-converted
RX-signal, which contains the permittivity-characteristics of the probe.
In the following subsections the frontend and the backend of the sys-
tem will be described in more detail.
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Figure 21.1: Schematic illustration of blackValue® THz Imager.

3.1 Frontend

The frontend consists of an array of transmitters and receivers which
can be cascaded in a modular fashion to allow for the required num-
ber of channel (or pixels). This is evident of the desired covering
width of conveyor belt and the resulting resolution of the THz camera-
system. The measurement method is similar to a simplified multi-
port heterodyne vector network analyser. The fundamental idea of the
blackValue® system is illustrated in figure 21.1.

Two Direct Digital Synthesis (DDS) chips generate fast stepped fre-
quency ramps f1 from 160 MHz up to 320 MHz in which the ramps
are slightly shifted in frequency Δ f with respect to each other. Both
ramps are upmixed using the same low noise reference oscillator fre f
and the resulting conversion product is bandpass filtered. This base-
band signals fbb with frequency range from 1,16 to 1,33 GHz feeds into
the transmitters and receivers. Using a chain of multipliers the base-
band signal gets upconverted further to an RF signal band ranging
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Figure 21.2: Schematic overview of the digital backend of the blackValue®

sensor.

from 27,8 to 31,9 GHz. This signal then feeds an RF switch. The switch
is controlled by the backend and allows to switch the transmitting an-
tennas in Time Division Multiplex (TDM). this way, a trade-off between
optimal performance and economical costs can be achieved.

The spatial separation between active antennas allows for insignifi-
cant crosstalk and multiple usage of the 30 GHz LO reduces the system
costs. After passing the switch the RF signal gets multiplied again to
the targeted millimetre-wave band ranging from 83, 5 GHz to 95, 8 GHz
and is radiated by the transmitter antennas. After passing a plastic
flake the affected millimetre-wave signal gets detected by the receiver
antennas. The receiver involves an IQ-mixer, which converts the af-
fected signal together with the slightly shifted LO signal down to an
Intermediate Frequency (IF) of 3 MHz. Depending on the currently
active pixel, the corresponding IF signal is switched by an analog mul-
tiplexer to the backend.

3.2 Backend

The digital backend of the presented THz camera system consists of
multiple distinct subsystems as depicted in figure 21.2 and described
in the following paragraph.

A ramp generator board serves as source for local oscillator signals
for the receive- and transmit-path as well as source of a digital reference
clock signal for synchronous operation with the data acquisition (DAQ)
boards. These Signals are generated by a 1 GHz reference-oscillator
that drives a clockmanager IC which in turn drives two DDS-ICs.
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a set of 8-channel DAQ boards. As for every pixel a complex quadra-
ture IF signal is captured, each of these boards allows simultaneous
sampling of 4 Pixels. By time-division multiplexing of 4 IF channels
from the frontend, each DAQ board is capable of capturing 16 pixels of
the scanline. Multiple DAQ boards can be combined to acquire scan-
lines containing more than 16 pixels, where one of these boards acts as
a master device, controlling the signal-generator board and distribut-
ing a synchronous line-trigger signal to all slave DAQ boards as well
as controlling the signal mutiplexers.

Figure 21.3 gives a schematic overview of the firmware-logic real-
ized in FPGA-hardware on the DAQ boards. The control signals for
sequencing the operation of the signal-generator, the RX/TX switches
and the sample-buffer are generated by a programmable pulse genera-
tor, which is implemented in FPGA logic-ressources.

Different schedules for these control signals may be loaded to this
pulse generator by software running on an embedded microcon-
troller (MicroBlazeTM). Figure 21.4 illustrates the pattern of pixel-
multiplexing and frequency switching as employed in the current ver-
sion of the sensor. Each DAQ-device transfers its acquired stream of
16 pixels over a Gigabit-Ethernet link via UDP/IP-Packets. A seper-
ate FPGA-based Camera-Link adapter-board bundles these streams for
subsequent transmission via camera-link.

Coherent sampling of the downconverted RX Signal is accomplished by
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As the imaging system is intended for industrial applications, ser-
viceability and scalability are a primary concern. While earlier ap-
proaches [4, 5] depended on custom-machined housings comprising
delicate waveguide structures, these expensive one-off parts are super-
seded in our current build-up by using commercially available launch
connectors and individual printed circuit boards (PCBs) for each chan-
nel.

Figure 21.5: Left: Old frontend with machined waveguides. Right: New front-
end using single channel PCBs and plug-in wave guide launch adaptors.

Earlier backends were tightly integrated with PCBs stacked in multiple
layers. Although layers were functionally independent where possible,
30 GHz gain blocks and reference signal generation had to be placed on
the bottom of the casing to facilitate thermal management. While this
setup was used to successfully demonstrate the feasibility of our ap-
proach [2], it imposed limits on scalability with respect to the number
of channels used.
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To overcome these limitations, a more modular approach is necces-
sary. Our current system concept is centered around using a mother-
board to distribute power and route all critical RF signals to a multi-
tude of daughterboards. We opt for using PCIExpress-connectors as
these provide well defined insertion and return loss specifications over
a wide frequency range while as a consumer grade product being read-
ily available at a low price. A basic set of daughtercards is used in the
current system: The first one conditions the RF reference signal and
controls the RF TDM switches in both the receive and the transmit
frontend modules. A second daughtercard implements a 4 channel
high pass filter bank for the measurement signals being captured from
a single frontend module. This card is also used to control the RX TDM
switches in the frontends.

System partitioning is driven by the need to perform a transmissive
measurement, meaning the transmitter is situated on top of the con-
veyor opposing the receiver below. On an industrial scale conveyor,
this necessitates cable trunks spanning multiple meters between the
backend and the frontend. This limits the frequency distributed by the
backend to the low GHz range.

Figure 21.6: New modular backend in COTS case with plug-in cards.
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Figure 21.7: Spectral fingerprints of different materials. Channels are oriented
vertically while frequency increases from left to right. Top right: No speci-
men. Bottom right: Aluminium sheet, resulting in noise. Top left: 1 mm ABS
sheet. Bottom left: 1 mm PP sheet. Areas containing distinguishing features
are highlighted. Signals are intentionally overdriven to enhance visibility of
features.

4 Results

To evaluate system performance, pure polymer samples are measured
using the blackValue® camera. As the classification algorithm builds
on a large database of scanned materials, a different approach is used
to assure enough measurement entropy before conducting large scale
training data acquisition. Plastic sheets measuring 150 mm ∗ 150 mm
with a thickness of 1 mm are placed into the measurement aperture
and the resulting spectral fingerprint is recorded. Normalization is
performed using a reference measurement without a test specimen.
The resulting spectral fingerprints are visualized in Fig. 21.7. Although
the differences are quite small, they allow classification of the pure
specimen.

Figure 21.8: Signal-to-noise measurements. The first graph shows the system
noise floor for each frequency line and channel. The second graph shows the
reference measurement. The last graph shows the calculated system SNR.
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The noise level of the receiver is measured using a 3 mm metal sheet
isolating the transmitter and receiver. This is compared against the
measurement without a test specimen. The difference of these mea-
surements (in dB) defines the frequency and channel resolved system
SNR. Fig. 21.8 shows the result of this evaluation. For frequencies up
to 93.375 GHz (step 100), system SNR reaches 35 − 40 dB. As the fre-
quency increases further, some channels show degraded performance.
This is to be expected as the 30 GHz switches used in the frontend
exhibit insertion loss imbalances across channels at higher frequencies.

5 Future work

The final blackValue® system comprises the THz line scan camera as
well as classification algorithms and a sorter that performs particle flow
segmentation using an optical line scan camera. The next steps are inte-
gration of the THz sensor into the TableSort bench sorter developed by
Fraunhofer IOSB and teaching the classifier developed by Fraunhofer
IAIS using a wide range of real world particles, i.e., particles origi-
nating from recycling processes. Following successful integration, the
sensor array will be extended to 32 complex channels (pixels) and inte-
grated into the FlexSort large scale sorter. Additionally, we are working
on implementing steeper and narrower IF filters which should further
increase the system SNR.

6 Summary

A W-band THz line scan sensor array comprising 8 channels with a
bandwidth of 12 GHz was realized. We demonstrated the fitness of
the blackValue® THz sensor for the task of sorting black plastics by
evaluating its RF performance and noise level.
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