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Erster Gutachter: Prof. Dr.-Ing. Klemens Böhm
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Abstract

The goal of this thesis is to address essential challenges emerging from the col-
lection of big volumes of fine-granular time-series data. The first challenge
corresponds to the huge amounts of storage space required to save such data.
The second challenge involves the big effort often required to acquire sensors
to measure and communicate the data. Research has provided promising ap-
proaches, in the form of lossy time-series techniques, to deal with these chal-
lenges. The major contributions of this work are, on the one hand, the im-
provement and generalization of such approaches and, on the other hand, the
investigation of the impact of such approaches on subsequent data analysis.

In this thesis we develop several techniques and a framework to address the
challenges above. The first part proposes a lossy compression method, which
approximates time series piecewisely using polynomials of different degrees
incrementally. Compared to existing techniques, our method achieves better
compression ratios as it can adapt to the data well. Moreover, we investigate
the problem of choosing good parameters for our method given a dataset and
propose two assisting methods. The second part of our thesis involves another
kind of lossy time-series techniques: the estimation of time series instead of
their direct measurement with the goal of reducing the effort of data collection.
We consider the case of estimating computer energy-consumption, which is an
increasing and important share of the total energy consumption. We first ana-
lyze and extend existing estimators, then integrate them into a general estima-
tion framework. Our framework is the first to explicitly consider the trade-off
between accuracy of estimates and the effort of obtaining them. The third part
of our thesis builds on the previous two. Here, we investigate techniques which
transform the original data, be it for compression, estimation or other purposes.
We analyze the impact of such techniques on subsequent data analyses. Specifi-
cally, we consider the case of data-analysis methods based on change detection
and propose a general measure for quantifying the impact of lossy transfor-
mations on subsequent change detection. Our measure is parameterizable and
can be used to identify adequate parameters of a lossy transformation so that its
advantages are maximized while the impact on subsequent change detection is
bounded.

The thesis includes an extensive experimental analysis based on real-world ap-
plication scenarios from the Smart Grid domain. We analyze all our techniques
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using different schemes on real-world energy-consumption datasets. Overall,
we believe our work shows that lossy time-series transformation techniques
can efficiently deal with the challenges above while maintaining data useful
for subsequent analyses.
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Deutsche Zusammenfassung

Das Forschungsziel dieser Dissertation ist wesentliche Herausforderungen bei
der Erfassung großer Volumen fein-granularer Zeitreihen anzugehen. Die erste
besteht darin, dass solche Daten enorme Mengen an Speicherplatz benötigen.
Die zweite stellt den großen Aufwand dar, der in vielen Fällen dem Beschaf-
fen von Sensoren zum Messen und Kommunizieren der Daten entspricht. Die
jüngste Forschung hat einige vielversprechende Ansätze in Form von verlust-
behafteten Technicken vorgeschlagen, um diese Herausforderungen anzuge-
hen. Die wesentlichen wissenschaftlichen Beiträge dieser Arbeit sind auf der
einen Seite die Verbesserung und Generalisierung solcher Ansätze und auf der
anderen Seite die Untersuchung deren Auswirkungen auf einer nachfolgenden
Datenanalyse.

Im Rahmen dieser Dissertation werden einige Techniken und ein Rahmenwerk
für das Angehen der oben genannten Herausforderungen entwickelt. Der er-
ste Teil der Arbeit schlägt eine verlustbehaftete Kompressionsmethode vor, die
Zeitreihen stückweise mit polynomialen Funktionen von unterschiedlichen
Graden inkrementell approximiert. Verglichen mit existierenden Ansätzen, er-
reicht unsere Methode bessere Kompressionsraten, weil sie sich an den Daten
gut anpassen kann. Außerdem untersuchen wir das Problem der Wahl guter
Parameter für unsere Methode für einen gegebenen Datensatz und schlagen
dafür zwei zusätzlichen Methoden vor. Der zweite Teil dieser Arbeit bezieht
sich auf eine andere Art von verlustbehafteten Zeitreihentechniken: die Ab-
schätzung (Approximation) von Zeitreihen anstatt deren direkten Erfassung
mit dem Ziel den Aufwand der Datenerhebung zu reduzieren. Wir betrachten
im konkreten die Abschätzung des Energieverbrauchs von Rechnern, der einem
steigenden und wichtigen Teil des globalen Energieverbrauchs entspricht.
Dafür untersuchen und erweitern wir zuerst existierende Schätzer. Danach in-
tegrieren wir diese in ein allgemeines Rahmenwerk. Unser Rahmenwerk ist das
Erste, das den Trade-off zwischen Genauigkeit der geschätzten Daten und
Aufwand der Schätzung explizit betrachtet. Der dritte Teil dieser Arbeit baut
sich auf die ersten zwei auf. Wir untersuchen Techniken, die die originalen
Daten beispielweise zur Kompression, Abschätzung oder Anonymisierung
transformieren. Dabei untersuchen wir die Auswirkungen solcher Techniken
auf nachfolgende Datenanalysen. Wir betrachten den Fall von Analysemeth-
oden, die auf einer Erkennung von Änderungen basieren, und schlagen ein
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allgemeines Maß für die Quantifizierung der Auswirkungen von verlustbe-
hafteten Transformationen auf die nachfolgende Erkennung von Änderungen
vor. Unser Maß ist parametrierbar und kann genutzt werden, um angemessene
Parameter für eine verlustbehaftete Transformation zu identifizieren. Hier-
durch werden die Vorteile der Transformation maximiert und gleichzeitig die
Auswirkungen auf eine nachfolgende Erkennung von Änderungen in Grenzen
gehalten.

Diese Dissertation enthält eine ausführliche experimentelle Analyse der
vorgeschlagenen Methoden mit realen Anwendungsszenarien aus dem Bere-
ich des intelligenten Stromnetzes. Wir analysieren unsere Methoden mit un-
terschiedlichen Schemata auf realen Energieverbrauchsdatensätzen. Insgesamt
schlussfolgern wir, dass verlustbehaftete Transformationstechnicken von Zeitrei-
hen die Herausforderungen gut angehen und gleichzeitig die Nützlichkeit der
Daten für nachfolgende Analysen behalten.
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1 Introduction

Time-series data is collected nowadays in many domains [RLG+10] using sen-
sors that measure and communicate values (e.g., temperature, pressure) at ever
increasing frequencies. Take for example the Smart Grid, where smart electric-
ity meters measure and communicate data every second or even at
higher frequencies. Although such time-series data is useful for many ana-
lytical purposes, e.g., monitoring of residential power quality [IKG12], energy
trading [Kar11] or visualization [NSQ+12], capturing it involves several chal-
lenges: First, collecting time-series at high frequencies requires huge amounts
of storage space. As an example, for utility companies serving millions of cus-
tomers, storing smart-meter measurements of high-resolution would sum up
to petabytes of data [EPVM12]. Second, the effort of collection is high since
in many cases data must be measured and communicated using sensors, e.g.,
smart electricity meters. This is expensive in large scales.

Concerning the first challenge above, reducing storage requirements for time
series is challenging: On the one hand, decreasing the frequency of capture im-
pacts applications that need high-resolution data, such as energy disaggrega-
tion [KJ11]. On the other hand, established lossless compression methods have
not been designed for numerical time series and achieve in this case limited
success [RRR+12, EEKB15]. To address this problem, recent research has pro-
posed several promising lossy compression methods [EEC+09, LM03]. These
achieve good compression ratios by segmenting the time-series and approxi-
mating the segments with mathematical functions (piecewise regression, Fig-
ure 1.1). However, the performance of such approaches depends strongly on
the nature of the data and it is unclear which method to use for a given dataset.
Moreover, most approaches use a single class of mathematical functions, e.g.,
constant or straight-line functions. They, therefore, cannot adapt well to very
variable time series.

Regarding the second challenge above, in certain cases, it is possible to obtain
time series of estimates instead of direct measurements. As an example, for cap-
turing time series of computer energy-consumption, recent research has pro-
vided methods that estimate the energy consumption of computer hardware,
instead of measuring it directly [GFS+10, SMPH05]. Such methods are based
on technical information [PN11], sophisticated hardware models [NBRS12], or

1
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Figure 1.1: Example piecewise compression using regression functions.

profile system and component power usage [RRK08, KZL+10]. However, all
of these approaches have different characteristics in terms of setup effort, esti-
mation effort, estimation accuracy and hardware requirements. It is difficult to
decide when to use which approach and how to determine meaningful estima-
tion parameters, as well as the accuracy requirements of a given application.

Both classes of methods above (lossy compression or estimation) for addressing
the challenges due to the collection of huge volumes of time-series data corre-
spond to lossy approaches, which transform the original data. Although they
are promising in reducing storage space or effort of collection, such transfor-
mations modify characteristics of the data, which are important for subsequent
analyses. In the case of time series, such characteristics may correspond to
changes. Change detection on time series data is an important building block
of many real-world applications [Pag54, GS99]. It converts a time series of
measurements into one of potentially interesting or important events. Con-
sider again energy-consumption data from a smart meter. Change detection
on such data allows to detect interesting occurrences (turning on/off of a de-
vice, abnormal device activity). Moreover, in the context of the Smart Grid,
change detection enables demand side management, peak shifting, peak shap-
ing, etc. – all basic techniques to integrate renewable energy sources into the
Smart Grid. However, as mentioned above, data transformation, e.g., lossy
compression or estimation, can significantly impact the subsequent detection of
those changes. Existing similarity measures for time series, applied to the origi-
nal series and the compression result, cannot meaningfully quantify the impact
of a lossy transformation on the result of an change-detection approach [BC94,
RK05, VHGK03, LWKTM07]. Such a quantification however is needed to iden-
tify and parametrize a lossy transformation approach, e.g, a compression algo-
rithm, given a certain dataset and quality requirements on the change-detection
result.
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1.1 Contributions of this Dissertation

1.1 Contributions of this Dissertation

The first and second contributions address the challenges related to the col-
lection of large amounts of time series. They include lossy transformation
techniques: the first – a compression method and the second – an estimation
method. The third contribution builds on the first two. It addresses the chal-
lenge of quantifying how such lossy transformation techniques affect the sub-
sequent analysis of the data. In the following, we summarize the contributions
of this dissertation:

C1. Storage-Space Reduction Through Adaptive Time-Series Compression:
To reduce storage space requirements for time series, we devise a general lossy
compression technique for time-series data. The compression technique guar-
antees that a user-defined maximum deviation from the original values is not
exceeded for any point in the compressed time series. Besides energy data, the
proposed technique is much broader and works with time-series data stem-
ming from arbitrary domains, possibly being processed as data streams. In
principle, data at all sampling rates can be used. The technique proposed can
be executed on devices with limited computation capabilities such as smart
electricity meters or in a database. Furthermore, we investigate the trade-off
between accuracy, compression and performance. We do so by means of exten-
sive experiments on real-world energy data from different sources.

To determine good parameters for our compression technique, we addition-
ally propose two methods for estimating its performance for a given dataset.
Our first method (“model-based” estimation), uses a statistical model of the
average length of the segments resulting from piecewise regression. It can be
instantiated with many piecewise regression techniques. The second method
(“generation-based” estimation), although slower than our first method, can be
instantiated with any piecewise-regression technique. It efficiently generates a
large number of time series with similar characteristics to those in a dataset. It
then uses the average length of these time series as an estimate of the average
length of segments resulting from the piecewise regression.

C2. Flexible Estimation of Computer Energy Estimation: To determine and
reduce the effort of collecting time-series of computer energy consumption, we
introduce FRESCO, A FRamework for the Energy eStimation of COmputers.
It includes three flexible power-estimation models that generalize state-of-the-
art approaches to cover a wide range of accuracy requirements and computer
systems. FRESCO integrates these models into an estimation workflow that
allows to choose, configure and run an estimator depending on the use case.
FRESCO consists of a highly configurable set of estimators, and a workflow to
set up and run an instance of an estimator. In particular, FRESCO is able to
(a) suggest a set of appropriate estimators for computer energy consumption
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according to the effort the operator is willing to invest and to the requirements
of a certain application, and (b) to execute an instance of the selected estimator
with settings that are appropriate for the application. Depending on the kind of
estimator, FRESCO can estimate the energy consumption of a computer from
various parameters. Such parameters include (1) hardware characteristics, e.g.,
the energy consumption of a hard disk as specified by its vendor, (2) usage
information like CPU load and network activity, and (3) calibration data, e.g.,
an energy consumption profile that has been recorded by an energy meter for
a specific hardware configuration. We evaluate FRESCO with three use cases,
namely energy-aware data center management, demand response and energy
accounting.

C3. Quantifying the Impact of Lossy Transformations on Subsequent
Event Detection: Our previous contributions include techniques which trans-
form time series. To quantify the impact of such lossy transformations on
subsequent data analysis, we first investigate application scenarios in detail
that involve change detection as subsequent data analysis, which is an impor-
tant building block of many real-world applications. We then propose MIL-
TON, a “Measure which quantifies the Impact of Lossy Transformation meth-
ods on subsequent change detectiON”. Our measure is applicable to any use
case where one wants to know how much a certain transformation approach
for time series reduces the result quality of a change-detection technique, as
compared to change detection on the original data. This lets an operator de-
cide how much he can, e.g., compress the data without affecting change detec-
tion considerably, or if the perturbation/anonymization technique he intends
to deploy does indeed conceal certain changes, as he had planned. To ensure
flexibility, we do not impose restrictions on the change detection or the trans-
formation approach used, and we allow to flexibly weight effects on changes.
We lastly evaluate MILTON using three Smart Grid application scenarios. Our
evaluation shows that it is useful for identifying adequate parameters of a lossy
transformation so that its advantages are maximized while the impact on sub-
sequent change detection is bounded.

1.2 Outline of this Dissertation

The remainder of this dissertation presents our contributions in detail:

In Chapter 2 we present related work. We use several real-world datasets to
evaluate our contributions. We describe these in Chapter 3.

In Chapter 4 we present our work on lossy time-series compression. We first
introduce our adaptive time-series compression method. Subsequently, we

4



1.2 Outline of this Dissertation

show how we evaluated our compression method using three scenarios and
three real-world datasets. We then present our methods (“model-based” and
“generation-based” estimation) for determining the appropriate time-series
compression method and its parameter values for a given dataset. Finally, we
evaluate the “model-based” and “generation-based” estimation methods using
two real-world datasets.

In Chapter 5 we present FRESCO, our framework for computer energy estima-
tion. We start with a description of application scenarios that cover the spec-
trum of energy-aware applications for FRESCO. We then explain the classes of
effort FRESCO needs to take into account. We subsequently describe the work-
flow of FRESCO and the estimators it uses. Finally, we present an evaluation of
FRESCO using three application scenarios and three real-world datasets.

We start Chapter 6 with the description of three scenarios which motivate MIL-
TON and derives the requirements on it. We then present the functioning of
MILTON and ways to parameterize it. We finally evaluate MILTON using three
classes of lossy transformations and corresponding real-world datasets. Lastly,
in Chapter 7 we summarize the dissertation and present an outlook of open
questions and problems which it did not address.

5





2 Related Work

In the following we describe work related to our approaches and to their ap-
plication scenarios. We group related work into three categories: time-series
data management, computer energy estimation and change detection. Much of
this section comes from our publications [EEKB15] (Sections 2.1.1 and 2.1.2),
[EBB14a] (Section 2.2) and [EBEB15] (Sections 2.1.3, 2.1.4 and 2.3).

2.1 Time-Series Data Management

Time-series data is of importance in many domains [RLG+10], and it has been
investigated for years [BD02, KK02]. Here we first include work related to our
first contribution on time-series compression. We then consider the topic of time-
series forecasting, which has gained much attention from the research commu-
nity [KAMSK09, DBF+10, REWG+97]. As time-series forecasting is very impor-
tant in smart grids [EPVM12], we use it as one important scenario in the evalu-
ation of our time-series compression technique (Section 4.2). We then consider
the topic of time-series similarity measures, which is a well-researched area and
serves as a basis for our measure presented in Section 6. Finally, we present
work related to time-series anonymization which we use as application for our
measure (Section 6.3.2).

2.1.1 Time-Series Compression

Established compression techniques can be applied to time-series data, which
we present first. We next present publications on several data-management
and data-mining techniques for time series, such as indexing, clustering and
classification [KK02], which provide means for compressed time-series represen-
tation.
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2 Related Work

Compression Techniques for Time Series

There are two main categories of compression techniques: lossless compression
and lossy compression [Sal08]. With lossless compression, the full and exact re-
construction of the initial dataset is possible. Thus, lossless compression tech-
niques are appropriate, for the compression of text documents or source code,
to give examples. With lossy compression, some details of the data may be dis-
carded during the compression process, so that the original dataset cannot be
fully recovered from the compressed version. Such data losses can however be
tolerable to a certain extent for certain applications, such as picture, video and
audio reproduction. JPEG, MPEG-4 and MP3 are popular examples of lossy
compression techniques for these domains, respectively. In the following, we
discuss lossless techniques for the compression of time series. We then discuss
lossy techniques in the context of time-series representations.

The field of research on lossless compression includes established techniques,
such as [Huf52, ZL77]. They are based on the reduction of the statistical re-
dundancy of the data. However, none of these has been developed with the ex-
plicit goal of compressing time series. Recently, a study has investigated the ap-
plicability of lossless compression techniques on smart-meter data [RRR+12].
Next to specialized algorithms for devices with limited computing capabili-
ties in sensor networks, the authors have studied a number of standard al-
gorithms. They have conducted experiments on data measured each second;
some of the datasets are very similar to the ones used in our evaluation. The
authors have achieved the highest average compression ratio of factor 4 for
datasets describing smart-meter readings from individual buildings using the
bzip2 algorithm [Sal08]. On metering data from individual devices, the au-
thors have achieved the highest average compression ratio by a factor of 29
using the LZMA algorithm, an improved version of LZ77 [ZL77]. This increase
in compression ratio when compressing data of individual devices is natural,
as individual devices typically consume the same amount of energy or even no
energy for certain periods – such data containing few variations can be com-
pressed more easily than data with higher variation. For standard smart-meter
data, we expect lossy compression as investigated in this dissertation to achieve
compression ratios which are orders of magnitude better. This certainly de-
pends on the dataset and the quality requirements of the application. In cer-
tain situations where the original data needs to be fully reconstructible, lossless
compression may however be better than no compression.
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Time-Series Representations

In the wide field of time-series research, in particular regarding data man-
agement and data mining, several techniques have been proposed that can
be used to generate an abstract representation of time series [CF99, FRM94,
KCPM01, KJP98, LKWL07, STZ00, SK08, WEA13]. This includes Fourier trans-
forms, wavelets, symbolic representations and piecewise regression. Some other
related studies have investigated the representation of time series with the ded-
icated goal of reducing its communication or storage requirements [EEC+09,
LM03]. All these techniques lead to time-series representations or abstractions
which are usually smaller in size than the original time series. As they cannot
be used to fully reconstruct the data, they are lossy compression techniques.

Discrete Fourier transforms have been used in [FRM94] to extract features from
time series. This helps to build an efficient subsequence-matching algorithm for
time series. [CF99] is an approach for a similar time-series-matching problem,
but it builds on discrete wavelet transforms, particularly Haar wavelet transforms.
[STZ00] proposes a wavelet-based tree structure to support certain queries on
time-series data.

Fourier transforms and wavelets have been applied in these contexts and pro-
vide a means of representing and compressing time-series data. However,
these techniques do not provide absolute guarantees for a compressed point.
This would be necessary for time-series-based applications in many domains
including smart grids.

Another approach for time-series compression is symbolic data representation,
which is based on discretization [LKWL07, SK08]. This has recently been ap-
plied to smart-meter data [WEA13]. Symbolic representations can lead to very
high compression ratios, but the compressed data can only “support statis-
tics and machine learning algorithms for some selected purposes” [WEA13]
– many of the applications we have mentioned earlier cannot be executed on
such highly compressed data.

Piecewise Regression Piecewise-regression techniques divide time series
into fixed-length or variable-length intervals and describe them using regres-
sion functions [HJA13]. As regression functions, all types of functions can be
used in principle. However, polynomial functions, particularly constant and
linear functions, can be estimated efficiently and are used frequently. [YF00] em-
ploys constant functions that approximate fixed-length intervals. [KCPM01,
LM03] work with constant functions, too, but consider variable-length inter-
vals. This gives the algorithm more flexibility to find a good compression
model with the regression functions. All techniques mentioned can provide
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quality guarantees under the uniform norm (also called L∞ norm). A quality
guarantee under this norm means that any value of a decompressed time series
deviates by less than a given absolute value from the corresponding one of the
original time series.

[EEC+09] introduces two time-series compression techniques which produce
connected as well as disconnected piecewise straight-line segments of variable
length with a quality guarantee under the uniform norm. [KJP98] is a similar
approach with extensions that construct weight vectors which are useful for
certain data-mining tasks such as classification and clustering.

Although their performance is good, our experiments with constant and lin-
ear piecewise polynomial regression (we have used [EEC+09, LM03]) show
that these techniques cannot compress highly variable data such as energy con-
sumption data well (see Section 4.2).

The authors in [PRA11] have presented the idea of employing not one, but sev-
eral regression models for online time-series compression with a given quality
guarantee. In its first step, their algorithm employs a set of regression models
on a segment containing two points. Second, the algorithm stores the models
that achieve an approximation of the segment under the given quality con-
straints in a temporary list. Third, the algorithm adds the subsequent incoming
point to the segment and re-employs the regression models present in the tem-
porary list. Fourth, the algorithm removes the models that did not succeed in
approximating the newly formed segment within the given quality guarantees
from the temporary list. The last three steps (the second to the fourth step)
of the algorithm form a loop that repeats itself as long as the temporary list
contains at least one model. Once the list is empty, the algorithm chooses the
model which obtained the maximum value for the following ratio:

length of longest segment approximated successfully
number of parameters of the model

.

The algorithm then saves the model and segment information (beginning and
end points) instead of the actual data points. The algorithm restarts with its first
step beginning with the segment of two points situated right after the segment
just compressed.

By trying several models and choosing the best one, the weaknesses of each in-
dividual model are avoided, and a better compression ratio is achieved. How-
ever, [PRA11] learns multiple regression models at each step of the approxima-
tion algorithm, which is disadvantageous in terms of runtime. Thus, although
it might be beneficial to employ a larger number of different models in order to
achieve higher compression ratios, the runtime of the algorithm grows linearly
with the number of models employed.
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Moreover, [PRA11] does not propose any method to estimate compression per-
formance. Such a method can help the database optimizer decide which tech-
nique it should use, given an application scenario and datasets. As an example,
knowing that a simple compression technique, i.e., one based on constant func-
tions, achieves the best compression on a given dataset, the optimizer can avoid
employing other more resource and time consuming techniques.

Model Selection for Time-Series Prediction Another approach for time-
series compression in a different setting is presented in [LBSB07]. The authors
consider savings in communication costs (and consequently energy consump-
tion) in wireless sensor networks. The main idea is to estimate a model in a
sensor node and communicate it to a sink. The sink then uses this model to
’reconstruct’ subsequent sensor readings until the sensor node communicates
a new model. In contrast to [PRA11] and to our approach, [LBSB07] employs
forecast models which predict future values of a time series instead of regres-
sion models. [PRA11] and our approach have the advantage of instantiating
their models based on the entire current segment of data. This typically results
in better compression ratios.

Like [PRA11] and in contrast to our approach, [LBSB07] combines multiple
models in parallel. Concretely, the authors use autoregressive forecast mod-
els to compress the data by means of prediction. One disadvantage of using
autoregressive models is that to reconstruct a given point of the time-series, all
the values up to that point in time need to be reconstructed as well.

To reduce the number of models to maintain, the authors employ a racing strat-
egy based on the statistical Hoeffding bound to pre-select the most promising
models. As a result, after a certain period of time, the algorithm in [LBSB07]
maintains only the model with the best prediction. However, in many settings
the data may change its statistical properties with time. Examples from the
energy domain would be the presence of an anomaly in the network or the de-
ployment of a new device with a highly variable energy consumption. In this
case, the model chosen using the racing mechanism would probably perform
worse than other potential models which have been eliminated. Our approach
in turn only maintains one model at a time and only switches to more com-
plicated models if an easier model cannot compress the data well. Thus, our
approach is not sensible to such situations, as it adapts to the data and chooses
the model which best fits the current segment of data.
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2.1.2 Time-Series Forecasting

In recent research, an impressive number of forecasting techniques has been
developed particularly for energy demand [KAMSK09, DBF+10, REWG+97].
The author in [Tay10] shows that the so-called exponential smoothing technique
behaves particularly well in the case of short-term energy demand forecasting.
The main idea behind the exponential smoothing techniques is the representation
of any point of the time series as a linear combination of the past points with
exponentially decaying weights [MCWJH98]. The weights are determined by
smoothing parameters that need to be estimated. In the case of triple exponen-
tial smoothing (also called Holt-Winters technique), the time series is decomposed
into three components: level, trend and season, each of which is modeled by a
separate equation. We study the effects of our compression technique on fore-
casting based on this algorithm. In concrete terms, we will investigate the effect
of using compressed data as input to triple exponential smoothing compared
to using the original data.

2.1.3 Time-Series Similarity Measures

Time-series similarity is a well-researched area. The Euclidean Distance is a
frequently used distance. Another measure, Dynamic Time Warping (DTW),
is commonly used to align sequences [BC94, RK05]. The DTW between two
sequences is the sum of distances of their corresponding elements. The clas-
sic DTW algorithm employs dynamic programming to identify correspond-
ing elements so that this distance is minimal. The Longest Common Subse-
quence (LCSS) is another measure used to solve the alignment problem and
to detect outliers in time series [VHGK03]. LCSS determines the longest com-
mon subsequence between two sequences. The Optimal Subsequence Bijection
(OSB) [LWKTM07] is yet another measure which, in contrast to DTW, creates a
one-to-one correspondence between two subsequences. Another difference to
DTW is that OSB allows skipping of elements.

2.1.4 Time-Series Anonymization

As mentioned in the introduction to this chapter, we evaluate our measure (Sec-
tion 6.3.2) with several use-cases, one of which is based on time-series
anonymization. We therefore provide work related to this field in the follow-
ing.

Research has produced numerous anonymization techniques. See [FWCY10]
for an overview. Differential Privacy is an intuitive measure of the risk of one’s
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privacy when having personal data in a database [Dwo06]. [AC11] is an exam-
ple of a privacy-preserving system compliant with differential privacy. Other
work has addressed time-series anonymization. [PLKY07] proposes several
schemes for time-series anonymization in a streaming context. [RSMP11] stud-
ies the problem of smart-meter time-series anonymization by filtering out low-
power frequency components.

Others have analyzed the effect of anonymization on subsequent use of the
data. As an example, the framework developed in [BKJB13] allows to quantify
the economic and environmental effects of anonymization on local energy mar-
kets. [LDR06] argues that the quality of anonymized data should be measured
based on the workload the data would be used for. We have however not found
any work which explicitly investigates this effect.

2.2 Computer Energy Estimation

The energy consumption of a computing system can be monitored directly.
This is done by measuring the energy consumption using common digital me-
ters [GFS+10], custom-designed devices [SMPH05] or integrated hardware
power sensors [Int]. In the case of large and heterogeneous computing cen-
ters, installing digital meters or power sensors at every subsystem (server, PC,
etc.) is costly.

A related domain of significant interest in recent research is computer
power characterization at the system and subsystem level. Part of recently
developed power characterization models are based on collecting microarchi-
tectural events using hardware registers. These models consider both subsys-
tem [Jan01, MB06, BGM+12] and system [BJ12] levels, as well as virtualized
environments [DMR10].

A drawback of power characterization models which use hardware registers
is that these models are tailored to specific hardware. This makes such models
less portable and general. Thus, in the case of large heterogeneous deployments
of computing systems, this lack of genericity would require a significant ef-
fort for power consumption modeling and estimation of the entire deployment.
Another issue is that the number of hardware performance events tends to be
large [Riv08]. Moreover, only a small part of them can be measured at the same
time [Riv08], due to the limited number of hardware registers. [ASWW05]
proposes a solution, namely time-multiplexing different sets of events on the
hardware registers. While this approach allows for a greater number of per-
formance events to be monitored, it increases the overhead and reduces the
accuracy.
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Using high-level statistical information provided by the operating system
avoids the need for specific detailed (low-level) hardware knowledge when de-
signing power estimation models. Recent work has proposed power consump-
tion models based solely on high-level performance or usage metrics provided
by the operating system to maximize energy efficiency using various optimiza-
tions. Thus, [FWB07] uses CPU utilization in order to estimate the power con-
sumption of large numbers of servers, reaching a mean error of 1% when con-
sidering groups of several hundreds of servers. The power consumption model
proposed in [HDVC+05] uses the expected load on a server cluster in order to
estimate its power consumption. JouleMeter [KZL+10] is a solution for virtual
machine power metering which infers the power consumption from resource
usage at runtime. [BNdM12] proposes a model of the power consumption of
idle servers.

The advantages of high-level black-box models are the low overhead, simplic-
ity and relatively good accuracy. However, these models estimate full-system
power consumption and do not allow for a more fine-grained repartition of the
power consumption, such as per process or per application power consump-
tion. Moreover, the majority of the models has been developed and tested on
computer systems with a big share of static energy, such as servers [FWB07] or
clusters of virtual machines [KZL+10]. Our approach (Chapter 5) allows the
easy integration of such black-box models.

Several works have considered application or process-level power estimation
of computer systems. [DRS09] has introduced pTop, a process-level energy
profiling tool for the Linux platform, while [CLS12] has introduced pTopW –
an enhanced Windows-based version of the same tool. The pTop-tool estimates
process energy consumption indirectly through the process’s resource utiliza-
tion. First, the total energy consumption of each resource (CPU, Memory, Net-
work, Disk) during a sampling period is estimated using a system-level power
model based on OS-level utilization information. Subsequently, for every re-
source, the energy consumption of a process is calculated by multiplying the
share of work the resource has spent on the given application and the total en-
ergy consumption of the resource during that period. The work that a resource
spends on a process depends upon its type. In case of the CPU, the work that
the CPU spends on a process is defined as the time spent on the application.
In case of the networking infrastructure, the work is the volume of data sent
and received by the application. The authors in [NBRS12] use a similar model
in order to estimate process energy consumption. They go further and develop
models for the estimation of the energy consumption of methods and threads
within a process. Similarly to pTop and pTopW , one of the main goals of the
tool is to offer detailed power information about energy hotspots at the appli-
cation level.
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2.3 Change Detection

The goal of change detection is identifying significant changes of the data or of
its parameters. Research has produced numerous methods for different types
of change to be detected. These methods usually fall into one of the following
categories: sequential analysis, maximum-likelihood estimation, kernel-based
techniques and Bayesian analysis techniques.

CUSUM is an established sequential analysis method for change detection of
the parameters of a probability distribution [Pag54]. It calculates a cumulative
sum for the segment currently considered and issues a change alert once this
exceeds a given threshold. [BG] uses a sliding window which is partitioned
into buckets. Each bucket can contain several data points; it does so by storing
their number and an aggregate of their values. Each time a data point is added
to the window, it is put into a new bucket. When a certain number of buckets
is reached, the two oldest buckets are merged. If the difference of the average
values of two neighboring buckets exceeds a dynamic threshold, a change is re-
ported and the last bucket is dropped. This dynamic threshold is computed for
each comparison of two buckets. It depends on the difference of the numbers
of data points of the two buckets.

A further research area is detecting changes using models describing the data.
[GS99] is based on maximum likelihood estimation. It examines a data win-
dow to which data points are added step by step. In each step, it determines
if the window can be split into two significantly different segments. Each seg-
ment then is approximated by fitting a model to it, and the error between the
model and the data is determined. The point which minimizes this error for
both segments is reported as change point. The models used are derived from
base classes such as algebraic polynomials, radial, wavelet or Fourier. [TY06]
describes a two-stage algorithm which combines outlier detection and change
detection. In a first stage, the algorithm learns an auto regressive (AR) model
from a given time series. For each data point of the time series, a score is ob-
tained by calculating the loss, be it the logarithmic one or the quadratic one. An
outlier results in an isolated high score, while changes manifest themselves as
series of high scores. Smoothing the scores removes the outliers. The smoothed
values from the first AR model are then used to learn another AR model in
the second stage of the algorithm. The scores of the second model describe
the probability for data points being change points. [STR10] uses Gaussian
Processes to model and predict the current run length – the length of a time
segment between two consecutive changes.

[DDD05] uses one-class support vector machines for change detection. For each
data point of the time series, the immediate past subset xt,1 and the immediate
future subset xt,2 are mapped into a feature space. A kernel method is used; it
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ensures that the mapped input space is a subset of a hypersphere with radius
one, centered at the origin of the feature space. Support vector classification
then finds hyperplanes in the feature space which separate the training vectors
Φ(xt,1) and Φ(xt,2) from the center of the hypersphere. To decide whether a
change point is present, the authors introduce a dissimilarity measure in feature
space:

DH =

_
ct,1ct,2

_
ct,1pt,1 +

_
ct,2pt,2

, (2.1)

where ct,1 and ct,2 are the centers of the hypersphere sections intersected by
the hyperplanes, and pt,1 and pt,2 are two points where the hyperplanes in-
tersect the hypersphere. The arc represents the arc distance between the two
points. If the dissimilarity measure exceeds a given threshold, a change point
is reported.

[AM07] uses a Bayesian approach. It divides a time series into partitions and
assumes that for each partition there is an i.i.d. probability distribution of the
data values. Thus, the change points are the boundaries between the partitions.
For each new data point, the algorithm estimates the probability distribution
since the last change point and then computes the probability that the new
point belongs to this distribution. When this probability drops suddenly, a
change is reported.

Some methods compare the probability distributions of (subsequent) sequences
of data. [SWJR07] features a test which checks if two datasets are sampled from
the same underlying distribution using a Gaussian kernel density estimator.
[LYCS13] uses a density estimator to instead calculate the ratio of the distribu-
tions of two consecutive subsequences of data and to detect if they come from
different distributions.
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We have used multiple real-world datasets for evaluating our contributions.
We present in the following their descriptions. The first four datasets contain
energy consumption data of buildings or offices (Office, REDD, Smart*, Cam-
pus). The other three datasets (Server, Desktop, Laptop) contain energy con-
sumption and usage data of computers.

3.1 Office Dataset

This dataset is from a smart meter installed in an office of two persons [VWSK10].
Measurements are done every second. Each measurement contains the amount
of energy consumed up to the moment in time when the measurement was
taken. This is, the values measured are monotonically increasing. By subtract-
ing adjacent values, this cumulative representation of time-series data can be con-
verted into the more common standard representation containing the consump-
tion in each individual interval (see Figure 3.1). We use the cumulative repre-
sentation for the price-estimation scenario and the standard representation in
the other two scenarios (Sections 4.2.2) for the evaluation of our compression
method (Section 4.1).

3.2 The Reference Energy Disaggregation Dataset

The Reference Energy Disaggregation Dataset (REDD) was assembled by re-
searchers in the field of energy disaggregation [KJ11] and makes measurements
of smart meters in several buildings publicly available. We use data measured
second-wise from four individual buildings separately for our experiments.
See Figure 4.2.3 for an example of the energy consumption in the REDD in
standard representation.
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(a) Cumulative representation – each point refers to the total consumption up to the respective point
in time.
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(b) Standard representation derived from Figure 3.1(a) – each point refers to the energy consumed in
the interval between the previous and the current point.

Figure 3.1: Two different data representations (one day, office dataset).
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3.3 Smart* Home Data Set

This is the Smart* Home collection of datasets [BMI+12], which we refer to as
Smart* throughout this dissertation. It is a public collection of datasets which
researchers in the field of optimizing home-energy consumption have assem-
bled. We use data measured second-wise from two individual houses for our
experiments.

3.4 Campus Dataset

Besides the three rather fine-grained office, REDD and Smart* datasets, the
campus dataset[dat10] represents data at a level of aggregation higher than
the two other datasets, in two aspects: (1) it represents measurements every
15 minutes, and (2) it does not refer to a single office or household, but to the
consumption of an industrial campus consisting of four large office buildings
with a total of about 4,000 workplaces.

3.5 Server Dataset

The Server Dataset is about a mail server executing SpamAssassin. Its work-
load is a daily pattern with a low usage during the night and a high usage in
the morning and afternoon hours. Load peaks occur when the server checks
bulks of e-mails sent to large mailing lists. Table 3.1 shows the hardware com-
ponents of this system. P-states are power-performance states of the processor.
We have used a digital multimeter Wattsup PRO [Wat15] (accuracy: 1.5%) to
measure the energy consumption at every minute as a reference. Furthermore,
our monitoring application has logged CPU usage, CPU frequency and hard
disk drive usage with a sampling frequency of one second. Our measurements
cover a period of three weeks.

3.6 Desktop Dataset

The Desktop Dataset contains three weeks of energy consumption, CPU usage
and CPU frequency measured on an office computer (Table 3.2) with a sam-
pling frequency of one second. Its workload is the result of typical secretarial
tasks, e.g., MS Office, Internet Explorer and administrative applications. The
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Table 3.1: Server Components
Component Model Power Consumption
CPU 2 x AMD Opteron 275 Maximum – 95.2 W

P-State #1 – 90.3 W
P-State #2 – 75.9 W
Minimum P-State – 36.1 W
Halt Mode – 16.6 W

Memory Micron Technology Minimum – 9.9 W
4x1 GB DDR400 PC3200 Typical – 36.4

Maximum – 87.48 W
Hard Disk 2 x Seagate ST937401 Maximum – 10.2 W

2x74 GB at 10000 rpm Idle – 5.07 W
Minimum – 4.69 W

workload rarely reaches the maximal computing capacity, and the computer is
active only during office hours.

Table 3.2: Desktop Components
Component Model Power Consumption
CPU Intel Pentium Deeper Sleep – 4 W

Dual Core E5300 Extended Halt – 8 W
Thermal Design Power – 65 W
Maximum – 92.9 W

Memory Crucial Memory Minimum – 3.65 W
2x2 GB DDR2 Typical – 5.1 W
SDRAM 800 MHz Maximum – 10.4 W

Hard Disk Western Digital Standby – 0.73 W
WD2500AAJS Sleep – 0.73 W
250 GB 7200 rpm Idle – 4.92 W

Read/Write – 5.36 W

3.7 Laptop Dataset

For the Laptop Dataset we have measured the same parameters as for the desk-
top dataset, over a period of two weeks. The laptop (Table 3.3) has been used
for research purposes, i.e., the system load does not follow any regular pattern
and shows idle periods as well as maximum load conditions.
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Table 3.3: Laptop Components
Component Model Power Consumption
CPU Intel i5-3320M Idle – 2.9 W

Minimum active – 7.5 W
Thermal Design Power – 35 W
Maximum active – 80.56 W

Memory Micron Technology Minimum – 0.3 W
2x4 GB DDR3L SDRAM Typical – 1.48 W
800 MHz Maximum – 1.68 W

Hard Disk Hitachi HTS725050 Sleep – 0.1 W
500 GB at 7200rpm Standby – 0.2 W

Active idle – 1.0 W
Read/write – 1.8 W
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In this chapter we present our first contribution. We first revisit the motivation
behind our adaptive time-series compression method. We then present and
analyse its compression algorithm. Subsequently, we present the evaluation of
our approach. We next describe our methods for estimating the compression
ratio of our compression method, followed by their evaluation. We finally con-
clude the chapter with a summary of our contribution. Note that large parts of
this chapter (figures, tables and algorithms included) are from our correspond-
ing publication [EEKB15].

Time-series data is one of the most important types of data, and it is increas-
ingly collected in many different domains [RLG+10]. In the domain of electri-
cal energy, the advent of the Smart Grid leads to rapidly increasing volumes
of time-series data [EPVM12]. It is therefore necessary to reduce storage re-
quirements for time series. One solution is to decrease the frequency of cap-
ture, e.g, from one value per second to one value every 15 minutes. However,
this impacts applications that need high-resolution data, such as disaggrega-
tion [KJ11]. Another solution is to employ classical lossless compression meth-
ods. However, these have not been designed for numerical time series and
achieve in this case limited success [RRR+12, EEKB15]. As an example, the au-
thors of the study in [RRR+12] have achieved the highest average compression
ratio of factor 4 for datasets describing smart-meter readings from individual
buildings using the bzip2 algorithm [Sal08].

For this reason, recent research has proposed several promising lossy com-
pression methods [EEC+09, LM03]. These achieve good compression ratios
by segmenting the time-series and approximating the segments with mathe-
matical functions (piecewise regression). However, the performance of such
approaches depends strongly on the nature of the data and it is unclear which
method to use for a given dataset. Moreover, most approaches use one class of
mathematical functions, e.g., constant functions. They therefore do not adapt
well to highly variable time series. To address this issue, the authors in [PRA11]
have presented the idea of employing not one, but several regression models
for online time-series compression with a given quality guarantee. By trying
several models and choosing the best one, the weaknesses of each individ-
ual model are avoided, and a better compression ratio is achieved. However,
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[PRA11] learns multiple regression models at each step of the approximation
algorithm, which is disadvantageous in terms of runtime. Thus, although it
might be beneficial to employ a larger number of different models in order to
achieve higher compression ratios, the runtime of the algorithm grows linearly
with the number of models employed.
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Figure 4.1: Example piecewise compression using regression functions.

We build on the idea of employing multiple models (Figure 4.1), but present
a more efficient approach. We avoid employing multiple regression models at
each step of the algorithm. We do so by relying on an incremental employ-
ment of polynomial regression models of different degrees. Moreover, by us-
ing polynomials of higher degrees, our approach handles highly variable data
well. Internally, our algorithm employs three techniques [DL06, LM03, Sei91]
to approximate segments of time series using polynomial functions of different
degrees. All of them provide guarantees under the uniform norm.

Our algorithm uses polynomials up to a certain degree p. Choosing this param-
eter depends on the dataset and impacts the performance of the compression.
To find a good value of p for a given dataset, we present two methods which
estimate the compression ratio depending on p. In a nutshell, our estimation
methods use a statistical model of the average length of the segments resulting
from piecewise regression. We then use them to predict the compression ratio
for different values of p. We finally set p to the value for which our algorithm
achieves the biggest compression ratio.

4.1 Algorithm

We now describe our compression algorithm (Section 4.1.1), discuss the selec-
tion of regression functions (Section 4.1.2), specify how to store compressed
data (Section 4.1.3) and say how we compute compression ratios (Section 4.1.4).
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4.1.1 An Approach for Time-Series Compression

Our piecewise regression technique employs a greedy strategy to compress in-
tervals of a time series. This is necessary as the size of the state space for an
optimal solution is extremely large. Internally, our technique uses three online
regression algorithms providing guarantees under the uniform norm. Each one
is specialized in one of the following classes of polynomial functions: constant
functions (polynomials of degree zero), straight-line functions (polynomials of
first degree) and polynomials of degree higher than or equal to two. The PMR-
Midrange algorithm [LM03] outputs the best approximation of a set of points
using a constant function in O(1) time, by using the maximum and minimum
values of the set of points at each of its steps. The algorithm introduced in
[DL06] outputs the optimal approximation of a given set of points in maximum
O(n) time using a straight-line function, with n being the number of points
in the set. Finally, the randomized algorithm introduced in [Sei91] calculates
near-optimal approximations in O(n) time using a polynomial function of any
degree.

The main algorithm (Algorithm 1) of our compression technique employs these
three algorithms incrementally, and the compression result depends on a user-
defined maximum tolerable deviation. This deviation is realized as a threshold
on the uniform norm between the original and the approximated time series.
This norm is defined as the maximum absolute distance between any pair of
points of the real (xi) and the approximated (x′i) time series S:
L∞ = max

i=1,...,|S|
|xi − x′i|.

Algorithm 1 Piecewise compression algorithm.
1: Let p be the max. degree of polynomials to be used
2: Let S be the time series for compression
3: while |S| > 0 do
4: current seg = new basic length segment(S)
5: for k in 0 : p do
6: while (approx succeeded(k , current seg)) do
7: add next point(current seg)
8: end while
9: save polynomial(k , current seg , aprox params)

10: end for
11: choose best model and save()
12: remove segment(S , current seg)
13: end while

In Algorithm 1, p corresponds to the maximum degree of the polynomials to
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be used within the algorithm. It is a user-defined parameter, and its appro-
priate value is to be defined based on preliminary experiments. We start with
a segment of two points (Line 4) and loop over polynomial regression func-
tions by their degree k, going from k = 0 to k = p (Line 5). Depending on the
value of k, we employ the corresponding specialized regression algorithm out
of the three algorithms listed above. At each step, as long as the approxima-
tion of the current segment using the polynomial function of degree k attains
the precision guarantee (Line 6), we add the next point of the time series to
the current segment (Line 9). Once the precision is not attained any longer, we
temporarily save the current polynomial parameters and the length of the seg-
ment the corresponding approximation had attained the precision guarantee
for (Line 10). We then pass to the polynomial of the next degree and repeat the
procedure (Lines 5 to 9). The loop terminates when we reach the polynomial of
highest degree and when it cannot approximate the current segment with the
requested precision any more. We then choose the polynomial that achieves
the highest compression ratio (Line 11; see Section 4.1.4 for the calculation of
the compression ratio). We compress the corresponding segment by saving its
start and end positions, as well as the coefficients of the polynomial. The piece-
wise compression process just described then restarts beginning with the next
segment.

Algorithm Analysis

In the following we analyze the runtime and memory usage of Algorithm 1.
As stated above, our technique uses three online regression algorithms that
provide guarantees under the L∞ norm. We will first present an analysis of the
runtime and memory usage of each of these algorithms. We will subsequently
describe an equivalent analysis of Algorithm 1.

The PMR-Midrange algorithm [LM03] runs inO(1) per approximation step, i.e.,
for every incoming point. This is because it only needs to compare the value of
the current point with the minimum and maximum of the previous sequence
of points. Moreover, it also needs O(1) memory, as it keeps the following three
values for any sequence of points in memory: maximum, minimum and ap-
proximating value.

The algorithm for straight lines from [DL06] outputs the optimal approxima-
tion of a given sequence of points in O(n) time, with n being the number of
points in the sequence. To do so, it uses several geometrical properties of the
convex hull of the sequence of points. The algorithm keeps the convex hull of
the sequence of points in memory. This takes at most O(n) space, but usually
much less because only few points are part of the convex hull of the sequence.
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Lastly, the randomized algorithm from [Sei91] outputs near-optimal approxi-
mations using a polynomial function in O(d · n) expected time, where d is the
degree of the polynomial function and n is the number of points in the se-
quence. The main idea behind this algorithm is as follows: If n is bigger than
d, most of the constraints of the linear programming problem associated with
the approximation are irrelevant and can be discarded. The algorithm there-
fore chooses constraints at random and discards them until their number is
small enough for the problem to be trivial and thus easily solvable. From the
memory usage point of view, this algorithm occupiesO(d ·n) space in memory
during its execution.

Thus, on the one hand, Algorithm 1 runs in the least possible time (O(1)) when
it only uses the PMR-Midrange algorithm. On the other hand, if the approxi-
mation using constants or straight lines does not perform well enough, Algo-
rithm 1 will often use the randomized algorithm and thus run in O(d · n) ex-
pected time. However, our evaluation in Section 4.2 has shown that the worst-
case scenario occurs rarely. From the memory usage perspective, Algorithm 1
needs as much as O(d · n) space. When p is set to 0 or 1, Algorithm 1 consumes
O(n) space necessary to keep the sequence of points in memory.

An advantage of our approach is that we do not deploy all compression schemes
per approximation step. Thus, compared to the algorithm in [PRA11], instead
of deploying all compression schemes available, our algorithm starts by de-
ploying only one scheme in each step and keeps deploying the same scheme
as long as its approximation of the current segment succeeds under the given
maximum-deviation constraint. Hence, we expect our compression technique
to achieve better runtimes than related work. Our evaluation (Section 4.2) con-
firms this.

Another advantage of the implementation of our compression algorithm is the
distinction between the three classes of polynomials and the deployment of
the respective optimal algorithms. At each step of the algorithm, the most ap-
propriate technique is used. In particular, our technique starts by using the
quickest algorithm (PMR-Midrange [LM03] running in O(1) time) and uses it
as long as possible, changing to a slower algorithm only when the maximum-
deviation constraint is violated. We hypothesize that this also results in high
compression ratios and better runtime than related work. Our evaluation (Sec-
tion 4.2) upholds this hypothesis.

4.1.2 Selection of Regression Functions

Our technique described in the previous section uses polynomial functions. We
have chosen this type of function because of its simplicity and because their pa-
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rameters can be estimated very efficiently. However, our technique can also em-
ploy any other type of functions, be it entirely, be it in addition. In preliminary
experiments, we have tested the sine function due to its use in Fourier series
decomposition within our algorithm. Our intuition was that the sine function
might be able to fit longer segments of variable energy consumption, which
would result in higher compression ratios. To estimate the sine functions with
non-linear combinations of model parameters, we have used the algorithm de-
scribed in [TZ83].

The result of these preliminary experiments is that it does not provide any sig-
nificant positive effect on the compression ratio (less than 1% improvement
compared to the values given in Section 4.2.3). In fact, the compression ratio
has sometimes been worse when using the sine function. At the same time, the
execution time grows exponentially when the corresponding algorithm is used
to approximate a long segment of points. We therefore choose to not consider
this type of function any further. If further research reveals that functions other
than polynomial ones might be suited to compress certain datasets, they can
however be incorporated in our compression technique.

4.1.3 Storing Compressed Time-Series Data

To store the results of our compression technique and to have a basis for the
calculation of compression ratios (see Section 4.1.4), we have to specify a data
layout. In order to facilitate the access to and retrieval of the data, we have
chosen to store the compressed data in a relational database system. We choose
a database schema similar to the one used in [PRA11] in order to use the same
definition of compression ratio for comparison purposes. This database schema
consists of one table to store the compressed intervals (Table 4.1). In order to
communicate compressed data, a serialized version of this table can be used.
The regression functions themselves can be hard-coded or can alternatively be
stored in an additional table. We store the compressed intervals (segments) by
saving the following values in COMPR SEG (Table 4.1): the id of the time se-
ries or device that has captured the time series (series), the id of the regression
function used to approximate the segment (func), the timestamps correspond-
ing to the start and the end of the segment (t start and t end ) and the coeffi-
cients of the function (coefficients).

From this (or a similar) table structure, the original values can be reconstructed
with a single declarative SQL query. This query accesses the relevant rows and
directly calculates the values of the associated regression functions.
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Table 4.1: COMPR SEG – Example table for storing compressed segments.

series func t start t end coefficients
1 2 1339535405 1339538506 105.0, 0.4
2 4 1349639407 1349689309 102.3, 0.1, 2.7, 4.6

4.1.4 Calculation of Compression Ratios

The compression ratio is needed within our algorithm (Line 11 in Algorithm 1),
and we use it as a criterion in the evaluation (Section 4.2.3). It is equal to the
ratio between the size of the initial data and the size of the compressed data.

The compression ratio is obtained by firstly calculating the size of the initial
uncompressed data. An uncompressed time series can be saved by storing its
id, the time each value was captured at and the corresponding measurement
value. Consequently, the size of the initial data is equal to the sum of the sizes
of each reading in the respective table.

The size of the compressed data is calculated similarly by summing up the sizes
of the compressed segments. The size of a compressed segment is equal to the
sum of the sizes of each data type in Table 4.1 for the given segment. Finally,
the compression ratio is calculated by dividing the initial size of the data by the
size of the compressed data:

compression ratio =
size of initial data

size of compressed data
.

The calculation of the compression ratio relies on the size of the initial and the
compressed data. In our algorithm and in the experiments presented in Sec-
tion 4.2.3, we rely on the storage scheme presented in Section 4.1.3. However,
we assume certain storage requirements for the different data types. These may
be adapted to the actual storage requirements in a realistic deployment of our
technique, e.g., in a database management system. For the sake of simplicity
and in line with related work, we assume a size of 64 bits for every data type
in Table 4.1. As our compression algorithm uses the compression ratio as an
internal optimization criterion (Line 11 in Algorithm 1), best compression ra-
tios may be achieved by refining the formula given in this subsection with the
actual values for storage requirements.
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4.1.5 Parameter Settings

Our technique has two parameters: the maximum deviation allowed and the
maximum polynomial degree. The maximum deviation allowed is the error
bound on the L∞ norm the compression has to guarantee. This parameter de-
pends on the application using the data (e.g., which deviation from the original
data can the application tolerate and still run successfully). Section 4.2.2 says
how to find suitable values for this parameter in smart-grid scenarios.

Regarding the maximum polynomial degree, our evaluation shows that a value
of 3 is sufficient for any of our datasets and scenarios. This value can be over-
written, and this may boost performance in some settings. For instance, Sec-
tion 4.2.3 shows that a value of 1 is sufficient for one of our scenarios. To assist
with the choice of this parameter, a system administrator or a self-tuning com-
ponent can use one of our methods to reliably estimate the compression ratio.
The main benefit of lower values is that the compression takes less time and
resources.

4.2 Evaluation of Storage-Space Reduction

In this section, we describe our experimental evaluation. At first, we present
the datasets we use (Section 4.2.1). We then introduce three scenarios for the
evaluation (Section 4.2.2). After that, we present and discuss the results (Sec-
tion 4.2.3). We then discuss and evaluate one important aspect of our com-
pression technique, the approximation of additional points (Section 4.2.4). Fi-
nally, in Section 4.4 we evaluate our methods for estimating compression per-
formance.

4.2.1 Experimental Setup

We have used the following datasets in our evaluation:

• The Office Dataset (Section 3.1)

• The Reference Energy Disaggregation Dataset (REDD) (Section 3.2)

• The Smart Home Dataset (Smart) (Section 3.3)

• The Campus Dataset (Section 3.4)
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4.2.2 Evaluation Scenarios

We now introduce three scenarios and derive respective parameters for the
compression algorithm. One goal of our evaluation is to identify the highest
compression ratio for each scenario which can be reached with the parameters
chosen.

Price-Estimation Scenario

Giving consumers access to their consumption data measured by smart elec-
tricity meters can result in increased energy efficiency [MSW10]. Our scenario
assumes that energy prices are dynamic, i.e., electricity prices which are differ-
ent at different points in time [EPVM12]. This scenario envisions a tool where
consumers can browse their energy consumption and costs. Concretely, the
user can query the energy costs for a certain time interval.

In a four-person household in Germany, the electricity costs within 15 min-
utes in a peak hour are equivalent to 0.05 e, according to a standard load pro-
file [Gmb06]. We believe that consumers would not be interested in querying
time intervals referring to smaller costs. The average minimum energy con-
sumption during 15 minutes is roughly 72 Wh for a four-person household,
according to [Gmb06]. We choose the maximum tolerable deviation to be less
than 5%, i.e., ±1.5 Wh. For our experiments we use the office dataset and
the REDD in the cumulative representation as this allows for an easy calcu-
lation of energy consumption. Assuming an electricity price of 0.25 e/kWh,
the maximum-deviation parameter chosen refers to less than ±0.001 e for an
interval in our datasets, i.e., customers will not detect an error in their bill since
the deviation does not exceed one cent.

Visualization Scenario

The visualization scenario also contributes to the goal of making users aware of
their energy consumption. It makes visualizations of data measured secondly
available to individuals. This allows them to visually identify individual con-
sumers such as a microwave. This is not possible when showing only highly
aggregated values.

We choose the maximum tolerable deviation to be 25 Ws, ≈ 0.5% of the peak
consumption in the REDD or ≈ 3.5% in the office dataset. We choose such a
small value to demonstrate that it is possible to compress data measured ev-
ery second without losing its main advantage, its high precision. For further
comparison purposes, we refer to Table 4.2, which shows the typical power
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consumption of several standard household appliances [oE13]. As we can ob-
serve, 25 Ws is significantly smaller than the power consumption of most stan-
dard home appliances.

Table 4.2: Example power consumption of standard household appliances.
appliance power consumption range (W)

coffee maker 900 – 1.200
hair dryer 1.200 – 1.875

microwave oven 750 – 1.100
toaster 800 – 1.400

desktop computer ≈ 270
dishwasher 1.200 – 2.400

Energy Forecast Scenario

Forecasting is a key technique in the smart grid (see Section 2.1.2). Here, we
do not investigate forecasting as such, but we investigate the effects of our
data compression technique on forecasting. We use an out-of-the-box triple-
exponential-smoothing algorithm in R to make forecasts on compressed vari-
ants of the campus dataset in standard representation. This is a typical source
of data for such purposes. For our study, we only investigate a forecast hori-
zon of one day, as this is a standard value in energy consumption forecast-
ing [DBF+10].

For our experiments, we chose the maximum tolerable deviation to be smaller
than or equal to 250 Wh (≈ 15% of the average energy consumption). We chose
this larger value since the campus dataset describes much larger consumptions
than the other datasets.

In order to quantify the accuracy of a forecast, we use a set of commonly used
forecasting accuracy metrics [DBF+10]:

• The Mean Squared Error (MSE) is the sum of the squares of the differences
between the actual and the predicted values (errors):

MSE =

n∑
i=1

(yi − y′i)2

where yi correspond to the actual values and y′i to the predicted ones
(i = 1, . . . , n).
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• The Mean Absolute Error (MAE) measures the sum of the absolute values
of the differences between the actual and the predicted values:

MAE =

n∑
i=1

|yi − y′i|

where yi correspond to the actual values and y′i to the predicted ones
(i = 1, . . . , n).

• The Symmetric Mean Absolute Percentage Error (SMAPE) expresses the ac-
curacy using a percentage, providing both an upper and lower bound on
its values. The absolute values of the errors divided through half of the
sum of the actual and predicted values are summed and finally divided
through the total number of points:

SMAPE =
1

n

n∑
i=1

|yi − y′i|
1
2 (yi + y′i)

• The Mean Absolute Scaled Error (MASE), proposed as forecasting accuracy
metric in [HK06], is given by:

MASE =
1

n

n∑
t=1

|yt − y′t|
1

n−1

n∑
i=2

|yi − yi−1|

The MASE is based on the MAE , and it is scaled based on the in-sample
MAE from the “random walk” forecast method.

4.2.3 Experimental Results

We now present our experimental results in the three scenarios separately, and
we compare our approach to related work. All experiments in this section have
been executed on a Windows 7 machine using an Intel Core 2 Duo CPU at
3 GHz with 4 GB of RAM. Regarding the compression ratios, we note that
we use the function described in Section 4.1.4 in this section. In realistic de-
ployments of the compression technique, where exact storage requirements are
known, the values for compression ratios might differ.
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Price-Estimation Scenario

At first we investigate the variation of the compression ratio depending on the
maximum degree of the polynomials (p) used within our compression algo-
rithm. Figure 4.2(a) represents this variation with a maximum allowed devi-
ation of 0.5 Wh. Using only polynomials of degree zero (constant-value func-
tions) on the REDD, the compression ratio is relatively low – around 6. The ratio
increases significantly when including polynomials of first degree (straight-line
functions). Including second-degree polynomials and polynomials of higher
degree increases the compression ratio only moderately. These observations
are similar on the office dataset, but on a higher level. Compared to a maxi-
mum compression ratio of around 300 on the REDD, the compression ratio is
higher than 3,000. This is caused by the nature of this dataset with only a few
devices. This leads to an absolute variation of measurement values which is
a lot smaller than on the REDD. This is beneficial if the maximum-deviation
parameter is – as in this case – chosen in a way that a very small variation can
be smoothed by the compression algorithm.

It is interesting to note that the compression ratio can also slightly decrease
when including polynomials of degrees higher than three. This is because the
algorithm uses a greedy approach. Consider the following example result of
our compression algorithm: There are two consecutive intervals, the first one
with a polynomial of a high degree, the second one with a polynomial of a
low degree. In certain situations, shortening the first interval and starting the
second one earlier results in a higher compression ratio. For instance, this is the
case if the extended second interval can be compressed with a polynomial of
the same degree as before, while the shortened first interval can be compressed
with a polynomial of a lower degree than before (i.e., fewer parameters and
thus better compression). Our compression algorithm might however not find
such rare situations, caused by its greedy approach. This does not guarantee
optimal results, but yields good results in relatively low runtime, according to
the results presented in this section.

We now consider the variation of the compression ratio depending on the value
of the maximum deviation allowed. Figure 4.2(b) shows how the maximum
compression ratios achieved vary for different maximum deviations allowed
(up to second-degree polynomials). The curves show that the compression ra-
tios grow linearly depending on the maximum deviation allowed. Again, the
observations are similar for both datasets.

To better understand how our compression algorithm works with the different
datasets, we give some information regarding the distribution of the different
functions employed by our algorithm (polynomials up to the fourth degree).
The most frequently used polynomial is the straight-line function with around
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Figure 4.2: Compression results, price-estimation scenario.
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72% of the cases with the REDD (83% to 91% in the office dataset). The poly-
nomials of the second degree occur in about 12% of the cases with the REDD
(9% to 16% in the office dataset), while those of the third degree in about 10%
with the REDD. Polynomials of the fourth degree are employed in about 5% of
the cases with the REDD, while the least frequently used polynomials are those
of degree zero, which are never used in both datasets. This is because the data
used in this scenario is in the cumulative representation. Thus, constant-value
functions are not adequate to fit longer segments of points, while straight-line
functions can compress the data well. In the office dataset, polynomials of the
third and fourth degrees are never used either. This can be explained by the
consumption behavior with less variation of this rather fine-grained dataset
compared to the coarser REDD: Simpler functions, i.e., the straight-line func-
tion and the parabolic function, suffice to compress the dataset.

Besides the compression ratios and the distribution of regression functions used,
the runtime is another important aspect of our evaluation. We measure it for
different values of the maximum deviation allowed and the maximum poly-
nomial degree. Table 4.3 presents the average runtimes of the compression
algorithm on the REDD.

maximum deviation allowed (Wh)
max. degree (p) 0.5 0.75 1 1.5

0 5.28 4.50 4.18 3.82
1 30.40 29.83 32.53 31.74
2 30.05 29.50 31.84 32.36
3 30.80 29.69 30.86 32.01
4 29.96 29.46 30.51 32.61

Table 4.3: Average runtime (seconds) per day (REDD; price estimation).

When using only polynomials of degree zero, the algorithm proves to perform
with the smallest runtime on both datasets. In this case, the average runtime
corresponds to about four to five seconds on both datasets, decreasing with
a growing value for the maximum deviation allowed. Including polynomials
of the first degree increases the runtime up to an average of around 30 sec-
onds on the REDD (84 to 113 seconds on the office dataset). Interestingly, when
polynomials of higher degree are included as well, the runtimes do not change
significantly, remaining at a constant average of about 30 seconds on the REDD
(87 to 115 seconds on the office dataset). The explanation of this surprising re-
sult is an effect of our implementation using R and various libraries: The linear
programming algorithm that outputs the approximation using polynomials of
degree k ≥ 2 is implemented in C and is used within R with the help of a wrap-
per. Programs in C however are known to perform several times faster than
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those in R. Thus, although results should have shown longer runtimes for the
inclusion of polynomials of larger degree, we did obtain equivalent runtimes
because of this implementation detail.

Visualization Scenario

We again firstly present the results describing the compression ratio depending
on various maximum degrees (p) of the polynomial functions. Figure 4.3(a)
shows the compression ratio with a maximum deviation allowed of 10 Ws.
It shows that including polynomials of higher degrees always increases the
compression ratio in both datasets. Compared to the price-estimation scenario,
polynomials of higher degree prove to be a lot more useful. This is due to the
non-existing effect of the cumulative representation in this scenario.

Figure 4.4 illustrates the compressed and decompressed versions of a time se-
ries of the REDD. In this case, the maximum deviation allowed is of 25 Ws,
corresponding to a compression ratio of factor 108 (see Figure 4.3(b)). We can
observe that with our highest deviation tolerable, apart from a smoothing ef-
fect, it is difficult to visually notice any significant differences between the two
versions. Moreover, it is possible to visually identify individual devices, which
is helpful for energy-consuming households to detect and eliminate devices
with high power consumption.

Figure 4.3(b) (using polynomials up to degree four) shows for both datasets
that the compression ratio grows almost linearly depending on the maximum
deviation allowed, as in the price-estimation scenario. The compression ratio
grows from 4 to 108 with the REDD (3 to 47 with the office dataset).

In general, it is notable in this scenario that compression ratios are lower with
the office dataset than with the REDD. However, the situation has been the
other way round in the price-estimation scenario. This can be explained by the
different nature of the two datasets and the different choice of parameters in
the two scenarios: While the more fine-grained office dataset was better com-
pressible in the price-estimation scenario where small variations in the curve
could be smoothed by compression, small variations now need to be kept in
order to allow for a fine-grained visualization.

Energy Forecast Scenario

The energy-forecast scenario investigates the capability to do forecasts on com-
pressed data. To this end, we have firstly compressed the campus dataset with
various maximum deviations allowed, using polynomial functions up to the
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Figure 4.3: Compression results, visualization scenario.
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Figure 4.5: Energy forecast results on compressed data using four error metrics
(the horizontal axis depicts the maximum allowed deviation in Wh).

fifth degree. Preliminary experiments have revealed that the compression ra-
tio does not vary significantly if polynomials of higher degrees are included.
We have used a cleaned version of the dataset without days with unusual con-
sumption behavior. The rationale has been to focus on the influence of the
compression rather than observing varying forecast qualities.

We have calculated the forecast using both the uncompressed and the com-
pressed versions of the dataset. We have used a common evaluation strategy,
namely using a part of the data for the estimation of the forecasting model pa-
rameters (training data) and another part for measuring forecasting accuracy
(test data) within a sliding-window approach. In each step of this approach
(consisting of around 8,000 steps in total), we have calculated the forecast. Dur-
ing this process, we have derived error metrics (see Section 4.2.2) in comparison
to the original uncompressed data and have averaged them at the end.

Figure 4.5 shows the values of the different error metrics on the campus dataset
compressed with different values for the maximum deviation allowed. The col-
umn corresponding to a maximum deviation allowed of 0 Wh shows the results
for the original data – it is our baseline. Overall, the results are as follows: For
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maximum allowed deviations of less than 25 Wh, the results of the forecast-
ing algorithm do not vary significantly when compared to results for the actual
data for three out of four error metrics. At the same time, the value for these er-
ror metrics can be even slightly smaller than for the actual data. This is caused
by a smoothing effect of the data induced by our compression algorithm: The
regression functions used for compression smoothen the curve and eliminate
small variations. This makes it easier for the forecasting function to predict the
future development of the curve in some situations. For maximum deviations
allowed bigger than 50 Wh, the value for MASE is significantly larger than the
value for the actual data.

max. deviation 10Wh 25Wh 50Wh 100Wh 250Wh
compr. ratio 2.05 3.11 5.14 10.63 34.00

Table 4.4: Compression ratios on the campus dataset (forecast).

Table 4.4 shows the values of the compression ratios obtained for the different
values of the maximum deviation allowed, corresponding to the error metrics
in Figure 4.5. Thus, when guaranteeing a maximum deviation of 25 Wh – which
corresponds to a compression factor of 3 – the forecast precision remains unaf-
fected. For three out of the four error metrics, data compressed with factor 11
does not affect the results negatively, and only data compressed with factor 34
affects the results significantly. Thus, depending on the error metric relevant
for the forecast application, the data compressed with factor 11 and factor 34
may even be useful.

Comparison to Related Work

To compare our approach to related work, we compare our compression ratios
(as discussed in the previous subsections) to the individual regression func-
tions: constant-value functions [LM03] (‘constants’ in Table 4.5) and straight-
line functions [EEC+09] (‘lines’ in Table 4.5). We do not compare our com-
pression technique to techniques based on Fourier [FRM94] or wavelet [CF99]
decomposition. As mentioned in Section 2.1.1, these techniques do not provide
any guarantee for the compressed version of the data.

Table 4.5 contains the compression ratios of all three approaches in all three
scenarios on the different datasets. We set the maximum degree of polynomi-
als (p) to 3. In the price-estimation scenario, it is obvious that constant-value
functions cannot compress the data well, as it is in the cumulative representa-
tion where the data is typically not constant. Constant-value functions are bet-
ter suited in the other two scenarios (where the standard data representation
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(a) Price-estimation scenario.

technique & dataset 0.5Wh 0.75Wh 1Wh 1.5Wh avg.
constants

R
ED

D 6.1 8.3 10.8 14.8 10.0
lines 290.2 325.0 349.4 391.5 339.0

our approach 299.7 333.3 361.2 407.9 350.5
constants

of
fic

e 16.0 23.9 31.7 47.3 29.7
lines 3,260.0 4,018.1 4,669.7 5,399.3 4,336.8

our approach 3,259.6 3,956.8 4,587.0 5,427.6 4,307.7

(b) Visualization scenario.

technique & dataset 1Ws 5Ws 10Ws 25Ws avg.
constants

R
ED

D 2.36 17.30 35.70 96.56 37.98
lines 2.87 21.16 42.16 102.09 42.07

our approach 3.37 24.53 47.23 107.88 45.75
constants

of
fic

e 1.69 4.57 11.51 33.08 12.71
lines 1.89 5.36 13.52 39.01 14.95

our approach 2.42 6.61 16.77 46.94 18.19

(c) Energy forecast scenario (campus dataset).

technique 10Wh 25Wh 50Wh 100Wh 250Wh avg.
constants 1.14 1.55 2.31 3.98 9.88 3.77

lines 1.43 2.23 3.68 7.69 18.56 6.72
our approach 2.05 3.11 5.14 10.63 34.00 10.99

Table 4.5: Compression ratios compared to related work.

is used), but their compression ratio is always worse than straight-line func-
tions and our approach. The constant-value functions perform always worse
than straight-line functions and our approach. This also holds for the other sce-
narios and datasets. Comparing our approach to the straight-line functions in
Table 4.4(c) reveals that our approach always compresses the campus dataset
better, too. In the price-estimation scenario using the office dataset however,
we have observed a few situations where our approach has performed slightly
worse. As discussed before, this dataset can be particularly well compressed
using straight lines due to the cumulative representation of the data and few
changes in consumption. In this situation, the greedy behavior of our compres-
sion technique leads to slightly worse results. To sum up, our approach com-
presses the data by up to 64% better (on averaged maximum-allowed-deviation
values) than the best alternative approach (forecast scenario, Table 4.4(c); factor
10.99 vs. factor 6.72). As it internally falls back to these approaches, it ensures
that best compression ratios can be achieved anyhow, except for pathological
situations.
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Compared to an implementation of [PRA11] (using only regression functions
that fulfill the uniform norm), our approach reaches the same compression ra-
tios, but achieves a speed-up factor of up to 3.

Another factor which impacts the compression ratio is the presence of outliers
in the data. We have tested our approach with real datasets which do contain
outliers. The result is that our technique achieves high compression ratios when
the data contains outliers which occur with a natural frequency. Moreover, as
our technique in the worst case falls back internally on related approaches, it
will function at least as well as related work on data with unusually high rates
of outliers.

4.2.4 Approximation of Additional Points

After having evaluated our compression technique, we now discuss one inter-
esting aspect and present further results.

Our time-series compression technique automatically divides a time series into
intervals and describes the values in these intervals with regression functions.
These intervals cover all points of a time series. Thus, it is possible to approx-
imate the values of arbitrary points in the time series. In many cases, the re-
trieved values might be quite close to the real ones. However, our compres-
sion algorithm only provides guarantees regarding a maximum deviation for
all points that have been used as an input for the algorithm. This is, there is
no guarantee for approximating additional points, and severe deviations may
exist when doing so. The fact that there are no guarantees for additional points
is general in nature, as one cannot provide guarantees for values which have
never been measured or seen by the algorithm. From a machine-learning per-
spective [Mit97], compression of data can be categorized as highly overfitted
learning of the data. This is in contrast to non-overfitted regression learning
which may be more suited to approximate unseen data points.

In additional experiments, we have evaluated how well energy data can be
compressed when not all points of a dataset are used. To this end, we have
compressed our three datasets – but only every second, third, fourth etc. point.
Then we have compared the approximated values from the compressed data
(including points which have not been used for compression) with all points
from the real data. Besides a reduced storage need when not considering all
points, the results are as follows: For the campus dataset (using a maximum
deviation of 50 Wh), the maximum error of using every point is 50 Wh, and
the average error is 27 Wh. For using every second point, the maximum error
is 803 Wh (average: 35 Wh), and for using every fourth point, the maximum
error is 1,593 Wh (average: 50 Wh). For the office dataset and the REDD, this
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behavior is roughly similar. To summarize, while maximum errors grow quite
quickly, the average errors grow relatively moderately.

From the discussions and the experiments in the previous paragraphs, we con-
clude that our algorithm can technically approximate points which have not
been used for compression. Depending to a high degree on the dataset, the
maximum error can however be quite high. On the other hand, the results on
our energy datasets are quite well on average. This is, in certain situations, our
algorithm may be used to approximate additional points. Leaving out points
for compression might even be a means to increase compression ratios: While
the average errors only increase moderately, the compression ratio can be raised
by roughly 50% by leaving out every second point (according to experiments
with the campus dataset and a small maximum deviation of 10 Ws). This effect
almost vanishes when maximum deviation thresholds are large (e.g., the com-
pression ratio raises by only 6% at 250 Ws in the campus dataset). However,
one has to be aware that there are no guarantees on the error. These can only
be provided for points that have actually been used for compression.

4.3 Estimation of Compression Ratio

In the following we propose two methods to determine the storage-space re-
quirements of our compression technique. The first method, which we call
model-based estimation in the following, uses a statistical model of the average
length of the segments resulting from piecewise regression. This method can be
instantiated with a broad range of piecewise regression techniques. In what fol-
lows, we illustrate this with two popular techniques as examples: the first one
uses constant functions – the PMR-Midrange algorithm introduced in [LM03],
the second one uses disconnected straight-line functions – the slide filter intro-
duced in [EEC+09]. Note that constant functions are a special case of the latter,
namely straight-line functions whose slope is zero.

The second method, which we refer to as generation-based estimation in the fol-
lowing, is generic in that it can be instantiated with any piecewise-regression
technique. It efficiently generates a large number of time series. It then uses
the average length of these time series as an estimate of the average length of
segments resulting from the piecewise regression.

In the following we first describe each method in detail. We then present and
evaluate their runtime performance. We present their experimental comparison
in Section 4.4.
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4.3.1 Model-Based Estimation

In this subsection, we first present the intuition behind the model-based method.
We then explicitly describe how it works in the case of constant and straight-
line functions.

Intuition

We propose a statistical model of the average length of the segments resulting
from piecewise compression. To do so, we rely on the following observation:
Many time-series, e.g., describing energy data, have high positive autocorrela-
tion values. Modeling such a time series as a random variable and assuming
that its samples are independent and identically distributed (i.i.d.) yields er-
roneous results. However, differencing a time series, i.e., calculating the series
containing the differences between two consecutive time points, is a transfor-
mation, developed in [BJ76], which tends to produce less autocorrelated time
series. This also happens when applying this transformation to the time se-
ries in our datasets (Section 4.4). Table 4.6 shows the autocorrelation values for
the original and first-difference time-series of two energy consumption datasets
(see Section 4.2.1). We use the following formula [BD02] to calculate the auto-
correlation of a time-series Xt with mean µ at lag h:

ρX(h) = E[(Xt+h − µ)(Xt − µ)] (4.1)

The table contains values at the first three lags. Further experiments of ours
have yielded similar results for larger lags. The original time series have high
autocorrelation values (> 0.95) for all lags shown in Table 4.6. At the same time,
the autocorrelation values for the first-differences time-series are much smaller
and close to zero. We conclude that there is much less correlation between
consecutive values of the first-differences time-series.

To obtain an estimate of the average length of those segments, we model the
distribution of the differences between consecutive values of the time series as
a random variable D. We assume that data generation is equivalent to gener-
ating i.i.d. samples D1, D2, ..., Dn of D. Using this assumption, we model the
length of the current segment with the given compression function (constant
or straight-line function) as a random variable and calculate its expected value.
This expected value is an estimation of the average length of a segment.

Constant Functions

The constant function with the minimum distance under the L∞ norm to a
given segment of a time series is defined by the value max−min

2 , where max
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lag
1 2 3

REDD house 1 original 0.996 0.991 0.986
differences 0.092 -0.040 -0.006

REDD house 2 original 0.986 0.971 0.957
differences -0.007 -0.005 0.007

Smart* home B original 0.998 0.995 0.993
differences 0.094 -0.018 -0.013

Smart* home C original 0.980 0.968 0.959
differences -0.191 -0.077 0.030

Table 4.6: Autocorrelation values for original and first-difference time-series of
energy consumption data.

andmin are the maximum and minimum values of the segment [LM03]. Recall
that there is a predefined error bound ε on this distance, which the piecewise
compression technique has to guarantee. The constant function can compress
the segment of time series within the given error bound if the following condi-
tion is satisfied: max−min

2 ≤ ε (Condition 1). As mentioned above, we model
the first-difference time-series as a random variable D. We assume that the
points of the time series are generated as samples of D. Summing up the first n
samples D1, D2, . . . Dn results in the difference between the (n+ 1)th value and
the first value of an original (non-difference) time series Xt:

n∑
i=1

Di = (X1 −X0) + (X2 −X1) + · · ·+ (Xn −Xn−1) = Xn −X0 (4.2)

We can thus remap Condition 1. For a constant function to approximate a time
series within a given error bound, the range of the partial sums of the current
samples of D has to be smaller than or equal to 2 · ε:

max(S(D,n))−min(S(D,n)) ≤ 2 · ε (4.3)

where S(D,n) = {D1, . . . ,
∑n

i=1Di}. Next, a random variable Z models the
number of consecutive points generated by sampling D which a constant func-
tion can approximate, given an error bound ε. The probability of Z having a
certain value is as follows:

Pr(Z = n) = Pr(max(S(D,n))−min(S(D,n)) ≤ 2 · ε ∧ (4.4)
max(S(D,n+ 1))−min(S(D,n+ 1)) > 2 · ε)

The probability distribution of Z may be obtained in different ways. First, one
can fit a well-known probability distribution, such as the Gaussian one, to the
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distribution of D. Second, one can estimate it directly by subsampling the data
and calculating each probability using the samples. We use the latter option.
The next step is calculating the expected value of Z:

E[Z] =
∑
i≥1

Pr(Z > i) =
∑
i≥1

Pr(max(S(D, i))−min(S(D, i)) ≤ 2 · ε) (4.5)

To approximate E[Z] we use the following lemma, which is based on results
from [Fel51]:

Lemma 4.3.1. Let [Y1, Y2, . . . , Yn] be a sequence of mutually independent random
variables with a common distribution Y . Let S(Y, n) = {Y1, . . . ,

∑n
i=1 Yi} and let

Rn = max(S(Y, n))−min(S(Y, n)). Then the following holds: E[Rn] = 2
√

2n/π

Thus, the addends in Equation 4.5 decrease to 0 as i increases. Namely, as i
increases, the range of S(D, i) increases as well, and thus the probability that
this range stays within [0, 2 · ε] decreases.

Algorithm 2, used to approximate E[Z], is explained next. We calculate the
terms of the sum one by one (Line 8) until the current term is smaller than a
given threshold δ (Line 6). Intuitively, δ should be set to a value much smaller
than the value we expect for E[Zlow] and close to 0. Moreover, the lower δ, the
better the approximation. As we expect the average length of the segment to be
in at least the order of magnitude of 1, we set this threshold to 0.001, i.e., three
orders of magnitude smaller.

Algorithm 2 Estimation for constant-value functions
1: Let ε be the predefined error bound
2: Let δ = 0.001
3: Let i = 1
4: Let add = Pr(Z > i)
5: Let estimation = add
6: while add > δ do
7: add = Pr(Z > i)
8: estimation = estimation + add
9: i = i+ 1

10: end while

Straight-Line Functions

Estimating the average length of the segments resulting from the piecewise
compression using arbitrary straight-line functions is more complex. In the
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case of constant functions, the maximum and minimum of S(D,n) determine
whether the constant function can compress the current sequence of points, and
the order of the samples of D does not play a role. In contrast to this, the order
of the samples of D determines whether a straight line function can compress
the sequence of values. Figure 4.6 illustrates this. There are two time series,
with the same values, but these are ordered differently. The first time series is
compressible using one straight-line function in its entirety, while the second
time series needs two straight-line functions to be compressed within the same
error bound.

(a) Time series 1 (b) Time series 2

Figure 4.6: Two time series with equal values but different orderings.

This makes a direct estimation as in the case of constant functions difficult, due
to the exponentially high number of possible orderings of the samples ofD. We
therefore do not estimate the average length of the segments directly. Instead
we recur to estimating lower and upper bounds of this length. More specifi-
cally, we underestimate the lower bound and overestimate the upper bound.
We use the following notation:

• Xt, with t ≥ 0, is the original (non-difference) time-series consisting of a
sequence of samples from D.

• (t,Xt) are points in the two-dimensional space generated by the time axis
and the other dimension being the range of the values.

Without loss of generality, we set X0 to 0, and we fix the distance in time be-
tween two consecutive points of Xt to 1. Thus, we obtain:

i∑
1

Di = Xn −X0 = Xn (4.6)
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Lower Bound: We now describe a model that lower bounds the number of
points a straight line can approximate within a given error bound. The main
idea behind our model is that we fix the first point the approximating straight-
line passes through to (0, X0). Doing away with this degree of freedom nar-
rows down the set of possible approximating lines. In other words, this lets us
establish a lower bound.

Our model uses two sets of random variables: LBup,i and LBlow,i, with i ≥ 1.
At step i, based on the current sequence of samples [X0, . . . , Xi], LBup,i is the
smallest slope of all straight lines passing through the point (0, X0) and one of
the points (1, X1 + ε), . . . , (i,Xi + ε). The variable LBlow,i is the largest slope
of all lines passing through the point (0, X0) and one of the points (1, X1 −
ε), . . . , (i,Xi − ε). Intuitively, an approximating straight line must not have a
slope bigger than LBup,i or smaller than LBlow,i. Otherwise the straight line
would be too far away from one of the points, given the error bound ε and
the above-mentioned limitation of our lower-bound model. Figure 4.7 graphs
the first three samples X0, X1 and X2, as well as the lines with slopes LBup,1,
LBup,2, LBlow,1 and LBlow,2. We calculate these variables for i ≥ 2 using the
following recursive formulas:

LBup,i = min(LBup,i−1,
Xi + ε

i
) (4.7)

LBlow,i = max(LBlow,i−1,
Xi − ε
i

) (4.8)

with

LBup,1 = X1 + ε

LBlow,1 = X1 − ε

The necessary and sufficient condition for our lower-bound model to be able
to approximate the sequence [(0, X0), . . . , (i,Xi)] within the predefined error
bound ε is:

LBup,i ≥ LBlow,i (4.9)

If this condition does not hold, the approximation fails. The following lemma,
whose proof is in the appendix, shows that our model is a lower bound for the
average length of the segments:

Lemma 4.3.2. Let a sequence of data points [(t0, X0), (t1, X1), . . . , (tm, Xm)] and
an error bound ε be given. If LBup,m ≥ LBlow,m, then there is a straight line approx-
imating the sequence of data points within the given error bound.
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Figure 4.7: Estimation using straight-line functions – lower bound.

Next, we determine the expected value of the number of consecutive points our
lower-bound model can approximate – the random variable Zlow. The proba-
bility of Zlow having a certain value is as follows:

Pr(Zlow = n) = Pr(LBup,n ≥ LBlow,n ∧ LBup,n+1 < LBlow,n+1) (4.10)

To approximate the expected value of Zlow, we use the same algorithm as in
the case of constant functions, for Z. The algorithm calculates and sums up the
addends of the following formula one by one as long as these are bigger than a
predefined threshold δ:

E[Zlow] =
∑
i≥1

Pr(Zlow > i) =
∑
i≥1

Pr(LBup,n ≥ LBlow,n) (4.11)

On average, we expect a straight line to approximate a number of points in the
order of magnitude of 1. Therefore, here as well, we set δ = 0.001.

Upper Bound To obtain an upper bound for the average length of the seg-
ments, we use a model which can approximate at least as many points any
straight-line function can approximate within the given error bound. In con-
trast to our lower-bound model, this model is a relaxation. Here, we do not fix
the first point of a possible approximating straight line. Instead, we focus on
two approximating lines which pass through the first two points with the high-
est and, respectively, lowest y-value an approximating line could pass through:
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Figure 4.8: Estimation using straight-line functions – upper bound.

(0, X0 − ε) and (0, X0 + ε). In other words, we look at a superset of the set of
possible approximating lines to establish an upper bound.

We use two sets of random variables: UBup,i and UBlow,i, with i ≥ 1. At step i,
given the current sequence of samples [X0, . . . , Xi], UBup,i is the smallest slope
of all straight lines passing through the point (0, X0 − ε) and one of the points
(1, X1 + ε), . . . , (i,Xi + ε). Similarly, UBlow,i is the largest slope of all straight
lines passing through the point (0, X0 + ε) and one of the points (1, X1− ε),. . . ,
(i,Xi − ε). Figure 4.8 illustrates this for the first three samples X0, X1 and
X2. Formally, we calculate UBup,i and UBlow,i using the following recursive
formulas for i ≥ 2:

UBup,i = min(UBup,i−1,
Xi + 2 · ε

i
) (4.12)

UBlow,i = max(UBlow,−1,
Xi − 2 · ε

i
) (4.13)

with

UBup,1 = X1 + 2 · ε
UBlow,1 = X1 − 2 · ε

The necessary and sufficient condition for our upper-bound model to be able to
approximate the sequence of samples [X0, . . . , Xi] within the predefined error
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bound ε is:

UBup,i ≥ UBlow,i (4.14)

If Condition 4.14 is not fulfilled, this construction of an approximation fails.
The following lemma, whose proof is in the appendix, shows that our model is
an upper bound for the average length of the segments:

Lemma 4.3.3. Let a sequence of data points [(t0, X0), (t1, X1), . . . , (tm, Xm)] be
given. If there is a straight line that approximates this sequence of points with a given
error bound ε then UBup,m ≥ UBlow,m.

Next, we determine the expected value of the number of consecutive points our
upper-bound model can approximate – the random variable Zup. The proba-
bility of Zup having a certain value is as follows:

Pr(Zup = n) = Pr(UBup,n ≥ UBlow,n ∧ UBup,n+1 < UBlow,n+1) (4.15)

We then use the same algorithm as in the previous cases to calculate the ex-
pected value of Zup. Our algorithm calculates and sums up the addends of the
following formula one by one, as long as these are bigger than a predefined
threshold δ:

E[Zup] =
∑
i≥1

Pr(Zup > i) =
∑
i≥1

Pr(UBup,n ≥ UBlow,n) (4.16)

As before, we set δ = 0.001. Logically, a lower value for δ improves our approx-
imation for the upper bound, as the algorithm sums up more addends of the
last formula. However, as we calculate an upper bound, not having the exact
result is not detrimental. Leaving out the last addends reduces the upper bound
and thus lets it become closer to the real average length of the segments.

4.3.2 Generation-Based Estimation

In the following, we first present the intuition behind the generation-based es-
timation method. We then describe its main algorithm.

Intuition

As for the previous method, we rely on the distribution D of the differences
between consecutive values of a time series. We assume that data generation
is equivalent to generating i.i.d. samples D1, D2, ..., Dn of D. Using this as-
sumption, we generate a sufficiently large number of time series, each of which
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is compressible in one piece (i.e., using one function) within the given error
bound. The average length of these time series is an estimation of the average
length of a segment.

Algorithm

To efficiently determine the length of the time series we generate, we use the
method originally described in [DL06]. It determines the minimum number
of segments necessary for a piecewise approximation of a time series with an
error bound using a given set of functions, e.g., polynomials of a fixed degree
p. We describe our algorithm (Algorithm 3) in the following.

We generate N time series using D (Lines 6–17). We use the Law of Large
Numbers to determine N , such that we obtain accurate estimates (precision er-
ror < 5%) with a 95% confidence interval. The algorithm first initializes a list
of N time series using samples from D (Line 8). For each time series ts , our
algorithm generates and adds 2, 4, . . . , 2j (j ≥ 1) points to ts and approximates
ts at each step by the corresponding function (Lines 11–13). We use the same
algorithms for approximation as in our compression technique. The algorithm
adds points as long as the error bound given by ε is guaranteed (Line 10). The
algorithm then performs a binary search on the interval given by the last 2(j−1)

points (Line 15). It does so in order to find the time series of maximum length
whose approximation with the given function is within ε. The algorithm then
adds ts to the list of “complete” time series (Line 17). It then uses this to esti-
mate the average length (Line 18).

4.4 Evaluation of Estimation Methods

In the following we present an evaluation of our estimation methods described
in Section 4.3. We use two measures to quantify their accuracy. The first one is
the absolute percentage error (APE):

APE =
|y′ − y|
y

· 100%

where y corresponds to the actual average length of the segments and y′ to the
one that our method has estimated.

The second measure is the accuracy of our methods when predicting the func-
tion (constant, straight line, polynomial of degree p > 1) to use to compress a
time series. To this end, we first use each of our methods to estimate the size of
a time series compressed using a given function. In the case of the model-based
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Algorithm 3 Generation-based estimation
1: Let ε be the predefined error bound
2: Let estimate = 0
3: Let N be the number of generated time series
4: Let D be the distribution of the differences
5: Let time series complete = {}
6: for i = 1 : N do
7: j = 1
8: current segment = initialize segment(D)
9: current error = approximate(current segment)

10: while current error < ε do
11: current seg = add next points(D, j)
12: current error = approximate(current segment)
13: j = 2 · j
14: end while
15: l = perform binary search(current seg , j )
16: time series complete.add(ts)
17: end for
18: estimate = get average length(time series complete,N)

estimation, we estimate the average length of the segments for the straight-line
function as follows:

average length =
(lower bound + upper bound)

2

Based on the estimations, we choose the type of function (constant, straight line,
polynomial of degree p ∈ {2, 3}) that yields the smaller size of the compressed
time series. We then calculate the real size of the compressed time series directly
by compressing it using each type of function. Finally, we use the real results to
check if our choice has been correct. The measure, which we refer to as decision
accuracy (DA) in the following, is equal to:

DA = 100% · number of correct decisions
all decisions

4.4.1 Evaluation of Runtime Performance

The runtime of the model-based estimation depends on the number of iter-
ations it executes before the addend it calculates at each step becomes smaller
than δ. In contrast to this, the runtime of the generation-based method depends
on the regression technique used. For constant functions, it obtains an estimate
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in O(N · l), where l is the average length of the time series generated. In the
case of polynomials of degree p ∈ N+, it runs in O(N · p · l · log(l)).

Table 4.7 shows the runtimes of both methods for the case of constant functions
for one random time series of the REDD dataset (see Section 4.2.1). We obtained
similar results for all other time series we have tested. For the model-based es-
timation, we have used 1% of the length of each time series as sample size. For
the generation-based estimation, we set N to 10, 000. This allows us to obtain
estimates with an error precision of less than 5% and a confidence interval of
95%. The results show that the generation-based method takes around 2 times
more time.

estimation type Maximum deviation allowed (Ws)
1 2 5 10 25 50

model-based 0.46 0.50 1.07 2.15 6.48 9.70
generation-based 0.66 0.80 2.16 4.91 15.68 23.47

Table 4.7: Runtime Comparison – Constant Functions (seconds)

Table 4.8 shows the runtimes of both methods for the case of straight-line func-
tions for one random time series of the Smart dataset. We obtained similar
results for all other time series we tested. In this case, one result is that the
generation-based method takes on average 35 times more time.

estimation type Maximum deviation allowed (Ws)
1 2 5 10 25 50

model-based 2.3 4.7 12.3 22.1 43.1 69.8
generation-based 39.9 106.1 353.13 856.2 2190.4 3753.2

Table 4.8: Runtime Comparison – Straight-line Functions (seconds)

4.4.2 Model-Based Estimation

We compared the values the method has produced to actual values obtained by
compressing the time series using constant and straight-line functions. We have
tested our method on two datasets: REDD and Smart*. To obtain the expected
values of Z, Zlow and Zup we have sampled each first-difference time series
of the datasets. We have used 1% of the length of each time series as sample
size. Varying this size from 0.1% to 5% has not had any significant effect on
the results. As described in Section 4.3, we have set δ to 0.001. Using smaller
values instead has not improved results significantly. We have performed all
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experiments 10 times with different samples and present average values in the
following. Any result from each of the 10 experiments does not deviate by more
than 5% from the average.

Constant Functions We first present detailed results for one random time
series of each dataset tested. We then present a summary of the results for all
time series.

Table 4.9 shows the actual and estimated average length of the segments for
the time series of the energy consumption of house 2 of the REDD dataset. All
in all, the estimation is rather accurate. The maximum absolute percentage
error (APE) is equal to 32.5% while the average APE is equal to 12.95% for the
different values of the maximum deviation that we tested.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

actual 20.14 38.38 68.67 94.81 155.73 213.59
estimated 13.60 29.09 61.08 91.68 149.07 208.57
APE (%) 32.50 24.20 11.05 3.30 4.23 2.35

Table 4.9: Constant functions, real and estimated values, REDD house 2.

Table 4.10 shows the actual and the estimated average
length of the segments for the time series of home C of the Smart* dataset.
These results are consistent with the previous results just described. Here, the
maximum APE is equal to 22.02%, and the average APE is equal to 8.52%.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

actual 0.94 2.27 7.48 13.16 21.63 30.63
estimated 1.00 2.14 5.83 11.17 21.45 31.00
APE (%) 6.14 5.78 22.02 15.12 0.86 1.22

Table 4.10: Constant functions, real and estimated values, Smart* home C.

Concerning all the time series in each of the datasets, Table 4.11 lists the average
APE for each value of the maximum deviation allowed ε that we have tested.
As we can observe, our model achieves a good accuracy for the lowest and the
highest values of the maximum deviation allowed that we tested. For other
values of the maximum deviation allowed, the accuracy is worse, but all in
all, our model achieves results with a rather good accuracy. The average APE
is smaller than 30% for all values of the maximum deviation allowed that we
tested.
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Dataset Maximum deviation allowed (Ws)
1 2 5 10 25 50

REDD 15.79 20.87 30.70 25.26 19.83 9.19
Smart* 4.36 9.15 23.38 17.56 6.67 5.60

Table 4.11: Constant functions, average APE.

We observed that, apart from one case, our method underestimates the real
average length of the segments. We believe this is due to two factors. First, dif-
ferentiating the time-series does not completely eliminate correlation between
consecutive values, i.e., the samples are not entirely i.i.d. We believe this is also
why our method produces better results for larger values of the maximum al-
lowed deviation. As the maximum allowed deviation grows, longer sequences
of variable data can be approximated using constant functions. The impact of
correlation between consecutive samples is thus less significant. Second, Al-
gorithm 2 may underestimate the actual value due to δ. One possibility to im-
prove the estimation would be to use a method which fully calculates E[Z].

Straight-Line Functions As for constant functions, we will first present de-
tailed results for one random time series of each of the datasets. We will then
present average results for all the time series in the datasets.

Table 4.12 shows the actual average length of the segments, as well as the lower
and upper bound values our method produced, for the time series of house 3
of the REDD dataset. As expected, the lower and upper bounds are smaller
and, respectively, larger than the actual values for all cases. The lower bound
is around 7 – 54% smaller than the actual average length of the segments. The
upper bound is around 19 – 55% larger.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

lower bound 3.2 7.7 19.8 35.6 72.5 121.9
actual 6.1 12.9 27.8 49.8 102.9 158.0

upper bound 7.6 16.1 35.3 61.8 124.8 232.8

Table 4.12: Straight-line functions, real, lower and upper bound values, REDD
house 3.

Table 4.13 shows the actual average length of the segments, as well as lower
and upper bound values, for the energy consumption of home B of the Smart*
dataset. Here as well, the lower and upper bounds are smaller and, respec-
tively, larger than the actual values for all values of the maximum deviation
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allowed that we tested. The lower bound is around 13 – 57% smaller than the
actual average length of the segments. The upper bound is around 26 – 59%
larger than the actual average length of the segments.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

lower bound 5.0 18.5 60.9 121.3 253.5 393.6
actual 11.8 33.6 88.0 159.3 308.4 451.4

upper bound 18.7 47.2 127.3 219.2 387.9 630.3

Table 4.13: Straight-line functions, real, lower and upper bound values, Smart*
home B.

We present in Table 4.14 average results we obtained for all the time series in
each dataset. The table contains the average APE of both the upper and lower
bound for each value of the maximum deviation allowed that we tested. Our
model produces rather good lower and upper bounds. All in all, the aver-
age APE is smaller than 55% for both lower and upper bounds. Generally, the
bounds get closer to the actual value as the maximum deviation allowed in-
creases.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

REDD lower bound 48.4 43.5 34.4 25.2 18.8 12.9
upper bound 24.4 45.6 35.5 36.4 22.8 32.32

Smart* lower bound 54.7 49.2 40.3 31.0 21.7 12.0
upper bound 30.4 23.2 27.7 26.5 23.7 33.9

Table 4.14: Straight-line functions, average accuracy (%) of lower and upper
bounds.

4.4.3 Generation-Based Estimation

In the following we present an evaluation of the generation-based estimation.
We compare the values the method has produced to actual values we obtained
by compressing the time series using polynomials of different degrees. As for
the model-based estimation, we have tested our model on two datasets: REDD
and Smart*. To obtain estimations with a precision error smaller than 5% and a
confidence interval of 95%, we have generated N = 10, 000 time series.
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Constant Functions As for the model-based estimation, we present detailed
results for one time series of each of the datasets tested. We then present a
summary of the results for all the time series in each dataset.

Table 4.15 shows the actual and estimated average length of the segments for
the energy consumption of house 4 of the REDD dataset. Except for maximum
allowed deviations of 5 and 10 Ws, the APE is smaller than 30%. All in all, the
maximum absolute percentage error (APE) is equal to 50.13%, while the aver-
age APE is equal to 28.29% for the different values of the maximum deviation
that we tested.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

actual 2.5 6.85 38.56 91.84 216.69 337.16
estimated 2.26 5.45 19.23 48.8 152.25 293.03
APE (%) 9.54 20.37 50.13 46.89 29.74 13.09

Table 4.15: Generation-based Estimation – Constant Functions – Real and esti-
mated values – REDD house 4

Table 4.16 shows the actual and the estimated average length of the segments
for the time series of home B of the Smart* dataset. These results are consistent
with the previous results just described. Here, the maximum APE is equal to
41.38%, and the average APE is equal to 25.37%.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

actual 6.13 22.3 65.38 127.08 250.27 395.51
estimated 5.27 13.07 39.94 87.03 209.42 355.45
APE (%) 14.0 41.38 38.90 31.52 16.32 10.12

Table 4.16: Generation-based Estimation – Constant Functions – Real and esti-
mated values – Smart* home B

Regarding all time series in each of the datasets, Table 4.17 lists the average APE
for each value of ε, the maximum deviation allowed that we have tested. As
with the previous method, generation-based estimation achieves a good accu-
racy for the lowest and the highest values of the maximum deviation allowed
that we tested. For other values of the maximum deviation allowed, the ac-
curacy is worse, but all in all, the method achieves results with a rather good
accuracy. The average APE is smaller than 30% for all values of the maximum
deviation allowed that we tested.

All in all, the accuracy of the generation-based estimation is similar to the one of
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Dataset Maximum deviation allowed (Ws)
1 2 5 10 25 50

REDD 16.98 23.28 34.15 30.28 25.25 15.37
Smart* 9.88 23.07 30.37 24.0 8.82 5.60

Table 4.17: Generation-based Estimation – Constant Functions – average APE

model-based estimation. However, as pointed out in Section 4.4.1, generation-
based estimation takes around two times longer than model-based estimation.

Straight-Line Functions As for constant functions, we will first present de-
tailed results for one random time series of each of the datasets. We will then
present average results for all the time series in both datasets.

Table 4.18 shows the actual and estimated average length of the segments for
the time series of the energy consumption of house 1 of the REDD dataset. The
maximum absolute percentage error (APE) is equal to 31.24%, while the aver-
age APE is equal to 26.4% for the different values of the maximum deviation
that we tested.

Maximum deviation allowed (Ws)
1 2 5 10 25 50

actual 3.99 10.21 43.7 85.26 185.45 235,19
estimated 3.03 7.58 24.27 56.01 148.41 221.85
APE (%) 23.97 23.55 31.24 26.02 17.14 5.1

Table 4.18: Straight-Line Functions – Real and estimated values – REDD
house 1

Table 4.19 shows the actual and estimated average length of the segments for
the time series of the energy consumption of home B of the Smart* dataset. The
maximum absolute percentage error (APE) is equal to 42.42% while the average
APE is equal to 24.83% for the different values of the maximum deviation that
we tested.

We present in Table 4.20 average results we obtained for all the time series in
each dataset. The table contains the average APE for each value of the max-
imum deviation allowed ε that we have tested. We observe that the method
performs worse than for constant functions for low values (up to 2 Ws) of the
maximum deviation allowed. In contrast, it performs better for higher val-
ues.
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Maximum deviation allowed (Ws)
1 2 5 10 25 50

actual 11.77 33.57 87.98 159.34 308.36 451.36
estimated 8.14 19.33 57.61 121.15 267.16 434.03
APE (%) 30.87 42.42 34.52 23.97 13.36 3.83

Table 4.19: Straight-Line Functions – Real and estimated values – Smart*
home B

In conclusion, generation-based estimation in general performs well in the case
of straight-line functions. Its average APE is less than 34.15% for all time series
and values of the maximum deviation allowed we tested. However, generation-
based estimation takes significantly more time than model-based estimation
(around 35 times more).

Dataset Maximum deviation allowed (Ws)
1 2 5 10 25 50

REDD 23.97 23.55 31.24 26.02 17.14 5.10
Smart* 30.88 34.07 30.39 22.56 11.94 3.92

Table 4.20: Generation-based Estimation – Straight-Line Functions – average
APE.

Polynomials of degree p>1 We show results for polynomials of degree p ∈
{2, 3} in the following. We do this according to the evaluation of our com-
pression technique, as it has shown that polynomials of degrees p ≤ 3 have
the biggest impact on the compression ratio. Table 4.21 shows average results
of the APE for all time series in each dataset. We observe that the accuracy
tends to decrease when the degree of the polynomial increases. We believe that
this has the same reason as with the model-based estimation: Differentiating
the time series does not completely eliminate correlation between consecutive
values, i.e., the samples of D are not entirely i.i.d. However, as the degree of
the polynomial grows, the correlation left out by our assumption has a bigger
impact on the estimation.

In conclusion, although the accuracy becomes worse with a larger p, results
are still accurate. We obtain particularly small APEs for the lowest and largest
values of the maximum deviation allowed.
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Maximum deviation allowed (Ws)
1 2 5 10 25 50

p=2 REDD 22.7 25.6 34.0 30.6 20.5 5.7
Smart* 20.1 31.1 32.6 23.6 7.5 12.9

p=3 REDD 24.6 27.2 36.8 31.8 23.0 22.6
Smart* 18.0 31.6 33.5 21.2 15.6 20.4

Table 4.21: Generation-based Estimation – Polynomial Functions – Average
APE

4.4.4 Decision Accuracy

We now present results for decision accuracy (DA) for both methods. We use
the obtained estimates to make a choice for each time series tested for six dif-
ferent values of the maximum deviation allowed: 1 Ws, 2 Ws, 5 Ws, 10 Ws, 25
Ws and 50 Ws. For the model-based estimation, the decision to be made is to
choose between constant and straight-line functions. For the generation-based
estimation, this choice is from among polynomials of degree p ∈ {0, 1, 2, 3}.
Table 4.22 shows the DA for all time series tested.

Concerning model-based estimation, except for one time series, the method is
helpful when choosing the type of function to use for the compression. We
obtained the lowest DA for the time series of house 4 of the REDD dataset.
However, we observed the following fact for this time series: In the cases our
model did not help us make the right decision, the difference of compression
ratio between using a constant and a straight-line function was small. In other
words, the method was close to the correct choice.

Regarding generation-based estimation, we observe that, apart from two cases,
the method is helpful when choosing the type of function to use for the com-
pression.

Decision accuracy (%)
model-based generation-based

REDD

house 1 66.7 50
house 2 100 83.3
house 3 100 67.7
house 4 33.3 100

Smart* home B 100 50
home C 83.3 83.3

Table 4.22: Decision accuracy for all datasets tested
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4.5 Summary

In smart electricity grids, time-series data of high temporal resolution prolifer-
ate, for example from smart electricity meters. This is very similar in many
other domains where time-series data is generated. Storing huge amounts
of this raw data may be prohibitively expensive in terms of space required,
depending on the application scenarios. However, in many cases, this fine-
grained data would empower analytical applications such as very-short-term
forecasting. This calls for a solution that compresses time-series data so that
transmission and storage of fine-grained measurements becomes more effi-
cient. In this chapter, we have proposed such a technique for time-series data. It
compresses data without any significant loss for most existing smart-grid appli-
cations. Besides the energy domain, the technique can be applied to time-series
data from arbitrary domains. The proposed technique builds on piecewise
polynomial regression. Comprehensive experimental results based on three
representative smart-grid scenarios and real-world datasets show that our tech-
nique achieves good compression ratios. These are comparable to (but com-
pression is faster) or better than related work. In a forecasting scenario, it can
compress data without significantly affecting forecast quality. This means that
data in higher temporal resolution can be stored using significantly less space
than the original “raw” data requires. Further experiments compare our tech-
nique to an alternative approach. Additionally, we have proposed two methods
for estimating the storage space requirements our of compression technique.
Our methods are helpful in several ways. First, they can identify the piecewise
regression techniques which best compress a given dataset in the context of a
given application. Second, our methods can help assessing the benefit of more
complex and time-consuming compression techniques.
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In this chapter we describe our second contribution. We begin by supplement-
ing the motivation for estimating computer energy consumption, which we
presented in the introduction. We then explain our contribution in detail: we
describe three application scenarios for energy estimation and two respective
effort classes. We then present our framework for computer energy estima-
tion. Subsequently, we show how we evaluated our framework using three
application scenarios and real-world datasets. We finally conclude the chapter
with a summary of our contribution. In this section, we reused and combined
large parts of our publications [EBB14a] and [EBB14b], including figures and
tables.

Capturing time series data is useful for many analytical purposes, e.g., moni-
toring of residential power quality [IKG12] or visualization [NSQ+12]. Captur-
ing computer energy consumption is particularly interesting: In recent years,
the share of energy consumed by computers has significantly risen. Thus,
Vereecken et al. [VVHC+10] has estimated the share of energy consumed by
computers to be 7.15% of the total electricity consumption, and it is estimated
to grow further (approx. 14.6% by 2020). Thus, the energy consumption of IT
systems is an important cost driver for any enterprise, and quantifying this type
of consumption reliably is a cornerstone for many current business models. For
example, the energy consumption has a significant impact on the total costs of
ownership of a data center. It must be considered for total absorption account-
ing. Furthermore, in the context of the smart grid, that data gives way to new
business models, e.g., by scheduling data centers according to an oversupply
of renewable energies.

Although useful, capturing this data involves in many cases sensors a high
effort, e.g., smart electricity meters, must be acquired and installed for measur-
ing and communicating the data [GFS+10, SMPH05]. This is expensive in large
scales. In the case of computer energy consumption, it is however possible to
estimate the data instead of measuring it directly. Recent research has provided
methods to estimate the energy consumption of computer hardware, e.g., based
on nameplate information [PN11], sophisticated hardware models [NBRS12],
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or by profiling system and component power usage [RRK08, KZL+10]. How-
ever, all of these approaches have different characteristics in terms of setup
effort, estimation effort, estimation accuracy and hardware requirements. It is
difficult to decide when to use which approach and how to determine mean-
ingful estimation parameters, as well as the accuracy requirements of a given
application.

To address these challenges, we devise FRESCO, a FRamework for the Energy
eStimation of COmputers, which considers many different accuracy and ef-
fort measures. This is difficult, because today’s computer systems come with a
wide range of different usage parameters and technical specifications, and we
have to consider use cases that differ very much in the accuracy required and
the effort acceptable for the operator. FRESCO consists of a configurable set
of estimators, and a workflow to set up and run an instance of an estimator.
In particular, FRESCO is able to (a) suggest a set of appropriate estimators for
computer energy consumption according to the effort the operator is willing
to invest and to the requirements of a certain application, and (b) to execute
an instance of the selected estimator with settings that are appropriate for the
application. Depending on the kind of estimator, FRESCO can estimate the en-
ergy consumption of a computer from various parameters. Such parameters
include (1) hardware characteristics, e.g., the energy consumption of a hard
disk as specified by its vendor, (2) usage information like CPU load and net-
work activity, and (3) calibration data, e.g., an energy consumption profile that
has been recorded by an energy meter for a specific hardware.

FRESCO explicitly models the trade-off between the accuracy of the estimation
and the effort of obtaining technical specifications, building energy profiles or
measuring CPU usage information. For example, FRESCO can estimate the en-
ergy consumption of a PC with a high precision in hourly intervals, but also
with a lower precision in intervals of a few seconds. Furthermore, FRESCO can
provide upper and lower bounds for the estimation, and it considers heteroge-
neous hardware components and heterogeneous loads.

5.1 Application Scenarios

In this section, we describe three different use cases that cover the spectrum of
energy-aware applications for FRESCO.
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5.1.1 Energy-Aware Management of Data Centers

Increasing the performance per watt is a key performance optimization for data
centers [RASRK07, Lau05]. For this purpose, it is important to obtain the en-
ergy consumption of a complex IT system as early as the design time of the
data center or the allocation time of the various computing workloads. Recent
approaches, e.g., in the area of energy-aware cloud data centers [MCLRB09] or
energy management for warehouse-sized computing centers [FWB07], distin-
guish (1) the (static) energy consumption at idle state, and (2) the (dynamic)
energy consumption depending on the workload of the target system. This is
important to design the power distribution infrastructure, to decide about com-
puting hardware acquisitions or to find out if a scheduled workload exceeds the
cooling capacity.

Thus, two different accuracy requirements exist: It must be possible (a) to pro-
vide estimates for the typical case that are sufficiently accurate to make edu-
cated decisions for hardware acquisitions, and (b) to provide upper bounds for
the energy consumption in extreme cases. Both requirements must be fulfilled
at design time or at allocation time, i.e., before the operator can measure the
workload or the energy consumption. Furthermore, an estimator must con-
sider that some in-depth hardware specifications might be unavailable at de-
sign time.

5.1.2 Demand-Response

Demand Response (DR) contains measures that influence energy-consumption
patterns. For example, DR might be used to shift energy-intensive comput-
ing tasks to times of an energy surplus [PD11]. DR can be divided into (a)
incentive-based DR and (b) time-based rates DR [PD11]. Incentive-based DR
measures shift the energy consumption by providing, say, tariffs that reward to
shift energy consumption into off-peak hours. In contrast, time-based rates DR
makes use of static schedules.

Since a data center is a large, adjustable energy sink, it is particularly well suited
to perform demand response measures [BLFdM13]. To realize DR in a data cen-
ter, an estimator must deliver continuous estimates of the energy consumption
of the various IT components at run time. In particular, the estimates must
be adequate to identify system states that produce energy-consumption peaks.
Furthermore, the personnel costs and computational effort of the estimation
must not exceed potential savings from DR, otherwise the use of DR is not jus-
tified. Finally, the estimator must cope with technical parameters on different
levels of detail. For example, a coarse estimate could measure the average CPU
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load only, while a fine-grained approach might also consider the voltage and
frequency of the CPU and the states of other hardware components.

5.1.3 Computer Energy Accounting and Billing

Energy accounting and billing of the IT infrastructure becomes more and more
important. For example, in the context of total absorption accounting, an en-
terprise might wish to assign each benefactor (a good or a service) the energy
costs required for its production [JGC+11].

Typically, computer Energy Accounting requires estimates of the consumption
with a frequency of 15 minutes to one hour. Furthermore, the estimator must
provide stochastic accuracy guarantees (e.g., an accuracy of± 10%), that allows
to assign the energy consumption of an IT system to a department or a product
line. As for the previous scenarios, the estimator has to be applicable to a large
variety of computer systems, with an effort that is adaptable.

5.2 Classes of Effort

We have identified two classes of effort, which our framework must take into
account.

The Setup Effort is necessary to set the estimator up and running. This includes
collecting technical specifications of the energy consumption of certain hard-
ware components, e.g., the energy consumption of the CPU in activity states
like idle or sleeping. Furthermore, it contains the effort of installing a moni-
toring application to measure run-time parameters of the hardware usage, e.g.,
disk activity. Finally, the setup effort includes the calibration of an energy con-
sumption profile for a given hardware, e.g., measuring the energy consumption
while executing a benchmark application.

The Run-Time Effort includes the network overhead and the computational
overhead of the estimation process, and the overhead of a monitoring appli-
cation collecting hardware parameters like CPU frequency or rotation speed
of the hard disks, if required by the estimator. The more parameters the esti-
mator samples, the higher are the data volume transferred, the computational
overhead and the complexity of the estimation.

We expect that the two effort classes will be traded for each other. For example,
the same accuracy requirement can be met either (a) by measuring an energy
consumption profile at setup time or (b) by using detailed specifications and
usage parameters at run time.
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5.3 Framework

In this section we describe the workflow and the estimators of our FRamework
for the Energy eStimation of COmputers.

5.3.1 The FRESCO Workflow

With “Target System” we refer to the computer system whose energy consump-
tion FRESCO must estimate. “The Operator” is responsible for installing and
maintaining the estimator on the target system. FRESCO consists of three sub-
sequent stages “Setup”, “Configuration” and “Estimation”, as shown in Figure 5.1,
which we explain in the following.

Setup At the first stage, the operator quantifies the trade-off between effort
and estimation accuracy for the target system. In particular, the operator spec-
ifies the categories of information obtainable from the target system. This in-
cludes:

• The nameplate information available, e.g., if the energy consumption of
the network card can be obtained.

• The parameters measurable on the target system, e.g., CPU frequency,
CPU voltage or hard disk activity.

• If it is possible to measure a consumption profile for the target system,
and with which accuracy.

The type of estimates and their error guarantees influence the choice of the
estimators FRESCO suggests.

At the end of the setup stage, FRESCO either indicates the operator that, given
his input, estimation is impossible or lets the operator choose one or a combina-
tion of estimators. The former case happens, e.g., when the operator requires
estimates with stochastic guarantees while calibration is not possible. In the
latter case, FRESCO provides information on the estimation accuracy possible
and the effort required for each estimator.

Configuration At this stage, FRESCO helps the operator to configure the es-
timators selected, according to:

• The usage parameters that must be measured to meet the accuracy speci-
fied in the setup stage.

• The frequency at which the parameters must be measured.
• The energy consumption profile, if necessary.
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Figure 5.1: FRESCO Workflow
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If the operator has chosen a calibration-based estimator, FRESCO provides a
set of benchmarks and guides the operator through measuring the energy con-
sumption. The result of this stage is the combination of configured estima-
tors.

Estimation Finally, FRESCO runs instances of the chosen estimators with the
configuration parameters just fixed on the target system and estimates its en-
ergy consumption.

5.3.2 The FRESCO Estimators

FRESCO can use static, dynamic or calibration-based estimators or a combina-
tion of them. The Static estimator makes use of static information on the com-
putational load and hardware specifications. The Dynamic estimator predicts
the energy consumption from hardware specifications and run-time parame-
ters measured. The Calibration-based estimator uses an energy consumption pro-
file that has been calibrated at the configuration stage. In the following, we
describe each estimator, and we discuss its effort and accuracy.

Static Estimator

Power Supply Unit

CPU

Hard Disk

Screen

Sleep

Active

Idle

Read/Write

Brightness

PSU Level Component Level Component State Level

. . . 

Figure 5.2: Classes of Information Used by the Static Estimator

Our static estimator is inspired by [PN11]. The approach in [PN11] is tailored
to servers running a single application, similarly to the TPC (Transaction Pro-
cessing Performance Council) benchmark suite [tpc], at peak load. Thus, it
aggregates the peak power consumption of all hardware components. Since
we are interested in estimates for a wide range of target systems operating at
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different loads, we have extended this approach. In particular, we have mod-
eled a wide range of computer architectures and hardware components, e.g.,
laptop screens or motherboards of standard PCs. Furthermore, we consider
three levels of detail to model the computer architecture, namely the PSU level,
the component level and the component state level, as shown in Figure 5.2. We
have obtained these levels of detail by abstracting from the parameter sets used
in [PN11]. For the component-state level we consider all power-consumption
states besides peak consumption.

The PSU level considers only the specification of the Power Supply Unit (PSU)
powering the target system. In this case, the estimator calculates the total en-
ergy consumption E by using the maximum power PSUmax the PSU is able to
supply and the run time ∆T of the target system:

E = ∆T · PSUmax (5.1)

We use PSUmax, the only value available at this level of detail. If a higher
accuracy is required, if more information is available, and if more effort at
setup time is acceptable, FRESCO considers information at the component level.
In this case, the consumption E is the sum of the power consumptions Pi of
each component i ∈ C, C = {CPU,RAM,Hard Disk, ...}, multiplied with the
run time ∆T :

E = ∆T ·
∑
i∈C

Pi (5.2)

Note that we represent the CPU of a multicore system as a set of components.
One component constitutes core-independent consumption, e.g., due to caches
shared by all cores. The other components represent individual cores.

The component state level includes information on (1) the power consumption
of the different states of the components of the target system and (2) the time
the components typically spent in certain states. In this case, FRESCO obtains
the total consumption E by summing up the energy consumption Pij of each
component i ∈ C in a particular state j ∈ Si (the set of states of component i),
multiplied with the time ∆Tij each component typically is in this state:

E =
∑
i∈C

∑
j∈Si

∆Tij · Pij (5.3)

In the case of a virtualized environment, the static estimator incorporates vir-
tual machines at the component state level, i.e., the operator maps components
to virtual machines.

The accuracy of a static estimator depends on the detail level used and on con-
fidence intervals on the input parameters. In the following, we will briefly
discuss two extreme cases:
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Component Model Power Consumption
CPU Intel i5-3320M Idle – 2.9 W

Minimum active – 7.5 W
Thermal Design Power – 35 W
Maximum active – 80.56 W

Memory Micron Technology Minimum – 0.3 W
2x4 GB DDR3L SDRAM Typical – 1.48 W
800 MHz Maximum – 1.68 W

Hard Disk Hitachi HTS725050 Sleep – 0.1 W
500 GB at 7200rpm Standby – 0.2 W

Active idle – 1.0 W
Read/write – 1.8 W

Table 5.1: Laptop Components

Minimal information: By using Equation 5.1, the operator obtains a very coarse
upper bound of the energy consumption of the target system. This is because
the PSU intake, as described on its nameplate, is usually overestimated for
safety reasons [FWB07]. However, if the manufacturer has provided tolerance
bounds for the PSU intake in typical settings, the operator might be able to
narrow down this upper bound.

Full information: Each hardware manufacturer provides detailed data sheets
containing the minimal, typical and maximal energy consumption of any hard-
ware component. If the operator specifies parameters on the component state
level (cf. Equation 5.3), this information can be used to obtain hard upper and
lower bounds for the energy consumption.

Example 1. Consider a laptop as described in Table 5.1. The lower bound on the
consumption is the sum of the minima of each component, i.e., 2.9 W + 0.3 W + 0.1 W
= 3.3 W. Likewise, the upper bound is the sum of the maximum values: 80.56 W + 5.5
W + 1.68 W = 87.74 W.

Summary: A static estimator might be sufficient for any application that does not
need time series of estimates. It requires a small effort at setup time for obtaining
the hardware specifications, and no effort at run time. The accuracy of this estimator
depends on the detail level of its input values and the availability of tolerance bounds.
In particular, the static estimator can provide bounds on the energy consumption.

Dynamic Estimator

Our dynamic estimator models the energy consumption similarly to the static
estimator, but installs a monitoring application on the target system to period-
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ically measure detailed load information in real-time, e.g., CPU load or sleep
times of the hard disk. Thus, our dynamic estimator generates time series of
energy consumption data. Our dynamic estimator uses a monitoring applica-
tion to record at run time in which state j ∈ Si the component i ∈ C operates
at time t. The energy consumption Et at time t is the sum of the consumptions
Pit of the components i:

Et =
∑
i∈C

Pit (5.4)

The consumption E for a time interval [tp; tq] is the sum of the consumptions at
each point in time, multiplied with the period of time ∆t between taking two
consecutive samples:

E =

tq∑
i=tp

Ei ·∆t (5.5)

The energy consumption P of the components can be modeled in different
ways. For example, consider the consumption PCPU

t of the CPU. Suppose that
the monitoring application measures the state information “CPU load” lCPU

t ,
and the operator knows the minimum and maximum power PCPU

min and PCPU
max

the CPU can consume. In this case, PCPU
t is:

PCPU
t = PCPU

min + lCPU
t · (PCPU

max − PCPU
min ) (5.6)

It is also possible to integrate specific models for multi-core systems [BdM12]
and to model virtual machines as components of the target system. While
the accuracy of the static estimator depends on the knowledge about the typ-
ical load of the target system, our dynamic estimator samples such parame-
ters. Thus, the accuracy of our dynamic estimator depends on the sampling
frequency of the monitoring application. The reason is as follows: If a state
changes between taking two consecutive samples, the estimator does not know
to which extent the states were active. However, FRESCO provides upper and
lower bounds on the energy consumption by assuming that a state change has
taken place immediately before or after taking a sample. The upper (lower)
bound is the maximum (minimum) of the power consumptions of the two con-
secutive samples.

Example 2. Suppose that the hard disk of a laptop (Table 3.3) has been observed in
standby at time t3, and as idle at t4. Thus, the lower bound on the consumption in
interval [t3 : t4] is 0.2W ·∆t, and the upper bound is 1.0W ·∆t.

Formally, consider a component with the sequence of states S = (s1, s2, · · · , sn),
ordered by the power Pi, the component consumes in state i. Let
st = (st1 , st2 , . . . ) be the time series of the states of the component sampled
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at times t1, t2, ... . The upper bound Eu
∆t on the energy consumption during

time interval ∆t between consecutive samples tj and tj+1 is:

Eu
∆t =



P1 ·∆t if stj+1
= s1 ∧ stj = s1

. . .
Pi ·∆t if stj+1

= si ∧ stj ≤ si∨
stj = si ∧ stj+1 ≤ si

. . .
Pn ·∆t if stj+1

= sn ∧ stj ≤ sn∨
stj = sn ∧ stj+1

≤ sn

We calculate the lower bound El
∆t likewise.

Summary: Our dynamic estimator is suitable for applications that require time series
of the energy consumption of the target system at run time. Since this estimator also
needs technical specifications, it requires a similar effort at setup time as a static esti-
mator. The effort at run time depends on the number of parameters that the estimator
samples, and on the sampling frequency. The accuracy of our dynamic estimator de-
pends on the technical specifications and the sampling frequency. The estimator can
compute bounds on the energy consumption.

Calibration-Based Estimator

This estimator borrows from the Mantis approach [ERK06], which estimates the
power consumption of a system by correlating AC power measurements from
a calibration phase with performance counters of the CPU. Our calibration-
based estimator executes a detailed benchmark at setup time, which gradu-
ally stresses each system component in isolation. At the same time, a digital
power meter records the actual energy consumption, and our monitoring ap-
plication measures load information such as CPU frequency, hard disk usage,
etc. FRESCO then builds a regression model.

More specifically, let MCPU (l, f),MDisk(l),MRAM (l) be the regression models
obtained through calibration for the CPU, Hard Disk and RAM, and let l be
the load of the component and f the frequency of the CPU. Given the load
information lCPU

t , lDisk
t , lRAM

t and ft at time t, the energy E consumed in the
time interval [t1, tn] is:

E =

tn∑
i=t1

(
MCPU (lCPU

i , fi) +MRAM (lRAM
i ) +MDisk(lDisk

i )
)

(5.7)

The calibration-based estimator can derive stochastic accuracy guarantees from
the regression model used, by considering the maximal and minimal energy
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consumption that has been recorded for each distinct benchmark load. For
example, think of a regression model which uses only CPU load l and CPU
frequency f to estimate the total energy consumption. Let (fc, lc) be the pair of
values for the current load and frequency of the CPU andElc,fc = {e1, e2, ..., em}
be the set of values for the real energy consumption that the calibration phase
had measured for the pair (fc, lc). The upper bound Eu

∆t for the energy con-
sumption during the time ∆t when the CPU operates at frequency fc and at
load lc is

Eu
∆t = maxElc,fc ·∆t (5.8)

while the lower bound El
∆t is:

El
∆t = minElc,fc ·∆t (5.9)

We calculate upper and lower bounds for other pairs of values of frequency
and load the same way.

Example 3. Assume that the benchmark has resulted in a CPU load of 50% and in
a frequency of 2.4 GHz for some time interval, and the energy consumption measured
has been {97.5 W , 99 W , 100 W , 102 W , 102.5 W , 103 W}. Thus, for this load and
frequency FRESCO would stochastically guarantee a maximal (minimal) energy con-
sumption of 103W ·∆t (97.5W ·∆t). Since the dynamic estimator and the calibration-
based estimator use the same monitoring application, it is possible to obtain upper and
lower bounds for the energy consumption from our dynamic estimator in tandem.

Summary: The calibration-based estimator is well-suited for applications that require
a calibrated zero point and stochastic guarantees on the estimation quality, such as
billing. Due to the extensive calibration, this estimator comes with a very high effort
at setup time. The calibration can be done automatically. Its effort is necessary only
once during setup and depends on the number of components calibrated and their type.
As an example, the calibration of the CPU of the laptop computer (Table 3.3) took
around 25 minutes. This particular CPU can operate at 16 different frequencies. At
run time, the effort depends on the number of parameters that must be sampled and on
the sampling frequency.

Summing up everything, FRESCO can model a wide range of computer archi-
tectures and environments, including multi-core and virtualized systems. It
can generate static ex-ante estimates solely on hardware specifications as well
as time series of estimates at run time with a configurable estimation frequency
and different accuracy guarantees. FRESCO considers different kinds of effort
at setup time and run time. In the next section, we evaluate FRESCO.
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5.4 Evaluation

Our framework operates as intended if its estimates are appropriate for a wide
range of applications. That is, FRESCO must let the operator decide on a trade-
off between accuracy and effort, according to the requirements of the applica-
tion. Thus, we evaluate FRESCO by means of three use cases, and we measure
the accuracy obtainable with a certain effort.

5.4.1 Measures

To evaluate how well FRESCO can estimate the real data measured by our dig-
ital multimeter, we have computed two metrics. The Mean Absolute Percent-
age Error (MAPE) measures the average of the percentual deviation between
the actual values and the estimates:

MAPE =
1

n

n∑
i=1

|yi − y′i|
yi

where yi are the actual values and y′i are the estimates. n is the number of
records in the dataset. MAPE of zero means that the estimated values perfectly
match the ones measured. Correspondingly, the Maximum Absolute Percent-
age Error (MaxAPE) measures the maximum percentual deviation between the
actual values and the estimates:

MaxAPE =
n

max
i=1

( |yi − y′i|
yi

)

5.4.2 Evaluation Setup

We have evaluated three different datasets:

• The Server Dataset (Section 3.5)

• The Desktop Dataset (Section 3.6)

• The Laptop Dataset (Section 3.7)

5.4.3 Use Cases

We have evaluated FRESCO with the three use cases described in Section 5.1.
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Energy-Aware Data Center Management

Our first use case (cf. Subsection 5.1.1) requires ex-ante estimates of the energy
consumption depending on a predefined workload. The estimates must be suf-
ficiently accurate for informed management decisions, e.g., it must be possible
to find out if one target system requires significantly more energy for a cer-
tain workload than another one. Furthermore, it must be possible to find out
if a certain workload may exceed the cooling capacity in the worst case. Thus,
FRESCO proposes the static estimator model. To evaluate this scenario, we let
FRESCO estimate upper and lower bounds on the energy consumption, and
the average energy consumption for a typical workload.

Minimal and Maximal Consumption We let FRESCO exemplarily estimate
upper and lower bounds on the consumption of a server. With our use case,
the operator specifies manufacturer information on the component level for
CPU, RAM and disk, as specified in Table 3.1. Our target system consumes the
most energy when the CPU operates with the highest frequency at the high-
est voltage allowed in the specifications (95.2 W), and when the hard disk is in
read/write mode at the highest rate of I/Os per second (10.2 W). The RAM con-
sumes at most 87.48 W. Our server has two CPUs and two disks. Thus, the up-
per bound for the energy consumption is (2·95.2 + 2·10.2 + 87.48) W = 298.28 W.
Correspondingly, the lower bound for the power consumption is 52.48 W. Our
measurements confirm that these bounds apply. The bounds can be narrowed
if the operator is able to specify a limit for the time each component is in a
specific state (cf. Equation 5.3).
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Figure 5.3: MAPE, Static Estimator
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Figure 5.4: MaxAPE, Static Estimator

Average Consumption Now we assume that the operator wants FRESCO to
estimate the energy consumption for an average system load of 50%, in order
to assess the typical cooling requirement. To evaluate the accuracy of the esti-
mates, we aggregate the energy consumption, which we have measured with
a frequency of up to one second, to time intervals from one second to 16 min-
utes. Furthermore, we let FRESCO use the static estimator to provide estimates
for the same time intervals. Figure 5.3 shows the MAPE on the y-axis and the
length of the time interval on the x-axis, for each of our three datasets. A value
of 30% at the interval length of 1 minute for the laptop dataset means that,
on average, the energy consumption estimates summed up for intervals of 1
minute deviate by 30% from the corresponding consumption measured. Fig-
ure 5.4 shows the MaxAPE for all datasets. The figures indicate that for longer
time intervals, FRESCO can provide more accurate estimates. In particular, for
the server dataset, the maximum error goes from around 23% for an aggrega-
tion level of one second to around 11% for a higher aggregation level of 16 min-
utes, corresponding to a two-fold decrease in value. Smaller decreases (69–62%
and 31–30%) occur for the other two datasets. This is because longer interval
lengths mitigate the effect of short-term deviations in the workload. Estimates
depend on the operator approximation of the average load. Thus, the results
for the laptop dataset show that the operator has under- or overestimated the
average load significantly. Evidently, the accuracy of the estimation can be im-
proved if the operator provides more accurate information on the workload of
the target system.

Summary: FRESCO has provided upper bounds for the energy consumption. Further-
more, it is able to provide reasonable estimates for the average workload by requiring
only little data from the operator. Thus, we conclude that FRESCO is able to deal with
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the requirements of this use case.

Demand Response

This use case (cf. Subsection 5.1.2) requires time series of estimates to iden-
tify periods of time with high energy consumptions (peaks), together with up-
per and lower bounds. As the operator is willing to invest only a small effort,
FRESCO suggests our dynamic estimator model.

To evaluate this scenario, we let FRESCO estimate (cf. Equation 5.6) the con-
sumption based on the CPU load and on information on the maximal and min-
imal energy consumptions of our three target systems with a frequency of one
second. We use these estimates to identify points in time when the energy con-
sumption is above a given threshold. In particular, we evaluate two dynamic
thresholds that consider the difference between the largest and smallest values
of a time series T :

θ1 = 0.8 ·
( |T |

max
i=1

(Ti)−
|T |

min
i=1

(Ti)
)

(5.10)

θ2 = 0.95 ·
( |T |

max
i=1

(Ti)−
|T |

min
i=1

(Ti)
)

(5.11)

We compute time series of peak consumption from our measured values as well
as for the time series FRESCO has estimated, by filtering out all values that are
smaller than θ. If our estimates are accurate, FRESCO can identify periods with
high energy consumption and can thus enable operators to perform Demand
Response.

Figure 5.5 illustrates the cumulative distribution function (CDF) of the real en-
ergy consumption during specific intervals for the desktop dataset. The first set
of intervals is when FRESCO estimated the consumption to be greater than θ1

(continuous line). The second set is when FRESCO estimated the consumption
to be greater than θ2 (dashed line). We observe that, if the estimator predicts a
value greater than θ1, then the real energy consumption is greater or close to θ1.
Thus, in around 88% of all cases, a value predicted to be greater than θ1, is also
greater than θ1. In 80% of all cases where a value greater than θ2 was estimated,
the real energy consumption was greater than 90% of θ2.

Figure 5.6 illustrates the cumulative distribution function (CDF) of the pre-
dicted energy consumption during specific intervals for the desktop dataset.
The first set of intervals is when the real consumption was greater than θ1 (con-
tinuous line). The second set is when the real consumption was greater than
θ2 (dashed line). Thus, the estimator predicted a value of at least 75% of θ1 for

78



5.4 Evaluation

0.6 0.7 0.8 0.9 1.0

0.
0

0.
4

0.
8

Normalized range of energy consumption

C
D

F

greater than θ1
greater than θ2

Figure 5.5: CDF, Desktop Dataset

values which were greater than θ1 in 90% of the cases. The estimator predicted
a value of at least 80% of θ2 for all values which were greater than θ2 in all
cases.
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Figure 5.6: Distribution of Predicted Energy Consumption Values – Desktop
Dataset

For the laptop dataset (Figure 5.7), if our dynamic estimator predicts that the
energy consumption during an interval is greater than θ1, then the actual con-
sumption is greater than 75% of θ1 in 92% of the cases. Furthermore, a value
greater than θ2 of the estimated energy consumption is greater than 75% of θ2

of the real consumption in around 92% of the cases. On the other hand (Fig-
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ure 5.8), our estimator predicted a value of at least 75% of θ1 for intervals with
a consumption greater than θ1 in 95% of the cases. Our estimator predicted
values greater than 80% of θ2 for all intervals with a consumption greater than
θ2.
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Figure 5.7: Distribution of Real Energy Consumption Values – Laptop Dataset

Concerning the server dataset, for which we use minute-by-minute measure-
ments and estimations, the accuracy of our dynamic estimator is better. In 90%
of the cases where an estimate is greater than θ1, the real value also is greater
than θ1. Additionally, the estimator correctly predicted all values greater than
θ2. On the other hand, our estimator predicted a value of at least 75% of θ1

for intervals with a consumption greater than θ1 in 90% of the cases. Our es-
timator predicted values greater than 80% of θ2 for all intervals with an actual
consumption greater than θ2.

Summary: Our dynamic estimator can identify periods of time with peak energy con-
sumptions with a reasonable accuracy with a low estimation effort. That is, it uses only
static information on the minimal and maximal consumption of the target system, and
it samples only the CPU load. Moreover, the estimator is flexible, i.e., it can sample
more usage parameters in order to improve its accuracy. We conclude that FRESCO
fulfills the requirements of this use case.

Energy Accounting

Our third use case (cf. Subsection 5.1.3) requires estimates with stochastic guar-
antees. Thus, FRESCO suggests a calibration-based estimator, which provides
estimates based on calibrated energy profiles.
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Figure 5.8: Distribution of Predicted Energy Consumption Values – Laptop
Dataset

We let FRESCO calibrate energy profiles for each of our three target systems
at setup time. At run time, our monitoring application samples the CPU load
with different sampling frequencies. In order to compare the estimates with the
real values, we have calculated MAPE and MaxAPE for all three datasets. Fig-
ure 5.9 shows the MAPE on the y-axis and the length of the time interval on the
x-axis. The figure indicates that the estimation accuracy is better for longer time
intervals. For all three datasets, the mean error decreases by around a fourth
(14–37% decrease) when the estimator aggregates estimates for intervals of 16
minutes instead of one second. Similarly, the MaxAPE decreases significantly
for all datasets with longer estimation intervals, as shown in Figure 5.10. In par-
ticular, for the server dataset, the maximum error is around 6.5 times smaller,
decreasing from about 35% to 5.3%. For the other two datasets, the decrease
in maximum error is significant as well (2.4 times for the laptop dataset and 22
times for the desktop dataset, respectively).

Summary: With estimation intervals that make sense in energy accounting, FRESCO
is able to provide estimates of a high accuracy. While the effort at run time is similar
to the one of the dynamic estimator, the effort at setup time is very high. However,
many energy accounting scenarios make use of numerous target systems with identical
hardware, e.g., for typical office tasks. In such scenarios, the calibration effort at setup
time takes place only once. Thus, we conclude that FRESCO can perform well in an
energy accounting scenario.
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Figure 5.9: MAPE, Calibration-Based Estimator
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Figure 5.10: MaxAPE, Calibration-Based Estimator

5.5 Summary

The effort of collecting fine-granular time series is high as often data must be
measured and communicated using sensor nodes, e.g., smart electricity me-
ters. This is expensive in large scales. In certain cases, it is possible to obtain
time series of estimates instead of direct measurements. This is in the case of
computer energy consumption particularly interesting. One reason is that, as
the share of computer energy consumption increases, it becomes increasingly
important to quantify it in a solid manner. Many enterprise applications, ac-
counting procedures and business models require such data to allow informed
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management decisions, e.g., for energy-aware management of IT resources, IT-
energy accounting or demand response. However, most existing estimators are
tailored to specific use cases, hardware architectures and usage profiles. Due to
their different characteristics in terms of effort and accuracy, the choice of esti-
mation method for a given application is far from obvious. In this chapter, we
have proposed FRESCO, a general and flexible FRamework for the Energy eSti-
mation of COmputers. Depending on the effort the operator is willing to invest
and on the requirements of the application, FRESCO can propose and run ap-
propriate estimators with good parameter settings. It gives quality guarantees
on the estimates. FRESCO considers heterogeneous hardware components and
loads, as well as the frequency of the estimation. Experimental results based on
three representative real-world datasets show that our framework is useful in
many business use-cases.
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6 Lossy Transformations and
Subsequent Change Detection

In this chapter we describe our third contribution, which builds on the first
two. We start with the motivation for quantifying the impact of lossy trans-
formations on subsequent data analysis. We then describe three application
scenarios using different types of lossy transformations and having different
requirements on the quantification. We then present MILTON, our Measure
for quantifying the Impact of Lossy Transformation methods for time series on
subsequent change detectiON. We further explain how we calculate and pa-
rameterize MILTON. Subsequently, we show how we evaluated our measure
using three application scenarios and real-world datasets. We finally conclude
the chapter with a summary and outlook of our contribution. In this chapter,
we reused our corresponding publication [EBEB15], including figures, tables
and algorithms.

Approaches, such as lossy compression [EEKB15], estimation [EBB14a] or per-
turbation/anonymization [PLKY07] lossily transform the time series: A lossy
transformation can reduce the data volume, generate an optimized data model
or remove personal information from a dataset. Such transformations however
modify useful characteristics of the data, such as changes in the case of time
series. Change detection on time series data is an important building block of
many real-world applications [Pag54, GS99]. It converts a time series of mea-
surements into one of events. The impact of such transformations depends on
the application scenario, and quantifying it is far from trivial.

Existing similarity measures for time series, applied to the original series and
the compression result, cannot meaningfully quantify the impact of a lossy
transformation on the result of a change-detection approach
[BC94, RK05, VHGK03, LWKTM07]. Such a quantification however is needed
to identify and parametrize a good compression algorithm or anonymization
approach, given a certain dataset and quality requirements on the change-
detection result. Think of energy-consumption data from a smart meter, which
serves as our running example. Change detection on such data allows to detect
interesting events (turning on/off of a device, abnormal device activity). Such
events are needed for demand side management, peak shifting, peak shaping,
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etc. – all basic techniques to integrate renewable energy sources into the Smart
Grid. However, data transformation, e.g., lossy compression or anonymization,
can modify the data considerably. This can significantly impact the subsequent
detection of those events.

Example 4. An energy provider uses a lossy compression technique for time series
from a smart meter, to reduce the data volume, before running a change-detection al-
gorithm. Due to the compression loss, (a) some changes might be detected at different
points in time, or (b) their significance might be altered, compared to the original time
series. Next, (c) changes might go undetected at all, or (d) the compression might result
in new changes. Using his domain knowledge, the provider can assess the importance
of these impacts. Based on his assessment, he wants to select a concrete compression
technique, together with a good parameter set.

The quantification of this impact is difficult due to several open challenges:
First, as shown in the example, the impact is manifold. One therefore needs to
carve out possible effects of a lossy transformation on changes. Second, the def-
inition of a measure for this impact is not obvious. It is necessary to thoroughly
investigate application scenarios where one is working on the transformed
data, in order to come up with respective requirements. Third, the measure
envisioned should be customizable to the concrete application scenario. Think
of the energy provider once again. For him, it will be more detrimental if com-
pression eliminates changes from the data, as opposed to the insertion of new
ones. Fourth, identifying the specific effect of a transformation on a change
(e.g., shift in time vs. disappearance) is an application-dependent procedure,
which must take all changes into account. This is because ascribing an effect
to a certain change may cascade and influence the ascription of effects to other
changes. Having defined a measure does not make finding a good algorithm
computing it obsolete.

To address the challenges above, we design MILTON, a practical and flexible Mea-
sure which quantifies the Impact of various Lossy Transformation methods for time se-
ries on subsequent change detectiON. This measure is applicable to any use case
where one wants to know how much a certain transformation approach for
time series reduces the result quality of a change-detection technique, as com-
pared to change detection on the original data. This lets an operator decide
how much he can compress the data without affecting change detection con-
siderably, or if the anonymization technique he intends to deploy does indeed
conceal certain changes, as he had planned. To ensure flexibility, we do not im-
pose restrictions on the change detection or the transformation approach used,
and we allow to flexibly weight effects on changes.

At first sight, an alternative to MILTON would have been to derive a model of
the loss of data quality due to a transformation. It is however very demanding
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to build such a model that is generally applicable. The main reason is that it is
difficult to impossible to integrate each of the many existing lossy transforma-
tion techniques and change-detection approaches into one model.

6.1 Use Cases Involving Change Detection

In this section, we describe three scenarios which motivate our measure and
derive the requirements on it. We have consciously decided to describe these
scenarios in much detail, in order to reveal the subtle differences between them,
which then give way to the requirements.

6.1.1 Data Compression in the Smart Grid

Description

The first use case involves using lossy compression techniques [EEKB15, HJA13,
LM03, EEC+09] that produce a piecewise approximation of the original data
within an error threshold ε. These techniques not only modify the original
data, but also the changes present in it. The effects of such approximations
on the changes have not been investigated yet. An energy provider intending
to use the compressed data for analytics needs to take these effects into ac-
count. For instance, by detecting changes in data streams and integrating them
in the learning model, he can improve forecasting [RLB13] or enhance stream
mining [TO09]. We refer to this scenario as the “compression scenario”.

Problem Domain

The result of lossy compression methods depends on the models they use (e.g.,
constants, straight lines, polynomials) and how they use them. To evaluate
their impact on changes in the data, one thus needs to consider different classes
of models. Another important parameter here is the error threshold ε. Com-
pression results, and consequently their impact on changes, strongly depend
on this parameter. One therefore needs to evaluate the impact of compression
methods for different values of ε.
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Setting

The energy provider employs a forecasting application that uses the compressed
time series to predict the energy consumption. Detecting a change in the time
series triggers an update of the underlying model of the forecasting algorithm,
to improve predictions. In such a case, it makes sense to penalize changes
which disappear (“missed”) more than those which emerge (“false positives”)
as a result of the transformation. This is because a missed change prevents
the forecasting algorithm from updating its model when necessary. This may
impact its accuracy significantly. A false-positive change in turn will trigger
an unnecessary update of the model, which may cause additional effort, but
should not affect forecasting accuracy considerably. Regarding shifts of changes
in time, the provider deems them important for forecasting, as they will de-
lay or vice-versa advance the update of the underlying model. On the other
hand, modifications of the importance of changes are not crucial in this case, so
he chooses to ignore them altogether. This makes sense here, because, once a
change is detected, the model is updated regardless of that importance.

6.1.2 Data-Center Energy Management

Description

Estimates of computer-energy consumption are useful in many use cases (see
Section 5.1). For instance, a data-center manager can use such data in the de-
sign phase of the data center or to keep track of the energy consumption of
the IT infrastructure when operating the center [EBB14a]. He can addition-
ally use the data for other use cases which employ change-detection methods
including consumption-event characterization or detection of abnormal con-
sumption. As with compression, estimates are an approximation of the real
consumption data. A data-center manager thus needs to quantify the effect of
estimation methods on changes and to choose an estimation method appropri-
ate for subsequent change detection. We refer to this scenario as the “estimation
scenario”.

Problem Domain

Estimation methods function differently in order to obtain approximations. We
are aware of several classes: A first class performs a sophisticated calibra-
tion process [FWB07], while another one relies on specific models of compo-
nents [NBRS12]. They thus obtain estimates of different accuracy. In an evalu-
ation, it would be interesting to study the impact of estimation methods from
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different classes on the changes. Another parameter here is the time granu-
larity of the estimates. There is a trade-off between this granularity and accu-
racy [EBB14a]. We therefore need to evaluate estimation methods with different
values for that parameter.

Setting

Here, the data-center manager will use estimates to balance energy demand
and supply with the following application: A significant change in consump-
tion will trigger an alarm, so that the energy supply adjusts to the new level.
This means that shifts and modifications of the importance of changes are criti-
cal to the subsequent application. Regarding missed and false-positive changes,
the manager uses a similar logic as in the previous scenario. A missed change is
critical here because it prevents from balancing energy consumption and sup-
ply. A false positive however only implies an unnecessary readjustment. Even
though this indicates additional costs, it is not critical to the subsequent appli-
cation.

6.1.3 Data Privacy in the Smart Grid

Description

Smart meters can accurately and frequently measure and communicate the en-
ergy consumption of households. While these measurements are useful for
analytical purposes, they unintentionally allow to infer personal information,
such as the daily routine of residents [BBBK13, MMSF+10]. The pseudonymiza-
tion of the data is not sufficient. This is because an easy re-identification of con-
sumers using simple statistical measures is possible [BBBK13]. Adding noise
(e.g., white noise) to the data does not enhance privacy either, as one can easily
filter it out [PLKY07]. One way to prevent filtering out noise is to first transform
the data to another basis (e.g., apply a Wavelet transform), then to add noise to
the data in that basis, and finally to re-transform the data to the original ba-
sis [PLKY07]. Although they do not guarantee anonymization, such methods
give way to some extent of anonymization in many cases. We refer to these
methods as anonymization methods in the following.

Energy providers can apply such methods to protect user privacy. However,
using them has a significant impact on different use cases, as the functioning
of local energy markets may have additional costs [BKJB13]. The impact of
anonymization on changes in the data is not yet known. A provider intending
to anonymize the energy consumption of users nevertheless needs to quantify
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this effect. This is because the data should remain useful for subsequent analy-
ses. We refer to this scenario as the “anonymization scenario”.

Problem Domain

The result of anonymization using the above-mentioned methods [PLKY07]
depends on the basis chosen for the transformation of the data (e.g., Fourier
or Wavelet). We thus need to determine how the choice of the basis affects the
changes in the data. The other important parameter in this case is the magni-
tude of the noise σ added to the original data. We conjecture that, the larger the
noise added to the data, the larger is the potential impact on the changes.

Setting

Here, the provider considers the general case of data publishing, implying that
he has little or no information on the subsequent use of the data. He does not
differentiate between a shift in time or importance of changes. He does the
same for missed and false-positive changes.

6.1.4 Measure Requirements

The first two contributions of this dissertation concern lossy transformation
techniques, such as lossy time-series compression and estimation. The applica-
tion scenarios above involve the use of such techniques and motivate the need
for a measure of their impact on subsequent change detection. Based on these
scenarios, we have compiled the following requirements for our measure:

R1: Generalizability The measure should be independent of the change-
detection algorithm and should provide meaningful results for any com-
bination of general-purpose change-detection approach and lossy trans-
formation.

R2: Flexibility The user should be able to configure the measure to distinguish
and weight four cases according to the subsequent application: shifts
of changes in time, modifications of their importance, disappearance of
changes and emergence of new ones.

R3: Robustness The measure should be robust. Here, robustness means that
computation should return meaningful results for any parametrization of
the measure.
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6.2 MILTON

We first describe the basic functioning of MILTON. We then present MILTON
and say how we have parameterized it.

6.2.1 Problem Definition

A change-detection algorithm CD transforms a time series of measurements
X into one of events (changes) CD(X) = {(t1, s1), (t2, s2), . . . , (tm, sm)}. Here,
ti with i = 1, . . . ,m denotes the time the change occurred at, while si de-
notes its score. Many state-of-the-art change-detection approaches associate
with each change a score [LYCS13], which characterizes its significance. With-
out loss of generality, we assume that a change has a score of 1 if a change-
detection approach does not provide scores. A lossy transformation T on X
produces a modified time series of measurements T(X). Applying CD on T(X)
thus produces a time series of changes CD(T(X)), which is possibly different
from CD(X). Table 6.1 sums up our notation introduced so far.

Symbol Definition
X original time series
T lossy transformation
CD change detection algorithm
CD(X) time series of changes

Table 6.1: Notation Summary

When comparing the changes in CD(X) and CD(T(X)), we can assign each
change to one of the following sets:

PC = pairing(CD(X),CD(T(X)): As a result of the lossy transformation of
X , changes of CD(X) might have been shifted in time or have their score
altered. The set PC (“paired changes”) contains pairs of changes of the
form (x ∈ CD(X), y ∈ CD(T(X))). Here, x is a change of CD(X), and y
is its corresponding change in CD(T(X)), eventually shifted or of altered
score. The pairing function identifies and pairs such changes from CD(X)
and CD(T(X)).

MISS = CD(X)−PC: As a result of the transformation, some changes of
CD(X) might not have a match in CD(T(X)). The set MISS contains such
changes, which we call “misses”.

FP = CD(T(X))−PC: In contrast, new changes might appear in CD(T(X)),
which do not have any match in CD(X). We refer to such changes as “false
positives”, which we add to the set FP.
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6 Lossy Transformations and Subsequent Change Detection

From requirement R2 (cf. Subsection 6.1.4), it follows that MILTON must con-
sider each set defined above differently. In particular, we must determine the
changes the transformation has affected in a minor way (minor = shift in time
or modification of score; PC), how many have disappeared (MISS), and how
many have emerged as a result of the transformation (FP). Second, we should
allow setting application-dependent weights on the impact of changes in each
set. For example, if missed changes are critical to the subsequent application,
our measure must attribute larger weights to such cases than to false positives
or vice-versa. To evaluate the impact of a lossy transformation on subsequent
change detection, MILTON quantifies how similar CD(X) and CD(T(X)) are, i.e.,
we sum the weighted differences between the changes CD(X) and CD(T(X)) as-
signed to PC, and the weights of the changes in MISS and FP.

6.2.2 Calculating PC, MISS and FP

We first explain how the function pairing() can be implemented to obtain the
set PC. Obtaining sets FP and MISS follows in a straightforward manner.

Finding the optimal matching between changes from CD(X) and CD(T(X)) is
not trivial. One reason is that matching two changes can affect the matching
of other changes. As an example, suppose that we match two changes x ∈
CD(X) and y ∈ CD(T(X)) incorrectly. This means that the correct match y′ for
x may now be matched with another change incorrectly. This holds for y and
its match x′ and may cascade. The incorrect matching of two changes may
thus impact the entire matching process. The matching process therefore needs
to consider all possible matching combinations of changes. Another reason is
that the optimal matching may not include all changes in CD(X) or CD(T(X)),
as there may be new changes (false positives) and removed ones (misses). The
matching process may therefore need to skip changes. However, it is not clear
how many changes it should skip.

Due to Requirement R2, our measure must take into account both the differ-
ence in time and score (importance) between two changes. Moreover, it should
be possible to weight these differences depending on the application scenario.
For example, in the compression scenario (Section 6.1.1), the difference in time
has a higher weight than the difference in score. We therefore first define
these weights: Let x = (tx, sx) be a change of CD(X) and y = (ty, sy) one of
CD(T(X)). We define fTIME : R 7→ R+ as a function of the normalized dif-
ference in time (∆t) between x and y and fSCORE : R 7→ R+ as a function of
the normalized difference in score (∆s) between x and y. These functions are
application-dependent, as explained above. The distance between two changes
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then is a function g of fTIME and fSCORE:

dist(x, y) = g(fTIME(∆t(x, y)), fSCORE(∆s(x, y))) (6.1)

We fix g as the sum of the contributions fMISS and fSCORE:

dist(x, y) = fTIME(∆t(x, y)) + fSCORE(∆s(x, y)) (6.2)

In our experiments, we have tested other distances, such as the maximum be-
tween the two contributions: max(fTIME(∆t(x, y)), fSCORE(∆s(x, y))). This has
not lead to substantially different results.

Based on the above-defined distance, one trivial way to find the correspon-
dence between changes CD(X) and CD(T(X)) is to calculate all possible one-to-
one combinations of events which maintain the original succession of changes
and choose the one with the smallest total distance. However, this is compu-
tationally expensive; the number of such combinations grows exponentially
with the number of changes in CD(X) and CD(T(X)). At first sight, the set-
ting may resemble the one of the well-known Hungarian Algorithm. The dif-
ference however is the need to maintain the original order of changes for the
matching. Several publications however have studied this specific problem or
closely-related ones [LWKTM07, WP90]. We use the Optimal Subsequence Bi-
jection (OSB) algorithm introduced in [LWKTM07], which fulfills the matching
prerequisites:

• the matching should consider all distances between matched changes

• the matching should allow leaving unmatched changes (misses and false-
positives)

However, OSB as is does not solve our problem. This is because, after per-
forming the matching, it does not take unmatched changes into account. OSB
matches two sequences CD(X) and CD(T(X)) of (possibly different) lengths m
and n:

CD(X) = {(tx1
, sx1

), (tx2
, sx2

), . . . , (tx1
, sxm

)}

CD(T(X)) = {(ty1
, sy1

), (ty2
, sy2

), . . . , (tyn
, syn

)}

Its goal is to find best-matching subsequences CD(X)′ of CD(X) and CD(T(X))′

of CD(T(X)). Thus, it may skip changes. The authors of OSB motivate having
unmatched changes by the fact that the sequences may contain outliers that
should be skipped. In our case, these correspond to false-positive and missed
changes. However, skipping too much may result in random matches. To avoid
this, OSB uses a penalty C for skipping.

The algorithm requires the two sequences, a distance measure and a penalty for
skipping changes as input. To find the optimal matching, OSB minimizes the
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sum of the distances between matched changes and the penalties for changes
skipped. It thus considers all distances between matched changes, as required.
[LWKTM07] uses the Euclidean distance. We adapt OSB to our case by using
the distance from Equation (6.2), next to some other adaptations:

There are many possibilities to set the penalty C. From our experiments, we
have found that the standard penalty recommended in [LWKTM07] produces
correct matchings and rarely results in mismatches between changes. We there-
fore used the standard penalty, which is defined as follows:

C(CD(X), CD(T(X))) = mean
i

(min
j

(dist(xi, yj)) + std
i

(min
j

(dist(xi, yj))

where xi ∈ CD(X), i = 1, . . . ,m and yj ∈ CD(T(X)), j = 1, . . . , n.

Algorithm 4 Algorithm computing PC, MISS and FP
1: Let MISS = {}
2: Let FP = {}
3: PC = OSB(CD(X), CD(T(X)), C)
4: for x ∈ CD(X) do
5: if x /∈ PC then
6: MISS = MISS ∪ x
7: end if
8: end for
9: for x ∈ CD(T(X)) do

10: if x /∈ PC then
11: FP = FP ∪ x
12: end if
13: end for

In our case, OSB outputs a one-to-one pairing between changes in CD(X) and
CD(T(X)), which makes up the set PC. To identify the changes which disap-
peared as a result of the transformation (MISS), we loop over changes in CD(X)
and select those which do not have a match in CD(T(X)), i.e., are not in PC.
Similarly, to obtain new changes (FP) we loop over the changes in CD(T(X))
and select those without a match in CD(X). See Algorithm 4.

6.2.3 Measure Definition

As explained in the previous subsection, having sets PC, MISS and FP, we can
construct a general-purpose measure, which satisfies Requirements R1, R2 and
R3. We first consider the impact of each set separately, followed by the total
impact.
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Paired Changes Changes in such a couple may differ in the time when they
occur and in their score. As just explained, we quantify this difference using
the distance defined in Equation (6.2). To quantify the global impact of such
changes, we sum up the distances between “paired changes”. This creates the
following term, which is part of our measure:

errPC =
∑

(x,y)∈PC

dist(x, y) =

∑
(x,y)∈PC

fTIME(∆t(x, y)) + fSCORE(∆s(x, y))

The intuition is that, the more changes are shifted in time and score, the bigger
the impact of the transformation on them and vice versa. In case information
on the particular impact of shifts in time and score was necessary, errPC could
be split into two terms calculated separately:

errPC = errTIME + errSCORE

where
errTIME =

∑
(x,y)∈PC

fTIME(∆t(x, y))

and
errSCORE =

∑
(x,y)∈PC

fSCORE(∆s(x, y))

Misses Depending on the application scenario considered, we may want to
deal with misses in a differentiated manner according to their score. For exam-
ple, we may choose to completely ignore missed changes with a low score and
conversely assign a bigger weight to ones with a high score. We therefore in-
troduce a weighting function on missed changes fMISS which depends on their
score. We discuss how we define this function in the following subsection. To
quantify the total impact of missed changes, we sum up their individual im-
pacts weighted by fMISS, yielding the second term of our measure:

errMISS =
∑

(t,s)∈MISS

fMISS(s) (6.3)

False Positives As in the case of missed changes, we may want to handle
false positives in a differentiated manner depending on their score. For this,
we introduce a weighting function on false positives fFP. As in the previous
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cases, we sum up the individual impacts weighted by fFP and create the last
term of our measure:

errFP =
∑

(t,s)∈FP

fFP(s) (6.4)

Weight function Argument
fTIME shift in time
fSCORE shift in score
fMISS missed changes
fFP false-positive changes

Table 6.2: Notation Summary

Total Impact To quantify the total impact of the different terms introduced
above, MILTON sums them up. However, there is another issue, which MIL-
TON should take into account, namely, the number of changes in the original
time series |CD(X)| = |PC| + |MISS|. We explain the rationale using an exam-
ple:

Example 5. Suppose that, for a time series X1, CD detects 2 changes, while for an-
other time seriesX2, it detects 100. Let us further assume that applying transformation
T on X1 introduces a shift in time and score to the original changes CD(X1) and the
summed-up impact is equal to 0.5. We also assume that applying the same transforma-
tion T on X2 leaves all but two changes intact and introduces a shift in time and score
to the two changes resulting in an equivalent impact equal to 0.5. Logically, the global
impact between the two cases should be significantly different. This is because in the
case of X2, T leaves 98% of the changes intact, while it affects 100% of the changes
in the case of X1. We therefore need to normalize the total impact and divide it by the
number of changes CD detects in the original time series.

Using the above results, we define MILTON as follows:

MILTON(X, T, CD) =
errPC + errMISS + errFP
|PC|+ |MISS|+ 1

(6.5)

We add 1 to the denominator to account for the case when PC and MISS are
both empty.

Table 6.2 lists the functions presented above. We have explained the need to
use weights within MILTON, and we have provided some intuition on how to
set them.
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6.2.4 Parametrization

MILTON has four parameters: fSCORE, fTIME, fMISS and fFP. In the following
we say how we set these parameters for each use case described in Section 6.1.
Observe that the domain of these functions is normalized to the interval [0, 1].

We first consider the compression scenario. Here, we must penalize missed
changes substantially more than false positives. We therefore assign a larger
weight to fMISS than to fFP. See Table 6.3. Concerning shifts in time and score,
we set fTIME proportional to the size of the shift and we set fSCORE equal to zero.
This is because we ignore alterations of the importance of changes.

Table 6.3: Measure parametrization
Compression Estimation Anonymization

fTIME(∆t) |∆t| e|∆t| − 1 1
2 · |∆t|

fSCORE(∆s) 0 e|∆s| − 1 1
2 · |∆s|

fMISS(s) s2 + 1 es − 1 s
fFP(s) s s s

We now turn to the estimation scenario. As mentioned, shifts and modifica-
tions of the scores are critical to the subsequent application. Thus, we decide
to set fTIME and fSCORE to grow exponentially with increasing shifts in time and
score (Table 6.3). Regarding fMISS and fFP, we use a similar logic as for the
previous scenario where we penalize missed changes substantially more than
false-positive ones.

Lastly, we consider the anonymization scenario. As stated, we are in the gen-
eral case of data publishing. This means that little or no information on the
subsequent use of the data is available. We therefore use the average of shifts
in time and score (importance) between two changes as distance, with no dif-
ferentiation between the type of shift (Table 6.3). We let the terms errFP and
errMISS due to missed and false positive changes correspond to the sum of the
scores of changes in the respective sets (MISS and FP).

6.3 Evaluation

MILTON operates as intended if it fulfills the requirements from Section 6.1.4.
We have covered the flexibility and robustness requirements by design. To cope
with generalizability, we have evaluated MILTON using our three scenarios. In
the following, we present the datasets used, the setup of our experiments and
their results.
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6.3.1 Setup

To evaluate MILTON, we use five datasets:

• The Reference Energy Disaggregation Dataset (REDD) (Section 3.2)

• The Smart Home Dataset (Smart) (Section 3.3)

• The Server Dataset (Section 3.5)

• The Desktop Dataset (Section 3.6)

• The Laptop Dataset (Section 3.7)

For the evaluation of all scenarios, we have used CUSUM [Pag54], an estab-
lished change-detection method. We have configured it to detect changes of
the mean of a data sequence of at least 5% of its range. We set the parame-
ters (weights) of MILTON according to each application scenario (Table 6.3), cf.
Subsection 6.2.4. In the following we present the lossy transformation methods
used for each scenario.

Compression Scenario

We use compression techniques based on different classes of models:

a) Adaptive Piecewise Constant Approximation (APCA) uses constant func-
tions to approximate segments of data of varying length [KCPM01].

b) Piecewise Linear Histogram (PWLH) compresses the data in a similar
manner as APCA using straight-line functions instead of constant
ones [BSS07].

c) Adaptive Polynomial Piecewise Compression (APP) corresponds to the
algorithm we proposed and described in Section 4. It combines polyno-
mial functions of different degrees to approximate the data piecewisely
in an incremental manner [EEKB15].

All of these methods compress the data, such that the maximum deviation be-
tween the original and decompressed data under the uniform norm is smaller
than an error threshold ε.

Estimation Scenario

We use a dynamic and a calibration-based estimator to obtain the energy-
consumption estimates, cf. Section 5 ([EBB14a]).
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Anonymization Scenario

We use two data perturbation/anonymization methods: one using the Fourier
transform and one using the Wavelet one [PLKY07].

6.3.2 Use Case Evaluation

We now present our evaluation of MILTON.

Compression Scenario

In this scenario, the energy provider wants to identify the method which de-
livers the best compression ratio for a given impact on the changes in the data
together with a good parameter set. For this, we have first computed MILTON
for all three compression techniques for different values of the threshold ε go-
ing from 0.2% to 5% of the range of the time series used. Figure 6.1 shows the
average results for the Smart Dataset. They are similar to those we obtained
with the REDD Dataset. We observe that the measure generally increases with
a growing threshold value. This is because some changes disappear as a result
of the rougher compression. We also observe that, for large values of ε, com-
pression using APCA has a worse impact on the subsequent change detection
than the other two methods.
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Figure 6.1: MILTON vs. Threshold (ε) - Smart Dataset
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To understand the reasons behind the results in Figure 6.1, we list and inspect
the number of changes in sets PC, MISS and FP, as well as MILTON compo-
nents errPC, errMISS and errFP for one time series of the Smart dataset (Ta-
ble 6.4). We first notice that PWLH and APP preserve existing changes better
than APCA when ε > 0.2%. This accounts for their lower values of MILTON.
Second, in comparison to both PWLH and APCA, APP introduces considerably
more false-positive changes. We assume that this is due to the use of polyno-
mials of degree higher than 1. These may introduce “bumps” in the time series,
which CUSUM interprets as changes. However, they do not impact the value
of MILTON significantly, as we set the weight fFP for false-positive changes
significantly smaller than for misses (fMISS).

Table 6.4: Number of Changes and Measure Components in Compressed Data
for Threshold ε – homeB – Smart Dataset

ε PC MISS FP errPC errMISS errFP
0.02 170 0 0 0.000 0.000 0.000

A
PC

A

0.05 167 3 3 0.006 3.000 0.015
0.1 160 10 7 0.007 10.000 0.036
0.2 156 14 7 0.010 14.000 0.038
0.5 153 17 2 0.007 17.000 0.013
1 145 25 1 0.010 25.001 0.000
2 110 60 0 0.008 60.002 0.000
5 89 81 0 0.000 81.003 0.000

0.02 170 0 0 0.000 0.000 0.000

PW
LH

0.05 164 6 6 0.002 6.000 0.031
0.1 164 6 6 0.005 6.000 0.031
0.2 162 8 8 0.006 8.000 0.041
0.5 160 10 9 0.014 10.000 0.046
1 157 13 10 0.019 13.000 0.053
2 148 22 6 0.031 22.001 0.032
5 110 60 2 0.091 60.002 0.012

0.02 148 22 15 0.013 22.001 0.345

A
PP

0.05 147 23 10 0.011 23.001 0.310
0.1 165 5 4 0.006 5.000 0.021
0.2 165 5 3 0.022 5.000 0.015
0.5 159 11 8 0.020 11.000 0.041
1 154 16 7 0.022 16.000 0.040
2 154 16 6 0.026 16.000 0.032
5 138 32 52 0.226 32.001 0.373

We next compute the compression ratio for all three methods for the same val-
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Figure 6.2: Compression Ratio vs. Threshold (ε) – Smart Dataset

ues of ε as in our previous experiment. We use the following formula:

compression ratio =
size of compressed data

size of initial data
(6.6)

Figure 6.2 shows the average results for the Smart Dataset. We notice that the
techniques diverge significantly for small values of ε (ε < 0.2%) and converge
to similar ones when ε grows (ε > 1%). For small values of ε, compression
with PWLH is worst, followed by APCA and APP.

Using the results above, the provider can identify a good compression method
with a good parameter set if a bound on the impact on the changes is given. To
this end, he first needs to identify, for each method, the value of ε which gives
way to an impact within the bound. Then, using the results on compression
ratios, he can select the best method.

Summary: We have shown that MILTON can help the provider decide which compres-
sion method suits his needs best. In this use case, for the specific settings used here, no
method is generally superior to the other ones.

Estimation Scenario

In this scenario, a data-center manager wants to identify which estimation
method at which aggregation level (e.g., per minute or hourly) has the smallest
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impact on changes in the data. For this, we aggregate the energy-consumption
time series to time intervals from one minute to 60 minutes. We then calculate
our measure for both estimators on all datasets for these intervals. Table 6.5
shows the average value of MILTON for time series in each dataset tested. We
first notice that the calibration-based estimator has a smaller impact on changes
than the dynamic one for almost all datasets and interval lengths. For the lap-
top dataset, for instance, MILTON is 30% smaller on average. Furthermore, the
value of MILTON generally increases with the interval length. This means that,
while using a longer time interval for aggregation may improve accuracy as
shown in Section 5 ([EBB14a]), it has a bigger impact on changes in the data.

Table 6.5: MILTON by Time Interval Length
Time interval length (min.)

1 2 5 15 30 60

Dynamic 0.01 0.01 0.03 0.00 0.00 0.04

A
TI

S

Calibr. 0.00 0.01 0.02 0.00 0.00 0.05

Dynamic 0.01 0.03 0.04 0.06 0.11 0.33

D
es

kt
op

Calibr. 0.00 0.00 0.01 0.01 0.03 0.27

Dynamic 0.01 0.01 0.01 0.04 0.06 0.17

La
pt

op

Calibr. 0.00 0.01 0.01 0.02 0.04 0.09

To find out why MILTON behaves in this way in this case, we list the num-
ber of changes in the sets PC, MISS and FP, as well as MILTON components
errPC, errMISS and errFP for one time series of the Desktop Dataset (Table 6.6).
We see that the dynamic estimator usually produces more missed and false
positive changes than the calibration-based one. This makes MILTON grow
significantly due the definition of fMISS and fFP. Moreover, for small interval
lengths the pairing matches changes better than for longer ones. This accounts
for the big impact of aggregation on changes for long intervals .

Summary: For this scenario MILTON lets a data-center manager assess the impact
of an estimation method on change detection. The calibration-based estimator impacts
changes significantly less than the dynamic one.
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6.3 Evaluation

Table 6.6: Number of Changes and Measure Components by Interval Length –
Desktop Dataset

Interval
PC MISS FP errPC errMISS errFPlength

(min)

D
yn

am
ic

1 76 37 75 0.614 0.057 0.351
2 43 1 33 1.191 0.022 0.284
5 19 1 20 0.472 0.053 0.208

15 8 0 6 0.431 0.000 0.142
30 3 0 4 0.312 0.000 0.129
60 1 2 0 1.055 0.000 0.000

C
al

ib
r.-

ba
se

d 1 86 27 0 0.152 0.032 0.012
2 34 10 1 0.123 0.021 0.003
5 11 9 0 0.031 0.033 0.000

15 5 3 0 0.065 0.033 0.000
30 3 0 0 0.189 0.000 0.000
60 1 2 0 0.061 0.134 0.000

Anonymization Scenario

In this scenario, an energy provider needs to quantify the impact of anonymiza-
tion methods on the changes in the data. The goal is to identify the method
which protects privacy best while keeping the data useful for subsequent ana-
lytics. For this, we computed MILTON for both anonymization methods. We
vary the value of the perturbation σ these methods add, as described
in [PLKY07].

Figure 6.3 shows the average values of MILTON for House 4 of the REDD
dataset when the perturbation σ goes from 0.001 to 50. In this case, these val-
ues of σ correspond to the interval [0.01%, 58%] of the standard deviation of the
energy-consumption time series of House 4. We obtained similar results for all
other REDD and Smart time series.

We observe that MILTON increases if we add more perturbation when using
the Wavelet transform, while it stays practically constant when using Fourier.
To understand why this happens, we show the number of changes in the sets
PC, MISS and FP, as well as MILTON components errPC, errMISS and errFP
for one time series of House 4 in Table 6.7. The number of paired changes
and missed ones varies only slightly in both cases. However, adding a bigger
perturbation when using the Wavelet transform introduces more false-positive
changes (FP), which makes MILTON grow. We believe that this is due to the
nature of the Haar-Wavelet, which the Wavelet-based method uses. Adding
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6 Lossy Transformations and Subsequent Change Detection
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Figure 6.3: Milton vs. perturbation added σ – House 4 – REDD Dataset

perturbation in the form of Haar-Wavelets of significant magnitude introduces
changes which have not been present in the data originally.

Table 6.7: Number of Changes and Measure Components by Perturbation σ –
House 4 – REDD Dataset

σ PC MISS FP errPC errMISS errFP

Fo
ur

ie
r

1 160 0 0 0.001 0.000 0.000
2 160 0 0 0.002 0.000 0.000
5 156 4 4 0.004 0.394 0.394

10 159 1 1 0.011 0.209 0.209
25 158 2 3 0.033 0.148 0.168
50 157 3 5 0.071 0.213 0.257

W
av

el
et

1 153 7 9 0.025 1.109 1.164
2 157 3 6 0.065 0.370 0.434
5 149 11 120 0.044 1.965 4.931

10 152 8 336 0.048 1.171 11.606
25 148 12 469 0.038 2.158 26.093
50 152 8 498 0.047 0.984 38.317
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6.4 Summary

Summary: Using MILTON, an energy provider can quantify the impact of anonymiza-
tion methods on subsequent change detection. In this case, the evaluation of the two
methods (Fourier-based and Wavelet-based) shows that they have a significantly differ-
ent impact on the changes. This is even though they protect the privacy on most of the
datasets tested to a similar extent according to [PLKY07].

6.4 Summary

Recent research has proposed numerous lossy transformation techniques for
time-series data. While transforming the data, they may impact characteristics
of the data, such as changes, which are important for further analyses. To ad-
dress this issue, we have developed a generalizable and flexible measure which
quantifies the impact of a lossy transformation on subsequent change detection.
Our evaluation shows that it is useful for various application scenarios to iden-
tify adequate parameters of a lossy transformation so that its advantages are
maximized while the impact on subsequent change detection is bounded.
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7 Conclusions and Outlook

Fine-granular time-series data enables many useful applications. However, col-
lecting it in high volumes generates several kinds of problems, which we need
to address. In this dissertation, we have investigated two kinds of problems
caused by the collection of huge volumes of time series. As our solutions in-
clude lossy transformations of the data, we furthermore investigated their im-
pact on subsequent data analysis. The following chapter concludes this disser-
tation by summarizing the most important contributions, the lessons learned,
as well as interesting, related subjects for future work.

7.1 Summary

The first part of this dissertation investigated the problem of reducing the stor-
age space for numerical time series. Here, we inspected the relatively recent
direction of research in lossy time series compression through piecewise ap-
proximation. Recent research has provided several methods which use math-
ematical functions to piecewisely approximate a time series. The approximat-
ing functions are subsequently stored instead of the original points. The per-
formance of these approaches depends strongly on the nature of the data as
most approaches use a single class of mathematical functions, e.g., constant
or straight-line functions, for their approximations. We introduced the idea of
combining multiple functions in an incremental manner with a new lossy com-
pression method. Our method employs polynomials of up to a certain degree,
which is a parameter the user needs to set. We therefore next investigated the
problem of determining this parameter for a given dataset. Here we developed
two methods of estimating the compression ratio of our method for different
values of this parameter. We have evaluated both our compression method
and our methods for setting its parameters using publicly available real-world
datasets.

The second part of our dissertation considered another challenge when col-
lecting time-series data. Such data is usually measured and communicated by
specific sensors (e.g., smart electricity meters), which need to be installed. This
is thus in large scales expensive. We have therefore researched another way
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7 Conclusions and Outlook

of obtaining this data – by estimating the values, instead of measuring them
directly. We have investigated the case of estimating computer energy con-
sumption, for which recent research provided many methods of estimation. To
address these challenges, we first investigated application scenarios which use
estimates of computer energy consumption. We explicitely studied scenarios
that have different requirements in terms of estimation effort and requirements
on the accuracy of the estimates. Using these scenarios, we assembled require-
ments on a general framework for estimating computer energy consumption.
We next developed three generalized estimation methods to form FRESCO, A
FRamework for the Energy eStimation of COmputers. FRESCO integrates these
methods into an estimation workflow which covers a wide range of accuracy
requirements and computer systems.

The first and second part of this dissertation included methods which provide
a transformed version of the original time series. In the first part, this corre-
sponds to the lossy compression method. The second part includes methods
which provide time series of estimates. The third part of our dissertation inves-
tigated the impact of such transformation methods on subsequent data anal-
ysis. This is important because the transformed time series needs to remain
useful fur subsequent analytics. The challenges for determining this impact are
manifold, as such an impact can, for instance, modify, shift or remove changes
from time series. Our goal was to design a a generally applicable measure for
quantifying this impact. Our work started with an investigation of application
scenarios which involve different transformation techniques. This was neces-
sary in order gave way to the requirements on the measure. We then presented
MILTON, a Measure which quantifies the Impact of various Lossy Transfor-
mation methods for time series on subsequent change detectiON. We defined
the problem we need to solve when calculating MILTON. We subsequently de-
scribed how we solve this problem and how we calculate MILTON. We then
explained its parameters and how to set them for different application scenar-
ios. We finally evaluated our measure using three application scenarios and
real-world datasets.

7.1.1 Lessons Learned

We have experienced and learned many things while working on this disser-
tation. In the following, we point out the most important lessons we have
learned.

Choice of norm for error calculation is essential. The Euclidean (or L2

norm) is often used to approximate and segment time-series. Its main advan-
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tage is that the function calculating the error is differentiable and many estab-
lished optimization algorithms can be used (e.g., gradient descent). However,
it does not offer a guarantee on the approximation, such as with the uniform
norm (also called maximum or L∞ norm), which we used within our approach
for compressing time-series. The use of the uniform norm allows us to have
a guarantee on the deviation between any corresponding approximated and
original values. Nonetheless, this comes at a cost since the approximation be-
comes complex. This is because the error function is non-differentiable due to
the use of the absolute value function. Thus, the choice of the norm for the
error calculation is crucial for the choice of optimal or adequate algorithms for
the piecewise approximation of time-series.

Energy consumption data poses multiple challenges. We have learned
that the Smart Grid is an interesting context for research due to several reasons.
One important reason is that many challenges occur simultaneously when col-
lecting energy consumption data, which do not occur in other domains. Thus,
collecting such data involves (i) big volumes of storage space, (ii) big effort of
capture using sensor nodes and (iii) easy access to private information. To our
knowledge, these challenges rarely occur simultaneously in other domains. For
example, in the context of financial time-series (e.g., stock quote data), there is
little need to use privacy preserving methods or installing specific sensors to
capture the data.

Availability of real-world datasets is crucial. Even if this seems obvious,
we would like to emphasize the importance of availability of public real-world
datasets. In this dissertation, we have used several real-world datasets for
the evaluation of our approaches. Datasets, such as REDD or Smart* (Sec-
tion 3), enabled us to perform a thorough investigation of our contributions
and their comparison with related work. On the other hand, for other do-
mains, such as change-detection, we noted a lack of corresponding real-world
labeled datasets. This makes the investigation of the domain particularly dif-
ficult. Many change-detection approaches we have studied are thus evaluated
using mostly synthetic datasets and a comparison with related work is missing
or incomplete.

7.2 Future Work

The work in this dissertation can be extended with a number of interesting
research questions, which we did not address to limit its scope. We conclude
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this dissertation with several such research topics, which are built on or related
to it.

7.2.1 Improvement of Lossy Piecewise Compression by
Partial Presorting

As mentioned in the motivation of our work, piecewise compression methods
mostly use a single type of mathematical functions for the approximation, e.g.,
constant or straight-line functions. Our idea was to combine multiple types in
an incremental manner, such that our method can also adapt to variable data.
Another way to deal with the variable parts of time series would be to presort
these and only to compress them subsequently [LSE+11]. This comes at a cost.
First, the data needs to be sorted. Second, the arrangement of the original val-
ues needs to be stored as well. Third, to access to an individual value of the
time series, we need to first find the place of the value in the arrangement and
then calculate it. Thus, this solution should be employed only when the data is
too variable to be handled by approximation with a high-order polynomial.

7.2.2 Extension of Energy Consumption Estimation to
General-Purpose Electrical Devices

The Internet of Things (IoT) is steadily becoming a reality. This enables more
and more objects, among which general-purpose electrical devices, to commu-
nicate over the Internet. An extension of our FRESCO, our framework for com-
puter energy estimation, to general-purpose electrical devices becomes there-
fore interesting. Thus, instead of installing a smart electricity meter for every
device in a household, it could be possible to obtain estimates using general
information and existing sensors on a given device. Let us consider a wash-
ing machine as an example for an electrical device. For a rough estimate of
its consumption, general information on its power consumption may be used.
On the other hand, for a more accurate estimate, it could be possible to per-
form a profiling of the different cycles it can execute and estimate its energy
consumption based on that profile. As in our work, the extension of FRESCO
for such devices implies the investigation of application scenarios with differ-
ent requirements on the accuracy of the estimates and effort invested to obtain
them.
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7.2.3 Parameter Learning for Change Detection

In the course of our investigation of state-of-the-art methods for change detec-
tion, we discovered several interesting facts. First, many methods have several
parameters which must be set, e.g., length of window under consideration, de-
tection threshold. Second, in many cases, there is little or no information avail-
able on how to set these parameters. One important fact here is that these pa-
rameters depend strongly on the dataset on which change detection takes place.
One way to identify good values for these parameters is to perform thorough
empirical tests, which some of the authors of the algorithms claim to have done.
Another way would be to learn the values by using ground truth data. The idea
is thus to employ an optimization method to find good parameter values us-
ing annotated ground-truth data. In principle, any optimization method may
be used to learn the parameters. Furthermore, it is possible to investigate in-
cremental methods, such that the learning occurs as more and more annotated
data is available. Additionally, as few ground-truth datasets are available, such
data is difficult to obtain. Thus, making general ground-truth datasets publicly
available may boost research in the field of change detection. Last but not least,
it would be possible to apply the idea of ensembling (as in the case of classi-
fication) to combine several change detection techniques and boost the overall
performance.

7.2.4 A Framework for Time-Series Forecasting

We used a general state-of-the-art forecasting method in one of the scenarios
of the evaluation of our lossy compression method. Furthermore, time series
forecasting could be used as an interesting subsequent application after ap-
plying other lossy transformation methods as well. While investigating differ-
ent forecasting methods, we discovered several interesting facts. First, there
are numerous time-series forecasting methods. It is thus difficult to choose an
appropriate method for a given application scenario. Second, these methods
have different parameters which depend on their subsequent application, e.g.,
forecast horizon, granularity of forecasts. Third, forecasting methods have dif-
ferent complexities and costs of execution (computation time): ranging from
rather simple auto-regressive models to multi-layer neural networks. Fourth,
several benchmark studies of state-of-the-art forecasting methods have shown
that there is no clear winner among them [VGT+14].

It may thus be interesting to develop a general-purpose framework for time-
series forecasting. The framework would take several inputs: historical and
other external data, parameters of the forecast (horizon, etc.), requirements on
the accuracy and effort to be invested (complexity of the forecasting method).
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Based on this, it would then suggest one or more appropriate forecasting meth-
ods, which it would subsequently instantiate. A first step towards developing
this framework is a thorough investigation of existing state-of-the-art forecast-
ing methods, as well as determining the requirements for the framework. To
simplify the problem in the first instance one could first create an extendable
framework, which would be able to integrate further forecasting methods us-
ing a small effort.

To conclude this dissertation, we have addressed several challenges related to
the collection of high volumes of time-series data and we have shown that our
solutions are useful. Given the directions for future work above, we believe
that other research fields dealing with time-series data will benefit from this
dissertation and that this area remains an exciting field of research.
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.1 Appendix

.1 Appendix

In the following we present formal proofs for our lower-bound and upper-
bound models.

.1.1 Proof for Lower Bound

The swing filter compresses a time series using connected straight lines, while
the slide filter compresses a time series using disconnected straight lines. To
prove Lemma 4.3.2, we first show that our lower-bound model is equivalent
to the swing filter introduced in [EEC+09]. We then use the following fact
from [EEC+09]: If the swing filter can approximate a sequence of points under
a given error bound, then the slide filter can also approximate this sequence
under the same error bound.

Proof: At each step i, given a sequence of i data points [(t0, X0), (t2, X2), . . . ,
(ti, Xi)], the swing filter uses two straight lines, u and l. The first line u is the one
with the minimum slope of the lines that pass through the first point (t0, X0)
and one of the points (t2, X2 + ε), . . . , (ti, Xi + ε). The second line l is the line
with the maximum slope of the lines that pass through the first point (t0, X0)
and one of the points given by (t2, X2 − ε), . . . , (ti, Xi − ε). The definitions of u
and l are equivalent to those of LBup,i and LBlow,i, respectively.

Furthermore, the condition for the swing filter to make a recording, i.e., the
filter cannot approximate the sequence of points including the newest point
(ti+1, Xi+1), is as follows:

(ti+1, Xi+1) is more than ε above u or below l (.1)

The equivalent condition for our lower bound model (Condition 4.9) is:

LBup,i+1 < LBlow,i+1

Given that LBup,i ≥ LBlow,i and LBup,i+1 < LBlow,i+1, point (i + 1, Xi+1)
falls more than ε above u or below l. This means that the two conditions are
equivalent. Thus, our model is equivalent to a swing filter. We combine this
with the following fact from [EEC+09]: if the swing filter can approximate a
sequence of points under a given error bound, then the slide filter can also
approximate them under the same error bound. As a result, our model is a
lower bound for the average length of the segments.
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.1.2 Proof for Upper Bound

Proof: To prove Lemma 4.3.3, we use Lemma 4.1 for univariate time series
from [EEC+09]:

Lemma .1.1. Let a sequence of data points [(t1, X1), (t2, X2), . . . , (tm, Xm)], such
that there exists a straight line that is within ε from all the data points be given. If u (l)
is a straight line with the following properties:
(P1) u (l) passes through a pair of points (th, Xh − ε) and (tl, Xl + ε) ((th, Xh + ε)
and (tl, Xl − ε)), such that t1 ≤ th < tl ≤ tm.
(P2) u (l) has the minimum (maximum) slope (i.e., dxi/dt) among all straight lines
fulfilling Property (P1).
then u (l) also has the following properties:
(P3) u (l) is within ε from all data points.
(P4) u (l) has a slope higher (lower) than any other straight line fulfilling Properties
(P1) and (P3) for any t > tm.

Using Property (P4) from Lemma we conclude that l ≤ u. By their definition,
UBup,i ≥ u and UBlow,i ≤ l. Thus, UBup,i ≥ UBlow,i. In consequence, if
a straight-line function can approximate a sequence of points within a given
error bound, then Condition 4.14 holds as well.
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und bezahlbare Energieversorgung [Energy concept for an
environmentally-friendly, reliable, and affordable energy sup-
ply], September 2010.

[BVLKJ05] William Lloyd Bircher, Madhavi Valluri, Jason Law, and Lizy
K. John. Runtime identification of microprocessor energy saving
opportunities. In International Symposium on Low Power Electronics
and Design, 2005.
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