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1.1 Phase diagram of Ce1−xLaxCu2Ge2 as a function of temperature and La impurity con-
centration x [1]. Substituting Ce by La removes f -electrons which play the role of local
magnetic moment. An AFM phase exists up to x = 0.8 and lattice coherence persists
up to x = 0.9. The robustness of long range magnetic ordering and lattice coherence
against impurity concentration triggered this numerical study. . . . . . . . . . . . . . . . 3

1.2 Critical exponent β as a function of temperature of 3D Ising antiferromagnet MnCl2 ·
4H2O. By decreasing temperature, β shifts from 0.3 to 0.5 gradually which indicates a
mapping from 3D Ising antiferromagnet to a mean field antiferromagnet [2]. . . . . . . . 7

1.3 (a) In a classical phase transition, long range magnetic ordering takes place at critical
temperature Tc. In the Landau paradigm, fluctuations of order parameter dominate the
vicinity of critical temperature and this region is called critical region. (b) Similar idea
can be applied on quantum phase transition in which non-thermal control parameter g
plays the role of temperature in classical phase transition. Close to the quantum critical
point gc there is also a critical region dominated by fluctuations of order parameter. Since
temperature is regarded as an extra dimension in quantum phase transition, quantum
critical fluctuations can be observed at finite temperature. Taken from Ref.[3]. . . . . . 8

1.4 The phase diagram of CoNb2O6 as a function of temperature and transverse magnetic
field h⊥ [4]. Co − O − Co chain along c-axis forms a 1D transverse field Ising chain.
By applying a transverse magnetic field, long range magnetic ordering is disturbed and
eventually destroyed at a critical field h⊥ = hc⊥ = 5.25 T and the system becomes a
quantum paramagnet.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Phase diagram of a quasi-two-dimensional organic charge transfer salt as a function of
temperature and pressure [5]. A Mott-insulating spin liquid phase is seperated from
matallic state that becomes superconducting at low temperature. A quantum phase
transition as a function of pressure takes place at P = 0.36 GPa. This is interpreted
that for sufficiently large pressure, hopping between sites becomes strong enough to
overcome the onsite Coulomb potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Phase diagram of CeCu6−xAux as a function of temperature and Au doping concentra-
tion [6]. A heavy fermion PM phase is seperated from the AFM phase. A quantum phase
transition as a function of Au impurity concentration x takes place at xc = 0.1. The
interpretation is that as doped Au increases interatomic spacing and weakens Kondo
screening such that RKKY dominates and magnetic ordering emerges [7]. . . . . . . . . 11
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1.7 Doniach phase diagram as a function of temperature and cf -hybridization Jρ [8, 9].
It captures the consequence of competition between RKKY interaction and Kondo ex-
change interaction. An AFM state is seperated from fermi liquid state at low T . A
quantum phase transition as a function of Jρ takes place at Jρc. For sufficiently small
Jρ, RKKY interaction dominates and AFM arises. In the other limit, local spin mo-
ments are screened by conduction band electrons due to strong Kondo exchange and the
system becomes a heavy fermion liquid state. . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Phase diagram of Hubbard model as a function of Hubbard potential U and single
particle excitation A (ω = 0) [10]. A conducting state is seperated from insulating state
at U

W ≈ 1.2. The phase diagrams with respect to increasing U and decreasing U are
different. This hysteresis loop is interpreted as a first order phase insulator-conductor
transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Lattice structure of CeCu2Ge2 [11]. Cerium atoms are represented by the orange spheres,
germanium atoms are represented by the brown spheres, and copper atoms are repre-
sented by the cyan atoms. Cerium has eletronic structure

[
Xe
]

4f15d16s2. Extensive
5d- orbitals of Ce overlap with the outer orbitals of Cu and Ge to form the conduction
band and 4f -electrons are localized and provide magnetic moment of the lattice [12]. . 24

3.1 Z-averaging by discretizing hybridization function Γ (ω) with different meshes[13, 14].

This figure represents z-averaging with Nz = 4 such that z ∈
{

1
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2
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3
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}

. NRG calcu-

lation runs through different discretization meshes corresponding to different zs. In the
end the obtained results, such as spectral function and particle occupation number, will
be averaged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 NRG workflow [15]. First a SIAM is transformed into a semi-infinite tight binding
model by logarithmic diagonalization and tridiagonalization (1). Then the tight-binding
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3.3 Flow diagram of the NRG + DMFT + CPA self-consistent calculation in the PM state.
The calculation starts with NRG to obtain the impurity Green’s function Gimp (ω)
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converges. Otherwise, a new hybridization function Γ (ω) is constructed and a new
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3.4 Flow diagram of NRG + DMFT + CPA self-consistent calculation in the AFM state
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σ (ω). With the
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4.5 MIR resistivity ρMIR (gray dots) and AFM resistivity ρ (red dots) as functions of tem-
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1 Chapter 1

Introduction

Quantum criticality in metallic system is a major open problem in condensed matter physics due to
the interplay between critical excitations and the Landau Fermi liquid. In the vicinity of the quan-
tum critical point, strong low energy excitations such as magnons may modifiy the Landau Fermi
liquid behavior and lead to non-Fermi liquid phenomena. In addition, the phase diagrams of high
temperature superconductors such as cuprates suggest the existence of a quantum critical point in the
superconductiviting dome and that superconductivity is associated with the non-Fermi liquid and crit-
ical fluctuations of the Fermi surface [19, 20]. Therefore, a better understanding of quantum criticality
helps the understanding of strongly correlated itinerant systems. Futhermore, spatial fluctuations and
temporal fluctuations are coupled together close to a quantum critical point leading to a temporal
dimension with dimensionality z. The values of this dynamical scaling exponent z are well understood
in the spin density wave picture in which the quantum critical points reside within the Fermi energy
scales [21–23]. However, many experimental systems seem to display values of z significantly different
from this “standard model” of metallic quantum criticality.

Among all metallic systems with quantum criticality, metallic heavy fermion magnets serve as typical
playgrounds for investigating quantum phase transitions. Because of the small Fermi energy scales,
magnetism can arise at small energy scales. This gives the heavy fermion systems an advantage in
studying quantum criticality: a quantum phase transition can be achieved by tuning a magnetic field,
applying pressure, or replacing chemical elements to suppress the magnetic phase transition tempera-
tures. Conventionally, quantum criticality under the Landau framework is determined by the symmetry
and dimensionality of order parameter fluctuations. However, in heavy fermion systems, both the Fermi
energy scale and the phase transition temperature can vanish at the quantum critical points. This can
be interpreted as heavy fermion quasiparticles dissociating due to the critical magnetic fluctuations.
In this case, it is suggested that z = 4 in the heavy fermion antiferromagnetic system YRh2Si2 by
applying scaling analysis and the phenomenological critical antiferromagnetic spin susceptibility [24].
This value is twice the size of its counterpart in spin density wave scenario. Other theoretical and
experimental works [18, 25–27] also suggest that the universality classes of the quantum critical points
with and without Kondo destruction are different. Therefore, the Landau framework can be extended
by taking critical fluctuations close to the quantum critical points into consideration. Another inter-
esting question is about the duality of f−electrons. In the heavy fermion systems f -electrons can show
either itinerant wave-like or localized particle-like characters. The deep lying f -electrons may melt
into the conduction band via Kondo coupling and enlarge the size of the Fermi surface. In experiment
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1 Introduction

this crossover can be detected by measuring the size of the Fermi surface via the de Haas - van Alphan
(dHvA) effect, but understanding the mechanism behind the crossover of the f -electrons from the
localized state to the itinerant state remains challenging [28, 29]. Although in the heavy fermion lat-
tices the heaviness of fermionic quasiparticle is interpreted as a result of the coherent spin-flip process,
explicit evidence cannot be found.

In a recent experiemental investigation on the metallic heavy fermion antiferromagnetic system
CeCu2Ge2 [1], it was shown that quantum phase transition can be achieved by substituting magnetic
Ce3+ with non-magnetic La3+. From Fig.(1.1), it can be seen that both magnetism and lattice co-
herence in this heavy fermion system are robust against impurity concentration. Moreover, despite
various efforts having been put into the investigations of the antiferromagnetic heavy fermion quantum
critical point, systematically studying of metallic heavy fermion antiferromagnet with respect to im-
purity concentration from the side of theory is still lacking. This interesting behavior combined with
our ambition to fill the gap triggered our systematic study of metallic heavy fermion antiferromagnets
with non-magnetic impurity doping.

In this thesis, we numerically investigate a model system that captures the major aspects of the
diluted system Ce1−xLaxCu2Ge2 such as the robust lattice coherence and long range magnetic ordering.
The crossovers between the lattice coherent - incoherent states and the f -electron itinerant - localized
states are also studied in detail as functions of temperature and impurity concentration. We also show
that the coupling between the f -electrons and the c-electrons are responsible for both the heavy fermion
Kondo physics and the antiferromagnetism. In addition, we thoroughly analyze the quantum critical
point by the scaling law to obtain critical exponents which uniquely determine the class of the quantum
phase transition. Susceptibilities subjected to a uniform magnetic field and staggered magnetic field
are also calculated as a function of temperature in the vicinity of quantum critical point. The obtained
critical exponents are in good agreement with those obtained theoretically or experimentially from the
local quantum critical point systems.

This thesis is organized as following: In chapter 1 we give brief reviews on Kondo physics, quantum
criticality, the Anderson lattice model, dynamical mean field theory, the coherent potential approxi-
mation, and how to experimentally arrive quantum critical point.

In chapter 2 we discuss why the Anderson lattice model is chosen to investigate the heavy fermion
system Ce1−xLaxCu2Ge2. Green’s functions of the periodic Anderson model and the dilute limit
will also be given. We will also show how to extend the paramagnetic state Green’s function to
commensurate antiferromagnetic state Green’s function on a bipartite lattice.

In chapter 3 details of dynamical mean field theory and numerical renormalization group will be
discussed and we will show how to use them to construct a self-consistent algorithm. It can be shown
that dynamical mean field theory in dilute systems recovers both cases of periodic Anderson lattice
and dilute limit.

In chapter 4 we will show that from temperature and impurity concentration dependent resistivity
and magnetization, a phase diagram whose behavior is similar to that of Ce1−xLaxCu2Ge2 can be
obtained from the Anderson lattice model and dynamical mean field theory. It can be seen that the
onset of lattice coherence does not change by including antiferromagnetism. However, low temperature
resistivity may decrease by two order of magnitude due to suppressed spin disorder scattering.

In chapter 5 we systematically investigate the imaginary part of the averaged self-energy, it can
be seen that besides electron-electron scattering, impurity-electron scattering is also reduced in the
antiferromagnetic state. The crossover between lattice coherent - incoherent states can be observed by
investigating the f -electron dispersion relation in detail. By analyzing both f -electron and c-electron
spectral functions, we suggests that in the antiferromagnetic state, the f -electron local state and
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1.1 Kondo Physics

Figure 1.1: Phase diagram of Ce1−xLaxCu2Ge2 as a function of temperature and La impurity
concentration x [1]. Substituting Ce by La removes f -electrons which play the role of
local magnetic moment. An AFM phase exists up to x = 0.8 and lattice coherence
persists up to x = 0.9. The robustness of long range magnetic ordering and lattice
coherence against impurity concentration triggered this numerical study.

the c-electron conduction band state are coupled ferromagnetically. We will show that by using the
modified Drude model and optical conductivity measurements, it is possible to identify the f -electron
itinerant-localization crossover. However, dynamical Kondo coupling between f -electron local state
and c-electron conduction band state gives rise to strong mass renormalizations. The heaviness of
fermion as a result of temporal coherent spin-flip process will also be shown explicitly.

In chapter 6 we calculate magnetization as a function of impurity concentration at zero temperature
to obtain the critical concentration xc and the corresponding critical exponent β. By calculating
susceptibility as a function of magnetic field we will show critical exponent δ. Then universal functions
of both staggered susceptibility and uniform susceptibility at critical concentration will be identified
by data collapse. Under uniform magnetic field, susceptibility at high temperature shows T/B scaling.
The obtained critical exponents δ, β, and zν as well as T/B scaling suggest that the obtained quantum
critical point is a local quantum critical point.

1.1 Kondo Physics

Since this thesis is inspired by the experimental result of antiferromagnetic (AFM) heavy fermion
compound Ce1−xLaxCu2Ge2 [1], we discuss in this section what a heavy fermion system is and its
importance to understad strongly correlated systems. Before introducing heavy fermion systems, we
should introduce the basic concept of single ion Kondo physics.
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1.1.1 Single ion Kondo Physics

Kondo physics was discovered in 1934 when anomalous behavior was observed in the resistivity
measurement of high purity gold: by decreasing the temperature, the resistivity developed a local
minimum and increased again upon approaching the characteristic Kondo temperature TK [30]. This
observation was in contrast to the low temperature resistivity model at that time:

R = R0 +AT 2 +BT 5, (1.1)

where R0 is the residue resistivity due to impurity, the second term due to electron-electron scattering,
and the last term ascribed to the electron-phonon interaction. Later, Kondo successfully explained
the minimum in resistivity by proposing a model in which conduction electrons exchange spins with
magnetic impurities [31]:

H =
∑
k,σ

εknk,σ −
∑
k,k′

Jkk′
(

Ψ†kσΨk

)
· S, (1.2)

with annihilation and creation spinor operator defined as

Ψk =

(
ck,↑
ck,↓

)
(1.3)

Ψ†k =
(
c†k,↑, c

†
k,↓

)
. (1.4)

Here, S is the impurity spin and Jkk′ > 0 the exchange coupling. However, in this perturbative
calculation, low temperature resistivity diverges due to a log T dependence. It was pointed out that
this problem can be treated perturbatively only above a temperature TK [32], which is called Kondo
temperature or Kondo energy scale. Subsequently, Anderson used poor man scaling to show that
Kondo coupling Jkk′ increases when reducing the energy scale D [33]:

dJ

d
(
lnD

) = −2ρ0J
2. (1.5)

This differential equation indicates that no matter how small J is in the beginning, when the energy
scale lnD is sufficiently small, J will be arbitrary large. Therefore, J is not a well-controlled parameter
in perturbation theory. Meanwhile, experimentally measured susceptibility due to impurity can be
fitted by [34]

χimp(T ) = χimp(0)

1−

(
T

θχ

)2

−

(
T

θχ

)4
 (1.6)

at low temperature with θχ = 7.5 K, which suggests a spin single ground state. Although poor man’s
scaling and experimental results shown in Eq.(1.6) might lead us to the conclusion that conduction
band screens impurity spin via antiferromagnetic coupling, the results from the side of theory are not
decisive. Therefore, another theory or method was necessary to solve this strongly correlated problem.
In the mean time, Schrieffer and Wolff also showed that via a canonical transformation [35] Anderson
impurity model can be mapped onto Kondo model under proper conditions. This will be shown in the
next chapter. In 1980, this problem was eventually solved by applying numerical renormalization group
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1.2 Quantum Criticality

(NRG) theory on single impurity Anderson model [36, 37]. NRG calculation shows that both entropy
and susceptibility contributions due to impurity drop to zero, the spin singlet state is the ground state
and that resistivity increases due to the presence of an impurity when decreasing the temperature.

1.1.2 Heavy Fermion Systems

Kondo physics not only exist in magnetically dilute systems, but also in lattice systems which
are characterized as heavy fermion system. Heavy fermion systems get their name, because specific
heat measurements indicate a huge mass for the electronic quasiparticles. Fermi liquid, an adiabatic
continuation of Fermi gas by taking electron-electron interaction into account, predicts the specific
heat to be proportional to temperature for temperature much smaller than renormalized Fermi energy:

Ce = γT. (1.7)

For ordinary metals Au and Cu, γ is of the order 1mJ/mole·K2. While the experimentally measured
specific heat constants γ for heavy fermion systems can be as large as 1J/mole · K2. Since γ ∝ m, it
seems as if these fermions have masses a thousand times that of bare the electron mass. Similar to the
case of single ion Kondo system, this heavy fermion nature originates from a strong antiferromagnetic
coupling ρJ between conduction band carriers and f -shell local spins. At low temperature ρJ might
be strong enough, such that the local spins are shielded by conduction band carriers and they together
form quasiparticles. Suppose a lattice coherence is developed and momentum is a good quantum
number, then this hybridization brings the local nature of spins into conduction band carriers such
that their dependence on momentum decreases, therefore when the effective mass mij is calculated via

m−1
ij =

1

~2

∂2εk
∂ki∂kj

, (1.8)

a large mij is obtained. This will be explicitly shown in chapter 4.

As a result of the heavy mass, Fermi energy EF and associated energy scales are also strongly
suppressed. Having small energy Fermi scale has two advantages: 1. it emphasizes the importance
of the interaction which is independent of this small energy scale; 2. small energy scales can be
easily suppressed by tuning magnetic field, pressure, and chemical composition. These three control
parameters will be discussed in the section 1.1.3. By changing the relative strength of different energy
scales, phase transition might take place at zero temperature and systems undergo quantum phase
transition. If this quantum phase transition is of second order, it is called as quantum critical phase
transition at which there is no typical length and time scales.

1.2 Quantum Criticality

Quantum Criticality refers to the behavior in the vicinity of a second order phase transition at zero
temperature. The phase transition is referred to a quantum critical point. We will discuss a specific
example of how this is achieved in the next section. For now we will give a general physical picture and
explain why quantum criticality is an interesting and fundamental phenomenon in condensed matter
physics.
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A natural question to ask is what specific quantum effects are of relevance near a quantum critical
point. Finite temperature phase transitions are often characterized by an order parameter that can
only be rationalized using quantum mechanics. Examples are superconductivity, superfluidity and
magnetism. However, the critical behavior near the transition is entirely classical in nature. The
simplest answer is that at zero temperature there are no thermal fluctuations, the only possible source
of fluctuation arise from quantum effects, governed by Heisenberg’s uncertainty principle:

∆E ·∆t ≥ ~
2
. (1.9)

The second quantization formalism shows that the ground state at zero temperature can virtually
jump to an excited state and jump back. Dynamical processes shape the distribution functions of order
parameters. In the ordered state and far away from the quantum critical point, we may consider the
distribution function of the order parameter is well behaved and has a finite variance or fluctuation.
However, close to the critical point, the fluctuations diverge and this implies a fat tail is developed in the
distribution function. The extensive distribution enables the system to find other energetically equally
favorable states such that the system developes a quantum disordered state. Quantum disordered
states, unlike classical disordered states in which order parameters are destroyed, are superpositions of
ordered states but the expectation values of the order parameters are zero.

Near second order phase transitions, the correlation length ξ diverges. In case of a finite temper-
ature transition the typical length scale ξ will therefore be large compared to the thermal de Broglie
wave length λT ∝ T−1/z, with appropriate dynamical exponent that depends on the system under
consideration. A system behaves classically for ξ � λT . Then one can ignore quantum fluctuations of
the order parameter, even if the microscopic origin of the ordered state requires a quantum mechanical
analysis. At a quantum critical point Tc → 0. Now, both ξ and λT diverge and one can no longer
neglect quantum fluctuations of the order parameter.

Besides making quantum fluctuation important, zero temperature creates a temporal dimension with
dimensionality z which is the above mentioned dynamical exponent. To see how this happens, let us
remind ourselves what we learned in a solid state physics introductory course. Assuming that we have
a one dimensional system whose length is L, then we know that each mode can be labelled by a wave
number

kn =
nπ

L
. (1.10)

In order to have a phase transition we must consider a system in the thermodynamic limit, i.e. take
the limit L→∞. In case of a divergence of the correlation length ξ:

ξ ∼
∣∣T − Tc∣∣−ν , (1.11)

the relevant modes are the ones with small kn. When we take quantum effect into account, we use the
partition function in the form of path integral in which temperature gives us a dynamical mode called
Matsubara frequency

ωn =

(2n+ 1)πT for fermions

2nπT for bosons
. (1.12)

By decreasing T to zero, the interval ∆ω =
∣∣ωn+1 − ωn

∣∣ goes to zero. If we follow the thought of classical
phase transition in the reverse direction, we may guess that there is a temporal dimension which extend
to infinity, such that correlation time may diverge close to quantum critical point. Intersting physics
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1.2 Quantum Criticality

Figure 1.2: Critical exponent β as a function of temperature of 3D Ising antiferromagnet MnCl2 ·
4H2O. By decreasing temperature, β shifts from 0.3 to 0.5 gradually which indicates
a mapping from 3D Ising antiferromagnet to a mean field antiferromagnet [2].

happens with this extra dimension. For a 1-D transverse field Ising model, it can be mapped onto a
2-D classical ferromagnetic Ising model. The transverse field now plays the role of temperature of the
classical problem [38]. Experimentally, the 3D Ising antiferromagnet MnCl2 · 4H2O is mapped onto
a mean field antiferromagnet at quantum critical point by observing that β shifts from 0.3 to 0.41
(extrapolation to 0.5) shown in Fig.(1.2) [2].

Given the above argumentation one obtains an effective problem with one additional dimension i.e.
d→ d+ z with z = 1. However, as shown in the pioneering works of Hertz, Millis, and Moriya [21–23]
on itinerant magnetic system, it turn out that fluctuations in time and space are not symmetric and
in general z 6= 1. For example, one obtains z = 2 for 2D and 3D itinerant antiferromagnets and
z = 3 for 2D and 3D itinerant ferromagnets. More interestingly, a recent work on itinerat ferromagnet
Sr1−xCaxRuO3 gives z = 1.76 [39] indicating that z does not even have to be an integer.

Since strictly zero temperature is forbidden by the third law of thermodynamics, an interesting ques-
tion is how quantum criticality can be experimentally observed? Similar to classical phase transition
whose critical point controls its vicinity, quantum critical points also control their nearby regions that
extends to finite temperature. This behavior is shown in Fig.(1.3), where we show the quantum critical
region in which quantum fluctuations are stronger than thermal fluctuations is:

~ωq > kBT. (1.13)

Here ωq is a typical excitation frequency of the system.
The competition between various energy scales brings us a rich spectrum of physical phenomena

[1, 39–45], such as non-Fermi liquid behavior, unconventional superconductivity, and magnetism.
Therefore, studying quantum criticality is one of the few avenues that allow for a quantitative un-
derstanding of the world of strongly correlated system. Among such correlated electron systems, i.e.
system where the interaction between its fermionic constituents is comparable or larger than their
kinetic energy, heavy fermion systems have attracted a lot of attention.
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Figure 1.3: (a) In a classical phase transition, long range magnetic ordering takes place at critical
temperature Tc. In the Landau paradigm, fluctuations of order parameter dominate
the vicinity of critical temperature and this region is called critical region. (b) Sim-
ilar idea can be applied on quantum phase transition in which non-thermal control
parameter g plays the role of temperature in classical phase transition. Close to the
quantum critical point gc there is also a critical region dominated by fluctuations of
order parameter. Since temperature is regarded as an extra dimension in quantum
phase transition, quantum critical fluctuations can be observed at finite temperature.
Taken from Ref.[3].
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1.3 Disorder induced Quantum Critical Point

1.3 Disorder induced Quantum Critical Point

In the last section, we mentioned that a quantum critical point occurs at zero temperature and
that the fluctuations originating from it are rooted in the quantum dynamics of the involved degrees of
freedom. Experimentally, there are three popular control parameters to induced quantum criticality: an
external magnetic field, external pressure, and the chemical composition. These three methods induce
quantum fluctuations in the following way: disturbing the existing ordering, changing lattice constants,
modifying electron kinetic energies or interaction strengths, and doping electron/hole carriers.

1.3.1 Transverse Magnetic Field

Quantum mechanically, the effect of a transverse magnetic field B = Bex is to flip the direction of
magnetic moments perpendicular to the field. Let us consider the transverse field Ising model [38]:

HI = −J
∑
〈i,j〉

szi s
z
j − Jg

∑
i

sxi , (1.14)

with J > 0. Without the second term, the system is for T = 0 in the ferromagnetic state in which
all the spins point in the same direction, i.e. the ground state is either

∏
i

∣∣↑, i〉 or
∏
i

∣∣↓, i〉 . The
transverse magnetic field flips spins. For g →∞ all spins are aligned in the x-direction, i.e. the ground

state is
∏
i

1√
2

(∣∣↑, i〉+
∣∣↓, i〉). It can easily be shown that there exists a critical value g = gc where

long range magnetic ordering disappears and the system becomes a quantum paramagnetic. A recent
experimental realization [4] is CoNb2O6 whose Co−O− Co chain along c-axis forms a 1D transverse
field Ising chain. This experiment, using nuclear magnetic resonance (NMR) to investigate quantum
spin fluctuations in CoNb2O6, provides results consistent with that of theoretical calculation. The
phase diagram is shown in Fig.(1.4).

1.3.2 External Pressure

It is widely known that by applying external pressure a system may undergo a transitions into a
new phase. To have a qualitative physical picture, we consider the Hubbard model:

HHubbard = −t
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

nci,↑n
c
i,↓. (1.15)

where t is the nearest neighbor hopping strength, U is the Hubbard potential, ci(c
†
i ) is the annihilation

(creation) operator of fermion, and nci,σ is the number operator of fermion on site i with spin σ. It is
known that by controlling the ratio between t and U , there is a insulator-metal transition at t = tc
for fixed U . Applying pressure, which decreases the distance between sites, is equivalent to increasing
t. Therefore, by an external pressure a Hubbard insulator can become a metal. Similar ideas apply
to other materials. Here, an example [5] of a Mott insulator - superconductor phase transition in a
spin-frustrated organic conductor κ− (ET)2Cu2(CN)3 by applying pressure is shown in Fig.(1.5).
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Figure 1.4: The phase diagram of CoNb2O6 as a function of temperature and transverse magnetic
field h⊥ [4]. Co−O−Co chain along c-axis forms a 1D transverse field Ising chain.
By applying a transverse magnetic field, long range magnetic ordering is disturbed
and eventually destroyed at a critical field h⊥ = hc⊥ = 5.25 T and the system becomes
a quantum paramagnet..

Figure 1.5: Phase diagram of a quasi-two-dimensional organic charge transfer salt as a function of
temperature and pressure [5]. A Mott-insulating spin liquid phase is seperated from
matallic state that becomes superconducting at low temperature. A quantum phase
transition as a function of pressure takes place at P = 0.36 GPa. This is interpreted
that for sufficiently large pressure, hopping between sites becomes strong enough to
overcome the onsite Coulomb potential.
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Figure 1.6: Phase diagram of CeCu6−xAux as a function of temperature and Au doping con-
centration [6]. A heavy fermion PM phase is seperated from the AFM phase. A
quantum phase transition as a function of Au impurity concentration x takes place at
xc = 0.1. The interpretation is that as doped Au increases interatomic spacing and
weakens Kondo screening such that RKKY dominates and magnetic ordering emerges
[7].

1.3.3 Chemical Composition

Changing the chemical composition is another widely used technique to tune the materials properties
between distinct states of matter. It can change physical properties of the host by changing lattice
constants, carrier concentration, magnetic structure, and electronic configuration. A well known ex-
ample of quantum criticality [6] is observed in CeCu6−xAux shown in Fig.(1.6). In this case, doped
Au increases interatomic spacing and weakens Kondo screening such that Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction, which describes the interaction between non-overlapped f -electrons via
their couplings to conduction band [46], dominates and magnetic ordering emerges [7].

A recent experimental study on itinerant antiferromagnet Ce1−xLaxCu2Ge2 shows astonishingly
robust long range magnetic ordering against non-magnetic impurity doping [1] : antiferromagnetism
exists up to x = 0.8 and x = 0.9, respectively. The phase diagram is shown in Fig.(1.1). Comparing
with Fig.(1.6) in which the phase diagram shows sensitivities with regards to doping, the robustness of
antiferromagnetism against La doping in the latter system is interesting and triggered this numerical
study on impurity controlled quantum criticality. To study the effect of non-magnetic impurity doping
on heavy fermion antiferromagnetic system, we choose the Anderson lattice model which captures the
underlying physics: the interplay between heavy fermion physics and antiferromagnetism, with the
hope to gain insight into the disorder driven quantum criticality.

1.4 Anderson Lattice Model

To study heavy fermion systems, the Anderson lattice model is used to capture the essential aspects

11



1 Introduction

of intermetallic rare-earth compounds: strong coupling between local states and conduction band and
strong electron-electron interaction on the rare earth 4f-sites. The full Hamiltonian can be written as

H =
∑
〈i,j〉,σ

(
tij − µδij

)
c†i,σcj,σ +

∑
i,σ

ε0f
†
i,σfi,σ

+U
∑
i

f †i,↑fi,↑f
†
i,↓fi,↓ +

∑
i,j,σ

(
Vi,jf

†
i,σcj,σ + V ∗i,jc

†
j,σfi,σ

)
. (1.16)

Here the operators c†i,σ(ci,σ) represents conduction electron creation (annihilation) operator with spin

σ on site i and f †i,σ(fi,σ) represents f -shell electron creation (annihilation) operator with spin σ on site
i. The first term describes the dispersion of the non-interacting conduction band, the second and third
terms represent four different local energy states, while the last term contributes to the hybridization
between local sites and conduction band. Using a canonical transformation with the assumptions that

|ε0| ,
∣∣ε0 + U

∣∣� ∣∣∣Vi,j∣∣∣ such that only local singly occupied states
∣∣↑〉 and

∣∣↓〉 are possible, the Anderson

lattice model can be mapped onto the Kondo lattice model:

HKondo =
∑
i,j,σ

(
tij − µδij

)
c†i,σcj,σ +

∑
i,j,σ

J
(K)
ij

(
Si · sj −

〈nc〉
4

)
, (1.17)

where J
(K)
ij ∼ 2|Vij|2U

U+ε0
> 0. This suggests that similar to the single ion Kondo effect in an organized

lattice of spins, Kondo behavior is to be expected also for this system. Therefore, an AFM state is
expected.

The RKKY interaction [46] mediates an interaction among f -shell electrons by a weak coupling
between local spin and conduction electrons: a local spin spatially modulates the conduction electrons
such that nearby local spins are subjected to the magnetic field produced by spin polarized electrons.
This may induce long range magnetic ordering. One the other hand, if the hybridization is sufficiently
strong, then Kondo physics dominates: conduction electrons and local spin form a spin singlet as if
the local spin never existed [33]. An important consequence of this strong coupling is that conduction
electrons acquire significant mass hundred times more heavier than the bare electron mass and the
energy scales of related physics phenomena decrease significantly. This competition between RKKY
and Kondo is captured by Doniach’s diagram shown in Fig.(1.7).

Close to the critical coupling J = Jc (that can be reached for example by applying pressure), both
energy scales TK and TRKKY are comparable. As these scales tend to cancel each other, new sub-leading
channels may emerge, therefore interesting physics such as non-Fermi liquid behavior, unconventional
superconductivity, and the coexistence of magnetism and superconductivity can emerge close to this
critical point.

Instead of using Kondo lattice model, which is proven to be successful in describing heavy fermion
antiferromagnetic and superconducting phases [47, 48], in this thesis we choose Anderson lattice model
as the Hamiltonian because we want to substitute non-magnetic impurities into the system without
changing the conduction band carrier concentration. This method will be described in chapter 3.
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Figure 1.7: Doniach phase diagram as a function of temperature and cf -hybridization Jρ [8, 9].
It captures the consequence of competition between RKKY interaction and Kondo
exchange interaction. An AFM state is seperated from fermi liquid state at low T .
A quantum phase transition as a function of Jρ takes place at Jρc. For sufficiently
small Jρ, RKKY interaction dominates and AFM arises. In the other limit, local spin
moments are screened by conduction band electrons due to strong Kondo exchange and
the system becomes a heavy fermion liquid state.
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1 Introduction

1.5 Dynamical Mean Field Theory and Coherent Potential
Approximation

In this section we will give introductions to dynamical mean field theory (DMFT) and coherent po-
tential approximation (CPA), including their developments, advantages, restrictions, and applications.
Although these two different techniques were developed to solve very different problems: DMFT for
strongly correlated lattice system and CPA for alloys in the framework of conventional band theory, it
turns out that the underlying ideas are very similar.

In DMFT, which assumes a local self-energy, a lattice problem is mapped onto a single impurity
problem that can be solved by impurity solvers and the resulting impurity Green’s function Gimp (ω)
and self-energy Σimp (ω) should be the same as the corresponding lattice Green’s function Glatt (ω) and
lattice self-energy Σlatt (ω), because they are describing the identical system. While in CPA, a lattice
problem with various constitutes is characterized by the atomic energy εi and the concentration xi, is
mapped onto a single impurity problem. The resulting Green’s function of the system Geff (ω) is the
weighted sum of the local Green’s function Gi (ω):

Geff (ω) =
∑
i

xiGi (ω) . (1.18)

In the CPA framework, a Hubbard potential can be incoporated such that each site i is not only
characterized by the atomic energy εi, but also by the potential Ui. As a result, CPA can be seen as
the disorder version of DMFT.

1.5.1 Coherent Potential Approximation

In the mid of the twentieth century, the understanding of macroscopic properties, such as single
particle excitation, of disordered systems had made a great progress from the theoretical side, thanks
to more and more available experimental data [49]. The following one-particle Hamiltonian is used for
an independent particle approximation in which the distribution of atoms is statistically independent
and homogeneous in space

Hgeneral
alloy = −

∑
i 6=j

∑
µ,ν,σ

tµνij

(
cµi,σ

)† (
cνj,σ

)
+
∑
i,µ

εµi

(
cµi,σ

)† (
cµi,σ

)
. (1.19)

The first term describes the hopping between site i and site j, as well as between orbital µ and ν with
strength tµνij , and the second term describes on-site energy εµi on site i and orbital µ. CPA [50], which
was proposed to study binary alloys A1−xBx, focuses on a special case of Eq.(1.19):

HCPA = −
∑
k,σ

tijc
†
i,σcj,σ +

∑
i,σ

εic
†
i,σci,σ, (1.20)

with tij following translational invariance and εi is a random variable having two possible outcomes
εA and εB with probability P (εi = εA) = 1 − x and P (εi = εB) = x, respectively. The requirement
that tij is translational invariant gives an assumption: doping B should not change the non-interacting
density of states ρ0 of the host A or equivalently A and B contribute the same orbital for binding.
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1.5 Dynamical Mean Field Theory and Coherent Potential Approximation

Within CPA the difference in energy εA and εB is smeared out and they are replaced by an effective
medium represented by a local self energy ΣCPA (ω), such that Eq.(1.20) is equivalent to

Heff =
∑
i,σ

ΣCPA (ω) c†i,σci,σ +
∑
k

εkc
†
k,σck,σ. (1.21)

The resulting local Green’s function, which is equivalent to the Weiss field in a mean field theory, is

Geff (ω) =
∑
k

1

ω − εk − ΣCPA (ω)
. (1.22)

On the other hand, Eq.(1.20) can also be disintegrated into two parts:

Himp =
∑
i,σ

(
εi − ΣCPA (ω)

)
c†i,σci,σ +

∑
k

(
εk + ΣCPA (ω)

)
c†k,σck,σ. (1.23)

In CPA formalism, we consider the Weiss field scatters with a certain site multiple times and a corre-
sponding t−matrix Ti is obtained depending on the type of the site. The self-consistent condition is
that the average of scattering due to on-site energy fluctuation is zero:〈

Ti
〉

= (1− x)TA + xTB = 0, (1.24)

which is equivalent to the statement that the averaged single particle Green’s function on sites A and
B is equal to the Weiss field:〈

Gi
〉

= (1− x)GA (ω) + xGB (ω) = Geff (ω) , (1.25)

with

Gi (ω) =
1

G−1
eff (ω)−

(
εi − ΣCPA (ω)

) . (1.26)

Although CPA is developed for binary alloys with random on-site energy, it can be extend to alloys
with N components as long as they give the same non-interacting density of states. While the type
of on-site energy εi is not restricted to eletronic states. It is possible to choose εi as phonons [51, 52],
excitons [53, 54], ferromagnetic interactions in dilute magnetic semiconductors [55, 56], and Hubbard
interactions [57]. In the case of noble alloys such as AgAu, a two-bands description is required because
their band structures indicate that a narrow d band hybridizes with a broad s− p band. Eq.(1.20) can
be extended to [58]

HNobel =
∑
k,σ

εks
†
k,σsk,σ +

∑
i,σ

εid
†
i,σdi,σ +

∑
k,σ

γ
[
s†k,σdk,σ + d†k,σsk,σ

]
(1.27)

which is similar to the Anderson lattice model without local Coulomb interaction.

Although CPA is an ideal tool to study single particle excitations, it should be used carefully to
study real world materials. For example, constitute compositions should give the same non-interacting
density of states ρ0 and there should be no structural disorder or cluster effects.
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1.5.2 Dynamical Mean Field Theory

DMFT has its root deep in the development of in the theory of strongly correlated systems. Conven-
tional band theory, which treats electrons as non-interacting particles subjected to an external periodic
potential, has successfully explained various electronic properties in metallic compounds. For example,
if the number of electrons Ne in the unit cell is odd, then the material is a conductor. However, Verwey
and de Boer pointed out that transition-metal oxides NiO, CoO, MnO, Fe2O3, Mn3O4, and Co3O4

were insulators instead of conductors [59]. It was a surprise from the point of view of conventional
band theory, because all these transitional metal elements have partially filled d-shell.

The importance of interaction between electrons was then noticed [60] and this became the Mott
insulator problem. Later, a model as shown in Eq.(1.15), was proposed to illustrate the competition
between conducting and insulating phases by taking local electron-electron interaction into account
[61–63]. To see the phase transition, let us consider two limits at zero temperature at half-filling
seperately: 1. t � U ; 2. t � U . In the first case, kinetic energy dominates and the ground state
should be that of a free electron gas: ∣∣FS〉 =

∏
|k|<kF

∣∣↑↓,k〉 . (1.28)

In the second case, intra-atomic interaction dominates and the ground state is that each site is occupied
by one electron. Due to strong Coulomb repulsion, electrons cannot hop onto other sites, such that
this is an insulating phase. Hence, somewhere between these two limits there should be a phase
transition. However, this phase transition is expected to take place at t ∼ U such that perturbation
theory breaks down because neither t/U nor U/t are well-controlled parameters. Therefore a non-
perturbative method (at least not in t/U nor U/t) is needed.

Despite its simple form, the Hamiltonian in Eq.(1.15) is extremely difficult to be solved. So far, only
its 1-D case is solved exactly [64]. On the other hand, great progresses has been made in solving the
quantum impurity problems numerically:

HSIAM =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
k,σ

εkc
†
k,σck,σ

+
∑
k,σ

[
Vkf

†
σck,σ + V ∗k c

†
k,σfσ

]
(1.29)

or

HKondo = −JS · s +
∑
k,σ

εkc
†
k,σck,σ (1.30)

with impurity solvers such as numerical renormalization group (NRG) [36, 37, 65] and quantum Monte
Carlo simulations (QMC) [66]. Eq.(1.29) is called single impurity Anderson model and Eq.(1.30) is
called Kondo model. In mean field theory, a lattice problem is mapped onto a single site model, whose
local degree of freedoms couple to a Weiss field [67, 68]. This Weiss field can be thought of as a spatially
and temporally averaged effective conjugate field due to the environment of the site we have interest
in. One may wonder if it is possible to transform the Hubbard model into Eq.(1.29) or Eq.(1.30)
and solve this problem self-consistently with the help of impurity solvers and obtain thermodynamical
properties. If it is possible, what is the condition?
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Figure 1.8: Phase diagram of Hubbard model as a function of Hubbard potential U and single
particle excitation A (ω = 0) [10]. A conducting state is seperated from insulating
state at U

W ≈ 1.2. The phase diagrams with respect to increasing U and decreasing
U are different. This hysteresis loop is interpreted as a first order phase insulator-
conductor transition.

The answer is yes: DMFT shows that it is possible to map a lattice problem onto a single impurity
problem under the condition that the coordination number z goes to infinity or the self-energy Σij (ω) is
local [69]. In the DMFT framework, similar to mean field theory, these is also a Weiss field as function
of time or frequency. Derivation based on the cavity method and path integrals on the Hubbard model
can be found in [68] and for the Anderson lattice model will be shown in Sec.1.5.2. The logic behind the
cavity method is simple: a site 0 is isolated from the lattice and the environement forms an effective
Weiss field acting on this isolated site, then the Weiss field is calculated self-consistently with the
Green’s function of the isolated site. Impurity solvers such as NRG or QMC are used to perform the
calculation.

With NRG + DMFT, it can be shown that there is a first order insulating phase transition below
a phase transition temperature Tc [10] that be observed by the hysteresis quasi-particle peaks as a
function of Hubbard potential U shown in Fig.(1.8).

Today, DMFT has become one of the most active research topics in condensed matter theory. It
includes mapping a lattice model onto a single impurity model or vice versa as well as developing
impurity solvers for single impurity models and for physical quantities one wants to probe experimen-
tally. There are various impurity solvers that can incorporate DMFT [70] and the applications are not
limited to fermions. Each of these impurity solvers has its strength and ideal topics to be investigated.
For example, NRG can be used to study superconductivity, ferromagnetism, commensurate antifer-
romagnetism, while QMC is specialized to spin systems. Bosonics systems [71, 72] and even system,
which mixes bosons and fermions [73], can be investigated in the framework of DMFT. Moreover, the
recent development in local density approximation (LDA) + DMFT makes it possible to study the real
world strongly correlated materials more accurately [74].
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Dimensionality Scaling Analysis

It was first observed by Metzner and Vollhardt [69] that when the dimensionality (or coordination
number) of the system goes to infinite, the self energy of the system becomes local (i.e. momentum
independent).

Here we perform a scaling analysis of a tight-binding model on a d-dimensional hypercubic lattice
[75, 76]. The kinetic energy of the system is

Hkin = −2t
∑
k1

· · ·
∑
kd

(
cos k1a+ · · ·+ cos kda

)
c†kck (1.31)

and the corresponding dispersion relation is

ε
(
k
)

= −2t
(
cos k1a+ · · ·+ cos kda

)
= −2t

d∑
i=1

cos kia (1.32)

Now we treat each of −2t
√
d cos kia as a random variable Ki with a uniform distribution a

2π in the

region
[
−π
a ,

π
a

]
such that

ε
(
k
)
≡ X =

1√
d

d∑
i=1

Ki (1.33)

Then the Kis are independent identical distributions which have average 0 and variance 2dt2. Then
X follows normal distribution

PX (x) =
1

t
√

4πd
exp

(
− x2

4dt2

)
(1.34)

by central limit theorem (CLT) in the limit d → ∞. To have a finite variable, we have to rescale t
properly:

dt2 = t∗2, (1.35)

which means that the hopping strength follows the scaling law with respect to the dimensionality d:

t ∼ 1√
d
. (1.36)

From this result we obtain how the Green’s function scales with respect to the dimensionality d. From
Eq.(1.31) in real space, we have 〈

Hkin

〉
N

= − t

N

∑
{i,j}

〈
a†iaj

〉
(1.37)

Since
〈Hkin〉
N is finite, summation over i or j gives d (the other index counts all the lattice points and

will be canceled by 1
N ). While

〈
a†iaj

〉
which can be interpreted as transition amplitude from site j to

site i has the scaling form 〈
a†iaj

〉
∼ t ∼ 1√

d
(1.38)
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This is consistent with the analysis that

∣∣∣∣〈a†iaj〉∣∣∣∣2 ∼ 1
d because the number of neighbor is O

(
d
)

and

the probability to hop from one site to any of its neighbor is equal. According to Eq.(1.38), the Green’s
function Gij should have the scaling form

Gij ∼ d−
‖i−j‖

2 , (1.39)

where
∥∥i− j∥∥ is the so-called New York metric because hopping can only takes place along the chemical

bonds just like a taxi moving in Big Apple. We now use Eq.(1.39) to show that the self-energy becomes
local when dimensionality becomes infinity.

Let us consider a two particle interaction, for example Hubbard interaction:

Hint =
U

2

∑
i,j

niσnjσ. (1.40)

If we expand the corresponding self-energy in skeleton form, which means all the Green’s functions
are fully dressed Green’s functions, we the see that any diagram having more than two different sites
has at least three non-local Green’s functions Gij , which means the magnitude of these diagrams are

suppressed at least by a factor d−
3‖i−j‖

2 . By fixing i and summing over j, we obtain another factor

d‖i−j‖ for the self-energy. Therefore self-energies including more than one site are suppressed by

d−
‖i−j‖

2 and we conclude that in the limit d→∞ the self-energy is local:

Σij (ω) = δijΣ (ω) (1.41)

and contains only local Green’s function Gij (ω) = δijG (ω).

Free Energy Analysis

Besides the scaling analysis, there is another way to conclude that only local Green’s function Gii (ω)
have to be considered based on the assumption that the self-energy is local as shown in Eq.(1.41).

According to Ref.[77], the thermodynamical potential (free energy) Γ can be written as a functional
of full Green’s function G:

Γ
(
G
)

= Tr logG− Tr
(
ΣG
)

+ Φ
(
G
)
, (1.42)

with Φ
(
G
)

the sum of all compact diagrams and Σ the self-energy. Because G is the solution of
potential Γ, Γ must be at its extreme; therefore the variation of Γ with respect to G is zero [78]:

δΓ
(
G
)

δG
= 0. (1.43)

Applying functional derivative on Eq.(1.42), we arrive at

δΓ
(
G
)

=

(
δΦ
(
G
)

δG
− Σ

)
δG. (1.44)

With the condition imposed by Eq.(1.43), we obtain

Σ =
δΦ
(
G
)

δG
. (1.45)
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By requiring that Σ is local (Eq.(1.41)), we see from the equation above that only the local Green’s
function is taken into account in Φ

(
G
)
. As a result, Φ

(
G
)

is constructed by the local Green’s function.
The traces over logG and ΣG also show that only the local Green’s functions are taken into account,.
Therefore, we conclude that free energy is composed of only local Green’s function.

DMFT on Anderson Lattice Model

Here, the derivation of the mapping of the Anderson lattice model onto a single impurity problem
is shown by using cavity method. We start from the partition function

Z =

∫ ∏
i

D
[
c†i,σci,σ

]∏
i

D
[
f †i,σfi,σ

]
e−S (1.46)

with the action corresponding to the Anderson lattice model shown in Eq.(1.16) with Vij = δijV :

S =

∫ β

0
dτ

∑
i,σ

f †i,σ∂τf +
∑
i,σ

c†i,σ(∂τ + µ)ci,σ +
∑
i,σ

ε0f
†
i,σfi,σ +

∑
i

Unfi,↑n
f
i,↓

+V
∑
i,σ

(
f †i,σci,σ + c†i,σfi,σ

)
−
∑
i,j

tijc
†
i,σcj,σ

 (1.47)

After integrating out the conduction band degrees of freedem [67], Eq.(1.47) can now be written as

S
(f)
eff =

∫ β

0
dτ

∑
i,σ

f †i,σ∂τf +
∑
i,σ

ε0f
†
i,σfi,σ +

∑
i

Unfi,↑n
f
i,↓

+
∑
k,σ

f †k,σ (τ)
V 2

iω − εk
fk,σ (τ)

 . (1.48)

Next we put Eq.(1.48) into the form of Eq.(30) in [68] by requiring that

∑
k,σ

f †k,σ (τ)
V̂ 2

iω − εk
fk,σ (τ) =

∑
ij

tijf
†
i,σfj,σ (1.49)

and we obtain

S
(f)
eff =

∫ β

0
dτ

∑
i,σ

f †i,σ∂τf +
∑
i,σ

ε0f
†
i,σfi,σ +

∑
i

Unfi,↑n
f
i,↓

+
∑
ij,σ

tijfi,σfj,σ

 (1.50)

By following the procedure shown in [68], we obtain the equation of Weiss field G−1
0 for the f -shell

electrons:
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G−1
0 = iω − ε0 −

∑
ij

t0itj0G
(0)
ij (1.51)

which describes the environment scattering with the impurity site. To obtain G
(0)
ij

(
iωn
)
, we start from

the Dyson equation with an effective medium represented by Gij
(
iωn
)

scattering with the impurity
site 0 with energy V , which is later sent to infinity:

lim
V→∞

Gij
(
V
)

= Gij + lim
V→∞

Gi0V G0j

(
V
)

= Gij −
Gi0G0j

G00
. (1.52)

In the end, combining Eq.(1.51) and Eq.(1.52) we have to calculate

∑
ij

t0itj0

(
Gij −

Gi0G0j

G00

)
(1.53)

The first part reads

∑
ij

t0itj0Gij =

∫
dε

D (ε) Γ (ε)2

iω − ε0 − Γ− Σ
(1.54)

with Γ = V 2

iω−εk . The equation above becomes∫
dε

D (ε) Γ (ε)2

iω − ε0 − Γ− Σ
= −

∫
dεD (ε) Γ (ε)−

(
iω − ε0 − Σ

)
+
(
iω − ε0 − Σ

)2
G00 (1.55)

and the numerator of the second order can be written as∑
ij

t0iGi0 = −1 +
(
iω − ε0 − Σ

)
G00 (1.56)

As a result, we have

G−1
0 = Σ +G−1

00 (1.57)

with G00 the local Green’s function and Eq.(1.57) is the self-consistent condition for the Weiss field.
In Eq. (1.57) we use the result that ∫

dεD (ε) Γ (ε) = 0 (1.58)

Therefore, starting from the Weiss field G−1
0 and the Coulomb potential, a single impurity problem can

be solved and the self-energy Σ is obtained. Then, the lattice Green’s function G00 can be obtained.
By using the self-energy Σ and lattice Green’s function G00, a new Weiss field G−1

0 is obtained.
This problem is solved self-consistenly until the input and output Weiss fields are sufficiently similar.
Detailed algorithms for this iteration will be given in Chapter 3.
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2 Chapter 2

Model

The parent compound of heavy fermion system Ce1−xLaxCu2Ge2 is shown in Fig.(2.1) [11]. La
plays the role of non-magnetic impurity doping and substitutes Ce, which contributes local moment by
4f -electron [12]. CeCu2Ge2 is an AFM system with Néel temperature TN ∼ 4K [1]. By substituting
Ce by non-magnetic La, long-range magnetic ordering is suppressed and eventaully vanishes.

The parent compound CeCu2Ge2 can be described as a system composed of conduction band states
and the localized f -orbitals of cerium. Because f−orbitals are highly localized, the electron-electron
Coulomb interaction must be taken into account. The dominant part of this interaction is the on-site
Coulomb interaction. LaCu2Ge2 is an intermetallic compound [79]. The conduction band, composed
of d−orbitals, is approximately singly occupied. It can be assumed that this conduction band is well
described by traditional band theory and strong Coulomb correlation effects are not relevant. Since
spins originate from the f−orbitals, a hybridization with conduction band is required to give rise to
heavy fermion behavior.

As a result, we start from the Anderson lattice model which is composed of three parts:

H = Hloc +Hhyb +Hc (2.1)

with Hloc the local site Hamiltonian, Hhyb describing the hybridization between local sites and the
conduction band, and Hc the conduction band Hamiltonian. Since each cerium contributes one f -
orbital acting as the local energy level, we use Ce as the symbol for lattice points which contribute
local states. The corresponding second quantized form is

Hloc =
∑
σ

∑
i∈Ce

ε0f
†
i,σfi,σ + U

∑
i∈Ce

f †i,↑fi,↑f
†
i,↓fi,↓

Hhyb = V
∑
σ

∑
i∈Ce

(
f †i,σci,σ + c†i,σfi,σ

)
(2.2)

Hc =
∑
σ

∑
i,j

tijc
†
i,σcj,σ

where f †i,σ (fi,σ) is the creation (annihilation) operator on a local orbital at site i and with spin σ. c†i,σ
(ci,σ) is the creation (annihlation) operator on a Wannier orbital at site i with spin σ, ε0 is the local
site energy measured relative to chemical potential, tij describes the hopping between two sites, U is
the Hubbard interaction, and V is the strength of the hybridization.
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Figure 2.1: Lattice structure of CeCu2Ge2 [11]. Cerium atoms are represented by the orange
spheres, germanium atoms are represented by the brown spheres, and copper atoms
are represented by the cyan atoms. Cerium has eletronic structure

[
Xe
]

4f15d16s2.
Extensive 5d- orbitals of Ce overlap with the outer orbitals of Cu and Ge to form the
conduction band and 4f -electrons are localized and provide magnetic moment of the
lattice [12].
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2.1 Green’s Functions of the periodic and single-impurity Anderson models

This Hamiltonian can be generalized to all sites, those with Ce and those with La atoms, with a
simple trick:

Hloc =
∑
σ

∑
i

εif
†
i,σfi,σ +

∑
i

Uif
†
i,↑fi,↑f

†
i,↓fi,↓

Hhyb = V
∑
σ

∑
i

(
f †i,σci,σ + c†i,σfi,σ

)
(2.3)

Hc =
∑
σ

∑
i,j

tijc
†
i,σcj,σ,

where (
εi, Ui

)
=


(
ε0, U

)
if i ∈ Ce(

∞, 0
)

if i ∈ La
. (2.4)

It is assumed that conduction band hopping element tij and hybridization do not change by doping
La. At a La site the artificial local energy is very high. Thus local level of La sites are decoupled from
the rest of system and the two models Eq.(2.2) and Eq.(2.3) become equivalent. As we are considering
a randomly diluted system,

(
εi, Ui

)
is governed by the probability distribution

P
((
εi, Ui

)
=
(
ε0, U

))
= 1− x,

P
((
εi, Ui

)
=
(
∞, 0

))
= x. (2.5)

Let us consider two important limits: 1. ∀i : i ∈ Ce corresponds to x = 0 and is equivalent to the
periodic Anderson lattice (PAM). 2. If only one Ce site exists, we recover the single impurity Anderson
model (SIAM). For case 1, the Hamiltonian becomes

H =
∑
σ

∑
k

ε0f
†
k,σfk,σ + U

∑
k

nfk,↑n
f
−k,↓

+V
∑
σ

∑
k

(
f †k,σck,σ + c†k,σfk,σ

)
+
∑
σ

∑
k

εkc
†
k,σck,σ, (2.6)

where nfk,σ is the number operator f -electron with momentum k and spin σ. While the Hamiltonian
of the SIAM can be written as [80]:

HSIAM =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
σ

V
(
f †σc0,σ + c†0,σfσ

)
+
∑
σ

∑
i,j

tijc
†
i,σcj,σ. (2.7)

In the next chapter, we will show that by using the CPA, the Anderson lattice model can be mapped
on to an effective SIAM. In the dilute limit it is equivalent to the actual SIAM.

We can give derivations of Green’s functions on these two extreme cases by looking at their local
Green’s functions which will be important quantities in our work.

2.1 Green’s Functions of the periodic and single-impurity Anderson
models

2.1.1 Periodic Anderson Model
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In this section, we derive the analytical form of the f -electron Green’s function G
(
fk,σ, f

†
k,σ;ω

)
.

Let us start from the PAM defined in Eq.(2.6) with Heisenberg equation of motion:

G
(
A,B; t

)
= −iΘ (t)

〈[
A (t) , B (0)

]
+

〉
⇒ ωG

(
A,B;ω

)
=

〈[
A,B

]
+

〉
+G

([
A,H

]
, B;ω

)
. (2.8)

Here we set A = fk,σ and B = f †k,σ and it follows

ωG
(
fk,σ, f

†
k,σ;ω

)
= 1 +G

([
fk,σ, H

]
, f †k,σ;ω

)
(2.9)

where the commutator is given by[
fk,σ, H

]
= fk,σε0 + U

∑
p

fk−p,σn
f
−p,σ̄ + V ck,σ. (2.10)

Thus we obtain

ωG
(
fk,σ, f

†
k,σ;ω

)
= 1 + ε0G(fk,σ, f

†
k,σ;ω) + UG

∑
p

fk−p,σn
f
−p,σ̄, f

†
k,σ;ω


+V G

(
ck,σ, fk,σ;ω

)
. (2.11)

The third term in the RHS of Eq.(2.11) can be used to define the self energy Σσ

(
k, ω

)
[81]:

UG

∑
p

fk−p,σn
f
−p,σ̄, f

†
k,σ;ω

 = Σσ

(
k, ω

)
G
(
fk,σ, f

†
k,σ;ω

)
(2.12)

The last term in Eq.(2.11) can be written as a function of f -electron Green’s function by using Heisen-
berg equation of motion:

ωG
(
ck,σ, fk,σ;ω

)
= G

([
ck,σ, H

]
, f †k,σ;ω

)
⇒ G

(
ck,σ, fk,σ;ω

)
=

V

ω − εk
G
(
fk,σ, f

†
k,σ;ω

)
(2.13)

From Eq.(2.12) and Eq.(2.13), Eq.(2.11) can be written as(
ω − ε0 −

V 2

ω − εk

)
G
(
fk,σ, f

†
k,σ;ω

)
= 1 + Σσ

(
k, ω

)
G
(
fk,σ, f

†
k,σ;ω

)
. (2.14)

Therefore, the f -electron Green’s function has the following closed form

G
(
fk,σ, f

†
k,σ;ω

)
=

1

ω − ε0 − V 2

ω−εk − Σσ

(
k, ω

) . (2.15)
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2.1 Green’s Functions of the periodic and single-impurity Anderson models

Fourier transformation then yields the lattice Green’s function:

Gij (ω) =
1

N

∑
k

G
(
fk,σ, f

†
k,σ;ω

)
eik·(Ri−Rj). (2.16)

As in this thesis a significant part of the calculation is performed in the AFM state of a bipartite
lattice, we will also illustrate how to build up the model for a state with long ranged AFM order,
assuming that the self energy Σσ

(
k, ω

)
is local:

Σσ

(
k, ω

)
= Σσ (ω) (2.17)

To generalize our case to AFM state in the frame work of DMFT, self energy is set to be site i
dependent:

Σσ (ω) = Σi,σ (ω) (2.18)

Next we introduce sublattice degrees of freedom α and map each lattice site i onto a sublattice α such
that Σi,σ (ω)→ Σα,σ (ω) .

In DMFT, non-local Green’s functions are suppressed with respect to increasing coordination number
Z; therefore, when Z →∞, only local Green’s functions survive [68, 69] or only they contribute to free
energy [77]. As a result, only local Green’s functions will be considered and they are sublattice m and
spin σ dependent:

Gα,σ (ω) =
1

N

∑
k

Gα

(
fk,σ, f

†
k,σ;ω

)
(2.19)

2.1.2 Periodic Anderson Model on Bipartite Lattice

For a commensurate AFM system with sublattices A and B, we have the following property for the
self-energy

ΣA,σ = ΣB,σ̄ (2.20)

therefore we can express the self-energy as

Σiσ (ω) = Σ0 (ω) + σeiQ·RiΣm (ω) , (2.21)

with Σ0 (ω) acting as a homogeneous “background” and Σm as an effective dynamic staggered magnetic
field. Here we represent the Coulomb interaction directly in form of the self-energy and the local state
Hamiltonian is

Hloc =
∑
i,σ

(
ε0 + Σi,σ

)
f †i,σfi,σ

=
∑
i,σ

(
ε0 + Σ0 + σ expiQ·Ri Σm

)
f †i,σfi,σ

=
∑
k,σ

[(
ε0 + Σ0

)
f †k,σfk,σ + σΣmf

†
k,σfk+Q,σ

]
(2.22)
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Due to the AFM wavevector Q, we only need to consider the reduced Brillouin zone which is half
the size of the original Brillouin zone and the region outside the Brillouin zone can be included by
connecting the reduced Brillouin zone and wavevector Q. Therefore the local Hamiltonian Hloc can be
written as

Hloc =

′∑
k,σ

[(
ε0 + Σ0

)
f †k,σfk,σ +

(
ε0 + Σ0

)
f †k+Q,σfk+Q,σ

]

+

′∑
k,σ

[
σΣmf

†
k,σfk+Q,σ + σΣmf

†
k+Q,σfk,σ

]
, (2.23)

where
∑′ denotes summation over the reduced Brillouin zone. The corresponding matrix form of this

Hamiltonian is

Hloc =

′∑
k,σ

(
f †k,σ, f

†
k+Q,σ

)( ε0 + Σ0 σΣm

σΣm ε0 + Σ0

)(
fk,σ
fk+Q,σ

)
. (2.24)

Next we consider the conduction band and its hybridization with the 4f-states:

Hc =

′∑
k,σ

(
c†k,σ, c

†
k+Q,σ

)( εk 0
0 εk+Q

)(
ck,σ
ck+Q,σ

)
(2.25)

Hhyb = V
′∑

k,σ

(
c†k,σfk,σ + f †k,σck,σ + c†k+Q,σfk+Q,σ + f †k+Q,σck+Q,σ

)
. (2.26)

If we integrate out the conduction band degree of freedom [67], we obtain for the inverse Green’s
function:

G−1
σ

(
k, ω

)
=

 ω − ε0 − Σ0 − V 2

ω−εk −σΣm

−σΣm ω − ε0 − Σ0 − V 2

ω−εk

 (2.27)

The basis
(
f †k,σ, f

†
k+Q,σ

)
is convenient for studying antiferromagnetic order and SDW. However, it is

not the right basis to use the NRG because the calculation is performed on a single site. Therefore we
use a unitary transformation to rotate the basis via(

fk,σ
fk+Q,σ

)
=

1√
2

(
1 −1
1 1

)(
fA,k,σ
fB,k,σ

)
(2.28)

and

G−1
σ

(
k, ω

)
=

 ω − ε0 − Σ0 − σΣm − V 2

ω−εk 0

0 ω − ε0 − Σ0 + σΣm − V 2

ω−εk

 (2.29)

The local Green’s function is then given as:

Gσ (ω) =

′∑
k

Gσ
(
k, ω

)
. (2.30)
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2.1 Green’s Functions of the periodic and single-impurity Anderson models

2.1.3 Single Impurity Anderson Model

Next we consider the single impurity Anderson model. Since momentum is not conserved in the
SIAM, we have to modify our analysis. We define

c†i,σ =
∑
l

a∗il,σc
†
l,σ

ci,σ =
∑
l

ail,σcl,σ, (2.31)

where l is an additional single particle index and ail,σ and a∗il,σ are elements of the matrix A which can
diagonalizes the hopping matrix T : (

A†TA
)
ij

= εiδij (2.32)

If we insert this representation into the Hamiltonian Eq.(2.7) of the SIAM, we obtain

HSIAM =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
σ

∑
l

V
(
a0l,σf

†
σcl,σ + a∗0l,σc

†
l,σfσ

)
+
∑
σ

∑
l

εlc
†
l,σcl,σ, (2.33)

with ∑
i,j

a†il,σtijajk,σ = εlδlk, (2.34)

as follows from Eq.(2.32). If we define Vl,σ = V a0l,σ and V ∗l,σ = V a∗0l,σ, we arrive at

HSIAM =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
σ

∑
l

εlc
†
l,σcl,σ

+
∑
σ

∑
l

(
Vl,σf

†
σcl,σ + V ∗l,σc

†
l,σfσ

)
(2.35)

With this form, we can perform a similar calculation as for the PAM and obtain the SIAM Green’s
function:

Gσ (ω) =
1

ω − ε0 −
∑

l

∣∣∣Vl,σ∣∣∣2
ω−εl − Σσ (ω)

(2.36)

which is a local quantity.
The main reason why we go through these two limits is that we need Eq.(2.19) and Eq.(2.36) in the

next chapter to build up a self-consistent algorithm for solving our impurity problem.
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3 Chapter 3

Methods

In this chapter, we will show how to apply DMFT, NRG, and CPA to solve dilute lattice problems
self-consistently. It can be shown that the result of dilute system is consistent with that of clean
system when there is no impurity doping; while for high doping concentration, a dilute system can
be effectively described as a single impurity problem in section 3.2. A brief summary on the NRG
algorithm will also be given in section 3.3. The algorithms will be summarized in three flow diagrams,
corresponding to PM state, AFM state with/without staggered magnetic field, and AFM state with
uniform magnetic field in section 3.4.

3.1 Dynamical Mean Field Theory: Clean System

In the end of chapter 1, we showed that in the framework of DMFT, a lattice system can be
mapped onto a single impurity problem characterized by Weiss mean field G−1

0 (ω) and on-site Coulomb
interaction U . As a result, we have the local action Sloc:

Sloc =

∫
dτdτ ′

∑
σ

f †σ (τ)

[
G−1

0

(
τ − τ ′

)]
fσ

(
τ ′
)

+

∫
dτUln

f
↑ (τ)nf↓ (τ) , (3.1)

where the Weise mean field contains the local energy level ε0 and the hybridization function Γ (ω) which
decribes the coupling between this impurity site and its environment. Here l and σ denote the lattice
site and the spin, respectively. Therefore, G0 effectively represents the non-interacting Hamiltonian

H0 =
∑
σ

ε0f
†
σfσ +

∑
l,σ

(
Vlf
†
σcl,σ + V ∗l c

†
l,σfσ

)
+
∑
l,σ

εlc
†
l,σcl,σ (3.2)

with c†l,σ

(
cl,σ

)
the creation (annihilation) operator of an auxiliary field with quantum number l, εl

the auxiliary field dispersion relation, and Vl the effective interaction between local site and auxiliary
field. We see that together with the Coulomb interaction U , Eq.(3.1) is the single impurity Anderson
model shown in the last chapter. Therefore, this problem can be solved by a impurity solver such as
NRG [36]. Since Vl and εl are not known in advance, they will be determined self-consistently.
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For a given Weiss mean field G−1
0 (ω) and Coulomb interaction U , the full impurity Green’s function

Gimp and impurity self-energy Σimp can be obtained by NRG [81]. The lattice Green’s function Glat
can also be obtained. Then from the DMFT self-consistent equation, we have to compare G−1

0 and
Glat + Σimp. If they are not equal then a new Weiss field is chosen to perform the next calculation.
This process continues until the difference between old and new Weiss fields is sufficiently small.

3.2 Dynamic Mean Field Theory: Dilute System

In a dilute system with different constituents, the local action depends on the site l:

Sloc
(
l
)

=

∫
dτdτ ′

∑
σ

fσ (τ)

[
G−1

0

(
τ − τ ′

)
+ εlδ

(
τ − τ ′

)]
fσ

(
τ ′
)

+

∫
dτUln

f
↑ (τ)nf↓ (τ) . (3.3)

In our study on Ce1−xLaxCu2Ge2, we showed in the last chapter there are two possible choices for
Sloc

(
l
)

and each of them corresponds to a Green’s function

G
(
ω; l
)

=

G
(
ε0, U ;ω

)
, if l ∈ Ce

G
(
∞, 0;ω

)
, if l ∈ La.

(3.4)

Next we apply CPA which approximates the Green’s function of the system as the average of the
Green’s functions of these two sites:

Ḡ = xG
(
ε0, U ;ω

)
+ (1− x)G

(
∞, 0;ω

)
=

x

G−1
0 − ε0 − Σ

(
ε0, U ;ω

) (3.5)

and the CPA self-consistency condition gives

Ḡ =
∑
k

1

ω − Σ̄ (ω)− V 2

ω−εk

, (3.6)

where Σ̄ is the averaged self-energy which includes both Coulomb interaction and disorder. To obtain
Σ̄, we expressed the averaged Green’s function as

Ḡ (ω) =
1

G−1
0 − Σ̄

. (3.7)

As a result, the averaged self-energy can be obtained by solving Eq.(3.5) and Eq.(3.7):

Σ̄ = Σimp (ω) + ε0 +

(
1− 1

x

)
G−1
imp (ω) . (3.8)

Next we discuss DMFT + CPA in two limit of the PM case: perfect lattice x → 1 and dilute limit
x → 0. The extension to an AFM state can be done straightforwardly by taking sublattice and spin
dependences into account.
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3.2 Dynamic Mean Field Theory: Dilute System

3.2.1 Perfect Lattice

In this limit, x→ 1 and

lim
x→1

Ḡ = lim
x→1

x

G−1
0 − ε0 − Σ

(
ε0, U ;ω

)
=

1

G−1
0 − ε0 − Σ

(
ε0, U ;ω

) (3.9)

and

lim
x→1

Σ̄ = lim
x→1

(
Σimp (ω) + ε0 +

(
1− 1

x

)
G−1
imp (ω)

)
= Σimp (ω) + ε0 (3.10)

such that

GCPA =
∑
k

1

ω − ε0 − Σimp (ω)− V 2

ω−εk

(3.11)

which is the result of PAM.

3.2.2 Dilute Limit

In this limit, x → 0. As in the previous chapter it was mentioned that an effective SIAM can
be derived from the Anderson lattice model. In this section I will show how to achieve it within a
self-consistent calculation.

From Eq.(3.8) we obtain

Ḡ =
1− x

Σimp + ε0 − Σ̄
. (3.12)

In this limit, to make sure that Ḡ → 0, Σ̄ ∝ 1
x in the leading order which can be seen from Eq.(3.8).

On the other hand from Eq. (3.6) we have

GCPA =
∑
k

1

ω − Σ̄ (ω)− V 2

ω−εk

. (3.13)

Due to self-consistent condition, it is required that Ḡ = GCPA:

1− x
Σimp + ε0 − Σ̄

=
∑
k

1

ω − Σ̄ (ω)− V 2

ω−εk

. (3.14)

The doping concentration x can be used as a control parameter for a Taylor expansion. We make
the ansatz that Σ̄ has the following form:

Σ̄ ∼ σ−1

x
+ σ0 + xσ1 +O

(
x2
)
. (3.15)

It can be shown that terms like σ−α
xα with positive α are zero except for α = 1 by expanding Ḡ and

GCPA with respect to small x and comparing the coefficients. To make sure nothing is left behind in
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the calculation, we include the third order term in the Taylor expansion in Eq.(3.15). If both averaged
Green’s functions in Eq.(3.14) are expanded, we will obtain σ−1 in this form and σ0 as:

σ−1 =

Σimp + ε0 − ω −
∑
k

Fk

 , (3.16)

σ0 =

ω +
∑
k

Fk

+
1

σ−1


∑

k

Fk

2

−
∑
k

F 2
k

 (3.17)

with

Fk = − V 2

ω − εk
. (3.18)

If we consider the averaged self-energy in the first leading order, we combine Eq.(3.8), Eq.(3.15) and
Eq.(3.16) to obtain:

Gimp (ω) =
1

ω − ε0 − Σimp (ω)−
∑

k
V 2

ω−εk

, (3.19)

which happens to be in the form of SIAM Green’s function.

Suppose bare Green’s function G0 has the following form

G0 =
1

ω + Γ
(3.20)

with Γ taking into account the medium and having to be determined self-consistently, then Eq.(3.5)
gives

Ḡ =
x

ω − ε0 − Σimp (ω) + Γ
(3.21)

while Eq.(3.12) gives

Ḡ =
x

ω − ε0 − Σimp (ω)−
∑

k
V 2

ω−εk

. (3.22)

This implies that Γ = −
∑

k
V 2

ω−εk and there is no correction with respect to the impurity concentration,
which happens to be the case of SIAM or the so-called atomic limit. If we are in the small x limit and
we want to take the effect of an impurity into account, we need to include σ0 shown in Eq.(3.17) in
the averaged self-energy and Γ has the following self-consistent form

Γ =
∑
k

Fk −
x

(1− x)σ−1


∑

k

Fk

2

−
∑
k

F 2
k

 . (3.23)

The next question is how do we determine the Green’s function and the self energy to solve our
problem if Γ is not known in advance? To calculate the Green’s function we use the impurity solver
NRG we introduced in Chapter 1. In the next section it will be illustrated how it works in PM state.
The AFM state in the calculation is equivalent to the calculation in the PM state with magnetic field.
As a result, the algorithm remains the same except that spin degrees of freedom are included.
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3.3 Numerical Renormalization Group

3.3 Numerical Renormalization Group

In DMFT which maps a lattice problem onto a single impurity problem, we start from the SIAM
Hamiltonian [80]:

H =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
lσ

εlc
†
l,σcl,σ

+
∑
lσ

(
Vlf
†
σcl,σ + V ∗l c

†
l,σfσ

)
. (3.24)

Next we map Eq.(3.24) which contains all different modes labelled by l into a 1-D Hamiltonian:

H1−D =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
σ

∫ 1

−1
dεgσ (ε) a†ε,σaε,σ

+
∑
σ

∫ 1

−1
dεhσ (ε)

(
f †σaε,σ + a†ε,σfσ

)
. (3.25)

From Eq.(3.25), we can define the hybridization function Γσ (ω), which describes the strength of
coupling by integrating out the auxiliary field ck,σ (Hubbard-Stratonovich transformation) and taking
the imaginary part:

Γσ (ω) = −=

∑
k

V 2
k,σ

ω − εk + iδ


= πV 2

ω,σρ0 (ω) . (3.26)

Since Eq.(3.24) and Eq.(3.25) are equivalent, their resulting hybrization function should also be equal;
therefore the relation between the hybridization function Γσ (ω), the dispersion relation gσ (ε), and the
impurity-fermionic bath interaction hσ (ε) can be written as

Γσ (ω) = π
dε (ω)

dω

[
h
(
ε (ω)

)]2
, (3.27)

which can be obtained by integrating out all the aε,σ modes via Hubbard-Stratonovich transformation.
From Eq.(3.27) we see the combination of g (ε) and h (ε) is not unique. One choice is

{
g (ε) , h (ε)

}
={

ε, Vε
√
ρ (ε)

}
which can be obtained by transforming plane wave particles into spherical wave particles

[36]. However, we can choose other combinations of g (ε) and h (ε) to make our calculation easier which
will be introduced in the next section.

3.3.1 Logarithmic Discretization

Similar to the Fourier series in which a function is transformed into the linear combination of various
modes characterized by some integers, we transform all the modes aε and a†ε into the linear combinations
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of modes ψ†n,l and ψn,l characterized by two integers n and l which can be considers as principle quantum
number and azimuthal quantum number, respectively:

ψ+
nl =

1√
dn
eiωnlε for Λ−n−1 < ε < Λ−n,

ψ−nl =
1√
dn
e−iωnlε for − Λ−n < ε < −Λ−n−1, (3.28)

with Λ the discretization parameter whose value is chosen between 1 and 10 in practice , and

dn = Λ−n
(

1− Λ−1
)
, (3.29)

ωn =
2π

dn
. (3.30)

We expand the operator aεσ in this basis:

aεσ =
∑
nl

(
anlσψ

+
nl (ε) + bnlσψ

−
nl (ε)

)
, (3.31)

with inverse transformation:

anlσ =

∫ 1

−1
dε
(
ψ+
nl (ε)

)∗
aεσ,

bnlσ =

∫ 1

−1
dε
(
ψ−nl (ε)

)∗
aεσ. (3.32)

It can be shown in Ref.[15] that by keeping only the l = 0 terms and relabelling anσ = an0σ as well
as bnσ = bn0σ, the approximation for the Hamiltonian Eq.(3.25) is

H =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
nσ

(
ξ+
n a
†
nσanσ + ξ−n bnσbnσ

)
+

1√
π

∑
σn

f †σ

(
γ+
n anσ + γ−n bnσ

)
+

1√
π

∑
σn

(
γ+
n a
†
nσ + γ−n b

†
nσ

)
fσ. (3.33)

In a real calculation, this single discretization scheme might introduce some artificial oscillations
into the thermodynamic expectation values. One way to remove these artificial effects is by using
z-averaging proposed in Ref.[14]. Nz different discretization meshes are set up and the average over
several calculations for different z is used. An example with Nz = 4 is shown in Fig.(3.1). Further
improvement in dynamical quantities is done by Zitko and Pruschke [82, 83].

As can be seen from Eq.(3.33), the impurity couples to all the modes and direct diagonalization is
not realistic due to the enormous size of the corresponding matrix, extra treatment is required to make
the calculation manageable and to achieve the desired low energy scale.

3.3.2 Tridiagonalization
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3.3 Numerical Renormalization Group

Figure 3.1: Z-averaging by discretizing hybridization function Γ (ω) with different meshes[13, 14].

This figure represents z-averaging with Nz = 4 such that z ∈
{

1
4 ,

2
4 ,

3
4 , 1
}

. NRG

calculation runs through different discretization meshes corresponding to different zs.
In the end the obtained results, such as spectral function and particle occupation
number, will be averaged.

Eq.(3.33) is rotated such that the Hamiltonian corresponds to a semi-infinite chain whose Hamilto-
nian looks like that of a tight-binding model. From the hybridization term of Eq.(3.33), we define an
operator on the zeroth site which couples directly to the impurity site as :

c0σ =
1√
ξ0

∞∑
n=0

(
γ+
n anσ + γ−n bnσ

)
(3.34)

with fermionic commutation relation
[
c0σ, c

†
0σ

]
+

= 1 and normalization factor:

ξ0 =

∞∑
n=0

(
γ+2
n + γ−2

n

)
. (3.35)

Then from the impurity site, Schmidt orthgonalization is applied to construct a new set of mutually
orthogonal operators c†n,σ and cn,σ such that a semi-infinite chain Hamiltonian can be obtained [15, 36]

H =
∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

√
ξ0

π

∑
σ

(
f †σc0,σ + c†0,σfσ

)
+
∑
σ,n=0

[
εnc
†
n,σcn,σ + tn

(
c†nσcn+1,σ + c†n+1,σcnσ

)]
(3.36)

in which εn and tn act as onsite energy and hopping between two sites, respectively. The energy scales
of εn and tn decrease with respect to increasing site number n as Λ−n and Λ−

n
2 for sufficiently large
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n [15], respectively. In a realistic calculation, n must be terminated at some point. The lowest energy

scale decreases by Λ−
1
2 by including one extra site into the chain, hence the coupling between the old

chain and the new site can be thought of as an interaction with strength O
(

Λ−
1
2

)
if the lowest energy

scale of the old chain is O (1). Due to Λ > 1, the coupling can be treated as a perturbation and this
is the reason why Eq.(3.36) can be diagonalized iteratively.

3.3.3 Iterative Diagonalization

The idea of iterative diagonalization is simple: we start from a given Hamiltonian HN , diagonalize

it such that it becomes H
(diag)
N , then connect a new site to the diagonalized Hamiltonian H

(diag)
N . The

interactions between the new site and H
(diag)
N will be determined recursively. This procedure keeps

going until we decide to stop the calculation.

In the beginning of the calculation, an initial Hamiltonian, representing the impurity site plus the
zeroth site, is chosen. It can be written as the first three terms of Eq.(3.36). It is then rescaled by the

discretization parameter Λ−
1
2 :

H0 = Λ−
1
2

∑
σ

ε0f
†
σfσ + Unf↑n

f
↓ +

∑
σ

ε0c
†
0,σc0,σ

+

√
ξ0

π

∑
σ

(
f †σc0,σ + c†0,σfσ

) (3.37)

and the recursion relation is

HN+1 = Λ
1
2HN + Λ

N
2

∑
σ

εN+1c
†
N+1,σcN+1,σ

+Λ
N
2

∑
σ

tN

(
c†N,σcN+1,σ + c†N+1,σcN,σ

)
. (3.38)

The factor Λ
N
2 in Eq.(3.38) has been chosen to cancel the N dependence of tN and the perturbation

is of O (1) while the lowest energy scale of Λ
1
2HN is of O

(
Λ
)
. In each step N , HN is diagonalized and

has a set of eigenstates
{
|r〉N

}
. By adding a new site to build HN+1, each of the eigenstates |r〉N is

connected to four other states:
{
|0〉N+1 ,

∣∣↑〉
N+1

,
∣∣↓〉

N+1
,
∣∣↑↓〉

N+1

}
.

To the Nth site, a matrix with Hilbert space of size 4N+2 can be expected. For example, N = 60,
this are 2.12×1037 eigenstates and it is not possible to perform the task numerically. To overcome this
problem, truncation is introduced which only keeps the energetically lowest Nkept states and connects
them with the next site. Generally speaking, the higher the Nkept the more accurate the information
about the system we have. However, there is a trade off between accuracy and efficiency as the

computational time for diagonalization scales as O
(
N3
kept

)
. With some modern day techniques such

as complete Fock space (CFS) [84, 85] which take the interactions between high energy modes (those
discarded) and low energy modes (those kept) into account. Results such as spectral functions and
thermodynamical quantities with different temperatures and magnetic fields with Nkept as small as 50
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3.4 Self-Consistent Algorithm

Figure 3.2: NRG workflow [15]. First a SIAM is transformed into a semi-infinite tight bind-
ing model by logarithmic diagonalization and tridiagonalization (1). Then the tight-
binding Hamiltonian is diagonalized iteratively and new sites connecting to the diag-
onalized Hamiltonian play the role of perturbations (2). After each diagonalization,
low lying energy states will be kept and high energy states will be discarded (3).

agree well with those with Nkept = 500. In the following calculation, Nkept is chosen between 500 and
1000 and the details are left to Ljubljana NRG.

Here we summarize how NRG works. First a SIAM is transformed into a semi-infinite tight binding
model by logarithmic diagonalization and tridiagonalization. Secend the tight-binding Hamiltonian
is diagonalized iteratively and new sites connecting to the diagonalized Hamiltonian play the role of
perturbations. After each diagonalization, low lying energy states will be kept and high energy states
will be discarded. Fig.(3.2) shows how NRG works diagramatically [15].

3.4 Self-Consistent Algorithm

In this section we summarize how dilute lattice problems are solved self-consistently in the framework
of NRG + DMFT + CPA in three different cases: PM state, AFM state with/without staggered
magnetic field, and AFM state with uniform magnetic field. The corresponding algorithm flow diagrams
will also be shown.
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NRG: 
𝑮𝒊𝒎𝒑 𝝎 ,𝜮𝒊𝒎𝒑 𝝎

CPA: 
ഥ𝑮 𝝎 , ഥ𝜮 𝝎

Lattice Form: 
ഥ𝑮′ 𝝎 =෍

𝒌

𝟏

𝝎 −
𝑽𝟐

𝝎− 𝜺𝒌
− ഥ𝚺

ഥ𝑮 = ഥ𝑮′

ഥ𝑮′ =
𝟏

𝝎− 𝜞 𝝎 − ഥ𝜮

No Yes
End

Γ 𝜔 , 𝜇

Paramagnetic State Flow Chart

Figure 3.3: Flow diagram of the NRG + DMFT + CPA self-consistent calculation in the PM
state. The calculation starts with NRG to obtain the impurity Green’s function
Gimp (ω) and the impurity self-energy Σimp (ω). Then CPA is applied to obtain the
averaged Green’s function Ḡ (ω) and the averaged self-energy Σ̄ (ω). With the av-
eraged self energy Σ̄ (ω), the averaged Green’s function Ḡ′ (ω)in the lattice form is
calculated. Next Ḡ (ω) and Ḡ′ (ω) are compared. If they are sufficiently close to each
other, the calculation converges. Otherwise, a new hybridization function Γ (ω) is
constructed and a new chemical potential µ is obtained to be used in NRG in the next
calculation.

3.4.1 Paramagnetic State

The calculation starts with NRG to obtain the impurity Green’s function Gimp (ω) and the impurity
self energy Σimp (ω). Then CPA is applied to obtain the averaged Green’s function Ḡ (ω) and the
averaged self-energy Σ̄ (ω). With the averaged self-energy Σ̄ (ω), the averaged Green’s function Ḡ′ (ω)
in the lattice form is calculated. Next Ḡ (ω) and Ḡ′ (ω) are compared. If they are sufficiently close to
each other, the calculation converges. Otherwise, a new hybridization function Γ (ω) is constructed and
the chemical potential µ is obtained to be used in NRG in the next calculation. Here the self-consistent
algorithms is shown in Fig.(3.3).

3.4.2 Antiferromagnetic State with/without Staggered Magnetic Field

Because of the symmetry of AFM state GA,σ (ω) = GB,σ̄ (ω), sublattice dependence can be ignored
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NRG: 
𝑮𝒊𝒎𝒑,𝝈 𝝎 ,𝜮𝒊𝒎𝒑,𝝈 𝝎

CPA:
ഥ𝑮𝝈 𝝎 , ഥ𝜮𝝈 𝝎

Lattice Form: 
ഥ𝑮𝝈
′ 𝝎 =෍

𝒌

𝟏

𝝎−
𝑽𝟐

𝝎− 𝜺𝒌 −
𝝈𝑩
𝟐

− ഥ𝚺𝝈

𝒏𝒐𝒍𝒅 = 𝒏𝒏𝒆𝒘
𝒎𝒐𝒍𝒅 = 𝒎𝒏𝒆𝒘

ഥ𝑮𝝈
′ 𝝎 =

𝟏

𝝎− 𝜞𝝈 𝝎 − ഥ𝜮𝝈

No Yes
End

Γ𝜎 𝜔 , 𝜇

AFM State Flow Chart

Figure 3.4: Flow diagram of NRG + DMFT + CPA self-consistent calculation in the AFM state
subjected to a staggered magnetic field. The calculation starts with NRG to obtain the
spin dependent impurity Green’s functions Gimp,σ (ω) and the impurity self-energies
Σimp,σ (ω). Then CPA is applied to obtain the average Green’s functions Ḡσ (ω) and
the averaged self-energies Σ̄σ (ω). With the averaged self-energies Σ̄σ (ω), the averaged
Green’s functions Ḡ′σ (ω) in the lattice form are calculated. The magnetizations and
the carrier densities per site from two consecutive calculations are compared. If they
are sufficiently close to each other, the calculation converges. Otherwise, two new
spin dependent hybridization functions Γσ (ω) are constructed and a new chemical
potential µ is obtained to be used in NRG in the next calculation.

and only spin dependence is considered. The calculation starts with NRG to obtain spin dependent
impurity Green’s functions Gimp,σ (ω) and impurity self-energies Σimp,σ (ω). Then CPA is applied to
obtain average Green’s functions Ḡσ (ω) and averaged self-energies Σ̄σ (ω). With averaged self-energies
Σ̄σ (ω), averaged Green’s functions Ḡ′σ (ω) in the lattice form are calculated. In contrast to comparing
Ḡσ (ω) and Ḡ′σ (ω), the magnetizations and carrier densities per site from two consecutive calculations
are compared. If they are sufficiently close to each other, the calculation converges. Otherwise, two
new spin dependent hybridization functions Γσ (ω) are constructed and a new chemical potential µ is
obtained to be used in NRG in the next calculation. Here the self-consistent algorithms is shown in
Fig.(3.4).

3.4.3 Antiferromagnetic State with Uniform Magnetic Field

Under uniform magnetic field, the sublattice degeneracy due to AFM symmetry is lifted. Then
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NRG:  Sublattice A

𝑮𝒊𝒎𝒑,𝝈
𝑨 𝝎 , 𝚺𝒊𝒎𝒑,𝝈

𝑨 𝝎

CPA:
ഥ𝑮𝝈
𝑨 𝝎 , ഥ𝚺𝝈
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NRG: Sublattice B 

𝑮𝒊𝒎𝒑,𝝈
𝑩 𝝎 , 𝚺𝒊𝒎𝒑,𝝈

𝑩 𝝎
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ഥ𝑮𝝈
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𝑩 𝝎

Lattice Form: 
ഥ𝑮𝝈
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𝑩 𝝎 − ഥ𝚺𝝈

𝑩 𝝎

Figure 3.5: Flow diagram of NRG + DMFT + CPA self-consistent calculation in the AFM state
subjected to a uniform magnetic field. NRG calculation will be performed on sublattice
A and B, respectively. The sublattice and spin dependent impurity Green’s functions
Giimp,σ (ω) and the impurity self-energies Σi

imp,σ (ω). Then CPA is applied to obtain

the average Green’s functions Ḡiσ (ω) and the averaged self-energies Σ̄i
σ (ω). With the

averaged self-energies Σ̄i
σ (ω), the averaged Green’s functions Ḡi′σ (ω)in the lattice form

are calculated. The magnetizations and the carrier densities per site of both sublattices
A and B are compared. If they are sufficiently close to each other, the calculation
converges. Otherwise, four new sublattice and spin dependent hybridization functions
Γiσ (ω) are constructed and a new chemical potential µ is obtained to be used in NRG
in the next calculation.

both the sublattice and spin dependences must be considered. Because NRG is designed for single site
calculation, this problem have to be broken into two steps: sublattice A and sublattice B. The NRG
calculation will be performed on these two sublattices, respectively. The sublattice and spin dependent
impurity Green’s functionsGiimp,σ (ω) and the impurity self-energies Σi

imp,σ (ω). Then CPA is applied to

obtain the average Green’s functions Ḡiσ (ω) and the averaged self-energies Σ̄i
σ (ω). With the averaged

self-energies Σ̄i
σ (ω), the averaged Green’s functions Ḡi′σ (ω) in the lattice form are calculated. Similar

to the case with a staggered magnetic field, the magnetizations and the carrier densities per site of both
sublattices A and B are compared. If they are sufficiently close to each other, the calculation converges.
Otherwise, four new sublattice and spin dependent hybridization functions Γiσ (ω) are constructed and a
new chemical potential µ is obtained to be used in NRG in the next calculation. Here the self-consistent
algorithms is shown in Fig.(3.5).
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4 Chapter 4

Phase Diagram and Lattice Coherence

In this chapter, the macroscopic physical properties of the AFM phase of the Anderson lattice model
will be shown. Both the magnetic order parameter and the resistivity are calculated as functions of
temperature and impurity concentration x. The obtained phase diagram is consistent with that of
Ce1−xLaxCu2Ge2 [1]. Mechanism behind the magnetic ordering and resistivity will be analyzed in the
next chapter.

4.1 Magnetic Order Parameter M
(
x, T

)
Here magnetization is defined as the difference between spin up and down occupation of the f -

electron state on a single site divided by two:

M =

∣∣∣nf↑ − nf↓ ∣∣∣
2

. (4.1)

Fig.(4.1) shows magnetization as a function of temperature and impurity concentration. It can be
seen that the magnetization developes in a narrow temperature range when the Néel temperature
is approached. Also, the saturation magnetization decreases with respect to increase in impurity
concentration x. In chapter 6 we will show that zero temperature magnetization continuously reduces
to zero by increasing the doping concentration of non-magnetic impurity. Hence, there is a second
order QPT at some critical concentration. By using the zero temperature magnetization, the critical
concentration x = xc and the critical exponent β can be probed.

In the metallic heavy fermion systems, the long-range magnetic ordering has two possible origins
[18]: Ruderman-Kittel-Kasuya-Yosida (RKKY) [86] and spin density wave (SDW) [87, 88]. For RKKY-
type AFMs, the magnetizations originate from the ordering of the local spins of the f -orbitals. The
interactions between these spins are mediated via the conduction band. While for the SDW-type
AFMs, it is a two step processes: the local moments and the conduction band electrons form the
Kondo singlets and the interaction between these singlets causes the spontaneous symmetry breaking
and gives rise to the long-range magnetic ordering. In the vicinity of the QCPs, two different quantum
critical behaviors may develop. One is described by the Hertz-Millis-Moriya theory [21–23] in the
SDW picture. The other one is called the local quantum criticality at which the critical exponents are
wavevector independent and the underlying mechanism is still under debate [89, 90].
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Figure 4.1: Magnetization as functions of temperature and impurity concentration x. From the
magnetization, Néel’s temperature TN can be calculated. Also, the saturation magne-
tization reduces by increasing impurity concentration.

The universality class of the obtained QCP will be investigated in chapter 6 by calculating the critical
exponents and comparing them with that of other heavy fermion AFM systems.

4.2 Resistivity

Fig.(4.2) shows the temperature and impurity concentration dependent resistivities of PM and AFM
states (blue squares and red circles, respectively). Here we define lattice coherence temperature T ∗ as
the temperature corresponding to the maximum of the resistivity. Two phenomena can be observed.
First, including AFM phase does not affect the onset of lattice coherence. Lattice coherence means
c-electrons and f -electrons hybridize and develope quasiparticles. This suggests the onset of lattice
coherence is due to the Kondo exchange. Second, long-range magnetic ordering suppresses resistivity
when lattice coherence is developed. This can be interpreted as loss of spin disorder scattering because
magnetic ordering locks in the orientation of spin such that the Kondo exchange process is weakened.
Conclusions will be given by more detailed investigations in the next chapter. Fig.(4.3) shows the
resistivity and the magnetization as functions of temperature and impurity concentration x. Long
range magnetic ordering take place below T ∗. Therefore, we conclude that the lattice coherence
is important to antiferromagnetism. It can be seen from Fig.(4.4), in which there is no impurity
concentration, that the resistivity of the AFM phase much smaller than that of the PM phase.

To the end, the Mott-Ioffe-Regel limit [16, 91, 92] is used to test if charge carriers in the AFM state
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can be considered as quasiparticles by comparing our resistivity with the MIR resistivity

ρ−1
MIR = σMIR =

1

D

∫ D

0
σ (ω) dω, (4.2)

where σ (ω) is the optical conductivity and D is the half band width. If the resistivity is larger than
the ρMIR, we cannot think our system has coherent transport of quasiparticles anymore because the
mean free path is shorter than the inter-particle distance. Optical conductivity σ (ω) will be calculated
in chapter 5 and here we simply use the result. Fig.(4.5) shows the ρ and the ρMIR as functions of
temperature and impurity concentration. This result suggests that at low temperature, charge carriers
can be considered as quasiparticles in the Mott-Ioffe-Regel limit. In the next chapter, the f -electron
dispersion relation shows that for sufficiently high temperature, lattice coherence disappears in our
system.

Combining the magnetization and the resistivity as functions of temperature and impurity concen-
tration x, it is possible to construct the phase diagram.

4.3 Phase Diagram

The phase diagram of our Anderson lattice model as a function of temperature and impurity con-
centration x is shown in Fig.(4.6). The AFM phase (blue) is seperated from the PM phase (pink)
at low temperature. T ∗ is the onset temperature of lattice coherence. Above T ∗ (the white area), it
is a PM state with incoherent scattering between local moments of f -electrons and conduction band
c-electrons. It can be seen that the lattice coherence is important to the magnetic ordering. The phase
diagram shows that there is a critical concentration xc between x = 0.3 and x = 0.35. More detailed
investigations in the region close to xc will be shown in chapter 6. It also shows that the lattice co-
herence disappears at x∗ = 0.5. This phase diagram, is consistent with that of the Ce1−xLaxCu2Ge2

[1], shows that it is possible to have robust lattice coherence and magnetization with respect to high
impurity concentration.
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4 Phase Diagram and Lattice Coherence

Figure 4.2: Resistivities as functions of temperature and impurity concentration x in the PM and
the AFM phases. The gray squares and the red circles represent the resistivity in
the PM and the AFM phases, respectively. Two phenomena can be observed. First,
including the AFM phase does not affect the onset of lattice coherence. Second,
long-range magnetic ordering suppresses the resistivity when the lattice coherence is
developed. This can be interpreted as loss of spin disorder scattering because magnetic
ordering locks in the orientation of spin such that the Kondo exchange process is
weakened. Lattice coherence temperature is defined as the temperature corresponding
to the maximum of the resistivity.
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Figure 4.3: Resistivity and magnetization as functions of temperature at impurity concentration
x = 0.0 and x = 0.15. Blue squares and magenta diamonds represent the resistivity
and the magnetization, respectively. The long-range magnetic ordering and the lattice
coherence take place at the same temperature. Therefore we conclude that the lattice
coherence is important to the antiferromagnetism.
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Figure 4.4: Resistivities as functions of temperature at impurity concentration x = 0.0 in the PM
and the AFM phases. The gray squares and the red circles represent the resistivities
in the PM and the AFM phases, respectively. Here we want to emphasize that the
magnetic ordering strongly suppresses the resistivity.

Figure 4.5: MIR resistivity ρMIR (gray dots) and AFM resistivity ρ (red dots) as functions of
temperature and impurity concentration x. The obtained ρMIR is consistent with
other heavy fermion compounds [16]. This result suggests that at low temperature,
charge carriers can be considered as quasiparticles in the Mott-Ioffe-Regel limit. In
the next chapter, the f -electron dispersion relation shows that for sufficiently large
temperature, lattice coherence disappears in our system.
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Figure 4.6: Phase diagram of our Anderson lattice model as a function of temperature and im-
purity concentration x. An AFM phase (blue) is seperated from a PM phase (pink)
at low temperature. Above T ∗ (the white area), it is a PM state with incoherent
scattering between local moments of f -electrons and conduction band c-electrons. A
quantum phase transition takes place close to x ∼ 30%. Meanwhile, the lattice co-
herence disappears at impurity concentration x = 50%. This diagram is consistent
with that of the Ce1−xLaxCu2Ge2 [1]. Our result suggests that the lattice coherence
is crucial to the long-range magnetic ordering.
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5 Chapter 5

Single Particle and Optical Excitation

In this chapter, a general physical picture of the obtained AFM heavy fermion system will be given.
To achieve our goal, various quantities such as the spectral function, the dispersion relation, the self
energy, and the optical conductivity will be investigated systematically.

5.1 f -Electron Spectral Function

In this section we exam the f -electron spectral function to investigate the difference between single
particle excitations in the AFM and the PM phases. From Fig.(5.1), it can be seen that in the AFM
phase a gap is opened at the Fermi level between the two spin states and the peaks of the spectral
functions are shifted away from the PM Friedel-Anderson resonance. The gap in the AFM spin up
spectral function coincides with the maximum of spin down state. Hence in the AFM phase, the spin
up and down states avoid each other and the electron-electron scattering is reduced. Therefore, the
resistivity can be significantly decreased by effectively reducing the Coulomb interaction. Moreover,
the spin dependent single particle excitations close to the Fermi level suggest non-static Kondo coupling
because the Kondo singlet requires the spin up and down states be on an equal footing. Because the
static Kondo singlet is short lived, if it still exists, it cannot be the main mechanism for the reduction
in the resistivity by screening local spins; therefore, it can be concluded that the low resistivity is
mainly due the formation of the magnetic ordering. This point of view is supported by the dispersion
relations and the hybridization functions shown later.

It can be seen that close to the QCP, the AFM and the PM spectral functions converge. As a result,
the static Kondo singlet can be expected on the other side of the QCP.

Here we ask two questions: 1. How do we know when the f -electrons evolve from the itinerant
wave-like state to the atomic particle-like state? 2. What causes the crossover? Fig.(5.2) shows the
f -electron spectral functions at two different impurity concentrations: 0% and 99%. From the spectral
functions, it is impossible to tell the difference between them experimentally. Therefore, other methods
must be used to tell when the f -electrons are localized again. In section 5.5.4 we will show that the
electromagnetic response is a useful tool to distinquish the duality of the f -electron state. We will also
try to give an answer to the second question based on our results.

In the end of this section, analysis based on the dispersion relations in the PM and the AFM phases
will be used to investigate the characters of the lattice coherence. The PM phase will be analyzed first
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Figure 5.1: f -electron spectral function Afσ = − 1
π=G

f
σ

(
ω
D

)
as a functions of frequency at zero

temperature at the impurity concentration x = 0.0 and x = 0.30 in two different
phases. Black line, red line, blue line represent the AFM spin up state, the AFM spin
down state, the PM state, respectively. The gap in the AFM spin up spectral function
coincides with the maximum of the spin down state. Hence, in the AFM phase spin up
and down states avoid each other and the Coulomb interaction is effectively reduced.
By increasing the impurity concentration, these three spectral functions converge close
to the QCP.
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Figure 5.2: f -electron spectral function Afσ = − 1
π=G

f
σ

(
ω
D

)
as a functions of frequency at zero

temperature at impurity concentration x = 0.0 and x = 0.99 in the PM phase. Black
line and red line represent x = 0% and x = 99%, respectively. From this result we
know that it is impossible to tell if the system has lattice coherence by the spectral
function at low temperature. Therefore, other experiments should be used to distin-
guish the particle-wave duality of the f -electron state.
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5 Single Particle and Optical Excitation

Figure 5.3: (a) The c-electron (green line) and the f -electron (pink line) dispersion relations
before hybridization. (b) By including interaction between the c-electron and the f -
electron, they develop a two bands structure indicated by the red line and the blue
line. Interband transition takes place between these two bands and can be used as an
indicator for the lattice coherence.

so a clearer picture can be established.

5.1.1 PM Phase Dispersion

In Fig.(5.3), we use a toy model to illustrate how the f-electrons and the c-electrons hybridize. In
Fig.(5.3.a) it shows the c-electron and the f -electron dispersion relations before hybridization. When
they hybridize, they develop a two bands structure indicated by the red line and the blue line shown in
Fig.(5.3.b). Interband transition takes place between these two bands and can be used as an indicator
for the lattice coherence. Although this is an overly simplified picture which does not include the many
body effect, it captures the necessary ingredients of band hybridization and help us understand the
more complicated case in which the many-body effect comes in.

At x = 0.0, a quasiparticle state at energy εk = ε∗ is formed which implies a strongly renormalized
Fermi liquid quasiparticle shown in Fig.(5.4). With increasing impurity concentration, single particle
excitations gradually lose quasiparticle character and become localized indicated by the broadening of
the extended red region. When the impurity concentration is sufficiently high, the excitation spectrum
extends over all εk and the f -electron state is localized. The evolution of the quasiparticle state as a
function of frequency at various impurity concentrations x at zero temperature is shown in Fig.(5.5).

From the f -electron dispersion relation, the formation of the Fermi liquid quasiparticle can be seen
clearly; therefore, we may ask the question that what happens close to the maximum of the PM
resistivity shown in the last chapter. The temperature dependent f -electron dispersion relation of
x = 0.0 is shown in Fig.(5.6). It can be seen that close to the maximum of the resistivity, the lattice
coherence breaks down.

Based on the conclusions obtained from this section, we continue our analysis in the AFM phase.
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5.2 Self Energy

Figure 5.4: Zero temperature f -electron dispersion relation Af = − 1
πG

f
(
ε
D ,

ω
D

)
at impurity con-

centration x = 0 in the PM phase. A strongly renormalized Fermi-liquid quasiparticle
is formed with εk

D = −0.8 indicating the f -electrons behave as waves and develope the
lattice coherence.

5.1.2 AFM Phase Dispersion

In the AFM phase, the zero temperature f -electron dispersion relation shows the spin dependence
at impurity concentration x = 0.0 in the AFM state as can be seen in in Fig.(5.7). Both the spin
up and down states develope the strongly renormalized quasiparticles. However, they have different
characters. The spin up state is insulating and the spin down state is itinerant. A gap is opened close to
the Fermi level in the spin up state and this is consistent with the spin up f -electron spectral function
shown in Fig.(5.1). The dispersion relation of the spin down state indicates a fast group velocity:.

vg =
∂ω

∂k
. (5.1)

Hence the spin down quasiparticle has a strong dynamical character. By increasing the impurity
concentration, it can be seen in Fig.(5.8) that the spin up and the spin down dispersion relations
converge close to the QCP. The convergence suggests that the AFM state is suppressed and the static
Kondo singlet reemerges close to the QCP.

5.2 Self Energy

In this section we investigate the reduction of the resistivity in the AFM state from the perspective
of the self energy.

The electron scattering strength can be analyzed via the imaginary part of the impurity averaged
self energy, which includes both the electron-electron scattering and the electron-impurity scattering.
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5 Single Particle and Optical Excitation

Figure 5.5: Evolution of the f -electron dispersion relation Af = − 1
πG

f
(
ε
D ,

ω
D

)
at zero temper-

ature in the PM phase at several different the impurity concentrations. The lattice
coherence is sabotaged with increase in the impurity concentration. For sufficiently
large impurity concentration, the lattice coherence disappears and the f -electrons be-
come particle-like.
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5.2 Self Energy

Figure 5.6: Evolution of the f -electron dispersion relation Af = − 1
πG

f
(
ε
D ,

ω
D

)
at impurity con-

centration x = 0 in the PM phase at several different temperatures. The lattice coher-
ence is suppressed with the increase in temperature. For sufficiently high temperature,
the lattice coherence disappears and the f -electrons become particle-like.
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5 Single Particle and Optical Excitation

Figure 5.7: Zero temperature spin dependent f -electron dispersion relation Afσ = − 1
πG

f
σ

(
ε
D ,

ω
D

)
at impurity concentration x = 0 in the AFM phase. Both the spin up and down
states develope strongly renormalized quasiparticles. However, they have different
characters. The spin up state is insulating and the spin down state is itinerant. A
gap is opened close to the Fermi level in the spin up state and this is consistent with the
spin up f -electron spectral function shown in Fig.(5.1). The dispersion relation of the
spin down state indicates a fast group velocity; therefore the spin down quasiparticle
has a strong dynamics character.
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5.2 Self Energy

Figure 5.8: Zero temperature spin dependent f -electron dispersion relation Afσ = − 1
πG

f
σ

(
ε
D ,

ω
D

)
in the AFM phase at the impurity concentrations x = 0.10, 0.20, 0.315. Both the
lattice coherence and the difference in the dispersion relation are suppressed with
increase in the impurity concentration x. For sufficiently high impurity concentration,
the f -electron dispersion relations converge close to the QCP. As a result, the spin
up and down states are degenerate. Therefore, the magnetic ordering disappears and
the static Kondo singlet reemerges.
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5 Single Particle and Optical Excitation

To illustrate the effect of the impurity concentration on the scattering rate in the AFM state, the zero
temperature ratios between the imaginary part of the spin dependent impurity averaged self energy in
the AFM stateΣf,AFM

σ and the impurity averaged self energy Σf,PM in the PM state as a function of
the impurity concentration are shown in Fig.(5.9). It can be seen that the AFM state reduces both the
electron-electron and electron-impurity scattering. The reason for the decrease in the effective Coulomb
interaction is provided in section 5.5.1 and we want to discuss the physics behind the reduction in the
impurity scattering strength.

An impurity can be effectively considered as a potential barrier for the quantum coherence state. In
the introductory quantum mechanics class, we learned that for a quantum state with energy smaller
than that of a potential wall, there is a finite probability for the state to penetrate through the wall
and the result is energy dependent: the higher the energy of the quantum state is, the higher the
chance to move to the other side of the wall. In the previous section it was shown that the quantum
coherence state in the AFM phase has a strong dynamical charater which means that it has a wider
energy profile than that of the quantum state in the PM phase. Therefore, the quantum state in the
AFM phase has a higher probability to pass through the impurity barrier. As a result, the impurity
scattering is relatively weak in the AFM phase.

5.3 cf -Hybridization

By investigating the occupation numbers of the f -electron and the c-electron, the properties of
cf -hybridization can be revealed.

Our previous results suggest that the static Kondo singlet state is not energetically favorable in
the AFM phase due to the difference between the spin up and down states. This perspective is also
supported by the hybridization function shown in Fig.(5.10). At x = 0.0 in the AFM state, the static
coupling between the f -electron spin down state and the c-electron state (the red line) are not stable
indicated by the relatively large value of the hybridization function Γ (0), which is defined in Chapter 3.
The f -electron spin up state and the c-electron state (the black line) are strongly coupled. Because the
Kondo coherence state requires both the f -electron spin up and down states to couple equally to the
c-electron state, the static Kondo coupling breaks down in the AFM phase at low temperature. Close
to the QPT, the spin up and down states become degenerate and the static Kondo singlet emerges.

Here we may ask what the interaction channel between the cf -hybridization is and the c-electron
spectral function is examed. Fig.(5.11) shows the zero temperature spectral functions of the f -electrons
and the c-electrons at zero impurity concentration. From the occupation number, it can be seen that
they are coupled antiferromagnetically.

In the next section, we will see that by measuring the optical conductivity with microwave spec-
troscopy and Fourier transform infrared spectroscopy (FTIR), more insights into the mechanism of the
AFM heavy fermion systems might be provided.

5.4 Optical Conductivity and f -sum Rule
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Figure 5.9: Zero temperature ratios between the imaginary part of the spin dependent impurity
averaged self-energy in the AFM stateΣf,AFM

σ and the impurity averaged self-energy
in the PM state Σf,PM as functions of frequency for several different impurity concen-
trations. AFM state reduces both electron-electron and electron-impurity scattering
in spin up and down states.

61



5 Single Particle and Optical Excitation

- 0 . 1 0 - 0 . 0 5 0 . 0 0 0 . 0 5 0 . 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

 

 

G/D

F r e q u e n c y / D

 A F M  U p
 A F M  D o w n
 P M

x  =  0 . 0

- 0 . 1 0 - 0 . 0 5 0 . 0 0 0 . 0 5 0 . 1 00 . 0 0

0 . 0 6

0 . 1 2

0 . 1 8

0 . 2 4

0 . 3 0

 

 

G/D

F r e q u e n c y / D

 A F M  U p
 A F M  D o w n
 P M

x  =  0 . 3 1 5

Figure 5.10: Zero temperature hybridization functions Γ in the AFM and the PM phases as func-
tions of frequency at the impurity concentrations x = 0.0 and x = 0.315. At x = 0.0
in AFM state, the static coupling between the f -electron spin down state and the
c-electron state (the red line) are not stable indicated by the relatively large value
of the hybridization function Γ (0). The f -electron spin up state and the c-electron
states (the black line) are strongly coupled. Close to the QCP, the spin up and down
states become degenerate.
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Figure 5.11: Zero temperature spectral functions of the f -electron and the c-electron at impurity
concentration x = 0.0. From the occupation number, it can be seen that f -electrons
and c-electrons are coupled antiferromagnetically.
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The real part of optical conductivity σxx
(
ω, T

)
can be written as [93]

σxx
(
ω, T

)
= −πe2

∑
σ

∫
dεΦxx (ε)

∫
dω′

f
(
ω′, T

)
− f

(
ω′ + ω, T

)
ω


Aσ

(
ω′, ε, T

)
Aσ

(
ω′ + ω, ε, T

)
(5.2)

with

Φxx (ε) =
∑
k

(
∂ε

∂kx

)2

δ
(
ε− εk

)
(5.3)

where Aσ
(
ω, ε, T

)
is the single particle c-electron dispersion relation and f

(
ω, T

)
is the Fermi dis-

tribution function. Then by the Kramers-Kronig transformation, the imaginary part of the optical
conductivity can also be obtained:

=
(
σ (ω)

)
= − 1

π
Pr

∫ ∞
−∞

dω′
<
(
σ
(
ω′
))

ω′ − ω
(5.4)

such that the optical conductivity is a complex quantity:

σ (ω) = σ1 (ω) + iσ2 (ω) (5.5)

By combining the real part and the imaginary part of the optical conductivity, the extended Drude
model (EDM) [17, 94, 95] yields analyze the effective mass m∗/m0 enhancement and the scattering
rate 1/τ (ω) of the system:

m∗

m0
=

Ω2

4πω

σ2

σ2
1 + σ2

2

(5.6)

1

τ
=

Ω2

4π

σ1

σ2 + σ2
2

(5.7)

with Ω the plasma frequency. Again we start with the PM optical conductivity to establish the
foundation for the analysis of the optical conductivity in the AFM state.

5.4.1 Optical Conductivity in PM Phase

Fig.(5.12) shows σ1 and σ2 as a function of frequency for different temperatures at impurity concen-
tration x = 0.0. It can be seen that at low temperature, σ1 develops a sharp Drude-like peak at low
frequency and a strong absorption at zero frequency is shown in σ2. This behavior indicates a metallic
state [96]. This result suggests that a strongly renormalized Fermi liquid is formed. By increasing tem-
perature, the sharp peak disappears and the high temperature optical conductivity can be fitted by the
classical Drude model, which can be seen in Fig.(5.13). The temperature dependence of the absorption
shows the evolution of electrons from a strongly renormalized Fermi liquid to a non-interacting metallic
state.
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In Fig.(5.14) the effective mass enhancement m∗/m0 as a function of frequency for different tem-
peratures at impurity concentration x = 0.0 are shown. At low temperature the c-electrons show the
strong mass renormalization and lose the heavy fermion character at high temperature. On the other
hand, the position of the maximum of 1/τ (ω) corresponds to the onset of the mass renormalization
and the peak feature indicates the temporal coherence. Therefore, this strong scattering process can be
interpreted as coherent dynamical Kondo scattering. The Kondo scattering loses its temporal coher-
ence by increasing temperature. For sufficiently high temperature, both the temporal coherence in the
Kondo scattering and the mass renormalization disappear. Therefore, it shows that the large effective
mass is connected with the dynamically coherent spin flip exchange interaction. The behaviors of the
effective mass and the scattering rate are consistent with the experimental results of various heavy
femion systems such as YbRh2Si2, CeRu4Sb12, and YbFe4Sb12 in the PM state [17, 97].

Next we investigate the optical conductivity as a function of frequency at zero temperature and
different impurity concentrations shown in Fig.(5.15). The increase in the impurity concentration
makes the system more insulator like and decreases the energy for the interband transition. While
σ2 (ω) shows that for sufficiently high impurity concentration, there is no absorption at zero frequency
which marks the crossover from the lattice coherent picture to the single impurity picture. This
crossover is also reflected by the effective mass and the scattering rate shown in Fig.(5.16). For the
impurity concentration between 40% to 50%, the effective mass flips its sign and the low frequency
scattering dominates. From Fig.(5.17) it can be seen clearly that static scattering rate increases as
a function of impurity concentration and for sufficiently large impurity concentration when interband
scattering vanishes, there is no lattice coherence. The f -electrons become atomic particle-like by
suppressing the interband scattering process.

5.4.2 Optical Conductivity in AFM Phase

Here we show the optical conductivity as a function of temperature and the impurity concentration
in the AFM phase. If we only look at Fig.(5.18), we might think there is nothing special about the AFM
phase compared with the PM phase from the perspective of optical conductivity. However, if we zoom
in σ2 (ω) down to the energy scale ω/D = 10−4, we see that in the AFM state there is an extra bound
state in Fig.(5.19). This excitation might be due to the Feshbach resonance as a result of coupling
of the cf -hybridization AFM and FM channels [98]. Fig.(5.20) shows the effective mass m∗

m0
and the

scattering rate of the c-electron as a function of temperature at impurity concentration x = 0 in the
AFM phase. Similar to the scattering rate in the PM phase, the Kondo spin flip also loses its temporal
coherence by increasing temperature and becomes incoherent above the lattice coherence temperature.
The negative effective mass can be interpreted as an absorption of the bound state. However, unlike
the interband scattering which is characterized by a peak in the scattering rate, this bound state is not
accompanied with the scattering rate and it can be interpreted as a Feshbach resonance [98]. Recently
a ultracold atomic system is proposed to observe the Kondo effect by the optical Feshbach resonance
[99]. Therefore, it should also be possible to detect the Feshbach resonance in the Kondo systems.

Fig.(5.21) shows the impurity concentration dependent optical conductivity in the AFM state at
zero temperature. Again, it seems there is no difference between the optical conductivities in the
PM and the AFM phase. Similar to the temperature dependent optical conductivity at the impurity
concentration x = 0.0 in the AFM state, the optical conductivity shows interesting behavior below
the energy scale ω

D = 10−4 in the imaginary part shown in Fig.(5.22). The effective mass shows the
itinerant heavy fermion behavior in the high energy region and something unexpected in the low energy
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Figure 5.12: (Upper figure) Real part of the optical conductivity σ (ω) of c-electron as a function
of frequency at impurity concentration x = 0.0 and several different temperatures in
PM phase. A strongly renormalized Drude peak is developed at low temperature at
zero frequency. By increasing temperature, the sharp Drude peak disappears. (Lower
figure) Imaginary part of optical conductivity σ (ω) of the c-electron as a function
of frequency at x = 0.0 and several different temperatures in the PM phase. At
low temperature there shows a strong absorption at zero frequency. The temperature
dependence of the absorption shows the evolution of the c-electrons from a strongly
renormalized Fermi liquid to a non-interacting charge carriers.
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Figure 5.13: Real part of high temperature optical conductivity σ (ω) of the c-electron (blue circies)
as a function of frequency at impurity concentration x = 0.0. It can be fitted by the
classical Drude model (red line).

region. While the behavior of the scattering rate is similar to that of the PM state, the Kondo exchange
becomes more static close to the QCP.

Finally, the effective masses and the scattering rates of the PM and AFM states are compared at
x = 0.0 and zero temperature shown in Fig.(5.24). First it can be observed that in the AFM phase,
the mass renormalization is much weaker than that of the PM phase. Second, in the AFM phase
the cf -hybridization gap is one order of magnitude larger than that of the PM phase. By having a
relatively large gap, the Kondo physics takes place at a higher frequency than that in the PM phase.
Most importantly, the sharper scattering peak in the AFM phase indicates a better temporal coherence
in the spin flip process.

Hence, it can be concluded that the decrease in the resistivities and the lattice coherence below the
coherence temperatures in the heavy fermion systems is due to dynamically coherent Kondo exchange
interaction. The better the temporal coherence, the better the lattice coherence.

5.4.3 f−Sum Rule

In order to check the validity of our results on the optical conductivity, the f -sum rule is applied:

1

π

∫ ∞
0

dωσ (ω) =
1

2

∑
k,σ

(
∂2εk
∂k2

x

)〈
nk,σ

〉
(5.8)

Fig.(5.25) shows that our results obey the f -sum rule for both the PM and the AFM phases.
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Figure 5.14: (Upper figure) Effective mass enhancement m∗/m0 of c-electron as a function of
frequency at impurity concentration x = 0.0 and several different temperatures in the
PM phase. At low temperature, the c-electrons show the strong mass renormalization
and loss the heavy fermion character at high temperature. (Lower figure) Scattering
rate of the c-electron as a function of frequency at impurity concentration x = 0
and several different temperatures in the PM phase. The position of the maximum
of the scattering rate corresponds to the onset of mass renormalization and the
peak feature indicates the temporal coherence. The system loses its coherent Kondo
scattering and the mass renormalization by increasing temperature. Therefore, it
can be concluded that the strong mass renormalization is due to the dynamically
coherent Kondo process..
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Figure 5.15: (Upper figure) Real part of zero temperature optical conductivity σ (ω) of the c-
electron as a function of frequency at several different impurity concentrations in the
PM phase. Increase in impurity concentration makes the system more insulator like
and decreases the energy of the interband transition. (Lower figure) Imaginary part
of zero temperature optical conductivity σ (ω) c-electron as a function of frequency
at several different impurity concentrations in the PM phase. For sufficiently high
impurity concentration, there is no absorption at zero frequency which marks the
disappearance of the itinerant state.
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Figure 5.16: (Upper figure) Effective mass enhancement m∗/m0 of the c-electron as a function
of frequency at zero temperature and several different impurity concentrations in the
PM phase. For sufficiently high impurity concentration, the effective mass changes
its sign. Therefore, the negative effective mass can be used as a signal indicating the
localization of charge carriers. (Lower figure) Scattering rate of the c-electron as a
function of frequency at zero temperature and several different impurity concentra-
tions in the PM phase. For sufficiently high impurity concentration, low frequency
scattering dominates.
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Figure 5.17: Static scattering rate (blue squares) and maximum interband scattering rate (red
circles) as a function of impurity concentration. It can be seen clearly that for suf-
ficiently high impurity concentration, static scattering process dominates the system
and the system loses lattice coherence.
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Figure 5.18: (Upper figure) Real part of the optical conductivity σ (ω) of the c-electron as a func-
tion of frequency at impurity concentration x = 0.0 and several different tempera-
tures in the AFM phase. A strongly renormalized Drude peak is developed at low
temperature at zero frequency. By increasing temperature, the sharp Drude peak dis-
appears and the high temperature σ1 (ω) can be fitted by the classical Drude model.
(Lower figure) Imaginary part of the optical conductivity σ (ω) of the c-electron as
a function of frequency at impurity concentration x = 0.0 and several different tem-
peratures in the AFM phase. At low temperature there is a strong absorption at zero
frequency. At first glance, we might think there is no difference beween the optical
conductivities in the PM and AFM phases.
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Figure 5.19: Imaginary part of optical conductivity σ (ω) of c-electron as a function of frequency
at impurity concentration x = 0.0 and several different temperatures in the low
frequency regime in the AFM phase. An extra absorption appears close to the Fermi
level. This excitation has an energy scale ω

D ∼ 10−5.
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Figure 5.20: (Upper figure) Effective mass enhancement m∗/m0 of the c-electron as a function
of frequency at impurity concentration x = 0.0 and several different temperatures
in the AFM phase. The negative effective mass can be interpreted as an absorption
of the bound state. (Lower figure) Scattering rate of the c-electron as a function
of frequency at impurity concentration x = 0.0 and several different temperatures
in the AFM phase. The position of the maximum of the scattering rate coincides
with the onset of the mass renormalization. Therefore, this strong scattering pro-
cess can be interpreted as the coherent dynamical Kondo scattering. Similar to the
scattering rate in the PM phase, the Kondo spin flip also loses its temporal coher-
ence by increasing temperature and becomes incoherent above lthe attice coherence
temperature.
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Figure 5.21: (Upper figure) Real part of the zero temperature optical conductivity σ (ω) of the
c-electron as a function of frequency at several different impurity concentrations in
the AFM phase. A strongly renormalized Drude peak is developed at low temperature
at zero frequency. Increase in the impurity concentration makes the system more
insulator like and decreases the energy of the interband transition. (Lower figure)
Imaginary part of the zero temperature optical conductivity σ (ω) of the c-electron
as a function of frequency at several different impurity concentrations in the AFM
phase. Zero frequency absorption becomes weaker by increasing the impurity concen-
tration. This can be interpreted as loss of lattice coherence with respect to increase
in the impurity concentration.
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Figure 5.22: Imaginary part of the optical conductivity σ (ω) of the c-electron as a function of
frequency at several different impurity concentration x in the low frequency regime in
the AFM phase. Extra absorption appears close to the Fermi level. The absorption
becomes weaker by increasing the impurity concentration.
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Figure 5.23: (Upper figure) Effective mass enhancement m∗/m0 of the c-electron as a function of
frequency at several different impurity concentration x in the AFM phase. (Lower
figure) Scattering rate of the c-electron as a function of frequency at several different
impurity concentration x in the AFM phase. The evolution of the scattering rate
suggests the the Kondo exchange become more static close to the QCP. However,
some coherent dynamical component still exists.

77



5 Single Particle and Optical Excitation

0 . 0 0 0 0 . 0 2 5 0 . 0 5 0 0 . 0 7 5 0 . 1 0 0- 2 5 0 0

0

2 5 0 0

5 0 0 0

7 5 0 0

1 0 0 0 0

1 2 5 0 0

1 5 0 0 0

1 7 5 0 0

 

 

m*
/m

0

F r e q u e n c y / D

 P M
 A F M

         x  =  0 . 0

         T / D  =  1 0 - 7

0 . 0 0 0 0 . 0 2 5 0 . 0 5 0 0 . 0 7 5 0 . 1 0 00

1

2

3

4

 

 

Sc
att

eri
ng

 Ra
te 

(nh
a/2

pm
0)

F r e q u e n c y / D

 P M
 A F M

         x  =  0 . 0

         T / D  =  1 0 - 7

Figure 5.24: (Upper) Effective mass m∗/m0 enhancement in PM and AFM phases at zero tem-
perature and impurity concentration x = 0. The mass renormalization in the AFM
phase is about one order of magnitude smaller than that in the PM phase. (Lower)
Scattering rate in the PM and the AFM phases at zero temperature at impurity con-
centration x = 0. The interband scattering rate is sharper in the AFM phase. By
having a relatively large gap, the Kondo exchange in the AFM phase takes place at
a much higher frequency than that in the PM phase.
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Figure 5.25: (Upper figure) f -sum rule is checked as a function of temperature at impurity con-
centration x = 0 in both the PM and the AFM phases. (Lower figure) f -sum rule
is checked as a function of the impurity concentration x at zero temperature in both
the PM and the AFM phases. The results show that our results perfectly satisfy the
f -sum rule.
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Figure 5.26: Scattering rate in the AFM phase at zero temperature and zero impurity concen-
tration. For a typical heavy fermion system, nha

2πm0
is of order 2.9 ∗ 1014(s−1). The

experiment shows that the maximum of scattering rate of YRh2Si2 is 5 ∗ 1014(s−1)
and the result from numerical gives 1013(s−1). The inset is taken from [17].

5.4.4 Comparison to the experiment

How reasonable are the results of the calculation? Fortunately, experimental data of scattering rate
of the heavy fermion system YRh2Si2 is available [17]. For a heavy fermion system, the factor nha

2πm0
is

of the order of 2.9 ∗ 1014(s−1) and Fig.(5.26) shows that both the behavior and the order of magnitude
agree well with that of the experiment.
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6 Chapter 6

Scaling of QCP

Close to the critical point, long wavelength fluctuations determine the behavior of the systems. It is
a surprise to see that very different systems can be described by the same set of parameters which are
called critical exponents. For example, the liquid-gas critical phase transition and the mean field Ising
model share the same critical exponents. Each set of parameters represents a universality class. This
phenomena can be interpreted as the details of the system become irrelevant and only macroscopic
properties are important. Theoretically critical exponents appears in two ways: first, the power laws of
physical quantities because there is no typical length scales close to a critical point; second, the scaling
law in which there is a typical length scale and the exponents are connected by the hyperscaling laws.
For a system with effective dimensionality above (not including equal) the upper critical dimension,
mean field theory dominates and the scaling laws are not necessarily valid. Scaling laws automatically
guarantee power laws but not the other way round.

The framework of DMFT + CPA has a root in the mean field theory; therefore, scaling laws do not
necessarily hold. However, in experiment scaling like behavior in quantum critical antiferromagnets
CeCu5.9Au0.1 was observed [18]. While the upper critical dimension of the corresponding quantum
critical point is unknown, the effective dimensionality are very likely to exceed it due to the existence of
the dynamical exponent. This is the case at least for the known Hertz-Millis theory of quantum critical
points. As a result, it is possible that CeCu5.9Au0.1 has a mean field quantum critical point. Therefore,
we calculate experimentally measurable quantities in the quantum critical regime and analyze them
by the scaling hypothesis of magnetization:

M
(
B, x, T

)
= b−

β
νM

(
byB, b

1
ν x, bzT

)
(6.1)

with B the conjugate field to the AFM ordering, x the impurity concentration relative to the QCP,
and T the temperature. Magnetization is defined as the difference between spin up and spin down
occupation number on f -electron state:

M ≡

∣∣∣nf↑ − nf↓ ∣∣∣
2

(6.2)

To discuss QCP that can be reached by changing impurity concentration x, we set B = T = 0:

M (x) = b−
β
νM

(
b

1
ν x

)
(6.3)
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Because b is a free parameter, we choose
(
b∗
) 1
ν x = 1 such that

M (x) = xβM (1) (6.4)

The power law of the susceptibility as a function of conjugate field can be measured by applying a
staggered magnetic field (q =Q with Q the antiferromagnetic wave vector) at QCP at zero temperature:

χ
(
B
)
≡

∂M
(
B
)

∂B

= b−
β
ν

+yχ
(
byB

)
(6.5)

This time we choose
(
b∗
)y
B = 1:

χ
(
B
)

= B
β
yν
−1
χ (1) ≡ B

1
δ
−1χ (1) (6.6)

By including temperature, Eq.(6.5) becomes

χ
(
B, T

)
= b−

β
ν

+yχ
(
byB, bzT

)
(6.7)

Again, by choosing
(
b∗
)y
B = 1, we have

χ
(
B, T

)
= B

1
δ
−1χ

(
1,

T

B
zν
δβ

)
≡ B

1
δ
−1Φ

(
T

Bκ

)
(6.8)

By applying data collapse on susceptibility, κ can be obtained. By fitting our data, β, δ, and κ can
be obtained and we assume they may be used to calculate the exponents shown in Eq.(6.1). However,
Eq.(6.1) may not be true. To avoid confusion, we should bear in our mind that those power laws are
hold and Eq.(6.8) is observed in the experiment and we want to test our results with it. In the following
section, it will be shown how to obtain the exponents from the results of our numerical simulation and
experiment.

6.1 Order Parameter Scaling

First we measure β from the magnetization close to the QCP shown in Fig.(6.1). To fit the data,
both sides of Eq.(6.4) are taken logarithmically:

log10M = β log10 (xc − x) + α (6.9)

Linear regression is applied to minimize

Q =
∑
i

(
logMi − α− β log (xc − x)

)
(6.10)

and we obtain
βbest = 0.4910± 0.0300, (6.11)

with 95% confidence level and
xc = 0.3160 (6.12)
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6.1 Order Parameter Scaling

Figure 6.1: (a) Magnetization M as a function of impurity concentration x at zero temperature.
(b) Magnetization is fitted by log10M = β log10 |xc − x| + α with data points from
the encircled region, critical exponent β, critical concentration xc . Magnetization is
successfully fitted with β = 0.4910±0.0300 with 95% confidence level and xc = 31.60%.

Here we see that the obtained β is the result of mean field βMF = 0.5. The linear regression fit can
be seen in the inset of Fig.(6.1). The obtained QCP indicates a AFM phase surviving up to 30% of
non-magnetic impurity doping concentration. Our result suggests two possible explanations for this
robust AFM phase. First, the development of lattice coherence reduces the sensitivity to substitution
of magnetic atoms with non-magnetic atoms; second, mean field approximation suppresses spatial
fluctuations and overly estimates the critical concentration. In the following calculations we choose
non-magnetic impurity concentration at x∗ = 31.56% . To investigate the properties of the QCP, a
staggered magnetic field is applied to the system at concentration x∗.

In Fig.(6.2) we show staggered susceptibility χs as a function of temperature and magnetic field.
It can be seen that the susceptibility increases with respect to decrease in magnetic field at low tem-
perature and it is magnetic field independent at high temperature. Its empirical behavior at low
temperature is consistent with the divergence behavior indicated by power law, while the high tem-
perature behavior is consistent with Curie-Weiss law. To show that our result satisfies the power law
behavior with respect to conjugate field, we measure critical exponent δ by investigating susceptibility
at low temperature.

Fig.(6.3) shows the susceptibility as a function of staggered magnetic field at zero temperature. The
data is fitted by taking both sides of Eq.(6.6) logarithmically:

log10 χ
(
B
)

=

(
1

δ
− 1

)
log10B + C (6.13)

with C a constant. The fitting shows that

1

δ
− 1 = −0.7368± 0.0050 (6.14)

with 95% confidence level. The resulting δ = 3.7994 ± 0.0722 which is much larger than what is
expected from mean field theory δMF = 3. It is clear from Fig.(6.4) that the critical exponent of
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Figure 6.2: (a) Staggered susceptibility χs as a function of temperature and magnetic field at
x∗ = 31.56%. By decreasing magnetic field, susceptibility increases. (b) Inverse
susceptibility χ−1

s as a function of temperature and magnetic field at x∗ = 31.56%.
Considering that the magnetic field extends over two order of magnitude, high tem-
perature susceptibility can be considered as magnetic field independent.

zero temperature susceptibility χs
(
T = 0, B

)
cannot be δMF . This result might be due to either NRG

systematic error or the QCP is a non-Gaussian fixed point.
To the end of the section, we want to obtain the universal function Φs of susceptibility by obtaining

κ. To obtain κ in Eq.(6.8) data collapse is applied on susceptibilities subjected to various staggered
magnetic fields ranging from 0.25T to 16T by minimizing the following quantity:

∑
ij

log10

B1− 1
δ

i χ

(
T

Bκ
i

)− log10

B1− 1
δ

j χ

(
T

Bκ
j

)
 (6.15)

Because the magnitude of susceptibility at different temperatures is over three decades, logarithm is
used to balance the weight of contribution to Eq.(6.15). The obtained κ which minimizes Eq.(6.15) is

κ = 0.8501. (6.16)

Combining Eq.(6.8) and Eq.(6.14), we obtain

χ
(
B, T

)
= B−0.7368Φs

(
T

B0.8501

)
. (6.17)

The result of data collapse is shown in Fig.(6.5). The equation above suggests that in the high tem-
perature region in which susceptibility is magnetic field independent, susceptibility follows a modified
Curie-Weiss law:

χ
(
T
)
∼ 1

T 0.8667
(6.18)

These critical exponents should be tested by experimental measurements. However, the magnetic
field used here is a staggered magnetic field which can be produced by neutron wave but is difficult
to be carried out in practice. As a result, in the next section a uniform magnetic field is applied such
that our results are experimentally measurable.
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Figure 6.3: Staggered susceptibility χs as a function of magnetic field at zero temperature at
x∗ = 31.56%. χs versus B is shown in a log-log plot. It demostrates that χs

(
B
)

satisfies power law χs
(
B
)
∼ B

1
δ
−1. Linear regression gives the critical exponent

δ = 3.7994± 0.0722 with 95% confidence level.
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with δ = 3.7994 and κ = 0.8501. This result

implies a modified Curie-Weiss law χs
(
T
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∼ T−0.8667 at high temperature.
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6.2 Uniform Susceptibility

Fig.(6.6) shows the zero temperature susceptibility which also increases with respect to decrease in
magnetic field. Since uniform magnetic field is not conjugated to the ordering parameter, neither the
scaling law nor power law hold in general. However, the uniform susceptibility χu (q = 0) of AFM
system CeCu5.9Au0.1 at QCP can be connected to staggered susceptibility χs via a constant [18, 100]:

χ−1
u − χ−1

0 = χ−1
s (6.19)

Therefore, we also assume that Eq.(6.19) holds for our system and test if this relation is valid in our
case. From the scaling law of χs shown in Eq.(6.8), Eq.(6.19) becomes

1

χ−1
u − χ−1

0

= B
1
δ∗−1Φ

(
T

Bκ∗

)
(6.20)

At zero temperature Eq.(6.20) becomes

1

χ−1
u − χ−1

0

∼ B
1
δ∗−1 (6.21)

and linear regression

log10

(
χ−1
u − χ−1

0

)
=

(
1− 1

δ∗

)
log10B + C (6.22)

is applied to find χ−1
0 and critical exponent δ∗. The result is shown in Fig.(6.7) with

1− 1

δ∗
= 0.7393± 0.0087 (6.23)

and χ−1
0 = 3.0281. Our result δ∗ = 3.8358 ± 0.1280 suggests that there is no significant difference

between critical exponents δ and δ∗. To this end, data collapse base on Eq(6.15) and Eq.(6.20) is
used to obtain κ∗ and the universal function Φu with uniform magnetic field. The result is shown in
Fig.(6.8) and κ∗ which optimizes the data collapse is

κ∗ = 0.9522. (6.24)

As a result, the uniform susceptibility satisfies the equation

1

χ−1
u − 3.0281

= B−0.7393Φu

(
T

B0.9522

)
(6.25)

This equation gives us several interesting results. First, the T/B scaling which is observed at the local
quantum critical point [18], at which both the Néel temperature and the onset energy scale E∗loc of static
Kondo singlet vanishes. At high temperature, when the susceptibility is magnetic field independent,
Eq.(6.8) can be written as

χ−1
u

(
T
)

=
T 0.7764

C
+ 3.0281 (6.26)

which suggests a modified Curie-Weiss law, similar to the staggered field susceptibility. This high
temperature behavior shows the most interesting result of this thesis: the exponent of temperature is
consistent with that of CeCu5.9Au0.1 [18], whose corresponding exponent is reported as 0.75 ± 0.05.
While quantum Monte Carlo simulations in which the local moment is connected to both fermionic
bath (Kondo coupling) and bononic bath (RKKY interaction), suggests the exponent be 0.72 [25].
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Figure 6.6: Uniform susceptibility χu as a function of temperature and magnetic field at x∗ =

31.56%. By decreasing temperature, susceptibility increases.

6.3 Discussion

If the results are examed more carefully, we found that our susceptibility is much more temperature
sensitive as can be seen in Fig.(6.9). This suggests an effectively small g-factor in our system. But we
should bear in mind there are some fundamental differences between these two systems. In our system,
cerium spins are removed by impurities. While in the CeCu6−xAux the spins remain intact. Here we
predict that in the quantum critical regime, the g-factor of the Ce1−xLaxCu2Ge2 should be small and
there is the local scaling.

Based on the critical exponents obtained from the previous sections, we are able to calculate other
critical exponents which can also be probed from the experiements. It is reported that in local quan-
tum critical AFM system YbRh2

(
Si0.95Ge0.05

)
2
, the Grüneisen ratio has a power law temperature

dependence

Γ =
1

T x
(6.27)

with x = 1
zν = 0.7± 0.1 [27] below 0.3K. It is also reported that in the field induced quantum critical

system YbRh2Si2 magnetic Grüneisen ratio is 0.75 [24, 26]. In our numerical simulation, based on the
obtained κ, β, and δ we have

x =
1

zν
=

0.6306± 0.0403 q =Q

0.5576± 0.0388 q = 0
(6.28)

which is in good agreement with the experiment.
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Figure 6.7: Uniform susceptibility χu as a function of magnetic field at zero temperature and
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order parameter, the uniform susceptibility does not follow scaling laws in general.
Here power law for zero temperature χu is used: 1

χ−1
u −χ−1

0

∼ B
1
δ∗−1 [18]. Linear

regression gives critical exponent δ∗ = 3.8358± 0.1280.
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(
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with δ∗ = 3.8358 and κ∗ =

0.9522. This result implies a modified Curie-Weiss law χu
(
T
)
∼ T−00.7764 at high

temperature.
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Figure 6.9: From these two pictures, we see that susceptibility from the calculation is much
more temperature sensitive compared with that of CeCu6−xAux (Fig.(b)) [18].
There are fundamental differences between Ce1−xLaxCu2Ge2 and CeCu6−xAux.
In Ce1−xLaxCu2Ge2 , cerium spins are removed by impurities. While in the
CeCu6−xAux the spins remain intact.

Here we see that the differences between our critical exponents at two different antiferromagnetic
wave vectors are very small. As a result, it can be assumed that critical exponents are wave vector
independent and the obtained quantum critical point is a local quantum critical point (LQCP). Hence,
our result suggests that heavy femion AFM LQCP can be described by PAM.

We would like to investigate the dimensionality z of temporal dimension in both cases of staggered
and uniform magnetic field. Because this is a mean field calculation, it is assumed that ν = νMF = 1

2 .
From Eq.(6.8), it follows that

z =
κδβ

ν

=

3.1717± 0.2029 q =Q

3.5867± 0.2497 q =0.
(6.29)

Next we give our predictions for the exponents of specific heat C by assuming spatial dimensionality
d = 3:

C ∼ T
d
z ≡ T γ (6.30)

and

lim
T→0

C

T
∼ |x− xc|ν(d−z) ≡ |x− xc|−α (6.31)

Spatial dimensionality d is assumed to be three for Ce1−xLaxCu2Ge2 and it follows that

γ =

0.9459± 0.0605 q =Q

0.8364± 0.0583 q =0
(6.32)
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Definition q =Q q =0

limT→0
C
T ∼ |x− xc|

ν(d−z) ≡ |x− xc|−α α 0.0859± 0.1015 0.2934± 0.1249

M = (xc − x)β β 0.4910± 0.0300 0.4910± 0.0300
1

χ−1−Q ∼ B
1
δ
−1 δ 3.7994± 0.0722 3.8358± 0.1280

C ∼ T
d
z ≡ T θ θ 0.9459± 0.0605 0.8364± 0.0583

Temporal Dimensionality z 3.1717± 0.2029 3.5867± 0.2497
1

χ−1−χ−1
0

= B
1
δ
−1Φ

(
T
Bκ

)
κ 0.8501 0.9522

Table 6.1: Critical exponents obtained from NRG + DMFT self-consistent calculation. Here we
assume that the spatial dimensionality d = 3 and the critical exponent ν of the cor-
relation length is 1

2 . χ−1
0 is zero for staggered susceptibility and a finite number for

uniform susceptibility.

α =

0.0859± 0.1015 q =Q

0.2934± 0.1249 q =0.
(6.33)

Is choosing d = 3 compatible with mean field theory for Ce1−xLaxCu2Ge2? The lattice structure of
CeCu2Ge2 is a tetragonal body centered cube with lattice constant a = b = 4.17 and c = 10.21 [101].
For each unit cell, cerium atoms sit at the center and eight corners and are connected by gemanium
and copper atoms. Assuming that all Ce couple to Ge and Cu with equal strength, the coordination
number is 16 which is sufficiently good for applying DMFT. Furthermore, high dimensionality and
anisotropy of the lattice also strengthen the validity of mean field framework.

In YbRh2Si2, experimental measurement shows that α = 0.3±0.01 [26] and scaling analysis suggests
γ = 0.75 [24, 26]. Exponents are summarized in Table (6.1).

In this theoretical work on the dilute itinerant antiferromagnet, we successfully recover the phase
diagram and we see the crossover from a lattice system to a single impurity system. It is interesting
to see that susceptibilities follow the local scaling and critical exponents are in good agreement with
those obtained from experiments despite it is a mean field calculation and Fermi quasiparticle is well
defined. One possible explaination is that order parameter fluctuations grow along the direction of
time but not in space [40, 102]. We hope this theoretical work will provide more insights into the
metallic antiferromagnetic quantum critical point and make some contributions (if any) in building the
theory for quantum critical materials.
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