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Abstract 

Through an exhaustive process of verification, validation and uncertainty quantification, this 

dissertation performs sensitivity analysis, uncertainty quantification up to 3rd-order 

(including covariance and skewness), and forward and inverse predictive modeling for a 

dissolver model of interest to nonproliferation activities regarding aqueous reprocessing of 

spent nuclear fuel. This dissolver model comprises sixteen nonlinear differential equations, 

which include 1291 model parameters characterizing the underlying physical and chemical 

processes. The original results presented in this dissertation highlight the effects of 

uncertainties which necessarily characterize measurements and computations, and the 

reduction in the predicted uncertainties by combining optimally the experimental and 

computational information. 

The uncertainties in the dissolver model parameters are propagated to compute uncertainties 

in the model responses by using first-order sensitivities (i.e., functional derivatives) of the 

respective responses to the model parameters. The first-order sensitivities to all model 

parameters of the time-dependent acid concentrations are computed by applying the adjoint 

sensitivity analysis method for nonlinear systems with function-valued responses originally 

conceived by Cacuci (1981a). Furthermore, this work also develops a reduced-order 

surrogate dissolver model, and extends Cacuci’s original adjoint technique to enable the 

computation of second-order sensitivities. As shown in this work, the second-order 

sensitivities are essential for computing the skewness (i.e., third-order moment) of the 

response distribution, highlighting the latter’s asymmetrical (non-Gaussian) features.  

The response sensitivities also serve as the weighting functions for combining experimental 

and computational information for the dissolver model using the comprehensive predictive 

modeling methodology originally developed by Cacuci and Ionescu-Bujor (2010b). The only 

experimental information available in the open literature for this dissolver model are the 

measurements performed by Lewis and Weber (1980) of the nitric acid in the compartment 

furthest away from the inlet. Using this experimental information with the forward and 

inverse predictive modeling formalism is shown to yield optimal predictions throughout the 

entire dissolver, reducing everywhere the uncertainties in these predicted results. This stems 
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from the fact that the predictive modeling methodology combines and transmits information 

simultaneously over the entire phase-space, comprising all time steps and spatial locations. 

Another remarkable original result obtained in this dissertation is the innovative use of the 

predictive modeling framework of Cacuci and Ionescu-Bujor (2010b) in an inverse 

prediction mode for inferring unknown model parameters (specifically: the time-dependent 

inlet boundary condition) from measurements of the acid concentration in the compartment 

furthest from the inlet. This is particularly useful in applications where inferences on a target 

of interest can only be made from indirect measurements.  

In summary, this dissertation presents an efficient mathematical model for a dissolver of 

spent nuclear fuel of interest to international nuclear safeguards and nonproliferation, and 

demonstrates the procedure for rigorous uncertainty quantification and validation of this 

model. The dissertation also introduces an innovative adjoint procedure for computing 

second-order response sensitivities to model parameters, and highlights the latter’s essential 

role for computing non-Gaussian features of the distributions of model responses of interest. 

The methodology demonstrated in this dissertation will serve as a role model for rigorous 

forward and inverse predictive modeling of other nuclear facilities of interest to international 

nuclear safeguards and nonproliferation, aiming at optimizing predictions for “signatures” 

and “causes” of interest while reducing drastically the accompanying uncertainties, thus 

enabling more accurate risk-informed decision processes. 
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1. INTRODUCTION 

The basic motivation for pursuing research and development in support of nuclear 

nonproliferation and international nuclear safeguards is to make informed decisions on a 

target of interest where the ability to collect accurate data are limited for numerous physical 

and even political reasons. The concept holds for exploring any system using measurements 

and theory, and the goal of trying to understand a target source through some observed quanta 

of information; yet is further complicated by the constraints posed by real world targets 

outside a controlled laboratory. These efforts can be a great expense in terms of time, human 

capital, resource costs, etc., when accuracy for decision-making is desired, since extracting 

“best estimate” values for model parameters and predicted results (responses), together with 

“best estimate” uncertainties requires reasoning from incomplete, error-afflicted, and 

occasionally discrepant information, Cacuci and Ionescu-Bujor (2010b). Therefore, the effort 

to identify and quantify these uncertainties is generally only demanded of and afforded to, 

situations such as reactor licensing, or specific programs such as the U.S. Stockpile 

Stewardship Program National Research Council of the National Academies (2012b) where 

high consequences for failing identify the full risks in using this information would be dire. 

On one hand, results from measurements inevitably reflect the influence of experimental 

errors, imperfect instruments, or imperfectly known calibration standards; and, on the other, 

results from computational models are subject to uncertainties stemming from imperfectly 

known model parameters, correlations, boundary conditions, and imperfectly known physical 

processes or problem geometry. Therefore, if one is going to use physical or simulated data 

for decision making, then the quantitative uncertainties accompanying these measurements 

and computations are essential to understanding how well the available information answers 

specific questions regarding the domain of interest, and the level of risk presented in what is 

not known.  

The National Research Council of the National Academies (2012a) reports on both 

probabilistic and deterministic methods regarding understanding the reliability of complex 

models and is a useful summary for the nomenclature used throughout this work. However, 

it should be noted these definitions accompany most relevant comprehensive studies on 
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verification, validation, and uncertainty quantification (VVUQ) such as Cacuci and Ionescu-

Bujor (2010b) which is strongly referenced throughout this body of work. Moreover, this 

dissertation does not claim credit for the definitions on VVUQ, and favors loose definitions 

of them since they are merely used to establish a common frame of reference for discussing 

the methods and the results that follow, rather than precisely defining or defending their 

technical boundaries. 

Discrepancies between experimental and computational results provide the basic motivation 

for performing quantitative model verification, validation. Quantification of these 

discrepancies leads to code qualification and predictive modeling. Code verification 

documents if the underlying mathematical models are being solved correctly. Code 

qualification is the activity of then assessing the documented results of these activities for 

how well this information covers the domain of interest against a defined performance or 

safety specification. Validation and qualification activities require both physical and 

analytical benchmarking to account systematically for how well these combined data arrive 

at the right answer for the right reasons. Ganapol (2008), and Oberkampf and Smith (2014) 

articulate the motivation and provide useful examples for semi analytical benchmarks and 

describe the difficulties involving measurements and the contextual information needed from 

sensors and models to perform such an analysis for neutron transport and computational fluid 

dynamics, respectively. Overall though, there are numerous examples in the literature 

including the work of Cacuci referenced throughout this dissertation as well as that sponsored 

by Organisation for Economic Co-operation and Development’s (OECD) Nuclear Energy 

Agency which are available on their website.  

The results of this work rely significantly on the general mathematical framework developed 

by Cacuci and Ionescu-Bujor (2010b), for best estimate model calibration and predictive 

estimation and add another illustrative application in the area of nuclear safeguards similar 

to the companion paper Patruzzi et.al., (2010) for a thermal hydraulic benchmark experiment. 

Central to the framework are the response sensitivities to the model parameters and the 

adjoint sensitivity analysis procedure. These “sensitivities” support a wide range of valuable 

efforts related to model validation allowing for:  



21 

 

(i) understanding the system by identifying and ranking the importance of model 

parameters in influencing the response under consideration;  

(ii) determining the effects of parameter variations on the system’s behavior; 

(iii) improving the system design, possibly reducing conservatism and redundancy;  

(iv) prioritizing possible improvements for the system under consideration; 

(v) quantifying uncertainties in responses due to quantified parameter uncertainties; 

and; 

(vi) performing “predictive modeling”, including data assimilation and model 

calibration, for the purpose of obtaining best-estimate predicted results with 

reduced predicted uncertainties as demonstrated by Cacuci (2015).  

This dissertation shows the power of predictive modeling that is realized from exercising the 

VVUQ process; the rigor necessary to fully describe and quantify errors needed to support 

decision making; and, the rigor needed to understand the full risk of using any data beyond 

the boundaries where they were collected and used in calibration. Predictive modeling itself 

starts with the identification and characterization of uncertainties from all steps in the 

sequence of modeling and simulation processes that leads to a computational model 

prediction including: (a) data error or uncertainty (e.g., input data such as cross sections, 

model parameters such as reaction-rate coefficients, initial conditions, boundary conditions, 

and forcing functions such as external loading); (b) numerical discretization error; and (c) 

uncertainty in (e.g., lack of knowledge of) the processes being modeled. The result of the 

predictive modeling analysis is a probabilistic description of possible future outcomes based 

on all recognized errors and uncertainties. These results are usually assumed to be Gaussian 

for the purposes of assigning confidence intervals so this work also intends to discuss the 

potential risks associated with making decisions without the full description of errors.   

1.1. Statement of Thesis: 

The original work proposed in this dissertation will creatively use the general forward and 

inverse predictive modeling methodology of Cacuci and Ionescu-Bujor (2010b) to perform 

sensitivity analysis, uncertainty quantification up to 3rd-order (including covariance and 

skewness), and forward and inverse predictive modeling for a deterministic chemio-physio 
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spent fuel dissolver model relevant to aqueous reprocessing. Furthermore, this work plans to 

develop a reduced-order surrogate dissolver model, and shows evidence for extending 

Cacuci’s original adjoint technique to enable the computation of second-order sensitivities 

which are essential for computing skewness (i.e., third-order moment) that characterize 

asymmetrical (non-Gaussian) features of the true response distribution. This work will also 

show how the predictive modeling framework of Cacuci and Ionescu-Bujor (2010b) can be 

used in an inverse prediction mode and infer unknown model parameters (specifically: the 

time-dependent inlet boundary condition) from measured data, and how this methodology 

would be particularly useful when inferences on a target of interest can only be made from 

indirect measurements such as the case of international nuclear safeguards.   

All computations in this paper were performed by using Maple™, and ROOT - An Object 

Oriented Data Analysis Framework was used for all analyses and figures. This work 

essentially proposes a comprehensive study of quantifying uncertainties for a deterministic 

model in the application of nuclear nonproliferation, much like the self-contained 

applications of Petruzzi et.al., (2010), M.C. Badea et al (2012), and by Cacuci and Arslan 

(2014) in nuclear engineering, but with the addition of computing higher order response 

sensitivities needed to quantify non-Gaussian features of computed responses needed for 

assigning accurate Gaussian confidence intervals used for decision making. This work will 

also demonstrate improved computational efficiency with Adjoint Sensitivity Analysis 

Methodology for Operator-Type Responses (Cacuci, 1981.b) and discuss the rigor of the 

results as they apply to dissolver model’s verification, validation and uncertainty 

quantification. A review of international safeguards policy, operations related to a nuclear 

fuel reprocessing facility, and the merits and shortcomings of numerous VVUQ were 

conducted to enable a discussion about how the work overall could be used to support 

decision making in these areas as well as how this work and its results will advance the 

current state of practice. 
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1.2. A Mechanical Dissolver, International Safeguards, and Background 

 

The work in this dissertation focuses on a paradigm dissolver model. A dissolver is a likely 

component of any aqueous reprocessing facility and therefore a useful “case study” for a 

discussion of the VVUQ methods that would be needed for informed decision-making for 

the International Atomic Energy Agency (IAEA). Woolf. et.al, (2014), states, “The IAEA 

was created to assist nations in their peaceful programs and to safeguard nuclear materials 

from these peaceful programs to ensure they are not diverted to nuclear weapons uses.” This 

report also indicates that the safeguards system relies on data collection, review, and periodic 

inspections at declared facilities. It is not inconceivable then, for inspectors to collect reliable 

information from any component where fissile material could be lost or diverted such as a 

dissolver.  Figure 1, from Jubin (2009), depicts an aqueous reprocessing block diagram and 

the major chemical and mechanical processes used by a nuclear fuel reprocessing facility.  

 
Figure 1 Aqueous Reprocessing Diagram  



24 

 

Numerous flowsheets for chemical separation processes have been developed historically for 

numerous purposes CRS (2008), and Paulenova (2008) but most utilized the PUREX and 

UREX flowsheets all which pose risks since they separate plutonium and other actinide 

elements. These flowsheets not only pose risks for material diversion but are also subject to 

material holdup, other losses which need accounting for safeguards purposes Burr (2013).  

 

The numerous boxes presented in this figure are all candidates for monitoring where operator 

declarations and material inventories would be negotiated for inspection and verified with 

the host operator’s declaration. Monitoring, directly or indirectly, is fundamental to 

establishing international nuclear safeguards agreements, and measurements made to inform 

any agreed procedure would likely be compared with theoretical computations since historic 

data from the candidate country would be lacking or not readily shared with an independent 

inspector. The lack of information, varied expertise in understanding, asymmetry of 

information from scientists, inspectors, and facility operators are all the more reason to 

pursue increasing levels of rigor demonstrated in this dissertation.  

 

(1) How to account accurately for material holdup from previous reprocessing activities, and 

(2) How to assess the degree to which surrogate aqueous reprocessing facilities are 

compareable surrogates (where measurements and models were calibrated) would be two 

technical questions that would need to be assessed. These assessments would likely include 

the use of sensors, inspectors, and subject matter experts to collect data and compare them 

with the design information and operational envelop declarations by the facility operators 

and as such, would abe ffected with the aforementioned errors. These errors would certainly 

need to be characterized and quantified in order to have confidence in the correct assessment. 

Another major technical issue (3) is how to establish a baseline that would allow for 

comparing activities from one facility to another. Without a detailed understanding of the 

exact parameters needed for these comparisons and the sheer number of measurements 

needed to establish this baseline physically, computational models would be used and need 

to be assessed for their contributions of error. It’s hard to conceive a solution to begin 

answering these type of questions without a discussion of the uncertainties that would need 

to be understood.  
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The works of Garcia et al (2011), Sadasivan and DePaoli (2011) and Cipiti and McDaniel 

(2011) represent important steps towards modeling an integrated facility so that facilities 

could be monitored holistically, but these efforts too suffered numerous challenges to 

accessing data with sufficient descriptions on the contextual information needed to 

understand the measurements for modeling purposes. A large body of literature exists on 

performance and methods for assessing the reliability of these models (Oberkampf, 2003; 

NRC, 2012; Nelson et al, 2010) to improve the understanding of processes and systems (e.g., 

optimizing material separation, unit operations, etc.), diagnostics (e.g., radiation detectors, 

calorimeters, radiation imagers, etc.), and the emissions and waste streams, but end with 

moderate success highlighting the poor contextual details regarding using historical data the 

measurements and models (e.g., systematic errors of the sensor, sensor response, data 

analysis software, source codes, parameter minimization, boundary conditions) of which are 

missing, yet essential to quantifying any uncertainties. 

 

Although the efforts referenced above consider model validation, none of them quantify the 

impact of uncertainties in model parameters to the level of rigor that will be demonstrated in 

this work. Furthermore, none of the previously mentioned works attempted to combine 

measurements with computations, including the respective uncertainties, in order to obtain 

optimal predictions with reduced predicted uncertainties. This dissertation demonstrates that 

the judicious combination of computational and experimental information, including the 

respective computational and experimental uncertainties, produces optimally predicted mean 

values, with reduced uncertainties for typical quantities that characterize a paradigm 

dissolver producing chemical feed stock within an aqueous nuclear fuel separations facility. 

This work also indicates the path for performing similarly rigorous predictive modeling of 

other tools of interest to any topic where a high degree of confidence is needed.  

The dissolver physically resembles a rotating drum, comprising of eight active compartments 

in which the solids and liquids flow in opposite directions, and includes a ninth compartment 

used for rinsing. This work will highlight that assimilating even a single experimental 

measurement, for the purpose of obtaining calibrated model parameters with reduced 

calibrated standard deviations and best-estimate predicted responses will result in reduced 

predicted standard deviations than what was measured or originally computed. Moreover, the 
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2nd-order responses sensitivities to the model parameters are calculated for quantifying the 

skewness of the response distribution which in practice is generally assumed to be Gaussian.  

The analysis concentrates on the flow of liquids, which are most relevant to material 

separation. Using the original work of Lewis and Weber (1980), Chapter 3 of this work 

presents the development of a new mathematical model for describing the time-evolution of 

the nitric acid concentrations and volumetric mass flow rates within the dissolver. This new 

model comprises sixteen spatially dependent state functions and 1291 model parameters. The 

most important response for the dissolver model is the time-dependent nitric acid in the 

compartment furthest away from the inlet, where measurements (unique in the open 

literature) were performed by Lewis and Weber (1980), over a period of 10.5 hours.  

The sensitivities (i.e., first-order functional derivatives) of the time-dependent nitric acid 

concentrations to the 1291 model parameters are computed in Chapter 4 of this work by 

using the adjoint sensitivity analysis method for nonlinear systems conceived by Cacuci 

(1981a, 1981b). The starting point for the efficient computation of these sensitivities is the 

development of the adjoint dissolver model. The relative importance of the most important 

sensitivities in contributing to the uncertainties in the computed model responses were 

quantified and analyzed against the physics modeled. Using the sensitivities of the acid 

concentrations, the uncertainties in the model parameters are propagated in Chapter 5 of this 

work to quantify the uncertainties they induce in the computed responses. The predictive 

modeling formalism is subsequently used to combine the computational results with the 

experimental information measured in the compartment furthest from the inlet, and then used 

to predict optimal values and uncertainties throughout the dissolver. The results in Chapter 

5 show that even though the experimental data pertains solely to the compartment furthest 

from the inlet (where the data was measured), the predictive modeling procedure actually 

improves the predictions and reduces the predicted uncertainties not only in the compartment 

in which the data was actually measured, but also throughout the entire dissolver including 

the compartment furthest from the measurements. This is because information is transmitted 

simultaneously over the entire phase-space, comprising all time steps and spatial locations.  
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Many measurement problems, particularly in nonproliferation activities, are “inverse” to the 

“forward” problem in that they seek to determine the properties of the medium, and/or the 

size of the medium on its boundaries, or the properties of the source, from measurements of 

quantities that depend on the unknown state-variables. The methods for solving inverse 

problems can be “explicit” or “implicit”. The (historically older) explicit methods attempt to 

manipulate the forward model in conjunction with measurements in order to estimate 

explicitly the unknown source and/or other unknown characteristics of the medium. On the 

other hand, implicit methods combine measurements with repeated solutions of the direct 

problem obtained with different values of the unknowns, iterating until an “a priori” selected 

functional, usually representing the user-defined “goodness of fit” between measurements 

and direct computations, is reduced to a value deemed to be “acceptable” by the user. All of 

these methods have underscored the fundamental characteristics of inverse problems, namely 

that they are ill-posed (admitting non-unique solutions) and/or ill-conditioned, unstable to 

small errors or perturbations that are inherently affecting both the model parameters and the 

experimental measurements. Using an inverse neutron diffusion problem, Cacuci (2014) has 

highlighted how the amplification of “noise” renders naïve solutions completely useless.  

 

In the nuclear engineering literature, inverse problems have been addressed only in the area 

of time-independent neutron and radiation transport. Time-independent inverse radiative 

transfer problems were reviewed by McCormick (1992), while examples of inverse source 

problems for time-independent neutron transport have been provided by Sanchez and 

McCormick (2008). More recently, Jarman et al (2011) addressed the “source identification 

problem” by using a Bayesian approach in conjunction with numerical adjoint transport 

computations to localize radiological sources; however, they only accounted for counting 

statistics, completely disregarding experimental and modeling uncertainties. On the other 

hand, Bledsoe et al  (2011a, 2011b) used the “differential evolution method” and the 

“Levenberg-Marquardt method” (Levenberg-Marquardt,1944, 1963), respectively, to solve 

inverse transport problems by minimizing an “a priori” chosen chi-square-type functional to 

estimate the “differences between measured and computed quantities of interest”, but also 

neglecting all uncertainties stemming from the underlying cross sections and material 

properties, which were supposed to be perfectly well known. Hykes and Azmy (2015) 
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presented a Bayesian approach to solve the inverse problems of mapping the spectral and 

spatial distributions of radioactive sources using a limited number of detectors when the 

system’s geometry and material composition are known and fixed. All of the methods 

mentioned above “regularize” the solution of the inverse problems in a more or less ad-hoc 

implicit manner, without clearly showing the effects of the respective implicit 

regularizations. The fundamental difficulties associated with inverse problems affect 

profoundly the numerical methods for solving them, particularly in the presence of errors 

(including numerical ones). Therefore, all methods for solving inverse problems are not the 

same: different methods do produce different results. 

 

Inverse time-dependent problems seem to have yet to be addressed in nuclear engineering 

activities. This work will address such an inverse problem in the context of the dissolver 

model analyzed in the previous Chapters, by considering that a time-dependent boundary 

condition (specifically: the time-dependent inlet acid concentration) is unknown and is to be 

determined from the available measurements. In Chapter 6 of this work, the application of 

the methodology of Cacuci and Ionescu-Bujor (2010b) in the inverse mode is shown to 

predict within an “a priori” chosen error criterion the actual time-dependent boundary 

condition without needing to invoke ad-hoc procedures or needing to introduce arbitrary 

parameters to “regularize” the inverse problem at hand, as the currently popular procedures, 

e.g., the methods due to Tichonov (1963), Levenberg-Marquardt (1944, 1963), and/or 

Tarantola (2005) must do. This is because the forward and inverse predicting modeling 

methodology of Cacuci and Ionescu-Bujor (2010b) uses the maximum entropy principle to 

combine the model’s uncertainties and sensitivities to construct intrinsically the inverse 

problem’s regularizing metric.  

 

Chapter 7, computes the exact 2nd-order sensitivities of the acid concentration in the 

surrogate dissolver model using adjoint operators; however, only the mean values and the 

standard deviations are available for the full dissolver’s model parameters which in turn 

assume an uncorrelated and normally distributed for the dissolver model’s input parameters. 

Based on this information the non-Gaussian features of the acid concentrations in the full 

dissolver model are quantified. These results highlight large skewness in the distributions of 
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several parameters and the implications of smaller than the expected values of these 

responses resulting from a heavily negatively skewed (by a factor of about 5) distribution for 

the nitric acid concentration over the transient event. 

 

The concluding remarks presented in Chapter 8 of this work underscore the importance of 

this work in presenting the objective resolution (i.e., resolution in the absence of user-defined 

subjective “adjustment” of arbitrary “regularization parameters”) of a time-dependent inverse 

“case study” of potential importance to diversion activities associated with proliferation and 

international safeguards. Aspects pertaining to the verification of the numerical solution of 

the equations underlying the adjoint dissolver model are briefly presented in Appendix A, 

while Appendix B presents an abbreviated “user’s manual” for the software module which 

has been produced as part of this dissertation for applications of the forward and inverse 

predictive modeling of Cacuci and Ionescu-Bujor (2010b) to any physical system.  

 

Using the dissolver model as a “case study”, the results obtained in this work demonstrate a 

modern path for establishing confidence in computational tools in an efficient, accurate, and 

manner. In particular, these results enable the evaluation of the subject dissolver model’s 

potential for generating source terms for other components, downstream from the dissolver, 

within an aqueous nuclear reprocessing facility in supporting material accountability studies 

for safeguard applications. Furthermore, the methodology used in this work also indicates 

where to reduce uncertainties (e.g., by increasing the amount of measured data, by increasing 

model fidelity, exploring missing physics, etc.), should a higher level of confidence be 

desired. This work does not argue for all problems or modeling efforts to require such rigor, 

but rather that the appropriate level of rigor be instituted to assess what’s “good enough” for 

the intended application, and to extend the value of any measured data and models beyond 

the individual researcher who collected or developed them. Finally, this work’s conclusions 

highlight the need for an extensible general method for computing mixed 2nd-order 

sensitivities for quantifying non-Gaussian features for correlated parameters which are likely 

for most real world targets of interest as future work. 
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2. SURROGATE DISSOLVER MODEL AND A 

COMPARISON OF SENSITIVITY ANALYSIS METHODS 

FOR PROBABILISTIC AND DETERMINISTIC 

MODELING 

 

This chapter uses a surrogate model, constructed from the spent nuclear fuel dissolver model, 

to illustrate the methods and the motivation underlying the various direction of research. The 

surrogate model enables the analytical illustration of the underlying mathematical concepts, 

underscoring both the original methodological and conceptual novelties as well as the major 

new results produced by this work without the numerous terms that would be generated from 

the dissolver model itself.  

Section 2.1 then presents a brief but critical review of the most popular statistical and 

deterministic methods for sensitivity analysis and quantification of model response 

uncertainties that are induced by uncertainties in the model parameters. It concludes with a 

discussion on why the “adjoint sensitivity analysis method for operator-valued responses” 

originally introduced by Cacuci (1981.b) was selected as the method for computing the acid 

concentration response sensitivities to parameters of the dissolver model essential to the rest 

of the work considered in the subsequent sections. Section 2.2 actually develops the surrogate 

model, which is used without loss of generality to again, illustrate the novel concepts and 

results reported in this work. Section 2.3 demonstrates the application of the “adjoint 

sensitivity analysis method for operator-valued responses” to compute efficiently the 1st-

order sensitivities of the surrogate model’s response to the surrogate model’s parameters. 

Section 2.4 applies the predictive modeling methodology developed by Cacuci and Ionescu-

Bujor (2010b) to the surrogate model, both in the forward and inverse predictive modes, 

demonstrating mathematically the reasons for which this methodology actually reduces the 

predicted uncertainties (in this case: standard deviations) for the optimally predicted best-

estimate nominal response and parameter values. Extending the concepts presented in 

Section 2.3, Section 2.5 proposes a new adjoint-based methodology for computing efficiently 

2nd-order sensitivities of responses to model parameters. As will also be shown in this section, 
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such 2nd-order sensitivities are needed for quantifying the non-Gaussian features (i.e., 

skewness and consequent asymmetries, long and/or short tails) of the unknown response 

distribution as a function of the model parameters. Finally, Section 2.6 concludes showing 

the correspondences between the surrogate model and the actual dissolver model that will be 

analyzed in Chapters 3-7.  

2.1. Statistical Versus Deterministic Methods for Sensitivity and Uncertainty 

Analysis 

This section presents a brief yet critical review of the most popular statistical methods used 

for uncertainty and sensitivity analysis, and compares them with deterministic methods, 

particularly with the adjoint method for nonlinear systems with operator-valued responses 

introduced by Cacuci (1981.b), highlighting the respective strengths and weakness of the 

various methods. Since the notation used by Cacuci (1981.b) is optimal for describing his 

method, it will also be used in this Chapter, to highlight the features that will be used and 

expanded in subsequent chapters of this dissertation.  

In general, physical systems and/or results of indirect experimental measurements are 

modeled using the following mathematical concepts: 

(a) Nonlinear equations that relate the system’s independent variables and parameters to the 

system’s state (i.e., dependent) variables; 

(b) Probability distributions, moments thereof, inequality and/or equality constraints that 

define the range of variations of the system’s parameters; 

(c) One or several quantities of interest, called system responses (or objective functions, or 

indices of performance), which are computed using the mathematical model. 

Mathematically, a physical system conforming to the above description is represented by 

means of 
uN  coupled nonlinear operator equations of the form 

     , x       N α x u x Q α x , x .    (2.1) 
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It is convenient to consider that all vectors in this work are column vectors. Transposition is 

indicated by a dagger  †  superscript. The quantities appearing in Eq. (2.1) are defined as 

follows: 

1.  1, ,
xJx xx  denotes the 

xJ -dimensional phase-space position vector for the 

primary system; the symbol “ ” will be used to denote “is defined as” or “is by definition;” 

note that xJ

x x , where 
x  is a subset of the 

xJ -dimensional real vector space xJ
; 

2.      1 , , 
 uNu uu x x x  denotes a 

uN -dimensional column vector whose 

components are the system’s dependent (i.e., state) variables;   uu x E , where 
uE  is a 

normed linear space over the scalar field F  of real numbers; 

3.      1 , ,


  
 Nα x x x  denotes a N -dimensional column vector whose 

components are the system’s parameters; α E , where E  is also a normed linear space; 

4.      1 , ,     uNQ QQ α x α α  denotes a 
uN -dimensional column vector whose 

components represent inhomogeneous source terms that are functions of  α x ; QQ E , 

where QE  is also a normed linear space;  

5.        1, , , , ,
uNN N     N α x u x α u α u  denotes a 

uN -component column 

vector whose components are operators (including differential, difference, integral, 

distributions, and/or infinite matrices) acting nonlinearly on u  and α ; 

6. All of the equalities in this work are considered to hold in the weak 

(“distributional”) sense, since the right-sides (“sources”) of the various equations, including 

Eq. (2.1) may contain distributions (“generalized functions/functionals”), particularly Dirac-

distributions and derivatives and/or integrals thereof. 
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In view of the definitions given above,  ,N α u  represents the mapping :   QN D E E , 

where 
u  D D D , 

u uD E ,  D E , and 
u  E E E . Note that an arbitrary element 

e E  is of the form  ,e = α u . If differential operators appear in Eq. (2.1), then a 

corresponding set of boundary and/or initial conditions (which are essential to define the 

domain of D ) must also be given; these boundary and/or initial conditions are represented 

in operator form as 

   , , ,     x xB α u -C α 0 x      (2.2) 

 

where 
x  denotes the boundary of 

x , the operator  ,B α u  acts nonlinearly on both u  

and on the model parameters α , while  C α  denotes an operator that acts nonlinearly on α . 

The vector-valued function  u x  is considered to be the unique nontrivial solution of the 

physical problem described by Eqs. (2.1) and (2.2). The system response (i.e., result of 

interest), associated with the problem modeled by Eqs. (2.1) and (2.2) will be denoted as 

 R u,α , and will generally be a phase-space dependent function-valued operator that acts on 

the system’s state function u  and parameters α . Most generally, such a response can be 

represented in operator form as 

 : , R RR u,α D E E      (2.3) 

where 
RE  denotes another normed vector space. The nominal solution of Eqs. (1) and (2) is 

denoted as  0
u x , and is obtained by solving these equations at the nominal parameter values 

 0
α x , i.e.,  

     0 0 0, ,        xN α x u x Q α x , x     (2.4) 

   0 0 0, ,
x x

   
 
B α u -C α 0 x .    (2.5) 
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Equations (2.4) and (2.5) represent the “base-case” or nominal state of the physical system. 

The nominal solution,  0
u x , of these equations is subsequently used to compute the 

nominal value  0R e ,  0 0 0,e α u , of the response  R e . Throughout this work, the 

superscript “0” will be used to denote “nominal values.” An important particular case of 

responses is scalar valued “quantities of interest,” such scalar-valued will be called 

functionals of  ,α u , and will be generally represented in operator form as 

 , : , RR α u D E F      (2.6) 

where F  denotes the field of real scalars.  

The model parameters are considered to be imprecisely known quantities, so their actual 

values may differ from their nominal values by quantities denoted as 

     0 , 1,..., .   i i i i Nx x x  Large-scale models of complex physical systems 

usually involve two distinct sources of uncertainties, namely: (a) stochastic uncertainty, 

which arises because the system under investigation can behave in many different ways, and 

(b) subjective or epistemic uncertainty, which arise from the inability to specify an exact 

value for a parameter that is assumed to have a constant value in the respective investigation. 

A typical example of such a complex system is a nuclear power reactor plant; in a typical 

risk analysis of a nuclear power plant, stochastic uncertainty arises due to the many 

hypothetical accident scenarios which are considered in the respective risk analysis, while 

epistemic uncertainties arise because of the many uncertain parameters that underlie the 

estimation of the probabilities and consequences of the respective hypothetical accident 

scenarios. Usually, the effects of stochastic uncertainties are propagated by using importance 

sampling, while the effects of subjective uncertainties are propagated by using Latin 

Hypercube sampling. In particular, event trees, if available, are used in conjunction with 

importance-sampling to propagate stochastic uncertainties. This concept has been amply 

illustrated in two large risk assessment studies, namely the reassessment of risk associated 

with US commercial nuclear power plants, carried out under the auspices of the US Nuclear 

Regulatory Commission (NUREG-1150, 1990-91), and the Compliance Certification 
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Application for the Waste Isolation Power Plant (US Department of Energy, 1996, Helton et 

al., 1998). 

Since the model parameters  α x  and the state functions  u x  are related to each other 

through Eqs. (2.1) and (2.2), it follows that the vector of “parameter variations” 

 1, ,
    Nα E  will cause corresponding variations  1, ,   

uK uu uu E  in 

the state functions around the nominal solution  0
u x . All of these variations will cause 

variations in the response around the nominal response value  0
R e . Sensitivity analysis 

aims at quantifying the response variations,  0 R e h , that are induced in the response 

 0R e  by variations  , u    h α u E E E  in the model’s state functions and 

parameters in a neighborhood around the nominal values  0 0 0, e α u E . 

Sensitivities of model response to model parameters are needed in many activities, including:  

(i) understanding the system by identifying and ranking the importance of model 

parameters in influencing the response under consideration; as illustrated for the 

dissolver model in Chapter 3; 

(ii) quantifying uncertainties in responses due to quantified parameter uncertainties; 

as illustrated in Chapters 4, 5 and 7, and demonstrated with the method of 

“propagation of uncertainties”;  

(iii) performing forward “predictive modeling”, including data assimilation and 

model calibration, for the purpose of obtaining best-estimate predicted results 

with reduced predicted uncertainties; as demonstrated for this work in           

Chapter 5;  

(iv) performing inverse “predictive modeling”, as illustrated in Chapter 6; 

(v) determining the effects of parameter variations on the system’s behavior, for 

system optimization; 

(vi) improving the system design, possibly reducing conservatism and redundancy;  

(vii) prioritizing possible improvements for the system under consideration. 
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Section 2.1.1 below presents a brief review of the most popular statistical methods for 

sensitivity analysis and quantification of model response uncertainties that are induced by 

uncertainties in the model parameters. Following this brief review of statistical methods, 

Section 2.1.2 presents the basic concepts underlying the “adjoint sensitivity analysis method 

for operator-valued responses” originally introduced by Cacuci (1981.b). For the reasons 

discussed in Section 2.1.3, this adjoint method will be applied for the computation of             

1st-order sensitivities acid concentration response to parameters of the dissolver model 

considered throughout the rest of the chapters considered in this work.  

 

2.1.1 Statistical Methods for Uncertainty and Sensitivity Analysis  

 

The currently popular statistical methods for uncertainty and sensitivity analysis are broadly 

categorized as follows: (A) sampling-based methods, (B) variance-based methods, and (C) 

spectral methods. All of these methods essentially consider that the response is an implicit 

functional (i.e., a scalar-valued function) of scalar model parameters  1,..., N
 α ; 

therefore, the response will be simply denoted as  R α . If the uncertainty associated with 

the parameters α  were known unambiguously, then the uncertainty in the response  R α  

could also be assessed unambiguously. In practice, the uncertainty in α  can be characterized 

by assigning a distribution of plausible values  

,,,, 21 IDDD       (2.7) 

to each component i  of α . Correlations and other restrictions can also be considered to 

affect the parameters i . Uncertainties characterized by distributions of the form shown in 

Eq. (2.7) are often called epistemic or subjective uncertainties, and characterize a degree of 

belief regarding the location of the appropriate value of each i . In turn, these subjective 

uncertainties for the parameters i  lead to subjective uncertainties for the response  R α , 

which reflect a corresponding degree of belief regarding the location of the appropriate 

response values as the outcome of analyzing the model under consideration. 
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The definition of the distributions 
iD  is the most important aspect of characterizing 

subjective uncertainties. Consequently, the characterization of subjective uncertainty has 

been widely studied (see, e. g., Berger, 1985; Hora and Iman, 1989, Bonano and Apostolakis, 

1989). Two of the largest examples of analyses which use formal expert review processes to 

assign subjective uncertainties to input parameters are the US Nuclear Regulatory 

Commission’s reassessment of the risks from commercial nuclear reactor power stations (US 

NRC 1990-1991), and the assessment of seismic risk in the Eastern USA (EPRI, 1989). 

Although formal statistical procedures can be occasionally used for constructing subjective 

distributions, practical experience has shown that it is more useful to rely on expert opinions 

for specifying selected quantile (minimum, median, maximum, etc.) values, rather than 

specify a particular type of distribution (e.g., normal, beta, etc.,) and its associated 

parameters. Respective experts are more likely to be able to justify the selection of specific 

quantile values rather than the selection of a particular form of distribution with specific 

parameters. When distributions from several expert opinions are combined, it is practically 

very difficult to assign weights to the respective opinions, as discussed by Clement and 

Winkler (1999). 

 

A. Sampling-Based Methods 

These methods are based on a sample 

 1 2, , , , 1,2, , ,κ k k kI Sk n   α    (2.8) 

of size 
Sn  taken from the possible values of α  as characterized by the distributions in Eq. 

(2.7). The response evaluations corresponding to the sample kα  defined in Eq. (2.8) can be 

represented in vector form as  

       1 2, , , , 1,2, , ,κ κ κ J κ SR R R k n   R α α α α   (2.9) 

where the subscript J denotes the number of components of  κR α . The pairs  

  , 1,2, , ,κ κ Sk n  α R α,      (2.10) 
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represent a mapping of the uncertain “inputs” kα  to the corresponding uncertain “outputs” 

 κR α  which are obtained from the “sampling-based uncertainty analysis”. The “sampling-

based sensitivity analysis” consists of quantifying the effects of the elements of α  on the 

elements of  R α  by performing regression analysis, partial correlation, analyzing scatter 

plots, etc., of the mapping represented by Eq. (2.10).  

The widest used sampling procedures are: random sampling, importance sampling, and Latin 

Hypercube sampling; the salient features of these procedures will be summarized briefly in 

the following. Thus, random sampling involves selection of the observations  

 1 2, , , , 1,2, , ,κ k k kI RSk n   α     (2.11) 

where RSn  represents the sample size from a region S . A point from a specific region of S  

occurs as dictated by the probability of occurrence of the respective region. Although each 

sample point is selected independently of all other sample points, there is no guarantee that 

points will be sampled from any given sub-region of S . Furthermore, if sampled values fall 

closely together, the sampling of S  is quite inefficient. The importance sampling procedure 

has been designed to address and alleviate these shortcomings, by dividing S  exhaustively 

into several non-overlapping sub-regions, called strata, Si ni ,,2,1, S , which are defined 

on the basis of how important the parameters (
κ iα S ) that are contained in the strata are to 

the final outcome of the analysis. Importance sampling aims at ensuring full coverage of 

specified regions in the sample space, so that parameters which have low occurrence 

probabilities but high consequences are included in the analysis.  

The Latin Hypercube sampling procedure (see, e.g., McKay et al., 1979) further extends the 

idea of fully covering the range of each parameter by dividing the range of each parameter 

i  into LHn  intervals of equal probability, and randomly selecting one value from each 

interval. The LHn  values thus obtained for the first parameter, 1 , are then randomly paired, 

without replacement, with the LHn  values obtained for 2 . In turn, these pairs are combined 

randomly, without replacement, with the LHn  values for 3  to form LHn  triples. This process 

is continued until a set of LHn  I-tuples are obtained, of the form 
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 1 2, , , , 1,2, , ,κ k k kI LHk n   α     (2.12) 

which is called a Latin Hypercube sample. However, this method is suited only for 

uncorrelated parameters. If the parameters are correlated, then the respective correlation 

structure must be incorporated into the sample; otherwise the ensuing uncertainty/sensitivity 

analysis is destined to yield false results. To incorporate parameter correlations into the 

sample, Iman and Conover (1982) proposed a restricted pairing technique for generating 

Latin Hypercubes based on rank-correlations (i.e., correlations between rank-transformed 

parameters) rather than sample correlations (i.e., correlations between the original, 

untransformed, parameters). 

Once the sample has been generated, its elements must be used to perform model 

recalculations, which then generate the responses  κR α  described by Eq. (2.9). These 

model recalculations can become the most expensive computational part of the entire 

statistical uncertainty and sensitivity analysis and, if the model is complex, the model 

recalculations severely limit the sample size and the other aspects of the overall analysis.  

In the context of sampling-based methods, statistical sensitivity analysis (as opposed to 

deterministic sensitivity analysis) involves the exploration of mapping given in Eq. (2.10) to 

assess the effects of some but not all of the individual components of α  on the response 

 R α . This exploration includes examination of scatter plots, regression and stepwise 

regression analysis, correlation and partial correlation analysis, rank transformation, 

identification of non-monotonic patterns, and identification of non-random patterns. The 

starting point of statistical sensitivity analysis is the generation of scatter plots, which are 

obtained by plotting the points  

   2, , 1, , ,kj κ SR k n   α     (2.13) 

for each element j  of α  for  Ij ,,1 . The resulting I scatter plots are then examined to 

find possible relations between the response  R α  and the elements j  of α .  
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A more formal analysis of the parameter-to-response mapping depicted by Eq. (2.13) is to 

perform linear regression analysis on a model for which the predicted responses, predictedR , is 

a linear function of the input parameters, j , of the form  

0

1

I

predicted j j

j

R b b 


  .     (2.14) 

The calculated responses, 
kR , are also formally expressed in terms of the actual parameter 

values, kj , used in the analysis, by means of a linear relationship of the form 

0

1

, 1, ,
I

k j kj k

j

R b b k M 


         (2.15) 

where M denotes the actual number of calculations and where  

k predictedR R   ,      (2.16) 

denotes the error between the calculated and predicted value of the corresponding element of 

the response. The regression analysis then commences by assuming that the unknown 

regression coefficients jb  can be determined by minimizing the sums 

 
2

2

k predictedk k
R R    of the squared errors. The regression coefficients jb  can be used, 

along with other indicators computed during the regression analysis, to assess the importance 

of the individual parameters j  with respect to the uncertainty in the response components. 

A measure of the extent to which the regressions model can match the observed data is 

provided by the so called coefficient of multiple determination, 
2C , defined by the following 

ratio: 

totreg SSC /2  ,      (2.17) 

where the quantities regS  and totS  are defined by means of the sums 

   
2 2

,

1 1

, ,
M M

reg k est ave tot k ave

k k

S R R S R R
 

      (2.18) 
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and where estkR ,  denotes the estimate of kR  obtained from the regression model, while aveR  

denotes the mean of the kR ’s. A value of 
2C  close to unity indicates that the regression 

model accounts well for most of the uncertainties in the kR ’s; conversely, a value of 
2C  

close to zero indicates that the regression model accounts poorly for the uncertainties in the 

kR ’s.  

It is important to note that if the parameters are not independent but are statistically 

correlated, then the magnitudes and even the signs of the regression coefficients jb  

associated with the respective parameters may be erroneous, and therefore indicate 

incorrectly the effects of these parameters on the response. Correlated variables introduce 

unstable regression coefficients, jb , in that the values of jb  become sensitive to the specific 

variables introduced into the regression model. In such situations, the regression coefficients 

of a regression model that includes all of the parameters are likely to give misleading 

indications of parameter importance. If several input parameters are suspected (or known) to 

be highly correlated, it is usually recommended to transform the respective parameters so as 

to remove the correlations or, if this is not possible, to analyze the full model by using a 

sequence of regression models with all but one of the parameters removed, in turn. 

Furthermore, if the regression model is used in an attempt to match the predictions associated 

with individual sample parameters rather than to match the trend displayed by the collective 

sample, then over-fitting of data may arise when parameters are arbitrarily forced into the 

regression model. Note also that the regression relationship in Eq. (2.14) is a linear 

representation of the impact of parameters on the response, which will perform poorly when 

the relationships between the parameters and the response are nonlinear. In such cases, the 

rank transformation may be used to improve the construction of the respective regression 

model. The regression analysis is then performed by using the ranks as input/output 

parameters, as replacements for the actual parameter/response values. This replacement has 

the effect of replacing the linearized parameter/response relationships by rank-transformed 

monotonic input/output relationships in an otherwise conventional regression analysis. In 

practice, a regression analysis using the rank-transformed (instead of raw) data may yield 

better results, but only as long as the relationships between parameters and responses are 
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monotonically nonlinear. Otherwise, the rank-transformation does not improve significantly 

the quality of the results produced by regression analysis.  

 

B. Variance -Based Methods 

In contrast to the sampling-based methods discussed in the previous subsection, the variance-

based methods do not make the “a priori” assumption that the input model parameters are 

linearly related to the model’s response. The variance-based methods are based on the 

relation between the marginal probability distribution,  RpR , of R, and the conditional 

probability distribution,   || RpR , of R conditioned on an input parameter  , which can 

be written in the following form: 

        dpRpRp RR  || .     (2.19) 

The above relation can be intuitively interpreted that an input parameter   is important if 

fixing its value would reduce significantly the conditional prediction variance relative to the 

marginal prediction variance. This interpretation indicates that various conditional variance 

ratios may be used as indicators of importance. Variance-based methods usually assume that 

the model simulating the system under investigation is of the form 

 |R E R α ε ,     (2.20) 

where α  represents, as before, the set of I model parameters, and ε  represents a vector of 

errors with the properties that   0E ε  and  | ,Var E R known  α ε . As noted in Eq. 

(2.14), the standard regression analysis assumes that the expectation  |E R α  is a linear 

function of the model parameters, of the form 


M

k

kkb
1

 , where the quantities kb  are the 

regression coefficients determined by least-square fitting. By contrast, there are no 

assumptions in Eq. (2.20) regarding the specific mathematical form of the conditional 

expectation  |E R α . Replacing Eq. (2.20) in Eq. (2.19) yields the following form for the 

prediction variance,  RVar , of R : 
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      | |Var R Var E R E Var R   α αα α ,    (2.21) 

where 

   || RE R p R RdR  α
α ,     (2.22) 

       
2

| |Var E R E R E R p d       α α
α α α α ,    (2.23) 

        
2

|| | RE Var R R E R p R dR p d      α α α
α α α α .   (2.24) 

 

The quantity  |Var E R  α α  is the variance of the conditional expectation (VCE) of R 

conditioned on α ; this quantity is a suitable measure of the importance of α  since it indicates 

how the constituents parts of  Var R  , given by Eq. (2.21), relate to α . More specifically, 

 |Var E R  α α  measures the total variation in R in the sense that, as α  varies, the variation 

in R would match the variation in  |E R α , if the second term in Eq. (2.21), namely 

  |E Var Rα α , were small. In fact, the term   |E Var Rα α  is a residual term that measures 

the remaining variability in R due to other unobserved inputs or other unknown sources of 

variation when α  is fixed. The ratio  

 

 
2

|Var E R

Var R


  
α

α
,     (2.25) 

is called the correlation ratio and represents a measure of the magnitude of the VCE relative 

to the prediction variance  RVar  (see, e.g., McKay, 1995).  

Another variance-based method is “Sobol’s Method” (1993) which uses a particular case of 

Kolmogorov’s decomposition theorem. Kolmogorov’s theorem states that any multivariate 

function,  1,..., nf x x , defined on the unit cube [0,1]n  can be written as a linear superposition 

of univariate functions  j ih x , of the form  
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       
2 1

1 1 1 2 2

1

,..., ... ,
n

n j j n j n

j

f x x g a h x a h x a h x




         (2.26) 

where the functions  j ih x  are continuous, albeit highly non-smooth. Considering a 

response,  R α , which is a function of the vector of model parameters  1,..., n α  where 

each parameters varies between zero and one, [i.e., α  defined on the unit cube [0,1]n  ], 

Sobol’s decomposition method [see, e.g., Sobol (1993), Saltelli et al., (2000)] takes on the 

following particular form of Eq. (2.26): 

         1 0 12... 1 2

1 1

,..., , ... , ,..., ,
n n

n i i ij i j n n

i i j n

R R R R R R       
   

      α     (2.27) 

where 

(i) 
0R  is a constant, i.e.,  0

[0,1]

constant ,
n

R R d  α α  

(ii) the summands are orthogonal, i.e., 

       
1 2 1 2... ... 1 2 1 2

[0,1]

0, if , ,..., , ,..., ;
n m

n

i i i j j j n mf f d i i i j j j  α α α  

(iii) the integrals of any summand over any of its own variables is zero, i.e.,  

 
1 2 1 2

1

...

0

, ,..., 0, 1 .
n n mi i i i i i if d if m n        

By squaring Eq. (2.27) and integrating the resulting expression over the unit cube [0,1]n , the 

following relation is obtained for the total variance, denoted as D , of  R α : 

 2 2

0 12...

1 1[0,1]

= ... ,
n

n n

i ij n

i i j n

D R d R D D D
   

      α α    (2.28) 

where the partial variances of  R α  are defined as follows: 

 
1 2 1 2 1 2 1

1 1

... ... 1

0 0

... , ,..., ... , 1 ... , 1,..., .
m m m mi i i i i i i i i i i mD R d d for i i n m n               (2.29) 
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Finally, the sensitivity indices are defined as  

1 2 1 2... ... 1, 1 ... , 1,..., .     
m mi i i i i i mS D D for i i n m n   (2.30) 

In view of the above definitions, the first-order sensitivity index, 
iS , for the parameter 

i  

indicates the fractional contribution of 
i  to the variance D  of  R α . The second-order 

sensitivity index,  , ,ijS i j  measures the part of the variation in  R α  due to 
i  and j  

that cannot be explained by the sum of the individual effects of 
i  and 

j ; and so on. Note 

also that Eqs. (2.29) and (2.30) imply that 

12...

1 1

... 1.
   

    
n n

i ij n

i i j n

S S S     (2.31) 

Attempting to reduce the number of model evaluations inherent to Sobol’s method, Rabitz 

et.al., (1999) introduced the so-called high-dimensional model representations (HDMRs), 

which aim at identifying relationships between sets of inputs (e.g., parameters) and outputs 

(responses). HDMRs express the model output as a finite additive sum of correlated functions 

with increasing numbers of input variables up to the total number of inputs, in the same spirit 

as Sobol’s expansion shown in Eq. (2.27). The resultant HDMR expansion is subsequently 

used as a reduced-order surrogate model that depends on fewer parameters and, more 

importantly, fewer coupled parameters (interactions among parameters). The two commonly 

used expansions, are called ANOVA-HDMR and Cut-HDMR, respectively. ANOVA-

HDMR requires computationally expensive numerical integrations of the model over the 

entire parameter space, while Cut-HDMR requires response-function evaluations along the 

so-called cut lines or hyperplanes with respect to pre-selected reference points in the domain 

of the inputs. Although Cut-HDMR is computationally less expensive, it is also less accurate 

and its accuracy depends strongly on the choice of the reference point; constructing a second-

order Cut-HDMR expansion can still be computationally expensive. Hu et al (2014) have 

improved the efficiency of the second-order Cut-HDMR by first using a screening algorithm 

(based on the so-called “New Morris Method”) to pre-screen the parameter (input) space for 

significant inputs and interactions while eliminating parameters that were deemed 
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insignificant, and subsequently applied the Cut-HDMR expansion in the reduced parameter 

space.  

 

C. Spectral Methods 

The spectral uncertainty quantification methods (see, e.g., Le Maître and Kino, 2010) use a 

set of independent random variables, often called the germ, and denoted here as

 1 1, ,... ω , to express the imprecisely known model parameters  1,..., n α  as  

 α α ω ,      (2.32) 

and subsequently to compute the statistics of the response distribution  R   α ω  in terms of 

the germ  1 1, ,... ω . Some methods explicitly expand the response  R   α ω  in an 

infinite spectral series of the form  

   
1

,k k

k

R r




    α ω ω      (2.33) 

where the quantities  k ω  are suitably selected functionals of the germ  1 1, ,... ω , 

while the quantities 
kr  are deterministic (“spectral”) coefficients. Once available, the series 

development in Eq. (2.33) is used to determine the statistics of  R   α ω , either analytically 

or via sampling of the germ  1 1, ,... ω .  

The principle underlying the use of Eq. (2.32) for computing the variance of a response 

 R   α ω  can be conveniently illustrated using the so-called “Fast Fourier Amplitude Test” 

(FAST), originally been proposed by Cukier et al. (1973), and then extended Cukier and 

others. This procedure uses the following Fourier transformation of the parameters i : 

 sin , 1, ,i i iF z i n   ,     (2.34) 

where  i  is a set of integer frequencies, while  ,z     is a scalar variable. The 

response  R   α ω  is thus considered to be a function of  ,z    .                                           
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The expectation,  E R , of the response  R   α ω  can be formally obtained by integrating 

Eq. (2.35) over  ,z    , to obtain 

       1 1 2 2

1
sin , sin , , sin

2
n nE R R F z F z F z dz





  




    .  (2.35) 

The variance,  Var R , of the response R can be approximately obtained as follows 

   2 2

1

2 j j

j

Var R A B




  ,     (2.36) 

where  

       1 1 2 2

1
sin , sin , , sin cos

2
j n nA R F z F z F z jz dz





  




      (2.37) 

       1 1 2 2

1
sin , sin , , sin sin

2
j n nB R F z F z F z jz dz





  




      (2.38) 

The transformation given by Eq. (2.34) should provide, for each parameter i , a uniformly 

distributed sample in the unit n-dimensional cube. As  ,z     varies for a given 

transformation, all parameters change simultaneously, but their respective ranges of 

uncertainty is systematically and exhaustively explored (i.e., the search curve is space-filling) 

if and only if the set of frequencies  i  is incommensurate (i.e., if none of the frequencies 

i  may be obtained as a linear combination, with integer coefficients, of the remaining 

frequencies). The 1st-order sensitivity indices are computed by evaluating the coefficients jA  

and jB  for the fundamental frequencies  i  and their higher harmonics  1,2,ip p  . 

If the frequencies  i  are integer, the contribution to the total variance  Var R  coming 

from the variance iD  corresponding to parameter i  is approximately obtained as  

 2 2

1

2
i i

M

i p p

p

D A B 



  ,    (2.39) 
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where M is the maximum harmonic taken into consideration (usually 6M  ). The ratio of 

the partial variance iD  to the total variance  Var R  provides the so-called first-order 

sensitivity index. The minimum sample size required to compute iD  is  max2 1M  , where 

max  is the maximum frequency in the set  i  (see, e.g., Saltelli at al., 2000). Furthermore, 

the frequencies that do not belong to the set  1 1 2 2, , , n np p p    for  1,2,ip    and any 

 1,2, ,i n   contain information about the residual variance   iVar R D    that is not 

accounted for by the first-order indices.  

On the other hand, the expansion expressed by Eq. (2.33) can be constructed using various 

methods, selected based on the nature of the components of  1,..., n α . The germ 

 1 1, ,... ω  that parameterizes the random data follows a probability law that is not 

necessarily the same as that of the random data itself, particularly when parametrization of 

the data involves nonlinear functionals. One of the oldest methods used to achieve the 

expansion expressed by Eq. (2.33) is the Karhunen-Loève decomposition of a second-order 

random process based on the spectral decomposition of its autocorrelation function, where 

the deterministic functions are fixed by the form of the autocorrelation kernel, while the joint 

probability law of  1 1, ,... ω  remains unknown in the absence of information other than 

the second-order properties of the process (specifically, one can only ascertain that the 

random variables have zero mean, unit variance, and are mutually orthogonal). More general 

methods for achieving the expansion in Eq. (2.33) are the so-called “polynomial chaos” 

decompositions which employ various orthogonal polynomials: Hermite; Laguerre; the 

Jacobi family of polynomials (including, in particular, the Legendre polynomials), or 

piecewise polynomial functions.  

The numerical methods used for computing the statistics of the response distribution 

 R   α ω , using either Eq. (2.32) or Eq. (2.33) can be grouped into two broad categories, 

namely “intrusive methods” and “non-intrusive methods.” The fundamental concept behind 

“non-intrusive” uncertainty propagation methods essentially consists in the (repeated) 

application of a deterministic solver in order to determine the unknown expansion 

coefficients appearing in the spectral expansion of the solution. This approach is called      
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non-intrusive, because (existing or legacy) deterministic solvers can be immediately applied 

without modification for obtaining the spectral coefficients in Eq. (2.33).  

On the other hand, when analytical methods are not available, the original solvers need to be 

modified intrusively to obtain the solution of the system of equations governing the spectral 

coefficients, 
kr . Intrusive methods require adaptation of deterministic solvers, using basis 

function expansions in the appropriate function spaces, to construct discrete parametrizations 

of both the random data and the model solutions. Using these discretized representations, a 

weighted residual formalism of Galerkin-type is used to define the so-called “spectral 

problem,” which governs the behavior of the unknown solution coefficients 
kr . After solving 

this “spectral problem”, the spectral coefficients thus determined (“intrusively”) are used in 

the “polynomial chaos” representation given in Eq. (2.33) to quantify statistical properties of 

the response 

 

2.1.2 Deterministic Methods for Uncertainty and Sensitivity Analysis  

 

Denoting the unknown multivariate parameter distribution function as  p α , and considering 

that  p α  is defined on a domain D , it is possible to write formally the expressions of the 

mean values, covariance and variances of the parameter distribution, using their customary 

definitions, as follows:  

(i) the expected (or mean) value of a model parameter 
i , denoted as 0

i , is defined 

as 

 0

i i

D

p d



  α α ;     (2.40) 

(ii) the covariance, cov( , )i j  , of two parameters,
i  and 

j , is defined as  

    0 0cov( , ) , , 1, ,i j i i j j

D

p d i j N



        α α ; (2.41) 
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(iii) the variance, var( )i , of a parameter
i  is defined as  

   
2

0var( ) , 1, ,i i i

D

p d i N



    α α ;   (2.42) 

(iv) the standard deviation, 
i , of 

i  is defined as var( )i i  ; 

(v) the correlation, 
ij , between two parameters 

i  and 
j  is defined as 

 cov( , ) ; , 1, ,ij i j i j i j N      ;   (2.43) 

(vi) higher-order moments and correlations are defined by generalizing the definition 

in Eq. (2.41); thus, the 3rd-order moment,
3

ijk , of the multivariate parameter 

distribution function  p α , and the 3rd-order parameter correlation, ijkt , 

respectively, are defined as follows:  

       0 0 0

3 , , , 1, ,ijk

i i j j k k ijk i j k

D

p d t i j k N



             α α ; (2.44) 

(i) the 4th-order moment,
4

ijkl , of the multivariate parameter distribution function 

 p α , and the 4th-order parameter correlation, ijklq , respectively, are defined as 

follows:  

         0 0 0 0

4

, , , , 1, , .

ijkl

i i j j k k l l

D

ijkl i j k l

p d

q i j k l N





        

   

   



 α α

  (2.45) 

Similarly, for a vector-valued response of the form   1( ),..., ( )
rNr r   r α α α  distributed 

according to a (generally unknown) distribution  p r  defined on a domain
rD , the first three 

moments of response distribution  p r  are defined analogously, namely: 

(i) the expected value, denoted as ( )kE R , of a response ( )kR α , is defined as 

 ( ) ( ) , 1, ,

r

k k r

D

E R R p d k N α r r ;   (2.46) 
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(ii) the covariance, cov( , )k lR R , of two responses, ( )kR α  and ( )lR α , is defined as  

    cov( , ) ( ) ( ) , , 1, ,

r

k l k k l l r

D

R R R E R R E R p d k l N   r r ; (2.47) 

(iii) the variance, var( )kR , of a response 
kR  is defined as  

   
2

var( ) ( ) , 1, ,

r

k k k r

D

R R E R p d k N  r r ;   (2.48) 

(iv) the third-order moment (triple correlation), 
3( , , )k l mR R R , of three responses,  

kR , 
lR , and 

mR , is defined as  

     3( , , ) ( ) ( ) ( ) , , , 1, ,

r

k l m k k l l m m r

D

R R R R E R R E R R E R p d k l m N     r r .

 (2.49) 

It is known that the uncertainties in a response ( )kR α  that stem from uncertainties in the 

parameters α  can be computed by using the “propagation of errors” or “propagation of 

moments” method [see, e.g., Cacuci (2003)]. This method relies on expanding formally the 

response ( )kr α  in a Taylor series around the mean parameter values 
0

α , constructing 

appropriate products of such Taylor series, and integrating formally these products over the 

unknown parameter distribution function  p α , to obtain response correlations. Assuming 

that only 1st- and 2nd-order response derivatives with respect to parameters are available, the 

Taylor-series of a response ( )kR α  around the mean values  0 0 0

1 ,..., N
 α  is:  

     
0 0

2
0 0 0 0

1 , 1

1
( ) ( )

2

N N

k k
k k i i i i j j

i i ji i j

R R
R R

 

     
   

    
        

      
 

α α

α α , (2.50) 

where  0

kR α  denotes the computed nominal value of the response. Using Eq. (2.50) in 

Eqs. (2.46), (2.47), and (2.49) yields the following expressions, up to the 3rd-order response 

derivatives: 
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0

2
0

, 1

1
( ) ( ) cov( , )

2

N

k
k k i j

i j i j

R
E r R



 
 

  
   

   


α

α .

  

  (2.51) 

     

 

1 1
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1
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cov R R R E R R E R

R R R R
t
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q

 
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
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  
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  
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 

  



  
               

    
         

   
          






1 1 1

3 3

1 1 1 1

1
.

6

N N N

j

i j

N N N N

k l l k
ij i j

i j i j i j

R R R R
q

  

   

 



  

     

  

   
       

  

   

    
           





  (2.52) 
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i j i j
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
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  
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

  

  
 
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  

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1 1 1 1
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ij i j i j
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N N N N
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ij ij i j

i j i j

q
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q



   

    

   

   

     

     
   



   



  
 

   





      (2.53) 

 

The corresponding statistics for a single response, ( )kR α , are obtained by setting k l m   

in Eqs. (2.51) - (2.53). It is evident from Eqs. (2.51) - (2.53) that the statistics (expectation 

value, covariance and 3rd-order moments) of the response distribution can be computed after 

obtaining all of the first-, second-, and (possibly) third-order response sensitivities to the 

model parameters. 
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A. Adjoint Sensitivity Analysis Methodology for Computing 1st-Order Response 

Sensitivities (Cacuci, 1981.a; 1981.b) 

 

The most efficient method for computing exactly the 1st-order sensitivities of a model’s 

scalar-valued nonlinear response,  R e , with respect to the model’s parameters is the first-

order adjoint sensitivity analysis methodology formulated and developed by Cacuci (1981.a). 

For such a response, Cacuci (1981.a) showed that the most general definition of the 1st-order 

sensitivity of an scalar-valued model response  R e  to variations  , h α u  in the model 

parameters and state functions in a neighborhood around  0 0 0, e α u E  is given by the 

1st-order Gateaux- (G-) differential (also called “G-variation”), which will be denoted as 

 0;R e h  and is defined as 

   
   0 0

0 0

0
0

; lim
R Rd

R R
d 




 

 


      

e h e
e h e h    (2.54) 

for an arbitrary scalar  F , and all (i.e., arbitrary) vectors    uh E E E  in a 

neighborhood  0 e h  around  0 0 0, e α u E . However, the existence of the G-

differential  0;R e h  does not guarantee its numerical computability. Numerical methods 

require that  0;R e h  be linear in  , h α u  in a neighborhood  0 e h  around 

 0 0 0, e u α E . In this case,  0;R e h  can be written in the form  

 
 

 

 

 0 0 0 0

0

, ,

, ,
; , ,x

R R
R  

    
     

    α u α u

α u α u
e h u α x

u α
 (2.55) 

where  ,R α u u  and  ,R α u α  denote the partial G-derivatives of  R e  with respect 

to u  and α . The necessary and sufficient conditions for the G-differential  0;R e h  of a 

nonlinear operator  R e  to be linear in h  in a neighborhood  0 e h  around 
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 0 0 0, e α u E , and thus admit G-derivatives, have been given by Cacuci (1981.a, 

1981.b). In nonlinear responses of interest for the dissolver model developed and analyzed 

in this work will be shown to fulfill the requirements needed for Eq. (2.55) to hold. It is 

convenient to refer to the quantities  ,R    α u α α  and  ,R    α u u u  as the “direct 

effect term” and the “indirect effect term,” respectively, because the direct effect term 

 ,R    α u α α  can be evaluated immediately while the indirect effect term 

 ,R    α u u u  can be quantified only after determining u  as function of α , since the 

system’s state vector u  and parameters α  are related to each other through Eqs. (1) and (2).  

The relationship between u  and α  is determined by taking the G-differentials at 
0

e of 

Eqs. (2.1) and (2.2), which yields:  

     1 0 0 (1) 0 0

11 , , ; , ,  xF α u u Q α u α x     (2.56) 

   1 0 0, ; , , ,   F xB α u α u 0 x      (2.57) 

where the superscript “(1)” indicates “1st-Level,” the letter “F” (used as “operator” and 

“subscript”) indicates “Forward”, the letter “B” indicates “boundary and/or initial 

conditions,” and where the following definitions were used: 

   
 

 
   1 (1)

11

,,
, ; , ; ; , 

       
  

x

Q α N α uN α u
F α u Q α u α α x

u α
 (2.58) 

   
 

 

   

 
0 0 0 0

1 0 0

, ,

,,
, ; , , .F x

       
    

     α u α u

C α B α uB α u
B α u α u u α x

u α
     

 (2.59) 

The partial G-derivatives  , N α u u  and  , N α u α  appearing in Eq. (2.58) are 

matrices of the form 
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 

   

   

 

   

   

1 1 1 1

1 1

1 1

, , , ,

, ,
, .

, , , ,

u

u u u u

u

N N

N N N N

N N

N N N N

u u

N N N N

u u

      
   

      
    

    
      
            

α u α u α u α u

N α u N α u

u α
α u α u α u α u





 

 

 (2.60) 

The other partial G-derivatives which appear in Eqs. (2.58) and (2.59) are also matrices, with 

structures similar to those defined above in Eq. (2.60). 

The system comprising Eqs. (2.56) and (2.57) represents the “1st-Level Forward Sensitivity 

System” (1st-LFSS). For a given vector of parameter variations α  in a neighborhood around 

0
α , the 1st-LFSS needs to be solved to obtain u  as a function of α . In turn, the relationship 

between u  and α  would lead to the elimination of the appearance of u  in Eq. (2.55). 

Consequently, Eq. (2.55) would be expressed in the form  

 
1 1

1

0 0 (1)

1

, ; ,


  



N

i i

i

R Rα u α      (2.61) 

where the quantities 
1

(1)

iR  are independent of the parameter variations 
1i

  [although they 

may depend on 
0

α , 
0

u , and/or other known quantities], and represent the 1st-order partial 

sensitivities (1st-order partial G-derivatives) of the response  R e  with respect to each of 

the model parameters i
, evaluated at the nominal values 

0
e . The partial sensitivities 

1

(1)

iR  

of the response  R e  with respect to each of the model parameters 
1i

 , evaluated at the 

nominal values  0 0 0,e α u , are obtained by successively setting 

 1, 0 , 1, ,     i j for j i i N  in the expression of  0;R e h  given in Eq. (9). 

Computing the (total) response sensitivity  0;R e h  by using the (α -dependent) solution 

u  of the 1st-LFSS is called the Forward Sensitivity Analysis Methodology (FSAM). From 

the standpoint of computational costs and effort, the FSAM requires  O N  large-scale 

forward computations and is advantageous only when the number 
rN  of responses of interest 
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exceeds the number of system parameters and/or parameter variations of interest. This is 

rarely the case in practice, however, since most problems of practical interest are 

characterized by many parameters (i.e., α  has many components) and comparatively few 

responses. In such situations, it is not economical to employ the FSAM since it becomes 

prohibitively expensive to solve repeatedly the α -dependent 1st-LFSS in order to determine 

u  for all possible variations α  in the model parameters.  

In most practical situations, the number of model parameters exceeds significantly the 

number of functional responses of interest, i.e., .rN N
 In such cases, the Adjoint 

Sensitivity Analysis Methodology (ASAM) developed by Cacuci (1981.b) is the most efficient 

method for computing exactly the first-order sensitivities since it requires only a single large-

scale computation for each scalar-valued response  R e . The implementation of the ASAM 

requires the introduction of adjoint operators, which can be practically introduced by 

requiring the spaces 
uE and QE  to be inner-product (Hilbert) spaces, denoted as  u xH  

and  Q xH , respectively. The elements of  u xH  and  Q xH  are, as before, vector-

valued functions defined on the open set xJ

x  , with smooth boundary 
x . On 

 u xH , the inner product of two vectors ( ) a

uu H  and ( ) b

uu H  will be denoted as 

( ) ( ),a b

u
u u . Typically, the inner product 

( ) ( ),a b

u
u u  is defined as  

   ( ) ( ) ( ) ( ), .

x

a b a b

u
d



u u u x u x x      (2.62) 

The inner product on  Q xH  of two vectors 
( ) a

QQ H  and 
( ) b

QQ H will be denoted as 

( ) ( ),a b

Q
Q Q , and has the same form as shown in Eq. (2.62). In particular, the Riesz 

representation theorem ensures that the “indirect effect term”  ,R   α u u u  can be 

written in the following inner product form: 

   , , , , .          uu
R Rα u u u α u u u u H    (2.63) 
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The goal of the ASAM is to compute the above “indirect effect term” exactly and efficiently 

without needing to compute explicitly the variations u . This goal is accomplished by 

constructing the “1st-Level Adjoint Sensitivity System (1st-LASS),” which commence by 

considering a vector          1 1(1)

1 , ,   
 uN Qψ x x x H  that satisfies the following 

relationship:  

          1 1(1) 0 0 (1) 0 0 (1) 0 0 (1)

11 11, , , , , ; ;
xuQ

P


 ψ F α u u A α u ψ u α u ψ u   , (2.64) 

where      
*

1(1)

11 11, , 
 

A α u F α u  denotes the adjoint operator of 
     1

11 , , F α u N α u u . 

In this work, the symbol  

 will be used to indicate “adjoint” of the quantity within the 

respective brackets. The quantity 
    1 (1), ; ;

x

P α u ψ u  in Eq. (2.64) denotes the associated 

bilinear form evaluated on the domain’s boundary 
x . In certain situations, it might be 

computationally advantageous to include certain boundary components of 

    1 (1), ; ;
x

P α u ψ u  into the components of  (1)

11 ,A α u . An important intermediate step 

in the construction of the adjoint operator      
*

1(1)

11 11, , 
 

A α u F α u  is the construction of the 

formal adjoint operator,  (1, )

11 ,form
A α u , of 

   1

11 ,F α u , which is defined as the u uN N  matrix 

obtained by transposing the formal adjoint of the components of the u uN N  matrix 

 , N α u u  in Eq. (2.60). The formal adjoint,  (1, )

11 ,form
A α u , will usually differ from “the 

adjoint” operator      
*

1(1)

11 11, , 
 

A α u F α u .  

The domain of  (1)

11 ,A α u  is determined next by selecting appropriate adjoint boundary 

and/or initial conditions, which will be denoted in operator form as: 

   1 0 0 (1), ; , . A xB α u ψ 0 x      (2.65) 

The above boundary conditions for  (1)

11 ,A α u  are usually inhomogeneous in (1)
ψ , i.e., 

   1 0 0, ; AB α u 0 0 ; they are obtained by requiring that: 
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(a) Eq. (2.65) must be independent of unknown values of u  and α ; 

(b) The substitution of the forward and adjoint boundary and/or initial conditions 

represented by Eqs. (2.57) and (2.65), respectively, into the expression of 

    1 (1), ; ;
x

P α u ψ u  must cause all terms containing unknown values of u  to 

vanish. 

Constructing the adjoint initial and/or boundary conditions for  (1)

11 ,A α u  as described 

above, and implementing them together with the forward adjoint boundary and/or initial 

conditions [represented by Eqs. (2.57)] into Eq. (2.64) reduces the bilinear concomitant 

    1 (1), ; ;
x

P α u ψ u  to a quantity that will contain boundary terms involving only known 

values of α , 
0

α , 
0

u , and (1)
ψ ; this quantity will be denoted by    1 (1)ˆ , ; ;P α u ψ α . In 

general,    1 (1)ˆ , ; ;P α u ψ α  does not automatically vanish as a result of the operations 

discussed in the foregoing. In certain cases, though,    1 (1)ˆ , ; ;P α u ψ α  may vanish 

automatically or it may be forced to vanish by considering appropriately constructed 

extensions of  (1, )

11 ,form
A α u ; however, such extensions are seldom needed in practice.  

Implementing the forward and adjoint boundary and/or initial conditions, cf. (2.57) and 

(2.65) into Eq. (2.64) will transform the later into the form  

         1 1(1) 0 0 (1) (1) 0 0 0 0 (1)

11 11
ˆ, , , , , ; ;   

u Q
PA α u ψ u ψ F α u u α u ψ α .  (2.66) 

The quantity    1 0 0

11 , F α u u  in the first term on the right-side of Eq. (2.66) is now replaced 

by the right-side of Eq. (2.56) to obtain  

       1(1) 0 0 (1) (1) (1) 0 0 0 0 (1)

11
ˆ, , , , ; , ; ;A α u ψ u ψ Q α u α α u ψ α

u Q
P    .  (2.67) 

The definition of the function (1)
ψ  will now be completed by requiring that the left-side of 

Eq. (2.67) and the right-side of Eq. (2.63) represent the same functional, namely the “indirect 

effect term”  ,R    α u u u . Imposing this requirement yields the following relationship: 
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   (1) 0 0 (1) 0 0

11 , , , , , ,      u
u u

RA α u ψ u α u u u u H   (2.68) 

which implies that the adjoint function (1)
ψ  is the weak solution (in the sense of distributions) 

of the equation 

   
 

 0 0

(1) 0 0 (1)

11

,

,
, , .

α u

α u
A α u ψ x x

u
x

R 
  

 
   (2.69) 

Of course, the adjoint function (1)
ψ  must also satisfy the adjoint boundary conditions 

represented by Eq. (2.65).  

The results obtained in Eqs. (2.64), (2.67) and (2.68) are now replaced in Eq. (2.55) to obtain: 

 
 

 
     

   

0 0

1 1

1

10 (1) (1) 0 0 0 0 (1)

,

0 0 (1) (1) 0 0 (1)

1

, ˆ; , , ; , ; ;

, ; ; , ; .

Q

N

i i

i

R
R P

R R


   

  


 
   

 

 

α u

α u
e h α ψ Q α u α α u ψ α

α

α u ψ α α u ψ

 (2.70) 

The last equality on the right-side of Eq. (2.70) is obtained in view of Eq. (2.61) and indicates 

that the desired elimination of all unknown values of u  from the expression of total first-

order differential  0 0 (1), ; ;R α u ψ α  of  R e  at 
0

e  has been accomplished. Instead of 

depending on u , the 1st-order response differential,  0 0 (1), ; ;R α u ψ α , and the 1st-order 

response derivatives,  
1

(1) 0 0 (1), ;iR α u ψ , with respect to the model parameter now depend on 

the adjoint function 
(1)  Qψ H . The explicit expressions of the 1st-order partial G-

derivatives,  
1

(1) 0 0 (1); ;iR α u ψ , of the response  R e  with respect to each of the model 

parameters i
, evaluated at 0 0 (1), ,α u ψ , are as follows:  
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 
 

   

 
   

1

1 1

1

1 (1)

(1) (1)

(1)

1

ˆ , ;,
, ;

,
, 1, , .

x

i

i i

i

PR
R

d i N





 

       
  



α u ψα u
α u ψ

Q α N α u
ψ x x 

 



 (2.71) 

As indicated by Eqs. (2.70) and (2.71), the total 1st-order response variation 

 0 0 (1), ; ;DR α u ψ α  can be computed after solving Eqs. (2.69) and (2.65) only once to obtain 

the adjoint function 
   1(1)

 xψ H . Equations (2.69) and (2.65) will be called the 1st-Level 

Adjoint Sensitivity System (1st-LASS), and its solution, 
   1(1)

 xψ H , will be called the 

1st-level adjoint function. It is very important to note that the 1st-LASS is independent of the 

variation u  in the original state functions u . Once the adjoint function 
   1(1)

 xψ H  

has been obtained, the individual sensitivities of the response  R e  with respect to each of 

the model parameters i
, evaluated at the nominal values  0 0 0,e α u , are obtained by 

means of the simple integrations, as shown in Eq. (2.71), over the definition domain  x  

of the system’s independent variables. 

Cacuci (1981.b) has also provided the adjoint sensitivity analysis methodology for computing 

the 1st-order sensitivities of function-valued operator responses,  R e , as opposed to the 

scalar-valued response considered in the foregoing. In such a case,  R e  can be represented 

by the spectral (generalized Fourier) expansion 

       0 0 ,


 n n
R

n N

R e R e φ x φ x ,    (2.72) 

where the set   , n n Nφ x , is an orthonormal basis for the Hilbert space  R RH ; the 

index set N  may be finite or infinite. The first-order G-derivative of Eq. (2.72) yields 
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   

 

 

 

 

 

 0 0 0 0 0 0

0 0 0

0

, , ,

, ; ;

, , ,
, .n n

n N R

d
R

d 

   


   





     

        
        

        


α u α u α u

α u u α R e h

R α u R α u R α u R
α u α u φ φ

α u α u

 (2.73) 

As noted in Eq. (2.73) above, the “direct effect term,”    0 0,
,  

α u
R α u α α , can be 

computed directly when applying to the response  R e  the definition of the G-differential, 

without needing to evaluate its spectral expansion. Furthermore, each of the generalized 

Fourier coefficients    0 0,
, , n

R

 
α u

R α u u u φ  will be considered, in turn, to provide a 

source term for the adjoint sensitivity system, just as has been done for the functional 

   , , ,
u

R R       α u u u α u u u  that was defined in Eq. (2.63). Repeating the 

mathematical derivations from Eq. (2.63) to Eq. (2.70) yields the following result for 

computing the 1st-order totals differential     0 0 (1) (1)

1, ; ,..., ;N R α u ψ x ψ x α  of function-

valued operator response  ,R α u :  

    
 

 

         

0 0

0 0 (1) (1)

1

,

(1) 0 0 (1) 0

,
, ; ,..., ;

ˆ, , ; ,

N

n n n
Q

n N

P    

  



 
  

 

  

α u

R α u
R α u ψ x ψ x α α

α

ψ x Q e h N e h h ψ x α φ

  (2.74) 

where each adjoint function  (1)

nψ x , n N , is the solution of the following 1st-Level Adjoint 

Sensitivity System (1st-LASS): 

   
 

 

 
0 0

(1) 0 0 (1)

11

,

,
, , , ,n n x n N

 
   

  α u

R α u
A α u ψ x φ x x

u
  (2.75) 

    1 0 0 (1), ; , .A n x B α u ψ x 0 x       (2.76) 
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As Eqs. (2.75) and (2.76) indicate, the adjoint system must be solved anew, with a different 

source on the right-side of Eq. (2.75), for each n N . From the foregoing considerations, it 

is evident that the orthonormal basis   , n n Nφ x , must be chosen such as to minimize 

an “a priori” user-selected error criterion, to ensure that the spectral expansion in Eq. (2.72) 

represents the known nominal value of  ,R α u  within the selected error criterion with a 

minimal number, N , of terms in the expansion. The selection of this error criterion and of the 

basis  ,n n Nφ , are clearly problem-dependent issues but the procedures and 

considerations for performing this selection (e.g., using classical Fourier expansion, 

orthogonal and/or chaos polynomials, wavelets, collocation, pseudo-spectral methods, etc.) 

are well-known.  

 

2.1.3 Discussion  

 

The presentations of the major statistical methods in Sub-Section 2.1.1, and the presentation 

of the adjoint sensitivity analysis methodology in Sub-Section 2.1.2 have highlighted the 

following fundamental distinctions between these two groups of methods:  

(i) In contrast to statistical methods, deterministic methods aim at calculating exactly 

the local sensitivities (derivatives) of the response to the model parameters, rather 

than infer a sensitivity measure from statistical indicators. The adjoint sensitivity 

analysis methodology (ASAM) can only be applied if the original model can be 

accessed in order to develop the adjoint sensitivity model; thus, this methodology 

is intrinsically intrusive. If this adjoint model is developed simultaneously with 

the original model, then the adjoint model requires very little additional resources 

to develop. If, however, the adjoint model is developed posteriori, considerable 

skills may be required for its successful implementation and use. However, once 

the adjoint model is available, the computation of response sensitivities using the 

ASAM is by far more efficient computationally than using any other method, 

deterministic or statistical.  
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(ii) If a model cannot be accessed intrusively, then the only path to performing 

sensitivity and uncertainty analysis is by using non-intrusive statistical methods. 

Statistical methods commence with the “uncertainty analysis” stage, and only 

subsequently proceeds to the “sensitivity-analysis” stage, which is the exact 

reverse of the conceptual path underlying the methods of deterministic sensitivity 

and uncertainty analysis. Statistical methods can only infer a sensitivity measure 

from statistical indicators, but cannot compute exactly response sensitivities. The 

relative advantages and disadvantages of the various statistical methods, when 

compared among themselves, will be summarized in the remainder of this 

subsection. 

Statistical uncertainty and sensitivity analysis methods aim at assessing the 

contributions of uncertainties in parameters in contributing to the overall 

uncertainty of the model response (output). The relative magnitude of this 

uncertainty contribution is assigned a measure of the statistical sensitivity of the 

response uncertainty to the respective parameter, and this measure is also used to 

rank the importance of the respective parameter. Without any “a priori” 

assumption regarding the relationship between the parameters and the response, 

the construction of a full-space uncertainty analysis requires  IsO  computations, 

where s denotes the number of sample values for each parameter and I denotes 

the number of parameters. If a local polynomial regression is used, Stone (1982) 

has shown that the rate of convergence is  Ipp
N Ns  2/ , where N denotes the 

number of sample points, p denotes the degree of smoothness of the function 

representing the response in terms of the parameters, and I denotes the number of 

parameters. This relation indicates that the parameters-response mapping 

(function) can be approximated to a resolution of 1s  with  pIsO /  sample points. 

The FAST method appears to be the most efficient of the statistical methods, 

needing   ri NI 18   computations for each frequency, where rN  denotes the 

number of replicates. For example, if the response is a function of 8 parameters, 

and if the sample size is 64, then Sobol’s method requires 1088 model evaluations, 

while the FAST method requires 520 model evaluations, if the sample size 
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increases to 1024, then Sobol’s method requires 17 408 model evaluations, while 

the FAST method requires 8200 model evaluations. These examples underscore 

the fact that the number of model evaluations becomes rapidly impractical for 

realistic large-scale models comprising many parameters. 

Since random sampling is easy to implement, and provides unbiased estimates for the means, 

variances, and distribution functions, it is the preferred technique in practice, if large samples 

are available. However, a sufficiently “large sample”, for producing meaningful results by 

random sampling, cannot be generated for complex models and/or for estimating extremely 

high quantiles (e.g., the 0.99999 quantile), with many parameters, since the computation of 

the required sample becomes prohibitively expensive and computationally impractical. In 

such cases, the random sampling method of choice becomes the stratified sampling method. 

The main difficulty for implementing stratified sampling lies with defining the strata and for 

calculating the probabilities for the respective strata, unless considerable “a priori” 

knowledge is already available for this purpose. For example, the fault and event trees used 

in risk assessment studies of nuclear power plants and other complex engineering facilities 

can be used as algorithms for defining stratified sampling procedures. Latin Hypercube 

sampling is used when very high quantiles need not be estimated, but the large number of 

calculations needed for generating the “large sample” required for random sampling still 

remain unpractical. This is often the case in practice when assessing the effects of subjective 

uncertainty in medium-sized problems (e.g., ca. 30 parameters), and a 0.9 to 0.95 quantile is 

adequate for indicating the location of a likely outcome. For such problems, random sampling 

is still unfeasible computationally, but the unbiased means and distribution functions 

provided by the full stratification (i.e., each parameter is treated equally) of the Latin 

Hypercube sampling makes it the preferred alternative over the importance sampling, where 

the unequal strata probabilities produce results that are difficult to interpret (particularly for 

subsequent sensitivity analysis). In this sense, Latin Hypercube sampling provides a 

compromise importance sampling when “a priori” knowledge of the relationships between 

the sampled parameters and predicted responses is not available. For example, the method 

devised by McKay (1995) for evaluating 2 , defined in Eq. (2.25), is based on a Latin 

Hypercube sampling of size m with r replicates, and is computationally very expensive, 

requiring  1 Irm  model evaluations, where I represents the number of parameters in α .  
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As has been discussed in the foregoing, sampling-based uncertainty and sensitivity analysis 

is performed in order to ascertain if model predictions fall within some region of concern 

(uncertainty in model responses due to uncertainties in model parameters) and to identify the 

dominant parameters in contributing to the response uncertainty (statistical sensitivity 

analysis). As a by-product, sampling-based uncertainty and sensitivity analysis also provides 

an indication of the proper operation of the model under investigation. However, the results 

of sampling-based uncertainty and sensitivity analysis depend entirely on the distributions 

assigned to the sampled parameters, so the proper assignment of these distributions is 

essential to avoid producing spurious results. 

It is customary to display the estimated expected value and the estimated variance of the 

response (as estimated from the sample size). However, these quantities may not be the most 

useful indicators about the response because information is always lost in the calculations of 

means and variances. In particular, the mean and variance are less useful for summarizing 

information about the distribution of subjective uncertainties; by comparison, quantiles 

associated with the respective distribution provide a more meaningful locator for the quantity 

under consideration. Distribution functions (e.g., cumulative and/or complementary 

distribution functions, density functions) provide the complete information that can be 

extracted from the sample under consideration.  

Currently, a general “fool-proof” statistical method for analyzing correctly mathematical 

models of physical processes involving highly correlated parameters does not seem to exist, 

so that particular care must be used when interpreting regression results for such models. 

 

2.2. Development of a Surrogate Dissolver Model  

The spent nuclear fuel dissolver model developed in Chapter 3, and analyzed in subsequent 

Chapters of this work, comprises 16 coupled nonlinear first-order equations that describe the 

time-evolution of the volumetric mass concentration of nitric acid of the liquid phase. The 

dissolver model also comprises 1291 imprecisely known scalar model parameters, for which 

only the nominal values and the corresponding standard deviations are known; these 

parameters are considered to be all uncorrelated. A simple surrogate model that can be used 

without loss of generality to illustrate the novel concepts and results reported in this work 
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can be constructed by considering (see Chapter 3) the evolution of the volumetric mass 

concentration of nitric acid of the liquid phase, in units of  g L , denoted as    8

a t , in the 

compartment closest to the dissolver’s inlet (i.e., compartment #8). The evolution equation 

for    8

a t  has the following form [see Eqs. (3.11) and (3.14) in Chapter 3]:  

   
   
   

   
   
   

 8 8

8 8
, 0

in in

in

a a a f

f t f td
t t t t t

dt V t V t
        
 

   (2.77) 

   8
0 0.0 0,a at t           (2.78) 

where: (i)    8
V t  denotes the volume of the liquid phase, in units of liters  L , in 

compartment #8; (ii)    in
f t  denotes the inflow volumetric flow rate of the liquid mixture, 

in units of liter/hour L h ; (iii)    in

a t  denotes the time-dependent variation of the inlet 

mass flow rate of nitric acid solution, which evolves in time as depicted in Figure 3.4. As 

shown in Chapter 3, the inflow volumetric flow rate,    in
f t , is computed from Eq. (3.9), 

namely  

           
1

63
in in in

af t m t a t b


  
 

,     (2.79) 

where a and b are imprecisely known parameters with nominal values and standard 

deviations given in Table 3.1, and where  denotes the inlet nitric mass concentration, 

in units of gram/hour g h , which evolves in time as depicted in Figure 3.3.  

Both  and    in

a t  are piecewise-constant in time, as depicted in Figures 3.3 and 3.4, 

respectively. On the other hand,    8
V t  is a state function of the dissolver model, and is thus 

determined as part of the model’s solution; in principle, therefore,    8
V t  depends on all 

1291 scalar parameters comprised within the dissolver model. Consider that a measurement 

were made in compartment #8 at a time 
1t t , shortly after the initiation of the transient, 

such that the quantity 
       8in

f t V t , which depends on all of the model parameters, can 
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essentially be considered to be time independent, i.e., 
       8

1

N
in

i i

i

f t V t w





 , where N  

is a large number (of order 
310 ) denoting the total number of model parameters, denoted here 

as 
i , and the quantities 

iw  represent known “weighting factors” that are not subject to 

uncertainties. Furthermore, the quantity  in

a t  is also constant in time (see Figure 3.4), 

remaining at a value   ,

in in

a a At   during the short initial time interval  10,t t . Dropping, 

for notational simplicity, the various superscripts and subscripts in Eqs. (2.77) and (2.78), it 

follows that, for an initial time interval  10,t t , the evolution of the acid density in 

compartment #8, which shall simply be denoted as  t , would be governed by the 

following evolution equation derived from Eqs. (2.77) and (2.78):  

 
  , 1

1 1

, 0
N N

in

i i a A i i

i i

d t
t w w t t

dt

 
   

 

          (2.80) 

 0 0, 0.t           (2.81) 

The response of interest for the above model would be the measurement of  t  at time 

1t t . Such a measurement can be represented mathematically by the following functional: 

     
1

1 1

0

,

t

t t t t dt          (2.82) 

where  1t t   denotes the well-known Dirac-delta (impulse) functional.  

The parameters in Eq. (2.80) could be determined by applying the tools of reduced order 

modeling to the full dissolver model (developed in Chapter 3). Such tools range from 

relatively simple regression “fitting” of the results produced by Eq. (2.80) to the 

corresponding results for compartment #8 produced by the full model, to the “polynomial 

chaos” methods of spectral decomposition of the full model, using (most likely) Legendre 

polynomials in time, since the time interval of interest is finite. In fact, Legendre polynomials 

in time will be used in Chapter 4, Section 4.2, for performing sensitivity analysis of spectral 
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representations of function-valued (in this case: time-dependent) acid concentration 

responses in various dissolver compartments. However, since the full dissolver model (to be 

developed in Chapter 3) will be used in this work, the actual numerical values, and needed 

number of, model parameters 
i  will not be determined here. Therefore, the model for the 

acid concentration in the dissolver’s compartment #8, represented by Eqs. (2.80) and (2.81) 

will be called the surrogate dissolver model, and will be used in the remainder of this Chapter 

for illustrating the structure of, and novel results in, the body of this work, to be described in 

Chapters 3 through 7. The solution of Eqs. (2.80) and (2.81) can be readily obtained by using 

the general “integrating factor” method for solving linear first-order ordinary differential 

equations (see appendix A), which yields  

  ,

1

1 exp .
N

in

a A i i

i

t t w


  


  
    

  
       (2.83) 

 

2.3. First-Order Adjoint Sensitivity and Uncertainty Analysis of the 

Surrogate Dissolver Model 

 

Since Eqs. (2.80) - (2.81) describe a mathematically well-defined surrogate model, either 

intrusive or non-intrusive methods could, in principle, be applied for performing sensitivity 

and uncertainty analysis of the response of interest,  1t . However, the large number 

 310N O   of model parameters precludes, ab initio, the use of any statistical method for 

performing sensitivity and uncertainty analysis, since the ensuing computational costs would 

be prohibitive. The ASAM will therefore be used to compute the first-order sensitivities, 

which will then be used in with Eqs. (2.51) – (2.51) to compute the first-order contributions 

to the expectation value  1E t   , and variance,  1Var t   , of  1t . Thus, applying the 

definition of the G-derivative given in Eq. (2.54) to the response  1t  defined in Eq. (2.82) 
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yields the following expression for the total sensitivity  1t  of  1t  to variations in the 

model parameters 
i  and ,

in

a A : 

           
1 1

1 1 1

0 00

.

t t
d

t t t t t dt t t t dt
d



     




  
      

  
   (2.84) 

Note that there is no “direct effect term” in Eq. (2.83), since the response  1t  does not 

depend explicitly on any parameters; this response depends implicitly on all of the model 

parameters. The variation  t  in the state function  t  depends on the variations in the 

model parameters as generally represented by the 1st-LFSS, defined by Eqs. (2.56) and (2.57). 

The 1st-LFSS corresponding to Eqs. (2.80) and (2.81) is obtained by taking the G-differential 

of these equations, which yields:  

     

   
     

   

1 0 0 (1) 0 0

11

0

0 0

1

,0 0

, , 1

1 0

, , ; , ,

,0

x

N

i i i

i

N
in in

a A a A i i i

i

d t td
t t w

d dt

w t t







 

 
   



   



 

 

           



     







F α u u Q α u α x

 (2.85) 

   

    

1 0 0

0

0

, ; , , ,

0, 0.

F x

d
t t t

d 

 

 
 

 

   

B α u α u 0 x

    (2.86) 

Performing the differentiation with respect to   in Eqs. (2.84) and (2.85), and setting 0   

in the resulting expressions yields the following specific 1st-LFSS for the surrogate dissolver 

model:  

 
   0 ,0 0 0

, , 1

1 1 1

, 0
N N N

in in

i i a A i i a A i i

i i i

d t
t w t w w t t

dt

  
      

  

                 (2.87) 

 0 0, 0.t            (2.88) 
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In principle, the 1st-LFSS could be solved  310N O   times to obtain the sensitivities of 

 1t  to every model parameter, but such a procedure would be prohibitively expensive 

computationally. Therefore, the ASAM will be applied by developing the 1st-Level Adjoint 

Sensitivity System (1st-LASS), cf. Eqs. (2.69) and (2.65). For the surrogate dissolver model, 

the Hilbert spaces  u xH  and  Q xH  will be identical, consisting of all square-

integrable functions  t , and endowed with the inner product,    1 2,t t  , between two 

(square-integrable) functions,  1 t  and  2 t  defined as  

       
1

1 2 1 2

0

, .

t

t t t t dt        (2.89) 

In view of the above definition of the inner product, the “indirect effect term” in Eq. (2.84) 

indicates that the Dirac-functional actually corresponds to the quantity  ,R   α u u u , 

cf. Eq. (2.63), namely: 

   1, .R t t      α u u u     (2.90) 

The 1st-LASS is constructed by following the principles presented in Eq. (2.64) et seq. For 

the surrogate dissolver model, these principles require the introduction of a square-integrable 

function  (1)

Qt H , which is used to construct the inner product with Eq. (2.87), just as 

was generally done in Eq. (2.64), namely:  

 
 

     
1 1

(1) 0 (1) ,0 0 0

, ,

1 1 10 0

.

t tN N N
in in

i i a A i i a A i i

i i i

d t
t t w dt t t w w dt

dt

  
        

  

              
   

   

  (2.91) 

The adjoint operator corresponding to  (1)

11 ,A α u  in Eq. (2.64) is obtained by integrating the 

left-side of Eq. (2.91) by parts, so as to transfer the differential operation from  t  onto

 (1) t . Performing these operations yields:  
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 
 

   
 

 

       

1 1 (1)

(1) 0 (1) 0
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(1) (1)
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d t d t
t t w dt t t w dt

dt dt

t t

  
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   

 

            
    

 

  
 

 (2.92) 

Comparison of Eqs. (2.91) with Eq. (2.64) reveals correspondences between the general 

theory and the particular surrogate dissolver model:  

 
 

 
(1)

(1) 0 0 (1) 0

11

1

, ,
N

i i

i

d t
t w

dt


 



 
   

 
A α u     (2.93) 

            1 0 0 (1) (1) (1)

1 1, ; ; 0 0 .
x

P t t    


 α u ψ u   (2.94) 

The “boundary conditions” for the (adjoint) function  (1) t , corresponding to the general 

ones represented by Eq. (2.65), are determined by requiring that they be independent of 

unknown variations in the forward function. In view of Eqs. (2.94) and (2.88), this 

requirement can be fulfilled by requiring that  (1)

1 0,t   which implies that 

     1 0 0 (1) (1)

1, ; , 0.A x t   B α u ψ 0 x    (2.95) 

The selection of the above boundary condition implies that the bilinear concomitant 

    1 0 0 (1), ; ;
x

P 


α u ψ u  vanishes in the case of the surrogate dissolver model.  

Collecting the results in Eqs. (2.84), (2.90), (2.92) - (2.95) yields the following expression 

for the 1st-LASS satisfied by the adjoint function  (1) t :  

 
   

(1)

(1) 0

1 1

1

, 0
N

i i

i

d t
t w t t t t

dt


  



          (2.96) 

 (1)

1 0,t          (2.97) 
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as well as the following expressions for the total sensitivity  1t  of  1t  with respect to 

variations in the model parameters 
i  and ,

in

a A :  

         
1 1

(1) ,0 0 0

, , 1 1

1 10 0

.

t tN N
in in

a A i i a A i i

i i

t t w w dt t t t dt t
 

        
 

 
       
 

    

 (2.98) 

The partial sensitivities of  1t  with respect to variations the model parameters 
i  and ,

in

a A  

are obtained from Eq. (2.98), and their expressions are as follows: 

 
   

1

1 (1) ,0 0

,

0

, 1,..., ,

t

in

i a A

i

t
w t t dt i N


  




         (2.99) 

 
 

1

1 0 (1)

1, 0

.

tN

i iin
ia A

t
w t dt


 

 

  
  

  
       (2.100) 

It is evident from Eqs. (2.99) and (2.100) that the sensitivities of the acid concentration 

response  1t  can be computed by fast quadrature once the adjoint function  (1) t  has 

been obtained by solving the 1st-LASS, i.e., Eqs. (2.96) and (2.97). Notably, the 1st-LASS 

needs to be solved once only, since the 1st-LASS does not depend on any variations in the 

model parameters or state functions. The explicit solution of the 1st-LASS is readily obtained 

by using the integrating factor method (see Appendix A) in the form  

     (1)

1 1

1

1 exp ,
N

i i

i

t H t t t t w


 


 
       

 
     (2.101) 

where  1H t t  is the customary Heaviside unit step-functional, defined as   

  1

1

1

1,

0,

t t
H t t

t t


 


      (2.102) 

Inserting the results in Eqs. (2.102) and (2.83) into Eqs. (2.99) and (2.100), respectively, 

yields the following explicit expressions for the 1st-order sensitivities of the response  1t :  
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 1 ,0

, 1 1
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exp , 1,..., ,
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
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 

  
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  
    (2.103) 

 1
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i iin
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


 

   
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   
      (2.104) 

The correctness of the above expressions can be readily verified by computing the 1st-order 

sensitivities directly from the forward solution presented in Eq. (2.83). In this particular case, 

the sensitivities of the surrogate dissolver model response  1t  can be obtained analytically 

and exactly from Eq. (2.83). For large-scale systems, however, the forward solution would 

not be available analytically in a closed form [such as given in Eq. (2.83)], so the sensitivities 

obtained by the ASAM can only be verified to 1st-order in the parameter variations 
i  by 

using forward computations, with altered parameter values  0

i i  , in conjunction with 

1st-order difference formulas of the form  

     0 0 0

1 1 1; ; ;
.

i i i i

i i

t t t      

 

  



    (2.105) 

If only the 1st-order sensitivities are available for the single computed response, denoted as 

 1

comp t , then Eqs. (2.51) through (2.53) reduce to the following expressions:  

    0

1 1
1

;comp

iE t t      ,       (2.106) 

  
 

 
   

 

   
 

   
 

1

2

1 1 1

1 , ,
1

1, ,

1 1

1 1

1 1
1 1

,

1 1

2 cov ,

cov ,

cov , , ;
N

N
comp in in

a A a A iin in
ia A a A i

N N

i j

i j i j

N N
in

i j a A

i j i j

t t t
Var t Var

t t

t t



 

 



  
   

  

 
 

 

 
   

  



 

 

 

     
               

  
     

 


 





 

 

 (2.107) 
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  
     

1

1 1 1
1 1 1

3 1 ,
1

1 1 1

; .
N

N N N
comp in

ij i j a A

i j i j

t t t
t t

  


 

 

  
      

   

  

  

  
      

  

 (2.108) 

 

Recall also that the skewness,  1 1t    , of the response  1t  is generally defined as  

 
 

  
3 1

1 1 3/2

1

.
var

t
t

t

 
 



  
  

  

    (2.109) 

Recall that the skewness of a distribution quantifies the departure of the subject distribution 

from symmetry. Symmetric univariate distributions are characterized by  1 0.kr   If 

 1 1 0t     , then the respective response distribution is skewed towards the left of the 

mean  1E t   , favoring lower values of 
kr  relative to  1E t   . On the other hand, if 

 1 1 0t      , then the respective response distribution is skewed towards the right of the 

mean  1E t   , favoring higher values of 
kr  relative to  1E t   .  

The subscript “1” is used for the quantities   1
1

compE t 
  ,   1

1

compVar t    and 

  3 1
1

comp t     defined by the expressions in Eqs. (2.106) - (2.108), respectively, to 

indicate that these quantities are approximations that include only the 1st-order response 

sensitivities, of the exact expressions for the expectation, variance and 3rd-order moment of 

the exact (but unavailable) response distribution function. Thus, when only 1st-order 

response sensitivities are available, the expressions in Eqs. (2.106) - (2.108) point to the 

following conclusions: 

(i) If the second- and higher-order sensitivities are unavailable, then the expectation 

value of the response is the same as the computed value of the response. 



75 

 

(ii) It the triple-correlations, 
ijt  , for the parameters are unavailable, then the third-

order response moment,  3 1t    , cannot be computed; hence, it would not be 

possible to assess the asymmetries in the resulting response distribution. 

(iii) If the second- and higher-order sensitivities are unavailable, and the distribution 

of the parameters is normal or symmetric with respect to its mean, then 0ijt    

and the response distribution would appear to be symmetric. Consequently, for 

normal or symmetric parameter distributions, any asymmetries in the response 

distribution could only be assessed if the second-order sensitivities were 

available, as indicated by Eq. (2.53).  

In Chapter 4 of this work (in the sequel), the responses of interest will be measurements of 

the nitric acid concentration taken at 635 instances in time, over the duration of the transient 

event under consideration. If each response were to be considered separately, then 635 adjoint 

systems would need to be solved to determine the 1st-order sensitivities of each of these 

responses to the 1291 model parameters. Even though 635 adjoint computations would still 

be fewer computations than 1291 forward computations [which would be needed if the         

1st-order sensitivities were to be computed using the finite-difference formula given in Eq. 

(2.105)], 635 adjoint computations is not insignificant. In Chapter 4 (where the sensitivity 

analysis of the full dissolver model will be performed) the ASAM applied in this Section for 

computing the sensitivities obtained in Eqs. (2.103) and (2.104) is extended by using spectral 

expansions based on Legendre Polynomials and is shown as a nearly 20 factor improvement 

with less than 0.1% loss of accuracy. 

2.4. Forward and Inverse Predictive Modeling: Data Assimilation, Model 

Calibration, Optimal Best-Estimate Predictions with Reduced Uncertainties 

using the Surrogate Dissolver Model 

 

Cacuci (2014) has recently formulated a “Predictive Modeling of Coupled Multi-Physics 

Systems (PM_CMPS)” methodology, which unifies the concepts underlying forward and 

inverse modeling of coupled multi-physics systems in the presence of uncertainties. This 
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work builds upon and extends the work of Cacuci and Ionescu-Bujor (2010b) on predictive 

modeling for a single multi-physics system in the presence of experimental and 

computational uncertainties. The forward and inverse predictive modeling methodology of 

Cacuci and Ionescu-Bujor (2010b) is applied in Chapters 5 and 6 to the full dissolver model, 

which comprises 1291 model parameters and 635 measured responses. Although the 

surrogate dissolver model comprises, in principle, just as many parameters as the full 

dissolver model, its single response,  t , measured just once, at 
1t t , allows the 

mathematical framework of Cacuci and Ionescu-Bujor (2010b) to take on a simpler form for 

which the following information is “a priori” known:  

(i) the nominal (mean) value of the measurement, denoted as  1

meas t , and the 

measurement’s variance, denoted as  1

measVar t   ; 

(ii) the parameter mean values, denoted as 0

i , and the parameter covariance, denoted 

as  cov , i j
, of the  1N   imprecisely known system (model) parameters, 

, 1,...,i i i N   , and 
1 ,N

in

a A


 


;  

(iii) the response sensitivities,  1 it   , computed using the ASAM, with 

expressions given in Eqs. (2.103) and (2.104); 

(iv) the expected value,  1

compE t   , of the computed response, given by Eq. 

(2.106);  

(v) the variance,  1

compVar t   , of the computed response  1

comp t , given by Eq. 

(2.107), which can be written in the form   †

1

comp

r rVar t       S C S , where 

C  represents the parameter covariance matrix, and 
rS  represents the row-

vector of sensitivities    1 1 1 1,..., Nt t


    
      ;  

(vi) the response  t  is uncorrelated with the model parameters 
i . 

 

Application of the methodology of Cacuci and Ionescu-Bujor (2010b) to the surrogate 

dissolver model yields the following results:  
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1. “Model calibration”, yielding the following optimally predicted “best-estimate” 

nominal values, 
pred

α , for the “calibrated” model parameters:  

        
1

0 †

1 1 1 1 ,pred comp meas comp meas

r Var t Var t t t     


             α α C S  

or, in component form, for each 1,..., 1,i N   

   

   

 
 

1
1 1 10

11 1

cov ,

comp meas N
pred

i i i jcomp meas
j j

t t t

Var t Var t

  
   

 





   
 

      
 ; (2.110) 

As Eq. (2.110) indicates, the calibrated parameter value pred

i  may become larger or 

smaller than the original mean (nominal) parameter value 0

i  depending on the sign 

of the second term on the right-side of this equation. If the parameters are 

uncorrelated, Eq. (2.110) takes on the simpler form 

   

   

 
 

1 1 10

1 1

comp meas

pred

i i icomp meas
i

t t t
Var

Var t Var t

  
  

 

   
 

      

; (2.110) 

2. Predicted covariance matrices, denoted as pred

C , for the predicted nominal parameter 

values: 

  
   

†
† †

1 1

,
r rpred

comp measVar t Var t

   

 
 

 
      

C S C S
C C  

which implies that  

   

   

1
2 2

1

1

1 1

;

N

i

jpred

comp meas

t

Var t Var t





 

 

 





   
  

      

 C

C C   (2.111) 

Since the right-side of Eq. (2.111) represents a negative-definite matrix, it follows 

that the diagonal elements in this equation obey the inequality 

    0.pred

i iVar Var        (2.112) 

The above inequality is equivalent to the inequality  

   . . . ,pred

i iStd Dev Std Dev      (2.113) 



78 

 

which indicates that the predicted “uncertainties” in the predicted (“calibrated”) 

parameters are smaller than (i.e., are reduced) the original “uncertainties” in the 

model parameters. 

 

3. Optimally predicted “best-estimate” nominal values, denoted as  1

pred t , for the 

model responses, given by the expression:  

   
     

   

1 1 1

1 1

1 1

;

meas comp meas

pred meas

comp meas

Var t t t
t t

Var t Var t

  
 

 

      
 

      

  (2.114) 

The above expression can be recast in the form 

       1 1 1 1 ,pred meas comp meast t x t t           (2.115) 

with 

 

   

1

1 1

0 1;

meas

comp meas

Var t
x

Var t Var t



 

  
 

      

   (2.116) 

As Eqs. (2.115) and (2.116) indicate, if the measurement is performed with perfect accuracy, 

then  1 0measVar t     and, consequently,    1 1

pred meast t  . In other words, the 

predicted values for the responses coincide when there is no variance in measured values, 

since the model’s uncertain parameters are calibrated with the measured values This yields 

similar results when the computation is assumed to be perfect since  1 0compVar t     and 

   1 1

pred compt t  . Meaning the experimental measurements would have no effect on the 

predictions since imperfect measurements could not possibly improve a “perfect” model’s 

predictions. Finally, if both the computation and the experiment are affected by uncertainties, 

then Eqs. (2.115) and (2.116) indicate that the predicted response value falls, as would be 

expected, between the computed and measured response values, i.e.,  

     1 1 1 ,meas pred compt t t        (2.117) 

The above argument has tacitly assumed that both the computed and measured responses 

have positive nominal values; for responses that have negative nominal values, the above 

argument is repeated using the responses’ absolute values, leading to the same general 

conclusion.  
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4. Predicted variances/covariance for the predicted responses values, which is obtained 

from the expression: 

   
  

   

2

1

1 1

1 1

;

meas

pred meas

comp meas

Var t
Var t Var t

Var t Var t


 

 

  
              

 (2.118) 

The above expression can be used show that  

       1 1 1 10, 0,pred meas pred compVar t Var t Var t Var t                      (2.119) 

which indicates that the predicted standard deviation will be smaller that both the 

measured and the computed response standard deviations, respectively; in this sense, the 

uncertainties in the predicted response will reduce by comparison to the uncertainties for 

both the computed and the measured response. 

5. Predicted correlations, 

pred

rC , between the predicted model parameters and responses: 

 
 

   

1†

1 1

,

meas

pred

r r comp meas

Var t

Var t Var t
  



 

  


      

C C S    (2.120) 

or, in component form, for each 1,..., 1,i N   

 
 

   

 
 

1
1 1

1

11 1

, cov ,

meas N
pred pred

i i jcomp meas
j j

Var t t
Corr t

Var t Var t

 
   

 





             
 ;

 (2.121) 

As indicated by the expressions in Eqs. (2.120) or (2.121), even if the response is “a 

priori” uncorrelated with the model parameters [i.e.,  1, 0iCorr t     ], an 

imperfect measurement [i.e.,  1 0measVar t    ] will introduce non-zero posterior 

correlations [i.e.,  1, 0pred pred

iCorr t     ] between the predicted calibrated 

parameter values and the predicted “best-estimate” response. Only if the 

measurement(s) were perfect would initially uncorrelated response-parameters 

remain uncorrelated after the measurements, in which case the predicted responses 

would also coincide with the measured ones as was discussed in item 3, above.  
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6. The methodology of Cacuci and Ionescu-Bujor (2010a) also provides the consistency 

indicator  

   

   

2

1 12

1 1

,

comp meas

comp meas

t t

Var t Var t

 


 

  

      

   (2.122) 

For a single measurement, the above consistency indicator is helpful to identify 

possibly inconsistent data such as when the “distance” between the measurement and 

computation is larger than the sum of the respective standard deviations of the 

computed and measured responses, i.e., when 

       1 1 1 1. . . .comp meas meas compt t Std Dev t Std Dev t             due to 

unrecognized errors. Cacuci and Ionescu-Bujor (2010a) addressed such situations, but 

this is not the case for the spent fuel dissolver model developed and studied in the 

remainder of this work. 

 

In the “inverse predictive modeling” mode, the methodology of Cacuci and Ionescu-Bujor 

(2010b) would use measurements in order to identify unknown parameters 
i . For the 

surrogate dissolver model, the “inverse predictive mode” would use Eq. (2.110) iteratively, 

starting the iteration using an “initial estimate”,  0
estimated

i , instead of the (known –in the 

forward mode) nominal value 0

i . In other words, in the “inverse predictive mode”, Eq. 

(2.110) would be replaced, for the initial iteration, by the equation  

 
   

   

 
 

1
1 1 10

11 1

cov ,

comp meas N
estimated

pred

i i i jcomp meas
j j

t t t

Var t Var t

  
   

 





   
 

      
 ; (2.123) 

Subsequently, all of the quantities in Eqs. (2.110) through (2.122) would be computed 

repeatedly, using the newly computed “predicted values” to replace the corresponding values 

obtained in the previous iteration, until the computed values would agree with the 

corresponding measured values, within an “a priori” user-selected error criterion.  
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2.5. Correspondences between the Surrogate and the Dissolver Models: 

Highlighting the Novel Results Produced within this Work  

 

The purpose of this sub-section is to establish correspondences between simpler surrogate 

dissolver which models the time-dependent behavior of the nitric acid concentration in the 

full dissolver’s compartment #8, at the dissolver’s inlet with the full model of the time-

dependent behavior of the volumetric mass density of the liquid phase, and the volumetric 

mass concentration of nitric acid which comprises 16 nonlinear time-dependent differential 

equations, including 1291 model parameters, and describe the time-variation of the 

dissolver’s state variables in the dissolver’s 8 compartments. The surrogate was used to 

emphasize the methods over handling the sheer numbers of terms that would document both 

the method and the results, especially for the higher order response sensitivities.  

Section 2.3 presented the application of the Adjoint Sensitivity Analysis Method (ASAM) 

developed by Cacuci (1981.a) to the surrogate, and the ASAM is applied again in Chapter 4 

to the full dissolver model to obtain the sensitivities of the nitric acid concentrations in all of 

the dissolver’s compartments to the model parameters. The use of Legendre Polynomials for 

computing spectral expansions of the responses reduce drastically, by a factor of almost 20, 

the number of adjoint computations with a loss of accuracy of less than 0.1%.  

The application of the predictive modeling methodology of Cacuci and Ionescu-Bujor 

(2010b) to the surrogate dissolver model illustrated in Section 2.4 shows assimilating even a 

single consistent experimental measurement results in calibrated model parameters with 

reduced standard deviations and best-estimate predicted responses that are smaller than either 

the measured or original computations. In Chapter 5, the predictive modeling methodology 

of Cacuci and Ionescu-Bujor (2010b) is applied in the forward mode to the full dissolver 

model, with a drastic reduction of the standard deviations of the predicted acid concentration 

responses and calibrated model parameters, respectively. The model developed in Chapter 3, 

the sensitivity analysis presented in Chapter 4, and the forward predictive modeling results 

presented in Chapter 5 are all original, as underscored by their recent publication in the oldest 

and still highest-impact world-leading nuclear engineering journal: 
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1. James J. Peltz and Dan G. Cacuci “Predictive Modeling Applied to a Paradigm Spent 

Fuel Dissolver Model: I. Adjoint Sensitivity Analysis,” Nucl. Sci. Eng., 183, 305-331. 

dx.doi.org/10.13182/NSE15-98. 

2. James J. Peltz, Dan G. Cacuci, Aurelian F. Badea, and Madalina C. Badea, 

“Predictive Modeling Applied to a Paradigm Spent Fuel Dissolver Model: II. 

Uncertainty Quantification and Reduction,” Nucl. Sci. Eng., 183, 332-346. 

dx.doi.org/10.13182/NSE15-99. 

 

The application of the methodology of Cacuci and Ionescu-Bujor (2010b) for inverse 

predictive modeling, e.g., for determining a parameter of the surrogate dissolver model from 

an experimental measurement is illustrated in Section 2.4. In Chapter 6 of this work, the 

inverse predictive modeling of the dissolver’s time-dependent inlet acid concentration results 

mathematically in a boundary condition for the dissolver model by considering 

measurements of the nitric acid concentration response in the compartment furthest from the 

inlet boundary. All of the results reported in Chapter 6 are original, as underscored by the 

acceptance for their publication in the journal article below: 

3. J. J. Peltz and D. G. Cacuci, “Inverse Predictive Modeling of a Spent Fuel Dissolver 

Model,” Nucl. Sci. Eng, accepted, April 2016. 

 

The following conclusions were highlighted in Section 2.3: 

(i) If the second- and higher-order sensitivities are unavailable, then the expectation 

value of the response is the same as the computed value of the response. 

(ii) It the triple-correlations, ijt  , for the parameters are unavailable, then the third-

order response moment,  3 1t    , cannot be computed; hence, it would not be 

possible to assess the asymmetries in the resulting response distribution. 

(iii) If the second- and higher-order sensitivities are unavailable, and the distribution 

of the parameters is normal or symmetric with respect to its mean, then 0ijt    

and the response distribution would appear to be symmetric. Consequently, for 

http://dx.doi.org/10.13182/NSE15-98
http://dx.doi.org/10.13182/NSE15-98
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normal or symmetric parameter distributions any asymmetries in the response 

distribution could only be assessed if the 2nd-order sensitivities were available.  

 

Clearly, the quantification of non-Gaussian features of responses necessitates the 

computation of the 2nd-order responses sensitivities to the model parameters. Section 7.1 

presents a new method, using adjoint operators, for computing most efficiently the exact   

2nd-order sensitivities of the acid concentration in the surrogate dissolver model. This new 

adjoint method extends the 1st-order ASAM, and enables the computations of all of the        

2nd-order response sensitivities exactly and efficiently, requiring at most  1N   adjoint 

computations, as opposed to   1 2 / 2N N    forward computations that are require if 

the 2nd-order sensitivities are computed using finite-difference formulas. It will also be shown 

in Chapter 7 that the 2nd-order sensitivities have the following impacts on the moments of the 

response distribution: 

(a) They cause the “expected value of the response” to differ from the “computed 

nominal value of the response”; 

(b) They contribute to the response variances and covariance; however, since the 

contributions involving the second-order sensitivities are multiplied by the fourth 

power of the parameters’ standard deviations, the total of these contributions is 

expected to be relatively smaller than the contributions stemming from the first-order 

response sensitivities; 

(c) They provide the leading contributions to the third-order moment,  3

UG

kr   , and –

hence-- skewness a response that depends on uncorrelated and normally distributed 

parameters. 

 

In the case of the full dissolver model developed and analyzed in this work, Gaussian-based 

confidence intervals would be very misleading for the times into the transient behavior of the 

acid concentration in the dissolver, particularly around the middle of the transient (around 

3.5 to 4.5 hours after the initiation of the transient) and towards the last third of the transient 

(after 6 to 7.5 hours) that lasts for 10.5 hours, since the response skewness becomes large and 
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negative over these times. Different procedures, based on chi-squared (with few degrees of 

freedom) or other asymmetric distributions would need to be used for establishing confidence 

intervals at these particularly important times. The results presented in Chapter 7 emphasize 

the importance of quantifying, as exactly as possible, 1st-order, but also the 2nd-order 

sensitivities of responses with respect to all of the model parameters if this information were 

going to be used for decisions which demanded a high degree of confidence. In the absence 

of the 2nd-order sensitivities, non-linear features, such as asymmetries could not be identified 

in the response distributions. The material presented in Chapter 7 is entirely new, and will 

be submitted for publication after the deposition of this work. 

Finally, it should be mentioned that the accuracy of the adjoint functions computed using the 

ASAM for the full dissolver model has been verified by forward computations; the results of 

these “solution verification” computations are presented in Appendix A. Finally, Appendix 

B presents the description of the forward and inverse predictive modeling software module 

that was developed to obtain all of the numerical results presented in this work. 
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3. MATHEMATICAL MODELING OF A ROTARY 

DISSOLVER START-UP 

 

The “case study” investigated in this dissertation is a modification by Peltz and Cacuci (2015) 

of the model of a rotary dissolver of used nuclear fuel originally developed by Lewis and 

Weber (1980). This model is depicted in Figures 3.1 and 3.2. The liquid flows through the 

dissolver’s eight compartments labeled using the superscript . Compartment #9 

exists but is used for rinsing, and thus is not relevant to this work. 

 

Figure 3.1 Cutaway view of the rotary dissolver drum [after Lewis and Webber, 1980] 

 

 

Figure 3.2 Liquid flow diagram for the compartmented rotary dissolver [after Lewis and 

Weber, 1980] 

 

1,...,8k 
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The start-up conditions for the dissolver involve a non-ideal mixture of nitric acid and water 

at ambient conditions. The temporal and spatial variation of the physico-chemical processes 

occurring within the dissolver were modeled mathematically by Lewis and Weber (1980) by 

means of nonlinear coupled first-order time-dependent differential equations describing: (A) 

mass conservation of a non-ideal mixture of nitric acid and water at ambient conditions; (B) 

resistance to fluid flowing through the compartments; and (C) an equation of state, as follows:  

(A) The equations modeling conservation of mass: 

Total mass:                    1 1
, 1,...,7, 0

k k k k k k

f

d
V t f t t f t k t t

dt
  

         
 

 (3.1) 

Acid mass:                  1( 1) , 1,...,7, 0
k k k k kk

a a a f

d
V t f t t f t k t t

dt
  

        
 

 (3.2) 

Total mass in compart. 8:           (3.3) 

Acid mass in compart. 8:                  8 8 8 8
, 0

inin

a a a f

d
V t f t t f t t t

dt
         
 

    (3.4) 

The quantities appearing in the above equations are defined as follows:  (i) the index 

1,...,8k   denotes the respective dissolver compartment; (ii)    k
V t denotes the volume of 

the liquid phase, in units of liters L ; (iii)    k
t  denotes the volumetric mass density of 

the liquid phase, in units of gram/liter  g L ; (iv)    k

a t  denotes the volumetric mass 

concentration of nitric acid of the liquid phase, in units of  g L in the solution; (v)    k
f t

denotes the volumetric flow rate of the liquid mixture, in units of liter/hour L h ; and (vi) 

denotes the liquid solution mass rate inflow in units of gram/hour g h .  

(B) Resistance to fluid flow through the compartments:   

          1
, 1,...,7, 0

k k k

f

d
V t C V f t k t t

dt

        
 

    (3.5) 
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          8 8
, 0

in

f

d
V t C V f t t t

dt
       
 

     (3.6) 

where 

  
 

     0
0L h 0, 1,...,8,

0

p
k

k
k

V V
if V t V k

C V G

otherwise

 
         

 

   (3.7) 

In the above relation, the scalar quantities G , 
0V  and p  are experimentally determined 

parameters, with nominal (mean) values and estimated relative standard deviations presented 

in Table 3.1. Note that due to counter-flow conditions in the dissolver, the flow-inlet 

parameters        , ,
in in

am t t  and     
in

f t  appear in compartment k = 8 [cf. Eqs. (3.3), (3.4) 

and (3.6)], rather than in compartment k = 1.  

 

(C) An Equation of state, is needed to complete Eqs. (3.1) - (3.7), in order to obtain a well-

posed mathematical model. For the rotary dissolver considered here, the equation of state 

takes on the linear form  

     ( )63 , 1,...,8.
k k

at a t b k        (3.8) 

where a  and b are experimentally determined scalar parameters with nominal (mean) values 

and estimated relative standard deviations also presented in Table 3.1. The time-dependent 

variations of the inlet mass flow rate of solution, , and inlet nitric mass concentration, 

   in

a t , are presented in Figures 3.3 and 3.4, respectively. The estimated relative standard 

deviations of    in

a t  and  are based on “expert opinion” following a search of the 

relevant literature, and are presented in Table 3.1. 
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Table 3.1 Nominal (mean) values and corresponding standard deviations for model 

parameters 
 

Para- 

Meter 

 

   in

a t  

 

 

 

a  

 

b  

 

0V  

 

p
 

 

G  

Nominal 

value 

See 

Fig. 3.4

 
See  

Fig. 3.3

 
0.48916

  g L



   

4.8

L  

 

2.7
 

 

0.201941

L  

Standard 

deviation  

 

 

20% 

 

10% 

 

10% 

 

10% 

 

10% 

 

10% 

 

10% 

 

Figure 3.3 depicts the time variation of the solution’s inlet mass flow rate, and Figure 3.4 

depicts the time variation of the nitric acid concentration. The time-dependent nominal value 

of the inflow volumetric flow rate,    in
f t , is obtained from the following expression:  

   (3.9) 

which uses the equation of state, the inflow mass rate from Figure 3.3, and the time dependent 

nitric acid mass concentration data from Figure 3.4. In particular, the initial nominal value of 

   in
f t  is     30 36.79 10 /1001.2

in
f   at 0t  . 
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Figure 3.3 Time variation of the inlet mass flow rate,      1000 kg h
in

m t  

 

Figure 3.4 Time variation of the inlet nitric acid mass concentration     / 63
in

a t [mol] 

 

Using the equation of state (3.8), the volumetric mass density of the liquid phase,    k
t , 

algebraically simplifies Eqs. (3.1) - (3.6), as follows: 

               1( 1) 0, 1,...,7, 0
k k k kk

a a a f

d
V t t t C V t k t t

dt
  

           
     

 (3.10) 
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                   8 8 8
, 0

in inin

a a a f

d
V t t f t t f t t t

dt
        
 

        (3.11) 

           1
, 1,...,7, 0

k k k

f

d
V t C V t C V t k t t

dt

           
     

         (3.12) 

           8 8
, 0 .

in

f

d
V t C V t f t t t

dt
       
   

          (3.13) 

The initial conditions for Eqs. (3.10) through (3.13) are as follows:  

          ( )

0 00 0.0 0 , 1,...,8.
k k k k

a a V V k          (3.14) 

The compatibility condition for a fully developed initial flow implies that 

   0 0, 1,...,8
kd

V k
dt

  ; in turn, this condition implies that  

   
1

( )

0 00 1,...,8.
p

inkV G f V k    
 

    (3.15) 

The nitric acid concentration in compartment 1,  (1)

a t , has been measured (Lewis and 

Weber, 1980) at 635 instances in time over a period of 10.5 hours. The nominal values of 

these measurements are denoted as  (1)

, a meas it , and are depicted using blue circles in      

Figure 3.6. Notably, these experimental results are unique in the open literature for a rotary 

dissolver. The relative standard deviation of each of these measurements has been estimated 

to be 5%.  

For the subsequent developments in this work, it is convenient consider the model’s state 

functions and parameters to be the components of two vectors, respectively, defined as 

follows:  

                 1 8 1 8
,..., , ,...,a at t t V t V t  

 
u     (3.16) 

                   

               

1 1291 1 635 1 635

1 8 1 8

0

,..., ,..., , ,..., ,

0 0 , 0 ,..., 0 , , , , , .

in in in in

a a

a a

t t t m t m t

V V a b V p G

   

 

 





α
 (3.17) 
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It is also convenient to denote the nominal values of the model’s state functions and 

parameters by using the superscript “0”: 

 

                 1 8 1 80

, ,,..., , ,...,a nom a nom nom nomt t t V t V t  
 

u      (3.18) 

                   

               

0 0 0

1 1291 , 1 , 635 1 635

1 8 1 8 0 0 0 0 0

, , 0

,..., ,..., , ,..., ,

0 0 , 0 ,..., 0 , , , , , .

in in in in

a nom a nom nom nom

a nom a nom nom nom

t t t m t m t

V V a b V p G

   

 







α
  (3.19) 

 

Solving Eqs. (3.10) – (3.15) using nominal values for the model’s parameters [as listed in 

Table 3.1] yields the time-dependent evolution of the computed nominal value of the nitric 

acid concentration. In particular, the computed nominal values for  (1)

,a nom t , (4)

, a nom
, and 

(7)

, a nom
, of the time-dependent acid concentrations in compartments #1, #4, and #7, 

respectively, are depicted in Figure 3.5. The time evolutions of these concentrations are 

similar to each other although time-delayed as expected, and also similar to the time variation, 

depicted in Figure 3.4, of the inlet nitric acid mass concentration,    
in

a t . Figure 3.6 depicts 

the time-evolution of the normalized nominal values of the computed response of the nitric 

acid concentration,  (1)

,a nom t   mol/L  (red-colored graph), together with the corresponding 

normalized measurements (Lewis and Weber, 1980), denoted as  (1)

, a meas it  and depicted 

using blue circles. The agreement between the computed and experimentally measured 

values is remarkable. 
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Figure 3.5 Time-evolution of the nominal values of the computed nitric acid concentrations 

in  mol L  , for (1)

, a nom
, (4)

, a nom
, (7)

, a nom
 , in compartments  #1, #4, and #7, respectively 

 

 

Figure 3.6 Red graph: time-evolution of the nominal values of the computed response of the 

nitric acid concentration  mol/L ,  (1)

, a nom t . Blue circles: experimentally measured nominal 

values,  (1)

, a meas it  , of the nitric acid concentration  mol/L , over a period of 10.5 hours 

(Lewis and Weber, 1980) 
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4. ADJOINT SENSITIVITY ANALYSIS OF TIME-

DEPENDENT ACID CONCENTRATIONS IN THE 

DISSOLVER MODEL 

 

The equations underlying the dissolver model considered in this work, cf. Eqs. (3.10) – 

(3.14), comprise sixteen state variables, namely 
               1 8 1 8

,..., , ,...,  
 a at t V t V t . They 

also comprise 1291 model parameters, as follows:  

(i) The 5 scalar parameters 
0, , , ,a b V p G , which appear in the correlations 

characterizing the fluid’s equation of state, and have nominal values and standard 

deviations as presented in Table 3.1;  

(ii) The 8 initial values, denoted as        1 8
0 0a a  , of the acid volumetric mass 

concentration of nitric acid of the liquid phase in compartments #1 through #8;  

(iii) The 8 initial values, denoted as        1 8
0 ,..., 0V V , of the volumes of the liquid 

phase in compartments #1 through #8;  

(iv) The inlet mass flow rate of solution at 635 time instances, denoted as 

       1 635,...,
in in

m t m t  and depicted in Figure 3.3;  

(v) The acid volumetric mass concentration of nitric acid of the liquid phase at 635 

time instances, denoted as        1 635,...,
in in

a at t  and depicted in Figure 3.4. 

 

4.1. Mathematical Derivation of the Adjoint Sensitivity Analysis System for 

Scalar-Valued Responses 

 

In sensitivity analysis, it is customary to refer to the results of interest as “system responses” 

or “model responses”. The sensitivity analysis of system responses entails the computation 

and analysis of the functional derivatives of these responses with respect to all of the model 

parameters; these functional derivatives are called “response sensitivities.” The sensitivities 
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can subsequently be used for quantifying the uncertainties caused in the responses by 

parameter uncertainties, and for reducing such uncertainties by combining computational and 

experimental information. For the sensitivity analysis of the dissolver model, it is convenient 

to consider that the (yet unspecified) variations in the model parameters are components of 

the 1291N  -component vector  th  defined as follows:  

                   

               

1 1291 1 635 1 635

1 8 1 8

0

,..., ,..., , ,..., ,

0 0 , 0 ,..., 0 , , , , , .

in in in in

a a

a a

t h h t t m t m t

V V a b V p G

  

 

   


        


h
 (4.1) 

 

Variations  th  in the model parameters will cause variations in the state functions; these 

variations will be considered to be the components of the vector  u th  defined below:  

 

                         1 8 1 8
, , ,..., , ,..., .u V a a Vt t t t t t t V t V t                

h h h h h

   (4.2) 

Altogether, the variations in the model’s parameters and state functions will cause variations 

in the model responses of interest. A general representation of a scalar-valued response 

associated with the dissolver model, such as a measurement of a dissolver’s state-function, 

is achieved by the following integral form 

   
0

, ,

ft

R F dt u α u α      (4.3) 

where  ,F u α  is some function of the model’s state variables  tu  and parameters  tα . 

As shown be Cacuci (1981.a, 1981.b), the most general definition of the (first-order) 

sensitivity of an operator-valued quantity of interest, denoted as  ,R u α , to variations 

 ,u h h  in the model’s state functions and parameters is given by the Gâteaux- (G)-

differential  0 0, ; ,uR  u α h h  of the response  ,R u α  at  0 0,u α  with “increments” or 

“variations”  ,u h h ; the 1st-order G-differential  0 0, ; ,uR  u α h h  is defined as follows: 
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   

 

 

 

 

 
   

 

   
 
   

 

   

 

 
 

0 0 0 0

0 0 0 0

0 0

0 0 0 0

0

0 , ,

8

1 0 , ,

,

, ; , ;

, ,

, ,

,

f

f

u u

t

u

t

k k

ak k
k a

i

d
R R

d

F F
dt

F F
t V t dt

t V t

F

t

 





  











      

 
     

     
      

 
     

       
        

 

 
  

 



 

u α u α

u α u α

u α

u α h h u h α h

u α u α
h h

u α

u α u α

u α1291

1 0

.

ftN

i

i

h dt
 



 
 
 
 
 

 

  (4.4) 

The sensitivity  0 0, ; ,uR  u α h h  is also an operator, defined on the same domain and with 

the same range as  ,R u α . Since the system’s state vector  tu  and parameters  tα  are 

related to each other through Eqs. (2.10) - (2.14), it follows that the vectors of variations 

 u th  and  th  are also related to each other. Therefore, the sensitivity  0 0, ; ,uR  u α h h  

of a quantity of interest can be evaluated only after determining the vector of variations  u th  

in terms of the vector of parameter variations  th . The first-order relationship between 

 u th  and  th  is determined by taking the G-differentials of Eqs. (2.10) - (2.14). 

Performing these operations yields the following systems of differential equations:  

 
   

               

               
   

   
   

   

1 1 1( )

1

1 1

, , 1

, 1,...,7, 0

k

a k k k kk

nom nom a nom a

kk

k k k ka

a nom a nom k

nom
nom

k

f

d t
V t C V t t C V t t

dt

dC V td t
V t t t V t

dt dV t

q t k t t


 


 

  



 



 
            

       

                           

    

   (4.5) 

 
   

       

           

8

8(8)

8

8 8
, 0 ;

a in

nom nom a

a

f

nom

d t
V t f t t

dt

d t
V t q t t t

dt







 
    

 

 
        

  

    (4.6) 
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       
   

   

   
   

       

1

1

1
, 1,...,7, 0

k k

k

k

nom

k

k k

V fk

nom

d V t dC V t
V t

dt dV t

dC V t
V t q t k t t

dV t







    
       

  
 

  
          

  
 

  (4.7) 

       
   

       

8 8

8 8

8
, 0 ,V f

nom

d V t dC V t
V t q t t t

dt dV t

    
          

  
 

   (4.8) 

     

                  
 

         

0

1 1
( )

0

1

0

0 1,...,8,

0 0 0 0

0 ln 0 1,...,8.

nom nom

nom

k k

a a

p p p
k in in ink nom

nom nom

nom

p
in in

nom nom nom

k

G
V V G f f f

p

p G f f V k

 



    

       
   

        
   

 (4.9) 

where the source terms on the right-sides of the above equations are defined as follows:  

            
      

1 1( )

, , 0 0

1 1
, 1,...,7,

k k kk

a nom a nom
nom

k k

nom nom

q t t t C V V V

C V G G C V p p k

  
 

 

     
   

           
   

  (4.10) 

                     8(8)

, , ,
in in in in

a nom a nom nom aq t t t f t f t t         
   

  (4.11) 

         
     
     

0 0

1

0 0

1 1
, 1,...,7,

k k k

V
nom nom

k k

nom nom

k k

nom nom

q t C V V V C V G G

C V p p C V V V

C V G G C V p p k



 

          
   

          
   

           
   

  (4.12) 

       
      

8 8(8)

0 0

8
,

V
nom nom

in

nom

q t C V V V C V G G

C V p p f t

          
   

      
 

  (4.13) 

with 
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   
   

   

              
   

,

2

,
,

63 63
.

63 63

in in in
in

nom a nom nom a nomin

in
in

nom a nom nom
nom a nom nom

m t a t a t bm t
f t

a t b a t b

 

 

      
 

  
 

 

(4.14) 

Note also the following relations:  

   
       

1

0

0

0

0, 1,...,8,

0

p
k

k
kV t VpC V t if V t V k

G G
V

otherwise

                  
 

 (4.15) 

   
       0

0 0, 1,...,8,

0

p
k

k
kV t VpC V t if V t V k

G G
G

otherwise

                  
 

 (4.16) 

   
           0 0

0ln 0, 1,...,8,

0

p
k k

k
kV t V V t VC V t if V t V k

G G
p

otherwise

                        
 

 (4.17) 

Equations (4.5) - (4.9) are called (Cacuci, 1981.a, 1981.b) the forward sensitivity system. 

Evidently, the response sensitivity  0 0, ; ,uR  u α h h  can be computed after solving the 

forward sensitivity system given in Eqs. (3.5) - (3.9) repeatedly, for every possible parameter 

variation contained in the vector  th , cf. Eq. (4.2). This procedure is called (Cacuci, 

1981.a, 1981.b) the Forward Sensitivity Analysis Procedure (FSAP). For a model comprising 

N
 model parameters, the FSAP requires at least N  large-scale computations.  

Particularly important scalar-valued responses for the dissolver model are the measured 

and/or computed nitric acid concentration in a compartment k  at a time-instance 
it . Such 

measurements can be represented in the form  

     ( ) ( )

0

ft

k k

a i a i it t t t dt     ,      (4.18) 
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where  it t   represents the customary Dirac-delta functional. The sensitivity of such a 

response is given by the G-derivative of Eq. (3.18), which is readily obtained as  

     ( ) ( )

0

1,..., .

ft

k k

a i a it t t t dt i I           (4.19) 

It is evident that using the FSAP to compute the sensitivity  ( )k

a it  expressed in Eq. (4.19) 

would require solving Eqs. (4.5) - (4.9) at least 1291N   times in order to account for the 

variations in all of the model parameters. Thus, for the dissolver model under consideration, 

as for most practical situations, the number of model parameters exceeds significantly the 

number of functional responses of interest. In such cases, The Adjoint Sensitivity Analysis 

Methodology (ASAM) introduced by Cacuci’s (1981a, 1981b) is known to be the most 

efficient method for computing exactly the first-order sensitivities since it requires only a 

single large-scale computation for each response of interest.  

 

In preparation for applying the ASAM to the dissolver model, the forward sensitivity 

equations [cf., Eqs. (4.5) through (4.9)] are written in matrix form as  

 

 

 

 

 
11 12

22

,
V V

t t

t t

     
    

     

h qN N

h q0 N
     (4.20) 

where 

           (1) (8) (1) (8),..., , ,..., ,q qV V Vt q t q t t q t q t  
          (4.21)  

 

 

11 11

11 12

11 11

22 23

11

11 11

77 78

11

88

0 . 0 0

0 . 0 0

,. . . . . .

0 0 0 .

0 0 0 . 0

a a

a a

t

a a

a

 
 
 
 
 
 
 
 

N      (4.22) 
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 

12 12

11 12

12 12

22 23

12

12 12

77 78

12

88

0 . 0 0

0 . 0 0

,. . . . . .

0 0 0 .

0 0 0 . 0

a a

a a

t

a a

a

 
 
 
 
 
 
 
 

N      (4.23) 

 

 

22 22

11 12

22 22

22 23

22

22 22

77 78

22

88

0 . 0 0

0 . 0 0

,. . . . . .

0 0 0 .

0 0 0 . 0

a a

a a

t

a a

a

 
 
 
 
 
 
 
 

N      (4.24) 

 

     
     111
*

, 1,...,7;
i i

ii nom nom

d
a t V t C V t i

dt

  
 

    (4.25) 

     
     811

88

*
;

in

nom nom

d
a t V t f t

dt
       (4.26) 

     111

, 1 , 1,...,7;
i

i i noma t C V t i



  
 

      (4.27) 

 

 
   ,12 , 1,...,8;

i

a nom

ii

d t
a t i

dt


       (4.28) 

         
  

 

1

112

, 1 , , 1
, 1,...,7;

i

i i

i i a nom a nom i

nom

dC V
a t t t i

dV
 





 

 
   

   
 

  (4.29) 

 
 

  
 

22
*

, 1,...,8;

i

ii i

nom

dC Vd
a t i

dt dV

 
  
 
 

     (4.30) 

 
  

 

1

22

, 1 1
, 1,...,7;

i

i i i

nom

dC V
a t i

dV



 

 
  
 
 

     (4.31) 

 

Next, consider two square-integrable vector-valued functions of the form 

     , Vt t t
  f f f , and      , Vt t t

  g g g , and introduce an inner product defined as  
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                           
8

10 0

, .

f ft t

i i i i

V V V V

j

t t t t t t dt f t g t f t g t dt   


        f g f g f g

 (4.32) 

Taking the inner product of Eq. (4.20) with a yet undefined vector  tψ  of the form 

                         1 8 1 8
, , ,..., , ,..., ,V V V Vt t t t t t t t t               

ψ ψ ψ ψ ψ  

 (4.33) 

yields 

   
   

 

 

 
   

 

 

   
 

   

 

 

11 12

22

*

11

* *

21 22

, ,

, ,

V V

V V

V

V

t t t t
t t t t

t t t

tt
t t

tt t

 

 





     
           

     

   
      

  

N N h q
ψ ψ ψ ψ

0 N h q

ψN 0
h h

ψN N

 (4.34) 

where 

 

11

11

11 11

21 22

*

11

11

77

11 11

87 88

0 0 . 0 0

0 . 0 0

,. . . . . .

0 0 0 . 0

0 0 0 .

b

b b

t

b

b b

 
 
 
 
 
 
 
 

N      (4.35) 

 

21

11

21 21

21 22

*

21

21

77

21 21

87 88

0 0 . 0 0

0 . 0 0

,. . . . . .

0 0 0 . 0

0 0 0 .

b

b b

t

b

b b

 
 
 
 
 
 
 
 

N      (4.36) 

 

22

11

22 22

21 22

*

22

22

77

22 22

87 88

0 0 . 0 0

0 . 0 0

,. . . . . .

0 0 0 . 0

0 0 0 .

b

b b

t

b

b b

 
 
 
 
 
 
 
 

N      (4.37) 

where the components 
*

kl lk

ij jib a    are the transposed formal adjoints of the quantities 
kl

ija , 

i.e., 
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 
     

   111
*

, 1,...,7;

i
i

nom inom
ii nom

d V t V
b t C V t i

dt t


        

 
   (4.38) 

 
     

   

8

11

88

*
;

i
nom innom

nom

d V t V
b t f t

dt t

     


     (4.39) 

     111

1, , 1,...,7;
i

i i nomb t C V t i



  
 

      (4.40) 

 
   ,21 , 1,...,8;

i

a nom

ii

d t
b t i

dt


       (4.41) 

         
  

 

1

121

1, , , 1
, 1,...,7;

i

i i

i i a nom a nom i

nom

dC V
b t t t i

dV
 





 

 
   

   
 

  (4.42) 

 
 

  
 

22
*

, 1,...,8;

i

ii i

nom

dC Vd
b t i

dt dV

 
   
 
 

     (4.43) 

 
  

 

1

22

1, 1
, 1,...,7.

i

i i i

nom

dC V
b t i

dV



 

 
  
 
 

     (4.44) 

 

The function      , Vt t t
  ψ ψ ψ  will now be defined to be the solution of the following 

system 

 

   

 

 

 

 

*

11

* *

21 22

,
,

,

a

V

t Ft

t Ft t

      
     

     

ψ u α ρN 0

ψ u α VN N
   (4.45) 

where 

   
   

 
   

   
   

 
   

† †

1 8 1 8

, , , , , ,
  ,..., , ,..., .

a a a

F F F F F F

t t V t V t 

        
   

          

u α u α u α u α u α u α

ρ V
(4.46) 

 

In component form, Eq. (4.45) has the form  
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       
       

 
   

   

1 1

2 1 1

1

,
,

nom

nom

a

d V t t F
C V t t w t

dt t



 






       
  

u α
   (4.47) 

       
       

       
 
   

   

1

1 ,
, 2,...,7

u α

k k

nom k k

nom

k k k

nom k

a

d V t t
C V t t

dt

F
C V t t w t k

t





 











 
    

 


    
  

       (4.48) 

       
               

 
   

   

8 8

8 8 7 8

8

,
,

nom in

nom nom

a

d V t t F
f t t C V t t w t

dt t



  


 



        
  

u α
        (4.49) 

       
   

   
       

 
   

   

1 1 1

1 1 1,

1 1

,
,

V a nom

V V

nom

d t dC V t d t F
t t w t

dt dtdV t V t


 
 

               
     

u α
  (4.50) 

       
   

   
   

   
   

               
   

   
   

 
   

   

1

1 1,

, ,

,
, 2,...,8

k k k

V k k

V Vk k

nom nom

kk

k k k ka nom

a nom a nom k

nom

k

Vk

d t dC V t dC V t
t t

dt dV t dV t

dC V td t
t t t t

dt dV t

F
w t k

V t

 


 


   



 

        
          

   
   

                  


  


u α

         (4.51) 

subject to the “final-time” values  

       0, 0, 1,...,8.
k k

f V ft t k        (4.52) 

Equations (4.47) - (4.52) comprise the Adjoint Sensitivity System (ASS), and the vector 

     , Vt t t
  ψ ψ ψ  is called the adjoint function. Using now Eqs. (4.20), (4.33) and 

(4.45) into Eq. (4.4) yields the following expression for the response sensitivities in terms of 

the adjoint function      , Vt t t
  ψ ψ ψ :  
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             

              

8 8
0 0 ( ) ( )

1 10 0

8
( )

0 0

1

, ; ,

0 0 0 .

f ft t

k kk k

V V

k k

k k k k k

nom a V

k

R t q t dt t q t dt

V V

  



  

  

 



 

        

  



u α ψ h

  (4.53) 

As the above equation indicates, the sensitivities  0 0, ; ,R  u α ψ h  to all system parameters 

can be computed after the corresponding adjoint functions ,ψ ψ ψV
    have been 

computed by solving once the adjoint sensitivity system defined in Eqs. (4.47) - (4.52). For 

subsequent mathematical simplifications, it is convenient to introduce the following 

definitions: 

 

                 
   

       
   

   

1 1

0

1

1,

, , , , , ,

, 1,...,7;

k

k k k k k a

a a

k k

ka a nom

k

d t
D t t V t V t p G V

dt

t t
C V t k

V t




 

 

 





 
 


  
 

   (4.54) 

               
           

   
 

8 8

8 8 8

8
, , , ,

in

in a a ain in

a a

d t t t
D t V t t f t f t

dt V t


  
 


  
 

 (4.55) 

     
   

   

       

0

1

0

0

, , ,

0, 1,...,8,

0

k

k k

V k

nom

p
k

k

dC V t
D V t p G V

dV t

V t Vp
if V t V k

G G

otherwise



  
   

   
 

  
       

    

 

   (4.56) 

It will be convenient to use the following “short-hand” notations for the quantities defined 

in Eqs. (4.53) - (4.56)  

                     1 1

0, , , , , , , 1,...,7;
k k k k k k

a aD t t V t V t p G V D t k  
   

 
 (4.57) 

                   

         

8 8 8 8

0

, , , ,

, , , , 1,...,8.

in in

a a

k k k

V V

D t V t t f t D t

D V t p G V D t k

   
 

  
 

    (4.58) 
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The ASS defined in Eqs. (4.47) - (4.52) can now be further simplified by using the definitions 

introduced in Eqs. (4.54) – (4.56) and the shorthand notation given in Eq. (4.57) and (4.58), 

together with the original forward model, namely Eqs. (3.10) - (3.14), to obtain the following 

form of the ASS: 

   
               
1

1 1 1 1
, 0 ,nom nom f

d t
V t C V t t w t t t

dt



 


     

         (4.59) 

   
                   1

, 0 , 2,...,8

k

k k k k k

nom nom f

d t
V t C V t t t w t t t k

dt



  


 

          
      (4.60) 

 

                       
1

1 1 1 1 1
, 0 ,

V

V V V f

d t
D t t D t t w t t t

dt
 


          (4.61) 

                       

                   

1

1 1

, , , 2,...,8, 0 .

k

k k k k kV

V V V

k k k k k

a nom a nom V V f

d t
D t t t D t t

dt

t t D t t w t k t t

 




  

  



 

    
 

      
 

  (4.62) 

 

The “final-time” conditions in Eq. (4.52) clearly indicate that the adjoint sensitivity system 

is a final-time problem rather than an initial-value problem. It is useful to convert the adjoint 

sensitivity system from a “final-time” problem to an “initial-condition problem” accustomed 

by solvers of ordinary differential equations. This can be accomplished by changing the 

independent variable t  to another independent variable,  , defined as follows: 

.ft t        (4.63) 

Introducing the above change of independent variable into Eqs. (4.59) – (4.62) transforms 

them into the following “computationally-suitable” form of the adjoint sensitivity system: 

   
               
1

1 1 1 1
, 0 ,nom f nom f f f

d
V t C V t w t t

d



 

 
     


       
          (4.64) 
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   
               

   

1

, 0 , 2,...,8

k

k k k k

nom f nom f

k

f f

d
V t C V t

d

w t t k



 



 
     



 

      
   

     

         (4.65) 

                       
1

1 1 1 1 1
, 0 ,

V

V f V f V f f

d
D t D t w t t

d
 

 
       


                (4.66) 

                       

                   

1

1 1

, , , 2,...,8, 0 .

k

k k k k kV

V f V V f

k k k k k

a nom f a nom f V f V f f

d
D t D t

d

t t D t w t k t

 



 
       



        



 

     
 

          
 

 (4.67) 

The initial conditions for Eqs. (4.64) – (4.67) are  

       0 0, 0 0, 1,...,8.
k k

V k           (4.68) 

In particular, to compute the sensitivity  ( )k

a it , given in Eq. (4.19), of the measured and/or 

computed nitric acid concentration in a compartment k  at a time-instance it , a comparison of 

Eq. (4.19) with the general from given in Eq. (4.4) indicates that the source terms for the 

right-sides of the adjoint sensitivity system, cf. Eqs. (4.64) - (4.67), are as follows:  

                 1 8
, 0, 1 8; ... 0.

k j

j V Vw t t t w t j k w t w t            (4.69) 

 

4.2. Mathematical Derivation of the Adjoint Sensitivity Analysis System for 

Function-Valued Responses 

 

Particularly important response of interest for the dissolver model are the time-dependent 

nitric acid concentrations,  ( )k

a t , in compartments 1,...,8k   for the entire duration of    

10.5 hours of the transient event under consideration. The sensitivity of such a response to 

variations in the model parameters is given by the expression 
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             0

,
0

; , 1,...,8.e h
k k k

a nom a a

d
R t t t k

d 
    

 

     
    (4.70) 

As the above expression indicates, the sensitivity 
   k

a t  is a time-dependent function, 

rather than a scalar-valued functional, as was the sensitivity  ( )k

a it , given by Eq. (4.19), 

of the measured and/or computed nitric acid concentration in a compartment k  at a time-

instance it . Function-valued response sensitivities, such as 
   k

a t , are computed efficiently 

using the Adjoint Sensitivity Analysis Methodology for Operator-Type Responses (Cacuci, 

1981.b), which entails the spectral representation of the respective function-valued response. 

As an illustration of the application of this methodology (Cacuci, 1981.b), consider the time-

dependent nitric acid concentration response, 
   k

a t , in compartment #1. The Legendre 

polynomials will be chosen to serve as the orthonormal basis for the spectral representation 

of  (1) a t . Recall that the Nth-order spectral expansion,  Nf x , of a function 

   , 1,1 ,f x x   using Legendre polynomials,  nP x , is defined as 

   
0

,
N

N n n

n

f x a P x


       (4.71) 

where  nP x  denotes the Legendre polynomial of order n, and where the coefficients 
na  are 

defined as  

   
1

1

2 1
, 0,1,..., .

2



 n n

n
a f x P x dx n N     (4.72) 

The Legendre polynomials satisfy several well-known recursion relationships; the 

relationship below can be conveniently used for the numerical computations, to avoid undue 

accumulation and magnification of round-off errors: 

     
   1

1 12 .
1



 


  



n n

n n n

xP x P x
P x xP x P x

n
   (4.73) 

Recall also that the Legendre polynomials satisfy the orthogonality relation  
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   
1

1

2

2 1





 n n mnP x P x dx

n
    (4.74) 

where mn  represents the Kronecker delta functional, defined as 1,  mn m n  and 

0,  mn m n . 

Since the time-dependent response of interest, namely the nitric acid concentration in the first 

compartment,  (1) a t , is defined over the time interval 0,   ft t , it follows that the interval 

 1,1 x  must be shifted to the interval 0,   ft t  in order to obtain the corresponding 

spectral expansion for  (1) a t . The correspondence between the independent variables 

0, ft t     and  1,1x   is provided by the relationships 

   1 2, 2 1 .f ft x t x t t        (4.75) 

Denoting the Nth-order spectral expansion  (1) a t  by  (1)

,a S t  , where the subscript “S” 

indicates “spectral,” it follows that from Eqs. (4.71), (4.72), (4.74) and (4.75) that  

   (1)

,

0

2 1 , 0 ,


    
N

a S n n f f

n

t a P t t t t    (4.76) 

with 

   (1)

,

0

2 1
2 1 , 0,1,..., .

ft

n a S n f

f

n
a t P t t dt n N

t



       (4.77) 

For the shifted Legendre polynomials  2 1n fP t t , the “orthogonality relation” expressed 

by Eq. (4.74) takes on the following form:  

   
0

2 1 2 1 .
2 1


  


ft

mn
n f n fP t t P t t dt

n
   (4.78) 
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Using the shifted polynomials  2 1n fP t t , the nitric acid concentration  (1) a t  depicted in 

Figure 3.5 is approximated by  (1)

,a S t   within a maximum global error of less than 0.01%, by 

using 16N  in the spectral expansion in Eq. (4.76). The results of the approximation are 

depicted in Figure 4.1, and show similarly accurate computations of the response sensitivities 

as will be shown after establishing the corresponding adjoint sensitivity system presented 

later in the chapter. 

 

Figure 4.1 Time-dependent behavior of the exact nominal value of the nitric acid 

concentration  mol/L  in compartment #1,  (1)
,a nom t  , reproduced from Figure 3.5, and its 

spectral representation,  (1)

,a S t  , using the first 17 Legendre polynomials ( 16N ) 

 

For the particular case of the response  (1)

, a S t  defined in Eq. (4.76), Eq. (4.70) takes on the 

following particular form for the sensitivity  (1)

,a S t   of  (1)

, a S t : 

       (1) (1)

, ,

0 0

2 1
2 1 2 1 ,

ft
N

a S a S n f n f

n f

n
t t P t t dt P t t

t
 



  
       

    
   (4.79) 

Comparing the right-side of the above expression with the right-most side of Eq. (4.4) and 

keeping in mind Eqs. (4.64)- (4.68), it follows that the sources for the adjoint system are 

   2 1 2 1   f n fn t P t t  for the equation involving the adjoint function 
   1

, n t , 
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0,1,..., =16n N , and are zero for the other equations. Consequently, the corresponding 

adjoint sensitivity system becomes 

 For each 0,1,..., 16 n N , solve: 

 

   
             
1

1 1 1,

,

2 1
1 2 , 0 ,





 
     




       
 

n

nom f nom f n n f f

f

d n
V t C V t P t t

d t
  (4.80) 

   
               1,

, , 0, 2,...,8; 0 ,

k

k k k kn

nom f nom f n n f

d
V t C V t k t

d



 

 
      



          
   

(4.81) 

dy
V ,n

1( )
t( )

dt
+D

V

1( )
t
f
-t( )yV ,n

1( )
t( ) +D

r

1( )
t
f
-t( )yr ,n

1( )
t( ) = 0, 0 < t < t

f
,   (4.82) 

dy
V ,n

k( )
t( )

dt
+D

V

k( )
t
f
-t( ) y

V ,n

k( )
t( ) -y

V ,n

k-1( )
t( )é

ëê
ù
ûú
+D

r

k( )
t
f
-t( )yr ,n

k( )
t( )

+ r
a,nom

k-1( )
t
f
-t( ) - r

a,nom

k( )
t
f
-t( )é

ëê
ù
ûú
D
V

k( )
t
f
-t( )yr ,n

k-1( )
t( ) = 0, k = 2,...,8, 0 < t < t

f
,

   (4.83) 

subject to the initial conditions 

       , ,0 0, 0 0, 1,...,8.
k k

n V n k           (4.84) 

Furthermore, it follows that the general expression of the response sensitivities represented 

by Eq. (4.53) takes on the following particular for form for computing the sensitivities 

 (1)

,a S t  : 

     
16

(1) 0

,

0

, ; 2 1 ,
N

a S n n f

n

t a P t t 




   h ψ α   (4.85) 

where  

             

              

8 8
0 ( ) ( )

, ,

1 10 0

8
( )

, 0 , 0

1

, ;

0 0 0 , 0,1,..., 16.

f ft t

k kk k

n n V n V

k k

k k k k k

n nom a V n

k

a t q t dt t q t dt

V V n N

  



  

  

 



 

          

  



h ψ α

 (4.86) 
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The sensitivities of the nitric acid concentration in the other compartments have been 

similarly computed by using the above-mentioned “adjoint sensitivity analysis methodology 

for operator-type responses” developed by in conjunction with spectral expansions in 

Legendre Polynomials. In addition to the results obtained above for the nitric acid 

concentrations in compartment #1, we will also illustrate the significant computational 

advantages of applying this methodology (Cacuci, 1981.b) by considering the nitric acid 

concentrations in compartment #4, in the middle of the dissolver, and in compartment #7, 

which is closest to the dissolver’s inlet. Following the same procedure as for           

compartment #1, the time-dependent acid concentration in compartment #4,  (4)
,a nom t  , can 

be approximated within a maximum error of less than 0.01% by its finite spectral 

representation,  (4)

, a S t , using 21 Legendre polynomials. Similarly, the time-dependent acid 

concentration in compartment #7,  (7)
,a nom t  , can be approximated within a maximum error 

of less than 0.01% by its finite spectral representation,  (7)

, a S t , using 29 Legendre 

polynomials. The exact values of  (4)

, a S t  and  (7)

, a S t  , reproduced from Figure 3.5, and their 

corresponding finite spectral representations are shown in Figures 4.2 and 4.3, respectively.  
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Figure 4.2 Time-dependent behavior of the exact nominal value of the nitric acid 

concentration  mol/L  in compartment #4,  (4)
,a nom t  , reproduced from Figure 3.5, and its 

spectral representation,  (4)

, a S t , using the first 21 Legendre polynomials ( 20N ). 

 

 

Figure 4.3 Time-dependent behavior of the exact nominal value of the nitric acid 

concentration  mol/L , in compartment #7,  (7)
,a nom it  , reproduced from Figure 3.5, and its 

spectral representation,  (7)

, a S t , using the first 29 Legendre polynomials ( 28N ) 
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The adjoint sensitivity system for computing the sensitivities  (4)

,a S t   of  (4)

, a S t  becomes 

 For each 0,1,..., 20 n N , solve: 

 

   
           
1

1 1 1,

, 0, 0 ,




 
    


      
 

n

nom f nom f n f

d
V t C V t t

d
   (4.87) 

   
               1,

, , 0,

2,3,5,6,7,8; 0 ,

k

k k k kn

nom f nom f n n

f

d
V t C V t

d

for k t



 

 
     





       
   

  

  (4.88) 

   
               

 

1,

, ,

2 1
1 2 , 4; 0 ,

k

k k k kn

nom f nom f n n

n f f

f

d
V t C V t

d

n
P t k t

t



 

 
     



 

      
   


    

   (4.89) 

dy
V ,n

1( )
t( )

dt
+D

V

1( )
t
f
-t( )yV ,n

1( )
t( ) +D

r

1( )
t
f
-t( )yr ,n

1( )
t( ) = 0, 0 < t < t

f
,   (4.90) 

dy
V ,n

k( )
t( )

dt
+D

V

k( )
t
f
-t( ) y

V ,n

k( )
t( ) -y

V ,n

k-1( )
t( )é

ëê
ù
ûú
+D

r

k( )
t
f
-t( )yr ,n

k( )
t( )

+ r
a,nom

k-1( )
t
f
-t( ) - r

a,nom

k( )
t
f
-t( )é

ëê
ù
ûú
D
V

k( )
t
f
-t( )yr ,n

k-1( )
t( ) = 0, k = 2,...,8, 0 < t < t

f
,

      (4.91) 

subject to the initial conditions 

       , ,0 0, 0 0, 1,...,8.
k k

n V n k           (4.92) 

The sensitivities  (4)

,a S t   of  (4)

, a S t  are computed by using the following summation: 

     
20

(4) 0

,

0

, ; 2 1 ,
N

a S n n f

n

t a P t t 




   h ψ α    (4.93) 

where the expression of  0, ;na  h ψ α  remains formally the same as shown in Eq. (4.86), 

except that the adjoint functions 
   ,
k

n t  and 
   ,
k

V n t  are now the solutions of Eqs. (4.87) 

through (4.92). 
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The sensitivities of  (7)

, a S t  for compartment (#7) are computed similarly, except that the 

summation formula becomes  

     
28

(7) 0

,

0

, ; 2 1 ,




  
N

a S n n f

n

D t Da P t th ψ α    (4.94) 

where the expression of  0, ;nDa h ψ α  remains formally the same as shown in Eq. (4.86), 

except that the adjoint functions 
   ,
k

n t  and 
   ,
k

V n t  are now the solutions of the adjoint 

sensitivity system given below: 

 For each 0,1,..., 28 n N , solve: 

   
           
1

1 1 1,

, 0, 0 ,




 
    


      
 

n

nom f nom f n f

d
V t C V t t

d
   (4.95) 

   
               1,

, , 0,

2,3,4,5,6,8; 0 ,

k

k k k kn

nom f nom f n n

f

d
V t C V t

d

for k t



 

 
     





       
   

  

   (4.96) 

   
               

 

1,

, ,

2 1
1 2 , 7; 0 ,

k

k k k kn

nom f nom f n n

n f f

f

d
V t C V t

d

n
P t k t

t



 

 
     



 

      
   


    

   (4.97) 
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,   (4.98) 
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f
-t( )yr ,n

k-1( )
t( ) = 0, k = 2,...,8, 0 < t < t

f
,

   (4.99) 

subject to the initial conditions 

       , ,0 0, 0 0, 1,...,8.
k k

n V n k           (4.100) 

The explicit expressions of the various sensitivities are obtained by introducing Eqs. (4.10) 

through (4.14) into Eq. (4.86) and collecting like terms. For example, the 1st-order 
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sensitivities of  (1)

,a S t   with respect to the model parameters 0 , , , ,V b a G p  have the following 

expressions: 

   
 

                
       

   

1

1,

8 8 8

, , 2

0

, ;
, ;

63
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f

n

n

in int
ain

n a a V n
in

a

a
S

a

m t t
t t t t dt

a t b



   







 
     

 
 
 



u ψ α
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4.3. Sensitivity Analysis Results 

The absolute and, respectively, relative sensitivities of the nitric acid concentrations 

 (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it   computed at a time instance it  to the scalar parameter 

 are presented in Figures 4.4 and 4.5. The main features of these sensitivities are as follows:  a
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(i) the sensitivities of the responses to each of these parameters are quite localized 

temporally; 

(ii) all of these sensitivities are negative, meaning that an increase in the magnitude 

of each of the respective parameters will induce a decrease in the magnitude 

respective response;  

(iii) after reaching a minimum (or maximum in absolute value), all of these 

sensitivities decay quickly to zero for the remaining duration of the transient;  

(iv) the earliest (in time) impact of the respective sensitivity is on the compartment 

(#7) closest to the inlet; the impact of the sensitivity/disturbance propagates in 

time towards the last compartment; and, 

(v) the largest impact of the each of these sensitivities is on the compartment (#1) 

furthest from the inlet.  

To enable the comparison of the respective relative sensitivities, the respective 

normalizations were normalized, arbitrarily but consistently, to be the acid concentration 

after 60 minutes into the transient. 

 

Figure 4.4 Absolute sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and,  (7)
,a nom it   to the scalar 

parameter a. 
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Figure 4.5 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and,  (7)
,a nom it   to the scalar 

parameter a. 

 

The absolute and, respectively, relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it 

to the scalar parameters , , and  are presented in Figures 4.6 through 4.11. The 

response sensitivities to these parameters show similar features, as follows:  

(i) In time, the sensitivities of the responses to each of these parameters undergo first 

a minimum having large negative values, then display a plateau around zero, 

followed by a rise to a maximum; this maximum decays towards zero in the first 

compartment, but does not “have sufficient time” to do the same in the last 

compartment, remaining there with a high value at the end of the transient;  

(ii) The earliest (in time) impact of the respective sensitivity is on the compartment 

(#7) closest to the inlet; the impact of the sensitivity/disturbance propagates in 

time towards the last compartment;  

(iii) The largest impact, in absolute value, of the each of these sensitivities is on the 

compartment (#1) furthest from the inlet; 

(iv) As before the respective normalizations were chosen, arbitrarily but consistently, 

to be the acid concentration 60 minutes into the transient. Comparing the various 

relative sensitivities reveals that their magnitudes are largest for the parameters 

0V b G
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 and , and smaller for , indicating that the impact of comparable 

uncertainties in  and  will have a higher impact on the response uncertainties 

than those for . 

 

Figure 4.6 Absolute sensitivities, in units of 2mol/L   , of  (1)

,a nom it  ,  (4)

,a nom it  , and 

 (7)
,a nom it  , to the scalar parameter . 

 

Figure 4.7 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it  , to the scalar 

parameter . 

0V b G

0V b

G

0V

0V
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Figure 4.8 Absolute sensitivities, in units of  mol/g , of  (1)

,a nom it  ,  (4)

,a nom it  , and 

 (7)
,a nom it  , to the scalar parameter b 

 

 

Figure 4.9 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it  , to the scalar 

parameter b 
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Figure 4.10 Absolute sensitivities, in units of 2mol/L   , of  (1)

,a nom it  ,  (4)

,a nom it  , and 

 (7)
,a nom it   to the scalar parameter G 

 

 

Figure 4.11 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it   to the scalar 

parameter G  
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The sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it   to the scalar parameter  are 

depicted in Figures 4.12 and 4.13. As these figures indicate these sensitivities behave 

opposite of the manner to the behavior of the response sensitivities to the parameters ,  

and , in that:  

(i) Over time, the sensitivities of the responses to each of these parameters is positive 

and increase to a maximum, plateau around zero, then decrease to minimum 

negative value; and after increase again toward zero in compartment (#7).  

However, there is not “sufficient time” for these same characteristics to be play 

out in compartment (#1), and thus the sensitivities remain negative at the end of 

the transient;  

(ii) The earliest impact of the respective sensitivity is on the compartment (#7) closest 

to the inlet; and the impact of the sensitivity/disturbance propagates toward the 

last compartment over time;  

(iii) The largest impact, in absolute value, of the each of these sensitivities is on the 

compartment (#1) furthest from the inlet. 

 

Figure 4.12 Absolute sensitivities, in units of  mol/L , of  (1)

,a nom it  ,  (4)

,a nom it  , and 

 (7)
,a nom it   to the scalar parameter p 

p

0V b

G
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Figure 4.13 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it   to the scalar 

parameter p. 

 

All of the sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it   to the scalar parameters  

    , 1,...,1291
in

im t i  , have been computed using the ASAM for subsequent use in the 

formulas for combining experimental and computational data to perform “forward and 

inverse predictive modeling”, as will be discussed in Chapters 5 and 6, below. The 

sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it   to all 1291 model parameters 

   in

im t  

are numerous so only selected Figures 4.14 through 4.19 that illustrated major trends were 

chosen to display the relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)
,a nom it   to the 

scalar parameters 
   in

im t  . The following features become apparent from Figures 4.14 

through 4.16:  

 

(i) As Figure 4.14 indicates, all of the relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it 

, and  (7)
,a nom it   to 

   in

im t  at 31 minutesit   are significant having values greater 
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than 1 (recall that a relative sensitivity of 1 implies that a 1% change in the 

respective parameter would induce a 1% change in the respective response). 

The response furthest from the inlet, namely  (1)

,a nom it  , displays the largest 

relative sensitivities to the parameter 
   in

im t  at 31 minutesit  . The closer the 

compartment is to the inlet, the increasingly smaller the corresponding responses 

are to responses in the compartment closest to the inlet, namely  (7)

,a nom it  . The 

response  (7)

,a nom it  , displays the smallest sensitivities, and hence is least affected 

by uncertainties in 
   in

im t . The compartment (#7) closest to the inlet responds 

first while the compartment (#1) furthest from the inlet responds last in time, and 

all of these sensitivities are positive. 

 

(ii) As Figure 4.15 indicates, the relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and 

 (7)
,a nom it   to the parameter 

   in

im t  at 240 minutesit  continues to display the 

same trend described above, remaining all positive while decreasing 

proportionally from the inlet to the outlet. All sensitivities are comparatively 

smaller than those with respect to 
   in

im t  at 31 minutesit  . 

 

(iii) Recall from Figure 3.3 that the inlet mass rate flow, 
   in

im t , of nitric acid 

decreases at 325 minutes (5.42 hours) from the value of 46.83 to 41.67 . 

This (negative) change is reflected in Figure 4.16, which shows that the response 

closest to the change, namely the acid concentration  (7)

,a nom it   in        

compartment 7, changes from positive to negative from the influence of the 

sensitivity      (7)

,

in

a nom i it m t   . This abrupt change causes some very minor 

Gibbs-like oscillations around zero in      (7)

,

in

a nom i it m t    which propagate later 

in time. The negative change in 
   in

im t  affects all compartments “downstream” 

from the inlet, up to and including compartment #4, as depicted by the graph of 

 kg/ h
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     (4)

,

in

a nom i it m t   , which at 325 minutes precisely changes signs from positive 

to negative. The sensitivities of the compartments #3, #2, and #1, furthest away 

from the disturbance in the inlet mass flow rate, remain positive showing no effect 

on acid concentrations.  

 

(iv) One time-step (1 minute) later, at 326 minutes, the graphs in Figure 4.17 show the 

disturbance in the inlet mass flow rate, 
   in

im t  finally reaching the furthest 

compartment from the inlet, namely compartment #1, where the sensitivity 

     (1)

,

in

a nom i it m t    changes signs from positive to negative, with the 

discontinuity in the derivative      (1)

,

in

a nom i it m t    occurring at 325 minutes. The 

corresponding sensitivities in all of the other compartments are negative, 

reflecting the effect of the disturbance in 
   in

im t .    

 

(v) Figure 4.18 shows that the relative sensitivities to the parameter 
   in

im t  at 

360 minutesit  remain negative and is small in absolute value. The largest (albeit 

small) impact of a change in 
   in

im t  is on the response furthest from the outlet, 

while the smallest impact is on the response in the compartment closets to the 

inlet.  

 

(vi) Figure 4.19 shows that at 540 minutesit  , the relative sensitivities to the 

parameter 
   in

im t  remain negative, but increase in absolute value, becoming 

significantly larger over time, than those with respect to the parameter 
   in

im t  

at 360 minutesit  . 

 

(vii) At all times, all of the above sensitivities are sharply localized around the 

respective instance in time, and are zero otherwise.  
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Figure 4.14 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter 
   in

im t  at 31 minutesit  . 

 

 

Figure 4.15 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter 
   in

im t  at 240 minutesit  . 

 



125 

 

 

Figure 4.16 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter 
   in

im t  at 325 minutesit   

 

Figure 4.17 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter 
   in

im t  at 326 minutesit   
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Figure 4.18 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter 
   in

im t  at 360 minutesit   

 

Figure 4.19 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter 
   in

im t  at 540 minutesit   
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All of the sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar parameters 

 ( )in

a it  , 1,...,1291i  , have also been computed for subsequent use for the “forward and 

inverse predictive modeling” investigations to be discussed in the following, in Chapters 5 

and 6. Nevertheless, the major trends become apparent from Figures 4.20 through 4.23, 

which display the relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameters  ( )in

a it   at 31minutesit   , 240 minutesit   , 360 minutesit   , and 416 minutesit   , 

respectively. Recall from Figure 3.4 that  ( ) 0in

a it    beyond 6.91 hours (415 minutes). 

Figures 4.20 through 4.23 show that all of the relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it 

, and  (7)

,a nom it   to the parameters  ( )in

a it   are significant (i.e., larger than 1) and positive.  

 

 

Figure 4.20 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter  ( )in

a it   at 31minutesit    
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Figure 4.21 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter  ( )in

a it   at 240 minutesit    

 

Figure 4.22 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter  ( )in

a it   at 360 minutesit    
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Figure 4.23 Relative sensitivities of  (1)

,a nom it  ,  (4)

,a nom it  , and  (7)

,a nom it   to the scalar 

parameter  at 416 minutesit    
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5. FORWARD PREDICTIVE MODELING FOR OBTAINING 

OPTIMAL DISSOLVER MODEL PERFORMANCE WITH 

REDUCED UNCERTAINTIES  

 

The results presented in this chapter were obtained by applying the general predictive 

modeling methodology of Cacuci and Ionescu-Bujor (2010b) to the paradigm dissolver 

model. The application of this methodology will use the sensitivities previously in order to 

quantify the uncertainties in the computed results, and subsequently reduce them by 

assimilating the experimental data of Lewis and Weber (1980). For convenient reference, the 

main results of the predictive modeling methodology of Cacuci and Ionescu-Bujor (2010b) 

are summarized to better inform how the method will be used to support the subsequent 

chapters of this work.  

 

Cacuci and Ionescu-Bujor (2010b) consider a general time-dependent physical system 

comprising N

  model parameters and rN
 distinct responses, respectively, at every time node 

 1  t,... ,N  . At every time node  ,  the (column) vector 

α  of  J

  system parameters, and 

the (column) vector 
r of  rJ

 responses can be represented in component form as 

 1n |n , N ,  

 α  1  1  i r tr |i , ,N , ,... ,N     r .  (5.1) 

at any time node  , the system parameters are considered to be variates with mean values 

 0


α . Furthermore, the general form of correlations between two parameters i

  and j

 , at 

two time nodes   and   are denotes as  

   
0 0

,ij i i j jc    

        
      

.    (5.2) 

The above covariances constitute the elements of symmetric covariance matrices of the form 



131 

 

       0 0
C α α α α C C C

†
† † 

   

   
     
  

.   (5.3) 

Similarly, the measured responses are characterized by mean values  m


r  at a time node   

and by symmetric covariance matrices between two time nodes   and   defined as 

       C r r r r C C C
† † †

m m m m m m

         
 

  (5.4) 

In general, the measured responses may be correlated to the parameters through response-

parameter uncertainty matrices of the form 

   0
C r r α α

†

r m




  
  

    (5.5) 

By using the maximum entropy principle in conjunction with Bayes’ theorem, the 

methodology of Cacuci and Ionescu-Bujor (2010b) combines the above-mentioned “a priori” 

information with the “likelihood” provided by the model (as in the case of this work: the 

dissolver model considered from the previous sections) to yield expressions for the best-

estimate predicted values for the model parameters and responses, along with corresponding 

reduced uncertainties (covariance): 

1. Best-estimate predicted nominal values for the calibrated (adjusted) parameters: 

    
1

0 0 0
T

be

r d 



     
   

α α C C S α C α d .   (5.6) 

In component form, the above expression for the calibrated best-estimate parameter values 

can be written in the form 

     0

1 1 1

1
t tN N

be T

r d t, , ,N


     

 
  


  

    
       

    
  α α C C S K d , (5.7) 

where d


K  denotes the corresponding  ,  -element of the block-matrix 1

d


C , with the 

block-matrix   0

dC α  defined as follows: 
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       
     

0 0 0

0 0 0

C α dd r S α α r α S α

C α C S α S α C C

T
† T T

d

T

rc r r m . 

       
 

      
   

  (5.8) 

In the above (and subsequent) expressions, the superscript “T” denotes “transposition”. 

Furthermore, the block-matrix S  that appears in the above expressions is defined as 

11

1

S 0

S

S St t tN N N

,

 
 
 
 
 

     (5.9) 

comprising  rJ J 

 -dimensional matrix components 
S , 1    , defined as  

 

1 1
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 


  



 

 

 

 



 

  
 
   

  
    

  
   

  
   

S α ,    1    ,  (5.10) 

where the elements i nR    represents the sensitivities (Gateaux-derivatives) of a 

computed response iR
 with respect to a model parameter n

 .  

The covariance matrix rcC  appearing in Eq. (5.8) is a symmetric block-matrix that denotes 

the covariances of the computed responses, and is defined as follows: 

111

1

C C

C

C C

t

t t t

N

rc rc

rc

N N N

rc rc

 
 
 
 
 

    
1 1

 1
† †

rc rc t; , ,...,N


    


 

 
 

  C S C S C . (5.11) 

The diagonal elements of the above matrix are the variances (i.e., squared standard 

deviations) of the computed responses; these arise from the parameter uncertainties, 

“weighted” by the corresponding sensitivities. Finally, the vector d  which appears in         
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Eq. (5.6) denotes the vector of “deviations” or rather the discrepancies between the nominal 

computations and the nominal measured responses, and is defined as 

 0
d R α rm       (5.12)  

2. The best-estimate predicted nominal values for the calibrated (adjusted) responses: 

      
1

0 0
T

be

m m r d



     
   

r α r C C S α C α d    (5.13) 

At a specific time node  , each component  be


r of  be
r α  has the explicit form 

     
1 1 1

1
t tN N

be T

m m r d t, , ,N


     


  


  

    
       

    
  r r C C S K d . (5.14) 

3. The expressions for the best-estimate predicted covariances be

C  and be

rC  corresponding to 

the best-estimate parameters 
be

α  and responses  be
r α , together with the predicted best-

estimate parameter-response covariance matrix be

rC . The block-matrix components, which 

correlate two (distinct or not) time-nodes, of these calibrated best-estimate covariance 

matrices are given below: 

   
1 1 1 1

t tN N
be T

r d r

        

     
      

   
      

   
  C C C C S K C S C ,  (5.15) 

   
1 1 1 1

t tN N
be T

r m m r d m r

        

 
      

   
      

   
  C C C C S K C S C ,  (5.16) 

   
1 1 1 1

t tN N
be T

r r m r d r

        

    
      

   
      

   
  C C C C S K C S C .  (5.17) 

The methodology of Cacuci and Ionescu-Bujor (2010b) also provides the consistency 

indicator  

 
-1

2 † 0
d C α dd  

  .      (5.18) 
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As the above expression indicates, 
2

  represents the square of the length of the vector d , 

measuring (in the corresponding metric) the deviations between the experimental and 

nominally computed responses. Note that 
2

  is independent of calibrating (or adjusting) the 

original data and can be evaluated directly from the given data (i.e., given parameters and 

responses, together with their original uncertainties). Recall that the 
2

  (chi-square) 

distribution with n  degrees of freedom of the continuous variable ( 0 x   ) is defined as 

   
 

 2 2 1 2

2

1
, 0, 1,2, .

2 2

n x

n n
P x x dx k x dx x e dx x n

n
       


 (5.19) 

The 
2

 - distribution is a measure of the deviation of a “true distribution” (in this case – the 

distribution of experimental responses) from the hypothetic one (in this case – a Gaussian). 

The mean and variance of x  are x n  and  var 2x n . As the dimension of d  indicates, 

the number n , of degrees of freedom characteristic of the calibration under consideration is 

equal to the number of experimental responses. The value of 
2

  computed using Eq. (5.18) 

provides a very valuable quantitative indicator of the agreement between the computed and 

experimental responses, measuring essentially the consistency of the experimental responses 

with the model parameters. 

 

As Eqs. (5.6) through (5.17) indicate, the predictive modeling methodology calibrates 

simultaneously all model parameters and responses, over all spatial locations and over the 

entire time interval under consideration. The optimally predicted “best-estimate” nominal 

values for the model parameters result from applying Eq. (5.7), and the reduced predicted 

uncertainties accompanying these predicted nominal values are computed using Eq. (5.15). 

Table 5.1 and Figures 5.1 through 5.4 present the results of these computations for the scalar 

model parameters involved in the equation of state. As Table 5.1 indicates, the initial 

uncertainties for these parameters are reduced from 10% to values as low as 4.5%. The 

uncertainty reduction is proportional to the sensitivity of the responses (i.e., acid 
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concentrations) and to the respective parameters. The predicted optimal values were also 

calibrated accordingly, differing from their original nominal values.   

Table 5.1 Initial and Predicted Nominal Values and Standard Deviations for the Scalar 

Model Parameters 

Scalar 

Parameters 

Nominal 

Values  

Predicted 

Values 

Nominal 

Relative 

Standard 

Deviation 

Predicted  

Relative 

Standard 

Deviation 

#1: a  0.48916  0.50621 10% 7.67834% 

#2: b  g/L  948.7  g L  10% 4.54535% 

#3: V
0
  4.8 L  5.123 L  10% 4.97098% 

#4: G 0.20194 L  0.20591 L  10% 9.82085% 

#5: p 2.7 2.61256 10% 9.44417% 

 

Figure 5.1 displays the initial correlation matrix for the scalar parameters listed in Table 5.1, 

indicating that these parameters are uncorrelated, having a relative standard deviation of 

10%. The numbers on the vertical axis are in units of (%)2, so note that values shown should 

be by 10-4, while the numbers on the two horizontal axes correspond to the parameter 

numbering in Table 5.1. The results after having applied Eq. (5.17) are displayed in         

Figure 5.2, which shows the predicted correlation matrix for the scalar parameters listed in 

Table 5.1.  It is seen that the predictive modeling induces non-zero correlations among several 

of the parameters notably between parameters #4 and #5 (G and p) and, to a lesser extent, 

between parameters #2 and #3 (b and V
0
). The diagonal values in Figure 5.2 are the predicted 

variances, i.e., the squares of the values shown in the last column of Table 5.1.  
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Figure 5.1 Initial correlation matrix for the scalar parameters listed in Table 5.1. 

 

 

Figure 5.2 Predicted correlation matrix,  




be
C , for the scalar parameters listed in Table 5.1. 

 

The results of applying Eqs. (5.7) and (5.15) for the time dependent inlet acid concentration, 

   in

a t , are depicted below in Figures 5.3 and 5.4 respectively. The time-dependent 

calibration of the nominal value 
   in

a t  is relatively small, and so is the reduction in the 

corresponding time-dependent standard deviation, from the initial value of 

    20%
in

a t   
 

. Furthermore, the results of applying Eqs. (5.7) and (5.15) for the time 
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dependent inlet acid concentration,  ( )inm t , are depicted below in Figures 5.5 and 5.6 

respectively is also relatively small, and so is the reduction in the corresponding time-

dependent standard deviation, from the initial value of  ( ) 10%inm t     .   

 

Figure 5.3 Time-dependent behavior of the difference between the nominal value, 
   in

a t , 

and the optimally predicted “best estimate” value, 
   best

a t , for the inlet acid concentration 

 mol/L .  

 

 

Figure 5.4 Time-dependent behavior of the original relative standard deviation 
    20%
in

a t   
 

 (in red) and the optimally predicted “best estimate” relative standard 

deviation      
 

best

a t  (in black), for the inlet acid concentration 
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Figure 5.5 Time-dependent behavior of the difference between the nominal value,  ( )inm t , 

and the optimally predicted “best estimate” value,  ( )bestm t , for the inlet mass flow rate 

 kg/h . 

 

 

Figure 5.6 Time-dependent behavior of original relative standard deviation,     10%
in

m t   
 

 

and the optimally predicted “best estimate”    best
m t  
 

, for the inlet mass flow rate. 

 

The predicted best estimate nominal values for the nitric acid concentration responses are 

obtained using Eq. (5.13). Figure 5.7, below, presents the computed, experimental, and best 

estimate predicted nominal values for the nitric acid concentration in compartment #1. All of 

these values are in close agreement with one another. The corresponding (+/-) one-standard 

deviations are plotted in Figure 5.8, below, which clearly indicates that the predicted best-

estimate standard deviations, obtained using Eq. (5.16), are smaller than either the measured 



139 

 

(5%) or computed standard deviations [i.e., the diagonal elements of Eq. (5.11)], arising from 

uncertainties in the model parameters.  

 

Figure 5.7 Computed, experimental, and best estimate predicted nominal values for the nitric 

acid concentration in compartment #1 in  mol/L . 

 

 

Figure 5.8 Computed, experimental, and best estimate predicted (+/-) standard deviations for 

the nitric acid concentration in compartment #1 in  mol/L  
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For completeness, the full covariance matrix of the computed acid concentration in 

compartment #1, obtained using Eq. (5.11), is depicted in Figure 5.9, below. This figure 

shows the computed responses in the early stages of the transient between 1-2 hours into the 

transient are strongly (up to -0.86 [mol/L]2) anti-correlated in time with the responses 

computed towards the end of the transient between hours 9 to 10.5. At other time instances, 

the responses are weakly correlated, except for the responses between hours 1 to 2, which are 

strongly (up to 0.86 [mol/L]2) correlated to each other, and again at the end of the transient, 

between hours 9 to 10.5, when they again are strongly correlated. Variances of 0.86 [mol/L]2 

correspond to relative standard deviations of about 20% at the end of the transient.  

 

Figure 5.9 Time-dependent computed correlation matrix (arising from parameter 

uncertainties), rcC , for the nitric acid concentration in compartment #1 

 

The predicted best estimate response correlations are obtained by using Eq. (5.16) and are 

depicted in Figure 5.10, below. As indicated in this figure, all best-estimate correlations, 

including the predicted standard deviations, are significantly reduced and rendered uniform 

by the predictive modeling procedure of Cacuci and Ionescu-Bujor (2010b). The 

corresponding (+/-) one-standard deviations are plotted in Figure 5.8, above, which depicts 

the behavior in time of the measured response standard deviation (5%), the computed 

response standard deviation [i.e., the diagonal elements of Eq. (5.11) stemming from 
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uncertainties in the model parameters], and the best-estimate predicted response standard 

deviation obtained using Eq. (5.16). Figure 5.8, above, shows that the “predicted best-

estimate” response standard deviation is smaller than the “measured” standard deviation and 

the “computed” standard deviation for the entire time-interval under consideration.  

After application of the predictive modeling procedure, though, the predicted best estimate 

correlations (and standard deviations), which are computed using Eq. (5.16), are drastically 

reduced, as indicated in Figure 5.10. 

 

Figure 5.10 Time-dependent best-estimate predicted correlation matrix,  


be

rC , for the nitric 

acid concentration in compartment #1 

 

Even though no measurements were performed in the dissolver compartments 2 through 8, 

the nominal values of the “best-estimate” responses,  be


r , in these compartments can be 

computed by using the calibrated best estimate parameter values  


be
α . The best-estimate 

predicted parameter values for all 1291 model parameters (as presented in Table 5.1 and 

depicted Figures 5.3 and 5.5) together with their reduced predicted uncertainties (as presented 

in Table 5.1 and depicted Figures 5.4 and 5.6) were used to re-compute the nominal values 

of the best-estimate responses,  be


r . It turns out that that these best-estimate responses were 

in good agreement with the originally computed nominal values. In addition, the best-
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estimate predicted uncertainties in the best-estimate computed responses can be obtained by 

using the “propagation of errors” formula given Eq. (5.11), but using the best estimated 

parameter values and their corresponding best-estimate standard deviations, i.e., 

   
1 1

 1


  


 

 
 

           


be
†be be

be

r t; , ,...,NC S C S .  (5.20) 

As will be shown below, the computation of the best-estimate uncertainties using Eq. (5.20) 

for the compartments in which no measurements were performed indeed experienced 

reductions in all compartments by comparison to the originally computed uncertainties. 

Typical results will be presented in the figures below, for compartment #4 (in the middle of 

the dissolver) and for compartment #7. The uncertainty reductions in the other compartments 

are not reproduced here because they can be obtained by interpolating linearly between the 

results presented for compartments #1, #4, and #7.  

The original covariance matrix of the computed acid concentration in compartment #4, 

obtained using Eq. (5.11), is depicted in Figure 5.11, below. This figure shows that the 

computed responses in the early stages of the transient, between hours 0.5 to 1.5 hours, are 

anti-correlated in time with the responses computed towards the end of the transient, between 

hours 8 to 10.5. The anti-correlations for the acid concentration in compartment #4 are similar 

to the time-dependent response anti-correlations in compartment #1. The acid concentration 

responses in compartment #4 are less strongly correlated at other time instances, except for 

the responses between in the initial stages of the transient, between hours 0.5 to 1.5 and hours 

8.5 to 10.5, when they are positively correlated, with variances reaching as high as 0.6 

[mol/L]2. This value corresponds to an absolute standard deviation of 0.77 [mol/L], which in 

turn corresponds to a relative standard deviation of over 50% --which is rather large 

computed uncertainty in this response (i.e., the acid concentration in compartment #4). 

Overall, the time-correlations for the acid concentration in compartment #4 are similar to the 

time-dependent response correlations in compartment #1 but stronger in relative terms. 
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Figure 5.11 Time-dependent computed correlation matrix (arising from parameter 

uncertainties), rcC , for the nitric acid concentration in compartment #4 

 

The predicted best estimate response correlations obtained by using Eq. (5.20) are depicted 

in Figure 5.12, below. As this figure indicates, all best-estimate correlations, including the 

predicted standard deviations, are drastically reduced and more uniform. The corresponding 

(+/-) one-standard deviations plotted in Figure 5.13 depict the behavior in time of the 

computed response standard deviation [i.e., the diagonal elements of Eq. (5.11) stemming 

from uncertainties in the model parameters] and the best-estimate predicted response 

standard deviation obtained using Eq. (5.16). It is evident from Figure 5.13 that the “predicted 

best-estimate” response standard deviation is considerably smaller than that of the 

“computed” one for the entire time-interval under consideration.  
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Figure 5.12 Time-dependent best-estimate predicted correlation matrix,  


be

rC , for the nitric 

acid concentration in compartment #4 

 

 

Figure 5.13 Computed (red graph) and best estimate (black graph) predicted absolute 

standard deviations (+/-) for the nitric acid concentration in compartment #4  mol/L  

 

The original covariance matrix of the computed acid concentration in compartment #7, 

obtained using Eq. (5.11) depicted in Figure 5.14 displays an “island” of anti-correlated 

responses between hours 0 to 1 and the end of the transient at hours 7 and 10, as well as an 
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“island” of positively correlated acid concentrations during hours 7 to 9. Although the 

absolute values of the overall uncertainties are smaller in this compartment, by comparison 

to the other compartments, their relative values are actually larger than those of the other 

compartments. Depicted in Figure 5.14 is the largest variance of the acid concentration in the 

compartment at 0.2 [mol/L]2. This occurs in the interval during hours 7 to 9, and corresponds 

to a relative standard deviation of 90%. The predicted best estimate response correlations 

obtained by using Eq. (5.20) are depicted in Figure 5.15, below. As indicated in this figure, 

all best-estimate correlations, including the predicted standard deviations, are drastically 

reduced and rendered more uniform. The corresponding (+/-) one-standard deviations are 

plotted in Figure 5.16 depicts the behavior in time of the computed response standard 

deviation [i.e., the diagonal elements of Eq. (5.11) stemming from uncertainties in the model 

parameters] and the best-estimate predicted response standard deviation obtained using Eq. 

(5.16). It is evident from Figure 5.16 that the “predicted best-estimate” response standard 

deviation for the acid concentration in compartment #7 is considerably smaller than the 

“computed” one over the entire time-interval under consideration. 

 

Figure 5.14 Time-dependent computed correlation matrix (arising from parameter 

uncertainties), rcC
, for the nitric acid concentration in compartment #7 
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Figure 5.15 Time-dependent best-estimate predicted correlation matrix,  


be

rC , for the nitric 

acid concentration in compartment #7 

 

 

Figure 5.16 Computed (blue graph) and best estimate predicted (black graph) absolute 

standard deviations (+/-) for the nitric acid concentration in compartment #7  mol/L  

 

The results presented in the forgoing highlight the very beneficial effects of the 

comprehensive framework of the predictive modeling methodology of Cacuci and Ionescu-

Bujor (2010b), which considers the entire phase-space of parameters and responses 
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simultaneously over the entire time interval of interest. This unique feature makes it possible 

to “spread out” the positive effects of having performed measurements in one region of the 

dissolver (in this case, in compartment #1) and reduce significantly the predicted 

uncertainties in the acid concentration where measurements were performed, but also for 

compartments that were not measured. These results show promise in a variety of aspects 

related to the model itself, its potential impact on coupling this model to other modules in a 

facility model, and the risk of using the information calculated as a result. 

In the next Chapter, the predictive modeling methodology of Cacuci and Ionescu-Bujor 

(2010b) is applied in the inverse prediction mode, demonstrating its usefulness for inferring 

unknown model parameters (specifically: a time-dependent boundary condition) from 

measurements. These inverse analyses are characteristic to the mission of proliferation 

detection since most real world scenarios involve making inferences on a target of interest 

with statistically low measurements/observations, indirect measurements, and having to rely 

on measuring surrogate systems/environments. 
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6. INVERSE PREDICTIVE MODELING OF THE 

DISSOLVER’S TIME-DEPENDENT INLET ACID 

CONCENTRATION 

 

Many measurement problems, particularly in nonproliferation activities, are “inverse” to the 

“forward” problem in that they seek to determine the properties of the medium, and/or the 

size of the medium on its boundaries, or the properties of the source, from measurements of 

quantities that depend on the unknown state-variables. The methods for solving such inverse 

problems can be categorized as “explicit” or “implicit”. The (historically older) explicit 

methods attempt to manipulate the forward model in conjunction with measurements and 

result in estimations of the unknown source and/or other unknown characteristics of the 

medium. The implicit methods rather, combine measurements with repeated solutions of the 

direct problem which are obtained by varying values of the unknowns and iterating until an 

“a priori” selected functional is reduced to a value deemed to be “acceptable” by the user. 

This acceptance is some user-defined “goodness of fit” between measurements and direct 

computations. All of these methods underscore the fundamental characteristics of inverse 

problems, namely that inverse problems are ill-posed (admitting non-unique solutions) and/or 

ill-conditioned, unstable to small errors or perturbations that are inherently affecting both the 

model parameters and the experimental measurements. Cacuci (2014) highlights the 

amplification of “noise” on naïve solutions which render these methods rather useless.   

 

In the nuclear engineering literature, the inverse problem seems to be addressed only in the 

area of time-independent neutron and radiation transport. Time-independent inverse 

radiative transfer problems were reviewed by McCormick (1992), and examples of inverse 

source problems for time-independent neutron transport by Sanchez and McCormick (2008). 

More recently, Jarman et al (2011) addressed the “source identification problem” by using a 

Bayesian approach in conjunction with numerical adjoint transport computations to localize 

radiological sources, but only accounted for counting statistics while disregarding 

experimental and modeling uncertainties. Bledsoe et al  (2011.a, 2011.b) used the 

“differential evolution method” and the “Levenberg-Marquardt method” (Levenberg-
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Marquardt,1944, 1963), respectively, to solve inverse transport problems by minimizing an 

“a priori” chosen chi-square-type functional to estimate the “differences between measured 

and computed quantities of interest”, but neglected uncertainties stemming from the 

underlying cross sections and material properties, which by doing so implies these 

fundamental data would be perfectly known. Hykes and Azmy (2015) presented a Bayesian 

approach to solve the inverse problem of mapping the spectral and spatial distributions of 

radioactive sources using a limited number of detectors when the system’s geometry and 

material composition are known and fixed. The main takeaway is that aforementioned work 

“regularizes” the solution of the inverse problem in a more or less ad-hoc implicit manner, 

without clearly showing the effects of the respective implicit regularizations or demonstrating 

their reproducibility. The fundamental difficulties associated with inverse problems affect 

profoundly the numerical methods for solving them, particularly in the presence of errors 

(including numerical ones) since errors in the forward problems are helped by the 

“smoothing” of integration rather than in the inverse sense where these small errors are 

amplified as again highlighted by Cacuci (2014). All methods for solving inverse problems 

do produce different results based on how the user defines their assumptions to “regularize” 

and solve the problem of interest. This pervasive issue in using error afflicted models and 

measurements is what makes the results and methods found in this dissertation unique.   

 

Inverse time-dependent problems are yet to be addressed in nuclear engineering activities. 

This chapter will be the first to the knowledge of the author to address such an inverse 

problem in the context of the dissolver model analyzed in the previous chapters. The 

definition used for an inverse problem here considers a time-dependent boundary condition 

(specifically: the time-dependent inlet acid concentration) to be unknown and is determined 

from available measurements. The methodology of Cacuci and Ionescu-Bujor (2010b), 

which was applied in the previous chapter in the “forward predictive modeling” mode will 

be applied in this chapter in the “inverse predictive modeling” mode, and will be shown to 

predict within an “a priori” chosen error criterion the actual time-dependent boundary 

condition without invoking ad-hoc procedures or a need to introduce arbitrary parameters 

in order to “regularize” the inverse as the current state of practice does Tichonov (1963), 

Levenberg-Marquardt (1944, 1963), and/or Tarantola (2005). A careful examination of the 
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(forward and inverse) predictive modeling methodology of Cacuci and Ionescu-Bujor, which 

were summarized in Eqs. (5.6) through (5.17) shows the results do not contain any arbitrary, 

user-defined, parameters for controlling the “regularization” of the problem and/or 

convergence of the respective solution. The reason is that the Cacuci and Ionescu-Bujor 

(2010b)’s methodology uses the maximum entropy principle to combine the model’s 

uncertainties and sensitivities to construct intrinsically the inverse problem’s regularizing 

metric. The results obtained in this chapter underscore the importance of presenting the 

objective resolution (i.e., resolution in the absence of user-defined subjective “adjustment” 

of arbitrary “regularization parameters”) of a time-dependent inverse “case study” of 

potential importance to diversion activities associated with proliferation and thus 

international safeguards since the data themselves regularize the problem rather than any 

biased individual.  

As this “inverse predictive modeling” application illustrates, the time-dependent inlet acid 

concentration (which is a “time-dependent inlet boundary condition”) are unknown. The 

methodology of Cacuci and Ionescu-Bujor (2010b) as applied in the inverse predictive mode 

predicts time-dependent inlet acid concentration within an “a priori” specified convergence 

error, by using the measurements of the acid concentration in compartment #1, which were 

presented in Figure 3.6. Recall that compartment #1 is the furthest from the dissolver’s inlet 

and that the 1291 model parameters from Eq. (3.17) are components of the vector α , i.e., 

                   

               

1 1291 1 635 1 635

1 8 1 8

0

,..., ,..., , ,..., ,

0 0 , 0 ,..., 0 , , , , , .

in in in in

a a

a a

t t t m t m t

V V a b V p G

   

 







α
 (3.17) 

Also, the 635 parameters 
       1 635,..., ,
in in

a at t   which describe the time-evolution of the 

inlet acid concentration, are considered “unknown” and will be determined by using the 

measurements depicted in Figure 3.6 in conjunction with the inverse predictive modeling 

application of the methodology of Cacuci and Ionescu-Bujor (2010b). All of the other model 

parameters appearing in Eq. (2.17) are considered to be known within negligible errors, as 

follows: the model parameters 
0, , , ,a b V G p  have nominal values as provided in Table 3.1 

(within negligible errors); the time-dependent inlet mass flow rate 
   in

m t  behaves (within 
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negligible errors) as depicted in Figure 3.3; and the initial conditions 
   1 8 (1) (8)

0 0 0 0,...,a a V V    

given in Eq. (3.14) are also considered to be known within negligible errors.  

The inverse predictive modeling of Cacuci and Ionescu-Bujor (2010b) for the problem 

definition above iteratively predicts the time-dependent inlet acid concentration as a model 

parameter using Eq. (5.7), in conjunction with Eqs. (5.8) through (5.17). As were mentioned 

previously, Eqs. (3.10) through (3.14), are required here as the “base-case” values for the 

nitric acid concentrations and liquid volumes, 
    ,k

a t and 
   k

V t , respectively for the 

dissolver compartments 1,...,8k  . The nominal values for the base case are to serve as the 

“expert opinion” for the unknown time-dependent inlet acid concentration, 
   in

a t  and the 

only other “a priori” information that relates the behavior of 
   in

a t  are the measurements 

 (1)

, a meas it  from Figure 3.6, and thus, compute the “expert opinion base-case” acid 

concentrations in compartments #1, 4, and 7 as illustrated by Figure 6.1. 

 

 

Figure 6.1 Preliminary “expert opinion base-case” computations of the time-dependent nitric 

acid concentrations  mol L  (1)

,a prelim t ,  (4)

,a prelim t ,  (7)

,a prelim t  in compartments #1, #4, 

and #7, respectively. 
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Comparing the experimental measurements,  (1)

, a meas it , from Figure 3.6 with the 

preliminary “base-case” computed results for  (1)

,a prelim t  obtained from “expert opinion” 

values for the inlet acid concentration (Figure 6.1) indicates a time-lag of roughly 140 

minutes between for phenomena occurring at the dissolver’s inlet to propagate” to the 

compartment furthest away (compartment #1).  

Using foregoing140 minute shift or “lag” for  (1)

,a prelim t  the values of the “time-dependent 

inlet acid concentration” are used for Eqs. (3.10) – (3.14) as the first iterative computation of 

the forward functions 
    

 1
k

a t  and 
    

 1
k

V t , 1,...,8k  ; the superscript “(1)” indicates 

“iteration #1”. These forward functions are used in the adjoint dissolver model, cf. Eqs. (4.64) 

– (4.68) to compute the “1st-iteration values” of the adjoint functions 
    

 1
k

t  and 

    
 1

k

V t . Subsequently Eq. (4.19) uses these adjoint functions to compute the                   

“1st-iteration values” of the sensitivities   
 1

( )k

a it  which are used with the measured acid 

concentrations in compartment #1 (shown in Figure 3.6 and assuming a 1% standard 

deviation for these measurements) in Eqs. (5.7) – (5.17), to obtain the “1st-iteration predicted 

best-estimate values” for the respective model responses and parameters.  

Results denoted in red for the “predicted best-estimate parameter values after the                     

1st-iteration,”   
 1

be


α , from Eq. (5.7) are depicted in Figure 6.2, below, using the label 

“iteration 1”. These results include the predicted nominal values of all 1291 model 

parameters, but only for the values for the time-dependent inlet acid concentration that are 

affected; the nominal values for the other parameters will not be calibrated by the inverse 

predictive modeling methodology of Cacuci and Ionescu-Bujor (2010b) because the nominal 

values for the remaining model parameters are considered to be known within negligible 

uncertainties.  
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Figure 6.2 Values predicted for the inlet acid concentration,     
 1

in

a t ,     
 3

in

a t ,     
 5

in

a t

in  mol L  and after the inverse predictive modeling iterations #1, #3, and #5, respectively, and 

their comparison to the actual time-dependence of the inlet nitric acid concentration 

reproduced (in green) from Figure 3.4 

 

 

The procedure is iterated until the maximum error between the time-dependent predicted inlet 

acid concentration converges within 0.1%, for the entire time interval, i.e., 

    
      

 1

max 1 0.1%
J J

in in

a a
t

t t 


  . The convergence criterion of 1%” was selected based on 

“expert opinion” regarding the accuracy that can be expected of measurements of the time-

dependent inlet acid concentration over the duration of 10.5 hours. This inequality is reached 

after J=5 iterations, at which stage the inverse predictive modeling iterations were considered 

as converged. The results obtained after the 3rd- and 5th-iteration, respectively, are also 

depicted in Figure 6.2.  

To facilitate the comparison between the various iterations and the desired result, Figure 6.2 

also presents the actual time-dependency of the inlet acid concentration, which caused the 

measurements reported in Figure 3.4 but were considered to be unknown for the purposes of 

this “inverse predictive modeling” “case study”. Figure 6.2 illustrates that exact time-

dependent inlet acid concentration 
   in

a t  converges reasonably well, except for 

discontinuities at three time instances, where solutions take on constant values between these 
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respective discontinuities and becoming zero after 7 hours in a manner very similar to a 

Heaviside step-function. It is known that such step-functions are notoriously difficult to 

approximate by continuous functions, and these approximations will appear as oscillations 

around any discontinuities. In particular, the largest point-wise discrepancies between the 

“inverse predicted values” and the exact values are clustered at the beginning and ends of the 

transient period, which is not surprising given the step-like time-distribution of the exact inlet 

acid concentration. These discrepancies are irrelevant, however, for the time-integrated the 

inlet acid concentration, 
    

 5
in

a t , predicted after the 5th-iteration, which differs by less 

than 1% of the time-integral of the exact inlet acid concentration. 

Results for compartment #1 for the predicted nominal value of the acid concentration from 

(5th-) iteration, 
    

 5
1

a t and the predicted covariance matrix for this concentration are 

depicted in Figure 6.3. Nominal values obtained for 
    

 5
1

a t  are reported with a standard 

deviation of less than 2% and within 1% for the experimentally measured results,  (1)

, a meas it

over 10.5 hours.  

 

Figure 6.3 Left: predicted nominal time-dependent acid concentration  mol L  in compartment 

#1 after the 5th iteration,     
 5

1

a t , with one standard deviation error bands; Right: the 

accompanying predicted covariance matrix for     
 5

1

a t . 

 



155 

 

 

The results produced by the 5th-iteration of the inverse predictive modeling methodology also 

yield predicted values for the nominal values of the acid concentrations in all of the other 

dissolver compartments. Furthermore, using the results from this 5th-iteration in the 

“sandwich formula” below  

   
1 1

 1


  


 

 
 

           


be
†be be

be

r t; , ,...,NC S C S ,  (5.20) 

will provide the covariance matrix (“uncertainties”) for the predicted acid concentration 

responses in the dissolver’s compartments even again where measurements are not available. 

In particular, the predicted results for the compartment #4 (in the middle of the dissolver) and 

compartment #7 (closest to the inlet), along with the accompanying covariance matrices, are 

depicted in Figures 6.4 and 6.5, below.   

 

Figure 6.4 Left: predicted nominal time-dependent acid concentration  mol L  in compartment 

#4 after the 5th iteration, 
    

 5
4

a t , with one standard deviation error bands; Right: the 

accompanying predicted covariance matrix for 
    

 5
4

a t . 
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Figure 6.5 Left: predicted nominal time-dependent acid concentration  mol L  in compartment 

#7 after the 5th iteration, 
    

 5
7

a t , with one standard deviation error bands; Right: the 

accompanying predicted covariance matrix for     
 5

7

a t . 

Figures 6.6 through 6.8, below, compare the exact results for the actual time-dependent 

distributions of acid concentrations within the dissolver (and, in particular, for compartments 

#1, #4 and #7) and the inlet acid from Chapter 5 with the results obtained in Figures 6.3 

through 6.5. Figures 6.6 through 6.8 illustrate good agreement within their respective 

standard deviations, for the exact forward predictions (i.e., those obtained using the known 

inlet acid concentration) and the corresponding values for the acid concentrations obtained 

using the inverse predictive mode. This close agreement indicates that the effects of the less-

than-perfect inverse prediction of the time-dependent inlet acid concentration (time-

dependent boundary condition) have very little effect on predicting the responses of interest, 

namely the time-dependent acid concentrations in the various compartments, and, in 

particular, in compartment #1, where the experimental measurements are available. These 

first-of-a-kind results illustrate the all-encompassing generality and applicability of the 

forward and inverse predictive modeling capabilities embodied in the methodology of Cacuci 

and Ionescu-Bujor (2010b) and indicate the way for further similar applications. 
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Figure 6.6 Left: Black label: forward predicted nominal value of the acid concentration 

 mol L  in compartment #1, from Figure 5.7. Green label: inverse predicted nominal value 

of the acid concentration in compartment #1, from Figure 6.3. Right Black label: forward 

predicted one standard deviation error bands of the acid concentration in compartment #1, 

from Figure 5.8. Green label: inverse predicted one standard deviation error bands of the acid 

concentration in compartment #1, from Figure 6.3. 

 

 

Figure 6.7 Left: Black label: forward predicted nominal value of the acid concentration 

 mol L  in compartment #4, from Figure 3.5. Green label: inverse predicted nominal value 

of the acid concentration in compartment #1, from Figure 6.4. Right Black label: forward 

predicted one standard deviation error bands of the acid concentration in compartment #4, 

from Figure 5.13. Green label: inverse predicted one standard deviation error bands of the 

acid concentration in compartment #1, from Figure 6.4. 
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Figure 6.8 Left: Black label: forward predicted nominal value of the acid concentration 

 mol L in compartment #7, from Figure 3.5. Green label: inverse predicted nominal value of 

the acid concentration in compartment #7, from Figure 6.5.  

Right: Black label: forward predicted one standard deviation error bands of the acid 

concentration in compartment #7, from Figure 5.16. Green label: inverse predicted one 

standard deviation error bands of the acid concentration in compartment #7, from Figure 6.5. 

 

This chapter presented an application of the (forward and inverse) predictive modeling 

methodology of Cacuci and Ionescu-Bujor (2010b) in the inverse mode and results are shown 

for an unknown time-dependent boundary condition. Moreover, the unknown time-dependent 

boundary condition described by 635 unknown discrete scalar parameters is accurate 

throughout the dissolver within a tight “a priori” specified convergence criterion specified by 

the time-dependent inlet acid concentration as well as by the time-dependent acid 

concentration for a specified location using measurements of the state function including the 

compartment furthest from the inlet.  

This methodology uses the maximum entropy principle to construct an optimal 

approximation of the unknown “a priori” distribution by using the “a priori” known mean 

values and uncertainties characterizing the model parameters, along with the computed and 

experimentally measured model responses and their covariances. This methodology avoids 

the need for ad hoc regularizations since “a priori” distributions are subsequently combined 

using Bayes’ theorem and the “likelihood” from the model itself, using the first-order 

response sensitivities as weighting functions for combining the computational and 
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experimental information rather than biased subject matter experts or inspectors as in the case 

of nuclear safeguards. This forward and inverse predictive modeling methodology yields 

optimally calibrated values for time-dependent acid concentrations in the dissolver’s 

compartments for all model parameters with reduced predicted uncertainties. Notably, even 

though the experimental data pertains solely to the compartment furthest from the inlet, 

uncertainties throughout the entire dissolver are reduced because information is combined 

and transmitted simultaneously through covariance matrices over the entire phase-space at 

all time steps and all spatial locations. 
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7. SECOND-ORDER ADJOINT SENSITIVITY ANALYSIS 

FOR QUANTIFYING NON-GAUSSIAN FEATURES OF 

TIME-DEPENDENT ACID CONCENTRATIONS  

 

This chapter is dedicated to quantifying the non-Gaussian features of the acid concentration 

responses within selected compartments of the dissolver. As has been discussed in         

Chapter 2, the quantification of non-Gaussian features of responses necessitates the 

computation of the second-order responses sensitivities to the model parameters. Section 7.1 

presents a new method, using adjoint operators, for computing most efficiently the exact (as 

opposed to the approximate) 2nd-order sensitivities of the acid concentration in the surrogate 

dissolver model. For the full dissolver model, however, only the mean values and the standard 

deviations are available so all of the model’s parameters are then assumed to be uncorrelated 

and normally distributed. Section 7.2 will then show results for the non-Gaussian features of 

the acid concentrations in the full dissolver model that are quantified. 

 

7.1. A New Adjoint Sensitivity Analysis Method for Computing Efficiently 

the Second-Order Sensitivities of the Surrogate Dissolver Model 

 

Recall from Chapter 2, which analyzed the surrogate dissolver model, that the expressions of 

partial sensitivities of the acid concentration response  1t  with respect to variations in the 

model parameters i  and ,

in

a A  were as follows: 

 
   

1

1 (1) ,0 0

,

0

, 1,..., ,

t

in

i a A

i

t
w t t dt i N


  




         (2.99) 

 
 

1

1 0 (1)

1, 0

.

tN

i iin
ia A

t
w t dt


 

 

  
  

  
       (2.100) 
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The adjoint function  (1) t , which appears in the above expressions, is the solution of the 

1st-LASS, comprising the following equations:  

 
   

(1)

(1) 0

1 1

1

, 0
N

i i

i

d t
t w t t t t

dt


  



          (2.96) 

 (1)

1 0,t          (2.97) 

The 2nd-order sensitivities of  1t  with respect to the model parameters will be computed 

by devising a novel procedure, based on computing the first-order G-differentials of            

Eqs. (2.99) and (2.100). Thus, the G-differential of Eqs. (2.99) is obtained by applying its 

definition:  

     

       

         

1

1 1 1

2 2

1 1 1

,

1,

(1) (1)

, , ,

0 0

(1) (1) (1)

, ,

0 0 0

,

N
in

a A jin
ji i a A i j

t

in in in

i a A a A a A

t t t

in in

i a A i i a A

t t t

d
w t t t t dt

d

w t t dt w t t dt w t dt i





  
  

    

      


      





   
  

     

  
          

  

     





   1,..., .N

 (7.1) 

Note that the superscript “zero,” which denoted “nominal values”, was omitted, for 

simplicity, in Eqs. (7.1). The last term on the right-side of the above expression can be 

computed immediately, since the adjoint function  (1) t  is known. However, the first and 

second terms on the right-side of Eq. (7.1) contain the variation  (1) t  in the adjoint 

function and, respectively, the variation  t  in the forward function, and the variation 

,

in

a A  in the respective model parameter. As has been shown in Chapter 2, the variation  t  

in the forward function is related to the parameter variations through the 1st-LFSS for the 

surrogate dissolver model, namely:  

 
   , , 1

1 1 1
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                 (2.87) 
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 0 0, 0.t            (2.88) 

Furthermore, the variation  (1) t  is related to the parameter variations through the G-

differential of the 1st-LASS, which is computed, by definition, as follows:  
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               
  

         



 

, (7.2) 

 (1)

1 0,t           (7.3) 

Altogether, Eqs. (2.87), (2.88), (7.2), and (7.3) constitute a well-posed system of equations 

for computing the variations  (1) t  and  t  in terms of the parameter variations. 

Omitting, for simplicity, the superscript “zero,” which denoted “nominal values”, Eqs. (2.87) 

and (7.2) can be written in matrix form as follows:  

 

 

 

 

(1)

(1)

1 1

1

, ,

1 1 1

0

, 0 .

0

N N

i i i i

i i

N N N
in in

i i a A i i a A i i

i i i

d
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 
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 
                   
   

 

  

 

(7.4) 

In principle, Eq. (7.4) could be solved, subject to Eqs. (7.3) and (2.88) to obtain the variations 

 (1) t  and  t , but such a procedure would be just as computationally impractical as 

solving the 1st-LFSS, cf. Eqs. (2.87) and (2.88). Expressing the first and second terms on the 

right-side of Eq. (7.1) in alternative ways that eliminate the appearances of  (1) t  and 

 t , (i.e., in a manner analogous to the way in which the “indirect effect term” was re-

expressed in terms of the adjoint function  (1) t  when constructing the 1st-LFSS in     

Chapter 2) will circumvent the need for solving Eq. (7.4). For this purpose, an inner product 

is made by multiplying Eq. (7.4) with a two-component vector    (2) (2)

1 2,t t     and 

integrating the resulting equation to obtain the following relation:  
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  (7.5) 

Integration by parts transfers the differential operation from  (1) t  and  t  to the 

differential operations on  (2)

1 t  and  (2)

2 t  and yields the term on the left-side of Eq. (7.5) 

as: 
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 
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(7.6) 

The first term on the left-side of Eq. (7.6) will now be replaced by the term on the right-side 

of Eq. (7.5), and the conditions expressed by Eqs. (2.88) and (7.3) are replaced on the right-

side of Eq. (7.6) to reduce the latter to the following expression:  
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(7.7) 

The last two terms on the right-side of Eq. (7.7) can now be identified with the first two terms 

on the right-side of Eq. (7.1) by requiring that 
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 
   
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exp ,
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  .  (7.9) 

The unknown values  (1) 0  and  1t  can be eliminated from the right-side of Eq. (7.7) 

by requiring that  

 (2)

2 1 0,t        (7.10) 

 (2)

1 0 0.        (7.11) 

Collecting now the results in Eqs. (7.7) through (7.11) and inserting them into Eq. (7.1) 

transforms the latter into the form  
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  (7.12) 

Identifying in Eq. (7.12) the respective coefficients of the parameter variations yields the 

following expressions for the 2nd-order sensitivities  

 
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The solution of Eqs. (7.8) and (7.10) can be obtained by using the integrating factor method 

(see Appendix A) in the form 
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The solution of Eqs. (7.9) and (7.11) can be obtained by using the integrating factor method 

(see Appendix A) in the form 
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     (7.16) 

Replacing Eqs. (2.101) and (7.16) in Eq. (7.13) and carrying out the respective integrations 

yields:  
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 (7.17) 

Replacing now Eqs. (2.101), (7.15) and (7.16) in Eq. (7.14) and carrying out the respective 

integrations yields:  
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 (7.18) 

The entire procedure that has been applied to the 1st-order sensitivities represented by           

Eq. (2.99), which has started by computing the G-derivative in Eq. (7.1) and has ended by 

deriving the 2nd-order sensitivities obtained in Eqs. (7.17) and (7.18), will now be applied to 

the 1st-order sensitivities represented by Eq. (2.100). Thus, taking the G-differential of         

Eq. (2.100) yields 
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Note that the superscript “zero,” which denoted “nominal values”, was omitted, for 

simplicity, in the expression on the right-side of the last equality in Eq. (7.19). Next, construct 

an inner product by multiplying Eq. (7.4) with a two-component vector    (2) (2)

3 4,t t     

and integrate the resulting equation to obtain the following relation:  
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  (7.20) 

Integrating by parts the term on the left-side of Eq. (7.20) so as to transfer the differential 

operation from  (1) t  and  t  to differential operations on  (2)

3 t  and  (2)

4 t  yields: 
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(7.21) 

The first term on the left-side of Eq. (7.21) will now be replaced by the term on the right-side 

of Eq. (7.20), and the conditions expressed by Eqs. (2.88) and (7.3) are replaced on the right-

side of Eq. (7.21) to reduce the latter to the following expression:  
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(7.22) 

The last two terms on the right-side of Eq. (7.22) can now be identified with the first term on 

the right-side of Eq. (7.19) by requiring that 
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The unknown values  (1) 0  and  1t  can be eliminated from the right-side of Eq. (7.22) 

by requiring that  

 (2)

3 0 0,        (7.25) 

 (2)

4 1 0t  .      (7.26) 

Collecting now the results in Eqs. (7.22) through (7.26) and inserting them into Eq. (7.19) 

transforms the latter into the form  
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   (7.27) 

where the adjoint functions 
(2)

3  and 
(2)

4  are the solutions of Eqs. (7.23) - (7.26). Identifying 

in Eq. (7.19) the respective coefficients of the parameter variations yields the following 

expressions for the 2nd-order sensitivities  
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Applying the integrating factor method (see Appendix A) to Eqs. (7.23) - (7.26) yields the 

following solutions:  
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 (2)

4 0t         (7.31) 

Replacing now Eqs. (2.101), (7.30) and (7.31) in Eqs. (7.28) and (7.29), and carrying out the 

respective integrations yields:  
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The correctness of the above expressions for the 2nd-order response sensitivities can be 

readily verified by computing the derivatives of the 1st-order sensitivities expressed by       

Eqs. (2.103) and (2.104). Thus, taking the partial derivatives of Eq. (2.103) yields: 
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Furthermore, taking the partial derivatives of Eq. (2.104) yields: 
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The following conclusions can be drawn from these results: 

1. The 2nd-order response sensitivities to all of the model parameters have been 

computed by a new method which uses adjoint operators for computing these 

sensitivities efficiently and exactly. This method considers each 1st-order sensitivity 

as a separate response and develops corresponding 2nd-level adjoint system for 

computing the respective 2nd-order sensitivities. In particular, for the surrogate 

dissolver model, the new method first considered as response the 1st-order sensitivity 

defined in Eq. (2.99), for which the corresponding 2nd-level adjoint system is given 

by Eqs. (7.8) - (7.11). Solving this 2nd-level adjoint system once only for each            

1st-order sensitivity has yielded the adjoint functions 
(2)

1  and 
(2)

2 , which are 

independent of parameter variations, and which were used for computing the 

respective 2nd-order sensitivities shown in Eqs. (7.17) and (7.18). Subsequently, the 

new method was similarly applied to the 1st-order sensitivity defined in Eq. (2.100), 

considered as a “model response.” The corresponding 2nd-level adjoint system for this 

1st-order sensitivity is given by Eqs. (7.23) - (7.26), which was solved, again only 

once, to obtain the adjoint functions 
(2)

3  and 
(2)

4 . These adjoint functions are also 

independent of any parameter variations; they were used to compute the respective 

2nd-order sensitivities shown in Eqs. (7.32) and (7.33).  

2. Note that the mixed 2nd-order sensitivities are obtained twice, once in terms of the 

adjoint functions 
(2)

1  and 
(2)

2  [in Eq. (7.17)], and again in terms of the adjoint 

functions 
(2)

3  and 
(2)

4 [in Eq. (7.33)]. Thus, the new method provides an inherent 

independent verification of the correctness of the mixed 2nd-order sensitivities. 
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3. The specific 2nd-order sensitivities to be computed can be selected “a priori”, based 

on the magnitude/importance of the 1st-order sensitivities. For the specific case of the 

surrogate dissolver model, it is obvious from the 1st-order sensitivity provided by     

Eq. (2.100) that    
2

2

1 , 0,in

a At     so that all of the non-zero 2nd-order 

sensitivities would have been obtained by computing just the adjoint functions 
(2)

1  

and 
(2)

2 , by solving Eqs. (7.8) - (7.11). Nevertheless, the mixed 2nd-order sensitivities 

were alternatively computed in terms of the adjoint functions 
(2)

3  and 
(2)

4                  

[in Eq. (7.33)], to demonstrate the full potential of the new adjoint-based 

methodology here. 

4. The un-mixed 2nd-order sensitivities of the form  2 2

1 it    are obtained only once, 

so they can be independently verified only by recomputing, e.g., using finite 

difference formulas of the form  

       0 0 02
1 1 11

22

; 2 ; ;
.

i i i i i

i i

t t tt        

 

   



  (7.34) 

It is important to note that using diference formulas such as in Eq. (7.34) computes 

approximate, rather than exact, values for the respective 2nd-order sensitivities. 

5. Computing the 2nd-order sensitivities using Eq. (7.34) would require 

  1 2 / 2N N    forward computations, which would be impractical. In 

contradistinction, the new method presented in this Chapter would require at most 

 1N   adjoint computations. 

6. The availability of the 2nd-order sensitivities obtained in Eqs. (7.17), (7.18), and 

(7.32) makes it possible to compute the respective 2nd-order terms in the expressions 

given in Eqs. (2.51) - (2.53) for the first three moments of the response distribution. 
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7.2. Skewness and Non-Gaussian Features of the Acid Concentrations in 

the Full Dissolver Model 

 

Recall from Chapters 3 and 4, that the dissolver model comprises 1291N   experimentally 

parameters i , for which only the mean values and the standard deviations are available. 

Having only this information available is equivalent to the assumption that these parameters 

are uncorrelated and normally distributed. For such parameters, the expressions given in 

Eqs. (2.51) - (2.53) simplify to the following forms:  
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α ,    (7.35) 

where the superscript “UG” indicates “uncorrelated Gaussian” parameters. The covariance 

 ,
UG

kcov r r   , for such parameters, takes on the form: 
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i ii i i i
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In particular, the variance,  var
UG

kr   , of a response kr  that depends on uncorrelated and 

normally distributed parameters is obtained by setting k lr r  in Eq. (7.36), which yields 
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The third-order central moment,  3

UG

kr   , of a response kr  that depends on uncorrelated 

and normally distributed is obtained from Eq. (2.53) in the form  
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As indicated by the expressions in Eqs. (7.35) through (7.38), the 2nd-order sensitivities have 

the following impacts on the response moments: 

(a) They cause the “expected value of the response”,  
UG

kE r   , to differ from the 

“computed nominal value of the response”,  0

kr α ; 

(b) They contribute to the response variances and covariances; however, since the 

contributions involving the second-order sensitivities are multiplied by the fourth power 

of the parameters’ standard deviations, the total of these contributions is expected to be 

relatively smaller than the contributions stemming from the first-order response 

sensitivities; 

(c) On the other hand, as indicated by Eq. (7.38), the 2nd-order sensitivities provide the 

leading contributions to the third-order moment,  3

UG

kr   , and –hence-- skewness a 

response that depends on uncorrelated and normally distributed parameters. 

 

The above relations are also valid when the parameters and/or responses are implicit 

functions of time, as is the case for the acid concentration responses  ( ) , 1,...,8k

a it k   , 

which are functions of 1291 scalar parameters, if the inlet mass rate flow 
   in

im t  and the 

inlet acid concentration  ( )in

a it   are considered to vary independently at every time node 

1,...,635it  , as has been considered in the previous Chapters of this work. Recall from 

Chapter 5, Eq. (5.9), that the time-dependent acid concentrations  ( ) , 1,...,8k

a it k   , do not 

depend on parameters at time steps “in the future of the current time step”, which means that  

 
 

 
   

 

 

 
   

( ) 0 ( ) 0

( )

2 ( ) 0 2 ( ) 0

2 2
( )

; ;
0, 0, , 1,...,635;

; ;
0, 0, , 1,...,635.

k k

a i a i

inin

a j j

k k

a i a i

inin

a j j

t t
j i i

t m t

t t
j i i

t m t

 



 



   
   

  

   
   

        

α α

α α
 (7.39) 
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Recall also from Figures 3.3 and 3.4 that the inlet mass flow rate 
   in

m t  and the inlet acid 

concentration  ( )in

a t   do not vary independently at each time step, but are piecewise 

constant functions of the form 
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  (7.40) 

 

Consequently, Eqs. (7.35), (7.37) and (7.38) take on the following forms for the time-

dependent acid concentration,  ( ) , 1,...,8k

a it k   , in each of the eight compartments: 

(i) The expectation,  ( ) 0;k

a iE t 
 

α , of  ( ) 0;k

a it  α : 
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2; ; ; , 1,...,8; 1,...,635;k k k
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where the quantity  ( ) 0

2 ;k

aE t 
 

α  comprises the 2nd-order contributions to the expectation 

 ( ) 0;k

aE t 
 

α  and is defined as  
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where the quantity  ; iX k t  is defined, 1,...,8; 1,...,635for k i  , as follows:  
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(ii) The variance,  ( ) 0Var ;k
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where the quantity  ; iY k t  is defined, 1,...,8; 1,...,635for k i  , as follows:  
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(iii) The 3rd-order moment,  ( ) 0

3 ;k

a it  
 

α , of  ( ) 0;k

a it  α : 

   

   
 

   
 

   
 

 

( ) 0

3

2 2
( ) 0 2 ( ) 0 ( ) 0 2 ( ) 0

2 2

2 2

2 2
( ) 0 2 ( ) 0 ( ) 0

2

02

0 0

; ;

; ; ; ;
3 var 3 var

; ; ;
3 var 3

k

a i i

k k k k

a i a i a i a i

k k k

a i a i a i

t Z k t

t t t t
a b

a a b b

t t t
V

V V p

 

   

  

  
 

          
                  

         
              

α

α α α α

α α α  
 

   
 

 
   

 
   

    

 
   

 
   

 

2 ( ) 0
2

2

2 2
( ) 0 2 ( ) 0 ( ) 0 2 ( ) 0

8 22

22
1

2
( ) 0 2 ( ) 0

2

;
var

; ; ; ;
3 var 3 var 0

0 0

; ;
3 var

0 0

k

a i

k k k k

a i a i a i a i j

aj
j

j a
a

k k

a i a i i

i
i

t
p

p

t t t t
G

G G

t t
V

V V



   


 

 




  

                                 

     
  

       



α

α α α α

α α
  

8 2

1

0 ,

1,...,8; 1,...,635;

i

for k i



 
 

 



 (7.54) 

where the quantity  ; iZ k t  is defined, 1,...,8; 1,...,635for k i  , as follows:  
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(iv) The skewness,  ( ) 0

1 ;k

a it  
 

α , of  ( ) 0;k

a it  α : 
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 (7.59) 

Recall that the 1st-order contributions comprised in the quantity  (1) 0

1Var ;a it 
 

α  were 

already computed in Figure 5.8; similarly, the quantities  (4) 0

1Var ;a it 
 

α  and 

 (7) 0

1Var ;a it 
 

α  were computed in Figure 5.13 and Figure 5.16, respectively, using the     

1st-order sensitivities that were computed exactly using the ASAM.  
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Since only a relatively few number of non-mixed 2nd-order response sensitivities are needed 

to compute the respective terms in the above expressions, it is not efficient to apply the new 

2nd-order adjoint method developed in Section 7.1 to the full dissolver model. Rather, it is 

more expedient to compute the respective non-mixed 2nd-order response sensitivities by using 

forward computations in conjunction with finite difference formulas, at every time step 

, 1,...,635,it i   of the type shown below:  
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The above formula is exact for a quadratic test function of the form 
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, 2 1 0

k in in

a test a at f t t f t t f t          . The other 2nd-order derivatives 

appearing in the expressions of  ( ) 0;k

a iE t 
 

α ,  ( ) 0Var ;k

a it 
 

α , and  ( ) 0

3 ;k

a it  
 

α  

can be computed by using forward computations in conjunction with finite-difference 

formulas similar to the one provided in Eq. (7.64). As illustrative examples, the relative and 

absolute 2nd-order sensitivities of the time-dependent acid concentrations  (1) 0;a it  α  in 

compartment #1 (furthest from the inlet) and, respectively,  (7) 0;a it  α  in compartment #7 

(closest to the inlet) are depicted in Figures 7.1 through 7.12, below. These figures indicate 

that the relative 2nd-order sensitivities are much smaller than the corresponding 1st-order 

ones; the largest are the relative 2nd-order sensitivity of  (1) 0;a it  α  with respect to the model 

parameters 
 in

Am , 0V  and b , at early times into the transient, as well as to the model parameter 

 in

Dm , towards the end of the transient. The other general trend is that the 2nd-order sensitivities 

of the acid concentration in compartment #1 (furthest from the inlet) are all larger than the 

corresponding 2nd-order sensitivities of the acid concentration in compartment #7 (closest to 

the inlet).  
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Figure 7.1 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to a , for , 1,...,635it i   
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Figure 7.2 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to b , for , 1,...,635it i   
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Figure 7.3 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to 0V , for , 1,...,635it i   
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Figure 7.4 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to p , for , 1,...,635it i   
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Figure 7.5 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to G , for , 1,...,635it i   
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Figure 7.6 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to Am , for , 1,...,635it i   
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Figure 7.7 Absolute and relative 2nd-order sensitivities 
 in

Bm  and, respectively, for Bm

, 1,...,635it i  . 
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Figure 7.8 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to Cm , for , 1,...,635it i   
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Figure 7.9 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to Dm , for , 1,...,635it i   
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Figure 7.10 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to 
 
,

in

a A , for , 1,...,635it i  . 
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Figure 7.11  Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to 
 
,

in

a B , for , 1,...,635it i  . 
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Figure 7.12 Absolute and relative 2nd-order sensitivities of  (1) 0;a it  α  and  (7) 0;a it  α  with 

respect to 
 
,

in

a C , for , 1,...,635it i  . 
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The effects of the 2nd-order sensitivities on the expectation values,  (1) 0;a iE t 
 

α , of the acid 

concentration responses in the dissolver’s compartments have been computed using               

Eq. (7.41) and were found to be very small as depicted by Figure 7.13. The largest effects are 

on the expected value of the acid concentration in compartment #1.  

 

 

Figure 7.13 Comparison of the nominal values  (1) 0;a it  α  and  (1) 0;a iE t 
 

α  for 

, 1,...,635it i   

 

The effects of the 2nd-order sensitivities on the variance,  ( ) 0Var ;k

a it 
 

α , of the acid 

concentration responses in the dissolver’s compartments  ( ) 0;k

a it  α  computed from           

Eq. (7.47) were minimal. Figure 7.14 illustrates these effects by depicting the contributions 

of the 2nd-order sensitivities, contained in the quantity  (1) 0

2Var ;a it 
 

α , to the variance of 

the acid concentration,  (1) 0;a it  α , in compartment #1. This figure also depicts the minute 

influence of the 2nd-order sensitivities on the standard deviation of the acid concentration, 

 (1) 0;a it  α , in compartment #1. 



194 

 

 

Figure 7.14 Left: Comparison of the standard deviation of  (1) 0;a it  α  computed with         

1st-order sensitivities vs. both 1st- and 2nd-order sensitivities, for , 1,...,635it i   Right: Time-

dependent variation of  (1) 0

2Var ;a it 
 

α , cf. Eq. (7.47), for , 1,...,635it i  . 

 

The individual contributions of the 2nd-order sensitivities to the most important model 

parameters and the skewness of the acid concentration responses  (1) 0;a it  α  and 

 (7) 0;a it  α  in compartments #1 and #7, furthest and closest to the inlet, respectively are 

depicted Figures 7.15 – 7.18. Recall, all parameters are assumed to be uncorrelated and 

normally distributed. Figures 7.15 and 7.16 depict notably large negative values for skewness 

in the distributions that occur in the middle of the transient for  (1) 0;a it  α  and  (7) 0;a it  α , 

induced by the parameters 
 
,

in

a B  and 
 
,

in

a C , respectively. These highly negative values would 

imply that the distributions of the responses  (1) 0;a it  α  and  (7) 0;a it  α  become heavily 

skewed toward smaller values than what would be calculated for the expected values. This 

behavior continues and increases by a factor of about 5 for the distribution of  (1) 0;a it  α  in 

the compartment furthest from the inlet which again would imply smaller values than 

expected values. The skewness in the response distributions caused by the 2nd-order 

sensitivities and variances due to the model parameter 
 
,

in

a B  occurs earlier in time than the 

skewness caused by the parameter 
 
,

in

a C  and “skews” the distribution for  (7) 0;a it  α  earlier 

in time than the distribution of  (1) 0;a it  α  furthest from the inlet. 
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Figure 7.15 Skewness in the distribution of  (1) 0;a it  α  (left) and, respectively,  (7) 0;a it  α  

(right) due to the uncertainties in the (assumed) normally-distributed model parameter 
 
,

in

a B  

 

 

Figure 7.16 Skewness in the distribution of  (1) 0;a it  α  (left) and, respectively,  (7) 0;a it  α  

(right) due to the uncertainties in the (assumed) normally-distributed model parameter 
 
,

in

a C  

 

 

Figure 7.17 depicts the skewness in the distributions of  (1) 0;a it  α  and  (7) 0;a it  α , 

respectively, induced by the parameter 
 
,

in

a A . The respective skewness is also negative but 

occurs earlier in time and is less negative than the skewness induced by either 
 
,

in

a B  or 
 
,

in

a C . 

The skewness is first induced in the distribution of  (7) 0;a it  α  by the parameters 
 
,

in

a A , 
 
,

in

a B  
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and 
 
,

in

a C , sequentially in this order over time. The skewness in the distribution of  (1) 0;a it  α  

in induced in the same sequential order by the same parameters, albeit with a delay, and much 

stronger toward the inlet. Notably, the skewness induced by 
 
,

in

a A  in the distribution of 

 (7) 0;a it  α  is minimal suggesting uncertainties in 
 
,

in

a A  affect the skewness of the acid 

distributions increasingly for compartments further from the inlet.  

 

 

Figure 7.17 Skewness in the distribution of  (1) 0;a it  α  (left) and, respectively,  (7) 0;a it  α  

(right) due the uncertainties in the (assumed) normally-distributed model parameter 
 
,

in

a A  

 

 

The skewness in the distribution of  (1) 0;a it  α  is next in importance and stems from the 

uncertainties in the model parameter a, as depicted in Figure 7.18. Note the uncertainties in 

this parameter affects the skewness in the distribution of  (1) 0;a it  α  positively starting 

around 3.5 hours then oscillates; from negative to zero from 4 to 8 hours, and then from 

positive to zero toward the latter part of the of the transient. Contrary to the behavior of the 

previous skewness in response distributions, the uncertainties in the model parameter a barely 

affect the skewness in the distribution of  (7) 0;a it  α and do it quite early. This skewness 

induced in the distribution of  (7) 0;a it  α  is slightly positive, rather than negative which 

would imply larger than expected values for these time periods. 
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Figure 7.18 Skewness in the distribution of  (1) 0;a it  α  (left) and, respectively,  (7) 0;a it  α  

(right) due to the uncertainties in the (assumed) normally-distributed model parameter a.  

 

The uncertainties in the remaining model parameters barely affect the skewness in the 

distribution of  (1) 0;a it  α  and do not practically affect the skewness in the distribution of 

 (7) 0;a it  α  so Figures 7.19 – 7.22 are only included for  (1) 0;a it  α . The skewness is 

impacted both positively and negatively in time, but again the impact is minor as shown with 

values close to zero throughout the transient. Zero-skewness means that the respective 

distribution is symmetric with respect to its mean and thus more or less Gaussian.  
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Figure 7.19 Skewness in the distribution of  (1) 0;a it  α  due to the uncertainties in the 

(assumed) normally-distributed model parameters Am  and 0V .  

 

 

Figure 7.20 Skewness in the distribution of  (1) 0;a it  α  due to the uncertainties in the 

(assumed) normally-distributed model parameters b and p.  
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Figure 7.21 Skewness in the distribution of  (1) 0;a it  α  due to the uncertainties in the 

(assumed) normally-distributed the model parameters Bm  and Cm .  

 

 

Figure 7.22 Skewness in the distribution of  (1) 0;a it  α  due to the uncertainties in the 

(assumed) normally-distributed the model parameters Dm  and G. 

 

The cumulative impact of the uncertainties in the parameter distributions (assumed to be 

normal) on the skewness in the distributions of  (1) 0;a it  α  and  (7) 0;a it  α , respectively, 

are depicted in Figure 7.23. As the plot on the right-side in this figure indicates, the largest 

negative skewness in the distribution of  (1) 0;a it  α  occurs at ca. 4.5 hours into the transient, 

and this negative skewness can be attributed overwhelmingly to the uncertainties stemming 
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from the parameter 
 
,

in

a B  (see Figure 7.15) and, much less, to the uncertainties stemming from 

the model parameter a (see Figure 7.18). The second-largest negative skewness in the 

distribution of  (1) 0;a it  α  occurs at ca. 7-7.5 hours into the transient, and this negative 

skewness can be attributed overwhelmingly to the uncertainties stemming from the parameter 

 
,

in

a C  (see Figure 7.16). The third-largest negative “dip” in the skewness in the distribution of 

 (1) 0;a it  α  occurs earlier in the transient, at ca. 3 hours into the transient; this negative “dip” 

stems from the uncertainties in the (assumed) normally-distributed model parameter 
 
,

in

a A  

(see Figure 7.17). The same features are evident in the plot of the skewness in the distribution 

of  (7) 0;a it  α , depicted on the left-side of Figure 7.23. The three negative “dips” of varying 

magnitudes are similar to, but are much smaller and occur earlier in time than the negative 

“dips” in the distribution of  (1) 0;a it  α . The three “dips” in the skewness of the distribution 

of  (7) 0;a it  α , are caused by the uncertainties in the same parameters (sequentially in time) 

 
,

in

a A , 
 
,

in

a B , and 
 
,

in

a C . In conclusion, the combination of 2nd-order sensitivities and 

uncertainties in 
 
,

in

a B , 
 
,

in

a C , and 
 
,

in

a A  are the most important, in this order, in contributing to 

the marked negative dips in the skewness of the acid concentration response distributions. 

The effects of the combination of 2nd-order sensitivities and uncertainties in 
 
,

in

a B , 
 
,

in

a C , and 

 
,

in

a A  increase in strength for the acid concentrations in the compartments furthest away from 

the inlet.   
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Figure 7.23 Left: time-dependence of the total skewness,  (1) 0

1 ;a it  
 

α , in the distribution 

of  (1) 0;a it  α ; Right: time-dependence of the total skewness,  (1) 0

1 ;a it  
 

α , in the 

distribution of  (7) 0;a it  α .  

 

Non-zero skewness implies asymmetric distribution of responses; in the cases of the acid 

concentration responses, the respective asymmetries are negative, meaning that the 

respective distributions favor values lower than the mean values. These results imply that 

using these calculations to support decisions regarding dissolver/model performance, or for 

coupling other physico-mechanical models or adding sophistication such as equations for 

accounting for fission materials and gasses, or using measurements to “inversely” verify 

declarations with these calculations would be misled. Asymmetries are extremely important 

to consider when establishing confidence intervals for decision-making goals since Gaussian-

based intervals, valid for symmetric distributions, would become non-conservative for 

asymmetric distributions. In the case of the model developed and analyzed in this work, 

Gaussian-based confidence intervals would be very misleading for the times into the transient 

behavior of the acid concentration in the dissolver, particularly around the middle of the 

transient (around 3.5 to 4.5 hours after the initiation of the transient) and towards the last 

third of the transient (after 6 to 7.5 hours) that lasts for 10.5 hours. To accurately account for 

these asymmetries, different procedures, e.g., based on chi-squared (with few degrees of 

freedom) or other asymmetric distributions would be needed. The results presented in this 

chapter highlight the importance of quantifying, as exactly as possible, not only the 1st-order, 
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but also the 2nd-order sensitivities of responses with respect to all of the model parameters. 

In the absence of the 2nd-order sensitivities, non-linear features, such as asymmetries, would 

not be identifiable in the response distributions.   
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8. CONCLUSIONS AND OUTLOOK  

The results of this work establish and document the dissolver model’s performance and 

accuracy for simulating nitric acid concentrations needed to dissolve spent nuclear fuel which 

in turn suggest accuracy in generating the source terms for key reprocessing facility 

components downstream. Thinking holistically about nuclear fuel reprocessing these source 

terms could include actinide concentrations, fission gases, material inventories, etc., which 

either would be used to understand operational performance or for activities such as material 

accountability for nuclear safeguards. Accuracy would be key to having the confidence to 

use these data beyond a paper study regardless of the application. In particular, ongoing work 

is aimed at extending and coupling the dissolver model analyzed here to other key 

reprocessing facility components, including condenser, solvent extractor, and evaporator, 

which will, in turn, will be coupled to a cooling tower and atmospheric transport models for 

a full component capability to model aqueous nuclear fuel reprocessing. Future work will 

extend the application of the forward and inverse predictive modeling methodology of Cacuci 

and Ionescu-Bujor (2010b) and its applications to multiple components of nuclear facilities 

more comprehensive nuclear safeguard applications. 

The dissolver was selected as a “case study” to demonstrate a useful analysis to support 

international nuclear safeguards in its ability to produce chemical feed stock within an 

aqueous nuclear fuel separations facility and thus its source for material diversion activities. 

A full description of quantified discrepancies allows one to better understand the physics 

captured by model, the potential impact on coupling this model to other models, and the risk 

of using the information calculated and assumed to be Gaussian. This model’s analysis is 

complete as evidenced by the calibration, model extrapolation, and estimation of the 

validation domain both inverse and forward as well as the characterized asymmetries 

addressed here.  

Notably, the predictive modeling methodology by Cacuci and Ionescu-Bujor (2010b) 

generalizes and significantly extends the “data adjustment” methods customarily used in 

nuclear engineering, as well as those underlying the 4D-VAR data assimilation procedures 

in the geophysical sciences (see, e.g., Lahoz et al, 2010, and Cacuci et al., 2014) which 
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combines experimental and computational information and results in best-estimate values for 

model responses and parameters, along with reduced predicted uncertainties. This method’s 

unique feature is that it also provides a quantitative indicator, constructed from sensitivity 

and covariance matrices for determining the consistency (agreement or disagreement) among 

the “a priori” computational and experimental parameters and responses. Therefore, the 

deviations between the experimental and nominally computed responses are used as weights 

for determining consistency rather than ad hoc regularization measures defined by biased 

subject matter experts or inspectors. 

The most important response for the dissolver model is the computed nitric acid in the 

compartment furthest away from the inlet, because this is the location where measurements 

(unique in the open literature) were performed over a period of 10.5 hours by Lewis and 

Weber (1980). The first order sensitivities to all model parameters of the acid concentrations 

at each of these instances in time were computed exactly and efficiently using the adjoint 

sensitivity analysis method for nonlinear systems conceived by Cacuci (1981a), and the 

relative importance of each sensitivity in contributing to the uncertainties in the computed 

model responses was quantified numerically, and used to analyze the physics captured by the 

dissolver model. These sensitivities are the center of all the other results from the subsequent 

chapters and so their importance, and the methods used to compute them should be 

recognized as nontrivial. 

Clearly, if non-Gaussian features of responses are to be captured and characterized then the 

computation of the 2nd-order responses sensitivities to the model parameters is also needed. 

A new method which extends the 1st-order ASAM using adjoint operators, for computing 

most efficiently the exact 2nd-order sensitivities of the acid concentration in the surrogate 

dissolver model is presented and enables the computations of all of the 2nd-order response 

sensitivities exactly and efficiently, requiring at most  1N   adjoint computations, as 

opposed to   1 2 / 2N N    forward computations that are require if the 2nd-order 

sensitivities are computed using finite-difference formulas. The 2nd-order sensitivities impact 

the moments of the response distribution causing the “expected value of the response” to 

differ from the “computed nominal value of the response, albeit generally less than 1st order 
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sensitivities, and are the leading contributions to the third-order moment, or skewness of 

response distributions from uncorrelated and normally distributed parameters. 

In the case of the full dissolver model developed and analyzed in this work, Gaussian-based 

confidence intervals would be very misleading for the times into the transient behavior of the 

acid concentration in the dissolver, particularly around the middle of the transient (around 

3.5 to 4.5 hours after the initiation of the transient) and towards the last third of the transient 

(after 6 to 7.5 hours) that lasts for 10.5 hours, since the response skewness becomes large and 

negative over these times. Different procedures, based on chi-squared (with few degrees of 

freedom) or other asymmetric distributions would need to be used for establishing confidence 

intervals at these particularly important times.  

Also, the predictive modeling methodology of Cacuci and Ionescu-Bujor (2010b) was 

applied in the inverse prediction mode, demonstrating its usefulness for inferring unknown 

model parameters (specifically: a time-dependent boundary condition) from measurements. 

Such inverse “problems” are of fundamental importance for the mission of proliferation 

detection since most scenarios in safeguards and treaty verification involve making 

inferences on targets of interest based on statistically low measurements/observations, 

indirect measurements, and a reliance on measurements from surrogate 

systems/environments. The results obtained for the paradigm inverse dissolver model 

presented in this work provide enabling capabilities for similar future applications on a 

broader set of models for studying a full facility.  

Finally, it should be mentioned that the accuracy of the adjoint functions computed using the 

ASAM for the full dissolver model has been verified by forward computations; the results of 

these “solution verification” computations are presented in Appendix A. Finally, Appendix 

B presents the description of the forward and inverse predictive modeling software module 

that was developed to obtain all of the numerical results presented in this work. 
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9. APPENDIX A: Verification of the Computed Adjoint 

Functions 

 

The accuracy of the computed solution of the adjoint system, i.e., Eqs. (3.64) - (3.68) has 

been verified for several model parameters  by direct re-computations in conjunction with 

the finite-difference formula 

 

     ( ) 0 ( ) 0( )

0

,1.01 ,
,

0.01

k kk

a j i a j ia j

i i

t tt    

 

    


 
   (A.1) 

Typical results for such “adjoint solution verification” are presented in Figures A.1 through 

A.11. The close agreement between the respective sensitivities, computed by the ASAM (on 

the one hand) and direct re-computations (on the other hand) provides additional confidence 

in verifying the accuracy of the computed (adjoint function) solutions to of Eqs. (3.64) - 

(3.68). 

 

 

Figure A. 1 Time-evolution of the sensitivity of the nitric acid concentration  in    

compartment 1,     (1) mol La t a     , to the model parameter a. Left: computed by finite-

differences using direct re-calculations; Right: computed using the ASAM 
 

 

0i
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Figure A. 2 Time-evolution of the sensitivity of the nitric acid concentration in     

compartment 1,    (1) mol ga t b     , to the model parameter b. Left: computed by finite-

differences using direct re-calculations; Right: computed using the ASAM. 
 

 

Figure A. 3 Time-evolution of the sensitivity of the nitric acid concentration in      

compartment 1,    (1) mol La t p     , to the model parameter p. Left: computed by    

finite-differences using direct re-calculations; Right: computed using the ASAM. 
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Figure A. 4 Time-evolution of the sensitivity of the nitric acid concentration in     

compartment 1,  (1) 2mol La t G         , to the model parameter G. Left: computed by 

finite-differences using direct re-calculations; Right: computed using the ASAM. 

 

 

Figure A. 5 Time-evolution of the sensitivity of the nitric acid concentration in      

compartment 1,  (1) 2

0 mol La t V         , to the model parameter . Left: computed by 

finite-differences using direct re-calculations; Right: computed using the ASAM. 
 

 

 

 

0V
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Figure A. 6 Time-evolution of the sensitivity of the nitric acid concentration in     

compartment 1,    (1) ( ) 1 minutein

a at       , to the inlet nitric acid concentration at 1 minute 

into the transient,  ( ) 1 minutein

a  . Left: computed by finite-differences using direct re-

calculations; Right: computed using the ASAM. 

 

 

 

Figure A. 7 Time-evolution of the sensitivity of the nitric acid concentration in      

compartment 1,    (1) ( ) 31 minutesin

a at       , to the inlet nitric acid concentration at 31 

minutes into the transient,  ( ) 31 minutesin

a  . Left: computed by finite-differences using 

direct re-calculations; Right: computed using the ASAM 
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Figure A. 8 Time-evolution of the sensitivity of the nitric acid concentration in     

compartment 1,    (1) ( ) 99 minutesin

a at       , to the inlet nitric acid concentration at 99 minutes 

into the transient,  ( ) 99 minutesin

a  . Left: computed by finite-differences using direct re-

calculations; Right: computed using the ASAM 

 

Many linear ordinary differential equations have appeared in conjunction with the 

development and sensitivity analysis of the “surrogate dissolver model” used in Chapters 2 

and 7. The solutions of all of these equations were obtained by applying the “integrating 

factor method”. For convenient reference, therefore, the general solution of a general first-

order linear ordinary differential equation is provided below. The standard form of a general 

first-order linear ordinary differential equation is: 

 
     

 

0 1

0 0

,

.

d t
a t t a t t t t

dt

t




 

    



    (A.2) 

The “integrating factor” for Eq. (A.2) is  

   exp

t

P t a d 
 

  
 
      (A.3) 
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In terms of the above integrating factor, the general solution of Eq. (A.2) is given by the 

expression  

 
 

   
 

1
,

t
C

t P b d
P t P t

          (A.4) 

where C is an arbitrary constant. In particular, the solution for which  0 0t   can be 

expressed in the form 

 
 

   
 

 
0

0

1
.

o

t

t

P t
t P b d

P t P t
          (A.5) 
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10. APPENDIX B: Description of the Forward and Inverse 

Predictive Modeling Software Module (FIPRED) 

 

The software module FIPRED implements the time-dependent forward and inverse 

predictive modelling mathematical formalism of Cacuci and Ionescu-Bujor (2010b), 

described in Chapters 4 and 5. All routines are written as C++ scripts running under the 

CERN Platform ROOT (https://root.cern.ch/) compatible with both Linux/Unix and 

Windows operating systems. The developed software has the following tree-structure of the 

directories: 

 

1) BESTPRED/example/KERNEL is a directory containing the kernel of the FIPRED 

module, for both time-independent or time-dependent uses. 

 

2) BESTPRED/example/INPfiles is a directory containing the (ASCII format) initial/raw 

input files. 

 

3) BESTPRED/example /vorKERNEL is a directory containing the script vorbestpred.C, 

which transforms the initial/raw input files into compatible format for the FIPRED kernel. 

 

4) BESTPRED/example /nachKERNEL is a directory containing the scripts for extracting 

and displaying the results of the FIPRED module; “example” refers to the specifc 

application, such as “dissolver”. 

 

10.1. Kernel  

 

The following relations from Section 5 [see Eqs. (5.6) - (5.18)] have been implemented in 

the KERNEL of the FIPRED module. 

https://root.cern.ch/
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(i) Covariances of the computed responses: 

     

   
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† †

rc

†


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C α r r S α α α S α

S α C S α

   (B.1) 

(ii) Discrepancy between the nominal computations and the nominally measured 

responses: 

 0

md R rα       (B.2) 

(iii) The calibrated best-estimate parameter values: 

   
1
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be
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           
α α C C S α C α d    (B.3) 

with: 
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(iv) The best-estimate predicted nominal values for the calibrated (adjusted) 

responses: 

     
1

0 0
†

be
m m r d

           
r α r C C S α C α d .   (B.5) 

(v) Best-estimate predicted covariances corresponding to the best-estimate 

parameters: 
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(vi) Best-estimate predicted covariances corresponding to the best-estimate 

responses: 
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r

†
m r d d r d ,
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 

      
     

C r r α r r α

C C α C α C α

   (B.7) 
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(vii) Predicted best-estimate parameter-response covariances: 

     
1

0 0 0be †
r r r d d d ,  


      
     

C C C α C α C α    (B.8) 

where 

     0 0
†

†
rd m m r ,

       
C α r r d C C S α    (B.9) 

and 

     0 0 0
†

†
d r .  

       
C α α α d C C S α    (B.10) 

For computational reasons, the above expressions have been organized as follows: 

 

Notations: 

 

T

M rA C C S       (B.11) 

T T

r  B C C S       (B.12) 

d = r - m        (B.13) 

     T

r C SC S        (B.14) 

dC A+ SB        (B.15) 

 BE -1

d
α α BC d       (B.16) 

 BE

 

-1 T

d
C C BC B      (B.17) 

-1BE

dr m + AC d      (B.18) 

1 BE T

r m dC C AC A      (B.19) 

    
1 BE T

r r d C C AC B      (B.20) 

2 1


T

d
 d C d       (B.21) 

 

The block-matrix structures of the basic input elements α , r , m , C , mC , rC , S  are as 

follows: 
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i) Nominal system parameters, computed responses, and measured responses: 

 

1 1 1

1 1 1

1 1 1

2 2 2

1 1

1 1

2 2

11

22

. . .

. .

. .

. .

..

..

..

r r

r

tt

tt

tt

r

N N N

N N

NN

NN

NN

NN

r m

r m

r m

r

r
r m

r

r

r

r







 

 

 




















   
   
   
   
   
   
   
   
   
   
   
   
     
   
   
   
   
   
   
   
   
   
   
   

  
  

1

1

2

1

2

.

.

.

.

.

.

r

t

t

t

r

t

r

N

N

N

N

N

m
N number of time nodes

m
N number of sistem parameters

N number of sistem responses
m

m

m

m









 
 
 
 
 
 
 
 
 
 
 

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 

 (B.22) 

 

Observation: BE
α has the same structure as α ; BE

r has the same structure as r . 

 

ii) Nominal correlations between system parameters: 
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The structure of a matrix of the type C


  is as follows: 
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where N  is the number of system parameters. The correlation between response i at time 

node   and the response j at time node   is the following scalar: 

, ,i ji j i ij jC C  



 



                (B.25) 

Therefore: 

  , ,  C C
T

tN 

           (B.26) 

 

Observation: BE

C has the same structure as C . 

 

iii) correlations of the measured responses: 
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The matrices on the diagonal (
11 22, ,...,C C C t tN N

m m m ) contain the correlations between measured 

responses at the same time node (1,2,..., tN ). The off-diagonal matrices contain correlations 

between measured responses at different time nodes. The structure of a matrix of the type

Cm


in the block matrix Cm  is as follows: 
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where Nr is the number of responses. The elements in the matrix above are scalars. The 

correlation between response i at time node   and the response j at time node  . For 

example: 

, ,i j jm j i m iijC m m m m C                  (B.29) 

Therefore: 

  , ,  C C
T

m m tN          (B.30) 

Observation: rC  and 
BE

rC have the same structure as mC . 

iv) correlations of the measured responses with system parameters 
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The matrices on the diagonal (
11 22, ,...,C C C t tN N

r r r   ) contain the correlations between 

measured responses and system parameters at the same time node (1,2,..., tN ). The off-

diagonal matrices contain correlations between measured responses and system parameters 

at different time nodes. The structure of a matrix of the type Cr



  is as follows: 
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Where N  is the number of system parameters (static and transient) and rN  is the number 

of system responses. The elements in the matrix above are scalars. For example: 

, ,i j jr j j i r iiC m m C     

             (B.33) 

is the correlation between the measured response i at time node   and the parameter j at 

time node  . 

Observation: 
BE

rC has the same structure as rC . 

v) sensitivities of the system responses to the system parameters 
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The structure of a matrix of the type S


 is as follows: 
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where Nr is the number of responses and N  the number of system parameters. An element 

of the above matrix has the general form: 

i

ij

j

r
S










        (B.36) 

and represented is the sensitivity of response i at time node   to the parameter j at time       

node  . 

 

The FIPRED KERNEL computation can be launched with the following ROOT command: 

root -l bestpred.C 

in the directory: 

BESTPRED/example/KERNEL  

under Linux/Unix operating systems. 

In Windows, the script bestpred.C is launched by a simple double click (the first launch 

may need an explicit “Open With” ROOT preinstalled software). 
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Table B. 1 Input and output files (matrices) for the BEST-PRED kernel 

Input matrix Input file Output matrix Output file 

  a.abs BE  aBE.out 

C  ca.abs BEC  caBE.out 

r  r.abs BEr  rBE.out 

m  m.abs   

mC  cm.abs BE

mC  cmBE.out 

rC   car.abs BE

rC   carBE.out 

S  s.abs 
rC  CR.out 

  2  
chi2.out 

The prerequisite input files (a.abs, ca.abs, …, s.abs) for the FIPRED kernel are listed on the 

left (yellow) side of Table B.1, and are as follows: 

 a.abs    nominal parameters 

 ca.abs    nominal parameter correlations 

 m.abs    measured response(s) 

 r.abs    nominal computed response(s) 

 cm.abs   correlations for measured response(s) 

 s.abs    sensitivities of the response(s) to all parameters (static 

and transient) 

 car.abs   initial correlations between parameters and response(s) 
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They must exist in the directory BESTPRED/example/vorKERNEL (see also the Paragraph 

3.2) before launching the FIPRED kernel. The prerequisite input files (a.abs, ca.abs, …, 

s.abs) contain the corresponding block-matrices from the first column of Table B.1 written 

in sparse format as follows: 

1) first row: 

nr nc nz 

where: 

nr (integer) – number of rows 

nc (integer) – number of columns 

nz (integer) – number of non-zero elements / number of following lines in the file 

 

2) nz rows of the type: 

ir ic w 

where: 

ir (integer) – global row coordinate in the corresponding block-matrix 

ic (integer) – global column coordinate in the corresponding block-matrix 

w (float) – numerical value of the element with the global coordinates (ir,ic) in the block-

matrix 

Remark: The prerequisite input files (a.abs, ca.abs, …, s.abs) are created semi-

automatically (see next Paragraph!). 

 

10.2. Input Data Preparation  

 

The raw input data have to be delivered by the user, respecting some simple formatting. The 

following steps (1-3) must be strictly followed by the user: 
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STEP 1) Edit and fill the TXT file: 

BESTPRED/example/vorKERNEL/dimensions.txt 

which is a header file (to contain the steering data of the chosen model) for the C++ script: 

BESTPRED/example/vorKERNEL/vorbestpred.C (to be NEVER changed!) 

EXAMPLE: dimension.txt-file in the case of the “Dissolver Model”  

********************************************************************* 

//number of responses 

1 

//number of time nodes 

635 

//number of static parameters 

5 

//number of transient parameters 

2 

//Only standard deviations for nominal sistem parameters? 0-NO; 1-YES absolut; 2-YES 

relativ 

2 

//Only standard deviations for measured responses? 0-NO; 1-YES absolut; 2-YES relativ 

1 

//Initial correlations between parameters and responses? 0-NO; 1-YES 

0 

IMPORTANT:  

The file vorbestest.C will create the sparse matrices: 

 a.abs    nominal parameters 
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 m.abs    measured response 

 r.abs    nominal computed response 

 s.abs    sensitivities of the response to all parameters (static and 

transient) 

directly (according to the steering data), making use of the raw input data (already) existing 

in the directory BESTPRED/example/INPfiles. 

Any of the next 3 files (sparse matrices with structures according to Eqs. B.23, B.27 and 

B.31) must be provided by the user (and automatically no more touched by vorbestpred.C) 

in the case that the steering file dimensions.txt is asking for (“green” options in the 

“dissolver” example above): 

 ca.abs    nominal parameter correlations 

 cm.abs   correlations for measured response 

 car.abs   initial correlations between parameters and responses 

 

As an example, let us consider the following logical ramifications in the (final part of) 

steering file dimensions.txt: 

************************************************************************* 

//Only standard deviations for nominal sistem parameters? 0-NO; 1-YES absolut; 2-YES 

relativ 

0 

//Only standard deviations for measured responses? 0-NO; 1-YES absolut; 2-YES relativ 

0 

//Initial correlations between parameters and responses? 0-NO; 1-YES 

0 

************************************************************************* 

This logical configuration will lead to: 
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the sparse matrix car.abs (initial correlations between responses and parameters) will be still 

automatically provided by the script vorbestpred.C; it will contain in fact only one line of 3 

integers: 

nr nc 0, i.e.: 

nr – number of rows 

nc – number of columns 

0 non-zero elements (in sparse format). 

ca.abs and cm.abs have to be provided by the user. 

 

STEP 2) The user must create the following ASCII format input files (containing the raw 

input data) in the directory BESTPRED/example/INPfiles: 

 experimental.txt  the experimental response(s) 

 NOM.txt   the nominal response(s) 

 paramSTAT.txt  the nominal values of the static system parameters 

 paramTRANSI.txt  the nominal values of the transient system parameters 

 sensiSTAT.txt  sensitivities to the static parameters 

 sensiTRANSI.txt  sensitivities to the transient parameters 

 respSIGMA.txt  standard deviations for experimental response(s) 

 paramSIGMA.txt  nominal standard deviations for parameters 

 

The structures of these files are as follows: 

 

experimental.txt 

It contains two columns: 

1st column - time nodes (but it may contain only a time node counter); 

2nd column – the experimental values of the response(s) 

The iteration tree looks like: 

LOOP for the number of responses (dissolver: 1) 

 LOOP for time nodes (dissolver: 635) 

Dissolver Model: 635 x 1 lines. 
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NOM.txt 

It has the same structure as experimental.txt! 

 

paramSTAT.txt 

It contains only one column with the nominal values of the static parameters. 

The iteration tree is as follows: 

LOOP for the number of static parameters (Dissolver: 5): 5 lines. 

 

paramTRANSI.txt 

Contains two columns: 

1st column - time nodes (but it may contain only a time node counter); 

2nd column – the nominal values of the transient parameters 

The iteration tree is as follows: 

LOOP for the number of transient parameters (Dissolver: 2) 

 LOOP for time nodes (Dissolver: 635) 

 

sensiSTAT.txt 

It contains two columns: 

1st column: time nodes (but it may contain only a time node counter); 

2nd column: sensitivity values 

The iterations are: 

LOOP for the number of responses (dissolver: 1) 

 LOOP for the number of static parameters (dissolver: 5) 

  LOOP for time nodes (dissolver: 635) 

Dissolver model: 1 x 5 x 635 lines. 

 

sensiTRANSI.txt 

Contains two columns: 

1st column: time nodes (but it may contain only a time node counter); 

2nd column: sensitivity values 

The iterations are: 
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LOOP for the number of responses (dissolver: 1) 

 LOOP for the number of transient boundary conditions (dissolver: 2) 

  LOOP for perturbation nodes (dissolver: 635) 

   LOOP for time nodes (dissolver: 635) 

Dissolver Model: 1 x 2 x 635 x 635 lines!  

 

The zeros before perturbation nodes (because of causality reasons) are formally kept in 

the file structure for safety reasons. Anyhow, these zeros will be not transferred towards the 

sparse matrices as they will contain only the non-zero elements and their matrix coordinates 

(row number and column number). 

 

respSIGMA.txt 

It contains one column with standard deviations (absolute or relative, according to the 

logical option in the steering file dimensions.txt) of the response(s). 

The iteration tree looks like: 

LOOP for the number of responses (dissolver: 1) 

LOOP for time nodes (dissolver: 635) 

Dissolver Model: 635 lines. 

 

paramSIGMA.txt  

It contains one column with standard deviations (absolute or relative, according to the 

logical option in the steering file dimensions.txt) of the system parameters 

The iterations are: 

LOOP for the number of all parameters (static and transient) (dissolver: 7) 

Dissolver Model: 7 lines. 

 

STEP 3) The user must run the C++ script 

BESTPRED/example/vorKERNEL/vorbestpred.C  C++ script for reading the input files 

from BESTPRED/example/INPfiles and generating the sparse matrices a.abs, ca.abs, m.abs, 

r.abs, cm.abs, s.abs, car.abs (ASCII files containing in sparse matrix format the required data 

structure for the BEST-EST module). Remark: Do not modify the file vorbestpred.C! 
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10.3. Output Data  

 

The output data obtained by running the FIPRED procedure are contained in the directory: 

BESTPRED/example/KERNEL. All files to be found in this directory are explained in the 

Table B.2, below: 

Table B. 2 Output files (matrices) for the BEST-PRED kernel 
 

Matrix File Output matrix Output file 

  a.inp BE  aBE.out 

C  ca.inp BEC  caBE.out 

r  r.inp BEr  rBE.out 

m  m.inp   

mC  cm.inp BE

mC  cmBE.out 

rC   car.inp BE

rC   carBE.out 

S  s.inp 
rC  CR.out 

  2  
chi2.out 

 

The prerequisite input files (a.abs, ca.abs, …, s.abs) for the BESTPRED kernel are listed on 

the left (yellow) side of the Table B.1. The same information with the same format is 

formally written/practically cloned (as safety measure) by the kernel in the files (a.inp, 

ca.inp, …, s.inp), see the left (yellow) side of the Table B.2. Let us recall their contents: 

 a.inp            nominal parameters (same as a.abs) 

 ca.inp            nominal parameter correlations (same as ca.abs) 
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 m.inp            measured response(s) (same as m.abs) 

 r.inp            nominal computed response(s) (same as r.abs) 

 cm.inp            correlations for measured response(s) (same as cm.abs) 

 s.inp            sensitivities of the response(s) to all parameters (static    

                                                        and transient) (same as s.abs) 

 car.inp           initial correlations between parameters and response(s)  

                                                   (same as car.abs) 

The (real) output of the kernel is written in the files on the right (blue) side of the Table B.2. 

Here are their contents: 

 aBE.out   best-estimate parameters (same structure as a.abs) 

 caBE.out   best-estimate parameter correlations (same structure as  

     ca.abs) 

 rBE.out   best-estimate response(s) (same structure as r.abs) 

 cmBE.out   best estimate correlations for response(s) (same  

     structure as cm.abs) 

 carBE.out   best-estimate correlations between parameters and  

     response(s) (same structure as car.abs) 

 CR.out   initial correlations between computed response(s)  

(same structure as cm.abs) 

 chi2.out   value of the consistency indicator 
2  

The data contained in these files from Table B.2 (*.inp and *.out) plus the steering data from 

the file (already existing, used for the data preparation) 

BESTPRED/example/vorKERNEL/dimensions.txt 

are sufficient for displaying the results of the BEST-PRED procedure. 
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10.4. Display Results  

The results of the FIPRED procedure, as well as their comparison with the a-priori data, are 

displayed by semi-automatic C++ scripts. The scripts are described below. 

Script and Figure Function 

paramMOnom.C 

(see Fig. B.1) 

- plot nominal correlations of the static parameters 

- create the file paramMOnomBest.out (it contains a one-to-

one comparison of the nominal an best-estimate static 

parameters with their relative standard deviations) 

paramMObest.C 

(see Fig. B.2) 

- plot best-estimate correlations of the static parameters 

- create the file paramMOnomBest.out (the same content as 

above) 

corRESPnom.C 

(see Fig. B.3) 

plot initial correlations between computed responses 

corRESPbest.C 

(see Fig. B.4) 

plot best-estimate correlations between responses 

RESPsimexpbest.C 

(see Fig. B.5) 

plot computed, experimental and best-estimate responses 

sigonlyRESPsimexpbest.C 

(see Fig. B.6) 

plot () one standard deviation bands for computed, 

experimental and best-estimate responses 

paramBCexpbest.C 

(see Fig. B.7) 

plot experimental and best-estimate transient boundary 

conditions 

sigrelparamBCexpbest.C 

(see Fig. B.8) 

plot experimental and best-estimate relative standard 

deviations (in percent) of the transient boundary conditions 
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The above scripts are semi-automatic: after launching, they ask the user for preferred options. 

The interactions possible with these scripts are presented next. 

Dissolver Model  

root -l paramMOnom.C 

root [0] 

Processing paramMOnom.C... 

Number of responses: 1 

Number of time nodes: 635 

Number of model parameters: 5 

Number of transient parameters: 2 

What kind of best-estimate relative standard 

deviations? 

1 = relative to nominal values 

2 = relative to best-estimate values 

1 

Set a minimum and a maximum for the 

histogram? 

1 = Yes! 

2 = No! 

2 

root [1] 

 

Figure B.1: Nominal static parameters correlations for 

the dissolver model (cf. Fig. 5.1). 

 

 

Some observations: 

1) All scripts are applicable to time-independent or time-dependent results; some user 

feedback may be required during running. 

2) The user (required) feedback is displayed in red in all panels. 

3) Sometimes it appears the question:  

What kind of best-estimate relative standard deviations? 

1 = relative to nominal values 

2 = relative to best-estimate values 
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Because the best-estimate nominal values can be sometimes smaller than the a-priori values, 

the a-priori values may be chosen as normalizations for the best-estimate relative standard 

deviations (option 1); in such a case the best-estimate relative standard deviations will be 

always smaller than the a-priori relative standard deviations. 

4) By selecting on the tool-bar of any plot the option File->Save the following picture format 

may be selected: ps, eps, pdf, gif, jpg, png. The corresponding file will keep the name of the 

script producing it, with the extension ps, eps and so on. 

5) The scripts of the type paramMOnom.C and paramMObest.C are delivering also a text 

file paramMOnomBest.out which contains a one-to-one comparison of the nominal and 

best-estimate static parameters with their relative standard deviations. 

6) Under Windows operating system the launching command for all scripts is Double Click. 

Dissolver Model  

root -l paramMObest.C 

root [0]  

Processing paramMObest.C... 

Number of responses: 1 

Number of time nodes: 635 

Number of model parameters: 5 

Number of transient parameters: 2 

What kind of best-estimate relative standard 

deviations? 

1 = relative to nominal values 

2 = relative to best-estimate values 

2 

Set a minimum and a maximum for the 

histogram? 

1 = Yes! 

2 = No! 

2 

root [1] 

 

Figure B.2: Predicted (best-estimate) correlation matrix 

for the dissolver’s scalar parameters (cf., Figure 5.2). 
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Dissolver Model  

root -l corRESPnom.C 

root [0]  

Processing corRESPnom.C... 

Number of responses: 1 

Number of time nodes: 635 

Number of model parameters: 5 

Number of transient parameters: 2 

What kind of response? 

1 = static 

2 = transient 

2 

Which response to be plotted? 

Enter an integer between 1 and 1. 

1 

Set a minimum and a maximum for the 

histogram? 

1 = Yes! 

2 = No! 

2 

root [1] 

 

Figure B.3: Initial (i.e., computed) correlation matrix for the 

dissolver (cf., Figure 5.9). 

 

 

Dissolver Model  

root -l corRESPbest.C 

root [0]  

Processing corRESPbest.C... 

Number of responses: 1 

Number of time nodes: 635 

Number of model parameters: 5 

Number of transient parameters: 2 

What kind of response? 

1 = static 

2 = transient 

2 

Which response to be plotted? 

 Enter an integer between 1 and 1. 

 

Figure B.4: Predicted best-estimate correlation matrix 

for the nitric acid concentration in compartment #1of the 

responses for the dissolver model (cf., Figure 5.10).  
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1 

Set a minimum and a maximum for the 

histogram? 

1 = Yes! 

2 = No! 

1 

Provide the minimum! 

0.8 

Provide the maximum! 

1 

root [1] 

 

 

 

Dissolver Model  

root -l RESPsimexpbest.C 

root [0]  

Processing RESPsimexpbest.C... 

Number of responses: 1 

Number of time nodes: 635 

Number of model parameters: 5 

Number of transient parameters: 2 

transient response 

Which response to be plotted? 

 Enter an integer between 1 and 1. 

1 

Set a minimum and a maximum for the 

histogram? 

1 = Yes! 

2 = No! 

2 

 

 

 

 

Figure B.5: Computed, experimental, and best estimate 

predicted nominal values for the nitric acid 

concentration in compartment #1 (cf., Figure 5.7). 
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Dissolver Model  

root -l paramBCexpbest.C 

root [0]  

Processing paramBCexpbest.C... 

Number of responses: 1 

Number of time nodes: 635 

Number of model parameters: 5 

Number of transient parameters: 2 

Which boundary conditions have to be plotted? 

Integer allowed between 1 and 2. 

1 

Set a minimum and a maximum for the histogram? 

1 = Yes! 

2 = No! 

2 

root [1] 

 

 

Figure B.7: Experimental (red) and best-estimate (black) transient boundary conditions for dissolver 

model. Left: inlet nitric acid mass concentration. Right: inlet mass flow rate. 
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Dissolver Model  

root -l sigrelparamBCexpbest.C 

root [0]  

Processing sigrelparamBCexpbest.C... 

Number of responses: 1 

Number of time nodes: 635 

Number of model parameters: 5 

Number of transient parameters: 2 

What kind of best-estimate relative standard deviations? 

1 = relative to nominal values 

2 = relative to best-estimate values 

1 

Which boundary conditions have to be plotted? 

Integer allowed between 1 and 5. 

1 

Set a minimum and a maximum for the histogram? 

1 = Yes! 

2 = No! 

1 

Provide the minimum 9.98 

Provide the maximum 10.01 

root [1] 

 

 

Figure B.8: Experimental (red) and best-estimate (black) relative standard deviations (in percent) of the 

transient boundary conditions for the dissolver model. Left: inlet mass flow rate (see Figure 5.6). Right: 

inlet nitric acid mass concentration (see Figure 5.4). 
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