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Abstract 

The development of quantum computers and quantum simulators promises to provide solutions to 

problems, which can currently not be solved on classical computers. Finding the best physical im-

plementation for such technologies is an important research topic and using optical effects is a prom-

ising route towards this goal. It was theoretically shown that optical quantum computing is possible 

using only single-photon sources and detectors, and linear optical circuits. An experimental imple-

mentation of such quantum optical circuits requires a stable, robust and scalable architecture. This 

can be achieved via miniaturization of the optical devices in the form of photonic integrated circuits 

(PICs). The development of a suitable material platform for such PICs could therefore have a large 

impact on future technologies. Diamond is a particularly attractive material here, as it naturally offers 

a range of optically active defects, which can act as single-photon sources, quantum memories, or 

sensor elements. Besides its excellent optical properties, diamond also has a very high Young’s mod-

ulus, which is important for optomechanics, and can be employed for potentially fast and low-loss 

tuning of PICs after fabrication.  

In this work, components for future quantum optical circuits are developed. This includes the 

first diamond optomechanical elements, as well as the first integrated single-photon detectors on a 

diamond material platform. Diamond micromechanical resonators with high quality factors are re-

alized and their actuation via optical gradient forces and electrostatic forces is demonstrated. The 

accomplished superconducting nanowire single-photon detectors show excellent performance in 

terms of low timing jitter, high detection efficiency, and low noise-equivalent power. Moreover, a 

novel scalable method for PIC fabrication from high quality single crystal diamond is presented. This 

work is therefore a promising step towards a platform for quantum optical circuits, as the demon-

strated components can be used in a wide range of future applications of diamond quantum photon-

ics. 
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Zusammenfassung in deutscher Sprache 

Die Entwicklung von Quantencomputern und Quantensimulatoren verspricht Lösungen für Prob-

leme, die derzeit mit klassischen Computern nicht lösbar sind. Die Suche nach der besten physikali-

schen Implementierung solcher Technologien ist ein wichtiges Forschungsgebiet und die Nutzung 

optischer Effekte stellt einen aussichtsreichen Ansatz dar. Theoretische Forschung hat gezeigt, dass 

optische Quantencomputer möglich sind, welche nur aus Einzelphotonenquellen, Einzelphotonen-

detektoren und linearen optischen Schaltkreisen bestehen. Eine experimentelle Implementierung 

derartiger quantenoptischer Schaltkreise erfordert eine stabile, robuste und skalierbare Architektur. 

Diese kann durch die Miniaturisierung optischer Geräte in Form von photonischen integrierten 

Schaltkreisen (PICs) erreicht werden. Die Entwicklung einer geeigneten Materialplattform für PICs 

kann insofern eine große Bedeutung für zukünftige Technologien haben. Diamant ist hier ein beson-

ders attraktives Material, da eine Vielzahl an optisch aktiven Defekten in Diamant existiert. Diese 

können als Einzelphotonenquellen, Quantenspeicher oder Sensorelemente fungieren. Neben exzel-

lenten optischen Eigenschaften besitzt Diamant außerdem einen sehr großen Elastizitätsmodul. Die-

ser ist wichtig für optomechanische Elemente, die das schnelle und verlustarme Durchstimmen von 

PICs ermöglichen können. 

Die vorliegende Arbeit beschreibt die Entwicklung optischer Komponenten für zukünftige inte-

grierte quantenoptische Schaltkreise. Sowohl die ersten integrierten optomechanischen Elemente 

als auch die ersten integrierten Einzelphotonendetektoren auf Diamant werden demonstriert. Mik-

romechanische Diamantresonatoren mit hohen Qualitätsfaktoren werden realisiert und ihr Antrieb, 

sowohl mit optischen Gradientenkräften als auch mit elektrostatischen Kräften, wird gezeigt. Die 

entwickelten supraleitenden Einzelphotonendetektoren zeigen exzellente Leistungsmerkmale in 

Form von niedrigem Jitter, hoher Detektionseffizienz und niedriger äquivalenter Rauschleistung. 

Des Weiteren wird eine neuartige Methode zur Herstellung von PICs aus einkristallinem Diamant 

vorgestellt. Diese Arbeit stellt einen vielversprechenden Schritt in Richtung einer Plattform für quan-

tenoptische Schaltkreise dar, weil die gezeigten Komponenten in einem breiten Spektrum zukünfti-

ger Anwendungen der Quantenoptik mit Diamant eingesetzt werden können.  
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1 Introduction – aim and scope of this thesis 

The miniaturization of optical devices in the form of photonic integrated circuits offers a stable and 

scalable architecture for applications of classical and quantum optics. Exploiting quantum mechanics 

in quantum optical circuits, for example for quantum simulators or linear optical quantum compu-

ting promises to outperform the classical counterparts. The development of a suitable material plat-

form for such circuits could hence have a large impact on future technologies. Diamond has excellent 

mechanical and optical properties, including a range of optically active defects, referred to as color 

centers, which can act as single-photon sources, quantum memories, or sensor elements. This moti-

vates to investigate diamond photonic integrated circuits and optomechanical circuits. Quantum 

optical circuits require tunable elements and optomechanical elements are a promising solution for 

potentially fast and low-loss tunable photonic integrated circuits. Diamond has the highest Young’s 

modulus of any dielectric thin films and mechanically tunable elements can be incorporated in dia-

mond photonic integrated circuits. A further indispensable circuit element is the single-photon de-

tector and superconducting nanowire single-photon detectors are a promising technology with ex-

cellent performance characteristics. The aim of the work described in this thesis is to develop central 

components of diamond photonic integrated circuits for future on-chip quantum optical experi-

ments. This comprises the design, fabrication, and experimental examination of individual diamond 

photonic components and photonic integrated circuits. On-chip quantum optical experiments on a 

diamond platform rely on the emission and interaction; the routing and manipulation; and the effi-

cient detection of single photons. While the emission and interaction of single photons from sources 

in diamond is being extensively studied by other research groups, the scope of this thesis is to show 

the manipulation of light using optomechanics and its efficient detection by single-photon detectors 

on a platform of diamond waveguides.  

This thesis is structured in the following manner: 

Chapter 2 explains the fundamentals of integrated optics and the working principle of the pho-

tonic components, which are used in this thesis. Furthermore, a brief introduction into both the 

statistics of photon sources and quantum information science are given, which is necessary in order 

to understand the motivation and long-term goals of the presented experiments. Moreover, chapter 2 

explains the choice of diamond as the material platform in this work. 

Chapter 3 describes optomechanics as a means to manipulate light in photonic integrated cir-

cuits, for example its phase and amplitude, using mechanical degrees of freedom. Two options for 

the control of the position of a mechanical oscillator, within photonic integrated circuits, are the use 

of electrostatic forces and the use of optical gradient forces. These options enable the control of the 

motion of micromechanical components either via electric voltages or via light. In Chapter 3 both 

approaches are explained and the first experimental demonstrations of integrated optomechanical 

circuits on a diamond substrate are reported.  



2 Introduction – aim and scope of this thesis 

 

Chapter 4 presents the detection of single-photons in diamond photonic integrated circuits. The 

working principle of superconducting nanowire single-photon detectors is explained and the exper-

imental results for the first demonstration of single-photon detectors on diamond photonic circuits 

are reported. The devices exhibit high efficiency, low dark count rate and low timing jitter. 

Chapter 5 presents a novel method for the fabrication of photonic circuits from single crystal 

diamond and shows its suitability for on-chip photonics. This includes a proof-of-principle demon-

stration showing that the device designs and the experimental results presented in chapter 2–4 can 

generally be transferred from polycrystalline diamond to single crystal diamond, which then allows 

the integration of single-photon sources into the presented photonic integrated circuits. 
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2 Diamond photonic integrated circuits and 
integrated quantum optics 

This chapter provides an overview over the research field of integrated optics and particularly integrated 

quantum optics. The basic elements of photonic integrated circuits which are used within this thesis 

are introduced and their properties explained. Furthermore the material properties of diamond which 

motivate its use for integrated optics are discussed. 

2.1 Fundamentals of integrated optics 

Up to date mainly bulk optical components, such as bulk mirrors and lenses, are used as components 

for assembling optical experiments and commercial optical systems. While for many applications 

this solution works well, for others bulk optics does not offer a feasible solution. Limiting factors can 

be, for example, a lack of long-term stability, which necessitates realignment of components, or the 

limited scalability once thousands or more optical components are needed. Furthermore the size of 

an advanced optical setup can easily amount to several square meters, which prevents the production 

of cheap or handheld devices. In the last few decades technological improvements have allowed to 

address such problems by shrinking the size of optical components. Optical fibers with diameters on 

the order of tens of micrometers have been established very successfully as a method for transmission 

of light over long distances, for example for fast and reliable data transmission1 and are nowadays 

replacing many bulk optical components. The next step of miniaturization is the photonic integrated 

circuit (PIC) with device dimensions in the nanometer to micrometer range. 

 

A PIC, or integrated optical circuit, is a solid state device, which integrates multiple photonic func-

tions in analogy to electronic integrated circuits (IC). While in an IC electrical currents are guided 

along electric conductors, namely thin metal strips, in a PIC light is guided along optical waveguides 

made from an optically transparent material. The base material for PICs is typically a dielectric thin 

film of several hundred nanometers in thickness on top of an oxidized silicon wafer, as shown in 

 

Figure 1 - Schematic of photonic integrated circuits: a) A wafer containing hundreds of dies which can contain 
hundreds of PICs each. Reprinted from Siemens AG342. b) Colorized scanning electron microscope micrograph of a 
die, showing tens of PICs. c) Schematic of the cross-section of a waveguide. The distribution of the electric field of an 
optical waveguide mode is shown as an overlay.  
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Figure 1 a), from which PICs can be fabricated. For fabrication of PICs rectangular pieces are cut from 

the wafer, which are commonly referred to as die or chip. A wafer die with a size on the order of 15 ∙

15 mm2 can host hundreds of PICs and Figure 1 b) shows an array of such PICs. The dimensions of 

the cross-section of PIC components, such as the waveguide shown in Figure 1 c), are on the order of 

hundreds of nanometers and hence are much smaller than bulk or fiber optical components. PICs 

have many advantages over free space optics and fiber optical implementations, as complex designs 

consisting of many optical elements can be fabricated in a scalable manner with a small footprint. If 

produced in large numbers this leads to low cost devices, while they are also alignment free and are 

long-term stable. Prime wavelength regions of interest for PICs are light which is visible to the human 

eye, covering a wavelength range2 from about 380 nm to 800 nm, and light in the near-infrared which 

is used for telecommunication. Near-infrared light, including the C- and L-bands (1530 – 1625 nm), 

is used for data transmission over long distances3 due to the fact that optical glass fibers have minimal 

absorption and dispersion in the near-infrared, down to 0.15 dB/km. The corresponding wavelengths 

are therefore referred to as the telecom wavelengths. Glass fibers are used in current technology for 

light transmission and it is expected that PICs which interface with such optical fibers will play a 

leading role in future technology4–7. The components from which many PICs, and especially those 

described in this thesis, can be assembled can be assigned to one of the categories presented in the 

following subsections. 

2.1.1 Optical waveguides 

A waveguide is the most basic and most central building block of every PIC, as it is the component 

which routes light across the photonic chip and which connects the various optical devices. A wave-

guide consists of a dielectric strip, typically with a rectangular cross-section, which confines light in 

two dimensions and enables light guiding along the third dimension. It is the integrated optical 

equivalent of an optical fiber. The widths and heights of optical waveguides are typically several hun-

dred nanometers each. Figure 2 a) illustrates the geometry of a waveguide. The depicted geometry is 

called a rib waveguide, as a rectangular profile of width 𝑤 and height ℎ is located on top of a contin-

uous layer of the same material, in this case diamond1  with a refractive index 𝑛 = 2.39 at a wavelength 

𝜆 = 1550 nm.2 This is surrounded by materials of lower refractive indices, namely air (𝑛 = 1.0) on 

the top side and oxidized silicon (𝑛 = 1.44) at the bottom side. Light propagates in the diamond 

waveguide in the 𝑧-direction. The refractive index contrast between diamond and the surrounding 

materials confines the light within the 𝑥/𝑦-plane at the location of the rectangular profile. Using 

classical ray optics this can be intuitively understood as total internal reflection prohibiting the trans-

mission of light from the waveguide into the surrounding material. This simple ray optics description 

                                                        

1 Within this thesis diamond is used as the base material for the PICs, as will be motivated in section 2.3. Without loss of 
generality we will therefore use diamond as an example material in illustrations. 
2 Throughout the thesis when it is specified at what wavelength a property holds or an experiment has been performed, 
this number refers to the light’s wavelength in vacuum 𝜆 , unless explicitly stated differently. The standard wavelength of 
λ = 1550 nm is assumed, unless explicitly noted differently. For the ease of reading this information is only repeated where 
clarification is needed. 
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does not explain important details concerning waveguides which are relevant for PICs, such as the 

transfer of light between waveguides in close proximity and the change in speed of light inside a 

waveguide due to objects in close proximity. Such effects can be understood using Maxwell's equa-

tions for describing light as an electro-magnetic wave, as will be explained in the following sections. 

An extensive discussion, of the mathematical background and the derivation of the equations pre-

sented here, is beyond the scope of this thesis and can be found in textbooks, such as Photonic De-

vices by Liu3. 

 

In the waveguide geometry illustrated in Figure 2 a) light with a frequency 𝜔 propagates along the 

𝑧-direction. Note that the waveguide geometry is invariant under translation in the 𝑧-direction. As-

suming homogeneous material properties, the solutions for the time-dependent spatial distributions 

of the electric field �⃗� (𝑟 , 𝑡) and the magnetic field �⃗⃗� (𝑟 , 𝑡) are plane waves: 

 �⃗� (𝑟 , 𝑡) = �⃗� 𝑚(𝑥, 𝑦) ∙ 𝑒𝑖(𝑘𝑚𝑧−𝜔𝑡) 

�⃗⃗� (𝑟 , 𝑡) = �⃗⃗� 𝑚(𝑥, 𝑦) ∙ 𝑒𝑖(𝑘𝑚𝑧−𝜔𝑡) 
(2.1) 

The solutions, called optical modes, are self-consistent electric field distributions which can be clas-

sified by their spatial distribution and their polarization. A discrete number of solutions exists, which 

can be enumerated using an integer mode index 𝑚. �⃗� 𝑚(𝑥, 𝑦) and �⃗⃗� 𝑚(𝑥, 𝑦) are vector fields of mode 

𝑚 which denote the distributions of the electric and magnetic fields in the 𝑥/𝑦-plane. 𝑘𝑚 denotes the 

propagation constant of mode 𝑚, which is proportional to the effective refractive index or mode in-

dex 𝑛eff,𝑚 defined by 

 𝑘m = 
2𝜋

𝜆0
 ∙ 𝑛eff,𝑚 , (2.2) 

where 𝜆0 denotes the optical wavelength in vacuum. Light which propagates along a waveguide is 

attenuated due to absorption and scattering, which can be described by a complex effective refractive 

index. The corresponding complex propagation constant can be written as3 

 𝑘m =
2𝜋

𝜆0
∙ Re(𝑛eff,𝑚) +

2𝜋

𝜆0
∙ Im(𝑛eff,𝑚) = 𝛽𝑚 + 𝑖 ∙ 𝛼𝑚 ∙

ln(10)

20
 , (2.3) 

Figure 2 - Diamond rib waveguides: a) Schematic of a diamond rib waveguide of width 𝑤 and relative etch depth 
ℎ 𝑑⁄ . The indicated refractive indices of the materials are given for a wavelength of 1550 nm. b) Simulated effective 
refractive indices of all guided modes of a diamond waveguide (𝑑 = 600 nm, ℎ = 300 nm) at 1550 nm for varying 
waveguide widths 𝑤. c) Simulated distributions of the electrical field (time averaged absolute value) of both the 
fundamental TE-like (upper panel) and TM-like mode (lower panel) for 1 mW optical power. The white arrows 
represent the direction and the relative strength of the electric field at the location of the tail of each arrow. 
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where 𝛽m is the real propagation constant und 𝛼 the attenuation constant of the mode. The complex 

electric field is then given by 

 �⃗� (𝑟 , 𝑡) = �⃗� 𝑚(𝑥, 𝑦) ∙ 𝑒𝑖(𝛽𝑚𝑧−𝜔𝑡) ∙ 10−
𝛼𝑚
20

∙𝑧  (2.4) 

with a phase which varies sinusoidally along 𝑧 with a period of 1/𝛽𝑚. Furthermore the amplitude 

decreases exponentially with 𝑧. The optical power 𝑃 which propagates along the waveguide therefore 

decreases according to Beer’s law as 

 𝑃(𝑧) = 𝑃(0) ∙ 10
−(

𝛼𝑚
10

∙𝑧)
 . (2.5) 

This attenuation of optical power along waveguides is referred to as propagation loss. Curved wave-

guides furthermore suffer from bending losses, which increase for smaller bend radii. We will quan-

tify the propagation loss for diamond rib waveguides in section 2.4.4. 

The group refractive index, which is important in the context of pulses and propagating wave 

packages, is defined as 𝑛g = 
𝑐0

𝑣g
, where 𝑐0 denotes the speed of light in vacuum and 𝑣g is the group 

velocity. If the dispersion is small, the group refractive index  𝑛g,𝑚 of mode 𝑚 can be calculated from 

the effective refractive index as8 

  𝑛g,𝑚 (𝜆) = 𝑛eff,𝑚(𝜆) − 𝜆 ∙
𝜕𝑛eff,𝑚

𝜕𝜆
 . (2.6) 

For three-dimensional waveguides the field distributions �⃗� 𝑚(𝑥, 𝑦) and �⃗⃗� 𝑚(𝑥, 𝑦) and the effective re-

fractive index 𝑛eff,𝑚 can generally not be derived analytically and therefore numerical methods are 

employed. We use finite element methods (FEM), using the software COMSOL Multiphysics, for 

determining the waveguide modes. Waveguide modes can show different directions of polarization. 

If the direction of the electric field is mostly parallel to the planar layers and mostly perpendicular to 

the direction of propagation, the mode is called transverse electric (TE)-like3. If the direction of the 

magnetic field is mostly parallel to the planar layers and mostly perpendicular to the direction of 

propagation, the mode is called transverse magnetic (TM)-like3.  

For a rib waveguide, as shown in Figure 2 a), two geometric parameters exist: the waveguide width 

𝑤 and the relative etch depth, which is defined as the ratio of the height of the rectangular profile ℎ 

to the total height of waveguiding material 𝑑. Within this thesis, diamond with a thickness of 𝑑 =

600 nm is employed. From this material waveguides are fabricated with methods that will be ex-

plained in section 2.4.2. A rectangular diamond strip of height ℎ = 300 nm is located on a 

300 nm thick continuous diamond layer. The relative etch depth is hence 
ℎ

𝑑
= 50%. We simulate the 

existing guided modes at a wavelength of 1550 nm for the described waveguide geometry with vary-

ing waveguide widths 𝑤 and extract the effective refractive indices. Figure 2 b) shows the dependence 

of the effective refractive indices of all existing guided modes on the waveguide width. For widths 

below 300 nm no guided rib waveguide modes exist.3 For 300 nm ≤ 𝑤 < 700 nm exactly one guided 

mode exists, with TE-like polarization. For widths 700 nm ≤ 𝑤 < 1.15 µm exactly one TE-like and 

one TM-like mode exist, called the fundamental modes. For 𝑤 ≥ 1.15 µm a second TE-like mode 

                                                        

3 It should be noted that light can be guided in the continuous diamond layer and can propagate in any direction within the 
𝑥/𝑧-plane with an effective refractive index of ≈ 1.97. In this case the rectangular profile does not fulfill its purpose. 
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exists, resulting in a multi-mode waveguide concerning TE-like polarization. Within this thesis a 

waveguide width 𝑤 = 1 µm is used.4 This width is small enough such that, even accounting for po-

tential width variations due to variations in fabrication, exactly one TE-like and one TM-like mode 

exists. This avoids unwanted potential multi-mode-interference effects within the PICs. Furthermore 

this width is large enough, such that the modes are well-guided with 𝑛eff far above the value of 

≈ 1.97 at which guided modes exist in the continuous diamond slab. Otherwise losses would occur 

when light couples from the rectangular waveguide into the continuous diamond layer. Figure 2 c) 

shows the simulated distributions of the absolute value of the electric field for the two guided modes 

for 𝑤 = 1 µm with 𝑛eff,TE0 = 2.133 and 𝑛eff,TM0 = 2.034. While for both modes most of the electric 

field is located within the diamond waveguide, the electric field is also non-zero outside of the wave-

guide boundary. The electric field amplitude decreases exponentially with distance from the wave-

guide and is called the evanescent field. This field enables waveguides to interact with objects which 

are placed outside of the waveguide boundary, but in close proximity on the order of a few nanome-

ters to a few micrometers. We will discuss this in the following chapters, in the context of evanescent 

coupling to mechanical oscillators and to absorptive elements of waveguide-integrated single-pho-

ton detectors. White arrows in the electric field distributions of Figure 2 c) indicate the direction and 

the relative electric field strength. In the upper panel the electric field points mainly in the  

𝑥-direction, identifying the mode as TE-like polarization, while in the lower panel the electric field 

points mainly in the 𝑦-direction, identifying the mode as TM-like polarization. In the experiments 

within this thesis exclusively TE-like polarization is used. 

2.1.2 Fiber-to-chip couplers 

  

Fiber-to-chip couplers allow transferring light from an optical fiber into and out of waveguides 

(called in- and out-coupling, respectively). This enables the connection of PICs to off-chip optical 

                                                        

4 For waveguides within this thesis only one spatial mode of each polarization exists. Furthermore all experiments are per-
formed with TE-like polarization. For improved readability we therefore omit the mode index 𝑚 in the notation of 𝑛eff,𝑚 
and 𝑛g,𝑚. The variables 𝑛eff and 𝑛g hence implicitly refer to the fundamental TE-like mode. 

 

Figure 3 - Fiber-to-chip grating couplers: a) Schematic of a cut through a Bragg grating coupler (side view, 𝑥/𝑧-
plane) with a period 𝛬 and filling factor 𝐹𝐹. Light is incident onto the grating from the top under an angle 𝛼 = 8°. 
Constructive interference leads to light being coupled into the waveguide (blue arrow on the left side). b) Schematic 
of a focusing grating coupler (top view, 𝑥/𝑧-plane) indicating the opening angle 𝛽, taper length 𝐿T and grating 
length 𝐿𝐺. c) Scanning electron microscope image of a diamond focusing grating coupler for 1550 nm wavelength, 
taken under an angle of 45°. 
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devices such as light sources and light detectors. Fiber-to-chip couplers are often either implemented 

in-plane of the dielectric thin film by coupling an optical fiber to the facet of a polished waveguide9,10 

or as Bragg gratings couplers11,12, which enable out-of-plane access to waveguides. Compared to cou-

pling through the facets of a photonic chip, the use of focusing grating couplers increases the density 

of PICs on the chip, as many devices in close proximity can independently couple out-of-plane to 

optical fibers. Coupling efficiencies for Bragg grating couplers at telecom wavelengths up to 87% on 

silicon13 and up to 30% on diamond14 have been shown. Within this thesis focusing grating couplers 

are exclusively used as the method for fiber-to-chip coupling. Figure 3 a) shows the schematic cross-

section of a Bragg grating, which consists of a periodic series of grating lines, with a period 𝛬 and a 

line thickness 𝑏 = 𝛬 ∙ 𝐹𝐹, where 𝐹𝐹 is the filling factor of the grating. Light incident under an angle 

of 𝛼 = 8° from the top (as indicated by red arrows) is diffracted by the grating. For certain wave-

lengths the diffracted light undergoes constructive interference in the direction of the waveguide 

(located on the left side of the grating in the schematic) and hence light is guided by the waveguide. 

While this brief description explains the basic principle of a grating coupler, a full analysis of a three-

dimensional grating coupler necessitates coupled mode theory in order to derive the spectral and 

polarization dependence of the coupling efficiency. A detailed description can be found in text-

books3. Figure 3 b) shows a schematic of the top view of a focusing grating coupler, consisting of 

circularly curved grating lines with opening angle 𝛽, which focuses the diffracted light into the wave-

guide. An optical fiber has a core diameter of about 10 µm, while photonic waveguides have diame-

ters on the order of 0.5 − 1 µm. The focusing grating coupler enables to match the size of waveguide 

mode and fiber mode within a compact photonic component size. For half-etched diamond wave-

guides the optimized coupler geometry for 1550 nm consists of  𝑁𝐺 = 20 curve grating lines with an 

opening angle 𝛽 = 40° and a taper length 𝐿T = 20 µm. Figure 3 c) shows the experimental implemen-

tation of a diamond grating coupler for 1550 nm. A grating coupler is typically optimized for the 

coupling between one mode of the optical fiber and one mode of one polarization of the waveguide.  

 

Figure 4 a) shows a schematic of the coupling of light between grating couplers and optical fibers. 

One fiber launches light of power 𝑃in via a grating coupler into the PIC and a second fiber collects 

 

Figure 4 - Grating coupler transmission: a) Schematic of the coupling of light between optical fibers at the glass 
tip of a fiber array and the photonic waveguide via two focusing grating couplers. The flow of light is indicated with 
black arrows. b) Transmission spectrum of a PIC containing two diamond focusing grating couplers optimized for 
telecom wavelengths, with a maximum transmission of 4.4% at 1580 nm. This corresponds to a coupling efficiency 
of 24% for a single coupler. 
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light of power 𝑃out via a second grating coupler. The details of such transmission measurements will 

be explained in section 2.4.3. 

We vary the different geometry parameters of the grating couplers and optimize the coupling 

efficiency for PICs made from 600 nm of diamond at a relative etch depth of 50% for wavelengths 

around 1550 nm. The transmission is maximal for a filling factor of 35%. For a period of 

𝛬 = 850 nm the wavelength of maximum transmission is 1550 nm. Figure 4 b) shows a typical wave-

length dependent coupling efficiency 𝐶(λ), which quantifies the percentage of optical power which 

a coupler transfers between fiber and waveguide. The coupling efficiency has a maximum value of 

24% at 1580 nm and a 3 dB-bandwidth of 70 nm. The coupler geometry will be adjusted in the ex-

periments depending on the desired wavelength of maximal coupling efficiency. 

2.1.3 Integrated beam splitters 

Beam splitters5 distribute light from one input channel into several output channels or more gener-

ally from several input channels into several output channels. Beam splitters are often implemented 

as 50/50 beam splitters, which divide light from one input channel equally into two output channels. 

A beam splitter can also act as a combiner, where light from multiple input channels is combined 

into a common output channel. In integrated optics, a beam splitter can for example be implemented 

in the form of a Y-splitter15, as illustrated in Figure 5 a). The splitter of length 𝐿s consists of circular 

bends. The input waveguide (in the schematic on the left side) is tapered from its initial value 𝑤 to a 

width 2𝑤 and separated into two waveguides. This leads to a 50/50 splitting ratio due to the sym-

metry of the geometry. At the end of the curved parts the two waveguides are separated by the splitter 

width 𝑤s. Figure 5 b) shows a scanning electron microscope (SEM) micrograph of a Y-splitter as a 

part of a PIC in the experiment. Other beam splitter geometries for PICs, such as multimode inter-

ference splitters16 or directional couplers17 exist, but within this thesis exclusively 50/50 Y-splitters 

are used, as the splitting ratio shows no spectral dependence and is robust concerning fabrication 

tolerances. Y-splitters are also used in the backward direction as combiners, with two input- and one 

output-waveguide. 

 

                                                        

5 It should be noted that the term beam splitter is not only used in the context of ray optics but is also common when light is 
described as electromagnetic wave or within a quantum optical description. We will therefore use this term throughout the 
thesis, independent of the theory used to describe light. 

  

Figure 5 - Beam splitters: a) Schematic of the geometry of a 50/50 Y-splitter for a wavelength of 1550 nm. A wave-
guide is tapered from its original width 𝑤 to 2 ∙ 𝑤 and separated into two waveguides via circular bends with a bend 
radius of 40 µm along a splitter length 𝐿s = 40 µm to a splitter width 𝑤s = 8 µm. b) SEM micrograph of a Y-splitter 
for diamond rib waveguides, taken under an angle of 45°. 
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2.1.4 On-chip Mach-Zehnder interferometers 

On-chip interferometers can be assembled from aforementioned waveguides and beam splitters. 

They can for example be used for measurements concerning changes in the phase or amplitude of 

light. Such changes can be caused by absorption of light or changes in the effective refractive index 

due to the mechanical motion of a PIC component, as will be explained in detail in section 3.3. Figure 

6 a) shows a schematic of the PIC version of a Mach-Zehnder interferometer (MZI): Light of power 

𝑃in enters a waveguide and passes a 50/50 Y-splitter. Half of the light propagates along the up-

per/lower waveguide, which form the upper/lower interferometer arm. The direction of light is 

changed within the 𝑥/𝑧-plane by changing the direction of the waveguides along circular curves of 

large radii 𝑟. Interference between both electromagnetic waves occurs at the second beam splitter, 

leading to an output power 𝑃out, which depends on the phase difference 𝜙 between propagation 

along the upper compared to the lower arm. Assuming waveguides with no propagation losses and 

perfect 50/50 splitting ratios, the MZI transmission can be calculated as 

 𝑇(𝜙) =
𝑃out

𝑃in
= cos2(

𝜙

2
) , (2.7) 

which is illustrated in Figure 6 b). The phase difference 𝜙 can be calculated as  

 𝜙 = ∫ 𝛽
2
(𝑟)𝑑𝑟 − ∫ 𝛽

1
(𝑟)𝑑𝑟

𝑙1
𝑟=0

=
2𝜋

𝜆0
[∫ 𝑛eff,2

𝑙2
𝑟=0

(𝑟)𝑑𝑟 − ∫ 𝑛eff,1
𝑙1
𝑟=0

(𝑟)𝑑𝑟]
𝑙2
𝑟=0

 , (2.8) 

where 𝛽𝑗(𝑟) =
2𝜋

𝜆0
 𝑛eff,𝑗(𝑟) is the absolute value of the wave vector and the indices 𝑗 ∈ [1,2] refer to 

the lower and upper waveguide, 𝜆0 denotes the wavelength in vacuum and 𝑛eff,𝑗(𝑟) denotes the ef-

fective refractive index at location 𝑟 along a waveguide 𝑗. The integration is executed along the path 

of each waveguide, where 𝑙𝑗 denotes the length of each waveguide. 

 

Within this thesis asymmetric MZIs are used, where the upper waveguide is a distance 

∆𝑙 =  𝑙2 −  𝑙1 longer than the lower arm. For a homogeneous effective refractive index 𝑛eff(𝜆0) along 

both waveguides the transmission spectrum of an MZI can be expressed as 

 

Figure 6 - Mach-Zehnder interferometer (MZI): a) Schematic of an integrated MZI consisting of two Y-splitters 
and waveguides with circular curves (curve radius 𝑟 = 30 µm for diamond MZIs within this thesis). The upper inter-
ferometer arm is ∆𝑙 = 100 µm longer than the lower arm. b) Theoretical dependence of the MZI transmission on the 
phase difference 𝜙 of the electromagnetic waves of both arms at the second beam splitter. c) Measured dependence 
of a MZI transmission on the wavelength, shown on a logarithmic scale.  
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𝑇MZI(𝜆0) = cos2 (

𝜙

2
) = cos2 (

𝜋

𝜆0
(𝑛eff(𝜆0) ∙ Δ𝑙)) . (2.9) 

Figure 6 c) shows the transmission spectrum of a diamond integrated MZI with ∆𝑙 = 100 µm path 

difference, realized within this thesis. The extinction ratio of an interferometer 𝑟ext is defined as  

 𝑟ext = 10 ∙ log10 (
𝑇max

𝑇min
) , (2.10) 

where 𝑇max and 𝑇min are the transmission values for adjacent maxima and minima. A MZI with no 

propagation losses and perfect 50/50 splitting ratios would have 𝑇min = 0 and hence an infinite ex-

tinction ratio. In practice the additional propagation loss along the length difference ∆𝑙 leads to a 

finite extinction ratio, on the order of 𝑟ext = 25 dB for the experimental implementations within this 

thesis (see Figure 6 c).  

2.1.5 Integrated optical resonators 

An optical cavity or optical resonator in free space optics typically consists of two mirrors facing each 

other with light being reflected back and forth between them, with constructive interference for cer-

tain wavelengths, called the resonance wavelengths. Corresponding devices in PICs are for example 

disk resonators18, photonic crystal cavities19 and ring resonators20. In diamond PICs, optical resona-

tors have for example been used as enhancers of the relative emission from single-photon sources 

into the cavity modes via the Purcell effect21–26. Within this thesis ring resonators are used for deter-

mining propagation losses and as elements of optomechanical circuits, as will be explained in chapter 

3. This section provides the necessary background concerning integrated ring resonators for the fol-

lowing chapters. 

 

A ring resonator which is coupled to a waveguide in close proximity is shown in Figure 7 a). The ring 

resonator is defined by its width 𝑤R and radius 𝑟 and evanescently coupled to a waveguide via a gap 

of size 𝑔R. The evanescent field outside of the rectangular waveguide core enables light to couple 

between the ring resonator and the waveguide. When the circumference of the ring is equal to an 

 

Figure 7 - Ring resonator geometry and transmission: a) Schematic of an integrated optical ring resonator of 
width 𝑤R and radius 𝑟, evanescently coupled to a waveguide via a gap of size 𝑔R. b) Transmission spectrum of a ring 
resonator with resonances which are separated by the free spectral range ∆𝜆 and have a FWHM 𝛿𝜆 and an extinction 
ratio 𝑟ext. 
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integer multiple of the wavelength of the optical mode, in-coupling light interferes constructively 

with light which is propagating around the ring. This is referred to as a resonance wavelength of the 

ring resonator. Only considering one mode of one polarization with an effective refractive index 𝑛eff, 

constructive interference occurs for light with vacuum wavelengths 𝜆𝑖 given by 

 Re(𝑛eff(𝜆𝑖)) ∙ 2𝜋 ∙ 𝑟 =  𝑖 ∙ 𝜆𝑖 , (2.11) 

where 𝑖 is an integer number. Figure 7 b) shows the transmission spectrum of a waveguide coupled 

ring resonator. The distance between two ring resonances in terms of their wavelengths, called the 

free spectral range (FSR) ∆𝜆, can (for 2𝜋 ∙ 𝑟 ≫ 𝜆) be approximated as8: 

 ∆𝜆 = 𝜆𝑖 − 𝜆𝑖−1 ≈
𝜆𝑖

2

𝑛g(𝜆𝑖)∙2𝜋∙𝑟
 . (2.12) 

This enables to determine the group refractive index for a certain waveguide mode from the trans-

mission spectrum of a ring resonator. The coupling between waveguide and ring depends on 𝑔R. For 

a specific distance the transmission at resonance becomes zero. This is referred to as critical coupling. 

The extinction ratio 𝑟ext of a ring resonance quantifies the depth of a resonance and is defined as 

 𝑟ext = 10 ∙ log10 (
𝑇max

𝑇min
) , (2.13) 

where 𝑇max and 𝑇min are the transmission values for adjacent maxima and minima. The quality factor 

𝑄 of a system is a measure for the energy loss during one period 𝑇, compared to the total energy 𝑊 

which is stored in the system, as 

 𝑄 = 2𝜋
𝑊

𝑑𝑊

𝑑𝑡
𝑇
 . (2.14) 

For ring resonators of large enough radius bending losses can be neglected compared to the propa-

gation loss which is also present for straight waveguides. For ring resonators which are not coupled 

to a waveguide, the relation between propagation loss and the quality factor of a ring resonator in 

decibels (dB) per unit of length is given by8 

 𝑄 = 10 ∙ log10(𝑒) ∙
2𝜋∙𝑛𝑔(𝜆𝑖)

𝛼∙𝜆𝑖
 , (2.15) 

where 𝑛𝑔 is the group refractive index and 𝜆𝑖 the vacuum wavelength at resonance. Coupling to a 

waveguide leads to a quality factor, which is lower than the intrinsic quality factor defined above, 

but for weak coupling the difference is negligible. This enables quantification of the propagation loss 

of waveguides by determining the quality factor of weakly coupled ring resonators, as will be shown 

in section 2.4.4. The quality factor of a ring resonance at wavelength 𝜆𝑖  is related to the full-width at 

half-maximum (FWHM) of the ring resonance 𝛿𝜆 and for 𝑄 ≫ 1 can be approximated as  

 𝑄 =
𝜆𝑖

 𝛿𝜆 
 . (2.16) 

The optical power in the ring resonator can be much larger than that in the waveguide, as the wave 

traveling in the ring resonator at resonance interferes constructively with the input wave and thus 

building up the amplitude. For critical coupling at resonance the steady state power 𝑃back at the 

backside of the ring (half a circle away from the waveguide) amounts to27 

 
𝑃back  = 𝑃in ∙

10
−(

𝛼
10∙𝜋∙𝑟)

1−10
−(2∙

𝛼
10∙𝜋∙𝑟)

 , (2.17) 
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where 𝑃in is the continuous-wave (CW) power in the waveguide before interacting with the ring. The 

intensity enhancement inside the ring increases for a decreasing attenuation coefficient 𝛼. 

2.1.6 Photonic crystals 

Photonic crystals (PhC) are nanostructures which consist of a periodic modulation of the refractive 

index. This modulation can occur in one, two or three dimensions, leading to PhC of the correspond-

ing number of dimensions. A one-dimensional PhC consists of a periodic series of layers of different 

refractive indices, like those used in Bragg reflectors. Reflection and transmission at each material 

interface and interference between the corresponding waves can lead to constructive or destructive 

interference, depending on the wavelength of light. Destructive interference for a certain wavelength 

can occur, such that light of the corresponding frequency cannot be transmitted through the periodic 

series of layers. The dispersion relation, which is the relation between frequency 𝜔 and wave vector 

𝑘 (in one dimension) of the electromagnetic wave, reveals if for certain frequencies no allowed mode 

exists, regardless of 𝑘28. This is called a photonic bandgap. The reader is referred to Joannopoulos et 

al.28 for a detailed description of PhCs. 

 

A two-dimensional PhC slab, as schematically shown in Figure 8 a), combines two-dimensional pe-

riodicity (in the 𝑥/𝑧-plane) with vertical index-guiding in the 𝑦-direction (𝑘𝑦 = 0). It consists of a 

lattice of air holes in a layer of dielectric medium. Figure 8 b) indicates the geometry parameters of 

the PhC: Holes of radius 𝑟 are arranged in a hexagonal lattice and the distance between two adjacent 

holes is given by the lattice constant 𝑎. We are interested in determining the geometry parameters 𝑎 

and 𝑟, such that light with TE-like polarization at wavelengths around 1550 nm cannot propagate in 

a 600 nm thick diamond layer with a hexagonal lattice of air holes. This will allow for interfacing of 

diamond waveguides with PhC slabs.  

 

Figure 8 - Two-dimensional photonic crystal: a) Schematic of the 3D model of the hexagonal PhC slab. b) Top-
view of a hexagonal PhC with lattice constant 𝑎 and a hole radius 𝑟. b) Simulated band structure of the TE-like modes 
in a PhC slab with 𝑎 = 600 nm and r = 180 nm (the bands are indicated in red color). The 𝑥-axis shows the normal-
ized wave vector, along directions of the irreducible Brillouin zone. The Brillouin zone and points of special interest 
are shown in the inset. Guided modes are bounded by the light cone for index guiding in the slab. The shaded blue 
region indicates the band gap for the TE-like modes. c) Simulated frequency dependent transmission through a PhC 
slab with nine rows of holes (As shown in a). The transmission for frequencies within the photonic band gap is re-
duced by two orders of magnitude. 
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We consider a hexagonal lattice of air holes in a 600 nm thick diamond slab, which is surrounded by 

air on the top and bottom sides. The periodic hole structure shows discrete translational symmetry 

along the two vectors which define the hexagonal lattice. Just like the propagation of electrons in 

solids, the propagation of light within periodic media can be described with Bloch states28. Due to 

the periodicity of the structure, only wave vectors within the first Brillouin zone need to be consid-

ered, which contains all non-redundant values of 𝑘𝑧 and 𝑘𝑥. We simulate6 the dispersion relation of 

the PhC slab, referred to as band structure, using the software MIT Photonic Bands. For 𝑎 = 600 nm 

and r = 180 nm, the bandgap corresponds to vacuum wavelengths from 1519 nm to 1820 nm.  

Figure 8 c) shows the simulated dispersion relation of the TE-like modes for the aforementioned 

geometry. The 𝑥-axis shows the normalized wave vector 
𝑘

2𝜋
∙ 𝑎, along different directions in the irre-

ducible Brillouin zone. A sketch of the Brillouin zone is shown in the inset. The 𝑦-axis shows nor-

malized frequencies 
𝜔

2𝜋𝑐0
∙ 𝑎. The bandgap for TE-like modes is indicated in blue. We confirm the 

band structure by simulations in the time domain via finite-difference time-domain (FDTD) meth-

ods29 using the software MEEP. The device geometry is indicated in Figure 8 a): Nine rows of holes 

in a hexagonal lattice with 𝑎 = 600 nm and r = 180 nm. The simulated transmission of light in the 

diamond slab from one side of the lattice to the other side is shown in Figure 8 d). For normalized 

frequencies corresponding to the TE-like bandgap (indicated by a blue area) a transmission of less 

than 𝑇 = 10−2 is found, showing that such a PhC slab enables optical isolation of the two sides of the 

hexagonal lattice, though they are physically connected via the remaining diamond. This PhC slab 

design will be applied for optomechanical resonators, as will be explained in section 3.3.6. 

Summarizing the section on components for PICs, it can be said that PICs for a specific purpose 

can be built by combining several of the explained building blocks and adding application specific 

additional components, as will be shown in the following chapters. While PICs find applications in 

classical optics, such as telecommunications, they are nowadays also being explored for applications 

where the properties of light cannot be described anymore by Maxwell’s equations, but where a 

quantum mechanical description is needed. The next section gives a brief introduction into quantum 

optics in combination with PICs. 

  

                                                        

6 The simulations of the diamond photonic crystal slab presented in this section were performed by Sandeep Ummethala 
within his master thesis, which was supervised by the author of this thesis. 
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2.2 Quantum optics and photonic integration 

Quantum optics studies the effects and the nature of light as quantized photons where a photon is 

defined as a single elementary excitation of a quantized field mode. The energy of a photon for visible 

or near-infrared light is on the order of 10−19 𝐽. The concept of light being composed of quanta with 

discrete units of energy was first introduced by Max Planck who used it successfully for explaining the 

spectrum of blackbody radiation in 1899 and used by Albert Einstein in 1905 to explain the photo- 

electric effect. Many optical applications of quantum information science depend on single-photon 

sources and single-photon detectors. Hence a basic understanding of these concepts is important for 

understanding the aim of this thesis and will be given in the following section. 

2.2.1 Photon statistics and single-photon sources 

Within a quantum mechanical treatment, light can be described using Fock states or number states, 

which are eigenstates of the number operator and correspond to a well-defined number of energy 

quanta.7 When considering only a single mode, a state |𝑛〉 describes a state of light containing exactly 

𝑛 photons. The single-photon state is hence |1〉, the state which contains exactly one photon. The 

output of a laser can be described as a coherent state |𝛼〉, which can be expressed as a superposition 

of number states. It can be shown that when detecting light from a laser, the probability 𝑃(𝑘, �̅�) of 

detecting 𝑘 photons follows a Poissonian distribution, with an average photon number �̅�, given by 

 𝑃(𝑘, �̅�) = |〈𝑘|𝛼〉|2  = 𝑒−�̅� ∙
�̅�𝑘

𝑘!
 . (2.18) 

This result has to be considered when characterizing single-photon detectors using laser light, as will 

be explained in chapter 4. 

 

Different light sources, such as thermal emitters, lasers, and single-photon sources, differ in the way 

that the emitted photons are distributed in time, as illustrated in Figure 9 a). The statistics of the 

distribution of photons in time can be quantified using the second-order correlation function 𝑔(2)(𝜏), 

                                                        

7 Within this chapter we are describing quantum mechanical states using the Dirac or bra-ket notation340. 

 

Figure 9 - Photon statistics: a) Schematic of the distribution of photon as a function of time for anti-bunched, 
random, and bunched light (bottom row). b) Schematic of the second-order correlation function of three ideal 
sources: a chaotic, thermal-like source (solid orange curve), a coherent Poissonian source (dotted green curve), and 
a single-photon source (solid blue curve), illustrating bunching and anti-bunching. The time scale is given by the 
coherence time 𝜏𝐶  of the bunched and anti-bunched sources. Both schematics are adapted from Migdall et al.31. 
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as shown in Figure 9 b). 𝑔(2)(𝜏) describes the normalized joint probability of counting a photon at 

time 𝑡 and another at 𝑡 + 𝜏.30 The value at zero delay 𝑔(2)(𝜏 = 0) hence describes the probability of 

simultaneously detecting two photons. 

If 𝑔(2)(𝜏) < 𝑔(2)(0) for 𝜏 ≠ 0, the probability of detecting a second photon decreases with the time 

delay 𝜏, indicating a bunching of photons, as illustrated in the bottom row of Figure 9 a). As stated 

above, a laser follows Poissonian statistics, which results in a random distribution of photons, as 

illustrated in the middle row of Figure 9 a), and yields 𝑔(2)(𝜏) = 1 for all time delays 𝜏. If on the other 

hand 𝑔(2)(𝜏) > 𝑔(2)(0) for 𝜏 ≠ 0, the probability of detecting a second photon increases with the time 

delay, as illustrated in the top row of Figure 9 a). This is characteristic of photon anti-bunching30. An 

ideal single-photon source which never emits two or more photons at a time would show anti-bunch-

ing and yield 𝑔(2)(0) = 0. An in-depth discussion on photon sources and their statistics can be found 

in Migdall et al.31. 

Single-photon sources play an important role in optical quantum information science, as will be 

explained in the subsequent section. An intuitive example of a simplified (theoretical) single-photon 

source can be given by considering a single atom with exactly two energy levels and exactly one 

electron, as schematically shown in Figure 10 a). The electron could be either in the state with lower 

energy, the ground state |𝑔〉, or in the state with higher energy, the excited state |𝑒〉. Upon transition 

from the excited to the ground state the atom emits a photon with a photon energy being equal to 

the energy difference between the two atomic states. The atom can only emit a second photon after 

the electron has been re-excited to the state of higher energy, so it is apparent that this idealized 

atom with only one electron could never emit two photons at the same time and would therefore 

show a second-order intensity correlation function with 𝑔(2)(0) = 0 as a signature for a pure ideal 

single-photon source. Figure 10 b) shows a second-order intensity correlation function for the exam-

ple of a color center in diamond, a single-photon source which motivates this work, as will be dis-

cussed in section 2.3.1. The deviation of  𝑔(2)(0) from zero has experimental reasons. 

 

It is important to note that the term single-photon source does not simply refer to faint light, such 

that one could for example decrease the laser intensity until one receives only one photon per time 

 

Figure 10 - General concept of a single-photon source: a) Electronic levels of a simplified atom with one ground 
state |𝑔〉 and one excited state |𝑒〉 and with one electron (blue circle). Upon transition to the ground state a photon 

is emitted (red arrow). b) Second-order intensity correlation function 𝑔(2)(𝜏) of a color center in diamond, showing 
the anti-bunching of the single-photon source. The correlation function is reproduced from Naqshbandi et al.343. 
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slot on average in order to get single photons in the sense of a single-photon source. While for some 

practical applications this approach of a faint light source is sufficient, it is important to note that 

attenuation does not change the photon statistics, which means that faint laser light will still follow 

Poissonian statistics, while a real single-photon source is fundamentally different. 

In the last decades single-photon emission from different emitters such as single molecules32, 

quantum dots33,34 and diamond color centers35,36 has been shown. The goal of research concerning 

single-photon sources is to develop the best platform which is able to provide several single-photon 

sources of the same type which emit indistinguishable single photons on-demand at high rates. For 

a discussion on these goals and requirements and the state of research concerning different single-

photon sources the reader is referred to Migdall et al.31. 

2.2.2 Quantum information science and quantum optical circuits  

Efficient and high-quality single-photon sources play a prominent role in quantum information sci-

ence, which is concerned with using quantum effects and quantum states for information science, 

for example in the form of quantum key distribution and quantum computation.37 Classical infor-

mation science uses classical computers, which use bits as the basic unit of information, where a bit 

can have a value of either 0 or 1. The term qubit was introduced as a unit of quantum information. It 

refers to a two-state quantum-mechanical system, whose two levels can be denoted as states |0〉 

and |1〉. Unlike a classical bit which can only be in either exactly state 0 or state 1, the quantum 

system can be in any normalized superposition |𝛹〉 = 𝛼|0〉 + 𝛽|1〉, where 𝛼 and 𝛽 are complex num-

bers. The two basis states could for example refer to the polarization of a photon, which can be in 

the vertical or the horizontal direction, as illustrated in Figure 11 a), or in a superposition of the two 

polarization states, a fact that is being used for quantum key distribution (QKD). In QKD single 

photons are exchanged between a transmitter and a receiver and encoding information in the polar-

ization of the photons allows the users to securely exchange a secret cryptographic key, the basis for 

secure communication on a public channel.38 

 

The two basis states can alternatively refer to two spatial modes, such as the fundamental modes of 

two waveguides. Figure 11 b) illustrates a quantum circuit with two qubits, called control and target 

qubit. Each black line symbolizes one waveguide and for each pair of waveguides, the states |0〉 and |1〉 

 

Figure 11 - Polarization and spatial modes as basis states for photonic qubits: a) Schematic of the horizontal 
|H〉 and vertical |V〉 polarization of a single photon, which can be used as the two states of a qubit. b) Schematic of 
the dual rail scheme, which uses the spatial waveguide modes of two waveguides to spatially encode a qubit. The 
states |0〉 and |1〉 refer to the photon being in the upper or the lower waveguide for each qubit. The schematic shows 
a possible realization of an optical CNOT gate, which requires the control photon in state |1〉 to induce a π phase shift 
on the target photon. Reproduced from O'Brien et al.37. 
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refer to the photon being in the upper or the lower waveguide of the corresponding set of two wave-

guides. Besides QKD, photons might also be used for building a quantum simulator39,40 or an optical 

quantum computer41,42. Quantum computers are computation systems based on scalable physical 

qubits. Successfully building a quantum computer promises exponentially faster computation for 

certain tasks, such as the factorization of integer numbers. This would for example enable to break 

current cryptographic systems which rely on the intractability of integer factorization for large num-

bers43,44. The qubits of a quantum computer require that they can be well isolated from the environ-

ment, while it is also necessary that the qubits can be initialized, measured, and controllably inter-

acted. Quantum computers can for example be described using a gate model, which is analogous to 

the classical circuit model of computation.43 In order to be able to carry out all possible operations 

on a set of 𝑛 qubits, a universal set of gates is needed. A universal set44,45 can be achieved using a 

universal set of 1-qubit gates, together with any entangling 2-qubit gate46, such as the controlled 

NOT gate (CNOT gate). The CNOT gate is a 2-qubit gate which flips the state of a target qubit con-

ditional on the control qubit being in state |1〉. When using photons as qubits a CNOT gate could 

theoretically be implemented using non-linear optics.37 This would require that one single control 

photon exerts a 𝜋-phase shift on a target photon, as illustrated in Figure 11 b). A very strong non-

linearity, which is not achievable in available materials, would be needed for this scheme. In 2001 it 

was shown that scalable quantum computing is possible without the need for a non-linear optical 

effect42, but can instead be achieved using single-photon sources, single-photon detectors and opti-

cal circuits consisting of beam splitters, a scheme called linear optical quantum computing (LOQC). 

The initial scheme for LOQC called KLM-scheme, after its inventors Knill, Laflamme and Milburn, 

requires intermediate measurements on some single photons, called the ancilla photons. This im-

parts a type of effective Kerr nonlinearity on the system, induced through the measurements.42,47 

Furthermore feed-forward of intermediate measurement results is needed.48,49 

At the heart of LOQC and many other quantum optical experiments and applications is the non-

classical interference and its manifestation in the Hong-Ou-Mandel (HOM) effect.50 The HOM effect 

is the two-photon interference effect which occurs when two identical single-photons enter a 50/50 

beam splitter, one in each input port. The probability amplitudes of detecting a photon at different 

output ports A and B interfere destructively. Using the notation of number states, the output state 

after the beam splitter can be written as |𝛹〉~|2〉𝐴|0〉𝐵 + |0〉𝐴|2〉𝐵, a superposition of both photons 

being in output port A and both being in output port B. The HOM effect is at the heart of the basic 

entangling mechanism in linear optical quantum computing, as the beam splitter converts two single 

photons, potentially from different single-photon sources, into an entangled two-photon quantum 

state. The degree to which this operation works in an experiment critically depends on how indistin-

guishable the interfering photons are, in all degrees of freedom. If the photons for example differ in 

terms of their spectrum or their polarization, their indistinguishability degrades. Tremendous re-

search efforts are therefore being undertaken for finding the best physical system for implementing 

indistinguishable single-photon sources31,51 and Hong-Ou-Mandel in PICs has been shown in recent 

years.52–54 
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The motivation for implementing LOQC using PICs is generally the same as for classical optical  

applications, namely stability, scalable fabrication and small footprint of the components. Such 

quantum optical circuits promise to enable devices with thousands of components and might on the 

long term enable optical quantum computers. For LOQC using the KLM-scheme active elements 

within the PICs are needed, for example for measurements on ancilla photons with feedforward of 

information. While building a general purpose linear optical quantum computer is not within reach 

in the near future, a special purpose subset of LOQC called boson-sampling has attracted a lot of 

attention in recent years. The reason for this is that for a certain circuit configuration no active opti-

cal elements are needed. Building a boson-sampler is hence possible with current technology and 

boson-sampling in PICs has been shown in recent years55–58. A detailed description of boson-sam-

pling can be found in a review paper by Gard et al.47. 

For boson-sampling 𝑛 indistinguishable photons are sent into 𝑖 input ports of a network of cas-

caded waveguides and beam splitters (shown as blue lines in Figure 12). At each input port either one 

or zero photons are inserted (hence 𝑛 ≤ 𝑖). The photons can interfere at each beam splitter, as ex-

plained above for the HOM effect. The task is to determine how many photons are exiting at each of 

the 𝑗 output waveguides at the end of the network. If this is done experimentally, then a projective 

measurement on a quantum state is performed and the experiment needs to be repeated many times 

in order to determine the probability distribution for the experiment’s outcome. In 2013 it was 

shown by Aaronson and Arkhipov that simulating the probability distribution for the output of such 

a network cannot efficiently be done using a classical computer.59 While it is possible to sample the 

output distribution in an experiment using the passive network of waveguides and beam splitters, 

single-photon sources at the input ports and photon-number resolving detectors at the output, it is 

not possible to predict the outcome with a classical computer without an exponential overhead in 

time or resources. Building a boson-sampler can therefore be considered as a step towards an optical 

quantum simulator or an optical quantum computer. By making the waveguide network reconfigu-

rable in the sense that phase shifts and splitting ratios of beam splitters can be actively adjusted after 

device fabrication, it is possible to reconfigure the boson-sampler and hence solve many boson-sam-

pling problems using the same PIC. 

 

 

Figure 12 - Quantum optical circuits: Schematic of a tunable quantum optical circuit. In this example 𝑛 = 3 pho-
tons are sent into a circuit with 𝑖 = 6 input and 𝑗 = 6 output waveguides. The yellow squares symbolize tunable 
elements. Schematic adapted from Shadbolt et al.63. 
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To be able to build PICs which implement boson-sampling or optical quantum computing the fol-

lowing elements are needed: 

1) photonic integrated circuits, 

2) single-photon sources, 

3) tunable elements, 

4) single-photon detectors. 

A schematic of a device which contains all elements listed above is shown in Figure 12. Single-pho-

tons (red arrows) are sent into the input ports of the photonic integrated circuits (blue lines) which 

consists of waveguides and beam splitters. Single-photon detectors at the output ports of the network 

determine the distribution of photons. Tunable elements (yellow squares) enable to reconfigure the 

photonic integrated circuit, which enables the solution of various boson-sampling problems using 

the same PIC. 

While the first demonstrations of boson-sampling using PICs used off-chip single-photon sources 

and single-photon detectors, current research aims to implement all components on a single material 

platform. There are different materials which are promising for the monolithic integration of all com-

ponents and we use the diamond thin films material platform, which will be motivated in the follow-

ing section. While many research groups are working on optimizing the single-photon sources in 

diamond, the work presented in this thesis is concerned with the development of the three remaining 

elements, out of the four needed for a boson-sampler and quantum optical circuits in general: dia-

mond PICs (this chapter), tunable elements using optomechanics (chapter 3) and on-chip single-

photon detectors (chapter 4). The following section explains the advantages of diamond for classical 

and quantum integrated optics. 

2.3 Diamond as a material for integrated optics 

In current research different materials are being studied for their use as substrates for photonic inte-

grated circuits for quantum optics, such as silica60–64, silicon16,65–69, gallium arsenide70,71, aluminum 

nitride72–74 and silicon nitride54,75–78 among others. In recent years research on diamond integrated op-

tics has gathered momentum79–81 due to its favorable material properties both concerning classical and 

quantum optical properties. The following section describes these properties and briefly explains differ-

ent diamond substrates and how they can be used for fabricating PICs. 

2.3.1 Material properties 

Diamond has a combination of outstanding material properties and some of them have been known 

to mankind since ancient times. The origin of the word diamond is the ancient Greek word ἀ𝛿ά𝜇𝛼𝜍, 

which can be translated as unbreakable or unalterable82 referring to the hardness of the diamond, as 

it is the hardest known natural material. Diamond is an allotrope of carbon in which the atoms are 

arranged in a covalent network of sp3-hybridised orbitals which form a crystal structure called the 

diamond lattice, a variation of the face-centered cubic lattice. Table 1 shows a comparison of material 
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properties which are relevant for integrated optics and optomechanics for diamond and other suita-

ble materials. Pristine diamond has a large electrical bandgap of 5.5 eV and is therefore an electrical 

insulator. Diamond has a relatively high refractive index of about n = 2.4 for visible to near-infrared 

light and has an extremely wide wavelength range of transparency from 226 nm in the ultraviolet 

(UV)83 to beyond 500 µm in the far infrared84, with only one absorption region between about 2.5 µm 

and 6.5 µm. It could therefore be used for PICs in a large range of wavelengths. Diamond also has an 

extremely high thermal conductivity up to 2200 W/mK and one of the lowest thermal expansion 

coefficients, which enables it to efficiently dissipate locally generated heat85,86 leading to a large 

power handling capacity. Diamond also features a large Raman frequency shift (≈ 40 THz) and a 

large Raman gain (≈ 10 cm/GW at 1 µm wavelength87) which is among the highest of available ma-

terials for PICs and enables diamond Raman lasers88,89. 

 

Due to the large bandgap, two-photon absorption, which is a common problem for other materials 

for PICs such as silicon90,91, does not occur in diamond for infrared and visible light down to 440 nm. 

Overall diamond’s favorable optical properties already lead to its use as a material for bulk optical 

components for a range of applications such as diamond Raman lasers and windows for high-power 

lasers92,93. Diamond is therefore a prime candidate for integrated optics at a broad range of wave-

length, for on-chip non-linear optics87,94,95, mid-infrared sensing of chemicals96,97 and quantum op-

tics, as will be explained in the following. 

Table 1 - Relevant material properties for integrated optics and optomechanics for a variety of suitable materials: 
The bandgap 𝐸𝑔, transparency range 𝑇𝑅, refractive index 𝑛, thermal conductivity 𝑘, Young’s modulus 𝐸, density 𝜌 and 

the velocity of sound 𝑐. The materials are sorted by their Young’s modulus in descending order. The table is adapted 
from Rath et al.80. 

 
𝐸𝑔(eV)  𝑇𝑅 (µm) 𝑛 𝑘 (W/m K) 𝐸 (GPa) 𝜌 (g/cm3) 𝑐 (m/s) 

Diamond 5.47 0.22 − 500 2.4 2200 1100 3.52 17 700 

Si3N4 ≈ 5 0.3 − 5.5 2.0 33 800 3.24 15 800 

𝟑C-SiC 2.39 0.2 − 5 2.6 1.4 390 3.21 11 000 

Sapphire 9.9 0.17 − 5.5 1.8 24 340 3.98 9200 

AlN 6.14 0.2 − 13.6 2.1 150 294 3.26 9500 

GaN 3.44 0.36 − 7 2.4 130 294 6.1 6900 

TiO2 3.5 0.42 − 4 2.5 10 250 4.26 7700 

Si 1.12 1.1 − 6.5 3.5 140 162 2.33 8300 

GaP 2.26 0.54 − 10 3.2 100 140 4.13 5800 

Ge 0.66 1.8 − 15 4.6 60 132 5.35 5000 

GaAs 1.42 0.9 − 17.3 3.7 52 116 5.32 4700 

ZnO 3.4 0.37 − 8.85 2.0 30 110 5.6 4400 

SiO2 ≈ 9 0.38 − 2.2 1.5 10 95 2.65 6000 

InP 1.34 0.93 − 14 3.5 68 89 4.8 4300 
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The diamond lattice can host more than 500 known optically active defects98, referred to as color cen-

ters, which give diamonds their specific colored appearance, as shown in Figure 13 a). More than ten 

color centers have been demonstrated to show single-photon emission79 and Figure 13 b) provides 

an overview of their emission spectra. Color centers are crystalline defects, which are hosted in an 

otherwise potentially perfect carbon lattice and can be combinations of missing carbon atoms (va-

cancies) and non-carbon atoms which substitute or displace carbon atoms. These modifications to 

the carbon lattice lead to spatially localized energy states within the electronic bandgap of bulk dia-

mond. These optically active defects effectively act like artificial atoms which are isolated in a solid 

state system. The extremely high Debye temperature of 2219 K99 leads to a low phonon population 

at room temperature, which in turn leads to low probabilities for phonon-induced relaxation of the 

electronic states of color centers. Practically no free electrons are present in diamond at room tem-

perature, due to the large bandgap, and as 99% of natural diamond is composed of the C12  isotope100, 

which has zero nuclear spin, diamond provides ideal conditions for long coherence times for the 

electronic and spin states of the color centers. The color centers that currently show the most inter-

esting properties for quantum information applications are the nitrogen vacancy (NV) and the silicon 

vacancy (SiV) centers, both showing interesting spin properties and, as opposed to many other emit-

ters such as quantum dots101–103, which need cryogenic temperatures, single-photon emission from 

color centers in diamond can be observed at room temperature. 

The NV center in particular has been extensively studied in the last few decades104,105, as the neg-

atively charged defect NV- allows us to optically access the associated electron spin states, a process 

called optically detected magnetic resonance. The spin states of the NV center can show long coher-

ence times106, which enables their use as a quantum memory107,108. Due to the strong sensitivity to 

electric fields109, magnetic fields110–112 and strain113, the NV center can be used for sensing small fields, 

often at room temperature and down to the level of a single nuclear spin111,114. Further details on the 

NV center can be found in a review by Doherty et al.105. The NV center is a bright single-photon 

emitter, with high photon generation rates exceeding 2 ∙ 106 1

𝑠
 115, and can therefore be utilized for 

quantum information applications such as QKD38,116. The NV emission is typically excited off-reso-

nance with a green laser at 532 nm. The disadvantage of the NV center is that besides the emission 

 

Figure 13 - Color centers in diamond: a) A diamond of blue color, which arises from optically active defects in the 
carbon lattice. b) Spectral map of various color centers in diamond which show single-photon emission. The wave-
length label of each emitter indicates the observed zero-phonon-line positions while the length of the colored line 
represents the approximate width of the emission spectrum (for the centers with emission wavelengths be-
low 730 nm). A black arrow indicates that the center’s spin states can be manipulated. Reprinted from Aharonovich 
and Neu79. 
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of photons at the zero-phonon line (ZPL) at 637 nm the NV center has a broad phonon sideband and 

only 3% of the photons are emitted into the zero phonon line, even at cryogenic temperatures117, 

which limits its usability for quantum information applications such as boson-sampling and LOQC 

where indistinguishability of all involved photons is a key requirement, as described in section 2.2.2. 

 

The SiV on the other hand naturally emits about 75% of the photons into the ZPL116 and compared 

to the NV shows an even higher high photon generation rates exceeding 6 ∙ 106 1

𝑠
.118 The SiV center, 

as schematically shown in Figure 14 a), consists of a silicon atom and a split vacancy, which shows 

inversion symmetry119. The negatively charged NV center is an effective spin-1/2 system120 with an 

energy level scheme as shown in Figure 14 b). A transition between excited and ground states leads 

to emission of a photon at the zero phonon line around 737 nm. At low temperatures the fine struc-

ture of the levels and its four transitions can be resolved, as can be seen in the emission spectrum 

shown in Figure 14 c). The narrow line width of the SiV emission is limited by the excited state life-

time121. The defect’s symmetry results in a very weak coupling to charge fluctuations in the SiV envi-

ronment, which in turn leads to the absence of spectral diffusion121 and to a narrow inhomogeneous 

distribution122. These are important features in order to get indistinguishable photons from different 

defects, a requirement for many quantum information applications, and HOM interference has al-

ready been shown for photons emitted by two spatially separated SiV119. Besides being a single-pho-

ton source with astonishing performance at room temperature, the spin states of the SiV can be op-

tically accessed120,123, so the SiV might find a broad range of applications, motivating the work on 

diamond as a platform for quantum optics and quantum information processing. It is therefore 

worthwhile to develop PICs operating at the wavelength of SiV emission and especially fast single-

photon detectors which work efficiently at the emission wavelengths of color centers in diamond, as 

will be explained in chapter 4. 

When inserting color centers into diamond PICs micro- and nano-optical structures can be used 

for improving the performance of color centers. While solid immersion lenses124,125 and cylindrical or 

cone-shaped vertical waveguides126–128 enhance the collection efficiency of single photons from NV 

 

Figure 14 - Silicon vacancy center in diamond: a) Crystal structure of the silicon vacancy center. With carbon 
atoms in gray and the silicon atom (blue) in split-vacancy configuration between two unoccupied lattice sites (dashed 
circles). b) Energy level scheme of the SiV- center. The split ground and excited states enable four optical transitions, 
labelled from A to D. c) Fluorescence spectrum at a temperature 4 K for a SiV ensemble obtained by non-resonant 
excitation at 700 nm. All three figures are reprinted from Müller et al.120. 
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and SiVs by external photodetectors in the far field, optical resonators, such as photonic crystal cav-

ities, can be fabricated in diamond at the location of color centers in order to enhance the photon 

emission into the ZPL via the Purcell effect21,22,24,129. Several research groups are working on such 

photonic structures and the status of research in this area is described in two recent review arti-

cles80,81. A further challenge for integrating single-photon sources (SPS) in PICs for quantum infor-

mation applications is that, when optically exciting the SPS, it is necessary to filter out the pump 

light within the PIC. As the pump is many orders of magnitude brighter than the SPS this is a very 

challenging endeavour and it is therefore important to note that single-photon emission from NVs 

and SiVs can also be electrically excited.130–133 By p- and n-doping diamond it is possible to build 

diamond diodes which excite electro-luminescence from color centers. When using such diode-

driven color centers not only are optical filters for pump suppression not needed, but no pump light 

sources are needed either. Scalable electrically driven on-demand single-photon source in a solid 

state system might therefore be achievable in diamond. The discovery that the NV center has infrared 

transitions134 and the fact that many of the more than 500 color centers are yet to be studied in detail 

means that color centers in diamond with properties comparable to the NV and SiV, but with emis-

sion at telecom wavelengths, might be found.135 Having single-photon emitters at telecom wave-

lengths would be very desirable, as this would enable a straightforward integration into current op-

tical communication technology. Hence it is worthwhile to study the properties of diamond PICs 

both for visible light and at 1550 nm wavelength, as will be done within this thesis. 

Besides the optical properties which are favorable for integrated optics, diamond also offers ex-

ceptional mechanical properties, as can be seen in comparison to other materials in Table 1. It is the 

hardest known natural material on both the Mohs and the Vickers scale of hardness, it is mechani-

cally stable and features an exceptionally high Young’s modulus of 1100 GPa and the highest sound 

velocity136. These mechanical properties lead to diamond being used for applications ranging from 

tools for cutting and surface polishing82 to diamond spheres as fuel containers for nuclear fusion 

reactors137. Diamond can also be superconducting when doped with boron138, which enables to com-

bine mechanical and superconducting elements on a monolithic diamond platform139. Due to its 

combination of superior mechanical and optical properties, diamond is a prime candidate for inte-

grated optomechanics, as will be shown in chapter 3. Besides these advantages in terms of classical 

physics, it should be noted that mechanical strain can also be used for driving transitions between 

spin states in color centers.113,140,141 This means that diamond microelectromechanical systems 

(MEMS)142–144 might be used for coherent spin state manipulation, which is another motivation to 

study diamond optomechanical systems. Diamond has a range of further properties, which make it 

attractive for a range of applications of diamond integrated optics, such as its biocompatibility and 

its chemically inert surface, which can be useful for sensing in harsh environment97 and for applica-

tions on or inside animal or human tissue145. 

Summarizing, it can be said that the combination of high refractive index, large transparency 

range and especially the color centers, which show unique properties, together with the exceptional 

mechanical properties makes diamond a promising platform for integrated optics and optomechan-

ics. The following section explains how PICs can be fabricated from different diamond substrates. 
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2.3.2 Poly- and single-crystalline diamond 

Diamond PICs can be either implemented in single crystalline diamond or polycrystalline diamond, 

which differ both in terms of material properties and availability as thin films. As explained in section 

2.1 diamond waveguides have cross-sections with widths and heights on the order of hundreds of 

nanometers and they need to be surrounded by material of lower refractive index. Hence thin dia-

mond films on a suitable substrate with areas as large as possible are desired for scalable PICs. 

Single crystalline diamond (SCD) can only be grown homoepitaxially on existing diamond 

plates82,146. The grown diamond layer afterwards need to be cut off the original diamond. This results 

in relatively small but thick slabs with areas well below 1 cm2, which are challenging as a template 

for PICs. Polycrystalline diamond (PCD) films can on the other hand be grown on a variety of sub-

strates which are suitable for integrated optics147,148. PCD growth is possible on the scale of entire 

wafers with up to at least 6 inch (≈ 15,24 cm) in diameter, which translates into diamond thin films 

larger than 100 cm2. The small size of SCD pieces limits the scalability of both PIC designs and their 

fabrication, as much larger surface areas are needed for planar fabrication techniques as applied in 

semiconductor industry. A variety of approaches for fabricating PICs from SCD have been explored, 

each having a set of advantages and disadvantages. A detailed overview of different methods can be 

found in recent review articles80,81. A main problem is how to thin down a SCD slab from tens or 

hundreds of µm thickness to a thin film or membrane with a thickness of a few hundreds of nanome-

ters, such that the diamond quality is preserved and the film thickness is homogeneous over the full 

membrane area. PCD thin films can show thickness variations below 5 nm/mm149, while variations 

of more than 300 nm/mm are not unusual for SCD slabs87, making PICs from PCD potentially more 

reproducible, as a variation in thickness directly translates into a variation in the performance of 

integrated optical components. 

Some of the advantageous material properties of diamond, such as the refractive index and the 

Young’s modulus, are largely preserved when diamond is not single-, but polycrystalline. Other prop-

erties, such as the transparency range and the thermal conductivity are deteriorated, mainly due to 

grain boundaries which incorporate sp2-carbon and larger amounts of impurities than bulk dia-

mond85,98. Synthetic diamond has become available since the development of high pressure and high 

temperature (HPHT) and especially chemical vapor deposition (CVD) methods through which dia-

mond can be grown from carbon plasma on a suitable substrate150. A low concentration of color 

centers is needed for many applications and SCD can be grown with low concentrations of color 

centers below 0.1 part per billion133. While the pristine crystal structure of SCD with almost no im-

purities might be needed for low decoherence times of color center spins, when using them as quan-

tum memories, this might not be as critical for other applications such as using the emitted single 

photons without caring about the underlying spin states.  

Concerning diamond as a material for integrated optics it can be summarized that diamond has 

a unique combination of attractive properties which has motivated research on this topic in the last 

decade. While most conducted research has focused on the single-photon sources, namely the NV 

and SiV center which could find application as single-photon sources, sensors or quantum memory, 
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less work has been dedicated to develop the other two crucial parts for boson-sampling or LOQC 

with diamond, namely tunable PICs and single-photon detectors, as explained in section 2.2.2. These 

are the two elements of the needed photonic toolbox for a general integrated quantum optical circuit 

that this thesis is concerned with, as will be explained in the following chapters. 

2.4 Experimental methods for diamond photonic integrated 
circuits 

2.4.1 Diamond deposition and polishing 

Within this thesis we study diamond integrated optomechanics (chapter 3) and single-photon de-

tectors on diamond PICs (chapter 4). We employ polycrystalline diamond thin films due to their 

compatibility with established planar device fabrication. In chapter 5 we will successfully demon-

strate the transfer of PIC device geometries from PCD to SCD, which will in the future enable inte-

grated quantum optics and quantum information processing on a diamond platform. 

The research on diamond integrated optics using PCD is performed in collaboration with the 

Fraunhofer Institute for Applied Solid State Physics IAF, where polycrystalline diamond is initially 

deposited via plasma-enhanced chemical vapor deposition151,152 in an ellipsoidal 2.54 GHz microwave 

plasma reactor, as illustrated in Figure 15 a). The growth takes place at a temperature of 850 °C using 

1% methane in hydrogen at a pressure of 55 mbar.  

 

To achieve diamond-based photonic circuits, the diamond thin film needs to be surrounded by a 

cladding material with lower refractive index, as explained in section 2.1. For this purpose, PCD is 

deposited onto a silicon carrier wafer covered with 2 µm of oxidized silicon, as illustrated in Figure 

15 b). 1 µm of diamond is deposited and subsequently polished to a thickness of 600 nm by chemo-

mechanical polishing with a soft cloth153 in order to reduce surface roughness. The resulting wafer is 

sometimes referred to as a diamond-on-insulator (DOI) in analogy to silicon-on-insulator (SOI) 

which is a common material platform for PICs. Figure 15 c) shows an atomic-force microscopy (AFM) 

 

Figure 15 - Polycrystalline diamond wafers: a) Schematic of an ellipsoidal microwave plasma reactor for diamond 
CVD. b) Schematic of the layers of a diamond-on-insulator wafer before PIC fabrication. c) Atomic-force microscopy 
scan of the surface of a polished 600 nm thick PCD thin film revealing a small rms surface roughness of 3 nm. 
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scan of a 5 ∙ 5 µm2 large area of the polished PCD surface. The root mean square (rms) surface rough-

ness amounts to 3 nm, which is a factor of five smaller than the unpolished PCD surface. Details 

concerning diamond deposition, the polishing process and the material quality can be found in ap-

pendix A1. 

2.4.2 Fabrication of diamond photonic integrated circuits 

 

We fabricate diamond PICs from the polished diamond-on-insulator wafers with 600 nm of PCD, 

introduced in the previous section. Figure 16 illustrates the device fabrication process. We cut dies 

of 15 ∙ 15 mm2 size from the diamond-on-insulator wafer and deposit 5 nm of SiO2 onto the dies via 

electron beam evaporation. The SiO2 layer promotes adhesion of the hydrogen silsesquioxane (HSQ) 

resist (Dow Corning FOx-15) which is spin coated onto the diamond layer at a thickness of 500 nm 

(step 1). Electron beam lithography (EBL) is used for patterning the two-dimensional layout of the 

PICs into the negative tone resist. The exposure occurs in an EBL system (Jeol 5300) at 50 kV beam 

voltage using an area dose of 300 µC/cm2. Additionally a proximity effect correction is applied to the 

pattern, resulting in doses that locally vary between 70% and 110% of the area dose of 300 µC/cm2.  

After 10 min of resist development in commercial developer (Microposit MF319) and rinsing in 

water, the HSQ structures resemble the device layout (step 2). The HSQ resist then acts as a mask 

for etching of the diamond. The layout is transferred into diamond via dry etching (step 3) in a ca-

pacitively coupled reactive ion etching (RIE) chamber (Oxford 100 system), using gas flows of 

17 cm³/min argon and 33 cm³/min oxygen. The forward power is set to 200 W, which results in a 

direct current (DC) bias voltage between the electrodes of ≈ 535 V. This leads to a diamond etch rate 

of ≈ 25 nm/min, with a selectivity of ≈ 2: 1 for etching diamond versus etching the HSQ resist. The 

etching step gives rise to nearly vertical sidewalls, translating into rectangular waveguide cross-sec-

tions. For a diamond layer of 600 nm an etching time of 12 min results in a relative etch depth 

of 50% for the final PIC (step 4). The HSQ resist either remains on top of the diamond structure 

during device characterization or can be removed in hydrofluoric acid. The resist does not cause 

additional propagation losses, which was confirmed by transmission measurements of ring resona-

tors (see section 2.4.4). Appendix A5 provides a detailed description concerning all device fabrication 

methods and experimental parameters. 

 

Figure 16 - Fabrication of diamond photonic integrated circuits: The process consists of spin coating HSQ resist, 
electron beam lithography (EBL), resist development and finally pattern transfer into diamond via reactive ion etching. 
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2.4.3 Transmission measurements 

 

PICs are characterized in the setup, which is schematically depicted in Figure 17 a). The entire setup 

is installed on an optical table for vibrational damping. Light from a tunable laser at telecommuni-

cation wavelengths (New Focus TLB-6600 or Santec TSL-510) is coupled to an optical fiber. The 

photonic chip is mounted on a translation stage below the glass tip of a fiber array. A fiber polariza-

tion controller is used to adjust the polarization of the incident light in order to match the TE-like 

waveguide mode, as explained in section 2.1. Figure 17 b) shows a detailed view of the optical fibers 

of the fiber array and the photonic chip. The PIC consists of two focusing grating couplers and a 

connecting waveguide. The distance between the grating couplers is designed such that it matches 

the spacing between adjacent fibers of 250 µm. The input fiber launches light of power 𝑃in into the 

PIC, while a second fiber collects light of power 𝑃out coming from the PIC. We align the grating cou-

plers of the PIC to the fiber array in the 𝑥-, 𝑦- and 𝑧-direction via piezo actuators for maximum 

transmission. After transmission through the PIC light is guided to a fiber-coupled low-noise InGaAs 

photodetector (New Focus 2011/2117). The transmission spectrum 𝑇(𝜆) of the device can then be 

determined as the ratio of output to input power as 

 𝑇(λ) =
𝑃out

𝑃in
= 𝐶in(λ) ∙ 𝐶out(λ) ∙ 𝐴prop = 𝐶2(λ) ∙ 𝐴prop , (2.19) 

where 𝐶in(λ) and 𝐶out(λ) are the wavelength dependent efficiencies of the in- and the out-coupling 

of the two involved couplers and 𝐴prop is the attenuation of light by propagation loss in the wave-

guide (0 ≤  𝐴prop ≤ 1, where 𝐴prop = 1 means no attenuation). Both coupling efficiencies are typi-

cally assumed to be equal and therefore 𝐶(λ) denoted the coupling efficiency for in- and out-cou-

pling. Figure 17 c) shows a transmission spectrum 𝑇(𝜆) =
𝑃out

𝑃in
 for a simple PIC, consisting of a wave-

guide and two grating couplers, as shown in schematic Figure 17 b), with a maximum transmission 

of 4.4% centered at 1580 nm. All measurements of PICs within this thesis are performed in fiber-

coupled setups, based on the setup schematically shown here. Depending on the specific experiment 

more fibers may be attached to the fiber array, in order to access more grating couplers at a time. 

Furthermore the fiber array and the photonic chip may be placed in a vacuum chamber (chapter 3) 

 

Figure 17 - Transmission measurement: a) Sketch of the setup for transmission measurements of PICs, consisting 
of a tunable laser, a polarization controller, a fiber array for coupling light between optical fibers and the PIC and a 
fiber-coupled photodetector (components are not to scale). b) Sketch of the coupling of light between optical fibers 
and the photonic waveguide via two focusing grating couplers. The flow of light is indicated with yellow arrows. c) 
Transmission spectrum of a PIC containing two diamond focusing grating couplers optimized for telecom wavelengths. 
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or a liquid helium cryostat (chapter 3 and 4) in order to control the environment of the photonic 

chip concerning pressure and temperature. Throughout this thesis, transmission spectra of PICs al-

ways include the multiplicative factor 𝐶2(λ) of the two grating couplers involved in any PIC trans-

mission measurement. 

2.4.4 Quantification of propagation losses in diamond waveguides 

As explained in section 2.1.5 the propagation loss in waveguides can be estimated from the quality 

factors of ring resonators. We fabricate a chip containing PICs with 50% relative etch depth, accord-

ing to the fabrication procedure explained in section 2.4.2. Each PIC consists of two grating couplers 

and a ring resonator of width 𝑤R = 1 µm and radius 𝑟 which is evanescently coupled to a waveguide 

via a gap of size 𝑔R, as shown in the schematic of Figure 7 a). The ring width is chosen as 1 µm, as we 

want to determine the propagation loss for the corresponding waveguides of the same width. Be-

tween different PICs we vary the radius of the ring resonator and the gap size 𝑔R. Figure 18 a) shows 

a SEM micrograph of a fabricated PIC. For each device we measure the transmission for the TE-like 

mode around 1550 nm, as explained in the previous section. 

 

Figure 18 b) shows the transmission spectrum for a ring resonator (𝑟 = 40 µm and 𝑔R  = 500 nm). 

The envelope is given by the grating couplers and the resonances are visible as dips in the transmis-

sion spectrum with a free spectral range of Δ𝜆 = 3.76 nm around 1550 nm. According to equation 

(2.12) this free spectral range corresponds to a group refractive index of 𝑛g(1550 nm) = 2.54, in 

agreement with FEM simulations. For each device we extract the quality factor and the extinction 

ratio for the resonances within the bandwidth of the grating coupler. Figure 19 a) shows the average 

quality factor for rings with 𝑟 = 70 µm in dependence of gap size, while Figure 19 b) shows the cor-

responding extinction ratios. The extinction ratio is largest with 𝑟ext = 18.9 ± 4.7 for a gap size 

of 300 nm, which means that at this gap size the coupling condition is close to critical coupling. For 

increasing gap size, the coupling to the waveguide decreases and the quality factor increases and 

approaches its intrinsic value. 

  

Figure 18 - Ring resonator geometry and transmission: a) SEM image showing a photonic integrated circuit with 
an optical ring resonator of 𝑟 = 40 µm and 𝑔R = 600 nm. b) Transmission spectrum of a ring resonator (𝑟 = 40 µm 
and 𝑔R = 500 nm). 
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The largest quality factor is found for rings with 𝑟 = 90 µm with 𝑄 = 11 800 ± 2080 for the weakest 

coupling at a gap size of 𝑔R  = 800 nm. We use this quality factor to estimate the propagation losses. 

According to equation (2.15) a quality factor of 𝑄 = 11 800 corresponds to an attenuation coefficient 

of 𝛼 = 3.79 dB/mm, for propagation losses of 1 µm wide PCD waveguides with 50% relative etch 

depth at a wavelength of 1550 nm. This attenuation coefficient is 28% smaller compared to wave-

guides of the same geometry fabricated from unpolished PCD layers147 and we attribute this improve-

ment to the reduction in scattering, due to the reduction in surface roughness after polishing, as 

explained in section 2.3.2. Scattering and absorption at grain boundaries, related to sp2-carbon and 

doping atoms154,155 might be the dominating source of propagation loss in the presented PCD rings 

and the corresponding waveguides. In chapter 5.5 we will compare the quality factors and the prop-

agation loss from PCD ring resonators to SCD ring resonators of the same geometry. 

 

 

Figure 19 - Experimental quality factor and extinction ratio: For ring resonators with 𝑟 = 70 µm. a) Quality factor 
in dependence of gap size. b) Extinction ratio in dependence of gap size. 

 



 Diamond integrated optomechanics  31 

 

3 Diamond integrated optomechanics 

Using mechanical elements in photonic integrated circuits allows tunability in otherwise passive ma-

terials. Combining micromechanical components with photonic integrated circuits leads to optome-

chanical systems. This chapter motivates the use of diamond for integrated optomechanical circuits 

and presents proof-of-principle demonstrations. First, the fundamentals of micromechanical resona-

tors, the detection of their motion, and their active actuation via optical gradient forces and electro-

static forces are explained. Subsequently, diamond integrated optomechanical circuit designs are ex-

plained and the experimental results are presented. 

This chapter is partially based on results which were published previously in four publications80,156–158, 

where the author of this thesis was first author or had equal contribution with the first author. 

3.1 Introduction to integrated optomechanics 

Using mechanical degrees of freedom in the context of PICs has been established as a new research 

field in recent years159–161. Optomechanical systems find application in the study of fundamental phys-

ics, as mechanical motion in the quantum regime160 can be studied using light. For example, the 

cooling of a mechanical oscillator to its quantum ground state162–164 has been demonstrated. In the 

classical regime, on the other hand, mechanical components in PICs enable mechanically variable 

photonic systems, enabling to tune their optical properties via mechanical displacement. This ena-

bles PICs which incorporate mechanical elements such as tunable beam splitters165, phase shift-

ers166,167, and transducers168–171. Micro- and nano-mechanical components can nowadays be fabricated 

and controlled at small sizes, such that their masses can be on the order of picograms or less161 and 

they therefore show high responsivity to changes in their local environment. Integrated optome-

chanics in diamond could satisfy both purposes: On one hand it enables new active components for 

PICs, and on the other hand new effects arise, such as the manipulation of color center spin states in 

diamond, as will be described in the following section. 

3.2 Motivation for diamond integrated optomechanics 

Diamond might seem like an obvious choice as a material for optomechanics, due to its outstanding 

optical and mechanical properties, as explained in section 2.3. Nevertheless, only during the course 

of this thesis, the first integrated optomechanical circuits in diamond have been shown18,156,172,173, as 

scalable device fabrication in diamond has proven to be difficult, as explained in section 2.3.  

Potential applications for diamond integrated optomechanics range from sensors and the readout 

as well as manipulation of spin states to devices which enable the tuning of PICs, for example in the 

form of phase shifters as are needed for quantum optical circuits (see section 2.2.2). These three 

options are shortly outlined in the following: 
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1. Sensors: Diamond is both biocompatible and chemically inert and therefore diamond compo-

nents are compatible with long-term use both inside sensitive living tissue145,174,175 and in harsh chem-

ical environments176–178. Micromechanical resonators can be fabricated with small masses and can be 

used as mass sensors by operating at their mechanical resonance frequencies. Adsorption of a particle 

of small mass can lead to a measurable shift of the resonance frequency179, enabling mass detection 

down to single molecules180 and single atoms181. A small linewidth of the resonance is crucial for high 

mass sensitivity and hence high mechanical quality factors are needed. The mechanical quality fac-

tors are a measure for damping and will be introduced in the following section. Excitation at reso-

nance at gigahertz frequencies enables the operation of mechanical oscillators at ambient conditions 

without suffering from significant air damping182–184. Hence for mechanical sensors a high frequency 

and high quality factor are desirable. Functionalization of a sensor’s surface enables the detection of 

specific substances and surface functionalization of various diamond devices have been shown185–188. 

Hence, all important ingredients for mechanical sensors based on diamond micromechanical ele-

ments have been demonstrated. Micromechanical and optical elements can also be combined to al-

low for new sensor architectures. If the sensing scheme takes advantage of the absorption or emission 

of light at specific wavelengths, then diamond’s broadband transparency allows the operation in a 

large range of wavelengths. This includes the mid-infrared molecular fingerprint region, which is of 

key importance for applications such as trace gas sensing189,190 and early cancer diagnostics191. Trans-

mission of mid-infrared light through PCD waveguides has been demonstrated recently96,97. Sum-

marizing, it can be said that optical, mechanical, and optomechanical sensors from diamond could 

find use in a broad range of applications, which motivates the development of PICs and optomechan-

ical circuits from diamond. 

2. Readout and manipulation of spin states: Single color centers, such as the nitrogen vacancy 

defect center, can be integrated in diamond micromechanical structures. The optical initialization 

and readout of color center spin states104,192 combined with spin manipulation via pulsed microwaves 

allows local strain sensing through strain-mediated coupling of a single color center spin to a me-

chanical resonator113. This enables the detection of mechanical motion through the spin states141. 

Color centers in freestanding diamond elements have also been demonstrated as sensors for local 

electric and magnetic fields109,193 and provide sensitivities down to the level of a single nuclear spin114. 

In the future, optical initialization and readout could be integrated on a chip with the mechanical 

element incorporating the single color center. Hence besides sensing schemes presented in the pre-

vious section, additional sensors based on the quantum states in color centers make diamond an 

important candidate for exploring optomechanical circuits. It has been suggested by Stannigel et 

al.194 that a conversion between stationary and photonic qubits could be mediated by a mechanical 

resonator. As spin states in diamond are attractive as stationary qubits26,107,108,195,196 with coherence 

lifetimes exceeding one second at room temperature107 and single photons emitted by color centers 

in diamond can act as flying photonic qubits196,197, diamond might be the ideal material platform for 

such a mechanical interface between spin states and photons. Potential applications include spin-

induced oscillator sideband cooling162, ultrafast mechanical spin driving140 and spin squeezing198.  
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Despite the promising demonstrations of diamond mechanical elements in combination with color 

centers, for both local sensing and quantum information processing, up to date such experiments 

have been performed, relying on bulk optics. The integration with PICs would take advantage of the 

miniaturization and the scalability of the resulting devices and hence motivate the development of 

diamond PICs which incorporate mechanically variable elements.  

3. Tunable elements / phase shifters: Tunability in PICs can be achieved by altering the effec-

tive refractive index and hence the phase of electromagnetic waves which propagate in the modes of 

a waveguide. For semiconducting materials, such as silicon, the effective refractive index can be 

changed by injecting electrical carriers into the waveguides199,200. For electrical insulators such as 

silica, silicon nitride, and diamond this is not possible. A common device architecture is to place a 

heater201–203 close to a waveguide. The temperature dependence of the refractive indices implies that 

by local heating the effective refractive index of a waveguide mode can be changed, resulting in a 

tunable phase shift. Such thermo-optic phase shifters are commonly used in current PICs for quan-

tum optics53,58,66,67,204. The disadvantages of thermo-optic phase shifters include thermal crosstalk 

between closely spaced devices and a large power dissipation on the photonic chip, on the order of 

10 mW per phase shifter for a 𝜋-phase shift.201 If the development of PICs is supposed to follow the 

development of electronic ICs (which following Moore’s law doubled the component density every 

two years205), then the use of thermo-optic phase shifters cannot be a long-term solution for thou-

sands of tunable elements on one photonic chip. Especially for quantum optical circuits which use 

superconducting single-photon detectors206 at cryogenic temperatures around 4 K, a large power 

dissipation for thermal tuning is unsuitable. Employing movable parts enables phase shifters which 

operate using mechanical displacement.167 Opposed to heaters, optomechanical phase shifters do not 

require power dissipation for maintaining a static phase shift. Instead of having to maintain a certain 

temperature, which is larger than the temperature of the surrounding material, only a static mechan-

ical displacement is maintained, which stores energy without notable dissipation. Besides low power 

consumption and avoided cross-talk, optomechanical phase shifters can also be faster than thermal 

phase shifters (< 0.4 µs compared to ≈ 3 µs)167,202 and therefore provide a set of important ad-

vantages for tunable elements. 

In summary, optomechanical devices promise advantages for tunable PICs and in particular as 

phase shifters. These could find applications within diamond PICs in classical applications, as well 

as for quantum optics. High-speed phase shifters in Mach-Zehnder interferometers have been shown 

to be useful for tunable feed-forward operations of a single-qubit gate of path-encoded qubits207 and 

tunable phase shifters are needed for PICs, such as boson-samplers, introduced in section 2.2.2. This 

motivates the development of integrated optomechanical circuits from diamond. 

The goal of the work presented in this chapter is to show the first proof-of-principle devices for 

diamond integrated optomechanics. For sensors and for manipulation of spin states high resonance 

frequencies and small linewidths (i.e. low dissipation) might be favorable, while for phase shifters 

and tunable elements comparably larger device sizes and larger displacements would be advanta-

geous (translating to smaller resonance frequencies). We therefore design mechanical oscillators 

with resonance frequencies in the range of 1 MHz to 120 MHz and interface them with PICs. The 
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resulting design could in the future be adjusted in one of the two opposite directions to match the 

specific requirements for one of the applications outlined above. 

3.3 Fundamentals of optomechanics 

In recent years, micromechanical oscillators have been applied in several applications, such as cool-

ing to the quantum ground state, for which a quantum-mechanical description of the mechanical 

oscillator is required159–161. In the context of classical sensors and tunable PICs, as used within this 

thesis, a treatment with classical mechanics is sufficient and the following section provides the the-

oretical description for the following experimental implementation of diamond integrated optome-

chanics. 

3.3.1 Driven harmonic oscillator  

To understand the general dynamics of many optomechanical systems, a description within classical 

mechanics as a harmonic oscillator is sufficient. We consider a mass 𝑚 with only one degree of free-

dom, its movement in one dimension 𝑥, schematically shown in Figure 20 a). 

 

The attachment of the mass via a spring to an anchor point leads to a restoring force 𝐹res which 

linearly depends on the displacement 𝑥 from its rest position, as 

 𝐹res = −𝑘 ∙ 𝑥 , (3.1) 

where 𝑘 is the linear spring constant. Furthermore, a damping force 𝐹damp = −𝑚 ∙ 𝛾 ∙ �̇�, which is pro-

portional to the speed of the mass, and an external driving force  𝐹drive = 𝑚 ∙ 𝐴 ∙ cos(𝜔𝑡) are consid-

ered. Here 𝜔 is the angular frequency at which the motion is driven by the external force. The motion 

of the mass can be described by the ordinary differential equation 

 𝑚 ∙ �̈� + 𝑚 ∙ 𝛾 ∙ �̇� + 𝑚 ∙ 𝜔0
2 ∙ 𝑥 = 𝑚 ∙ 𝐴 ∙ cos(𝜔𝑡) , (3.2) 

where 𝜔0 = √𝑘/𝑚 is the resonance frequency of the undamped system. For our purpose only the 

underdamped case (𝛾 ≪ 𝜔0) is relevant and the corresponding solution of the differential equation 

is presented in the following, as far as needed within this thesis. The solution of the differential equa-

tion consists of the inhomogeneous solution 𝑥inh(𝑡) due to the driving force and the homogeneous 

solution 𝑥hom(𝑡), which is damped away: 

  

Figure 20 - Driven harmonic oscillator: a) Schematic of the model of a damped driven harmonic oscillator. b) 
Amplitude and phase response for the underdamped case (𝑄 = 100) of a damped harmonic oscillator, depending on 
the frequency of the sinusoidal driving force. 
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 𝑥hom(𝑡) = 𝐶 ∙ 𝑒−
𝛾

2
∙𝑡 ∙ cos(𝜔𝑟𝑡 − 𝜑) . (3.3) 

With the resonance frequency 𝜔𝑟 defined as 

 
𝜔𝑟 ≡ √𝜔0

2 −
𝛾2

2
 . (3.4) 

The initial amplitude 𝐶 and the phase 𝜑 depends on the initial conditions. We will observe the mo-

tion under the influence of an external driving force, a long time after the motion has been excited 

and hence we are interested in the steady-state of the system, described by the inhomogeneous so-

lution 𝑥inh(𝑡): 

 𝑥inh(𝑡) = 𝑎(𝜔) ∙ cos(𝜔𝑡 − 𝜑) (3.5) 

with a frequency dependent amplitude 𝑎(𝜔): 

 𝑎(𝜔) =
𝐴

√(𝜔0
2−𝜔2)2+𝛾2∙𝜔2

  (3.6) 

and a phase difference between the motion and the driving force 𝜑(𝜔): 

 𝜑(𝜔) = arctan (
𝛾∙𝜔

𝜔0
2−𝜔2)  (3.7) 

Figure 20 b) schematically shows the amplitude 𝑎(𝜔) and phase 𝜑(𝜔) for frequencies around the 

resonance frequency. An important figure of merit for systems with low damping is the mechanical 

quality factor 𝑄, defined as  

 𝑄 ≡
𝜔0

𝛾
 . (3.8) 

The 𝑄-factor is a measure for how much energy is dissipated in one oscillation period. Using 𝑄 the 

amplitude as a function of frequency can be expressed as 

 𝑎(𝜔) =
𝐴

√(𝜔0
2−𝜔2)2+(

𝜔0∙𝜔

𝑄
)
2
 . (3.9) 

The maximum amplitude 𝑎max of the driven harmonic oscillator occurs at the resonance fre-

quency 𝜔𝑟, as defined in equation (3.4), and is given by 

 𝑎max = 𝑎(𝜔𝑟) = 𝑄 ∙
𝐴

𝜔0
2 ∙

1

√1−
1

4∙𝑄2

 . (3.10) 

For high quality factors (𝑄 ≫ 1) this can be approximated as 𝑎max ≈  𝑄 ∙
𝐴

𝜔0
2 . Note that the oscillation 

amplitude at resonance is both proportional to the amplitude of the driving force 𝐴 and to the me-

chanical quality factor 𝑄. Therefore, higher mechanical quality factors enable higher transduction 

between driving force and oscillation amplitude.  

It is possible to investigate the oscillator in the frequency domain and determine the mechanical 

quality factor from the dependence of 𝑎2 on the frequency 𝜔 of the driving force. The energy stored 

in the oscillation is proportional to 𝑎2(𝜔) and for a weakly damped oscillator (𝛾 ≪ 𝜔0, 𝑄 ≫ 1), start-

ing from equation (3.6) 𝑎2(𝜔) can be approximated with a Lorentzian curve, with a FWHM of ∆𝜔 =

𝛾. Hence one can extract the mechanical quality factor from a Lorentzian curve fit as 𝑄 =
𝜔𝑟

∆𝜔
. 

The quality factor can also be investigated in the time domain. So far we considered the transient 

solution for the driving force 𝐹drive = 𝑚 ∙ 𝐴 ∙ cos(𝜔𝑡). If we turn the driving force off at a certain time 

𝑡off the damping leads to an exponential decay of the oscillation, as described by the homogeneous 
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solution (see equation (3.3)). The envelope of the decaying oscillation is the oscillator’s time-depend-

ent amplitude 𝑎(𝑡), which behaves with time 𝑡 > 0 as 

 𝑎(𝑡off + 𝑡) = 𝑎max ∙ 𝑒−
𝛾

2
∙𝑡 = 𝑎max ∙ 𝑒−

𝑡

𝜏 , (3.11) 

with the characteristic decay time of the oscillation amplitude 𝜏, which can be expressed in terms of 

oscillation frequency and quality factor as 

 𝜏 =
2

𝛾
=

2∙𝑄

𝜔0
 . (3.12) 

This enables to determine the quality factor 𝑄 of a mechanical oscillator in the time domain by fitting 

an exponential curve to the decay of the oscillator’s amplitude. This is referred to as ring down meas-

urement and will be applied for diamond micromechanical oscillators in section 3.4.3.2. The energy 

stored in the oscillator decays as 

 
𝐸(𝑡) =

1

2
𝑘 ∙ 𝑎max

2 ∙ 𝑒
−

𝜔0∙𝑡

𝑄 , (3.13) 

which illustrates that the quality factor is a measure for the dissipation of the system and the char-

acteristic time of the decay of the stored energy. 

3.3.2 Continuum mechanics 

To describe the dynamics of a solid three-dimensional (3D) oscillator, in principle, the motion of all 

particles which make up the oscillator should be taken into account. For large, macroscopic objects 

this is needlessly complicated and materials can be accurately described as a continuum. This implies 

that the dynamics of the individual particles is irrelevant and instead the dynamics of the oscillator 

can be described by deflections and deformations which depend on a small set of parameters such 

as the elasticity tensor. The microscopic details do, however, determine the macroscopic material 

properties such as the Young’s modulus and the Poisson ratio. A detailed description of this concept 

of continuum mechanics and its application to micromechanical resonators can for example be found 

in a review paper by Poot and van der Zant160. 

At the heart of continuum mechanics lies the relation between strain and stress in a material. 

Strain describes how the material is deformed with respect to its relaxed state. After a deformation 

of the material, the mass element which was initially located at position 𝑥  is displaced to a new loca-

tion 𝑥 + �⃗� . The strain describes how much an infinitesimal line segment is elongated by the defor-

mation �⃗� (𝑥, 𝑦, 𝑧) and is given208 by the strain tensor8 

 
𝛾𝑖𝑗 =

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑚

𝜕𝑥𝑖
∙
𝜕𝑢𝑚

𝜕𝑥𝑗
) . (3.14) 

The diagonal elements are the normal strains in the coordinate directions, whereas the off-diag-

onal elements are the shear strains. While equation (3.14) is an exact description, the last, non-linear 

term is only relevant when the deformations are large209 and will hence not be considered in this 

work. External forces deform the material and in turn give rise to forces inside the material. When 

                                                        

8 We use the Einstein notation for the elements of vectors and tensors: When indices appear only on one side of an equal 
sign, one sums over them, without explicitly writing the summation sign. The index runs over the three cartesian coordi-
nates, where 𝑥1 =  𝑥, 𝑥2  =  𝑦 and 𝑥3 =  𝑧. 
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considering the material to be composed of small volume elements, each element feels the force 

applied to its faces by all neighboring elements. 

The force 𝛿𝐹  on a small area 𝛿𝐴 of the element is given by 

 δ𝐹𝑖  = 𝜎𝑖𝑗𝑛𝑗δ𝐴 , (3.15) 

where �⃗�  is the vector perpendicular to the surface and 𝜎 is the stress tensor. The stress tensor de-

scribes the forces acting inside the material, whereas the strain tensor 𝛾 describes the local material 

deformations. When the deformations are not too large, the stress and strain tensors are related 

linearly via the elasticity tensor with elements 𝐸𝑖𝑗𝑘𝑙: 

 𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙 ∙ 𝛾𝑘𝑙 . (3.16) 

In general the fourth-rank elasticity tensor is described by 81 elements. For an isotropic material, 

whose properties are the same in all directions, only two independent parameters are needed: the 

Young’s modulus 𝐸 and the Poisson’s ratio 𝜐. 

For simplified geometries, such as a thin beam subjected to lateral loads, it is possible to analyti-

cally calculate the displacement �⃗� (𝑥, 𝑦, 𝑧) and the corresponding strain. Figure 21 a) shows a sche-

matic of such a thin beam, which is oriented along the 𝑧-direction, fixed in position at both ends and 

subjected to a force 𝐹. 

 

Figure 21 b) shows a 3D schematic of the beam, which is defined by its length 𝐿, width 𝑤, and 

height 𝑑. If such a flexural beam is long and thin (𝐿 ≫ 𝑤, 𝑑) and made of an isotropic material with 

no damping, the dynamic behavior can be treated as a one-dimensional problem using the Euler-

Bernoulli beam theory210: Instead of having to consider the displacement field �⃗� (𝑥, 𝑦, 𝑧) for each point 

in space within the beam, it is sufficient to consider one point for each cross-section perpendicular 

to the 𝑧-direction: the points along the beam’s centerline. Boundary conditions for the motion are 

typically the fixation points to the substrate, in this case at both ends of the beam. This geometry is 

known as doubly clamped beam. If the beam moves in the 𝑥-direction we refer to it as in-plane mo-

tion, as the 𝑥/𝑧-plane is defined by the thin film of the wafer. If the beam moves in the 𝑦-direction 

we refer to it as out-of-plane motion, as the motion is perpendicular to the thin film layers. In-plane 

motion is more relevant to integrated optomechanics, as an in-plane displacement can lead to a 

much larger change in the effective refractive index of a waveguide, as we will discuss in section 3.3.4. 

 

Figure 21 - Three-dimensional mechanical oscillator: a) Schematic of a doubly clamped mechanical beam under 
external force 𝐹. b) Displacement field of the fundamental in-plane mode of oscillation (in the 𝑥/𝑧-plane) for a doubly 
clamped beam of width 𝑤, height 𝑑, and length 𝐿. The displacement is shown as a deformation of the 3D beam, as 
well in color, where blue denotes no displacement and red denotes maximum displacement. 
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In the following we therefore describe in-plane motion, while out-of-plane motion can be treated in 

the same fashion. 

For in-plane motion, only the 𝑥-component of the displacement vector �⃗�  is considered to be non-

zero. For an isotropic material with no damping, the beam’s centerline can show transverse displace-

ments in the 𝑥-direction 𝑢𝑥(𝑧, 𝑡) ≡ 𝑢(𝑧, 𝑡), which obeys the differential equation160 

 𝜌 ∙ 𝐴 ∙
𝜕2𝑢

𝜕𝑡2
(𝑧, 𝑡) = −𝐷

𝜕4𝑢

𝜕𝑧4
(𝑧, 𝑡) + 𝑇

𝜕2𝑢

𝜕𝑧2
(𝑧, 𝑡) + 𝐹 , (3.17) 

where 𝜌 denotes the material density, 𝐴 = 𝑤 ∙ 𝑑 denotes the cross-sectional area, 𝐷 is the bending 

rigidity, 𝑇 is the tension in the material in the 𝑧-direction, and 𝐹 is an external force. We consider 

the tension 𝑇 to be negligible. The bending rigidity 𝐷 can be written as the product of the Young’s 

modulus 𝐸 and the bending moment of inertia with respect to the 𝑦-axis 𝐼𝑦 as 

 𝐷 = 𝐸 ∙ 𝐼𝑦 ∙
1

1−𝜐2 , (3.18) 

where 𝜐 is the Poisson ratio. The Poisson ratio is typically small (𝜐 ≈ 0.06 for diamond211) and is 

therefore often neglected. For a beam as shown in Figure 21, the bending moment of inertia with 

respect to the 𝑦-axis can be calculated as 

 𝐼𝑦 = ∬𝑥2 𝑑𝑥𝑑𝑦 =
𝑑∙𝑤3

12
 , (3.19) 

where 𝑑 denotes the height and 𝑤 denotes the width. The clamped ends at 𝑧 = 0 and 𝑧 = 𝐿 impose 

the boundary conditions 𝑢(0) = 𝑢(𝐿) = 0 and 
𝜕𝑢

𝜕𝑧
(0) =

𝜕𝑢

𝜕𝑧
(𝐿) = 0. The solutions for zero external 

force have the form210 

 𝑢𝑛(𝑧, 𝑡) = 𝜒𝑛(𝑧) ∙ 𝑈 ∙ 𝑒−𝑖(𝜔𝑛𝑡−𝜑) , (3.20) 

with the eigenfunctions  

 𝜒𝑛(𝑧) = 𝐶1𝑛 ∙ [cos(𝑘𝑛𝑧) − cosh(𝑘𝑛𝑧)] + 𝐶2𝑛 ∙ [sin(𝑘𝑛𝑧) − sinh(𝑘𝑛𝑧)] , (3.21) 

with eigenvectors 𝑘𝑛 satisfying 

  cos(𝑘𝑛𝐿) ∙ cosh(𝑘𝑛𝐿) = 1 . (3.22) 

The eigenfunctions 𝜒𝑛(𝑧) are mutually orthogonal and build a basis, such that any beam motion can 

be described as a superposition of these eigenfunctions as 𝑢(𝑧, 𝑡) = 𝑐𝑛 ∙ 𝑢𝑛(𝑧, 𝑡). The angular eigen-

frequencies 𝜔𝑛 are given by 

 
𝜔𝑛 = √

𝐸

𝜌
∙ √

𝐼𝑦

𝐴
∙  𝑘𝑛

2 . (3.23) 

The numerical solution of the fundamental in-plane mode corresponds to the first non-zero eigen-

vector  𝑘1 ≈
4.730

𝐿
, with an eigenfunction 𝜒1(𝑧) defined by 𝐶11 ≈ −1.000 ∙ 𝐿 and 𝐶21 ≈ +0.983 ∙ 𝐿. The 

fundamental frequency is given by 

 
𝑓1 =

𝜔1

2𝜋
= 1.028√

𝐸

𝜌
∙
𝑤

𝐿2 . (3.24) 

Note that the frequency is proportional to the width 𝑤 and proportional to 
1

𝐿2. For diamond beams 

with widths of several hundred nanometers and tens of micrometer length, as relevant to this thesis, 

fundamental frequencies are on the order of Megahertz.  
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For the presented simplified case of a thin beam, analytical solutions for eigenfunctions and eigen-

frequencies can be calculated, which is instructive and often provides good approximations for the 

motion of micromechanical oscillators. More accurate treatments require numerical methods. 

Within this thesis 3D FEM simulations are used, which enables realistic boundary conditions and 

geometries with more design parameters than simple beams to be taken into account. The simula-

tions for the specific oscillator geometry used in this thesis will be presented in section 3.3.6.2. 

It is useful to introduce a mapping between the 3D beam and a hypothetical point-mass with a 

scalar displacement 𝑈, such that the harmonic oscillator model can be applied. We can write the 

displacement field �⃗� 𝑛 for mode 𝑛 as 

 �⃗� 𝑛(𝑥, 𝑦, 𝑧, 𝑡) ≡ 𝜒 𝑛(𝑥, 𝑦, 𝑧) ∙ 𝑈(𝑡) , (3.25) 

where 𝜒 𝑛(𝑥, 𝑦, 𝑧) is the normalized shape of the mode and 𝑈(𝑡) is the time-dependent amplitude. 

We choose the normalization of 𝜒 𝑛(𝑥, 𝑦, 𝑧) such that for its maximum absolute value is equal to one 

(max
𝑟 ∈𝑉

|𝜒 𝑛| = 1). This implies that 𝑈(𝑡) refers to the maximum displacement of any mass element of 

the 3D oscillator. The average kinetic energy of a harmonic oscillator of a mass 𝑚eff,𝑛 and ampli-

tude 𝑈(𝑡) = �̂� ∙ sin (𝜔𝑛𝑡) amounts to 

 〈𝐸kin〉 = ⟨
1

2
𝑚eff,𝑛 ∙ (

𝑑𝑈

𝑑𝑡
)
2
⟩ =

1

2
𝑚eff,𝑛 ∙ 𝜔𝑛

2 ∙
1

2
�̂�2 . (3.26) 

On the other hand, the energy of a 3D oscillator with density 𝜌 within its volume 𝑉 under oscillation 

with a displacement field �⃗� 𝑛(𝑥, 𝑦, 𝑧, 𝑡) ≡ 𝜒 𝑛(𝑥, 𝑦, 𝑧) ∙ �̂� ∙ sin (𝜔𝑛𝑡) can be calculated as209 

 
〈𝐸kin〉 = ⟨

1

2
∫𝜌 ∙ (

𝜕�⃗⃗� 𝑛(𝑥,𝑦,𝑧,𝑡)

𝜕𝑡
)
2

𝑑𝑉⟩                                    

            =
1

2
(𝑚0

1

𝑉
∫𝜒 𝑛

2
(𝑥, 𝑦, 𝑧)𝑑𝑉)𝜔𝑛

2 ∙
1

2
�̂�2 ,          

(3.27) 

where 𝑚0 is the physical mass of the oscillator. We define the effective modal mass of mode 𝑛 as183 

 
𝑚eff,𝑛 ≡  𝑚0

1

𝑉
∫ (

�⃗⃗� 𝑛(𝑥,𝑦,𝑧)

𝜒max
)
2

𝑑𝑉 , (3.28) 

such that the energy of the 3D oscillator is equivalent to the energy of the point mass 𝑚eff,𝑛 under 

oscillation with an amplitude 𝑈(𝑡), which corresponds to oscillation of the mass element with the 

largest amplitude. The spring constant which relates the amplitude 𝑈(𝑡) for the oscillation at reso-

nance frequency 𝜔𝑛 to an external force is given by  

 𝑘𝑛 = 𝑚eff,𝑛 ∙ 𝜔𝑛
2 . (3.29) 

The effective modal mass 𝑚eff,𝑛 for a micromechanical oscillator is a constant, which solely depends 

on the oscillator geometry, material properties, and the mode number 𝑛. We can therefore determine 

it from simulated displacement fields 𝜒 𝑛(𝑥, 𝑦, 𝑧). While in the three-dimensional description pre-

sented in this section damping was not considered, any experimental implementation will show 

damping. Damping will shift the resonance frequency of each mode, as discussed for a one-dimen-

sional point mass system (equation (3.4)), but the mode shape is typically unaffected212 by the damp-

ing. It is hence feasible to simulate the normalized mode shapes 𝜒 𝑛(𝑥, 𝑦, 𝑧) for the undamped system 

and use them for mechanical oscillators with damping.  

The connection presented here between a three-dimensional mass distribution with a displace-

ment field and the harmonic oscillator model of a point mass is important, as it justifies to explain 
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the behavior of diamond micromechanical oscillators within this thesis based on the harmonic os-

cillator model. 

3.3.3 Damped oscillator driven by thermal motion 

Damping implies that energy can be exchanged with the environment. Due to the fluctuation-dissi-

pation theorem there is consequently mechanical noise associated with the damping in the sys-

tem209. The oscillator therefore experiences a random noise force 𝐹𝑁(𝑡) 𝑤ith a zero average 

value 〈𝐹𝑁(𝑡)〉 = 0. The dynamics of the oscillator thus follows the differential equation 

 𝑚 ∙ �̈� + 𝑚 ∙ 𝛾 ∙ �̇� + 𝑚 ∙ 𝜔0
2 ∙ 𝑥 = 𝐹𝑁(𝑡) . (3.30) 

For a completely uncorrelated force noise, the spectral density of the force 𝑆(𝜔) is frequency inde-

pendent (white noise). It can be shown that the noise force produces a thermal equilibrium of the 

oscillator and its environment.213 For an oscillator with several modes 𝑛 the equipartition theorem 

implies that the oscillator thermalizes with its environment at temperature 𝑇, such that the mean 

energy 〈𝐸𝑛〉 of each mode 𝑛 of the oscillator214 is given by 〈𝐸𝑛〉 = 𝑘B𝑇, where 𝑘B is the Boltzmann 

constant. For a 3D oscillator, such as a doubly clamped beam, each point on the oscillator experiences 

a noise force which acts with the same spectral density, but fluctuates independently from the force 

at other points. The noise at any two points on the oscillator is uncorrelated209. The noise-force can 

be expanded in terms of the eigenfunctions of the oscillator and a noise force associated with a 

mode 𝑛 is thus uncorrelated with the noise for any other mode 𝑛′ ≠ 𝑛209. We therefore consider only 

the fundamental mode of the oscillator and the white noise which leads to thermal equilibrium with 

the environment.  

As white noise corresponds to an excitation at all frequencies with a constant spectral density, the 

resulting spectral density of the amplitude of the thermally driven damped harmonic oscillator re-

sembles the curve of the frequency dependent amplitude of a harmonic oscillator driven at a single 

frequency (see equation (3.6)). The spectral density 𝑆𝑥(𝜔), which is associated with the kinetic en-

ergy of the fundamental mode hence resembles a Lorentzian curve. Using the average kinetic energy 

associated with the fundamental mode at thermal equilibrium 〈𝐸kin〉 =
1

2
𝑘B𝑇, it is possible to de-

rive209 that the spectral density of the displacement noise at resonance frequency 𝜔0 amounts to179 

 
√𝑆𝑥(𝜔0) = √

4∙𝑘B𝑇∙𝑄

𝑚eff∙𝜔0
3 , (3.31) 

where 𝑄 is the mechanical quality factor and 𝑚eff the effective modal mass (as introduced in the 

previous section). Note that the units of √𝑆𝑥 are m/√Hz. If a signal is measured which is proportional 

to the displacement, then by analyzing the signal in the frequency domain, the spectral density of 

the displacement noise can be determined. The measured signal amplitude can then be calibrated 

using the theoretical thermal displacement noise (using equation (3.31)), a method which was first 

applied for the calibrations in atomic force microscopy215 and gets routinely applied for the calibra-

tion of the measurement sensitivity concerning mechanical displacement in PICs183,216,217. We will 

perform this calibration for diamond micromechanical oscillators in section 3.4.2. 
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3.3.4 Integrated optomechanical system and optical phaseshift 

Mechanical oscillators, such as doubly clamped beams described above, can be combined with wave-

guides, resulting in optomechanical integrated circuits. This enables sensitive detection of mechan-

ical displacement, as well as active manipulation of optical properties via the control of the mechan-

ical displacement, as will be explained in the following. Figure 22 a) shows a schematic of such a 

system. It consists of a waveguide at a fixed position and a mechanical element in close vicinity of a 

waveguide. The mechanical element can move in the 𝑥-direction and has internal damping and re-

storing forces, as considered in the previous sections. Without external forces, the rest position is 

such, that waveguide and mechanical element are separated by a gap of size 𝑔0. The system shows 

translational invariance in the 𝑧-direction and we therefore consider the waveguide mode in a two-

dimensional cut in the 𝑥/𝑦-plane, as shown in Figure 22 b). The effective refractive index 𝑛eff of the 

waveguide depends on the gap size 𝑔= 𝑔0 + 𝑢, as shown in Figure 22 c), and hence a displacement 𝑢 

of the mechanical element, due to an external force, will lead to a change in 𝑛eff and hence a change 

of the phase of light which propagates in the waveguide. 

 

We consider systems for which the gap size and hence the displacement is a function of the 𝑧-coor-

dinate, for example if the mechanical element is not simply displaced, but bends in the 𝑥/𝑧-plane, as 

considered in the previous section for doubly clamped beams. The phase acquired by photons during 

propagation in the 𝑧-direction along a waveguide section of length 𝑙int amounts to 

 𝜙(𝜆0) =
2𝜋

𝜆0
∫ 𝑛𝑒ff(𝜆0, 𝑔)𝑑𝑧

𝑙int

𝑧=0
 , (3.32) 

where 𝜆0 denotes the wavelength of light in vacuum and 𝑙int is the interaction length of waveguide 

and mechanical oscillator. In-plane motion of the movable part in the 𝑥-direction leads to a displace-

ment 𝑢(𝑧) from the rest position. This leads to a 𝑧-dependent change in the effective refractive index 

and the results in an overall change in phase ∆𝜙, which amounts to 

 ∆𝜙(𝜆0, 𝑢(𝑧)) =
2𝜋

𝜆0
∫ (𝑛eff(𝜆0, 𝑔0 + 𝑢(𝑧), 𝑧) − 𝑛eff(𝜆0, 𝑔0, 𝑧))𝑑𝑧

𝑙int

𝑧=0
 . (3.33) 

The effective refractive index 𝑛𝑒ff(𝑔) for such a system typically shows an exponential dependence 

on the displacement 𝑛𝑒ff(𝑔 =  𝑔0 + 𝑢) = 𝑛𝑒ff(𝑔0) ∙ 𝑒−
𝑢

𝐴 with a characteristic spatial decay constant 𝐴. 

For small displacements 𝑢 ≪ 𝐴, it is appropriate to Taylor expand the exponential function and only 

consider the linear term218.  

  

 
Figure 22 - Optomechanical system and effective refractive index: a) Schematic of an optomechanical system, 
composed of a waveguide, coupled to a mechanical element by a gap 𝑔. b) Cross section through the system, showing 

the waveguide mode. c) Exemplary dependence of the effective refractive index 𝑛eff of a waveguide mode on the size 
of the gap between optical waveguide and mechanical element. 
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The change in phase then shows a linear dependence on the displacement as 

 ∆𝜙(𝜆0, 𝑢(𝑧)) ≈
2𝜋

𝜆0
∫

𝜕𝑛eff(𝜆0,𝑥)

𝜕𝑥
|
𝑥=𝑥0

𝑙int

𝑧=0
∙ 𝑢(𝑧) 𝑑𝑧 ≈

2𝜋

𝜆0
∙
𝜕𝑛eff(𝜆0,𝑥)

𝜕𝑥
|
𝑥=𝑥0

∙ �̅� ∙ 𝑙int , (3.34) 

with the average in-plane displacement of the mechanical oscillator �̅� defined by 

 �̅� = 𝑢max
1

𝑙int
∫ 𝜒(𝑧) 𝑑𝑧

𝑙int

𝑧=0
 , (3.35) 

which is determined by the geometry of the mechanical element, the maximum displacement 𝑢max 

and the shape 𝜒(𝑧) of the mechanical mode under consideration. 

Note that hence, according to equation (3.34), the phase shift increases with increasing interac-

tion length 𝑙int, with a stronger dependence of 𝑛eff on the lateral position 𝑥 and with a larger average 

displacement ∆𝑢̅̅̅̅ . Tunable phase shifters are for example needed for tunable quantum optical cir-

cuits, such as boson-samplers, as introduced in section 2.2.2. For such an application a phase shift 

∆𝜙 which is tunable between 0 and 2𝜋 would be required. This means that for an optomechanical 

phase shifter of a given geometry, the phase shift should be tunable in this range by changing the 

displacement 𝑢(𝑧) via a controllable external force. We will discuss external forces in section 3.3.5 

and present the corresponding experiments in section 3.4. 

It is important to note the difference between two variables within optomechanics, which are 

generally referred to as phase: 

1) the phase 𝜑(𝜔𝑚) between a force which excites a mechanical oscillator and the resulting me-

chanical motion at frequency 𝜔𝑚, as defined by equation (3.7). This can be referred to as the 

phase of the mechanical oscillator. A static force (𝜔𝑚 = 0) leads to a displacement 𝑢(𝑧), but 

the mechanical phase 𝜑(𝜔𝑚) remains zero. 

2) the phase ∆𝜙(𝑢(𝑧)), as defined by equation (3.33), which the light acquires additionally, due 

to a displacement 𝑢(𝑧), during propagation along the interaction length 𝑙int. This is the phase 

imprinted by a mechanical displacement on the electromagnetic wave, which can be non-zero 

for a static displacement.  

Keeping in mind the distinction between both types of phase is important for the understanding of 

the following descriptions. 

3.3.5 Excitation of micromechanical motion via optical gradient 
forces 

Light can exert forces on matter159 which act on mechanical degrees of freedom218. In this way light-

driven mechanically variable systems can perform trapping219–221 and actuation169,222–224 of objects on 

the micro- and nanoscale. Optical forces can occur as radiation pressure and optical gradient forces. 

Radiation pressure225 stems from the momentum transfer from electromagnetic radiation to matter, 

which for example occurs upon reflection of light from a mirror. Radiation pressure has been exten-

sively studied in the context of optical cavities and interferometers. Such forces are relevant for large 

structures on kilometer length scales, such as gravitational wave detectors226,227, as well as for small 

structures on the micro- and nanoscale164,228–230. Optical dipole forces, also called optical gradient 
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forces, can occur when a dipole is induced231 in a polarizable micro-particle. This effect finds appli-

cation as optical tweezers232,233 for the manipulation of micro-particles234,235. The optical gradient 

forces can also arise from internal illumination by light traveling in waveguides. The optical gradient 

force acts perpendicular to the propagation direction of light and for laterally varying electromag-

netic fields, such as in waveguide modes, the optical gradient force can be comparably large and the 

mass and the dimensions of components for PICs have been miniaturized to the degree that device 

tuning via optical actuation is possible at micro- to milli-watt power levels216,222,223,230. 

Using Maxwell’s equations and the Lorentz force, which connects the electromagnetic field and 

mechanical motion, the time average of the force exerted by an electromagnetic field on a rigid body 

within a volume 𝑉 can be calculated231 as  

 〈𝐹〉 = ∮ 〈�̂�(𝑟 , 𝑡)〉
𝛿𝑉

∙ 𝑛(𝑟 ) ∙ 𝑑𝑠 , (3.36) 

where ∮ 𝑑𝑠
𝛿𝑉

 denotes the integral over the surface of volume 𝑉 which encloses the geometry and 

�̂�(𝑟 , 𝑡) is the Maxwell stress tensor whose components 𝑇𝑖𝑗 are related to both the electric field distri-

bution �⃗� (𝑟 , 𝑡) and the magnetic field distribution �⃗� (𝑟 , 𝑡) as 

 𝑇𝑖𝑗(𝑟 , 𝑡) = 𝜀0𝜀𝑟 (𝐸𝑖𝐸𝑗 − 𝛿𝑖𝑗
1

2
�⃗� 2) +

1

𝜇0𝜇𝑟
(𝐵𝑖𝐵𝑗 − 𝛿𝑖𝑗

1

2
�⃗� 2) , (3.37) 

where 𝜀𝑟 and 𝜇𝑟 denote the dielectric constant and magnetic susceptibility, 𝜀0 and 𝜇0 denote the 

permittivity and permeability of free space and 𝛿𝑖𝑗 is the Kronecker delta. 

An equivalent218,222,236 but potentially more intuitive way to derive the force is via the change in 

the total energy  𝐸𝑡𝑜𝑡 which is stored in the propagating optical field in the waveguide mode. Povinelli 

et al.222 derived the force 𝐹 𝑜𝑝𝑡 by arguing that the work done by the mechanical displace-

ment ∫ 𝐹 𝑜𝑝𝑡 𝑑𝑠 , should equal the change in energy 𝑑𝐸𝑡𝑜𝑡.  

If light at a well-defined frequency 𝜔 propagates in the form of a guided waveguide mode along a 

waveguide of length 𝑙, then the energy 𝑉𝜔 associated with the propagating wave is given by 

 𝑉𝜔(𝑔) = 𝑃 ∙ 𝑙 ∙
𝑛eff(𝜔,𝑔)

𝑐
 , (3.38) 

where 𝑃 is the optical power, 𝑐 is the speed of light in vacuum, and 𝑛eff is the effective refractive 

index of the mode, which depends on the gap size 𝑔. Note that 
𝑐

𝑛eff
 is the phase velocity. The optical 

force is then given as the gradient of the energy as 

 𝐹 𝜔(𝑔) = −∇𝑉𝜔(𝑔) . (3.39) 

The spatial dependence of the energy 𝑉𝜔 is given by the spatial dependence of 𝑛eff, which changes 

with displacement in the 𝑥-direction and hence with a change in gap size 𝑔, which results in an op-

tical force in the 𝑥-direction of 

 𝐹 𝜔(𝑔) = −𝑃 ∙
𝑙

𝑐
∙
𝜕𝑛eff(𝜔,𝑔)

𝜕𝑔
𝑒 𝑥 . (3.40) 

The absolute value of this force can be expressed using the energy 𝑉𝜔 as 

 𝐹𝜔(𝑔) =
1

𝑛eff(𝜔,𝑔)
∙
𝜕𝑛eff(𝜔,𝑔)

𝜕𝑔
∙ 𝑉𝜔(𝑔) . (3.41) 
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For an electromagnetic wave, such as a wave package, which does not consist of a single frequency 

𝜔, the total energy associated with light guided by the waveguide mode is given by236 

  𝐸tot(𝑔) = 𝑃 ∙ 𝑙 ∙
𝑛g(𝑔)

𝑐
 , (3.42) 

where 𝑃 is the optical power, 𝑙 is the length of the waveguide, 𝑐 is the speed of light in vacuum, and 

𝑛g(𝑔) is the group refractive index. Note that 𝐸tot is associated with the group velocity 
𝑐

𝑛g
. The result-

ing optical force 𝐹opt can be expressed as236 

 𝐹opt(𝑔) =
1

𝑛eff(𝑔)
∙
𝜕𝑛eff(𝑔)

𝜕𝑔
∙  𝐸tot(𝑔) = (

𝑛g(𝑔)

𝑛eff(𝑔)
∙ 𝑃 ∙

𝑙

𝑐
) ∙

𝜕𝑛eff(𝑔)

𝜕𝑔
 . (3.43) 

As can be seen from equation (3.43), waveguide geometries for which the derivative 
𝜕𝑛eff

𝜕𝑔
 is larger 

compared to other waveguide geometries lead to larger optical gradient forces. 𝐹opt is proportional 

to both the optical power 𝑃 and the length of the device 𝑙. It is therefore useful to define a normalized 

optical force 𝐹n
opt as  

 𝐹n
opt(𝑔) =

𝐹opt(𝑔)

𝑃∙𝑙
= (

𝑛g(𝑔)

𝑛eff(𝑔)
∙
1

𝑐
) ∙

𝜕𝑛eff(𝑔)

𝜕𝑔
 . (3.44) 

The absolute value of normalized optical force in integrated optomechanical circuits is typically on 

the order of 
pN

µm∙mW
 .216,223 In section 3.4.3 it will be shown how optical forces drive the motion of 

diamond micromechanical oscillators. 

3.3.6 Design of the mechanical resonator 

The goals for our design of a mechanical resonator for tunable diamond integrated PICs are: 

1) that the mechanical resonator can be fabricated in close proximity to a waveguide, with 

which it interacts, 

2) that the resonance frequency can be easily chosen via the geometric parameters, 

3) low losses concerning the photons which propagate in the waveguide, 

4) the possibility to spatially isolate the waveguide from the force which drives the mechanical 

motion. 

A design which enables to satisfy these goals is the H-resonator, which has been employed in silicon 

nitride as a broadband phase shifter for PICs167. Figure 23 a) shows a schematic of the H-resonator 

geometry. It consists of two doubly clamped beams of length 𝐿, on the order of tens of micrometers, 

and width 𝑤H, on the order of hundreds of nanometers. Both beams are joined by a central block of 

length 𝑏cen = 7 µm and width ℎcen = 5 µm (block dimensions are chosen arbitrarily), forming a 

structure which resembles the letter “H”. The central block includes an array of holes, which form a 

two-dimensional photonic crystal slab, which will be further explained in section 3.3.6.1. The H-res-

onator is evanescently coupled to a curved waveguide which supports a single mode for TE-like po-

larization. Along an interaction length of waveguide and mechanical oscillator 𝐿int = 12 µm the H-

resonator and waveguide are parallel to each other. Figure 23 b) shows a cross-section through both 

the waveguide of width 𝑤WG = 1 µm and the H-resonator arm. They are separated by a small gap 𝑔 =
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150 nm. The material of both structures is diamond of thickness 𝑑 = 600 nm. The H-resonator con-

sists of fully etched diamond, while the waveguide is partially etched and hence connected to a con-

tinuous diamond film (continuing on the left side of the schematic in the 𝑥-direction). The underly-

ing silicon oxide layer is removed below both the H-resonator and the waveguide. Hence diamond 

and air are the only materials present. The position of the waveguide is fixed due to its connection 

to the surrounding diamond layer, but the H-resonator can move in the 𝑥-direction (as it is free-

standing in the 𝑥/𝑦-plane and only fixed at the end of the arms in the 𝑧-direction). A displacement 

of the H-resonator in the 𝑥-direction leads to a change in gap size 𝑔.  

 

Figure 23 c) shows the simulated distribution of the electric field for the TE-like waveguide mode 

for 𝑤H = 600 nm, 𝑤WG = 1 µm. The gap between H-resonator and waveguide is 𝑔 = 150 nm and the 

evanescent field of the waveguide extends into the H-resonator arm. Figure 23 d) shows a SEM mi-

crograph of the H-resonator and the adjacent waveguide. The underetched area, the clamping points 

of the beams, and the close proximity to the waveguide are clearly visible.  

3.3.6.1 Optical isolation in nanomechanical resonators 

The central block of the H-resonator contains a hexagonal array of holes, which leads to a two-di-

mensional photonic crystal slab, as explained in section 2.1.6. We make use of the results of the sim-

ulations presented in that section, which showed that for a hole radius r = 180 nm and a lattice 

period 𝑎 = 600 nm, a photonic bandgap exists for the propagation of light with TE-like polarization 

at telecom wavelengths in the diamond layer. Figure 24 shows the distributions of the electric field, 

resulting from 3D FDTD simulations, for light propagation along a waveguide coupled to an H-reso-

nator without (a) and with PhC slab (b). Light is launched into the waveguide on the left side and, if 

no air holes are present, light couples evanescently into the H-resonator and propagates into the 

 

Figure 23 - H-resonator device geometry: a) Sketch of the H-resonator, coupled to a waveguide (top-view in the 

𝑥/𝑧-plane). The arm width 𝑤H and the arm length 𝐿 are the two geometric parameters which are varied between 

different circuits. b) Cross-section through the H-resonator arm of width 𝑤H and the waveguide of width 𝑤WG, sepa-

rated by a gap of size 𝑔. The location of the cross-section in the 𝑥/𝑦-plane is indicated as a cyan dashed line in a) and d). 

c) Simulated distribution of the electric field for the TE-like optical mode for 𝑤H = 600 nm, 𝑤WG = 1 µm and 
 𝑔 = 150 nm. d) Colorized SEM micrograph of a freestanding diamond H-resonator, which is clamped by the diamond 
layer and evanescently coupled to a half-etched waveguide. 
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central block and the upper arms. Such a design would lead to a significant loss for the waveguide, 

introduced by the H-resonator in close proximity. When replacing the central block with a PhC slab, 

it acts as a mirror and restricts light propagation to one side of the mechanical resonator. 

 

This design not only supresses the losses due to light propagating into the mechanical resonator, but 

also optically isolates the bottom and top side of the resonator. This can for example be used for 

driving the mechanical oscillation by applying force on the upper arm of the H-resonator without 

leading to cross-talk or additional losses concerning the light in the waveguide at the bottom arm. 

We will make use of this concept in section 3.4.4. 

3.3.6.2 Simulation of the in- and out-of-plane motion 

We design mechanical resonators with fundamental frequencies in the radio frequency (RF) range, 

specifically in the range from 1 MHz to 120 MHz for which comparable devices from standard mate-

rials such as silicon and silicon nitride exist in the literature231. For this purpose we simulate the 

displacement fields and eigenfrequencies for the motion of H-resonators of various beam widths and 

lengths using 3D FEM in COMSOL Multiphysics. The boundary conditions are given by the H-reso-

nator arms, which continue into a 300 nm thick diamond film. (The diamond film contains structures 

of 50% relative etch depth, etched into an initially 600 nm thick diamond layer.) Fixed boundary 

conditions are assumed for the bottom area of the diamond layer. Material properties for the dia-

mond are assumed as indicated in Table 1. Figure 25 shows the displacements of an H-resonator (𝑑 =

600 nm, 𝑤H = 600 nm, 𝐿 = 40 µm) for its fundamental out-of-plane mode at 4.0 MHz and in-plane 

mode at 4.9 MHz. 

 

 

Figure 24 - H-resonator with a photonic crystal slab: Simulated mode pattern for an H-resonator which is eva-
nescently coupled to a waveguide at the bottom (a) without and (b) with a PhC slab inside the H-resonator, which 
acts as a mirror. The PhC slab optically isolates the bottom and top side of the resonator. 

 

Figure 25 - Mechanical modes of an H-resonator: FEM simulation for an H-resonator with thickness 𝑑 = 600 nm, 
arm width 𝑤H = 600 nm and length 𝐿 = 40 µm. The shown displacements are exaggerated to improve the clarity of 
the presentation. a) Fundamental out-of-plane mode at 4.0 MHz. b) Fundamental in-plane mode at 4.9 MHz. 
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We are mainly interested in the fundamental in-plane mode, which will lead to the largest phase 

shift in the adjacent waveguide. Figure 26 shows the resonance frequency of the fundamental in-

plane mode for H-resonators of various beam widths 𝑤H (400 nm, 600 nm, 800 nm, 1000 nm) and 

lengths 𝐿 (30 µm, 35 µm, 40 µm, 45 µm). The simulated resonance frequencies are proportional 

to 𝑤H (Figure 26 a) and proportional to 1/𝐿2, as shown in Figure 26 b). As for the simplified model 

of doubly clamped beams, as treated within the Euler-Bernoulli theory (see equation (3.34)), the 

resonance frequencies scale proportional to 𝑤/𝐿2. 

 

We calculate the effective modal masses from the simulated displacement fields for the fundamental 

in-plane mode of the various H-resonator geometries according to equation (3.28). For example for 

an H-resonator of length L = 40 µm and width 𝑤 = 800 nm the physical mass amounts to 𝑚0 =

189 pg, while the effective modal mass amounts to 𝑚eff = 118 pg, hence about 63% of the physical 

mass contribute to the energy of the oscillation. 

3.3.7 Design of the integrated optomechanical circuits 

Measuring small changes in the intensity of light with high precision is possible using commercial 

photodetectors. In order to detect mechanical motion it is therefore useful to make the transmission 

of a photonic device dependent on the position of the mechanical element. For this purpose we in-

corporate evanescently coupled H-resonators in a phase-sensitive PIC. Figure 27 a) shows a SEM 

micrograph of the integrated optomechanical circuit. Two focusing grating couplers are used for 

coupling of light between the PIC and off-chip light source and photodetector. The actual PIC con-

sists of a Mach-Zehnder interferometer, as introduced in section 2.1.4, with two interferometer arms 

which differ in length by Δ𝑙 = 100 µm. The MZI enables to translate phase changes within one inter-

ferometer arm into intensity changes. By incorporating one H-resonator in each interferometer arm 

we can study the dynamics of two independent mechanical resonators using one PIC. As explained 

in section 3.3.4, within the interaction length 𝑙int the effective refractive index 𝑛eff of the waveguide 

depends on the displacement 𝑢 of the mechanical element. Hence a mechanical motion leads to an 

 

Figure 26 - Simulated resonance frequencies: a) Simulated fundamental in-plane resonance frequencies in de-
pendence of width 𝑤, for different lengths 𝐿. b) Simulated resonance frequencies as a function of 1/𝐿2 for different 
widths. As for doubly clamped beams treated within the Euler-Bernoulli theory the resonance frequencies scale pro-
portional to 𝑤/𝐿2. 
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accumulated phase shift, given by equation (3.34), which in turn translates into an intensity change 

via the MZI.  

 

Figure 27 b) shows a close-up SEM image of the H-resonator and the adjacent waveguide, with a gap 

of 𝑔0 = 150 nm at rest positions. Displacements of the mechanical resonator lead to a change in gap 

size, resulting in a change of the electric field distribution of the waveguide, which is shown in Figure 

27 c). The simulation result for the dependence of 𝑛eff on the gap size 𝑔 = 𝑔0 + 𝑢 is shown in Figure 

27 d). If the H-resonator moves away from the waveguide, 𝑔 increases, leading to a decrease in the 

effective refractive index. An exponential fit yields a relation of 

 𝑛eff(𝑢) = 2.12964 + 6.43 ∙ 10−4 ∙ 𝑒−
𝑢

52.24 nm . (3.45) 

For our geometry we can therefore for small displacements (𝑢 ≪ 52.24 nm) consider only the linear 

term of the Taylor expansion, such that a change in 𝑛eff is proportional to a displacement 𝑢. The 

dependence of the transmission of a lossless Mach-Zehnder interferometer 𝑇 on the phase difference 

𝜙 between the two interferometer arms, according to equation (2.7), is given by 

 𝑇(𝜙) = cos2 (
𝜙

2
) . (3.46) 

We consider a MZI with a geometric path difference Δ𝑙 between both arms and a homogeneous ef-

fective refractive index 𝑛eff along both interferometer arms. The phase difference 𝜙𝑜 which follows 

from the path difference Δ𝑙 is given by 

 𝜙𝑜(𝜆0) =
2𝜋

𝜆0
(𝑛𝑒ff(𝜆0) ∙ Δ𝑙) . (3.47) 

A displacement 𝑢(𝑧) along the interaction length 𝑙int leads to an additional phase differ-

ence 𝜙𝑛(𝜆0, 𝑢(𝑧)), given by equation (3.33). Following equation (3.34), for small displacements in the 

𝑥-direction, this phase can be approximated, using the average displacement �̅�, as  

 𝜙𝑛(𝜆0, �̅�) =
2𝜋

𝜆0
∙ Δ𝑛eff(𝜆0, �̅�) ∙ 𝑙int , (3.48) 

with an average change in effective refractive index along the interaction length given by 

 Δ𝑛eff(𝜆0, �̅�) ≡ 
𝜕𝑛eff(𝜆0,𝑢)

𝜕𝑢
|
𝑢=0

∙ �̅� . (3.49) 

 

Figure 27 - Integrated optomechanical circuit: a) Optical micrograph of the photonic integrated circuit, incorpo-
rating H-resonators. b) Close-up SEM image of a freestanding H-resonator and the adjacent waveguide. c) Electric 
field distribution of the TE-like mode of the waveguide, separated from the H-resonator arm by 𝑔0 = 150 nm.  
d) Simulated dependence of 𝑛eff on the gap size 𝑔 for an H-resonator of width 𝑤H = 600 nm and a waveguide of 
width 𝑤WG = 1 µm. 
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Note that the phase difference 𝜙𝑛 resulting from the optomechanical interaction does not depend 

on the length difference Δ𝑙 and hence not on the interferometer design, but rather on the interaction 

length 𝑙int and how strongly 𝑛eff depends on the displacement 𝑢. The total phase difference for light 

with vacuum wavelength 𝜆0 can hence be expressed as  

 𝑇(𝜆0, �̅�) = cos2 (
1

2
[𝜙𝑜(𝜆0) + 𝜙𝑛(𝜆0, �̅�)]) =  cos2 (

1

2
[𝜙𝑜(𝜆0) +

2𝜋

𝜆0
∙ Δ𝑛eff(�̅�) ∙ 𝑙int]) . (3.50) 

In order to be able to measure small displacements, it is crucial to maximize the translation from 

displacement �̅� into a relative change in transmitted intensity 
∆𝑇(𝜆0,�̅�)

𝑇(𝜆0,�̅�=0)
≡

𝑇(𝜆0,�̅�)−𝑇(𝜆0,�̅�)

𝑇(𝜆0,�̅�=0)
. Small displace-

ments �̅� correspond to small phase differences (𝜙𝑛(�̅�) ≪  2𝜋) and we can therefore Taylor expand 

equation (3.50) as 

 𝑇(�̅�) = 𝑇(�̅� = 0) +
𝜕𝑇(�̅�)

𝜕�̅�
|
�̅�=0

 ∙ �̅� + 𝑂(�̅�2)  (3.51) 

with 𝑇(�̅� = 0) = cos2 (
1

2
𝜙𝑜(𝜆0)) and  

 𝜕𝑇(�̅�)

𝜕�̅�
|
�̅�=0

= 2cos (
𝜙0

2
) ∙ (−sin (

𝜙0

2
)) ∙ (𝜋 ∙

𝑙int

𝜆0
) ∙

𝜕𝑛𝑒𝑓𝑓(𝜆0,𝑢)

𝜕𝑢
|
𝑢=0

 . (3.52) 

The change in transmission due to a mechanical displacement can therefore be maximized by choos-

ing a wavelength 𝜆m such that the absolute value of 
𝜕𝑇(�̅�)

𝜕�̅�
|
�̅�=0

 is maximal, hence 𝜙𝑜(𝜆m) =  𝜙max ≡

(2𝑚 + 1) ∙
𝜋

2
 for 𝑚 ∈ ℕ. Note that 𝜙𝑜(𝜆𝑚) =  𝜙max coincides with the wavelengths of maximum slope 

in the transmission spectrum 𝑇MZI(𝜆0), as defined in equation (2.9).9 This enables in the experiment 

to maximize the translation from mechanical displacement to intensity changes by choosing the 

wavelength using the transmission spectrum.  

We neglect higher order terms 𝑂(�̅�2) and can hence express the relative change in transmitted 

intensity10 for a wavelength 𝜆m as 

 |
∆𝑇(𝜆𝑚,�̅�)

𝑇(𝜆𝑚,�̅�=0)
| =

2𝜋

𝜆0
∙ (𝑙int ∙

𝜕𝑛eff(𝜆0,𝑢)

𝜕𝑢
|
𝑢=0

∙ �̅�) = 𝜙𝑛(�̅�) . (3.53) 

The relative change in transmitted intensity through the MZI can therefore be considered to be pro-

portional to the phase 𝜙𝑛(�̅�) and proportional to the displacement of the oscillator. This linear trans-

formation enables to study the behavior of the mechanical oscillator in frequency or time domain by 

studying the optical transmission. 

According to the simulation results, presented in Figure 27 d) for an H-resonator with 𝑤H =

600 nm, the slope at rest position amounts to 
𝜕𝑛eff(𝜆0,𝑥)

𝜕𝑢
|
𝑢=0

= −1.215 ∙ 10−5  
1

nm
. With an interaction 

length of 𝑙int = 12 µm we can estimate the phase change for light with 𝜆0 = 1550 nm for an assumed 

average displacement of ∆𝑢̅̅̅̅ = 100 nm, according to equation (3.48), as ∆𝜙(𝜆0) ≈ −
1

100
∙ 2𝜋. Dis-

placements in the experiment are much smaller and hence the Taylor expansion Error! Reference 

                                                        

9 Note that the slope 
𝜕𝑇𝑀𝑍𝐼 (𝜆0)

𝜕𝜆0
 depends on the path difference 𝛥𝑙 (see equation (2.8)), while the relative intensity change 

∆𝑇(𝜆𝑚,𝑢)

𝑇(𝜆𝑚,𝑢=0)
 does not, as can be seen in equation (3.23). It rather depends on the interaction length 𝑙int. Hence the measure-

ment sensitivity for displacements is independent from the path difference, as long as a wavelength 𝜆𝑚 within the range of 
the laser and within the bandwidth of the grating coupler can be chosen, such that  𝜙𝑜(𝜆𝑚) =  𝜙max. 

10 Note that the sign of the intensity change depends on the choice of the wavelength 𝜆m, corresponding to a negative or 
positive slope in the transmission spectrum 𝑇MZI(𝜆0). 
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source not found. is justified. This ensures the linearity of all involved elements, such that intensity 

changes are proportional to the mechanical displacement. If on the other hand larger phase shifts 

are intended, this is possible by choosing a smaller gap size 𝑔0 and by increasing the arm length 𝐿 

and the interaction length 𝑙int, as well as by cascading multiple H-resonators. Phase shifts as large as 

∆𝜙 ≈ 𝜋 have been shown for long H-resonators in silicon nitride167 and phase shifts larger than 2𝜋 

have been shown recently for an alternative microbridge design in silicon nitride237. Tunable phase 

shifts from 0 to 2𝜋 are hence generally possible using optomechanical devices in PICs and here we 

show the first proof-of-principle devices in diamond PICs. 

As explained in section 3.3.5, the dependence of 𝑛eff on the gap size implies, that light propagating 

in the waveguide leads to an optical gradient force, which attracts the H-resonator. We experimen-

tally show in section 3.4.3 the use of these optical gradient forces to actively drive the mechanical 

motion. 

3.4 Diamond integrated optomechanics: experiments 

3.4.1 Fabrication of integrated optomechanical circuits11 

 

The fabrication process of optomechanical components starts with a chip, containing half-etched 

diamond PICs, covered by HSQ resist. These PICs were fabricated using the four fabrication steps 

                                                        

11The fabrication procedures for diamond optomechanical circuits presented within this section were developed by the au-
thor of this thesis within his master thesis (Diplomarbeit). The fabrication of most of the devices presented within chapter 
3.4 was performed by Sandeep Ummethala within his master thesis, which was supervised by the author of this thesis. 

 
Figure 28 - Fabrication of optomechanical circuits: Chromium (Cr) is deposited and PMMA is spin coated on a 
photonic chip, containing half-etched photonic circuits, covered by HSQ resist. After electron beam lithography 
(EBL) and resist development, the rectangular pattern is transferred into the chromium via etching. The remaining 
chromium acts as hard mask for fully etching of diamond within the rectangular area. Finally the chromium and HSQ 
are removed and the silicon oxide within the opening window is partially removed via wet etching, resulting in the 
final optomechanical circuits. 
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explained in section 2.4.2 (steps 1 to 4 are illustrated in Figure 16). Figure 28 a) illustrates the con-

secutive fabrication steps: A 25 nm thick chromium layer is deposited via electron beam evaporation 

onto the entire photonic chip (step 5). Then 800 nm of poly(methyl methacrylate) (PMMA) positive 

tone resist are spin coated on the chip (step 6). Using EBL, with an area dose of 500 µC/cm2, a rec-

tangular opening window is defined in PMMA for each PIC. The resist is developed for 15 min in a 

1: 3 mixture of methyl isobutyl ketone: isopropanol (step 7). The rectangular opening window layout 

is transferred from PMMA into chromium via wet etching (Sigma Aldrich chromium etchant 651826) 

(step 8). A reactive ion etching step in oxygen/argon plasma (plasma details are described in sec-

tion 2.4.2) removes the PMMA while chromium and HSQ on the PIC act as hard mask for diamond. 

Hence diamond which is not covered by either metal or HSQ is fully etched down until the underly-

ing silicon oxide is exposed (step 9). After removing the chromium hard mask via wet etching, the 

silicon oxide within the opening window is partially removed in a wet etching step using hydrofluoric 

acid (HF). This results in the final optomechanical circuits. Due to the underetching, each diamond 

PIC now contains a freestanding structure, which is clamped within the half-etched diamond layer 

at the edges of the opening window. Details concerning all lithography and etching steps are pro-

vided in appendix A2.  

3.4.2 Thermomechanical displacement measurement 

Without applying an external driving force, the H-resonators are in thermal equilibrium with their 

environment and hence driven by a white noise force associated with the thermalization, as ex-

plained in section 3.3.3. We measure the thermal motion of the H-resonators using a vacuum meas-

urement setup, depicted in Figure 29. The photonic chip containing the optomechanical circuits is 

placed on a 4-axis stage below an optical fiber array inside a vacuum chamber and one PIC is char-

acterized at a time. The measurements are carried out at a pressure  𝑝 < 10–5 mbar, to ensure that 

air damping is negligible and intrinsic damping of the H-resonators is dominating their behavior. 

The pressure dependence of the mechanical quality factor will be presented in section 3.4.4.2.  

 

 

Figure 29 - Measurement of thermomechanical motion: Schematic of the measurement setup used for the meas-
urement of the thermal motion of the diamond H-resonators via an on-chip interferometer. The transmitted optical 
power is analyzed with an electrical spectrum analyzer and reveals the spectral density of the thermal motion. 
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The measurement setup is an adaptation from the general transmission measurement setup ex-

plained in section 2.4.3. Infrared light from a tunable laser is coupled via optical fibers, the fiber 

array, and grating couplers into the input of the MZI. The relative position of fiber array and grating 

couplers and the polarization are adjusted for maximum transmission (corresponding to the TE-like 

waveguide mode). After transmission through the MZI, light is detected by a low-noise photodetec-

tor. The transmission spectrum of the PIC is acquired and the laser wavelength 𝜆1 is chosen such 

that the slope in the transmission spectrum is maximal, corresponding to a maximum concerning 

translation of mechanical motion into a change in transmission, as explained in section 3.3.7. We 

note that each PIC contains two H-resonators, one in each interferometer arm, which we can both 

characterize in one measurement. The output voltage of the photodetector is proportional to the 

transmitted optical power. For small displacements and small phase changes in the waveguide the 

transmitted power is proportional to the displacement. Using a swept-tuned, heterodyne12 electrical 

spectrum analyzer we analyze the spectral density of the detector’s output voltage, from which we 

infer the amplitude spectral density of the mechanical motion. The spectral analysis of the detector 

voltage reveals the resonance frequencies of the mechanical resonators. 

  

Figure 30 a) shows the measured spectral density in a frequency range around 4.3 MHz, measured 

for a PIC containing two H-resonators with 𝐿 = 40 µm and 𝑤H = 600 nm. The two resonances cor-

respond to thermal motion at the fundamental in-plane resonance frequency of the two H-resonators 

in the two different interferometer arms. Small variations in fabrication, such as concerning lithog-

raphy and etching, lead to deviations in the device dimensions. This in turn leads to slightly different 

mechanical resonance frequencies for H-resonators, which by design have the same geometry. As 

explained in section 3.3.3, the power spectral density 𝑆𝑥(𝜔) is associated with the kinetic energy of 

                                                        

12 Heterodyne refers to the down-conversion of the frequency via mixing with an internal source. Each measurement point 
refers to the power within the width of the passband filter. 

 

 

Figure 30 - Thermal motion: a) Calibrated spectral density of the thermal motion of an H-resonator (𝐿 =
40 µm, 𝑤H = 600 nm). The two resonance peaks around 4.31 MHz correspond to fundamental in-plane motion of the 
two mechanical resonators in separate arms of the MZI. The mechanical quality factor Q is extracted from the Lo-
rentzian fit to the power spectral density. b) The calibrated spectral density of the thermal motion of the H-resonator 
with the highest quality factor of 𝑄 = 28 800 at 6.448 MHz (𝐿 = 40 µm, 𝑤H = 800 nm). 
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the fundamental mode and hence follows a Lorentzian line shape. We therefore extract the mechan-

ical quality factors by fitting Lorentzian curves to the square of the voltage spectral density. This 

yields values for the FWHM of the resonances of 𝛿𝑓 = 167 Hz and 𝛿𝑓 = 162 Hz, corresponding to 

mechanical quality factors of 𝑄 = 25 800 and 𝑄 = 26 700, respectively. Using equation (3.28) the 

effective mass is calculated, using the mode shape from the FEM simulations, as 𝑚eff = 102 pg. We 

calibrate the spectral density at resonance according to equation (3.31), using the theoretical thermal 

energy of the resonator and the experimental value for the quality factor. The spectral density at 

resonance therefore amounts to √𝑆𝑥 = 4.66 ∙ 10−13 m/√Hz, which calibrates the 𝑦-axis in Figure 30. 

The displacement sensitivity corresponds to the noise floor, above which a measurement signal can 

be detected. The measurement for this specific device hence shows a displacement sensitivity 

of 105 fm/√Hz . We measure the thermal motion for all devices on the photonic chip.  

Figure 30 b) shows the measured thermal motion for the H-resonator with the largest quality 

factor 𝑄 = 28 800. With a length 𝐿 = 40 µm and a width 𝑤H = 800 nm the resonance frequency is 

𝑓 = 6.448 MHz and the FWHM amounts to 𝛿𝑓 = 224 Hz. Calibration via the thermal energy yields a 

measurement sensitivity of 32 fm/√Hz at an optical power in the waveguide 𝑃opt ≈ 3 mW. Figure 

31 a) shows resonance frequencies of the fundamental in-plane mode of H-resonators in dependence 

of their arm width 𝑤H for different lengths 𝐿, which we extract from the measurement of the thermal 

motion. The frequencies range from about 1 MHz to 15 MHz and scale linearly with the width 𝑤H and 

proportional to 
1

𝐿2 with the length 𝐿 of the H-resonator, as expected from the simulations. The meas-

ured resonance frequencies are about 15% smaller than the simulated frequencies. We attribute this 

to fabrication tolerances and stress in the thin film, which can lead to shifts of the resonance fre-

quency238. Furthermore the Young's modulus of polycrystalline diamond layers can be as large as for 

single crystalline diamond (as used in the simulations) but can also be smaller, depending on depo-

sition parameters such as power density and methane concentration239. 

 

 
Figure 31 - Resonance frequencies and mechanical quality factors: a) Measured resonance frequencies of the 
fundamental in-plane mode of H-resonators in dependence of their arm width 𝑤H for different lengths 𝐿. b) Quality 
factors for the fundamental in-plane mode of H-resonators in dependence of the resonance frequency. All 𝑄-factors 
are above 10 000, with a maximum value of 𝑄 = 28 800 at 6.45 MHz. 
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Figure 31 b) shows the quality factors for the fundamental in-plane mode of all measured H-resona-

tors, in dependence of the resonance frequency. All 𝑄-factors are above 10 000, with a maximum 

value of 𝑄 = 28 800 at 6.45 MHz, corresponding to the measurement curve shown in Figure 30 b). 

The finite value for the mechanical quality factor is a manifestation of the dissipative damping acting 

on the beam. The dissipation in micromechanical resonators can be attributed to aerodynamic losses, 

clamping losses, surface losses, and internal friction, the latter typically incorporates thermo-elastic 

damping, phonon-phonon interactions, and losses due to defects240. A decrease of 𝑄 with higher 

frequencies has been observed for many micromechanical resonators, which can be attributed to the 

scaling of different damping mechanisms241. Therefore often the product 𝑄 · 𝑓 is given as a figure of 

merit for micromechanical resonators. A high value of 𝑄 · 𝑓 is for example critical for low phase noise 

oscillators242 and cavity optomechanical mass spectroscopy243. An overview over demonstrations of 

micromechanical resonators in PCD and SCD can be found in a recent review article80. A comparison 

shows that best value of 𝑄 · 𝑓 = 186 GHz for our H-resonators is among the highest values for dia-

mond micromechanical resonators at room temperature. Only recently a record value of 𝑄 · 𝑓 ≈ 1.9 ∙

104 GHz, which is sufficient for room temperature single-phonon coherence, was achieved for SCD 

micro-disk resonators18. For quantum optical circuits our resonators would be employed in SCD, and 

hence we do not further investigate which damping mechanism is limiting the quality factors in our 

H-resonators from PCD. In chapter 5 we will demonstrate the transfer of our diamond PICs from 

PCD to SCD. 

In this section we measured the thermal motion and determined resonance frequencies and qual-

ity factors of the H-resonators. In the following sections we show the controlled actuation via optical 

gradient forces and electrostatic forces. 

3.4.3 Driven motion via optical gradient forces 

 

Optical gradient forces, as introduced in section 3.3.5, can be used to drive the motion of microme-

chanical oscillators. This allows all-optical transduction of motion on a photonic chip, without the 

need for on-chip electronics for the driving force. Such systems are of interest for applications in 

 
Figure 32 - Ring resonator with H-resonator: a) Schematic of the optomechanical system, consisting of an optical 
ring resonator and a mechanical H-resonator. The schematic is not to scale. b) Microscope image of a fabricated 
diamond integrated optomechanical circuit.  
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harsh environments, such as in gases or liquids244–246 which are incompatible with electronics. Fur-

thermore optical forces in diamond PICs are of interest for cavity optomechanics.161 We therefore 

combine an optical cavity and a mechanical resonator and demonstrate actuation via optical gradient 

forces. Figure 32 a) shows a schematic and Figure 32 b) shows a microscope image of a fabricated 

optomechanical circuit. The circuit consists of a ring resonator which is evanescently coupled to a 

bus waveguide via a gap 𝑔R and to the H-resonator via a gap 𝑔. At rest position of the mechanical 

motion the gap amounts to 𝑔𝑜 = 150 nm. Compared to the PIC design explained in section 3.3.7, the 

ring resonator replaces the MZI as the element which translates mechanical displacement via a phase 

change into a change in transmitted intensity. The ring geometry is defined by its radius 𝑟 and 

width 𝑤𝑅 = 1 µm, which is equal to the waveguide width. The H-resonator geometry is equal to the 

one described in the previous section with arm width 𝑤H and arm length 𝐿. The ring resonator ge-

ometry (𝑟 = 70 µm) and its coupling to the waveguide (𝑔R = 240 nm) are chosen such that the cou-

pling is close to critical coupling, while a moderate quality factor is preserved.  

 

Figure 33 a) shows the transmission spectrum of one device. The envelope is given by the focusing 

grating couplers and the ring resonances are visible as dips with a free spectral range of 2.2 nm. The 

extinction ratio exceeds 15 dB over the full spectral range, showing close-to-critical coupling of wave-

guide and ring. Figure 33 b) shows the transmission in the spectral range around two ring resonances. 

From Lorentzian fits to the resonances we find an average optical quality factor of 𝑄 = 4800. The 

quality factor is consistent with the values for critically coupled optical ring resonators without me-

chanical H-resonators (see section 2.4.4). The evanescent coupling to the H-resonator hence does 

not introduce noticeable losses. 

We fabricate a photonic chip which contains about 1000 of the described optomechanical cir-

cuits, using the fabrication procedure explained in section 3.4.1. We characterize the devices in the 

vacuum chamber setup, as explained in the previous section. We focus on H-resonators with ex-

tended lengths up to 𝐿 =  70 µm, which have smaller spring constants and hence driving forces 

translate into larger amplitudes. We first measure the thermal motion and its transduction into in-

 

Figure 33 - Photonic circuit transmission: a) Transmission spectrum of a ring resonator (𝑟 = 70 µm, 𝑔R  = 240 nm, 
𝑤𝑅 = 1 µm), which is coupled to a freestanding H-resonator (𝑔 = 150 nm). The ring resonances have a free spectral 
range of 2.2 nm and the extinction ratio exceeds 15 dB. b) Transmission spectrum in a small wavelength range around 
two ring resonances. Lorentzian fits to the resonances (red curves) reveals an average optical quality factor of 𝑄 = 4800. 
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tensity changes, via ring resonances. For an H-resonator with L =  70 µm and wH = 600 nm the ther-

mal motion reveals a fundamental resonance frequency of 𝑓 = 1.126 MHz. A Lorentzian fit yields a 

FWHM of 𝛿𝑓 = 52.7 Hz and a corresponding quality factor of 𝑄 =  21350 ± 420. Accurately meas-

uring high quality factor at comparably low frequencies is challenging in the frequency domain, be-

cause the resonance linewidth approaches the smallest filter width of the spectrum analyzer (30 Hz) 

and because thermal drift of the resonance frequency broadens the measured resonance shape. Tem-

perature changes within the measurement time as small as 20 mK can lead to noticeable changes in 

resonance frequency (section 3.4.4.3 presents measurements concerning the temperature depend-

ence of the resonance frequency). To avoid problems concerning thermal drifts we confirm the qual-

ity factors in the time domain via ring down of driven motion (presented in section 3.4.3.2). 

 

Light circulating in the ring applies an attractive force on the H-resonator in close proximity. Figure 

34 a) shows a close-up SEM image of the interaction region of ring and H-resonator. The gap size at 

the point of smallest distance at rest position of the mechanical motion is 𝑔𝑜 = 150 nm. According 

to equation (3.44), the optical force per interaction length 𝑙 and optical power 𝑃 can be calculated as 

 𝐹n
opt(𝑔) =

𝐹opt(𝑔)

𝑃∙𝑙
= (

𝑛g(𝑔)

𝑛eff(𝑔)
∙
1

𝑐
) ∙

𝜕𝑛eff(𝑔)

𝜕𝑔
 , 

where 𝑔 is the gap size between the H-resonator and the ring resonator. Figure 34 b) shows the de-

pendence of  
𝜕𝑛eff

𝜕𝑔
 on the gap size obtained by FEM simulation (see Figure 27 d)) for 𝑛eff(𝑔). The 

resulting normalized optical force is shown in Figure 34 c). The force is attractive and its magnitude 

exponentially decreases with increasing gap size as 

 𝐹𝑛(g) =  −0.050 ∙ e−
𝑔−𝑔0

54.3 nm
 pN

µm∙mW
  . (3.54) 

Due to the curvature of the ring, the size of the gap between ring and H-resonator (at rest position) 

depends on the 𝑧-coordinate as 𝑔(𝑧) = 𝑔0 + 𝑟 − √𝑟2 − 𝑧2. We calculate the total force at the inter-

face between full ring and H-resonator as  

 

Figure 34 - Optical gradient force between ring resonator and H-resonators: a) SEM image of the interaction 
region of ring and H-resonator with a gap in rest position of 𝑔𝑜 = 150 nm. b) Simulated dependence of the derivative 
of 𝑛eff with respect to the gap size 𝑔 for an H-resonator with 𝑤H = 600 nm for gap sizes values around 𝑔𝑜. c) Depend-
ence of the normalized optical gradient force on the gap size 𝑔, in piconewton per µm interaction length and per mW 
optical power in the waveguide.  
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 𝐹opt(𝑔0) = ∫ 𝐹𝑛
opt(𝑔(𝑧)) 𝑑𝑧

𝑧=𝑟

𝑧=−𝑟
≡ 𝐹𝑛

opt(𝑔𝑜) ∙ 𝐿eff  . (3.55) 

It is useful to define the effective interaction length 𝐿eff, as the length for which a structure of parallel 

waveguide and H-resonator (with constant gap 𝑔𝑜) would yield the same total force. This yields an 

optical force per optical power of 

  𝐹opt(𝑔0) = − 0.24 pN/mW (3.56) 

and an effective interaction length 𝐿eff =  4.9 µm. Next, we actively drive the mechanical motion via 

optical gradient forces and verify this via a pump-probe measurement. 

3.4.3.1 Pump-probe measurement of driven motion via optical gradient 
forces 

 

We drive the H-resonator motion with optical forces and measure the response in vacuum 

(𝑝 < 10–5 mbar) using the pump-probe measurement setup depicted in Figure 35. The setup consists 

of components for the interferometric detection, shown in blue color, and the components for driv-

ing the motion via optical forces, as depicted in red color. We apply optical forces via a laser, referred 

to as pump laser, at a wavelength 𝜆2. The optical force is proportional to the power of the pump laser 

which we modulate via an electro-optical modulator (EOM, Lucent 2623NA) at frequency 𝑓mod re-

sulting in a pump power 𝑃pump: 

 𝑃pump = 𝑃DC + 𝑃RF ∙ sin (2π ∙ 𝑓mod ∙ t) . (3.57) 

Besides a static optical force due to 𝑃DC, a sinusoidal alternating optical force acts on the mechanical 

oscillator, as considered in the model for a driven harmonic oscillator (see section 3.3.1). The ratio 

𝑃RF/𝑃DC is referred to as modulation depth. We operate the EOM in its linear regime, where ampli-

tude of the power modulation depends linearly on the amplitude of the sinusoidal voltage supply. 

An erbium doped fiber amplifier (EDFA, PriTel LNHPFA-33) enables comparably large optical forces 

with an adjustable output power up to 2.5 W.  

 

Figure 35 - Pump-probe measurement: Schematic of the setup for measuring mechanical motion driven by optical 
gradient forces. The mechanical resonator is actuated with optical forces by light from a pump laser (red color), which 
is modulated at the mechanical resonance frequency via an electro-optical modulator (EOM) and amplified via an 
erbium doped fiber amplifier (EDFA). The resulting mechanical oscillations are detected via light from a probe laser 
(blue color). 
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We measure the motion of the H-resonator using a CW probe laser at a wavelength 𝜆1. The po-

larization of pump and probe light are independently adjusted for maximum transmission using two 

fiber polarization controllers and combined using a 50/50 directional coupler before being coupled 

into the PIC. The power of the pump laser is larger than the power of the probe laser (〈𝑃pump〉 ≈

7.5 mW compared to 𝑃probe ≈ 0.5 mW, both inside the waveguide) and the probe laser power is un-

modulated, which ensures that the dynamic optical force can be attributed to the pump laser. Both 

laser wavelengths are chosen within the bandwidth of the coupler, as shown on the left side of Figure 

35. The probe wavelength 𝜆1 is chosen on the slope of a ring resonance for best transduction of mo-

tion into intensity changes and the pump wavelength 𝜆2 is chosen at the minimum of a ring reso-

nance (and spectrally far enough separated from 𝜆1). This ensures the maximum achievable optical 

power in the ring, as well as 15 dB extinction in transmission, provided by the extinction ratio of the 

ring resonator. After transmission through the PIC a pass filter (PriTel TFA-1550) is applied which 

enables transmission of the probe light, while strongly attenuating (> 40 dB) the pump light. This 

ensures that the intensity modulations which are measured at the photodetector stem from mechan-

ical motion and not from transmitted light from the pump laser. Transmitted light is then recorded 

with a low-noise photodetector (New Focus 2117) and its electrical output signal is spectrally analyzed 

with a vector network analyzer (VNA, Rohde & Schwarz ZVL6).  

The VNA supplies the EOM with the sinusoidal modulation voltage 𝑉1 at frequency 𝑓mod and 

measures the spectral density of the photodetector signal at the same frequency, which is propor-

tional to the motional amplitude. Furthermore the phase relation of driving voltage and voltage from 

the photodetector is measured. This corresponds to the phase between the optical force and the 

mechanical motion. Hence both amplitude and phase of the driven motion at frequency 𝑓mod are 

measured. By sweeping the frequency 𝑓mod across the resonance of the mechanical oscillator, the 

frequency-dependent response in terms of amplitude and phase can be recorded. 

We study the driven motion for the H-resonator (𝐿 = 70 µm, 𝑤H = 600 nm) for which the meas-

urement of its thermal motion was presented previously. We control the amplitude of the optical 

force via the pump power and the voltage at the EOM. The VNA supplies the EOM with an alternat-

ing voltage with an amplitude of 0.2 V, which leads to a modulation depth of 40%. Using the atten-

uation coefficient (see section 2.4.4) and the condition of critical coupling at resonance, we estimate 

the average circulating steady state pump power in the ring at closest distance to the H-resonator 

as 〈𝑃ring〉 ≈ 19.4 mW (see equation (2.17)). The resulting amplitude of the dynamic force which is 

acting on the H-resonator is estimated as 𝐹RF = 1.9 pN. Using the simulated effective mass 𝑚eff =

162.4 pg we can calculate the spring constant as 𝑘 = 𝑚eff ∙ 𝜔0
2 = 8.14 N/m. The amplitude for the 

oscillator driven at resonance can be estimated (following equation (3.10)) as 

 𝑎 = 𝑄 ∙
𝐹

𝑘
= 6.5 nm . (3.58) 
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We sweep the frequency of the driving force in a frequency range around the fundamental resonance, 

as determined by the thermal motion. Figure 36 a) shows the recorded voltage signal, which is pro-

portional to the motional amplitude, in dependence of the driving frequency. Figure 36 b) shows the 

phase between driving force and mechanical motion. The observation of both the frequency depend-

ence of the driven amplitude and the phase shift around the resonance shows the successful coherent 

drive of the H-resonators’ motion via optical gradient forces. A Lorentzian fit yields a resonance fre-

quency of 𝑓 = 1.127 MHz and a FWHM of 𝛿𝑓 = 39.9 ± 2.2 Hz, corresponding to a quality factor 

of 𝑄 = 28 260 ± 1540. This is slightly larger than the value extracted from the thermomechanical 

motion and we attribute this to the shorter measurement time, enabled by the better signal-to-noise 

ratio at the photodetector due to the larger driven amplitude compared to the thermal motion. Next 

we will confirm the quality factor in the time domain. 

3.4.3.2 Ring down measurement 

The quality factor can also be investigated in the time domain, by measuring the ring down of the 

oscillation amplitude of the driven oscillator upon turning off the driving force247 (as explained in 

section 3.3.1). For micromechanical oscillators with high quality factors at relatively low frequencies, 

the line width of the resonance, as measured in the frequency domain in the previous section, is in 

the same range as the available filter widths of the employed measurement equipment. We hence 

measure the ring down time of the displacement amplitude in order to verify the quality factor ex-

tracted from the measurements in the frequency domain. We modify the measurement setup shown 

in Figure 37 by replacing the VNA with a lock-in amplifier (Zurich Instruments UHFLI). We use a 

phase-locked loop to ensure that we drive the motion at resonance, such that drifts of the resonance 

frequency do not influence the measurement results. We choose a set point for the phase between 

driving force and the displacement, corresponding to the phase at resonance frequency (determined 

via pump-probe measurement, as presented in the previous section). A proportional-integral-deriv-

ative (PID) controller ensures negligible differences between actual phase and set point.  

 

Figure 36 - Driven motion via optical forces: a) Voltage signal, which is proportional to the motional amplitude, 
in dependence of the driving frequency. A Lorentzian fit to the square of the amplitude reveals a mechanical quality 
factor 𝑄 = 28 260 ± 1540 at a resonance frequency of 1.127 MHz. b) Phase between the driving optical gradient force 
and the resulting mechanical motion. 
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Figure 37 schematically shows the measurement sequence. We apply a sinusoidal optical force at 

resonance frequency by applying the corresponding voltage to the EOM. The mechanical displace-

ment follows the sinusoidal drive (besides the expected phase delay). After turning off the driving 

force, by turning off the alternating voltage to the EOM, the amplitude of the oscillation 𝑎 decays 

exponentially, according to equation (3.11), as 

 𝑎(𝑡) = 𝑎max ∙ 𝑒−
𝑡

𝜏 .  

The time constant 𝜏 is related to the mechanical quality factor 𝑄 as  

 𝑄 = 𝜋 ∙ 𝜏 ∙ 𝑓, (3.59) 

where 𝑓 is the mechanical resonance frequency.  

We perform the described ring down measurement for the same H-resonator for which the driven 

motion was presented in the previous section. We record the amplitude of the demodulated voltage13, 

which is proportional to the oscillation amplitude of the H-resonator. Figure 38 shows the average 

of five ring down measurements. The phase-locked loop drives the motion at resonance  

(𝑓 ≈ 1.127 MHz) until the force is turned off by turning off the driving voltage (at time 𝑡 = 0 ms) 

upon which the amplitude exponentially decays. We extract the time constant 𝜏 from an exponential 

fit as 𝜏 = 8.1 ± 0.04 ms. According to equation (3.59) this corresponds into a quality factor of  

𝑄 = 28490 ± 150, in agreement with the estimation via the pump-probe measurement. 

                                                        

13 We verify and ensure that the measured decay time is not limited by the bandwidth of the filter (> 1 kHz) used in  
the demodulation. 

 

Figure 37 - Schematic of the ring down measurement: a) Driving force, applied via the optical gradient force, 
consisting of the average static force 𝐹DC and a dynamic sinusoidal force with amplitude 𝐹RF. b) Displacement of 
mechanical oscillator. After the driving force is turned off, the displacement amplitude (shown in blue color) decays 
exponentially, enabling to determine the quality factor from the decay time. 
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In summary, we have shown that the on-chip translation from mechanical motion into intensity 

modulation enables the measurement of the thermal motion with sensitivities down to 32 fm/√Hz. 

We coupled an optical cavity and a mechanical resonator within one diamond PIC and this demon-

stration is a step towards on-chip cavity optomechanics in diamond. Using an optical cavity enabled 

to enhance the optical power and hence the optical gradient force. We have shown the coherent 

actuation of an H-resonator via optical forces on the order of 1.9 pN, resulting in resonant motion 

with an estimated amplitude of about 6.5 nm. High mechanical quality factors up to 28 800 were 

quantified in the frequency domain, and confirmed in the time domain for the resonator with the 

smallest linewidth of 40 Hz. In the next section we will demonstrate an alternative actuation scheme 

using electrostatic forces. 

3.4.4 Driven motion via electrostatic forces 

Electrostatic forces are routinely used for the excitation and detection of micromechanical motion 

in MEMS devices, for example in pressure sensors and gyroscopes. In the context of PICs fabricated 

from electrical insulator such as diamond, it is possible to structure electrical circuits on top of the 

passive substrate, which enables the co-integration of electrical and photonic integrated circuits on 

the same chip. While optical forces, as discussed in the previous section, enable all-optical tunability 

of PICs, the use of electrostatic forces between on-chip electrodes has two main advantages: The 

applicable forces are comparably large, and under ideal conditions, no power is dissipated in static 

operation and the power consumption in dynamic operation is extremely small.248 This is a striking 

difference to tuning by a mechanical element via optical forces, where the average optical power 

traveling inside a waveguide can be on the order of mW and to tuning of PICs via heaters, which 

necessitate local dissipation of power on the order of mW. Especially at cryogenic temperatures, 

where low power dissipation is crucial, electrostatic actuation of optomechanical elements is thus a 

promising route to tunable PICs. 

 

Figure 38 - Ring down measurement: Amplitude of the demodulated voltage, corresponding to the oscillation 
amplitude of the H-resonator, driven via optical gradient forces. After turning off the driving force at time 𝑡 = 0 ms 
the amplitude exponentially decays. An exponential fit (red) to the data (blue circles) yields a time constant of 
 𝜏 = 8.1 ± 0.04 ms, corresponding to a quality factor of 𝑄 = 28 490 ± 150. 
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We modify the geometry of our optomechanical circuit by adding two gold electrodes of 

100 nm thickness to the H-resonator, as shown in Figure 39 a). One electrode is located on the fixed 

diamond layer, while the counter electrode is located on one arm of the movable H-resonator. The 

electrodes are not electrically connected, but instead separated by a gap of size 𝑔𝑒𝑙 = 200 nm, con-

stituting a capacitor. Each electrode is connected to a large contact pad, which enables to electrically 

connect external electronics via micro-probes. By applying a voltage, an attractive electrostatic force 

between the electrodes can be applied, which leads to a displacement 𝑢(𝑧) of the mechanical reso-

nator (as symbolized by white arrows) with a maximum displacement 𝑈. On the opposite side of the 

photonic crystal a waveguide (depicted in blue color) is evanescently coupled to the H-resonator, 

separated by a gap of size 𝑔, which changes with displacement. As in the previous sections a mechan-

ical displacement implies a phase shift for the light which propagates within the waveguide. The 

device layout takes advantage of the optical isolation of both resonator arms by the photonic crystal, 

which enables to spatially separate the driving force and the resulting tuning of the PIC. Opposed to 

the use of optical forces in the same waveguide, no optical filters are needed here. This reduces the 

number of required optical components, especially important for quantum optical circuits which will 

incorporate photon sources, detectors, and all optical components in the same PIC. We incorporate 

the H-resonator and waveguide within a photonic circuit, shown in Figure 39 b), which consists of 

grating couplers and a MZI for interferometric detection of the H-resonator motion, as explained in 

section 3.4.2. The overall device can be referred to as an electro-optomechanical circuit. 

  

 

Figure 39 - Electro-optomechanical photonic integrated circuit: Colorized and annotated SEM images of an 
electrostatically driven H-resonator inside a PIC. a) Two metal electrodes (golden color) are separated by a gap of 
size 𝑔el. One electrode is located on the fixed diamond layer, while the counter electrode is located on one arm of the 
H-resonator (green color). An applied voltage leads to an electrostatic force, which leads to a displacement 𝑢(𝑧) of 
the mechanical resonator (symbolized by white arrows). The mechanical resonator is separated from a waveguide 
(blue color) by a gap of size 𝑔, which changes with displacement. b) Overview of the photonic integrated circuit, 
consisting of electrodes, H-resonator, integrated Mach-Zehnder interferometer, and focusing grating couplers.  
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A displacement 𝑈 directly changes the electrode capacitance 𝐶 and for an applied voltage 𝑉 leads to 

a force 𝐹el
249: 

 𝐹el =
𝜕

𝜕𝑈
(
1

2
𝐶𝑉2) . (3.60) 

For a mass-spring model of a capacitive resonator250, simplified as a parallel plate capacitor, the elec-

trostatic elastic force 𝐹el is given by 

 
𝐹el  =

𝜀0𝜀𝑟𝐴

2𝑔𝑒l
2
𝑉2 (3.61) 

where 𝜀0 is the vacuum permittivity, 𝜀𝑟 is the relative permittivity, 𝐴 is the capacitive area, 𝑔𝑒l is the 

gap between the electrodes at rest position when no force is applied, and 𝑉 is the applied voltage. 

For displacements 𝑈 ≪ 𝑔𝑒l we can neglect the influence of the changing gap size on the capacitance 

and the corresponding force. By applying a constant voltage 𝑈DC, a constant attractive force can be 

applied, thus pulling the mechanical resonator closer to the fixed electrode. We estimate the elec-

trostatic force, assuming a parallel plate capacitor geometry and the relative permittivity as the av-

erage of air and diamond (𝜀𝑟 ≈  5.7 at low frequencies146). For a voltage 𝑉DC = 5 V this yields a force 

per interaction length of 𝐹el/𝐿 ≈ 1 nN/µm. This is a factor of 1000 larger than the optical force used 

for H-resonator actuation, which amounts to 𝐹opt/𝐿 ≈ 1 pN/µm (see equation (3.54)) for 20 mW of 

optical power. By applying a sinusoidal voltage 𝑉RF(𝑡) = �̂�RF ∙ sin (𝜔RF ∙ 𝑡) additionally to the DC volt-

age, we can dynamically drive the oscillator motion with a total force 𝐹el which amounts to  

 𝐹el  =
𝜀0𝜀𝑟𝐴

2𝑔𝑒l
2 𝑉𝐷𝐶

2+
𝜀0𝜀𝑟𝐴

2𝑔𝑒l
2 [2 ∙ 𝑉DC ∙ �̂�RF ∙ sin(𝜔RF ∙ 𝑡) + �̂�RF

2
∙ sin2(𝜔RF ∙ 𝑡)] . (3.62) 

For 𝑉DC ≫ �̂�RF we can neglect the term which is proportional to �̂�RF
2
and hence we consider a dy-

namic force which is proportional to 𝑉DC ∙ 𝑉RF(𝑡) as 

 𝐹el,RF(t)  =
𝜀0𝜀𝑟𝐴

𝑔𝑒l
2 [𝑉DC ∙ �̂�RF ∙ sin(𝜔RF ∙ 𝑡)] . (3.63) 

We fabricate a photonic chip with electro-optomechanical circuits, according to the fabrication pro-

cedure explained in section 3.4.1. The fabrication process is only modified by adding additional steps 

for the metal electrodes (before step 1). The electrode design is patterned in PMMA resist by EBL and 

transferred into metal structures using deposition by electron beam evaporation (5 nm Cr, 100 nm 

Au, 10nm Cr) and consecutive lift-off of the metal in the unpatterned areas during PMMA removal 

(30 min in acetone). We note that during the HSQ lithography step for PICs the metal electrodes 

within the area of the future rectangular opening windows are covered in HSQ. This protects the 

thin metal structures from extensive O2/Ar-etching, which is employed for fully etching the diamond 

within the opening windows. 
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We characterize the electro-optomechanical circuits in vacuum (𝑝 < 10–5 mbar) using the setup de-

picted in Figure 40. As for the measurement of the thermomechanical motion we use a probe laser 

(Santec TSL-510) at a wavelength 𝜆1 on the interference fringe of the MZI, for best transduction of 

mechanical motion into intensity modulation. The measurements are performed with about 1 mW 

laser power inside each interferometer arm. The transmitted light is detected with a fast low-noise 

photodetector (New Focus 1811, 125 MHz bandwidth). An electrical micro-probe (Cascade Micro-

tech Unity Probe) is mounted on a piezo stage, which enables to connect external electronics with 

the electrodes of an individual device in vacuum. The micro-probe is connected to a bias-T (Mini-

Circuits ZFBT-6GW+) which combines the DC voltage from a tunable voltage source with the RF 

voltage for dynamic actuation. The sinusoidal RF voltage at frequency 𝑓RF = 𝜔RF/2𝜋 is supplied by a 

vector network analyzer, which measures the amplitude and phase of the driven motion as a function 

of 𝑓RF. The voltage is applied to on-chip electrodes rather than to an EOM, but besides that the meas-

urement procedure is equivalent to the one performed with optical forces.  

Due to the much larger forces we anticipate that, besides the fundamental in-plane mode inves-

tigated so far, higher order mechanical modes can be excited. Figure 41 a) shows the simulated reso-

nator displacement for the five eigenmodes with the lowest frequencies. When sweeping 𝑓RF we ex-

pect peaks in the amplitude spectrum, corresponding to the resonance frequencies of the various 

excited modes. Figure 41 b) shows a recorded spectrum for a resonator with 𝐿 = 40 µm and 𝑤𝐻 =

600 nm. When sweeping the RF from 5 MHz to 125 MHz, more than 20 resonances can be easily de-

tected, corresponding to the different eigenfrequencies of the oscillator. Figure 41 c) shows the qual-

ity factors for all observed resonances extracted from Lorentzian fits. For the fundamental in-plane 

and out-of-plane modes around 10 MHz mechanical quality factors up to 8700 are observed. For in-

creasing frequencies the quality factor decreases. For the highest resonance frequency of 116 MHz a 

value of 𝑄 = 1300 is found. We investigate H-resonators of various lengths and width and find a 

maximum quality factor of 9600 at 13.8 MHz for a device with 𝐿 = 40 µm and 𝑤H = 800 nm. The ob-

served quality factors are lower than for H-resonators of the same device geometry presented in the 

 

Figure 40 - Measurement setup for electro-optomechanical circuits: Schematic of the setup for measuring me-
chanical motion driven by electrostatic forces. The mechanical resonator is actuated via a voltage 𝑉DC +  𝑉RF(𝑡) which 
is applied to on-chip electrodes, resulting in an attractive force between the electrodes. A probe laser (blue color) is 
operated at a wavelength 𝜆1 on the slope of an interference fringe of the on-chip MZI, which transduces mechanical 
oscillations into modulations in the transmitted intensity. 
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previous sections. We attribute this to the additional damping introduced by the gold which is de-

posited directly on the resonator arm.  

 

Besides the amplitude, we also investigate the phase between exciting force and mechanical motion. 

Figure 42 a) shows both amplitude and phase signal for a resonance at 10.8 MHz. A phase shift of 

180° and around the resonance is observed, as expected from the driven harmonic oscillator model. 

Figure 42 b) shows amplitude and phase for the driven motion at the highest observed resonance 

frequency of 116 MHz. 

 

 

Figure 41 - Driven higher order mechanical resonances: a) Simulated shapes of the H-resonator, when excited at 

the five lowest eigenfrequencies. b) Acquired spectrum of the driven response (𝑉DC = 5 𝑉, �̂�RF = 3.16 𝑉) for one H- 
resonator (𝐿 = 40 µm, 𝑤H = 600 nm). More than 20 mechanical eigenmodes in the range of 5 MHz to 120 MHz can 
be excited via the electrodes and the motion detected using the on-chip interferometer. c) Mechanical quality factors 
for resonances of two resonators of the same geometry (𝐿 = 40 µm, 𝑤𝐻 = 600 nm). 

 

Figure 42 - Driven motion - amplitude and phase: a) Amplitude (black) and phase (red) signal for a resonance 
frequency at 10.8 MHz. By sweeping the excitation frequency across the resonance the expected Lorentzian lineshape 
and a 180° phaseshift are observed. b) Amplitude and phase for the mode with the highest observed resonance 
frequency of 116 MHz. 
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The measurement is limited by the bandwidth of the detector (125 MHz) and we anticipate that 

resonant motion at higher frequencies could be excited and detected. Higher frequencies in the GHz 

range would be of interest for fast tunability, as well as for the manipulation of spin states and for 

sensors at ambient pressures. This could be reached via the excitation of modes of even higher fre-

quencies as well as by increasing the resonance frequencies by scaling down device dimensions. 

3.4.4.1 Varying driving force and non-linear behavior 

We vary the driving force by increasing the RF voltage amplitudes �̂�RF. Figure 43 a) shows the driven 

response for the resonance at 10.81 MHz for 𝑉𝐷𝐶 = 5 V at various voltages �̂�RF. For �̂�RF ≥ 0.316 𝑉 dis-

tortions from Lorentzian shape become apparent, which can be attributed to mechanical non-line-

arities, which manifest at higher driving amplitude168,216,251. 

 

The linear relation between driving force and amplitude, as assumed in the harmonic oscillator 

model (equation (3.1)), does not hold at comparably large amplitudes and higher order terms of the 

Taylor expansion need to be considered. The next non-zero term14 is proportional to the third power 

of displacement and the restoring force can be expressed as 

 𝐹res = −𝑘 ∙ 𝑥 − 𝑘3 ∙ 𝑥3, (3.64) 

where 𝑥 is the displacement and 𝑘3 the constant of the non-linearity. The resulting differential equa-

tion of motion, called Duffing oscillator252, leads to an oscillator with a non-linear elasticity. The 

relation between force and amplitude, which in the linear case is referred to as spring constant, be-

comes amplitude dependent. 𝑘3 > 0 corresponds to a stiffening spring, as the restoring force in-

creases with amplitude more than in the linear case, while 𝑘3 < 0 corresponds to a softening spring. 

                                                        

14 The potential, which underlies the restoring force, is symmetric concerning displacements in positive and negative direc-
tion. Therefore the cubic term of the potential vanishes and the quadratic term of the restoring force is zero. 

 

Figure 43 - Driven motion at higher forces and non-linearity: a) Driven mechanical resonance at 𝑉DC = 5 V and 

various RF voltage amplitudes �̂�RF. For �̂�RF ≥ 0.316 𝑉, a stiffening Duffing non-linearity is observed, resulting from 
tensile stress in the diamond layer. b) Theoretical spectrum of a stiffening Duffing oscillator, showing the amplitude 
over the normalized oscillation frequency 𝜔/𝜔0 for increasing amplitude of the driving force (black to red). At a 
critical frequency the oscillation loses stability and the system undergoes a transient to another stable periodic  
solution as indicated by the arrows. Reproduced from Parlitz et al.344. 
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Figure 43 b) shows the theoretical spectrum of a stiffening Duffing oscillator for increasing amplitude 

of the driving force (black curve to red curve). Two branches occur in the solution. When sweeping 

the frequency the oscillation loses stability at a critical frequency and the system undergoes a tran-

sient to another stable solution. Depending on the direction of the frequency sweep, different tran-

sitions occur, as indicated by the gray arrows. 

The occurrence of a Duffing non-linearity in micromechanical oscillators can be related to strain 

in the thin film and in the context of mechanical elements for PICs a softening non-linearity in sili-

con216, stiffening non-linearity in silicon nitride253, and both types of non-linearities in diamond156 

have been observed. Polycrystalline diamond thin films are grown on oxidized silicon wafers at tem-

peratures around 850 °C. The mismatch in thermal expansion coefficients of the diamond film and 

the SiO2/Si substrate produces compressive stress, when the sample is cooled down to room temper-

ature. The growth process itself produces intrinsic tensile stress, which can counteract some of the 

thermally induced compressive stress254. Depending on the location on the wafer from which the 

photonic chip and hence the optomechanical circuit is fabricated, both compressive and tensile in-

ternal stress can occur, as shown in our previous work156. The nature of the internal stress translates 

into the sign of the non-linear constant 𝑘3 of the mechanical element: for compressive stress a sof-

tening Duffing non-linearity is expected, whereas for tensile-stressed film a stiffening response oc-

curs. As shown in Figure 43 a), a stiffening Duffing non-linearity is observed for our electro-optome-

chanical H-resonators. As in our measurement the frequency is swept from low to high frequencies, 

we record an amplitude spectrum, corresponding to the downward transition between the branches, 

as shown in Figure 43 b). We can hence apply large enough forces via the electrodes, such that non-

linear mechanical behavior can be observed. 

The H-resonator is well suited as low-loss tunable element. In particular for use at low tempera-

ture, dissipation-free electrostatic actuation provides significant advantages over currently used mi-

cro-heater devices. In following sections we present the results of testing the compatibility of our 

optomechanical circuit with the operation under varying pressure and temperatures from room  

temperature to 4K. 

3.4.4.2 Pressure dependence of the mechanical quality factor 

The pressure dependence of the quality factor determines how well the pressure of the system in 

which the photonic chip is operated needs to be controlled. Furthermore for sensing applications, it 

is necessary to operate the electro-optomechanical resonators under non-vacuum conditions. We 

therefore characterize the H-resonator resonances at various pressures inside the vacuum chamber. 

For an exemplary device Figure 44 a) shows the driven response at the fundamental frequency of ≈

10.8 MHz at different pressures. We extract the mechanical quality factor from Lorentzian fits to the 

power spectral density. Figure 44 b) shows the quality factor as a function of pressure over more than 

eight orders of magnitude. Colored squares correspond to the measurement curves of the same color 

in Figure 44 a). 
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At the lowest pressure of 2.4 ∙  10−6 mbar the quality factor amounts to 𝑄 = 8400 (in agreement with 

the measurements of the same device, presented in Figure 43). For pressures from 2.4 ∙  10−6 mbar 

to 1.5 mbar, the resonance shapes and quality factor remain unchanged within the measurement 

uncertainty, as can be seen by comparing the blue and red measurement curves in Figure 44 a). At 

low pressures the device performance is hence insensitive to the stability of the pressure. For pres-

sures above 1.5 mbar up to ambient pressure, the air damping is dominating the other damping 

mechanisms and the quality factor steadily decreases, comparable to the previous studies of mechan-

ical resonators at varying pressures179,255. At ambient pressure, the driven mechanical motion can still 

be observed and the quality factor amounts to 210. 

When used as an optomechanical phase shifter, the goal might be to operate the device as a switch 

which instantaneously changes the phase from one value to another one. Phase changes on a sub-µs 

time scale have been shown for H-resonators in silicon nitride167. In this context damped operation 

is preferred, as the transient solution to an instantaneous force leads to resonant oscillations which 

decay exponentially according to the quality factor. In this context high damping is intended, in order 

to minimize the time after which the static phase shift has stabilized. Therefore the reduction of the 

quality factor due to the gold electrodes, as shown in the previous section, as well as air damping are 

favorable for a phase shifter operated as a switch. If on the other hand a high quality factor and in 

turn a small linewidth are important, for example in the context of sensing, then operating the device 

at low enough pressure or increasing the resonance frequency, such that air damping is negligible, 

are two possible options. 

3.4.4.3 Diamond optomechanics at cryogenic temperatures 

For quantum optics, the PICs investigated in this thesis need to be operated at cryogenic tempera-

tures due to constraints for single-photon sources or single-photon detectors. We therefore test the 

operation of our optomechanical circuits at low temperatures. For this we place our photonic chip 

inside a cryogenic measurement setup, which is equal to the setup shown in Figure 40, the only 

 

Figure 44 - Pressure dependence of the mechanical quality factor: a) Driven response at 10.8 MHz at different 
air pressures inside the vacuum chamber. b) Quality factor in dependence of the pressure. Air damping is negligible, 

with a quality factor of ≈ 8400 for pressures from below 10−5 mbar up to 1.5 mbar. At higher pressures the quality 
factor decreases with increasing air damping and reaches a value of 210 at ambient pressure. 



 Diamond integrated optomechanics  69 

 

difference being that the vacuum chamber is replaced by a liquid helium cryostat. We drive the mo-

tion of an H-resonator (𝐿 = 40 µm, 𝑤H = 600 nm) at its resonance frequency 𝑓 ≈ 8.5 MHz via the 

electrodes, while ensuring a linear relation between force and displacement (avoiding a Duffing non-

linearity). We sweep the excitation frequency in the range of the resonance frequency and extract 

the mechanical quality factor and the resonance frequency from Lorentzian fits to the power spectral 

density. The quality factor at room temperature is in agreement with the measurement of the same 

device in the vacuum chamber, showing that air damping is negligible in this measurement15. We 

continuously repeat this measurement while cooling down the sample chamber from a temperature 

of 300 K to 4 K, using liquid nitrogen and liquid helium.  

 

Figure 45 a) shows the dependence of the resonance frequency of an H-resonator on the sample 

chamber temperature. With decreasing temperature, starting at room temperature, the resonance 

frequency decreases linearly with 2 kHz/K until about 150 K. Around 110 K a local minimum in fre-

quency is observed. At temperatures from 50 K to 4 K the frequency increases with 0.2 kHz/K with 

decreasing temperature. This means that if the resonance frequency of a micromechanical oscillator 

needs to be stable within its line width, the temperature needs to be stable within corresponding 

bounds. This is for example important for measurements of the quality factor in the frequency do-

main and for optomechanical sensors179,180. Hence a ring down measurement is, especially for high 

quality factors, a more accurate way to determine the 𝑄-factor, as explained in section 3.4.3. H-reso-

nators without electrodes have high quality factors of about 𝑄 ≈ 20 000 at 𝑓 ≈ 8.5 MHz (see Figure 

31). This implies a FWMH of the resonance of 𝛿𝑓 ≈ 400 Hz. Therefore the temperature needs to be 

controlled within ∆𝑇 < 0.2 K at room temperature and within ∆𝑇 < 2 K at cryogenic temperatures to 

                                                        

15 The measurement of the pressure inside the sample chamber of the cryostat is less accurate than the measurement of the 
pressure in the vacuum chamber. The sample chamber has been evacuated before the cooldown but contains some gaseous 
helium. The exact pressure is not relevant for our measurement, as long as air damping can be neglected compared to the 
intrinsic damping, which we confirm via comparing the experimental results for the quality factor for both the vacuum 
chamber setup and the cryogenic measurement setup. 

 

Figure 45 - Temperature dependence: a) Dependence of the resonance frequency of an H-resonator 
(𝐿 = 40 µm, 𝑤H = 600 nm) on the temperature. b) Corresponding quality factor extracted from repetitive  
measurements while cooling down and heating up the cryostat. A slight increase of the quality factor towards small 
temperatures can be observed.  
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ensure that changes in resonance frequency are smaller than the linewidth within the time scale of 

relevance. Such limits can be sustained via active temperature control and our optomechanical cir-

cuits can thus be employed both at room temperature and at cryogenic temperatures. Furthermore, 

if the absolute value of the resonance frequency is not relevant for the specific application, then a 

phase-locked loop enables to drive the oscillator at resonance over long time spans, as shown in 

section 3.4.3.2, and hence less temperature stabilization is required. We note that if a mechanical 

element is used as a phase shifter, vibrations caused by the thermal energy will generally lead to a 

small noise in phase shift166. Operating optomechanically tunable circuits is therefore especially fea-

sible for low temperature applications, as the thermal energy and its implied noise decrease with 

decreasing temperature. 

Figure 45 b) shows the dependence of the quality factor on the temperature.16 Generally the qual-

ity factor of the electro-optomechanical circuits is most likely limited by the gold electrode, which 

introduces additional damping. We observe an increase of the average quality factor by ≈ 60% when 

comparing room temperature to 4 K. This is smaller than the increase by ≈ 200% observed for mi-

cromechanical oscillators from polycrystalline diamond, as well as high quality single-crystal dia-

mond without electrodes256. For our purpose a smaller quality factor is beneficial, as for an optome-

chanical device which applies phase shifts stepwise, the transient solution needs to decay in order 

for a new phase setting to stabilize. For the device studied here with a quality factor of 10 400 at 4 K 

and 𝑓 ≈ 8.4 MHz, the amplitude decays, according to equation (3.12), with a 1/𝑒-decay time of 𝜏 =

400 µs, limiting the speed at which new phase settings can be applied.166 Note that the quality factor 

and hence the decay time can be decreased by introducing further damping, for example by operating 

the device at higher pressures, as shown in the previous section. 

Within this section we have shown that our H-resonator design and its active actuation via elec-

trostatic forces can be used from room temperature to 4 K. The working principle of an optomechan-

ical phase shifter depends on mechanical displacement and not on local heating of optical elements 

and hence dissipation of power. Optomechanical components are therefore energy-efficient, which 

ensures scalability of the PICs. They also show advantages over current solutions concerning avoided 

cross-talk and speed and their compatibility with cryogenic temperatures enables to combine opto-

mechanical tunability with superconducting single-photon detectors, which we will discuss in the 

following section.  

  

                                                        

16 We note that the extracted quality factors are likely smaller than the actual quality factors of the device, as the constant 
temperature change while cooling leads to a change in resonance frequency (as shown in Figure 45 a) which hence broadens 
the measured resonance shape. 
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3.5 Conclusions on optomechanics and outlook 

In conclusion, this chapter presented the first demonstration of diamond integrated optomechanical 

circuits. Integrating the mechanical components within on-chip interferometers allowed for sensi-

tive motion readout with sensitivities down to 32 fm/√Hz using 3 mW of optical power. We demon-

strated the readout of thermal motion and driven motion with high quality factors up to 𝑄 = 28 800 

and resonance frequencies ranging from 1 MHz to 115 MHz. Such high quality factor are important 

for optomechanical sensors. Depositing metal electrodes onto the resonator and air damping both 

lower the quality factor. Such damped operation is intended for a range of tunable elements such as 

phase shifters. Photonic crystals within the mechanical element allows optical isolation between 

driving force and the resulting mechanically induced variation of the optical waveguide properties, 

avoiding losses. Active control of the motion via optical gradient forces and electrostatic forces was 

demonstrated and non-linear mechanical behavior was observed for high driving forces.  

In the future, coupling both optical and mechanical resonators, as demonstrated here for a ring 

resonator and an H-resonator, will enable diamond cavity optomechanics. Towards this goal the de-

sign would be adjusted for a larger overlap of optical and mechanical mode. Furthermore the demon-

strated optomechanical design could either be adjusted for higher frequency to enable high quality 

factors at ambient pressure or for increased tunable phase shifts up to 2𝜋. While the phase shift in 

the demonstrated geometry is rather small, it has been shown that large phase shifts via long H-

resonators can be achieved.167 We demonstrated operation both at ambient and cryogenic tempera-

tures, indicating that our optomechanical device can be used as fast and energy-efficient tunable 

phase shifters in quantum optical circuits along with single-photon sources and superconducting 

single-photon detectors. So far we demonstrated diamond PICs and tunable elements and the fol-

lowing chapter will demonstrate another key component: single-photon detectors, integrated on di-

amond PICs. 
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4 Superconducting nanowire single-photon detectors 
on diamond 

Single-photon detectors are an indispensable building block for integrated quantum optics. This chap-

ter provides an overview over single-photon detection and figures of merit which characterize the per-

formance of single-photon detectors. Furthermore the operation principles of superconducting nano-

wire single-photon detectors are explained and the experimental results for the first integrated single-

photon detectors on diamond waveguides17 are presented and an outlook for future applications of such 

detectors is given. 

This chapter is partially based on results which were published previously in three publications257–259, 

where the author of this thesis was first author or had equal contribution with the first author. 

4.1 Motivation and introduction 

Since the discovery that the energy of electromagnetic radiation is quantized and therefore propa-

gating light can be described as a stream of energy quanta called photons, it has become evident that 

there exists an ultimate limit for the precision of a measurement system for electromagnetic radia-

tion. The energy of one photon of near-infrared and visible light is around 10−19 J and once a meas-

urement device can detect such a photon, it can detect the smallest amounts of energy that exist 

within the electromagnetic radiation at that wavelength. Such a device is then called a single-photon 

detector (SPD). Since the first realization of SPDs in the form of photomultiplier tubes, there has 

been a growing interest in single-photon detection and various detector technologies, such as single-

photon avalanche diodes and transition-edge sensors, have been developed. A detailed overview and 

comparison of the different single-photon detectors can be found in a publication by Hadfield260. 

The general mode of operation of an SPD is that upon the absorption of a photon an electrical 

output signal is generated, which can be registered by an external electrical circuit connected to the 

detector. The electrical output pulse corresponding to such a detection event is often referred to as 

a click or a count and the frequency at which these events occur on average is called the count rate. 

For quantum information science with photons SPDs are of central importance, as explained in sec-

tion 2.2.2, and high detection efficiencies and outstanding timing characteristics are needed. For 

efficient linear optical quantum computing the product of photon source efficiency and detector 

efficiency needs to surpass a threshold261 of 2/3. Hence the goal within this thesis is to develop SPDs, 

integrated with diamond PICs, with detection efficiencies surpassing this threshold, while the long-

term goal for scalability of the PICs is to achieve 100% efficiency. Superconducting nanowire single-

photon detectors (SNSPDs) were first introduced in 2001 by Goltsman et al.206 and show outstanding 

                                                        

17 Within the research for this thesis the first waveguide-integrated single-photon detectors on any diamond photonic circuit 
were achieved.257,258 We present here the results of the second generation of detectors, which perform better concerning 
basically all detector properties. 
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properties. In the following sections we first introduce the working principle of SNSPDs and then 

discuss their performance characteristics. 

4.2 Superconducting nanowire single-photon detectors: 
theory 

4.2.1 Detector operation principle  

 

A superconducting nanowire single-photon detector consists of a current-biased nanowire of super-

conducting material with dimensions of about 5 nm thickness and about 100 nm width. The nano-

wire is cooled down to a low temperature at which it is superconducting, meaning that its electrical 

resistance is zero18 if it carries a small enough current density. At higher current densities the nan-

owire is normal-conducting and has a non-zero resistance, and the critical current density defines 

the threshold between superconducting and normal-conducting state. Figure 46 a) illustrates the 

operation of the superconducting nanowire using a phenomenological description19, which is re-

ferred to as the hotspot model: To act as a single-photon detector, the nanowire (symbolized by a 

gray strip) carries a current (symbolized by blue arrows), called the bias current 𝐼B. The bias current 

is smaller than the critical current 𝐼C above which the current density would surpass the critical cur-

rent density.20 Once a photon is absorbed in the wire, superconductivity is locally disturbed in a 

certain region, often called a hotspot (as symbolized in yellow and red color), and the charge carrier 

density in this region is decreased. This leads to an increase in current density in the outside of the 

                                                        

18 Up to date no trace of resistance in bulk superconductors was found. On the basis of the sensitivity of modern equipment 
it is at least smaller than 10−24Ωcm. For comparison the resistivity of high-purity copper is of the order 10−9Ωcm at 4.2 K262. 
It is hence feasible to argue that the resistivity of superconductors is zero and we will phrase it accordingly in this thesis. 

19 Models which explain the formation of the normal-conducting domain more accurately than the hotspot model are de-
scribed in the subsequent section 4.2.2. 

20 It should be noted that the term critical current refers to the experimentally measured largest current at which a nanowire 
sustains superconducting. This experimental value cannot exceed the depairing critical current 𝐼C,dep at which Cooper pairs 

would depair in a homogeneous superconducting wire.266 The measured critical current in a nanowire can be smaller 
than 𝐼C,dep, for example due to the bias circuit276, or due to reductions in the nanowire’s cross section, which locally limit 

the largest current at which the nanowire sustains superconducting. 

 

Figure 46 - Working principle of a superconducting nanowire single-photon detector: a) Schematic of a su-
perconducting wire (gray) carrying a bias current 𝐼B (blue arrows) below the critical current 𝐼C. Upon absorption of a 
photon superconductivity is locally disturbed and a resistive barrier forms, which enables the detection of a single 
photon. b) Schematic of a SNSPD with photon impinging under normal incidence from an optical fiber onto the 
superconducting nanowire meander. The nanowire is biased via gold contact pads. 
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hotspot and the current density surpasses the critical current density, leading to an initial normal-

conducting domain across the full wire width. The non-zero resistance of the initial normal-conduct-

ing domain implies that energy is dissipated, which leads to Joule heating of the wire caused by the 

current. This expands the normal-conducting region and leads to a resistance on the order of sev-

eral kΩ. An electrical readout circuit enables the detection of an electrical pulse on the order of a few 

nanoseconds, which corresponds to the detection of a single photon. Experimental implementations 

of SNSPDs, as shown in the schematic of Figure 46 b), consist of the aforementioned superconduct-

ing nanowire, folded into a meander shape in order to cover a larger area, which is electrically con-

nected to a current source and read-out electronics via metal contact pads. In the first SNSPDs and 

in most of the SNSPDs to date, light is impinging onto the detector from the top of the detector from 

an optical fiber, as shown in Figure 46 b), while within this thesis waveguide-integrated SNSPDs are 

being investigated, which will be introduced in section 4.2.4. 

4.2.2 Fundamentals of superconductivity and SNSPD detection 
mechanism 

This section gives a brief overview of fundamentals of superconductivity in terms of concepts which 

are important in the context of SNSPDs, such as understanding why an absorbed photon results in 

the creation of a normal-conducting domain in a current-biased superconducting nanowire. Detailed 

descriptions of superconductivity and its underlying mechanisms can for example be found in262,263. 

Superconductivity is the phenomenon of expulsion of magnetic fields and the disappearance of the 

DC electrical resistance, which occurs for superconducting materials when cooled below a charac-

teristic critical temperature 𝑇C. The most common material for SNSPDs is niobium nitride (NbN) 

with a critical temperature of about 17 K for bulk material264 and about 13 K for a thin film264 of 5 nm 

thickness. Such a moderately high critical temperature enables the operation of the devices using 

liquid helium which boils at 4.2 K, while SNSPDs from high critical temperature superconductors 

such as Yttrium barium copper oxide might in the future enable the operation of SNSPDs using liquid 

nitrogen.265 Below the critical temperature and without external magnetic fields, a wire of a super-

conducting material sustains superconductivity as long as the electrical current density is below a 

critical current density. Furthermore, superconductivity is only sustained if the magnitude of a mag-

netic field is below the critical magnetic field 𝐻C. 

On a macroscopic scale, superconductivity can be described by the phenomenological Ginzburg-

Landau (GL) theory in the context of second-order phase transitions. The superconducting state is 

more ordered than the normal-conducting state, which can be described by a suitable order param-

eter.262 In the GL theory, the complex and spatially varying order parameter is chosen to be the ef-

fective wavefunction of superconducting electrons 𝛹(𝑟 ). A variation of the order parameter due to a 

perturbation takes place on a length scale which defines the coherence length 𝜉GL, while the length 

scale for the screening of static magnetic fields from the inside of a superconductor is called the 

penetration depth 𝜆GL. NbN superconducting nanowires can be considered as two-dimensional sys-

tems, as their film thickness on the order of 𝑑 = 5 nm is comparable to the coherence length 𝜉GL, 
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while the wire width 𝑤 is at least a factor of ten larger and the length is orders of magnitude larger 

than the coherence length.266 As the penetration depth is much larger than the film thickness, the 

supercurrent density is uniform across the thickness of the nanowire.  

Two types of superconductors exist which differ concerning the ratio of penetration depth to co-

herence length, which causes different behaviors concerning external or self-induced magnetic fields: 

A type-I superconductor (
𝜆GL

𝜉GL,
≤

1

√2
) screens external magnetic fields from the inside, up to the critical 

field 𝐻𝐶 above which superconductivity breaks down. Opposed to that a type-II superconductor 

(
𝜆GL

𝜉GL,
≥  

1

√2
) above a certain magnetic field 𝐻C1 is penetrated by the field in the form of quantized 

magnetic vortices, where each vortex carries one flux quantum. The current state of research suggests 

that magnetic vortices play an important role in the detection mechanism of SNSPDs266,267, as will 

be elaborated on at a later point of this chapter. A vortex consists of a normal-conducting core around 

which a supercurrent circulates, shielding the field inside the vortex from the superconducting re-

gion outside the vortex. The core has a size on the order of 𝜉GL and the supercurrent decays with 

distance from the core on the order of the penetration depth 𝜆GL. NbN is a type-II superconductor 

which furthermore belongs to the group of “dirty” superconductors. In such materials the electron 

mean free path is smaller than the coherence length and vortices can be also present at zero external 

magnetic field.268 

On a microscopic scale superconductivity can be treated using the Bardeen-Cooper-Schrieffer 

(BCS) theory269, which considers the interaction of electrons near the edge of the Fermi sphere lead-

ing to the formation of a stable bound state of two electrons with reduced energy. A weak attraction 

between electrons can lead to the formation of a bound state, called Cooper pair (CP), with an integer 

spin of 0 or 1. For metallic superconductors this attractive interaction can be mediated via phonons 

and a maximum interaction occurs for electrons with anti-parallel spins and momenta of equal ab-

solute value but opposite direction. The electrons form Cooper pairs up to a point when the binding 

energy of an additional CP is zero. The energy gap of the resulting BCS ground state relative to the 

ground state of the normal-conducting material, often called condensation energy, is given by 

𝐸cond = −
1

2
𝑁(𝐸F)𝛥

2, where 𝑁(𝐸F) denotes the density of states at the Fermi energy and 𝛥 the average 

potential for pairing of CPs. The condensation energy quantifies the reduction in the energy of the 

electron collective by transitioning into the superconducting state.  

An external excitation of the superconducting ground state, for example via a thermal perturba-

tion or the absorption of a photon in the nanowire, creates a high energy quasiparticle. Quasiparticles 

describe quantized excitations where the creation of a quasiparticle corresponds to the annihilation 

or the breaking of a Cooper pair. The energy of a photon, on the order of 𝐸ph ≈ 1 eV, is much larger 

than the superconducting energy gap, on the order of 𝛥 ≈ 1 meV270. Hence the energy of a photon is 

large enough for breaking up many Cooper pairs, leading to a reduced Cooper pair density. The sup-

pressed superconductivity around the location of absorption can result in a breakdown of supercon-

ductivity. The higher the initial photon energy, the higher the number of quasiparticles which are 

generated by this process. Hence the smaller the energy gap 𝛥, the less energy is needed to create a 
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sufficient amount of quasiparticles for breaking down superconductivity, making such a material 

more sensitive to light of longer wavelengths.264 

The microscopic details of single-photon detection using superconducting nanowires are cur-

rently not yet fully understood and several detection models exist, each of them consistent with some 

of the experimentally observed properties of SNSPDs, while so far no model is capable of fully ex-

plaining the detection mechanism underlying SNSPDs.266,271 Here we briefly describe two promising 

models, namely the refined hotspot and the diffusion-based vortex-entry model. A comparison of all 

models is for example provided by Engel et al.271. The first model for the detection mechanism, called 

the hotspot model, was provided in 2001 by Semenov et al.272 and has been subsequently refined in 

order to account for more experimental observations. The refined diffusion-based hotspot model 

relaxes the requirement for a normal-conducting core of the hotspot. According to this model, an 

absorbed photon reduces the number of Cooper pairs at the absorption site and hence the current 

carrier density. The remaining Cooper pairs need to carry the same total current and hence their 

speed needs to increase. If it exceeds a critical velocity, the wire becomes normal-conducting.  

In contrast to the original hotspot model, the refined model is consistent with many experimental 

observations273 but fails to explain the position-dependence of detection efficiency observed by 

Renema et al.274. The diffusion-based vortex-entry model271,275 on the other hand considers the en-

trance of magnetic vortices into the nanowire by overcoming an edge energy barrier. Overcoming 

the edge barrier can be induced by energy fluctuations which lower the edge barrier, for example by 

the absorption of a photon in the nanowire. The initially excited quasiparticles and subsequent gen-

erated quasiparticles are then considered to diffuse independently. This model is consistent with the 

majority of experimental observations including the position-dependent local detection efficiency. 

However, some aspects of the model such as the influence of external magnetic fields do not agree 

with the experiments. While both the refined hotspot and the diffusion-based vortex-entry model 

are consistent with large parts of experimental observations, a model which is consistent with all 

observations and which provides a detailed understanding of single-photon detection using super-

conducting nanowires remains to be found. While this is an interesting aspect of fundamental re-

search, this open question has little impact on the results of the work presented in this chapter. The 

next section describes both the electrical operation of SNSPDs and the time scales on which the 

involved physical processes occur. 

4.2.3 Electrical operation of the SNSPD 

For the operation as a single-photon detector the device containing the superconducting nanowire 

is installed in a cryogenic setup, typically operating with liquid helium at a temperature below 4 K. 

The cryogenic setup used within this thesis will be explained in detail in section 4.4.1.  
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The electrical operation of a SNSPD can be explained using a simplified electrical equivalent circuit 

diagram276, as shown in Figure 47. A voltage source with a 1 MΩ resistor provides the nanowire with 

a constant bias current 𝐼B below the critical current 𝐼C of the SNSPD. The nanowire, represented as a 

blue box, can be described as a series of an inductance 𝐿K and a varying resistance 𝑅. If the wire is 

superconducting (Figure 47 a) the resistance is zero (𝑅 = 0) and if a part of the nanowire is normal-

conducting (Figure 47 b) the resistance has a non-zero value 𝑅 = 𝑅n(𝑡). The absorption of a photon 

can lead to a switching of the nanowire from superconducting to a normal-conducting state, which 

is represented as an electrical switch in the equivalent circuit. While in the superconducting state 

the current through the nanowire is essentially equal to the bias current 𝐼𝐵. Upon switching the ma-

jority of the current is shunted to the load resistor of the transmission line 𝑅L = 50 Ω ≪  𝑅n(𝑡) which 

is connected to the read-out circuitry. This enables to detect a photon by detecting the switching of 

the nanowire. 

The inductance 𝐿K in the electrical equivalent circuit of the nanowire corresponds to the kinetic 

inductance which can be explained as follows: The well-known magnetic inductance 𝐿M of a wire or 

a coil is defined by the energy 𝐸M which is stored in the magnetic field that is generated by a current 𝐼 

as 

 𝐸M =
1

2
∫ �⃗⃗� ∙ �⃗� 𝑑𝑉 =

1

2
𝐿M𝐼2 . (4.1) 

In an electric conductor charge carriers have non-zero mass and their movement at speed 𝑣 implies 

a stored kinetic energy 𝐸K. The inertia of the charge carriers can cause a phase lag between voltage 

and current of the conductor and hence the kinetic inductance 𝐿K is introduced in analogy to the 

magnetic inductance as 

 𝐸K = ∫
1

2
𝑚𝑣2 ∙ 𝑛 𝑑𝑉 =

1

2
𝐿K𝐼2 , (4.2) 

where 𝑚 and 𝑣 are the mass and the velocity of a single carrier262, 𝑛 denotes the number density of 

the current carriers and the integration is carried out over the volume of the nanowire. For normal-

conducting materials the resistive impedance dominates the electrical behavior of a wire and the 

kinetic inductance can be neglected up to THz frequencies. For a superconductor on the other hand 

 

Figure 47 - Electrical equivalent circuit diagram of a SNSPD: in the (a) superconducting and (b) normal-conduct-
ing state. A voltage source with a 1 MΩ resistor provides a bias current 𝐼B below the critical current of the nanowire. 
The nanowire, represented as a blue box, can be described as a series of an inductance 𝐿K and a varying resistance 
which his either zero when superconducting (a) or non-zero with a value 𝑅n(𝑡) when normal-conducting. 
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the DC resistance is zero and the impedance is governed by the kinetic inductance. Using the super-

current density 𝑗s⃗⃗ = 𝑛s ∙ 𝑞s ∙ 𝑣s⃗⃗  ⃗ with the charge carrier density 𝑛s, the charge 𝑞s = 2𝑒, the velocity 𝑣s⃗⃗  ⃗ 

and the mass 𝑚s = 2𝑚e of the Cooper pairs, where 𝑒 and 𝑚e  are the charge and the mass of one 

electron the kinetic inductance can be expressed as 

 
𝐿K =

1

𝐼2
∫

𝑚e∙𝑗s⃗⃗  ⃗
2

2𝑒2𝑛s
𝑑𝑉 =

𝑚e

2𝑒2 ∫
𝑗s⃗⃗  ⃗

2

𝑛s𝐼
2 𝑑𝑉 . (4.3) 

For a nanowire with cross section 𝐴, length 𝑙 and a uniform supercurrent density 𝐽s =
𝐼

𝐴
 , the kinetic 

inductance is therefore 

 𝐿K =
𝑚e

2𝑒2𝑛s

𝑙

𝐴
 . (4.4) 

The kinetic inductance of a nanowire, which is proportional to the nanowire length 𝑙, limits the de-

tector speed, as will be explained in the following. The absorption of a photon in the superconducting 

nanowire leads to the excitation of one electron into an unoccupied state in the conduction band277 

with high energy. Subsequent relaxation of this excitation leads to a cascade which generates further 

quasiparticles.278 This locally perturbs the equilibrium of superconductivity and an initial normal-

conducting domain of ≈ 100 nm length279 is formed266 which gives the wire a non-zero resistance 

 𝑅n(𝑡). As described in the previous section, the microscopic mechanism for the emergence of the 

initial normal-conducting domain is up to date not fully understood and under active investiga-

tion266,273,280. The initial normal-conducting domain leads to energy being dissipated in the re-

sistance giving rise to a heating process, called Joule heating. The heating causes the normal domain 

to grow, leading to a growing dissipation of energy (positive electro-thermal feedback) and conse-

quently  𝑅n(𝑡) expands in time exponentially279 on a picosecond timescale and very quickly exceeds 

the load resistance 𝑅L. The increase in resistance on the other hand leads to a negative electro-ther-

mal feedback, as an increasing portion of the bias current is diverted into the load resistance 𝑅L, a 

process which stops the expansion of the normal-conducting domain. This diversion to the load re-

sistor is however opposed by an induced voltage in the kinetic inductance, for a characteristic time 

∼
𝐿K

 𝑅n(𝑡) 
276. This enables Joule heating to increase 𝑅n(𝑡) to a value much larger than 𝑅L = 50 Ω. 

Figure 48 a) shows the time behavior of the nanowire current during a detection event. The bias 

current flowing through the nanowire decreases exponentially with a time constant 𝜏1 defined by the 

LR circuit, typically on the order of some hundred picoseconds, given by 

 𝜏1 =
𝐿K

𝑅L+ 𝑅n(𝑡) 
≈

𝐿K

 𝑅n(𝑡) 
 . (4.5) 

After shunting most of the current to the load resistor, the heating is strongly reduced, and the heat 

dissipation to the surrounding allows the superconductivity to be restored. The different heat trans-

fer processes involved in the recovery of superconductivity can be explained using a two-temperature 

model281,282 for electrons and phonons. Figure 48 b) shows a schematic of this model where the in-

volved time scales are indicated. As described in the previous section, the absorption of a photon 

leads to initially excited electrons which relax by exciting further electrons, for example by breaking 

Cooper pairs. The subsystem of the electrons at temperature 𝑇e is excited via this initial photon ab-

sorption and by Joule heating and relaxes by coupling to the phonon subsystem (at temperature 𝑇ph) 
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on a timescale 𝜏e→ph ≈ 10 ps283 and by out-diffusion of electrons. The energy of the phonons can 

either be coupled back to the electrons or to the substrate at a lower bath temperature 𝑇0. The time 

scale at which energy is transferred to the substrate is given by the phonon escape time on the order 

of 𝜏esc ≈ 38 ps283. After the energy has been dissipated, the initial state of the superconducting ma-

terial is restored.21 

 

The current through the superconducting nanowire recovers to its initial value 𝐼B with an exponen-

tial time behavior with a time constant 𝜏2 given by 

 𝜏2 =
𝐿K

𝑅L 
 . (4.6) 

It should be noted that this recovery of the current is limited by the kinetic inductance and is typically 

on the order of nanoseconds, which is significantly larger than the excitation timescales mentioned 

above (see Figure 48 b). The current at the load resistor, as shown in Figure 48 c), resembles the 

inverted behavior of the current through the nanowire, leading to an asymmetric pulse shape gov-

erned by the same time constants 𝜏1 and 𝜏2. The detector’s recovery time 𝑡recovery describes the abil-

ity to detect a second photon subsequent to the detection of a first photon. For a SNSPD the recovery 

time is mainly governed by 𝜏2 and we will discuss the relation between both times in section 4.2.5.5. 

It should be noted that a small 𝜏2 is desired, but if it becomes too small, the electro-thermal feedback 

can become stable and lead to an effect known as latching281. Latching means that the detector is 

locked in a resistive state and can therefore no longer detect photons279. We will investigate in sec-

tion 4.4.7 if we find latching for short and hence fast SNSPDs. 

                                                        

21 Note that the time values given here are literature values for 3.5 nm NbN on sapphire substrate283, while the order of 
magnitude holds also for other substrates. 

 

Figure 48 - Time scales: a) Schematic of the decrease and recovery of the bias current during a detection event. b) 
Schematic of the heat transfer processes involved in the recovery of superconductivity, described by a two-tempera-
ture model for electrons (𝑇e) and phonons (𝑇ph), and the time scales of the involved processes for 3.5 nm NbN on 

sapphire substrate. Schematic adapted from Il’in et al.283 c) Time behavior of the electrical output pulse corresponding 
to a detection event. The amplitude of the output voltage depends on the bias current and the electrical amplifiers. 
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4.2.4 Waveguide-integrated SNSPDs 

  

A design for superconducting single-photon detectors, which makes them suitable for PICs, was pro-

posed in 2009 by Hu et al.284 and was experimentally realized by several research groups in 

201165,71,285. Figure 49 a) shows a schematic of such a detector: A superconducting nanowire is placed 

on top of an optical waveguide. The nanowire consists of two parallel NbN strips which are connected 

by a 180° circular turn at the side from which light is arriving at the detector. Due to the evanescent 

field of the waveguide mode, light is absorbed by the nanowire while it propagates along the direction 

of the nanowire. While in classical SNSPDs the light impinges from the top, as shown in Figure 46 b), 

limiting the absorption length to the thickness of the superconducting layer of about 5 nm, the ab-

sorption length of waveguide-integrated SNSPDs is determined by the length of the nanowire on the 

order of tens of micrometers. The absorption efficiency of SNSPDs can be improved by placing them 

in an optical cavity, but this has the drawback of making the absorption spectrum narrowband. Op-

posed to that the absorption in waveguide-integrated SNSPDs can be improved simply by elongating 

the nanowire. With no need for an optical cavity the large absorption efficiency is broadband.  

Figure 49 b) shows the simulated intensity distribution for CW light propagating along a silicon 

waveguide65. After some tens of micrometers of nanowire length most of the light has been absorbed. 

We will quantify the absorption coefficient for SNSPDs on diamond waveguides in section 4.3.1. In 

summary it can be said that waveguide-integrated SNSPDs can feature a near unity absorption effi-

ciency over a wide range of wavelengths, while having a small device size, which is furthermore nat-

urally compatible with PICs. 

4.2.5 Performance characteristics of single-photon detectors 

When comparing the performance of different single-photon detectors, several figures of merit or 

performance characteristics should be considered. These are the detection efficiency, the dark count 

rate and noise-equivalent power, the spectral range, the timing jitter, the recovery time and 

  
Figure 49 - Geometry of waveguide-integrated SNSPDs: a) Schematic of a NbN 
superconducting nanowire integrated on a diamond waveguide. b) FDTD simula-
tion of the exponential decay in propagation intensity in a waveguide due to absorp-
tion of light in the NbN nanowire. The shown simulation results are for a NbN nan-
owire on a silicon waveguide, adapted from Pernice et al.65. 
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maximum count rate, and the existance or absence of photon number resolution capability. These 

performance characteristics will be discussed in the following. A perfect SPD would lead to electrical 

detection pulses every single time when a photon arrives. It would be able to independently register 

two photons which arrive after each other, independent of how short the time difference is. 

Furthermore, this perfect detector would provide a signal which unambiguously reveals the number 

of photons which arrived at the detector at the same time. Moreover, the detector would never create 

any output signal in the absence of light. The following performance characteristics allow to compare 

real world detectors against this theoretical ideal detector. 

4.2.5.1 Count rate, dark count rate and detection efficiency 

Count rate and dark count rate are terms used throughout this chapter and therefore we shortly 

define how both terms are used within this thesis. A count is the event of registering an electrical 

pulse which heralds photodetection. This occurs when the electrical output pulse of the detector 

surpasses a defined threshold voltage of the counting electronics. When operating a detector for a 

certain time 𝑡meas, a total number of counts 𝑁meas is registered and the ratio 𝐶𝑅 =
𝑁meas 

𝑡meas
 is referred 

to as the count rate. Besides counts which are caused by the photons which are to be measured, there 

exist also false counts, referred to as dark counts, which are not caused by the photons of interest. 

Dark counts can for example be caused by electrical noise or by photons from unwanted sources, 

such as thermal radiation from relatively hot materials, which form part of the cryogenic measure-

ment setup. While the term count rate refers to the number of all registered electrical pulses per unit 

time (irrespective of them being real counts or dark counts), the dark count rate (DCR) refers to the 

number of false counts per unit time. The dark count rate for a detector at certain operation condi-

tions can be determined by disconnecting the light source of interest, covering the optical access to 

the detector and measuring the remaining count rate caused by all other origins. The detection effi-

ciency 𝜂 of a SPD denotes the overall probability of registering an electrical pulse once a photon 

arrives at the detector.  

  

The detection efficiency can be decomposed into a product of four distinct efficiencies, as illustrated 

in Figure 50, namely: 

1) The coupling efficiency 𝜂coup , which denotes the probability of a photon from a light source 

to arrive at the location of the detector. In the framework of PICs this consists of both the 

 

Figure 50 - Illustration of the decomposition of the system detection efficiency: 𝜂SDE is a product of the cou-
pling efficiency 𝜂coup, the absorption efficiency 𝜂abs, the internal quantum efficiency 𝜂IQE, and the threshold effi-

ciency 𝜂threshold. 
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efficiency of coupling to a waveguide (for example via a focusing grating coupler) and the 

propagation losses along the waveguide, where photons can be absorbed or scattered. 

2) The absorption efficiency 𝜂abs, which denotes the probability of the photon to be absorbed 

in the detector’s active material. 

3) The internal quantum efficiency 𝜂IQE, which for SNSPDs denotes the probability of an ab-

sorbed photon to lead to a breakdown of superconductivity and subsequently to a detectable 

electrical output pulse. 

4) Besides these three contributions, which are determined by different physical properties of 

the detector, the experimental detection efficiency is also influenced by the efficiency with 

which the output electrical signal is registered by external electronics, referred to as thresh-

old efficiency 𝜂threshold. The threshold efficiency is typically very close to unity31. This is also 

the case for the counting electronics used within this thesis and we will assume 𝜂threshold = 1. 

The product of these four efficiencies is referred to as system detection efficiency (SDE) 𝜂SDE
286: 

 𝜂SDE = 𝜂coup ∙ 𝜂abs ∙ 𝜂IQE ∙ 𝜂threshold . (4.7) 

SNSPDs are operated at a certain bias current 𝐼B, and while 𝜂coup and 𝜂abs are independent of the 

bias current, 𝜂IQE does depend on 𝐼𝐵. The system detection efficiency is a good figure of merit when 

using a stand-alone detector system, where the user is interested in how many of the photons that 

are sent into the fiber are registered by the detector. In the context of on-chip detectors for integrated 

quantum optics, the coupling efficiency is of minor importance as the challenges of minimizing both 

the fiber-to-waveguide coupling losses and the propagation losses of the waveguides are independent 

of the SPD development. Furthermore on the long-term the photon sources will be on the same chip, 

making fiber-to-waveguide coupling unnecessary. In the context of waveguide-integrated SNSPDs 

we determine the coupling losses in the measurement but do not consider them as part of the detec-

tor’s efficiency. Therefore the on-chip detection efficiency (OCDE) is used as a characteristic65, con-

sisting of the absorption efficiency and the internal quantum efficiency: 

 OCDE(𝐼B) = 𝜂abs ∙ 𝜂IQE(𝐼B) . (4.8) 

To simplify the notation throughout this thesis the term detection efficiency is therefore used as a 

synonym for OCDE with the notation 𝜂 = OCDE. The detection efficiency of a SPD at a certain wave-

length can be determined using a monochromatic light source which directs light of power 𝑃opt onto 

the detector. As explained above, the coupling efficiency is not considered here, hence 𝑃opt refers to 

the optical power at the location where light first reaches the detector. For waveguide-integrated 

SNSPDs this occurs at the location of the tip with the 180°-turn. The power 𝑃opt can be converted 

into the rate of photons per unit time arriving at the detector, called photon flux ɸ =
𝑃opt

𝐸photon
, where 

𝐸photon denotes the energy of one photon. For clarity of the explanations we consider light as a train 

of single photons22, which arrive at the detector, as shown in Figure 51 a). 

                                                        

22 A train of single photons would be the output of an ideal triggered single-photon source, which might experimentally not 
be available. Considering such a source enables simpler and more intuitive explanations in this section and future quantum 
optical circuits are expected to include triggered single-photon sources, as explained in section 2.2.2. 
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As one photon never causes more than one electrical output pulse23, the detection efficiency 𝜂(𝐼B) at 

a certain bias current 𝐼B can be calculated as the ratio of the count rate 𝐶𝑅, corrected for the dark 

count rate 𝐷𝐶𝑅, to the photon flux ɸ arriving at the detector: 

 𝜂(𝐼B) =
𝐶𝑅(𝐼𝐁)−𝐷𝐶𝑅(𝐼B)

ɸ
≤ 1 . (4.9) 

A detection efficiency smaller than unity can have different causes: A photon not being detected can 

be either due to the fact that (1) it was not absorbed in the nanowire, (2) the absorption did not lead 

to a breakdown of superconductivity or (3) the breakdown was not detected, because the pulse height 

was below the trigger level. If the photons do not arrive with a constant spacing in time, as in the 

simplified case illustrated here, then it is also possible that (4) several photons arrive within the 

recovery time of the detector, where the efficiency is reduced and no further detection pulse might 

occur, as will be explained in more detail in section 4.2.5.5, or that several photons arrive at the same 

time, leading to one electrical output which might not reveal that more than one photon was ab-

sorbed (the lack of photon number resolution), a potential problem that will be discussed in section 

4.2.5.6. By making sure that reasons (3) and (4) are negligible in the measurement, the detection 

efficiency can be determined correctly. 

The closer the bias current is to the critical current, the more likely it is that an absorbed photon 

will lead to a breakdown of superconductivity, and the general dependence of the detection efficiency 

on the bias current resembles a sigmoid curve, as shown in Figure 52 a). Close to the critical current, 

the detection efficiency saturates and becomes almost independent of the bias current. Such a satu-

rated detection efficiency is often referred to as the detection plateau and is a sign of high internal 

efficiency287–289. Following the suggestion of Najafi et al.287 one can introduce a saturation metric 𝑆 

for quantifying the length of the plateau region as 

 𝑆 =
𝐼C−𝐼B(0.9∙𝜂(𝐼C))

𝐼C
 , (4.10) 

                                                        

23 If more than one count can be caused by the absorption of one photon, an effect called afterpulsing, then this calculation 
of the efficiency would not be correct, but fortunately afterpulsing (opposed to single-photon detection with semiconductor 
single-photon avalanche diodes) is not a problem in well-operating SNSPDs341. 

 
Figure 51 - Illustration of the detection efficiency: The detector input (top row) consists of a stream of single 
photons. The detector’s electrical output pulses (bottom row) are registered by the readout electronics if a pulse 
crosses the trigger level. Output pulses, referred to as counts, can either be due to correctly registering a photon 
(counts in red color) or caused by noise (dark counts in black color). Undetected photons, due to a detection efficiency 
below 100% occur as well. Schematic adapted from Migdall et al.31. 



 Superconducting nanowire single-photon detectors on diamond  85 

 

where 𝐼B(0.9 ∙ 𝑂𝐶𝐷𝐸(𝐼C)) is the bias current at which the on-chip detection efficiency reaches 90% 

of its maximum value. As illustrated in Figure 52 a), for example a value of 𝑆 = 0.3 expresses that for 

currents between 0.7 ∙ 𝐼C and 𝐼C the detector’s efficiency is within 90% of its maximum value. 

  

Figure 52 b) shows a schematic of dark count rate as a function of normalized bias current. At low 

bias currents the dark counts are caused by photons from blackbody radiation290 and are hence not 

intrinsic dark counts, but rather unwanted real detection events caused by unwanted photons. Ther-

mal photons from setup components at room temperature can propagate within the core and clad-

ding of the optical fibers of the fiber array, reach the SNSPD and their absorption can trigger false 

counts. Following Planck's law, the thermal spectrum at 300 𝐾 shows a maximum spectral emissive 

power at ≈ 10 µm wavelength, but also photons at visible and near-infrared wavelength are emitted, 

for which the SNSPD detection efficiency is high. Dark counts caused by blackbody radiation can 

generally be reduced by appropriate spectral filtering of the light propagating within the optical fi-

bers.290 

At bias currents close to the critical current intrinsic dark counts dominate. According to recent 

studies comparing experimental data and different theoretical models266, intrinsic dark counts at low 

temperatures are probably mainly caused by vortex-induced phase slips291. Magnetic vortices can 

cross a superconducting wire under the influence of the Lorentz force imposed by the bias current 𝐼𝐵. 

These leave behind a normal-conducting domain across the width of the wire, a vortex-induced 

phase slip, which can lead to a dark count.267 

4.2.5.2 Noise-equivalent power 

The noise-equivalent power (NEP) denotes the impinging optical power which is required for gaining 

a signal-to-noise ratio of unity after integrating the detector’s output signal for one second260: 

 𝑁𝐸𝑃(𝐼B) =
𝐸photon

𝜂(𝐼B)
√2 ∙ 𝐷𝐶𝑅(𝐼B) , (4.11) 

where 𝐸photon denotes the energy of a photon, 𝜂(𝐼B) denotes the detector’s bias current dependent 

efficiency and 𝐷𝐶𝑅(𝐼B) denotes the bias current dependent dark count rate. The NEP is often used 

  

Figure 52 - Bias current dependence of the detection efficiency and dark count rate: a) Schematic of the on-
chip detection efficiency as a function of normalized bias current, which follows a sigmoid curve, with a saturating 
detection efficiency at bias currents close to the critical current 𝐼C. b) Schematic of dark count rate as a function of 
normalized bias current. At comparably low current dark count rate is dominated by counts due to blackbody radia-
tion. At bias currents close to the critical current intrinsic dark counts, not related to thermal photons, dominate.  
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as a figure of merit for single-photon detectors as it quantifies the smallest amount of optical power 

which can still be distinguished from noise. The lowest possible NEP is desirable for a detector. Be-

sides the efficiency and the dark count rate, no further measurements are required for determining 

the NEP. For waveguide-integrated SPDs, typically an on-chip NEP value is given, which uses the 

OCDE value as the efficiency value, for the same reasons as explained in the section on detection 

efficiency. Throughout this thesis, NEP always refers to on-chip NEP, which is useful in combination 

with on-chip light sources. 

4.2.5.3 Spectral range 

The spectral range of a detector denotes the wavelength range of electromagnetic radiation for which 

the absorption of a photon can lead to an electrical output signal. The spectral range depends on the 

physical process which underlies the photodetection. A common SPD is the silicon based single-

photon avalanche diode (SPAD) which can only detect light with wavelengths up to 1.1 µm, due to 

the electronic bandgap of silicon. The spectral range of a specific SNSPD depends on the detector 

material, geometry and operation conditions. It has been shown that SNSPDs generally are able to 

detect single photons from the ultraviolet up to wavelengths of at least 5.5 µm292 in the mid-infrared 

spectral region.  

4.2.5.4 Timing jitter 

 

The timing jitter quantifies the uncertainty in how accurate it is possible to measure the arrival time 

of photons. The time which elapses between when a photon is incident on the detector (optical in-

put) and when the resulting electrical output pulse crosses a given threshold level is called the timing 

latency 𝑡latency, as illustrated in Figure 53. The timing latency varies for different detection events 

and this variation is quantified in a measure called the timing jitter. SNSPDs show very low timing 

jitter, which is a distinct advantage over other SPD schemes260 and applications such as time-corre-

lated single-photon benefit from a low jitter. The mechanism of timing jitter in SNSPDs is little un-

derstood. Recent studies show that at constrictions of the nanowire higher current densities occur. 

Photons that are absorbed at locations with higher current density are detected with higher efficiency 

and it has been shown that an absorption of photons at locations of constrictions and hence with 

higher efficiency leads to output pulses with shorter timing latency293. Thus variations in nanowire 

 

Figure 53 - Illustration of the timing latency 𝒕𝐥𝐚𝐭𝐞𝐧𝐜𝐲: the time between optical input and when the 

resulting electrical output pulse crosses a given threshold level. Schematic adapted from Migdall et al.31. 
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diameter lead to variations in timing latency, which in turn increases the timing jitter. Furthermore 

electrical noise in the readout circuitry increases the timing jitter. Therefore improving the signal-

to-noise ratio, by increasing the magnitude of the output pulse or by reducing the electrical noise, 

improves the timing jitter. In the experimental section 4.4.6 we will explain how to measure the 

timing jitter of SPDs.  

4.2.5.5 Recovery time 

The recovery time 𝑡recovery of a detector is the time after a detection event for which the detector 

does not show its full detection efficiency 𝜂. As illustrated in Figure 54, it consists of the dead time 

and the reset time: 

 𝑡recovery = 𝑡dead + 𝑡reset , (4.12) 

where the dead time 𝑡dead is the duration of time during which the detector is incapable of producing 

an output signal in response to an additional incident photon, which means that the detection effi-

ciency is zero during this dead time. 

 

The reset time 𝑡reset is the time during which the detection efficiency recovers from zero back to its 

initial value. For a superconducting nanowire, the recovery of 𝜂 is not limited by the dissipation of 

energy to the environment and the recovery of superconductivity. It is rather limited by the recovery 

of the bias current to its initial value which happens on a timescale limited by the kinetic inductance 

of the nanowire294, as introduced in section 4.2.3. After a click of the detector, the bias current re-

covers back to its initial value 𝐼𝐵 and the time dependence shows an exponential behavior of 

 
𝐼(𝑡) = (1 − 𝑒

−
𝑡

𝜏2) ∙ 𝐼B , (4.13) 

with a time constant 𝜏2, as introduced in section 4.2.3. As the shape of the detector’s output pulse 

shows an exponential decay with the same time constant, it is possible to extract 𝜏2 from an expo-

nential fit to the output pulse and this value is often quoted as the detector’s recovery time in the 

literature65. It has to be noted that after the time 𝜏2 has elapsed, only 63% of the initial current has 

recovered and at this current in most cases the efficiency is significantly lower than the efficiency at 

 

Figure 54 - Illustration of the recovery time of a single-photon detector, consisting of the dead time during 
which the efficiency is zero and a reset time during which the efficiency recovers from zero back to its initial 
value 𝜂(𝐼B ). 
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the full bias current 𝐼B and therefore 𝜏2 is not a good approximation for the recovery time of a detec-

tor. In a strict sense due to the exponential behavior there exists no value for the time after which 

the full current is recovered and a more practical definition for a recovery time is needed. A time of 

3 ∙ 𝜏2 after which 95% of the current has recovered has been suggested as a better approximation to 

the SNSPDs recovery time.279,295 A more accurate evaluation necessitates to take into account both 

the accurate dependence of the efficiency on the bias current 𝜂(𝐼) and the time dependence of the 

current 𝐼(𝑡) in the nanowire after a detection event. This enables to determine the time 𝑡∗ after which 

a certain fraction 𝐴 of the initial efficiency 𝜂(𝐼B ) has recovered294: 

 𝜂(𝐼(𝑡∗)) = 𝐴 ∙ 𝜂(𝐼B ) . (4.14) 

The choice of 𝐴 is arbitrary and there seems to be no convention in the literature yet. A value of 𝐴 =

90% has been suggested as a potential convention294 and we will use this value in our data analysis. 

In the experimental section 4.4.7, we will estimate the detector recovery times: We will determine 

the time constant 𝜏2 which governs the recovery of the bias current for different detector geometries 

of SNSPDs on diamond waveguides. Additionally we will estimate the time 𝑡∗ after which 90% of the 

initial efficiency has recovered and compare both approaches. The recovery times of SNSPDs are 

typically on the order of a few nanoseconds. 

4.2.5.6 Energy resolution / photon number resolution 

Many SPDs provide a binary output signal which enables only to distinguish between “no photons 

have been detected” and “photons have been detected”, but the energy of the detected light or the 

number of photons cannot be determined from the detector signal. A scheme where the detector’s 

output signal is dependent on the energy of the absorbed photons such that (in case of monochro-

matic light) the number of photons can be unambiguously determined from the detector signal, is 

called a photon number resolving (PNR) detector. Transition-edge sensor (TES) are superconducting 

detectors which are energy resolving and can therefore act as true PNR detectors. TES are micro-

calorimeters, where the amplitude of the output pulse is proportional to the energy of the detected 

light260, which in case of monochromatic light can be converted into the number of detected pho-

tons. TES can be integrated on top of waveguides285,296, but these detectors are relatively slow (µs 

recovery times) and need to be operated at millikelvin temperatures297,298. Opposed to that, SNSPDs 

do not feature photon number resolution, as the output pulse of SNSPDs is not dependent on the 

number of absorbed photons. From the performance characteristics of SPDs, this is the only charac-

teristic for which SNSPDs show a disadvantage compared to other technologies. 

Temporal or spatial multiplexing, for example by distributing an amount of not-PNR detectors at 

the output of a series of beam splitters, enables to draw some conclusions concerning the number of 

photons which are introduced into the series of beam splitters. Such multiplexing only provides use-

ful information if the number of detectors is much larger than the number of incoming photons. 

Therefore statistical information on the distribution of photon numbers in the incoming light is 

needed and such multiplexing schemes299–301 have to be clearly distinguished from real photon num-

ber resolution.  
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It should be noted that quantum optical applications exist for which photon number resolving de-

tectors are often not required. For example boson-sampling, as introduced in section 2.2.2, does not 

necessarily require PNR detectors, as explained by Gard et al., “because the number of modes scales 

quadratically with the number of photons, for large systems we are statistically guaranteed that all 

photons will arrive at different output modes”47. It is therefore reasonable to develop SNSPD detec-

tors for integrated quantum optical circuits besides their lack of energy or photon number resolution. 

4.3 SNSPDs on diamond: layout and room temperature 
characterization 

Efficient on-chip single-photon detectors compatible with the diamond PICs presented in the previ-

ous chapters are important as a missing counterpart to single-photon sources based on color centers 

in diamond, as explained in section 2.3. We design superconducting nanowire single-photon detec-

tors integrated with polycrystalline diamond PICs for two wavelength regimes, namely around 

1600 nm and 765 nm. We investigate detectors at a wavelength of 765 nm, because this is close to 

the emission wavelength of one of the most promising single-photon sources in diamond, namely 

the silicon vacancy center. On the other hand efficient single-photon detection at telecommunica-

tion wavelength is more challenging than at visible wavelengths286 and SNSPDs at 1600 nm act as a 

benchmark for comparison to other single-photon detectors, especially SNSPDs on other substrates. 

We focus on two types of detectors: on one hand short nanowire detectors, which have short recovery 

times and hence enable high detection rates, and on the other hand long SNSPDs which feature high 

absorption efficiency, a necessary requirement for a high detection efficiency. 

4.3.1 Nanowire geometry 

A central part of the design of SNSPDs is the geometry of the nanowire. A sketch of a superconduct-

ing nanowire is shown in Figure 55 a), indicating the main geometric design parameters: the NbN 

nanowire (gray) resides on top of the diamond waveguide (blue). It has a thickness of 𝑑 = 4 nm and 

consists of two parallel stripes of width 𝑤 on the order of 100 nm and a length 𝐿 on the order of 

several tens of micrometers. These two stripes are separated by a gap of size 𝑔 = 100 nm and con-

nected by a 180° circular bend which constitutes the detector’s tip at which photons arrive first. The 

refractive index of NbN thin films depends strongly on the wavelength, but also depends on the film 

thickness and the deposition conditions.264 For a 4 nm thick NbN layer the refractive index is about 

𝑛 = 5.33 + 5.90𝑖 at 1600 nm and 𝑛 = 3.19 + 4.15𝑖 at 775 nm302, where the imaginary part corre-

sponds to the absorption of light. For light propagating in a waveguide the absorption per length 

depends on the overlap of the mode with the absorptive material, which can be expressed as the 

effective refractive index 𝑛eff of the waveguide modes, as introduced in section 2.1.1.  
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Figure 55 b) shows a SEM micrograph of the HSQ resist, which defines the geometry of the underly-

ing NbN nanowire of 100 nm width. The nanowire width is one of the parameters which determine 

if the energy of one photon will be large enough to lead to a breakdown of superconductivity and a 

subsequent detection event. Hence the nanowire needs to be narrow enough for high detector effi-

ciency, but the trade-off is that a smaller width leads to a smaller critical current and in turn to a 

smaller electronic output pulse, which makes the electronic readout more challenging. Furthermore, 

the reliable fabrication of thin wires is more demanding, as small absolute variations of some  

nanometers in wire width translate into a larger relative variation, which results in incisions which 

limit the critical current for the entire wire. For the SNSPDs on diamond we chose nanowire widths 

of 90 nm and 100 nm and a gap of 100 nm, as waveguide-integrated SNSPDs from NbN with the same 

corresponding cross-sections showed good performance at telecom wavelengths on substrates such 

as silicon65 and silicon nitride303.  

We simulate the guided modes in diamond rib waveguides for both wavelengths and choose the 

waveguide widths such that for TE-like polarization only one spatial mode exists. We note that after 

fabricating the waveguide, the nanowire and the waveguide itself are covered by HSQ resist (not 

shown in Figure 55 a), which we consider in the FEM simulation with a resist thickness of 400 nm and 

we assume the same refractive index as for the fused silica below the diamond layer. For a 

635 nm thick diamond layer and 45% relative etch depth the simulations yield the following widths 

for which exactly one TE-like mode exists: 𝑤 = 700 nm for 765 nm wavelength and 𝑤 = 1100 nm 

for 1600 nm wavelength. The evanescent field of the waveguide mode couples to the NbN nanowire 

which results in the absorption of photons in the NbN strip. Figure 56 shows the mode profiles of 

the TE-like mode and the corresponding effective refractive indices for the waveguide at 

1600 nm without NbN nanowire and with a nanowire of 100 nm width. Due to the large complex 

refractive index of NbN, the electric field at the nanowire is greatly enhanced, as can be seen in the 

magnified image (c), which leads to the desired enhanced absorption of photons in the NbN nan-

owire. 

   

Figure 55 - SNSPD geometry: a) Sketch waveguide-integrated SNSPD, consisting 
of the NbN nanowire (gray) on top of a partially etched diamond photonic waveguide 
(blue). The main geometric parameters are indicated. Note that the HSQ layers which 
are covering the nanowire and the waveguide are omitted for clarity of the schematic. 
b) SEM micrograph showing the HSQ resist which defines the nanowire geometry.  
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The absorption coefficient 𝛼 (in dB per length unit) can be calculated from the imaginary part of the 

refractive index, according to equation (2.3), as304 

 𝛼 =
2𝜋

𝜆
∙

20

ln(10)
∙ Im(𝑛eff) . (4.15) 

Table 2 presents the simulation results for the refractive indices and the corresponding absorption 

coefficients for the four combinations of nanowire widths and wavelengths. Note that the absorption 

coefficients at 1600 nm are much larger than at 765 nm, such that for a 90 nm wide nanowire on the 

given waveguide geometry after 80 µm nanowire length 93% of the light is absorbed at 1600 nm, 

while 70% of the light is absorbed for a wavelength of 765 nm. 

 

Back reflection of photons at the interface between a bare waveguide and a waveguide with an NbN 

wire on top is a possible limiting factor for the detection efficiency of the detector. We estimate the 

upper bound of this reflection by assuming a sudden change in the effective refractive index of the 

guided mode between the bare waveguide (𝑛eff = 2.1457) and the waveguide with a 100 nm wide 

nanowire (𝑛eff = 2.1471 − 0.004943i) at 1600 nm.  

  

 

Figure 56 - Guided TE-like modes at 𝟏𝟔𝟎𝟎 𝐧𝐦: Spatial distribution of the electric field norm for 1 mW optical 
power in the TE-like mode of a waveguide a) without NbN nanowire and b) with a nanowire of 100 nm width 
and 100 nm gap between the two NbN strips. c) Enlarged image of the region of the NbN nanowires, as indicated by 
the red box in b). The waveguide dimensions are: 635 nm diamond layer, 45% relative etch depth, 1100 nm wave-
guide width. The color scale for the electric field strength on the right side applies to all three subfigures. 

Table 2 - Simulated refractive indices and absorption coefficients for NbN nanowires of 90 nm and 100 nm width 
on diamond rib waveguides (635 nm of diamond, 45% etched) at two different wavelengths (1600 nm and 765 nm). 

Wavelength Waveguide 

width 

Detector 

width 

Refractive index Absorption  

coefficient 

1600 nm 1100 nm 90 nm 2.1473 − 0.004269i 0.1456 dB/µm 

1600 nm 1100 nm 100 nm 2.1471 − 0.004943i 0.1686 dB/µm 

765 nm 700 nm 90 nm 2.3143 − 0.0009135i 0.0652 dB/µm 

765 nm 700 nm 100 nm 2.3142 − 0.0009746i 0.0695 dB/µm 
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Using Fresnel’s equations, we find a very small reflection coefficient 𝑅 as 

 𝑅 =
𝑃ref

𝑃in
= 1.4 ∙ 10−6 , (4.16) 

where 𝑃ref and 𝑃in are the reflected and the incident power, respectively. The same holds for the case 

of a different nanowire width or a different wavelength and we therefore neglect back reflection in 

the following. Following the simulation, we design and fabricate a chip with PICs which contains 

devices for confirming the absorption coefficients, as well as devices with electrically connected nan-

owires which work as single-photon detectors. The following sections describe the layouts and the 

measurement results for both types of PICs. 

4.3.2 NbN absorption measurement 

In order to measure the absorption in NbN nanowires, we design and fabricate integrated PICs, which 

allow for balanced optical detection, as shown in Figure 57.  

 

An input grating coupler transfers light of power 𝑃in from a fiber to the TE-like waveguide mode. The 

grating coupler is connected to a 50/50 Y-splitter, which distributes half of the light towards a refer-

ence port (right side) and half of the light towards the nanowire, where the propagating mode is 

attenuated by absorption in the NbN (left side). By dividing the optical power 𝑃out at the transmission 

port by the power 𝑃ref at the reference port, the attenuation due to the nanowire can be determined. 

As estimated above, scattering can be neglected and we therefore consider the relative attenuation 

to be purely due to absorption in the NbN. By using a symmetric design with identical waveguide 

lengths and grating couplers, the propagation loss and coupling loss do not contribute to the meas-

urement of the absorption coefficient. 

We fabricate PICs with nanowires of 100 nm width for various lengths, both for 1600 nm 

and 765 nm. We note that the length of the NbN nanowire is about twice as long as the device length, 

as it consists of two parallel NbN stripes which are electrically connected in series via a 180°-turn. 

We measure the absorption for all fabricated devices at room temperature. Light from a tunable laser 

source is coupled into the central waveguide, and the transmitted powers are recorded at both output 

ports simultaneously. Figure 58 shows the corresponding average measured absorption for 100 nm 

 

Figure 57 - Absorption measurement: Schematic of a PIC for balanced detection of the absorption of an NbN nan-
owire placed on top of a diamond rib waveguide. The unetched diamond layer is omitted for clarity of the schematic. 
The transmitted optical power 𝑃out after partial absorption by the nanowire (left side) is compared to the optical 
power 𝑃ref transmitted through a reference circuit (right side). 
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wide NbN nanowires in dependence of device length at 1550 nm and 765 nm. The absorption shows 

the expected exponential decay with increasing wire length. We extract the absorption in decibels 

per micrometer from fits to the obtained data. For devices with 100 nm width the absorption coeffi-

cient is 0.203 ± 0.009 dB/µm at 1600 nm. This is slightly larger than the value of 0.1686 dB/µm ex-

pected from simulations. We attribute this to the uncertainty concerning the thickness and the re-

fractive index of the NbN layer and the width of the nanowire which is buried below the resist. 

At 765 nm (Figure 58 b) the linear fit to the data yields an absorption coefficient of 0.103 ±

0.009 dB/µm, which is slightly larger than the value of 0.0695 dB/µm expected from simulations (see 

Table 2). We attribute differences between simulation and measurement to the uncertainties in 

nanowire and waveguide geometry, due to fabrication tolerances and to uncertainties in differences 

between literature values and experimental values for both the refractive index of diamond and NbN.  

 

It is important to note that the absorption coefficient at room temperature (300 K) agrees within the 

measurement uncertainty with the absorption coefficient at cryogenic temperatures, as we confirm 

by repeating the described measurement in a cryogenic setup (see appendix A4). This means that for 

future detector optimizations it is not necessary to repeatedly perform absorption measurements at 

cryogenic temperatures, as it is possible to predict the absorption efficiency of superconducting nan-

owire detectors from room temperature absorption measurements.  

4.3.3 Detector circuit layout and fabrication 

The design of our waveguide-integrated SNSPD is shown in Figure 59 a) and consists of the following 

components: A focusing grating coupler is used to couple light with power 𝑃in from a tunable laser 

source into a diamond waveguide. A Y-splitter acts as a 50/50 beam splitter where at the right out-

put 50% of the light propagates along a waveguide to a second grating coupler which couples light 

out of the chip into a second optical fiber, where the output power 𝑃out is determined with an external 

photodetector. This transmission measurement enables the measurement of the coupling efficiency 

and hence the determination of the photon flux inside the PIC. Photons exiting at the left output of 

 

Figure 58 - NbN absorption measurement at room temperature: Absorption due to 4 nm thick, 100 nm wide 
NbN nanowires for various device lengths. a) Absorption at 1550 nm: A linear fit reveals an absorption coefficient of 
0.203 ± 0.009 dB/µm. b) Absorption at 765 nm: A linear fit reveals an absorption coefficient of 0.103 ± 0.009 dB/µm. 
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the beam splitter propagate towards the waveguide-integrated SNSPD (shown in cyan color) which 

is electrically connected to gold electrode pads, visible at the top side of Figure 59 a). 

 

We fabricate a chip which contains both the PICs for absorption measurements and the PICs featur-

ing waveguide-integrated SNSPDs via three steps of electron beam lithography: First the metal con-

tact pads and cross-shaped alignment markers are structured from chromium and gold via a lift-off 

process. Next the nanowire geometries are written into HSQ (6%) negative resist, with an overlap 

with the metal electrode for electrical connection, as shown in Figure 59 b). The nanowire width 

increases at the location of the curve towards the electrode, as can be seen in the enlarged SEM image 

of Figure 59 c). This makes the nanowire design unsusceptible to deviations in the curve profile, 

which would otherwise limit the critical current of the nanowire. The nanowire geometries are then 

transferred from HSQ into NbN via dry etching. In the final step the PICs are written into HSQ (15%) 

negative resist and after resist development transferred into diamond via dry etching, resulting in 

hundreds of PICs containing SNSPDs, as shown in Figure 59 d). A detailed description of all 

fabrication steps can be found in appendix A2. The photonic chip contains two sets of waveguide-

integrated SNSPDs, one each for wavelengths of 1600 nm and 765 nm. The respective sets of devices 

differ only in the geometry of the grating couplers and the waveguide widths (𝑤 = 1100 nm for 

1600 nm and 𝑤 = 700 nm for 765 nm wavelength), but are equal in all other design parameters.  

While this general layout for waveguide-integrated SNSPDs has been used in most 

demonstrations of waveguide-integrated SNSPDs to date, one quantity which is needed for the 

determination of the efficiency of the detector has to be determined in a separate measurement: the 

propagation loss of the waveguides. As the propagation loss depends on the quality of the materials 

and the fabrication process, the propagation loss should be measured on the same chip as the 

 

Figure 59 - Circuit and chip layout: a) Colorized SEM image of a photonic circuit designed for characterizing a 
waveguide-integrated SNSPD. b) Colorized SEM micrograph, taken under an angle of 45°, showing the nanowire 
geometry of the SNSPD written into negative resist (HSQ 6%) by electron beam lithography. c) Enlarged section of 
the SEM image of the nanowire, corresponding to the white rectangle in b). d) Colorized SEM micrograph showing a 
larger region of the photonic chip which contains hundreds of waveguide-integrated SNSPDs. 
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SNSPDs. This is possible using additional PICs, such as waveguides of different lengths or PICs which 

include ring resonators.147 Avoiding the need for additional PICs is especially useful when 

determining detection efficiencies at several wavelengths, as the propagation loss is highly 

dependent on the wavelength. This is possible by designing the PIC in the right fashion: If the length 

from input to output coupler 𝐿ref (section A–B in Figure 59 a) is designed to be twice the distance 

between input coupler and detector 𝐿det (section A–C), the propagation loss does not contribute to 

the calculation of the detector’s efficiency, as will be explained in the following. 

The on-chip detection efficiency of a detector is determined as the ratio of the number of detec-

tion events in a certain time period, called the count rate (CR), and the number of photons impinging 

on the detector during the same time period, called the photon flux ɸ, as explained in section 4.2.5. 

The transmission 𝑇 through the photonic reference circuit amounts to 

 𝑇 =
𝑃out

𝑃in
= 𝐶2 ∙ 𝑆 ∙ exp(−𝛼 ∙ 𝐿ref) , (4.17) 

where 𝑃in is the laser power arriving at the input coupler, 𝑃out is the laser power measured after 

transmission at the output coupler, 𝐶 is the coupling efficiency of one grating coupler, 𝑆 = 0.5 is the 

splitting ratio of the Y-Splitter, 𝛼 is the attenuation coefficient of the waveguide, and 𝐿ref is the length 

of the waveguide between the two grating couplers (section A–B in Figure 59 a). The photon flux 

arriving at the detector is given by 

 ɸ =
𝑃in

𝐸ph
∙ 𝐶 ∙ 𝑆 ∙ exp(−𝛼 ∙ 𝐿det) , (4.18) 

where 𝐸ph = ħ𝜔 is the energy of a photon and 𝐿det is the length of the waveguide between input 

coupler and SNSPD (section A–B). Because the circuit is designed with 𝐿ref = 2 ∙ 𝐿det, this means that  

 √𝑇 = 𝐶 ∙ √𝑆 ∙ exp(−𝛼 ∙ 𝐿det) (4.19) 

and hence the photon flux can be expressed as 

 
ɸ =  

𝑃in

𝐸ph
∙  √𝑆 ∙  √𝑇 =

𝑃in

𝐸ph
∙ √0.5 ∙ √

𝑃out

𝑃in
 . (4.20) 

It is therefore possible to determine the photon flux without quantifying 𝛼, simply by measuring the 

optical input and output power. Additional photonic devices for determining the propagation loss 

on the same chip are therefore not needed. The same holds for potential bending losses in curved 

waveguides. By introducing twice as many quarter circles (four compared to two) within the refer-

ence waveguide, potential bending losses cancel each other out of the calculation of the photon flux 

and hence do not need to be determined using additional PICs. The detector devices are fabricated 

on the same photonic chip as the devices for measuring the NbN absorption, presented in section 

4.3.2, such that the obtained absorption coefficients are also valid for the detectors. We fabricate 

both detectors with long SNSPDs which feature high absorption efficiency, a necessary requirement 

for a high detection efficiency, and short nanowire detectors, which enable high detection rates. 
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4.4 SNSPDs on diamond: cryogenic characterization 

4.4.1 Cryogenic measurement setup 

For the characterization at low temperature, the sample chip containing the SNSPDs is mounted on 

a stack of nano-positioners with four axes inside a liquid helium cryostat with a base temperature 

of 1.8 K. All measurements within this chapter are performed at this temperature, unless indicated 

differently. The nano-positioners’ closed-loop positon readings enable the precise localization of 

each detector, without the need for visual access to the sample at low temperatures. Matching the 

device layout shown in Figure 59 a), an optical fiber array and an electronic RF probe are mounted 

facing each other, such that the grating couplers can be aligned underneath the fibers for maximum 

transmission and, at the same time, the probe tips can be electrically connected to the contact pads 

of the SNSPD. Figure 60 shows a schematic of the measurement setup. The optical setup consists of 

a tunable CW laser (either at wavelengths around 1600 nm or 765 nm, depending on the device un-

der investigation) combined with two variable optical attenuators and a polarization controller. 

Measuring both the optical input power 𝑃in and the transmitted power 𝑃out simultaneously with an 

optical power meter enables to calculate the photon flux arriving at the on-chip detectors. The two 

contact pads of a SNSPD are electrically connected to a bias-T at room temperature. The DC port is 

connected to a stable voltage source via a 1 MΩ resistor, which provides the bias current 𝐼𝐵. The high 

frequency RF port is connected to two low-noise amplifiers24 which together amplify the SNSPD out-

put voltage pulses by 23.3 dB. Amplified electrical output pulses, which surpass a chosen threshold 

voltage, are subsequently either counted with an electrical pulse counter or recorded with a fast os-

cilloscope. 

 

                                                        

24 Mini-Circuits ZFL-1000LN+: Specification of 23.3 dB power gain (11.65 dB voltage gain) at a DC-voltage supply of 15 𝑉. 

 
Figure 60 - Cryogenic measurement setup: The detector sample is mounted inside the liquid helium cryostat at 
temperatures down to 1 K and with fiber optical access (blue lines) and electrical access (red lines). Both the optical 
setup including laser sources, attenuators and polarization controller and the electrical setup including the bias volt-
age source for the SNSPDs and the readout electronics (bias-T, amplifiers, pulse counter and oscilloscope) are oper-
ated at room temperature. 
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4.4.2 Critical temperature and critical current 

A high quality of the superconducting film is crucial for the SNSPD performance and the critical 

temperature 𝑇C. The sheet resistance 𝑅S can be used as a metric for characterizing the superconduct-

ing films287, where a high 𝑇C can be associated with high sheet current density287 and possibly low 

timing jitter, while high 𝑅S could be associated with higher detector sensitivity due to larger Joule 

heating305. A high critical current 𝐼C of a fabricated nanowire on the other hand reveals that no de-

fects or incisions are limiting the performance. 

After deposition of the 4 nm thick NbN layer on the diamond film, the sheet resistance is deter-

mined by four-point probe measurement as 𝑅S = 400 Ω/□ at 300 K, comparable to high quality NbN 

layers of comparable thickness on other substrates.264 We determine the critical temperature of the 

film by measuring the resistance of the film between two electrical probes while reducing the tem-

perature. The obtained results are shown in Figure 61 a), where a distinctive transition is observed as 

the sample reaches the superconducting state. As the distance between the probes is arbitrary, the 

𝑦-axis is normalized to the known sheet resistance at 300 K. The critical temperature is found to 

be 𝑇C = 11.7 𝐾, comparable to values found for comparably thin NbN layers on other substrates.287 

Further details concerning the resistance characteristic can be found in appendix A3. 

 

The photonic chip containing arrays of waveguide-integrated SNSPDs is characterized in the cryo-

genic setup explained in section 4.4.1, which we operate at a base temperature of 1.8 K. We contact 

one SNSPD at a time electrically to the electrical probe and measure the critical current in series with 

a 1 MΩ resistor (external at room temperature), by increasing a DC voltage until the resistance sud-

denly increases to a value far above 1 MΩ, revealing the transition of the nanowire from the super-

conducting to the normal state. During such measurements, the laser shutter is closed and the at-

tenuators are set to 120 dB attenuation in order to avoid stray light which would disturb the super-

conducting state. Figure 61 b) shows the experimental values for the critical currents above 25 µA 

 

 
Figure 61 - Critical temperature and critical current: a) Dependence of the sheet resistance of the 4 nm thick NbN 
layer on diamond on the temperature revealing a critical temperature of 𝑇C = 11.7 K. b) Dependence of the critical cur-
rent of SNSPDs on the nanowire width: Comparison between highest critical current values for SNSPDs from NbN in 
the literature (black crosses, the red line is a guide to the eyes) to the highest critical currents measured for SNSPDs on 
diamond waveguides (blue triangles) showing that they are comparable to the highest values for NbN SNSPDs on any 
substrate. The literature comparison is adapted from Schuck et al.306 and was updated with recent publications345,346. 
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which were measured for SNSPDs on diamond waveguides (blue triangles) compared to values re-

ported for NbN SNSPDs in the literature (black crosses). We find a maximum critical current of 

34.2 µA for a nanowire cross-section of 4 nm ∙ 100 nm and a length of 90 µm, corresponding to a crit-

ical current density of 8.55 MA/cm2 which is on par with the highest values reported for NbN SNSPDs 

on other substrates in the literature306.  

Considering the yield of the device fabrication, it should be noted that 11 out of 21 SNSPDs de-

signed for 1550 nm of 90 nm and 100 nm width show high critical currents above 25 µA, while the 

other devices show critical currents below 20 µA or cannot be electrically connected at all. We at-

tribute this to the 3 nm rms surface roughness of the diamond layer which is comparable to the 4 nm 

layer thickness of NbN. This potentially leads to incisions in the nanowires which limit the critical 

current. As the probability of limiting the critical current with incisions increases with the nanowire 

length, this interpretation is supported by the fact that for 10 µm long devices five out of five devices 

show high critical currents above 25 µA, while for wires of at least 70 µm length this is only the case 

for six out of 16 SNSPDs. A further analysis of device yield depending on the length of the SNSPD 

and on its spatial position on the chip can be found in appendix A5. Concluding, it can be said that 

while the device yield could be improved, potentially by further diamond polishing, the best devices 

show large critical current densities comparable with the highest values on any other substrate, indi-

cating that a high quality NbN layer on polished polycrystalline diamond was achieved. As the ampli-

tude of the electrical output pulse of an SNSPD scales linearly with the applied bias current, high 

critical currents are desired as they enable a reliable detection of the output pulse with good signal-

to-noise ratio. This aspect will be further discussed in the context of low timing jitter in section 4.4.6. 

4.4.3 Single-photon detection capability 

As a SNSPD is a binary detector, where the absorption of light leads either to zero or one output 

pulses at a time, the count rate for a given optical power depends on the probability of absorbing 

sufficient photons within a short enough time interval to trigger a detection event. For a laser the 

number of photons in a time interval follows a Poissonian distribution. For laser light with on average 

�̅� photons per time interval, the probability of finding exactly 𝑘 photons is given by 

 𝑃(𝑘, �̅�) = �̅�𝑘𝑒−�̅�/𝑘! . (4.21) 

For a laser with strong attenuation (�̅� ≪ 1), this relation can be approximated as 

 𝑃(𝑘, �̅�) ≈
1

𝑘!
∙ �̅�𝑘 . (4.22) 

The probability to find exactly 𝑘 = 1 photon in a time interval therefore scales linearly with �̅� and 

therefore with the optical power, while the probability to find 𝑘 = 2 photons increases quadratically 

with the optical power. The same polynomial scaling with the power of 𝑘 obviously applies to higher 

values of 𝑘.  

The required energy, and hence for monochromatic light the needed number of photons, for 

breaking down superconductivity in a SNSPD can be determined using a pulsed laser of variable 

pulse power. For an increasing pulse power, and hence an increasing average number of photons per 

pulse, the detection probability increases. For an attenuated pulsed laser (�̅� ≪ 1) the probability of 
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finding exactly 𝑘 photons in a pulse is given by equation (4.22), where �̅� denotes the average number 

of photons per pulse. The pulse detection probability 𝑝det is a sum which contains the products of 

the probability of finding 𝑘 photons in the pulse 𝑃(𝑘, �̅�) and the probability of 𝑘 photons triggering 

a detection event 𝜂𝑘 (the detection efficiency for 𝑘 photons). We note that 𝜂𝑘 ≥ 𝜂𝑖 for 𝑘 ≥ 𝑖, as more 

energy from more photons increases the probability of breaking down superconductivity. The prob-

ability of the photons being absorbed in the same area needs to be considered as well310. The pulse 

detection probability for a certain value of �̅� can be dominated by the 1-photon, 2-photon, or 𝑘-

photon events with larger numbers 𝑘 (sometimes referred to as detection regimes). If the energy of 

one photon is sufficient to trigger a detection event, then 𝑝Det will scale linearly with the average 

number of photons per pulse. If the energy of one photon is not sufficient, 𝑝Det will scale with the 

polynomial which corresponds to the smallest number of photons which is sufficient to trigger the 

breakdown of superconductivity.  

For measuring the properties of SNSPDs concerning their interaction with light we align the two 

grating couplers of one PIC at a time with respect to the fiber array, such that the device transmission 

is maximized. Furthermore the polarization of light is optimized for maximum transmission. We 

employ a pulsed laser at 1550 nm, with a repetition rate of 40 MHz and a pulse duration of ≈ 1 ps. 

This ensures that the pulse duration is much shorter than the recovery time of the detector (on the 

order of nanoseconds) and hence ensures that not more than one detector count is triggered by the 

same laser pulse. The photon flux towards the SNSPD is adjusted via two attenuators. The probability 

of detecting a laser pulse 𝑝Det is determined as the ratio of the detector count rate, corrected for the 

dark count rate, to the pulse repetition rate of the laser: 𝑝Det =
𝐶𝑅−𝐷𝐶𝑅

𝑅𝑅
. We bias the SNSPD with a 

current 𝐼B and record the detector count rates for varying attenuations of the pulsed laser. At a strong 

attenuation, each pulse contains on average much less than one photon. The average photon number 

per pulse �̅� is then gradually increased by reducing the attenuation until the photon flux is too large 

for the SNSPD to sustain superconductivity. We note that with laser power and the corresponding 

average photon number we refer to their values for light inside the waveguide at the location where 

the nanowire starts. 

Figure 62 shows the pulse detection probability 𝑝det as a function of the average number of pho-

tons per pulse �̅� for various normalized bias currents on a double logarithmic scale. For a bias current 

of 0.85 ∙ 𝐼C, for a photon flux ranging from 10−6 to 1 photon per pulse a linear behavior with a slope 

of 1 can be observed, as expected for the operation of a binary single-photon detector206. At higher 

photon fluxes the detection probability saturates at 𝑝Det = 1, as all pulses are being detected. The 

slope of 1 reveals the single-photon detection capability of the studied SNSPDs.308,309 While for 

0.65 ∙ 𝐼C and higher currents 𝑘 = 1 is dominating, for 0.55 ∙ 𝐼C two regimes where single- and two-

photon detection dominate can be identified. For a low bias current of 0.45 ∙ 𝐼C a regime with 𝑘 = 3 

can be identified. The offset between the curves for different bias currents can be attributed to the 

increase of the detection efficiencies 𝜂𝑘 with increasing bias current, as will be explained in the fol-

lowing section. Throughout the rest of this thesis only 𝜂1, the probability that one photon triggers a 

detection event, is considered. This is commonly referred to as the efficiency of an SNSPD which is 
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commonly used as a single-photon detector and we denote it with 𝜂, as introduced in section 4.2.5.1. 

For waveguide-integrated detectors, 𝜂 corresponds to the on-chip detection efficiency. Summarizing, 

it can be said that the presented data shows the capability of the SNSPD to detect single photons. 

 

4.4.4 Detection efficiency 

The goal for an ideal detector would be to feature both a short recovery time and a high detection 

efficiency, but for simple U-shaped SNSPDs there is a trade-off between OCDE and detector reset 

time. While OCDE increases with the length due to increased absorption, also the kinetic induction 

increases and hence the recovery time. We therefore design and fabricate short SNSPDs with a device 

length of 10 µm (nanowire length of 20 µm), which will be fast but have limited efficiency, and long 

SNSPDs with device lengths of 80 µm and 90 µm, which will show higher efficiencies but longer reset 

times, as will be discussed in section 4.4.7. 

For the characterization the OCDE of the SNSPDs we first measure the transmission of light from 

a CW laser through the reference arm of the PIC, as explained in section 4.3.3, and adjust the atten-

uation such that the photon flux ɸ at the detector is either 106 or 107 photons per second. This 

ensures for detectors with recovery times of a few nanoseconds that the probability of more than one 

photon arriving within the recovery time is negligible. For each bias current 𝐼B we measure both the 

count rate 𝐶𝑅(𝐼B) at a given photon flux and the dark count rate 𝐷𝐶𝑅(𝐼B) when the laser is discon-

nected and the fiber inputs are covered by metal caps to shield the fiber from light sources in the 

laboratory. As introduced in section 4.2.5.1, we can then calculate the on-chip detection efficiency 

as 𝜂(𝐼B) =
𝐶𝑅(𝐼B)−𝐷𝐶𝑅(𝐼B)

ɸ
 . Figure 63 a) shows the dependence of the OCDE on the bias current for 

detectors designed for a wavelength of 765 nm (blue circles) and 1600 nm (red triangles) on a loga-

rithmic scale. The detectors have a width of 90 nm and device lengths of 80 µm (765 nm) and 

90 µm (1600 nm) and show critical currents of 𝐼C =  31.2 µA (765 nm) and 𝐼C = 28.6 µA (1600 nm).  

 

Figure 62 - Single-photon counting capability: Pulse detection probability in dependence of the average photon 
number contained in an attenuated laser pulse at 1550 nm for a 110 nm wide and 70 µm long SNSPD for various bias 
currents. 
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For light with 1600 nm wavelength, we find that the OCDE is continuously increasing with bias cur-

rent, with increasing slope up to the critical current and no efficiency plateau is reached. In this 

wavelength range we obtain a maximum OCDE of 28.4 ± 3.4% when biased at 98.8% of the critical 

current. Using the measured absorption at telecommunication wavelengths, provided in section 

4.3.2, we estimate the absorption efficiency for a 90 µm long device of 90 nm width as 𝜂abs = 1 −

10(−0.203∙90/10) = 98.5%. The measured detection efficiency is hence not limited by the absorption, 

but by the internal quantum efficiency which is in accordance with the fact that no efficiency plateau 

is reached. We anticipate that higher efficiencies could be reached by reducing the nanowire width, 

as has been shown for SNSPDs on other substrates.303 

For detectors at a wavelength of 765 nm, the efficiency saturates at high bias currents, as can be 

well seen on a linear scale (Figure 63 b), with a maximum efficiency of 73.6 ± 11.0%. Using the 

measured absorption at 765 nm we estimate the absorption efficiency for a device of 80 µm length 

and 90 nm width as 𝜂abs = 1 − 10(−0.103∙80/10) = 85%. This is comparable to the measured OCDE, 

indicating that the internal quantum efficiency is likely close to unity, which is in accordance with 

the plateau in efficiency. SNSPD efficiencies above 90% have experimentally been shown65,288 and 

higher efficiencies for waveguide-integrated SNSPDs on diamond at 765 nm could be achieved by 

increasing the absorption efficiency. 

The presented detector for 765 nm reaches 90% of its maximum efficiency at a bias current of 

0.719 ∙ 𝐼C. The saturation parameter, as defined in section 4.2.5.1, therefore amounts to 𝑆 = 0.281, 

which means that the SNSPD can be operated 28.1% below its critical current, while losing only 

10% of its maximum efficiency. This allows to operate the detector at a relatively high efficiency with 

low noise, as will be discussed in the following section on dark count rate and noise-equivalent 

power. 

  

 

Figure 63 - OCDE for long SNSPDs at two wavelengths: On-chip detection efficiency for the best devices at 
1600 nm (red triangles) and 765 nm (blue circles). Both nanowires have a width of 90 nm and device lengths of 80 µm 
(765 nm) and 90 µm (1600 nm) and show critical currents 𝐼C = 31.2 µA (765 nm) and 𝐼C = 28.6 µA (1600 nm), respec-
tively. a) OCDE as a function of the normalized bias current 𝐼B/𝐼C on a logarithmic scale. b) Enlarged section on a 
linear scale showing a maximum efficiency of 28.4 ± 3.4% at 1600 nm and a plateau in efficiency for photons 
at 765 nm with a maximum efficiency of 73.6 ± 11.0%. 
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Concerning the fabrication yield, we have to note that from all SNSPDs of comparable nanowire 

length (≥ 140 µm) and width (90 nm or 100 nm) which were characterized for both wavelengths, 

two out of twelve devices show comparably high OCDEs around 74% at 765 nm and around 28% at 

1600 nm. For the devices25 at 1600 nm, Figure 64 provides the relation between the critical current 

and the maximum OCDE of the SNSPD, indicating that a high critical current is a necessary require-

ment for a high detection efficiency. An analysis of the influence of device length and location within 

the device array on the critical current is provided in Figure 84 in appendix A5. The correlation be-

tween critical current and OCDE in Figure 64 suggests that improving the proportion of nanowires 

with high critical current would increase the proportion of detectors with high efficiency. Low critical 

currents are potentially limited by defects and incisions in the nanowire. Reducing the surface rough-

ness of the diamond layer, by extending the polishing time, might reduce the risk for incisions and 

defect. 

 

We measure the OCDE dependence on the bias current for short SNSPDs (20 µm nanowire length), 

as shown in Figure 65. We find for the best device at 1600 nm a critical current of 𝐼C = 30.3 µA (90 nm 

width) and a maximum OCDE of 2.8 ± 0.3%. For the best device designed for a wavelength of 765 nm 

we measure 𝐼C = 31.1 µA (100 nm width). The OCDE curve (Figure 65 b) shows a point of inflection, 

revealing the onset of a plateau in efficiency26 and a maximum efficiency of 17.3 ± 1.9%. As short 

SNSPDs have the advantage of shorter recovery times the combination of a modest OCDE of 17% at 

765 nm with high possible count rates could be of interest for applications where a short recovery 

time and high count rate is crucial. 

                                                        

25 We note that for some of the twelve detectors the superconductivity was not stable or the critical current so low that the 
detector efficiency could not be measured. Hence there are less than twelve data points in the corresponding figure. 

26 We attribute the fact that opposed to the long wires we did not find a detector with a real plateau to the fact that for each 
wavelength only four short devices were investigated opposed to twelve long devices, hence we expect to find short devices 
with a clear plateau when fabricating larger amounts of shorter devices. 

 

Figure 64 - Dependence of the maximum OCDE 
at 𝟏𝟔𝟎𝟎 𝐧𝐦 on the nanowire’s critical current: 
SNSPDs with lower critical currents, potentially lim-
ited by defects and incisions, show much lower effi-
ciencies than the detectors with high critical currents. 
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4.4.5 Dark count rate and noise-equivalent power 

As mentioned in the previous section, we measure the dark count rate for each SNSPD. Figure 66 a) 

shows the dependence of the dark count rate (on a logarithmic scale) on the bias current for the 

detector with the highest OCDE each for 765 nm and 1600 nm (see Figure 63 for the corresponding 

OCDE measurements). For both wavelengths we find that when reducing the bias current, starting 

at the critical current, the dark count rate drops exponentially in the high current regime (above 

0.93 ∙ 𝐼C) and then slowly decreases from about 10 Hz to below 1 Hz, as indicated in yellow color.  

 

As explained in section 4.2.5.1, the exponential increase in dark count rate close to the critical current 

is related to intrinsic dark counts, while dark counts below 0.93 ∙ 𝐼C can be attributed to blackbody 

radiation. Dark counts due to thermal photons could be reduced by spectral filtering of the light 

propagating within the optical fibers.290 We note that in future quantum photonic chips only on-

 

Figure 65 - OCDE for short devices with 𝟐𝟎 µ𝐦 nanowire length: a) SNSPD with 90 nm width showing 𝐼C =
30.3 µA and a maximum OCDE of 2.8 ± 0.3% at 1600 nm. b) SNSPD with 100 nm width showing 𝐼C = 31.1 µA and an 
onset of a plateau with a maximum OCDE of 17.3 ± 1.9% at 765 nm. 

 

Figure 66 - Dark count rate and noise-equivalent power for long SNSPDs at 𝟏. 𝟖 𝐊: Both nanowires have a width 
of 90 nm and device lengths of 80 µm  (765 nm) and 90 µm (1600 nm) and show critical currents 𝐼C = 31.2 µA  
(765 nm) and 𝐼C = 28.6 µA (1600 nm), respectively. a) Dark count rate as a function of normalized bias current for 
visible (765 nm) and infrared (1600 nm) photons. The yellow area indicates the regime below 0.93 ∙ 𝐼C with a dark 
count rate between 1 Hz and 10 Hz. b) Noise-equivalent power as a function of normalized bias current for photons 
at 765 nm (blue) and 1600 nm (red). 
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chip light sources will be used, which means that no optical fibers out of the cryostat will be needed 

anymore and therefore the blackbody radiation and the corresponding dark counts would be largely 

suppressed. Hence for the development of waveguide-integrated SNSPDs within this thesis the dark 

count rate is of no further concern.  

Figure 66 b) shows the noise-equivalent power for the same detectors. The NEP, as introduced in 

section 4.2.5.2, denotes the optical power which is required for gaining a signal-to-noise ratio of unity 

after integrating the detector’s output signal for one second. For photons at 1600 nm, we obtain a 

minimum in NEP of 1.4 ∙ 10−18 W/√Hz at a normalized bias current of 85%. For 765 nm, the mini-

mum NEP value is reached at a low bias current of 60% and amounts to 4.4 ∙ 10−19 W/√Hz . The 

reduced NEP compared to 1600 nm is mainly due to the higher efficiency at smaller wavelengths and 

the plateau in efficiency furthermore moves the minimum of the curve to smaller currents. We note 

that the large error bars for the NEP towards low bias currents are due to the uncertainty in dark 

count rates below 1 Hz, due to a data acquisition time of 20 times 2s per data point in the experiment. 

The error bars could hence be reduced by increasing the measurement time for the dark count rate 

measurements. 

4.4.6 Timing jitter 

 

The timing jitter, as introduced in section 4.2.5.4, is a measure for the variation in the time difference 

between optical input and electrical output. Figure 67 shows a schematic of the setup for measuring 

the timing jitter. Light from a pulsed laser (40 MHz repetition rate, ≈ 1 ps pulse width) at 1550 nm 

wavelength passes through a beam splitter. The portion of light which propagates towards the single-

photon detector in the cryostat is strongly attenuated (far below one photon per pulse on average) 

in order to avoid multi-photon events occurring. The detection event at the SNSPD provides a start 

signal for the timing electronics. At the second output of the beam splitter the optical pulse is de-

tected by a fast low-noise photodetector (New Focus 1611, 1 GHz bandwidth) which provides the stop 

signal for the timing electronics. The trigger level for the SNSPD output pulse is set at the rising slope 

at 50% of the pulse height. We note that all optical paths in the schematic, including the beam split-

ter, are implemented with optical fibers in the experiment, while the waveguide-integrated SNSPD 

is located inside the cryogenic measurement setup, as for all characterizations within section 4.4. 

 

Figure 67 - Jitter measurement setup: Schematic of the setup for measuring the timing jitter of a single-photon 
detector. Schematic adapted from Migdall et al.31. 
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We use a fast digital oscilloscope (Agilent 54855A, 6 GHz bandwidth) for the start-stop measurement 

and record the histogram of measured time differences, as shown in Figure 68 a). Length differences 

in the used electrical cables and optical fibers lead to a time difference between the detection at both 

detectors. Hence the absolute value of the SNSPD’s timing latency cannot be measured and we set 

the mean value of the histogram to zero. We examine a detector with a nanowire of 180 µm 

length, 90 nm width and a critical current of 𝐼C = 28.6 µ𝐴. This detector showed up to 28% efficiency 

at 1600 nm (see Figure 63). Figure 68 a) shows the histogram for the detector biased at 0.95 ∙ 𝐼C. By 

fitting a Gaussian distribution we extract a FWHM of 23 ps, which is commonly referred to as the 

timing jitter.  

The timing jitter depends on the bias current, as shown in Figure 68 b). When increasing the bias 

current from 50% of the critical current to 95% of the critical current, the jitter continuously de-

creases from 47 ps to 23 ps. The observed bias dependence of the jitter is similar to those observed 

for NbN and MoSi SNSPDs311,312 and can be attributed to the improvement of signal-to-noise ratio 

with increasing bias current. Electrical noise in the readout circuit, for example from the electrical 

amplifiers at room temperature, will lead to a variation in heights of the output pulses measured at 

the oscilloscope. As the trigger level is set at a fixed voltage, a variation in pulse heights translates 

into a variation in the times at which the electrical output pulses cross the trigger level. This leads to 

a component in the timing jitter which is caused by the electrical noise. The magnitude of the output 

pulse increases linearly with the bias current, resulting in an increase in signal-to-noise ratio. A better 

signal-to-noise ratio results in a smaller contribution to the timing jitter and hence the jitter de-

creases with increasing bias current, as can be observed in Figure 68 b). We note that the timing 

jitter of the oscilloscope and the 1 GHz photodetector have been measured to be both less than  

1 picosecond, well below the measured jitter values. We therefore attribute the measured jitter to the 

SNSPD jitter and to noise from the electrical amplifiers. The measured jitter value thus provides an 

upper bound for the intrinsic timing jitter of the SNSPD. We note that we only measured the timing 

 

Figure 68 - Timing jitter of a SNSPD: 𝐿 =  90 µm, 𝑤 =  90 nm, 𝐼C = 28.6 µA. a) Histogram of the arrival times of 
SNSPD counts relative to a reference signal of the pulsed laser source at 1600 nm. The histogram consists of 53 000 
total counts at a bin size of 0.36 ps. The SNSPD is biased at 95% of the critical current 𝐼C. The Gaussian fit reveals a 
FWHM value of 23 ps. b) The timing jitter in dependence of the applied bias current 𝐼𝐵 relative to the critical current 
𝐼C showing a decrease in jitter with increasing bias current. 
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jitter for detectors at 1600 nm (due to lack of a pulsed laser at 765 nm) but we anticipate that the 

timing jitter at 765 nm is comparable. 

 

Table 3 presents the jitter for the device described above compared to the jitter of SNSPDs with wider 

wires and shorter lengths. At high bias currents, all detectors show a low timing jitter between 23 ps 

and 28 ps. The timing jitter for waveguide-integrated SNSPDs on diamond presented in this work is 

on par with the best results for SNSPDs on commercial substrates, such as silicon65 and silicon ni-

tride303 and close to the smallest jitter for any integrated single-photon detector which to the best of 

our knowledge is currently 18 ps for SNSPDs on silicon waveguides65. 

4.4.7 Recovery time 

 

We estimate the recovery time, after which a SNSPD can detect the next photons with the same 

initial efficiency, by recording the electrical pulses resulting from detection events with a 6 GHz dig-

ital oscilloscope (Agilent 54855A). As explained in section 4.2.5.5, the 1/𝑒-decay time of the output 

pulse is equal to the time constant which governs the recovery of the bias current and hence the 

recovery of the detection efficiency. Figure 69 a) shows the time trace of one output pulse for a 

SNSPD of 160 µm nanowire length and 90 nm width operated with light at 765 nm at a bias current 

of 𝐼B = 14 µA. As explained in section 4.2.3, during a detection event the bias current is almost com-

pletely rerouted to the load resistor 𝑅L = 50 Ω and hence the expected pulse height after 23.3 dB 

amplification is 𝑉 = 14 µA ∙ 50 Ω ∙ 10
23.3

10 = 0.150 V. The measured pulse height is in agreement with 

Table 3 - Timing jitter for SNSPDs with different lengths and widths when biased at high currents. The OCDE 
values are provided to show that SNSPDs with high efficiency at 1600 nm also show low timing jitter. 

Detector 

length 

Detector 

width 

On-chip  
detection  
efficiency 

Critical 
current 𝑰𝑪 

Bias  
current  
(𝑰𝑩 / 𝑰𝑪 ) 

Trigger 
level 

(𝟎. 𝟓 ∙ 𝑼𝐦𝐚𝐱) 

Timing  
jitter 

90 µm 90 nm 28% 28.6 µA 0.95 190 mV 23 ps 

80 µm 100 nm 27% 30.5 µA 0.95 185 mV 26 ps 

10 µm 90 nm 3% 30.3 µA 0.85 110 mV 28 ps 

 

 

Figure 69 - Recovery time for devices at 𝟏𝟔𝟎𝟎 𝐧𝐦: a) One-shot time trace of the output pulse of a SNSPD with 
160 µm nanowire length and 90 nm width, biased at 𝐼B = 14 µA, showing a 1/𝑒-decay time of 2.9 ns. b) Averaged 
detector output pulse for a 20 µm long and 90 nm wide nanowire. An exponential fit (red) reveals a 1/𝑒-decay 
time 𝜏2 = 440 ps. 
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the expected value. An exponential fit to the pulse decay (red curve) shows a 1/𝑒-decay time 𝜏2 =

2.9 ns. The corresponding kinetic inductance 𝐿K is given by 𝜏2 =
𝐿K

50 Ω 
 and amounts to 145 nH, which 

is comparable to the values for SNSPDs of similar geometries from NbN on other subtrates313. Figure 

69 b) shows an average of output pulses for the shortest device (20 µm nanowire length). The expo-

nential fit reveals a value of 𝜏2 = 440 ps, which would correspond to a kinetic inductance of 𝐿K =

22 nH. Note that this measurement is probably limited by the 1 GHz bandwidth of the electrical am-

plifiers and hence both 𝜏2 and 𝐿K for this short detector are expected to be even smaller.  

Latching, as explained in section 4.2.3, denotes the effect that the electro-thermal feedback can 

become stable, leading to a detector being locked in a resistive state. We note that we do not observe 

latching279 of any detector, even for the shortest device. Single-photon detectors with decay times 

well below 1 ns will allow GHz count rates and are especially of interest for applications where re-

duced efficiency in benefit of high count rates is acceptable.  

 

As explained in section 4.2.5.5, a good estimation of the detector’s recovery time does not only in-

volve the 1/𝑒-decay time but also the dependence of the detector’s efficiency on the bias current27. 

We follow the approach to define the recovery time 𝑡∗ as the time at which 90% of the initial effi-

ciency has recovered: 𝜂(𝐼(𝑡∗)) = 0.9 ∙ 𝜂(𝐼B ). The recovery time of a SNSPD is therefore not a constant 

value, but depends on the choice of the initial bias current 𝐼B. We analyze the recovery time for the 

device with the highest OCDE of 73.6% at 765 nm and a 1/𝑒-decay time of 𝜏 = 2.9 ns (see Figure 

69 a). Figure 70 a) shows the OCDE depending on the bias current. We choose a bias current of 𝐼B =

 0.9 ∙ 𝐼C, which yields the full efficiency of 73.6%. We find that 0.9 ∙ 𝜂(𝐼B ) = 0.66 = 𝜂(0.719 ∙ 𝐼C =

0.8 ∙ 𝐼B ). This means that at 80% of the initial bias current 90% of the initial efficiency is reached. 

                                                        

27 We note that only in the case of a detector with an efficiency plateau over a large enough current range it is possible that 
𝜂(𝐼(𝜏2) = 0.63 ∙ 𝐼B) ≥ 0.9 ∙ 𝜂(𝐼B), meaning that the 1/𝑒-decay time 𝜏2 would in such a case be a reasonable estimation of 
the recovery time. For this the saturation parameter has to fulfill 𝑆 > 0.37, but to be able to bias below 𝐼C a larger value for 
𝑆 is needed, such that the relation above for the efficiency holds. 

 

 

Figure 70 - Analysis of the time after which the detector’s efficiency has recovered to 𝟗𝟎% of the initial 
value 𝜼(𝑰𝐁 ): a) OCDE in dependence of bias current, revealing that for 𝐼B =  0.9 ∙ 𝐼C, 90% of the initial efficiency is 
reached at 80% of the initial bias current. b) Time trace of the bias current, estimated from the detector’s electrical 
output pulse. 6.0 ns after the beginning of the output pulse, 80% of the initial bias current has recovered, giving an 
estimate of 6.0 ns for the SNSPD’s recovery time. 
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Figure 70 b) shows the time trace of the bias current, estimated from the detector’s electrical output 

pulse. We estimate the time between the start of the pulse and the recovery of 80% of the initial bias 

current as 𝑡 ∗ =  6.0 ns. Hence 6 ns is a good estimate for the recovery time of the detector, when 

biased at 90% of the critical current. In combination with a pulsed single-photon source, such as a 

SiV center, the presented SNSPD (biased at 0.9 ∙ 𝐼C) could hence detect single photons with 66% 

efficiency at single-photon repetition rates up to 166 MHz, while the dark count rate is below 10 Hz. 

Up to our knowledge the largest observed single-photon creation rate for a single-photon source in 

diamond is ≈ 6 MHz, measured for SiV centers.118 Our SNSPD can thus efficiently detect single pho-

tons at count rates which can be more than 20 times larger than what is currently needed for the 

brightest single-photon source in diamond. 

The same calculation for the detector at 1600 nm (see Figure 63) biased at 𝐼B =  0.9 ∙ 𝐼C yields a 

recovery time 𝑡 ∗ = 16.6 ns, which is much larger than the 1/𝑒-decay time 𝜏2 = 3.6 ns due to the ab-

sence of a plateau in efficiency at 1600 nm. This detector could detect single photons from a pulsed 

source with 15.5% efficiency up to a repetition rate of 60 MHz. We note that up to our knowledge no 

single-photon sources in diamond at telecom wavelengths have been found yet135 and hence the re-

sults at 765 nm with higher efficiency and smaller recovery time are more relevant for integrated 

quantum optics in diamond. 

High efficiency and high count rate (> 500 MHz) in one SNSPD on diamond could in the future 

be achieved for example via one of the following strategies: Connecting several nanowires in parallel 

decreases the kinetic inductance while increasing the absorption and increasing the critical current 

and hence the signal amplitude. Such detectors, called superconducting nanowire avalanche photo-

detectors, have been realized on other substrates.314,315 Optical cavities, such as one-dimensional pho-

tonic crystals, allow to increase the absorption and hence the OCDE of short nanowires316 while pre-

serving low kinetic inductances and hence low recovery times317.  

4.4.8 Maximum detector count rate 

We probe the potential to operate the SNSPDs at 1600 nm at high count rates, using a pulsed meas-

urement. The measurement setup is the same as used for the timing jitter measurement (see Figure 

67). Pulses from a laser with 40 MHz repetition rate are sent to a beam splitter and an external pho-

todetector at room temperature registers the unattenuated pulses, while the SNSPD in the cryogenic 

setup registers attenuated pulses. Figure 71 a) shows the time traces taken simultaneously with the 

reference detector (black) and with a SNSPD (red). The SNSPD with the highest OCDE of 28% was 

used in this measurement and biased at 0.72 ∙ 𝐼C. As can be seen in the enlarged section of the time 

trace (Figure 71 b) the detector’s 1/𝑒-decay time of 3.6 ns is much smaller than the time between two 

consecutive pulses, and every pulse of the pulse train is reliably registered with a count rate of 

40 MHz, matching the repetition rate of the laser.  
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It has to be noted that in this measurement the detector operates with relatively high input power 

and therefore not as a single-photon counter but as a counter of weak pulses. As explained before a 

pulsed single-photon source should be used instead of attenuated laser light in order to assess the 

limits of single-photon detection at high efficiency and at high rates. 

 

In order to experimentally estimate the highest count rate at which photons from color centers can 

be detected with our SNSPDs, we further test the device with the highest efficiency at 765 nm. The 

setup for these measurements is equal to the one employed for the OCDE measurements (see section 

4.4.4). We use a 765 nm CW laser and stepwise decrease the attenuation, in order to increase the 

photon flux at the detector, and record the count rate. In order to keep the detector in the supercon-

ducting state (besides during short periods during detection events), we decrease the bias current 

while increasing the photon flux. We test the detector which showed a plateau in efficiency, a maxi-

mum OCDE of 74% (see Figure 63) and a 1/𝑒-decay time of 2.9 ns. We find that the count rate stead-

ily increases with photon flux until it saturates at ≈ 200 MHz, limited by the employed frequency 

counter (Agilent 53132A). 

 

 

Figure 71 - Pulsed measurements at 𝟏𝟔𝟎𝟎 𝐧𝐦: a) Oscilloscope time trace, showing a pulse train with a period 
of 25 ns, registered simultaneously with a reference detector (black) and with a SNSPD (red). Note that the reference 
detector output was scaled to the amplitude of the SNSPD output and displaced by 0.4 V for clarity. The SNSPD (𝐿 =
90 µm, 𝑤 = 90 nm, 𝐼C = 28.6 µA, OCDEmax = 28%) was biased at 0.72 ∙ 𝐼C. b) Enlarged section of the time trace, show-
ing four output pulses of the SNSPD with a 1/𝑒-decay time of 3.6 ns. 

 

Figure 72 - High count rate of a SNSPD at 𝟕𝟔𝟓 𝐧𝐦: One shot recording of the SNSPD’s output, biased at 14 µA and 
operated with increased optical power of the CW laser. The time trace contains 93 pulses within a time interval 
of 305 ns, corresponding to a count rate of 305 MHz. 
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By recording time traces using a 6 GHz digital oscilloscope we are able to resolve higher count rates. 

Figure 72 shows a one-shot time trace of the detector’s output signal recorded with the oscilloscope. 

The time trace contains 93 pulses within a time interval of 305 ns, corresponding to a detector count 

rate of 305 MHz, which illustrates that the employed SNSPDs can be used for the detection of faint 

light, opposed to single photons, at high count rates. It has to be noted that this high count rate was 

achieved at a low bias current of 𝐼𝐵 = 0.45 ∙ 𝐼𝐶 = 14 µA where the OCDE for single photons is only 

≈ 1%.We note that CW light is not ideal for achieving high count rates simultaneous with high sin-

gle-photon efficiencies, as both the photon number per time interval and the time between consec-

utive photons are probabilistic. It is of interest to assess the detector’s performance when operating 

as an efficient single-photon detector with a count rate approaching the value limited by the detec-

tor’s recovery time (see section 4.4.7). Such a measurement could be performed with a pulsed single-

photon source with variable repetition rate (on the order of 100 − 500 MHz). This would provide an 

optical input where exactly one photon impinges on the detector at a time and the time difference 

between consecutive photons could be adjusted to match the detector’s recovery time. Such a deter-

ministic and efficient single-photon source is currently not available and the work towards such a 

source is a field of research by itself31, hence we are not able to perform such a measurement. The 

presented measurements are steps towards this goal and illustrate that the SNSPDs are generally able 

to reliably detect photons at high rates. SNSPDs therefore provide a large dynamic range, as they can 

be operated over at least eight orders of magnitude in count rate, from their dark count rate of 

~1 Hz up to at least 2 ∙ 108 Hz. Therefore the presented SNSPDs can not only be employed for appli-

cations where low count rates are expected or extremely low noise is crucial (and hence low dark 

count rates are needed), but also at high count rates up to hundreds of Megahertz. 

4.4.9 Detector performance characteristics at one operation point 

The best values for all performance characteristics of a SNSPD, such as high on-chip detection effi-

ciency, low dark count rate, low noise-equivalent power and low timing jitter are typically not 

achieved at the same operation point. While there are tradeoffs, nevertheless excellent detector per-

formance concerning all performance characteristics can be achieved at a common operation point. 

We choose the highest current below the onset of the exponential decrease in dark counts (0.93 ∙ 𝐼C 

at 𝑇 =  1.8 K) and summarize the experimental results for the best SNSPD each at 1600 nm 

and 765 nm at this operation point in Table 4. 

 

Table 4 - Summary of the performance characteristics of the best SNSPD each at 𝟏𝟔𝟎𝟎 𝐧𝐦 and 𝟕𝟔𝟓 𝐧𝐦. While 
the optimum for each characteristic (such as OCDE and NEP) is typically not achieved at the same operation condi-
tions this summary provides a realistic detector operation point of all characteristics measured under the same con-
ditions at the same bias current. 

Photon 

wavelength 

Detector 

length 

Detector 

width 

Critical 

current 𝑰𝐂 

Cryostat 

temper-

ature 𝑻 

Bias  

current  

(𝑰𝐁/𝑰𝐂) 

On-chip  

detection 

efficiency 

Dark 

count 

rate 

NEP 

(𝑾/√𝑯𝒛) 

Timing  

jitter 

𝟏𝟔𝟎𝟎 𝐧𝐦 90 µm 90 nm 28.6 µA 1.8 K 93% 20% 5 Hz 1.9 ∙ 10−18 25 ps 

𝟕𝟔𝟓 𝐧𝐦 80 µm 90 nm 31.2 µA 1.8 K 93% 73% 11 Hz 1.7 ∙ 10−18 -- 
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4.5 Conclusions on SNSPDs and outlook 

 

Within this chapter, we presented the results concerning the first superconducting nanowire single-

photon detectors integrated on diamond waveguides by combining the PICs developed for polycrys-

talline diamond with established deposition and structuring methods for NbN nanowires. The 

SNSPDs feature high critical currents (up to 31 µA) and high performance in terms of high efficiency 

(up to 74% at 765 nm), low noise-equivalent power (down to 4.4 ∙ 10−19 𝑊/√𝐻𝑧 at 765 nm) and low 

timing jitter (down to 23 ps). It can be expected that further improvements in the fabrication process 

will increase the detection efficiency close to unity as shown for waveguide-integrated SNSPDs from 

NbN on other substrates.65 

The demonstrated detectors can be directly combined with all integrated optical components de-

veloped for diamond integrated optics, such as on-chip interferometers and optomechanical compo-

nents, as presented in previous chapters. For example operating two SNSPDs at the two output ports 

of a 50/50 beam splitter, as shown in the SEM image of Figure 73 a), would allow to perform corre-

lation measurements on-chip, with fast and efficient readout and small device footprint. Such PICs 

could for example be used for characterizing single-photon sources such as NV or SiV color centers, 

as explained in section 2.3. The implementation of waveguide-integrated SNSPDs on diamond is a 

promising step toward a quantum-optics-on-a-chip platform that relies on monolithically joining 

single-photon sources, single-photon routing and processing devices, as well as single-photon detec-

tors. Figure 73 b) shows a schematic of how we envision such an on-chip quantum optical system in 

diamond: Color centers will provide efficient and controlled single-photon emission into waveguides, 

while this emission would be electrically excited130–133. Electro-optomechanical phase shifters, such 

as the H-resonator presented in chapter 3, will allow to control and tune the routing of single photons 

within the integrated photonic network, while waveguide-integrated SNSPDs at the output of the 

PICs will provide reliable, low-noise readout.  

  

 

Figure 73 - Concepts for integration of SNSPDs into advanced PICs: a) SEM micrograph of two SNSPDs at the 
outputs of a 50/50-beam splitter, which could be used for on-chip correlation measurements, such as measuring the 

 𝑔(2)(𝜏)-function of on-chip single-photon sources. b) Schematic of a future diamond quantum optical circuit, which 
incorporates electrically excited color centers, acting as single-photon sources, optomechanical phase shifters, and 
superconducting single-photon detectors. 
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Such on-chip quantum optical systems might require outstanding diamond material quality in terms 

of low level of impurities and low propagation losses, which would require the use of single crystal 

diamond. We will show in the following chapter a novel method for achieving such single crystal 

diamond PICs, which would enable to transfer all optical and optomechanical components demon-

strated within this thesis to high quality single crystal diamond. 
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5 Photonic integrated circuits on arrays of thin single 
crystal diamond membrane windows 

This chapter presents a novel method for fabricating photonic integrated circuits from single crystal 

diamond. The fabrication of arrays of thin single crystal diamond membrane is demonstrated as well 

as photonic integrated circuits with low loss, demonstrating the feasibility to employ previously devel-

oped photonic integrated circuit designs on high quality diamond. 

This chapter is partially based on results which were published previously in one publication318, where 

the author of this thesis had equal contribution with the first author. 

5.1 Motivation 

The existence of single-photon sources in diamond, such as the NV and the SiV center, is one of the 

main motivations for developing PICs in diamond. While isolated color centers have been shown 

within the crystals of polycrystalline diamond (PCD)319, it remains to be shown if PCD thin films with 

low enough density of photoactive defects can be grown and if they can be optimized to have low 

enough propagation loss to make quantum optical applications with color centers in PCD thin films 

possible. Single crystal diamond (SCD) on the other hand can be grown with low defect density and 

high crystal quality and in recent years different approaches for the fabrication of SCD photonic ele-

ments have been explored81. Nevertheless, up to date no mature fabrication technique exists for PICs 

from SCD which consist of more than just a few optical elements. 

The geometry and the performance of the PICs presented in the previous chapters depend mainly 

on the refractive index of diamond, which is essentially the same for PCD and SCD. To transfer the 

developed PIC components from PCD to SCD is expected to be a straightforward process and the 

resulting PICs, including optomechanical elements and single-photon detectors, would find applica-

tions for integrated quantum optics. 

Within this chapter, we present a new scalable fabrication method for SCD membrane windows 

which achieves three major goals with one fabrication method: providing high quality diamond, as 

confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion im-

plantation; and providing compatibility with established planar fabrication via lithography and ver-

tical etching. We first give a short overview over approaches and difficulties of PIC fabrication using 

SCD and explain our fabrication technique. Then we present the measurement results for the first 

proof-of-principle photonic devices which were fabricated in this way and finally give an outlook on 

how this new fabrication method might enable the scalable planar fabrication of SCD quantum op-

tical circuits. 
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5.2 The challenge of fabricating PICs from SCD 

The scalable fabrication of SCD thin films as template material is not a straightforward process. Sin-

gle crystal diamond can only be grown homoepitaxially on existing SCD substrate which prevents 

wafer scale processing, as such SCD pieces are not available with sizes larger than about 10 ∙ 10 mm2. 

While heteroepitaxial growth is possible for PCD, this is not the case for SCD. For photonic circuits 

SCD needs to be a thin film with a thickness of 1 µm or less, with only minor thickness variations 

across the film. In addition, the diamond film needs to be either free standing or must reside on top 

of a material with lower refractive index and negligible absorption to allow for optical wave propa-

gation in diamond waveguides. This can be achieved by either cutting free standing structures into 

bulk diamond or by thinning down SCD to thin membranes before structuring PICs.  

Photonic components in bulk diamond pieces have been demonstrated via structuring using an-

gle etching320,321, focused ion beam322,323, and isotropic etching173,324. However, these methods are not 

compatible with established planar fabrication processes and therefore do not provide a viable path 

towards wafer scale fabrication, which is required for scaling up PICs (as already a reality for silicon 

photonics325,326). Fabricating thin SCD membranes can be done by thinning down SCD polished 

plates of 20 – 50 µm thickness using reactive ion etching.327,328 However, these plates generally have 

a wedged thickness profile. When thinning down the plate, the wedge profile is transferred into the 

thin membrane, leading to thickness variations of about 300 nm across a millimeter-sized sam-

ple.20,87 Thickness variations on this order limit the reproducibility of PIC components because de-

vices on the same photonic chip with identical two-dimensional layout will have different three-

dimensional geometries which results in different device properties. An alternative technique which 

has been developed for fabricating thin SCD membranes is ion slicing.329,330 This approach leads to a 

homogeneous membrane thickness over large areas but introduces residual built-in strain.330,331 The 

resulting thin membranes are therefore vulnerable to cracks and bowing which restricts the handling 

of large membranes. The difficulty of handling these membranes is also a major obstacle for scalable 

optical device fabrication. 

5.3 SCD membrane windows – fabrication and material 
quality 

In order to get feasible SCD templates for PIC fabrication, we use a fabrication process, developed by 

our cooperation partners at the University of Melbourne28, which enables the fabrication of arrays of 

thin single crystal diamond membrane windows332. The fabrication of the SCD membrane windows, 

depicted in Figure 74, starts with a SCD slab with a thickness of 300 µm. Ion implantation into the 

top side of the SCD slab using high energy Helium ions (5 ∙  1016 ions/cm2, E = 1 MeV) leads to a 

                                                        

28 Note that the SCD membrane fabrication and characterization via Raman spectroscopy, photo-luminescence and correla-
tion measurements presented in this section were performed by Afaq Piracha at the University of Melbourne. The PIC device 
design, PIC device fabrication and characterization via SEM, AFM, optical microscopy and transmission measurements and 
corresponding data analysis were performed by Patrik Rath at the Karlsruhe Institute of Technology. 
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thin end-of-range ion damage layer which is located 1.7 µm below the diamond surface. Next the 

SCD slab is annealed in vacuum (𝑝 = 5 ∙  10 −6mbar) at a temperature of 1300°C for one hour which 

converts the ion damage layer into etchable graphite-like carbon. As the ion implantation does not 

only damage the crystal structure at the end-of-range depth, but also damages the diamond which 

the ions are passing, an undamaged diamond layer needs to be regrown on top of the damaged dia-

mond. 1 µm of undamaged high quality diamond is grown by microwave plasma chemical vapour 

deposition on top of the 1.7 µm thick damaged diamond layer. 

 

A 150 µm thick diamond frame into which an array of rectangular apertures has been cut is then 

placed on top of the annealed and overgrown SCD slab. SCD substrate and diamond frame are then 

placed inside the plasma chamber and after growing diamond between both pieces, a process called 

fusion growth, they are permanently fused together. An electrochemical etching process is finally 

utilized to selectively remove the graphite-like carbon from the end-of-range ion damage layer. The 

thin SCD layer is now permanently fused to the diamond frame but can be detached from the original 

substrate. The resulting structure is an array of thin single crystal diamond membrane windows, as 

the diamond thin film is free standing at the locations of the rectangular apertures. After flipping the 

SCD membrane windows such that the lift-off membrane is on top, the 1.7 µm thick ion damaged 

layer is removed using inductive coupled plasma reactive ion etching (ICP-RIE) to achieve a final 

pristine diamond membrane with a thickness of 1 µm. This final SCD template can be used for the 

fabrication of photonic devices and the fusion of the thin membrane to the diamond holder enables 

easy handling and prevents breakage of the membrane during fabrication. 

The quality of the diamond layer is assessed by Raman spectroscopy and photo-luminescence (PL) 

measurements. The thin membranes show a diamond Raman line centered on 1333 cm−1 with a 

FWHM of 2.1 cm−1 and free of any sign of remaining ion damage which proves that the membranes 

are of high quality with low strain. PL measurements using a confocal microscope and an excitation 

laser with a wavelength of 532 nm show optically active defects with a density of ≈ 5 µm−2, caused 

by doping atoms included in the carbon lattice during CVD growth. The PL spectra show signatures 

 

Figure 74 - Schematic of the fabrication process of thin SCD membrane windows. Reprinted from Piracha et al.332. 
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of neutral and negatively charged NV centers and the existence of single defects within the mem-

branes is proven via autocorrelation measurements, showing anti-bunching down to 𝑔(2)(0) = 0.3. 

Hence SCD membrane windows are generally suitable templates for PICs which incorporate color 

centers in diamond. The density of optically active defects could be reduced by avoiding traces of 

doping materials in the CVD chamber, which means that PICs with single-photon sources at in-

tended locations could generally be incorporated. 

Summarizing, it can be said that this method of fabricating SCD templates for PIC fabrication 

achieves three major goals: 1) maintaining high quality of the diamond layer throughout fabrication, 

as confirmed by Raman spectroscopy; 2) providing a homogeneous membrane thickness potentially 

over large areas, as the membrane thickness is defined by the well-defined stop range of ion implan-

tation; and 3) providing permanent attachment of the diamond membrane to a diamond holder for 

ease of handling and compatibility with established planar fabrication methods. In the following 

section we show the fabrication of proof-of-principle PICs from such templates. 

5.4 PIC fabrication from SCD membrane windows 

 

We fabricate PICs starting with the SCD membrane windows (SCDMW) template described in the 

previous section with a membrane thickness of about 1 µm. The SCDMW is glued to an oxidized 

silicon wafer using PMMA resist, as shown in the schematic of Figure 75 a). The diamond frame is in 

contact with the PMMA, while the membranes are on the upper side, well separated from the PMMA 

resist and the underlying wafer. Figure 75 b) shows an optical microscope image of the SCDMW. The 

SCD frame has a size of 1.5 ∙ 1.5 mm2 and hosts four windows of 400 ∙ 400 µm2 size each. Using the 

template glued to the carrier wafer, we fabricate PICs on top of the membranes, as illustrated in 

Figure 75 c). This fabrication is performed via the fabrication procedures developed for PCD devices, 

as described in section 2.4.2. It consists of EBL for defining the etch mask in HSQ negative tone resist 

and pattern transfer into diamond via reactive ion etching in O2/Ar plasma. Further details concern-

ing fabrication are provided in appendix A2.  

 

Figure 75 - Photonic integrated circuit fabrication from SCD membrane windows: a) Schematic of gluing the 
SCD template to a carrier wafer. b) Optical microscope image of the template containing four membrane windows 
before device fabrication. c) Schematic of PICs fabricated on top of a SCD membrane window. d) Waveguide cross-
section, corresponding to the black plane in c) and simulated norm of the electric field of the TE-like guided mode at 
1570 nm wavelength of the 1 µm wide diamond rib waveguide, after etching 380 nm into the 1 µm thick membrane. 
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We design diamond rib waveguides such that at telecom wavelengths they support exactly one mode 

per polarization. Figure 75 d) shows the cross-section through such a waveguide with a width of 1 µm 

and a relative etch depth of 38% into the 1 µm membrane thickness. Two-dimensional simulations 

of this cross section via finite element method (COMSOL Multiphysics) confirm that one TE-like 

mode with an effective refractive index of 2.26 and one TM-like mode with an effective refractive 

index of 2.22 are supported and no higher order modes exist. The electric field distribution of the 

TE-like mode at 1570 nm wavelength is shown in Figure 75 d). As no other materials besides dia-

mond and air are involved in the waveguiding structures, PICs for a large range of wavelengths can 

be fabricated using the presented fabrication methods, potentially covering diamond’s huge trans-

parency range from 220 nm in the UV over visible light and covering infrared wavelengths up to 

500 µm.84 

 

On each of the membrane windows sets of PICs can be structured, as illustrated in the lithography 

layout shown in Figure 76 a). The layout at the top consists, besides some smaller test structures, of 

four PICs for which the distance between the two grating couplers of each device is 250 µm in order 

to be compatible with alignment against a fiber array in our standard transmission measurement 

setups. The layout at the bottom shows how more than 40 compact PICs can be fabricated on a single 

membrane window of 400 ∙ 400 µm2 size, illustrating the potential for dense packaging of diamond 

PICs. The PICs, as shown enlarged in the bottom inset, generally consist of in- and output focusing 

grating couplers connected by a 1 µm wide bus waveguide and one or two ring resonators which are 

evanescently coupled to the waveguide. The grating coupler, shown in the top inset of Figure 76 a), 

consists of 25 circular grating lines with a period of 820 nm and line widths of 310 nm, a geometry 

which was optimized for a wavelength of 1570 nm using polycrystalline diamond photonic chips (see 

section 2.1.2). Figure 76 b) shows a scanning electron microscope image of the experimental realiza-

tion of diamond PICs implementing the layout of Figure 76 a). The enlarged SEM image shows a 

compact device where the gap size between waveguide and ring is 200 nm as designed, showing that 

small feature sizes can be realized on the SCDMW in the same way as achieved on PCD thin films. 

  

Figure 76 - PIC fabrication results: a) Lithography layout showing sets of ring resonators evanescently coupled to 
waveguides. The insets show an exemplary circuit, consisting of grating couplers, waveguide and ring resonator (bot-
tom inset) and a zoom on a focusing grating coupler for out-of-plane coupling to optical fibers (top inset). b) SEM 
image of the fabricated photonic chip, hosting sets of photonic circuits on each SCD membrane. Inset: SEM micro-
graph of one compact device. c) Atomic force microscope scan of a device, showing 1 µm width of both ring and 
waveguide, 380 nm step height and 1.7 nm rms-roughness of the etched substrate.  
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We analyze the surface morphology of fabricated photonic structures using atomic-force microscopy 

(Figure 76 c). In order to correctly measure the step height in the SCD structures resulting from the 

RIE etching we remove the HSQ resist from the top of the structures using hydrofluoric acid (as 

opposed to the devices fabricated for transmission measurements where the HSQ resist remains on 

the devices). We find that the step height is 380 nm and that on the flat areas of the etched SCD 

membranes the rms-roughness amounts to only 1.7 nm in a 10 ∙ 10 µm2 scan area. This is comparable 

to the rms-roughness of 1 nm in a 5 ∙ 5 µm2 scan area before device fabrication, which illustrates that 

the fabrication procedure preserves the low surface roughness. 

While here we partially etch into the diamond membranes, also fully etched diamond PICs, as for 

example preferable for 1D photonic crystal cavities, can be achieved by the planar fabrication process 

presented here. This is possible either (1) by designing anchor structures to attach all freestanding 

structures to the diamond frame, (2) by using a second lithography step to define regions of partial 

etching compared to regions of full etching, as developed for standing optomechanical structures in 

PCD photonic, presented in chapter 3, or (3) by depositing a layer of lower refractive index material 

on the bottom side of the diamond membranes such as PEVCD silicon oxide, which can be used as a 

cladding material for high quality diamond PICs.87 

5.5 Transmission measurements 

We measure the transmission spectra of PICs from SCD using the same setup used for PICs from 

PCD (see section 2.4.3). The photonic chip is mounted on a three-axis stage below a fiber array for 

alignment of the optical fibers to the grating couplers. The polarization of the input light is adjusted 

such that the light from the input fiber couples most efficiently to the TE-like mode of the nanopho-

tonic waveguide, corresponding to a maximized device transmission. The wavelength of the input 

light is swept across the laser range from 1520 nm to 1610 nm and the wavelength dependent trans-

mission is recorded with a fast low-noise photodetector. 

We study the transmission spectrum for the device shown in the SEM micrograph of Figure 77 a). 

Light is coupled in and out of the PIC (symbolized by yellow arrows) via the grating couplers, which 

are connected by a waveguide. Two ring resonators are evanescently coupled to the ring, with a gap 

between ring and waveguide of 200 nm. When the wavelength of light matches a ring resonance of 

one resonator then light couples into the ring, as symbolized by the blue and red arrows. Figure 77 b) 

shows the transmission spectrum of the PIC. The envelope of the transmission spectrum is given by 

the product of the wavelength dependent coupling efficiencies of both grating couplers, while the 

resonances of the ring resonators are visible as dips with narrow linewidth. The maximum transmis-

sion is 9 ∙ 10−4, corresponding to an efficiency of one grating coupler of 3%, while coupling efficien-

cies up to 30% were achieved for PICs from PCD. We attribute the lower efficiency to the absence of 

the underlying silicon oxide and silicon layers present in the PCD stack which leads to reflection of 

light after initial transmission through the diamond film. This reflected light would partially couple 

into the diamond waveguide and increase the coupling efficiency. The coupling efficiency could 
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hence be improved by depositing a reflecting structure on the back side of the focusing grating cou-

plers.333 

 

The ring resonances are visible as dips in the transmission spectrum, as can be more clearly seen in 

the higher resolution wavelength scan shown in Figure 77 c). One can distinguish two sets of reso-

nances: One with a FSR of ∆𝜆 = 4.1 nm, corresponding to the ring with radius R = 35 µm (blue color 

in Figure 77 a) and c)), and a second set of resonances with a FSR of ∆𝜆 = 7.2 nm and a larger extinc-

tion ratio, corresponding to the ring with R = 20 µm (red color). From the free spectral range we can 

calculate8 the group refractive index 𝑛𝑔 for the TE-like waveguide mode at wavelengths around λ =

1565 nm according to equation (2.12) which yields a value o𝑓 𝑛𝑔 ≈ 2.71. By fitting Lorentzian curves 

to the resonances we extract the optical quality factor of each ring. For the ring with 20 µm radius a 

high resolution scan of one resonance is shown in Figure 77 d). A Lorentzian fit (green line) to the 

data (black circles) reveals an extinction ratio of 12 dB and a FWHM of 23.5 pm, which corresponds 

to an optical quality factor of 66 000. As this is the loaded quality factor, higher intrinsic quality 

factors approaching 105 are expected for weakly coupled rings. From the optical quality factor we 

can estimate the propagation loss 𝛼 for diamond waveguides, according to equation (2.15), as  

 𝛼 = 10 ⋅ log10(𝑒) ⋅ 2𝜋 ⋅
𝑛𝑔

𝑄int∙𝜆
 , (5.1) 

where 𝑄int is the intrinsic quality factor. As the exact value of the intrinsic quality factor is experi-

mentally not accessible, we do a conservative estimation of the propagation loss by using the meas-

ured loaded quality factor of 66 000 as a value for 𝑄int. This yields a value of α = 0.72 dB/mm as an 

upper bound for the propagation loss. Ring resonators of comparable geometry from PCD show 𝑄-

factors of about 5300 with similar extinction ratios (see section 2.4.4). We attribute the 12-fold in-

crease in 𝑄-factor to 66 000 and the corresponding 12-fold decrease in propagation loss to the supe-

rior diamond quality, as the lithography layout and the fabrication methods (including lithography 

and etching) are the same for both PCD and SCD devices. Compared to other work on SCD ring 

resonators at telecom wavelengths in the literature, the 𝑄-factor presented here is a factor of two 

 

Figure 77 - Ring resonator transmission measurements: a) SEM micrograph of one SCD membrane window after 
fabrication, showing four photonic circuits designed to match the 250 µm spacing of the fiber array. The arrows in-
dicate the direction of light during a transmission measurement. b) Transmission spectrum of a photonic circuit, 
showing an envelope given by two Bragg grating couplers and the resonances of the two ring resonators. c) Higher 
resolution transmission spectrum of the device showing resonances with a FSR of ∆λ=4.1 nm (blue) corresponding to 
the ring with radius R = 35 µm and resonances with a FSR of ∆λ=7.2 nm corresponding to the ring with R = 20 µm. 
d) Zoom-in on one resonance of a ring resonator with 20 µm radius. A Lorentzian fit (green) to the data (black circles) 
reveals an extinction ratio of 12 dB and a FWHM of 23.5 pm, corresponding to a quality factor of 66 000. 
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larger than achieved using RIE thinning and lithography20, a factor of two smaller than achieved 

recently with angle etching into bulk diamond320. The results presented in this work are hence com-

parable to the best results for such devices at telecom wavelengths via any fabrication method. A 

comparison to 𝑄-factors of other optical resonator geometries and for other wavelengths are not 

directly possible but a detailed comparison of various diamond optical cavity geometries can be 

found in recent review papers80,81. We expect that the quality factor could be further improved by 

burying the diamond ring resonator in silica cladding to reduce propagation losses caused by scat-

tering at surface or side wall roughness20,87, by removing any potentially remaining thickness varia-

tion across the membrane and by optimizing the dry etching recipe, which was previously optimized 

to yield the lowest propagation losses for PICs from PCD147 and has not been re-optimized for SCD 

templates. 

5.6 Conclusions on SCD membrane windows and outlook 

The fabrication method of PICs using SCD membrane windows presented here has intrinsic ad-

vantages over previously demonstrated fabrication methods: In contrast to the fabrication of pho-

tonic devices into bulk diamond via angle etching, no exotic etching procedures are needed. Further-

more, rectangular device cross-sections are achieved which automatically preserve a uniform device 

thickness throughout the entire photonic chip, opposed to triangular cross-sections resulting from 

angle etching. Device thickness variations would not only limit the degrees of freedom in device 

design but also impede potential multilayer integration in future large photonic chips. Opposed to 

this the use of SCDMW in combination with lithography and vertical etching ensures compatibility 

with standard planar nanofabrication.  

Compared to previous demonstrations of SCD photonic components from thinned bulk diamond 

which is directly attached to a carrier material such as silica, in the method presented here the mem-

branes are never in direct contact with glue or the carrier wafer itself. This prevents cracks, bowing, 

and contamination of the diamond which are common problems for other methods of handling thin 

diamond membranes. A carrier material such as silica can furthermore lead to background fluores-

cence and absorption, effects that are detrimental to quantum photonics where low-loss and back-

ground-free propagation of single photons through waveguides is necessary. Fusing the diamond 

membrane to a diamond holder using diamond itself provides the strongest possible connection via 

covalent bonds. This prevents peeling off during device fabrication and device lifetime. Ion implan-

tation with defined ion energy yields a very well defined thickness of the resulting SCD membrane 

without needing a perfectly parallel initial substrate. In addition, the all-diamond photonic chip does 

not suffer from strain and cracks caused by a difference in thermal expansion coefficients, which is a 

commonly encountered problem for thin film devices on carrier substrates of different material. 

While each membrane window is limited in size to several hundred micrometers in both directions 

of the membrane, PICs can extend over several windows by connecting them via waveguides across 

micro-channels332 which is a potential solution for large diamond PICs. The thickness of the diamond 

membranes can be chosen during SCDMW fabrication by adjusting the time of the RIE thin-down 
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process and membranes as thin as 300 nm have been fabricated with the SCDMW approach. Such 

membranes would be suitable for PICs operating at visible wavelengths, which could incorporate 

color centers as single-photon sources.  

In summary, we presented the first proof of principle integrated PICs based on arrays of high 

quality thin single crystalline diamond membrane windows, where ion implantation yields a very 

well defined SCD membrane thickness and CVD fusion growth ensures a permanent fusion to a dia-

mond frame. We showed that established photonic device designs and planar fabrication methods, 

both tested previously for polycrystalline diamond devices, can be used to fabricate devices from SCD 

membrane windows, as successfully shown for PICs consisting of grating couplers, waveguides, and 

ring resonators. We therefore anticipate that other photonic components such as optomechanical 

elements and waveguide-integrated single-photon detectors, as presented in the previous chapters, 

can be transferred from PCD to SCD via the fabrication method demonstrated here. The ease of 

diamond template handling and the scalability of the membrane arrays hold promise for large scale 

PICs for on-chip quantum optics. 
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6 Summary and outlook 

The miniaturization of optical devices in the form of photonic integrated circuits (PICs) offers a range 

of advantages for applications of classical and quantum optics. Diamond has excellent mechanical 

and optical properties, including a range of optically active defects, referred to as color centers, which 

can act as single-photon sources, quantum memories, or sensor elements. This makes diamond 

highly attractive for PICs and optomechanical circuits. The work presented in this thesis consists of 

the first demonstration of optomechanical components, as well as the first single-photon detectors 

integrated in diamond PICs, which are fast and efficient. Moreover, a novel method for PIC fabrica-

tion on single crystal diamond was demonstrated.  

Using mechanical elements in photonic integrated circuits allows tunability in otherwise passive 

materials. We demonstrated the combination of mechanically variable elements and on-chip inter-

ferometers. This enabled the readout of motion with high sensitivity, as demonstrated by the readout 

of thermal motion. Our H-resonator design, which incorporates a photonic crystal for optical isola-

tion, shows high quality factors up to 28 800. We demonstrated two different schemes for the active 

control of the mechanical motion, which are advantageous for different applications: actuation of a 

micromechanical resonator via optical gradient forces as well as electrostatic forces. We anticipate 

that our resonator design can be modified such that either higher frequencies can be achieved or 

such that large tunable phase shifts can be achieved. We successfully operated our circuits at various 

temperatures, including ambient and cryogenic temperatures. Our optomechanical circuits could 

hence be employed in future quantum optical circuits, along with single-photon sources and super-

conducting single-photon detectors. 

Single-photon detectors are an indispensable building block for integrated quantum optics. We 

demonstrated the first superconducting nanowire single-photon detectors integrated on diamond 

waveguides. Single-photon detection both at telecommunication wavelengths as well as at wave-

lengths relevant for single-photon emission from color centers in diamond were shown. The demon-

strated detectors feature high critical currents of several tens of µA and excellent performance in 

terms of low timing jitter, high efficiency and low noise-equivalent-power, comparable to established 

platforms. Such detectors can be integrated into large diamond PICs. 

On-chip quantum optical systems require an outstanding material quality, in terms of low level 

of impurities and low propagation losses, which is available in single crystal diamond. We have 

shown a novel method for the fabrication of PICs on arrays of thin single crystal diamond membrane 

windows. In this method, ion implantation yields a very well-defined membrane thickness and per-

manent fusion of thin membranes to a diamond frame is ensured. This leads to an ease of diamond 

template handling as well as scalability of the membrane arrays. Thus, such a method holds promise 

for large scale PICs. We showed that established photonic device designs and planar fabrication 

methods, both tested previously for polycrystalline diamond devices, can be used to fabricate devices 

on single crystal diamond membrane windows, resulting in low-loss diamond PICs. This paves the 

way for transferring the complete set of developed photonic components to a material with superior 
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quality, including optomechanical resonators and waveguide-integrated single-photon detectors. 

The demonstrated membrane arrays are suitable for PICs operating at visible wavelengths, which 

could incorporate single color centers.  

We conclude that the presented results are a promising step towards a platform for quantum 

optical circuits on diamond, which relies on monolithically joining single-photon sources, single-

photon routing and processing, as well as single-photon detectors. We envision devices in which 

color centers will provide efficient and controlled single-photon emission into waveguides. Electro-

optomechanical phase shifters will allow to tune and control the routing of single photons within the 

integrated photonic network, while waveguide-integrated superconducting nanowire single-photon 

detectors at the output of the PICs will provide a reliable, low-noise readout. The building blocks for 

diamond quantum photonic technologies exist and a suite of functional elements is available, which 

opens new doors for a wide range of applications, from sensing to diamond quantum photonics. 
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Appendices 

A1. Polycrystalline diamond deposition and material properties  

Chemical vapor deposition process 

We employ high-quality silicon substrates, which provide an atomically flat surface. A low-refractive 

index buffer layer is grown by thermally oxidizing the wafer to an oxide layer thickness of 2 µm. Dur-

ing the oxidation process, the surface morphology is preserved, providing a smooth starting layer for 

later diamond growth. Microcrystalline diamond layers are then deposited directly onto the oxidized 

substrates. To achieve this diamond growth, a diamond nano-particle seed layer is first spread onto 

the SiO2 film by ultrasonication for 5 min in a water-based suspension of ultra-dispersed (0.1 wt %) 

nano-diamond particles of typically 5 − 10 nm size. Then the samples are rinsed with de-ionized wa-

ter. After dry spinning the wafer is transferred into an ellipsoidal 2.54 GHz microwave plasma reactor. 

The growth of polycrystalline diamond layers takes place at a temperature of 800 − 875 °C using 1% 

methane in hydrogen at a pressure of 45 − 55 mbar. Substrate rotation was applied to avoid angular 

non-uniformities arising from the gas flow. Growth rates were in the range of 0.1 − 0.2 µm/h. After 

growth, the samples are cleaned in concentrated HNO3:H2SO4 to remove surface contaminations. 

Chemical mechanical planarization  

The polycrystalline diamond films are polished using slurry based chemical mechanical planarization 

(CMP). This approach is commonly employed in the IC fabrication industry for the polishing of die-

lectric and metal interconnects, where softer polyester based polishing pad is used with the aid of a 

colloidal silica at room temperature334. The technique does not require the use of expensive diamond 

grit, or cast iron scaifes. The CMP polishing is performed with a contact force of 120 N at a rotational 

frequency of 90 rpm and usage of 80 ml/min of polishing liquid containing silica particles. The pol-

ishing mechanism consists of the wet oxidation of the surfaces while the polishing fluid facilitates 

the attachment of silica particles to the diamond film. This is followed by shear removal of the par-

ticles due to forces from the polishing pad which is employed throughout. The experimental condi-

tions closely follow the procedure presented by Thomas et al.153. By using the CMP method, thin films 

can be polished without fear of film cracking. Figure 78 shows atomic-force microscopy scans before 

and after polishing. Before polishing (Figure 78 a), the average rms-roughness over an area of 5 ∙

5 µm2 amounts to 15 nm. After polishing the diamond layer from 1 µm to 600 nm thickness (Figure 

78 b), the roughness is reduced to 2.6 nm rms.  
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Figure 78 c) shows an AFM scan across an edge where the wafer has been cleaved. The step height 

between the silicon oxide substrate and the diamond layer is clearly visible. This enables a compari-

son of the remaining surface roughness on top of the diamond layer to the diamond layer thickness 

of 600 nm. The clear reduction in surface roughness can also be observed via scanning electron mi-

croscopy before and after polishing (see Figure 79). 

 

We measure the thickness of the polished diamond layers by white-light reflectometry (Filmetrics 

F20) and characterize the homogeneity of the deposited diamond films. Figure 80 shows a measure-

ment across a wafer with a diameter of 3 inches (7.62 cm).The maximum thickness difference be-

tween any two points is below 100 nm and the largest occurring thickness variation within 5 mm 

amounts to less than 5 nm/mm. For the experiments we use wafer dies with a size of 15 mm ∙ 15 mm. 

Over the area of such a die the thickness variations are negligible. This enables reproducible photonic 

 

Figure 78 - Atomic force microscopy: a) Before polishing, showing 15 nm roughness on 5 ∙ 5 µm2 scan area. b) After 
polishing, showing a reduced rms surface roughness of 2.6 nm. c) AFM scan across an edge where the wafer has been 
cleaved. 

 

 

Figure 79 - Surface roughness: a) SEM micrograph of the unpolished diamond. b) SEM micrograph of the diamond 
surface after chemical mechanical planarization. 
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components, including focusing grating couplers for specific wavelengths. Hence, the employed pol-

ished polycrystalline diamond films provide large device areas with comparably small thickness var-

iations. 

 

Raman spectroscopy  

A possible reason for propagation loss in diamond waveguides is the inclusion of non-bound carbon 

or graphite, which can lead to absorption and scattering of light. In order to estimate the content of 

non-bound carbon within the PCD films, Raman spectroscopy was performed on the unpolished PCD 

thin film. 

 

The Raman spectroscopy measurements and the interpretation of the results were performed by our 

collaborators at the Fraunhofer IAF in Freiburg: “The sample was characterized at room temperature, 

using an argon-ion laser at 458 nm wavelength with a laser spot of 200 µm, focused onto the diamond 

surface with a laser power of 300 mW. A measured spectrum is shown in Figure 81. Generally, these 

 

Figure 80 - Thickness uniformity of polished diamond-on-insulator templates. White-light reflectometry 
measurements of the thickness across a polished diamond thin film on a wafer with a diameter of 3 inches (7.62 cm). 
The direction of measurement was along a line parallel to the wafer flat and through the center. 

 

Figure 81 - Measured Raman spectrum of a polycrystalline diamond 
thin film. The data show the results of Raman spectroscopy at room tem-
perature of an as-grown PCD thin film, with a strong diamond peak 
at 1332 cm−1. This dataset has been published previously by Rath et al.156. 
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spectra show a prominent Stokes shift at 1332 cm−1, which has been identified as a parameter for 

high-quality single-crystalline diamond with a minimum of scattering intensity at other wave-

numbers. Nano- and poly-crystalline CVD diamond films, however, show complex bands335 with scat-

tering intensity reaching from 1100 to 1600 cm−1. These lines are assigned to various constituents 

such as sp2-bonded carbons, diamond progenitors, amorphous carbon and so on. In our data, a well-

defined diamond (sp3) Raman peak at 1332 cm−1 is detected. The FWHM of this peak is about 

7 cm−1, which is typical for such material.336 The peak at 1150 cm−1 corresponds to trans-polyacet-

ylene (trans-CHx), which is found in nanocrystalline CVD diamond.337 The weak peak at 1350 cm−1 

is attributed to the D-band (disordered carbon338) and the band around 1510 cm−1 is due to an over-

lap of the G-band (graphite) and trans-CHx of diamond at 1480 cm−1. These data indicate that non-

diamond bound carbon is present most likely only in the nucleation layer of the film. From the Ra-

man data we estimate that the relative part of non-sp3 bound carbon will be below 2% and therefore 

constitute only a minor part of the measured propagation loss. Additional complications in the in-

terpretation of the Raman spectra arise from the fact that the intensity of scattering from sp2-bonded 

carbon is very dependent on the excitation wavelength because of resonance effects, and that scat-

tering from diamond is quite dependent on crystallite size as would be expected from a phonon 

spectrum. The interpretation of Raman spectra for a discussion of sp2 and sp3 contents in diamond 

films is therefore only possible after careful calibration using near-edge x-ray absorption fine-struc-

ture (NEXAFS) experiments, a characterization technique that unequivocally distinguishes between 

sp2- and sp3-bonded carbon. From NEXFAS339 measurements, the structural properties of high-qual-

ity nano-diamond films have been evaluated to determine the ratio of sp2 to sp3 bonding. The meas-

urements reveal that no more than 1% is sp2. In NEXFAS, the relative sensitivity to sp2 and sp3 bond-

ing is roughly the same. In contrast, Raman spectroscopy is 50 − 100 times more sensitive to sp2 

bonding. Thus, it is reasonable to assume that the actual percentage of sp2 bonding in our high-

quality polycrystalline diamond is likely < 1%, although Raman spectra indicate somewhat poorer 

quality.”156 
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A2. Device fabrication 

Electron beam lithography (EBL): JEOL 5300 50 kV 

Before each EBL step:  

Clean the chip by rinsing with acetone (if structures from previous fabrication steps are present on the 

chip) or by ultra-sonicating in acetone for 10 min (if no structures are present), rinse with isopropanol 

and H2O and blow dry with a nitrogen gun. 

(A) EBL using HSQ 15% (Dow Corning Fox15) – on PCD 

1. Make sure a 5 nm thick glass adhesion layer has been deposited on the chip. 

2. Take resist bottle from refrigerator and let it warm up to room temperature (> 20 min). 

3. Heat chip on hot plate at 100 °C for 2 min. 

4. Spin coat resist (≈ 60 µl) at 3000 rmp, 1000 rpm/s for 60 s. 

5. Verify resist thickness with reflectometer. Nominal value: ≈ 500 nm on 15 ∙ 15 mm2 chip. 

6. EBL area dose: 300 µC/cm² at 50 kV using proximity effect correction. 

7. Development: Microposit MF-319 for 10 min, rinse with H2O and gently blow dry with 

a nitrogen gun. 

(B) EBL using HSQ 6% (Dow Corning XR-1541) – on PCD  

1. Make sure a 5 nm thick glass adhesion layer has been deposited on the chip. 

2. Take resist bottle from refrigerator and let it warm up to room temperature (> 20 min). 

3. Heat chip on hot plate at 100 °C for 2 min. 

4. Spin coat resist (≈ 60 µl) at 3000 rmp, 1000 rpm/s for 60 s. 

5. Verify resist thickness with reflectometer. Nominal value: ≈ 120 nm on 15 ∙ 15 mm2 chip. 

6. EBL area dose: 2000 µC/cm² at 50 kV for NbN nanowires (≈ 100 nm diameter) and 

900 µC/cm² at 50 kV for NbN connections to metal electrodes (> 200 nm diameter). 

7. Development: Microposit MF-319 for 10 min, rinse with H2O and gently blow dry with 

a nitrogen gun. 

(C) EBL using HSQ 6% (Dow Corning XR-1541) – on SCD 

Do NOT use ultra-sonic cleaning. This can damage SCD membranes. Gently rinsing via pipette and blow dry 

with much reduced pressure compared to PCD. Otherwise membranes can crack. 

1. Make sure a 5 nm thick glass adhesion layer has been deposited on the chip. 

2. Take resist bottle from refrigerator and let it warm up to room temperature (> 20 min). 

3. Heat chip on hot plate at 100 °C for 2 min. 

4. Spin coat HSQ resist (≈ 60 µl) at 2100 rmp, 300 rpm/s for 60 s. 

5. Resist thickness nominal value: ≈ 500 nm on top of SCD membranes, for SCD size of 1 ∙ 1 mm2 

(Could not be verified by reflectometry, but was measured via AFM after successful EBL). 

6. Rotate sample in spin coater and drop about four drops of conductive polymer (Showa Denko 

Espacer 300) onto the sample during sample acceleration (3000 rmp, 300 rpm/s for 40 s). 

7. EBL area dose: 400 µC/cm² at 50 kV using proximity effect correction. 
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8. Remove Espacer by rinsing with water (use pipette with low pressure). 

9. Development: Microposit MF-319 for 10 min. Use pipette with low pressure and gently rinse chip 

with H2O. Blow dry with much reduced pressure compared to PCD. Otherwise membranes can 

crack. 

 (D) EBL using PMMA 950K 8.0% – for metal lift-off and opening windows 

1. Heat chip on hot plate at 100 °C for 2 min. 

2. Spin coat resist (≈ 60 µl) at 4000 rmp, 1500 rpm/s for 90 s. 

3. Bake hotplate at 120 °C for 3 min. 

4. Check resist thickness with reflectometer (no UV light). Nominal value: 780 − 830 nm. 

5. EBL area dose: 500 µC/cm² 

6. Development: 1: 3 mixture of MIBK: Isopropanol for ≈ 3 ∙ 5 min, transfer to Isopropanol to stop 

development. Rinse with H2O and gently blow dry with a nitrogen gun. 

(E) EBL on PMMA 950K 8.0% – for thin electrodes on H-resonator  

1. Heat chip on hot plate at 100 °C for 2 min. 

2. Spin coat resist (≈ 60 µl) at 4000 rmp, 1500 rpm/s for 90 s. 

3. Bake hotplate at 180 °C for 2 min. 

4. Check resist thickness with reflectometer (no UV light). Nominal value: 800 nm 

5. EBL area dose: 320 µC/cm² 

6. Development: 1: 3 mixture of MIBK: Isopropanol for 14 min, transfer to Isopropanol to stop devel-

opment. Rinse with H2O and gently blow dry with a nitrogen gun. 

Reactive ion etching (RIE) 

(1) RIE removal of SiO2 adhesion layer 

Parameters on an Oxford 80 system: 

Gas flow: 25 cm³/min argon  

Pressure: 10 mTorr 

Power: 200 W 

Time: 90 s to ensure removal of 5 nm of SiO2 

 (2) RIE of Diamond 

Parameters on an Oxford 80 system: 

Gas flows: 33 cm³/min O2 and 17 cm³/min argon 

Pressure: 15 mTorr 

Power: 200 W 

Resulting DC-bias: ≈ 535 V 

Low pressure strike: Start plasma at 30 mTorr. 

Resulting etch rates: PCD wafer die ≈ 25 nm/min, SCD membranes ≈ 16 nm/min 
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(3) RIE of NbN 

Parameters on a Sentech SI 220 system: 

Gas flows: 30 cm³/min CF4 

Pressure:1.33 Pa 

Power: 100 W 

Etch time: 49 s to remove 5 nm adhesion layer and fully etch 4 nm NbN 

(4) Chip cleaning in oxygen plasma 

Parameters on an Oxford 80 system: 

Gas flows: 20 cm³/min O2 

Pressure: 60 mTorr 

Power: 30 W 

Resulting DC-bias: ≈ 126 V 

Cleaning time: 3 min 

Wet etching 

Chromium wet etch 

Sigma Aldrich Chromium Etchant 651826. Etch rate ≈ 4 nm/s. Round up estimated etch time to ensure full 

removal of chromium in the intended regions. Stop development by rinsing in water and dry blow with a 

nitrogen gun. 

Hydrofluoric acid etch for underetching of diamond 

J.T. Baker Buffered Oxide Etch 6:1. Etch rate ≈ 1.6 nm/s for oxidized silicon. For not-freestanding struc-

tures: Rinse in water and blow dry with a nitrogen gun. For freestanding structures (optomechanical de-

vices): Rinse in water, transfer to methanol bath which slightly covers the surface of the photonic chip (make 

sure structures never fall dry). Then let the chip dry by letting methanol evaporate on a hotplate (120°C 

for ≈ 2 min). Alternatively use critical point drying. 
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Workflows for the fabrication of photonic chips 

Note that cross-shaped alignment markers are used for the alignment of subsequent EBL steps.  

(1) Electrode fabrication 

Either EBL Process (E) for thin electrodes on H-resonators or EBL process (D) for large area electrodes 

(for SNSPDs). After development: Chromium (Cr) and Gold (Au) deposition via Physical vapor deposition 

(PVD): First 5 nm Cr for gold adhesion, then 100 nm Au, then 15 nm Cr on top. 30 min in acetone for 

PMMA removal and metal lift-off of the metal in the unpatterned area. Rinse in acetone, isopropanol 

and dry blow with a nitrogen gun. 

(2) Chips with diamond PICs 

Deposition of 5 nm SiO2 via PVD. EBL process (A) for HSQ 15%. RIE process (1) for SiO2 removal.  

RIE process (2) for diamond etch, timed etch to reach 50% relative etch depth. 

(3) Chips with diamond PICs and optomechanical circuits 

Following workflow (II) for PICs. Deposition of 25 nm Cr via PVD. EBL Process (D) for PMMA. Cr wet 

etch. RIE process (2) for diamond etch, timed etch to reach 100% relative etch depth within PMMA 

windows. 

(4) Chips with electrodes, diamond PICs and optomechanical circuits 

Electrode fabrication following workflow (I). Cleaning by rinsing in Acetone instead of ultra-sonic.  

Then following workflow (III) including workflow (II), starting with deposition of 5 nm SiO2. 

(5) SNSPDs on diamond PICs 

Electrode fabrication following workflow (I). Deposition of 5 nm SiO2 via PVD. EBL process (B) for HSQ 

6% on PCD. RIE process (3) for SiO2 removal and NbN etch. Then following workflow (II) for PIC fabrica-

tion. 

(6) SCD device fabrication 

Spin coat PMMA on carrier die (15 ∙ 15 mm2) at 2000 rmp, 1000 rpm/s for 20 s. Place SCD mem-

brane array on PMMA and gently press it into the PMMA (Tweezers touch the sides of the thick dia-

mond frame)  Bonding of SCD membrane array. Baking 2 min on hotplate at 180°C. Clean the 

bonded chip in hydrofluoric acid for 20 min. Clean chip in oxygen plasma via RIE process (4). Deposition 

of 5 nm SiO2 via PVD. EBL process (C) for HSQ 6% on SCD. RIE process (1) for SiO2 removal. RIE process 

(2) for diamond etch, timed etch to reach intended relative etch depth.  
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A3. NbN deposition 

The superconducting NbN film of 4 nm thickness, which was used for all experimental results pre-

sented in chapter 4, was deposited by the group of Prof. Goltsman at the Moscow State Pedagogical 

University by DC magnetron sputtering in nitrogen and argon atmosphere. A discharge current 

of 350 mA, a nitrogen partial pressure of 2 ∙ 10−4 mbar, and a substrate temperature of 850°C were 

used. We measure the dependence of the sheet resistance on the temperature, as shown in Figure 

82. The temperature range around the transition from superconducting to normal-conducting is 

shown in Figure 82 a), while the full temperature range up to room temperature is shown in Figure 

82 b). The deposited films show a critical temperature 𝑇C = 11.7 K and a transition width 𝛥𝑇C =

0.9 𝐾. The film has sheet resistance of 𝑅S = 400 Ω/□ at room temperature and shows critical current 

densities in the range of 3 ∙ 106A/cm2 to 6 ∙ 106 A/cm2 at 4.2 K. This is comparable to NbN films 

grown on silicon or sapphire substrates306. The temperature dependence of the sheet resistance at 

higher temperatures is typically quantified by the ratio of the resistance at 300 K to the resistance 

at 30 K, called residual resistivity ratio 𝑘 = 𝑅300𝐾 𝑅30𝐾⁄ . For this layer a value of 𝑘 = 0.74 < 1 reveals 

a negative temperature coefficient, consistent with the temperature dependence observed for NbN 

layers below 10 nm thickness on other substrates264. 

 

 

A4. NbN absorption measurement at room temperature and 

cryogenic temperature 

As a preliminary study on the feasibility of SNSPDs on diamond using NbN nanowires, we fabricated 

devices for measuring the absorption of light by NbN nanowires from a 5.6 nm thick NbN layer, de-

posited by the group of Prof. Siegel at the Institute of Micro- and Nanoelectronic Systems (IMS) at 

the Karlsruhe Institute of Technology. The critical temperature of this layer was determined at the 

IMS as 𝑇C = 7 K. We measured the absorption at room temperature and cryogenic temperature in 

 

Figure 82 - Sheet resistance of 𝟒 𝐧𝐦 NbN layer on diamond: a) Sheet resistance in the temperature range from 4 K 
to 22 K showing the transition from superconducting to normal-conducting with a critical temperature 𝑇C = 11.7 K 
and a transition width 𝛥𝑇C = 0.9 K. b) Sheet resistance in the temperature range from 4 K to 290 K revealing a nega-
tive temperature coefficient between 30 K and room temperature. 
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order to assess if cryogenic absorption measurements are necessary for determining the absorption 

efficiency of SNSPDs. The device layout for the PICs and the measurement procedure are described 

in the main text in section 4.3.2. 

 

We measured the absorption for nanowires of widths of 75 nm, 100 nm and 125 nm for varying 

length and extract the absorption coefficient for each width. Figure 83 shows the absorption coeffi-

cients resulting from measurements at room temperature (≈ 300 K, black filled circles) and cryo-

genic temperature (2 K, blue open circles). The absorption coefficients agree within the measure-

ment uncertainty. This suggests that measurements at room temperature are sufficient for determin-

ing the absorption efficiency of NbN waveguide-integrated SNSPDs. 

We note that the NbN layer from which the devices presented in the main text have been fabri-

cated was deposited by the group of Prof. Goltsman at the Moscow State Pedagogical University. 

Hence the deposition systems, deposition parameters, and exact material properties can differ be-

tween the nanowires presented in this appendix and in the main text. Within this appendix we 

showed that the absorption coefficients at room temperature and cryogenic temperature agree 

within the error bars and we assume that this generally holds, also for NbN layers deposited under 

different conditions, such that measurements at room temperature would be sufficient for determin-

ing the absorption efficiency of NbN waveguide-integrated SNSPDs. 

 

A5. SNSPD device yield 

Reduced critical currents are a main limiting factor for the efficiency of SNSPDs. Both roughness of 

the substrate and the fabrication of nanowires can lead to defects and incisions in the nanowire width 

which can limit the critical current. We hence analyze the dependence of critical current on both the 

device length and the location on the chip, as different areas of a substrate could show an increased 

probability of defects and incisions. We note that the length of the U-shaped nanowire is twice as 

long as the device length. 

 

Figure 83 - NbN nanowire absorption: Comparison of the ab-
sorption coefficients at room temperature (≈ 300 K, black filled 
circles) and cryogenic temperature (2 K, blue open circles). 
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Figure 84 a) shows a map of one array of 16 waveguide-integrated SNSPDs designed for a wavelength 

of 1600 nm. The nanowire widths are 90 nm (bottom row) and 100 nm (top row) and the device 

length increases from left to right with two devices per length (10, 70, 80 and 90 µm). Each device is 

colorized indicating high and low critical currents (the values in µA are indicated at each location), 

where values above 25 µA are marked in green and lower values are marked in red. Devices which 

could not be electrically contacted or did not show superconductivity are indicated with a critical 

current value of 0 µA. It is noticeable that almost all devices with low or zero critical current are 

located within a continuous region, indicating that inhomogeneity in fabrication might play a role. 

Figure 84 b) shows a histogram of the critical currents of 20 SNSPDs, five of each length (indicated 

by color). The bin size is 10 µA and the bins are centered at 0, 10, 20 and 25 µA. The bin boundaries 

are indicated with black vertical lines. The data corresponds to the 16 devices of the array shown in 

the location map of Figure 74 a) and four additional devices (one of each length) located adjacent to 

the array.  

For 10 µm length (blue color) five out of five devices show high critical currents 𝐼C ≥ 25 µA, while 

for 80 µm (green color) five out of five devices show comparably low 𝐼C < 15 µA. For 90 µm though 

(yellow color) four out of five devices show high 𝐼C ≥ 25 µA, hence the distributions do not show a 

clear trend with increasing length. We take 25 µA as a threshold for distinguishing high from low 

critical currents. Aggregating the data into short (10 µm) and long (≥ 70 µm) devices reveals that for 

short devices five out of five devices show high 𝐼C while this only six out of 15 long devices show high 

𝐼C. The increasing probability for incisions and defects with increasing nanowire length certainly 

plays a major role in limiting the amount of SNSPDs with high critical currents. Larger amounts of 

devices need to be fabricated and characterized in order to allow a quantitative analysis concerning 

the influence of length and location on the probability of a SNSPD to feature a high critical current.  

 

 

 
Figure 84 - SNSPD device yield: a) Map of device locations of 16 SNSPDs and their corresponding critical currents 
(in µA). The length increases from left to right with two devices per length (10, 70, 80 and 90 µm). Critical currents 
above 25 µA are marked in green and lower values in red color. b) Histogram of the critical currents for SNSPDs of 
varying device lengths (10, 70, 80 and 90 µm). 5 SNSPDs of each length were measured. The bin size is 10 µA and the 
bins are centered at 0, 10, 20 and 25 µA. The bin boundaries are indicated with black vertical lines. The columns of 
different color, corresponding to different SNSPD lengths, are displaced in the horizontal direction within each bin 
for clarity. 
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