

Karlsruhe Institute of Technology

Institute for Technical Thermodynamics and Refrigeration (ITTK) Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany, ttk.kit.edu

Signal-to-noise ratio of temperature measurement with Cernox[™] sensors at various supply currents

A. Janzen^{1,*}, B. Burger², A. Ebersoldt², C. Heidt³, O. Langhans³, A. Reiner³, S. Grohmann^{1,3}

¹ Institute for Technical Thermodynamics and Refrigeration, ² Institute for Data Processing and Electronics, ³ Institute for Technical Physics, * Email: andreas.janzen@kit.edu, Tel.: +49-721-608-42730

10-P3-256 – ICEC 26 / ICMC 2016, New Delhi, India, March 7 – 11, 2016

Motivation

Experimental setup

Requirements for temperature measurement in a new cryogenic thermal mass flow meter

- Small heat input on cryogenic fluid
- High signal-to-noise ratio (SNR) and high temperature resolution
- Temperature range: 4 to 300 K → CernoxTM type CX-1050-SD Performance investigation of 2 CernoxTM
- Excitation voltage (U) variation from 10 to 100 mV to identify
 - Influence on SNR and temperature resolution
 - Influence on combined uncertainty
 - Electronics design parameters

- Experimental investigation inside a helium operated calibration cryostat
 - Range of measurement: 4 to 296 K
 - TVO sensor for reference cryostat temperature measurement
- Cernox[™] and TVO mounted into a OFHC-copper block
- Lake Shore current source and Keithley DMM for CernoxTM

Experimental results

Standard deviation in temperature and self-heating

Improvement in temperature resolution

- Enlargement in temperature resolution more distinct for low excitation voltages
- Risk of sensor overheating increases for higher excitation voltages

40 mV as electronics design parameter

Combined uncertainty according to GUM

Property	Туре
U _{100 Ω} resistance	А
U _{Cernox}	A
CX calibration	В
CX fit equation	В
Keithley DMM	В
T _{Croystat}	В

- 2000 data points for each temperature and excitation voltage setpoint
- Decrease in standard deviation and max-min difference with higher excitation voltages
- U-I-plots show perfectly proportional behavior for constant temperatures

- Type A uncertainties decrease by $1/\sqrt{n}$
- Even for low signal-to-noise ratios type B uncertainties dominate for large n
- 60 80 data points enough to minimize type A influence

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

