

Messung von Tieftemperatur-Phasengleichgewichten in binären Gemischen mit R1234yf

T. M. Kochenburger, I. Tratschitt, D. Gomse, S. Grohmann

Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

INSTITUT FÜR TECHNISCHE THERMODYNAMIK UND KÄLTETECHNIK (ITTK)

2 18.11.2016

<u>T. M. Kochenburger</u>, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Motivation: Kälteerzeugung im Temperaturbereich 80 ... 200 K im geschlossenen Kreisprozess für

- Hochtemperatursupraleitung
- Kühlung von Elektronik (Verstärker, Infrarotsensoren)
- Erdgas- / Luftverflüssigung
- Vorkühlung von Prozessen bei noch tieferen Temperaturen

http://www.themen-magazin.de/artikel/ampacity-energiewende-in-der-stadt/ (14.11.2016)

Karlsruher Institut für Technologie

Kompressionskälteprozess zum Kühlen nahe Umgebungstemperatur

(z.B. Propan)

http://www.kuechenschotte.de/img/produkte/xl/exquisit_kuehlschrank _mit_arbeitsplatte_gefrierfach.jpg (06.01.2016)

Kompressionskältekaskade zum Kühlen bei tiefen Temperaturen

(z.B. Propan – Ethan – Methan)

18.11.2016 <u>T. M. Kochenburger</u>, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

5

Kryogener Gemischprozess zum Kühlen bei tiefen Temperaturen

(z.B. Gemisch aus Propan + Ethan + Methan)

→ Gleiche Funktion wie Kaskade, aber einfacherer Prozess

6 18.11.2016 <u>T. M. Kochenburger</u>, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Karlsruher Institut für Technologie

Typisches Temperaturprofil im inneren Wärmeübertrager:

7

18.11.2016

Vorteile:

- Kleine Temperaturdifferenzen im Wärmeübertrager am kalten Ende
- Expansion bei hohem Flüssigkeitsanteil
- Geringe Entropieerzeugung, hohe Effizienz
- Moderate Druckniveaus, preiswerte Standardkomponenten

Herausforderung:

- Hohe Effizienz nur durch exakte Auslegung für spezifische Anwendung erreichbar
 - Innerer Wärmeübertrager
 - Gemischstoffdaten

- In elektrischen Anwendungen unbrennbare Kältemittelgemische erwünscht (verbesserte Sicherheit)
- Mögliche Komponenten (Gefrierpunkt ≤ 125 K):

Kältemittel	Summenformel	Siedepunkt	Gefrierpunkt
R728	N ₂	77 K	63 K
R740	Ar	87 K	84 K
R14	CF ₄	145 K	90 K
R23	CHF ₃	191 K	118 K
R1234yf	$C_3H_2F_4$	244 K	123 K
R218	C ₃ F ₈	236 K	125 K

Problem: fehlende Stoffdaten für Gemische mit diesen Kältemitteln bei tiefen Temperaturen

8 18.11.2016 <u>T. M. Kochenburger</u>, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Phasengleichgewichtsmessungen

Messgröße	Bereich	Unsicherheit
<i>p</i> / bar	0,01 50	0,01
<i>T /</i> K	120 293	0,1
<i>x</i> ^{L1} , <i>x</i> ^{L2} , y	0 1	0,005

D. Gomse u.a.: Inbetriebnahme einer modifizierten Versuchsanlage für die Messung von Tieftemperatur-Phasengleichgewichten, DKV-Tagung, Dresden, 2015.

9 18.11.2016

<u>T. M. Kochenburger</u>, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Phasengleichgewichtsmessungen

Modellierung in Aspen Plus V8.6

Peng-Robinson-Zustandsgleichung

- Boston-Mathias α-Funktion
- Drei unterschiedliche Mischungsregeln:

Anpassung der Reinstoffparameter an $T_{\rm c}$, $p_{\rm c}$, ω

MischungsregelParameterStandard k_{12} Mathias-Klotz-Prausnitz k_{12} , l_{12} , l_{21} Wong-Sandler mit g^{E} -Modell
(NRTL) k_{12} , Δg_{12} , Δg_{21}

D.-Y. Peng and D. B. Robinson, A New Two-Constant Equation-of-state, Ind. Eng. Chem. Fundam., Vol. 15, (1976), pp. 59–64.

J. F. Boston and P.M. Mathias, Phase Equilibria in a Third-Generation Process Simulator" in Proceedings of the 2nd International Conference on Phase Equilibria and Fluid Properties in the Chemical Process Industries, West Berlin, (17-21 March 1980) pp. 823-849.

P.M. Mathias, H.C. Klotz, and J.M. Prausnitz, Equation of state mixing rules for multicomponent mixtures: the problem of invariance, Fluid Phase Equilibria, Vol 67, (1991), pp. 31-44.

D. S. Wong and S. I. Sandler, A Theoretically Correct New Mixing Rule for Cubic Equations of State for Both Highly and Slightly Non-ideal Mixtures, AIChE J., Vol. 38, (1992), pp. 671 – 680.

H. Renon and J.M. Prausnitz, Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AIChE J., Vol. 14, No. 1, (1968), pp. 135 – 144.

 10
 18.11.2016
 T. M. Kochenburger, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Phasengleichgewichtsmessungen

Zielfunktion: Residual Root-Mean-Square Error (*RRMSE*)

Untersuchte Stoffsysteme:

- R170 (C₂H₆) R23 (CHF₃) (heteroazeotrop) (erste Ergebnisse D. Gomse u.a., DKV-Tagung 2015)
- R14 (CF_4) R1234yf ($C_3H_2F_4$)
- R23 (CHF₃) R1234yf ($C_3H_2F_4$)

11 18.11.2016 <u>T. M. Kochenburger</u>, I. Trat Deutsche Kälte- und Klima

<u>T. M. Kochenburger</u>, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Stoffsystem: R170 (1) – R23 (2) (heteroazeotrop)

- 4 gemessene Isothermen (174, 177, 183 und 228 K)
- **7** gemessene VLLE-Datenpunkte (173 ... 186 K)
- Zusätzliche Literaturdaten zur Anpassung: 6 Isothermen (188 ... 244 K)

Zhang, Y. J.; Gong, M. Q.; Zhu, H. B.; Wu, J. F. Vapor-Liquid Equilibrium Data for the Ethane + Trifluoromethane System at Temperatures from (188.31 to 243.76) K. J. Chem. Eng. Data 2006, 51 (4), 1411–1414.

12 18.11.2016

Stoffsystem: R170 (1) – R23 (2) (heteroazeotrop)

13 18.11.2016

T. M. Kochenburger, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Stoffsystem: R14 (1) – R1234yf (2)

4 gemessene Isothermen (153, 193, 233 und 273 K)

14 18.11.2016

T. M. Kochenburger, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Stoffsystem: R14 (1) – R1234yf (2)

15 18.11.2016

T. M. Kochenburger, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Stoffsystem: R23 (1) - R1234yf (2)

- 3 gemessene Isothermen (193, 233 und 273 K)
- Zusätzliche Literaturdaten zur Anpassung: 7 Isothermen (254 … 348 K)

Madani, H.; Valtz, A.; Zhang, F.; El Abbadi, J.; Houriez, C.; Paricaud, P.; Coquelet, C. Isothermal vapor–liquid equilibrium data for the trifluoromethane (R23)+ 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) system at temperatures from 254 to 348 K. Fluid phase equilibria 2016, 415, 158–165.

16 18.11.2016

Stoffsystem: R23 (1) – R1234yf (2)

17 18.11.2016

T. M. Kochenburger, I. Tratschitt, D. Gomse, S. Grohmann Deutsche Kälte- und Klimatagung 2016, Kassel, AA I.21

Zusammenfassung

- Konzeption von unbrennbaren kryogenen Gemischkreisläufen zur Kühlung bei 80 … 200 K erfordert Messung fehlender Stoffdaten
- Messung von Phasengleichgewichtsdaten der binären Systeme R170 – R23, R14 – R1234yf, R23 – R1234yf im Bereich 153 … 273 K
- Fit der Messdaten mit Peng-Robinson-Zustandsgleichung
 - Modellierung mit nur einem temperaturunabhängigen Wechselwirkungsparameter nicht immer ausreichend genau
 - → Häufige Fehlerquelle in Prozesssimulationen
 - R170 R23 erfordert komplexere Mischungsregel (z.B. Mathias-Klotz-Prausnitz oder Wong-Sandler/NRTL)

Ausblick

- Messung weiterer bin
 ärer Systeme, z.B. R1234yf mit R728, R740, R218
- Validierung der gefitteten Parameter zur Beschreibung ternärer und quaternärer Systeme
- Neue Versuchsanlage mit deutlich erweitertem Messbereich (20 ... 273 K, 0 ... 150 bar) zur Konzeption von Supraleiter-Anwendungen unter 80 K

http://operafea.com/news/simulation-accuracy-helps-pioneeringsuperconducting-generator-developments/ (14.11.2016)

