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OUTLINE 2

» Implement track trigger using GPUs

» Use established methods for seeding

» Present our own version of the Hough transformation
» Compare different GPUs/vendors

» Investigate data transfer/latencies

» Estimate impact of technological advances

OUR GOAL IS TO ACHIEVE COMPETITIVE RESULTS,
WHILE GAINING FLEXIBILITY
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UPGRADE TIMELINE 5

® Peakluminosity = Integrated luminosity
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THE LS3 UPGRADE

» Current CMS trigger won't be able to handle:

?

» Currently proposed solution:

» Increased data rates

» Increased pile-up

» Data reduction on detector

» Raise latency of trigger from 3.4 to 12.5 us

» L1 track trigger I




EXPECTED DATA RATES 7

Front End Back End

Detector Stub L1 Global

~104 1Tb/
Hit L0ANLs Building SOTb/S Tracking ° Trigger

» Readout at 40 MHz, BX every 25 ns
» 6 us each for L1 Trigger and Global Trigger

» L1 Tracking to combine Track seeding and Fitting



STUB BUILDING

hit matching windows (discrete)

fail

» Applies momentum cut to hits
» Delivers estimate on track bend

» Drastically decreases number of hits by a factor of 100



CURRENT APPROACHES

» Associative Memory approach (ASICs)
» Time-multiplexed FPGA Hough transformation

> ...

CURRENT APPROACHES USE SPECIALIZED HARDWARE



COMPARISON GPU VS. FPGA 1

Nvidia Tesla K40c vs. XILINX VIRTEX-7 XC7VX1140T (both 28nm)
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QUALITATIVE COMPARISON OF STRENGTHS 1

GPU

Rapid development cycles
and high flexibility

FPGA

Huge I/0O Bandwidth

Large bandwidth to

Deterministic timings/

external memory runtimes
High Floating-point High bit-level
performance performance



HOUGH TRANSFORMATION 12

Equivalent to FPGA approach, used by collaboration of KIT
and UK Track Trigger Group*

» Uncompress data
» Perform Hough transformation

» Uses module bend information
» Apply layer condition

» Reject or return track candidates

*An FPGA-Based Track Finder for the L1 Trigger of the CMS Experiment at the
High Luminosity LHC (DOI: 10.1109/RTC.2016.7543102)


http://dx.doi.org/10.1109/RTC.2016.7543102

HOUGH TRANSFORMATION
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HOUGH TRANSFORMATION
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HOUGH TRANSFORMATION
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CLUSTERING POINTS ARE TRACK CANDIDATES 16
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P-Po

FILTERING BY LAYER CONDITION 1
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OUR IMPLEMENTATION

18

GPU implementation specifics:

» Optimized for minimum latency
» Computes g/pi-bins in parallel

» Almost no dependence on number of stubs



OVERHEADS. . .

19

» Kernel scheduling
» Kernel launch time

» Allocation of shared memory

y .7

Invocation and setup of kernels is too costly,

we need to keep it running continuously

=P NEEDS SPINNING KERNEL




BENCHMARK KERNEL RUNTIME - SPINNING 20

® CUDA - Tgsla K40c )

0 20 40 60 80 100 120 140 160
Stubs  CURRENTLY NOT POSSIBLE IN OPENCL: I
CACHE CAN'T BE FLUSHED FROM KERNEL ®



WHAT ABOUT DATA TRANSFER?
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DMA SETUP - CPU ONLY STARTS THE KERNEL

22

MEMORY

(Red) Conventional transfer (Green) RDMA transfer



DMA MEASUREMENT SETUP
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KERNEL RUNS
CONTINUQUSLY

1 GPU:request data

—

PRELOAD DATA




DMA MEASUREMENT SETUP
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PRELOAD DATA

KERNEL RUNS
CONTINUQUSLY

1 GPU:request data

2 FPGA:Data Transfer

SIMULTANEQUSLY

2 GPU:Poll for data




DMA MEASUREMENT SETUP

25

PRELOAD DATA

KERNEL RUNS
CONTINUQUSLY

1 GPU:request data

SIMULTANEQUSLY

D

3 GPU:Computes

At the moment we don't write back into the FPGA,




DMA BENCHMARK: POLLING - SPINNING KERNEL 26

read and write 160 stubs (64 bits each)

» Start transfer » Poll for data » Write back result

8,00

B Mean [ Max
6,00 latency limit

POLLING  TRANSFER TOTAL
)

.-+ estimated response time



DMA BENCHMARK - HOUGH TRANSFORMATION 27

» Read/Uncompress data » Compute >» Poll
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INCREASING THROUGHPUT 28

» Computation time is higher than data transfer

» We can hide the transfer behind the computation

INTERLEAVED APPROACH

» Start data transfer for current data set
» Do calculations on previous dataset (lies in register memory)

» Poll new data (should take less time)

INCREASES THROUGHPUT
AT COST OF LATENCY



DMA BENCHMARK: INTERLEAVED HT 2

Data older, throughput higher
» (poll) Read/Uncompress data » Ask for data » Compute
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NEW APPROACH - HEXAGONAL HOUGH-SPACE 30
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» Hexagonal bins in hough space « & 48

» Suppresses fake candidates 142

43.6

» Runtime comparable 130

412.4

» only 1 possible bin per row

» less algorithmic branching 10 12
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CAVEAT: NEEDS MORE BINS ol 4
(FACTOR OF 2)
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COMPARISON OF FAKE RATES - REGULAR VS. HEXAGONAL
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Preliminary Results

B REGULAR
B HEXAGONAL

TRACK CANDIDATES
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number of true tracks (20)

Results for TTBar Dataset PU140, whole detector, 1 event



DMA BENCHMARK: HEXAGONAL HT o

» (poll) Read/Uncompress data » Ask for data » Compute
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CONCLUSIONS
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Performance:
» Computational time of around 4 ps
» Transfer time of around 2 ps
Surpassed our expectations
Development is faster
More complex algorithms are possible:
» Example: hexagonal approach

Data transfer using standard interfaces is challenging



OUTLOOK

34

» Need to process multiple sectors per card in future
» Look at performance of newer cards
» High Bandwidth Memory,
already in consumer model cards,
promises 2-4x better throughput
» Investigate new transfer technologies
» PCle 4.0 (2x faster)

» nv-link (5-10x faster)

MOORS LAW IS OUR FRIEND!



QUESTIONS?



CUDA 7.5 - TESLA K&0C
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CUDA 8 - TESLA K&0C
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