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Abstract: Visual properties are powerful features to reli-
ably classify bulk materials, thereby allowing to detect de-
fect or low quality particles. Optical belt sorters are an es-
tablished technology to sort based on these properties, but
they suffer from delays between the simultaneous classifi-
cation and localization step and the subsequent separa-
tion step. Therefore, accurate models to predict the par-
ticles’ motions are a necessity to bridge this gap. In this
paper, we explicate our concept to use sophisticated sim-
ulations to derive accurate models and optimize the flow
of bulk solids via adjustments of the sorter design. This al-
lows us to improve overall sorting accuracy and cost effi-
ciency. Lastly, initial results are presented.

Keywords: Computational fluid dynamics, discrete ele-
ment method, multi-object tracking, optical sorting.

Zusammenfassung: Visuelle Eigenschaften sind mächtige
Merkmale zur Klassifikation von Schüttgütern, auf Basis
derer man defekte oder unbrauchbare Teilchen erkennen
kann. Die Verwendung optischer Bandsortieranlagen ist
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eine etablierte Technik zur Sortierung basierend auf die-
sen Merkmalen. Derartiger Sortierer leiden jedoch unter
Verzögerungen zwischen der gleichzeitigen Klassifikation
und Lokalisierung und der darauffolgenden Separation.
Dadurch entsteht die Notwendigkeit für akkurate Model-
le der Teilchenbewegung, mittels derer diese Lücke über-
brücktwerden kann. In dieser Veröffentlichung stellen wir
unser Konzept vor, mittels hochentwickelter Simulationen
genaue Modelle herzuleiten und den Teilchenstrom durch
Optimierungen im Design des Sortierers zu verbessern.
Dies ermöglicht die Verbesserung der Sortiergüte und Kos-
teneffizienz. Abschließend präsentieren wir erste Ergeb-
nisse.

Schlüsselwörter: Diskrete Elemente Methode, Multi-
Object Tracking, Numerische Strömungsmechanik,
Optische Sortierung.

1 Introduction
Approximately 10% of all energy produced annually is
spent on transport and handling of bulk material [1], mak-
ing efficiency improvements highly valuable to the mod-
ern world. While some bulk materials can be sorted based
on mechanical characteristics such as shape, size, and
density, others can mainly be distinguished according
to visual properties. An example for the latter are glass
splinters, which are typically sorted based on their color.
For these applications, sorting systems combining optical
sensors with image processing technology and a subse-
quent separation step present a convenient solution. Opti-
cal sorting systems are often characterized by the applied
transport system, with belt sorters and slide sorters being
the most representative ones.

While non-optical sorters such as sieves andmagnetic
separators exploit differences in the physical characteris-
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tics of the bulk solids and combine classification and sep-
aration in one step, these tasks have to be regarded sep-
arately in optical sorters. This leads to the following key
challenge. Due to delays emerging at various components
of the system, a small, yet not negligible time gap (typ-
ically in the order of milliseconds) passes between clas-
sification and separation. The same applies to the local-
ization, which is usually combined with the classification.
Consequently, it is necessary to precisely predict when
and where each particle arrives at the separation mecha-
nism. This predictionnecessitatesmodels for the particles’
motions. Until now, optical sorters have largely worked
without explicitly modeling the particles’ motion behav-
ior. However, they have always implicitly relied on the very
simple and often inaccurate assumption that all particles
move at a predefined speed in the main transport direc-
tion.

In this paper, wepresent a novel interdisciplinary con-
cept to tackle this deficiency. We illustrate concepts that
allow us to make explicit use of sophisticated simulations
and explicate a promising approach to achieve accurate
motionmodels,which canbe integrated into industrial op-
tical sorters in the near future.

2 State-of-the-art optical belt
sorters

The basic components of a state-of-the-art optical belt
sorter are illustrated in Figure 1 and a detailed overview
of the applied processing pipeline is provided in [2]. Par-
ticles of the bulk material are transported on a belt that
serves the purpose of adapting the particles’ velocities to
its own speed and reducing movements perpendicular to
the transport direction, which is crucial for current belt
sorters. After leaving the belt, the particles fall off along
aparabolic flightpath.During their flight, theypass the so-
called inspection line illuminatedappropriately to the task
at hand. At this point, particles are recorded with a line
scan camera and the image data is processed with the goal
of classifying and localizing each particle.

The classification result serves as the basis for the ac-
tual separation. Depending on the classification result,
compressed air nozzles lined up in an array parallel to the
inspection line are selectively activated to alter the flight
path of certain particles. Due to differing amounts of parti-
cles and object properties, the time required for image pro-
cessing varies as illustrated in Figure 2. By activating the
nozzles at a fixed delay after the particle passes the inspec-
tion line, current systems implicitly assume that all parti-
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Figure 1: Schematic view of an optical belt sorter.
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Figure 2: Delays occurring between inspection and actual
separation. For cases with even longer processing time, the system
will not be in time to perform the separation.

clesmove at the same speed in the transport direction. The
nozzle that is in line with the observed position is then se-
lected for activation. Thus, it is assumed that the velocity
component perpendicular to the transport direction is zero
and that the velocity component in the transport direction
is static and implicitly known.

Current optical belt sorters use imprecisely focused
streams of air and activate the individual nozzles longer
than necessary to account for the uncertainty in the par-
ticle’s movement. Clearly, this comes at the cost of hitting
additional particles located close to the intended particle,
hence potentially producing high amounts of so-called by-
catch, i. e., particles that are mistakenly blown out. To cal-
culate precise control inputs for the separation mecha-
nism, accurate models are needed as well as a better un-
derstanding of the particle–particle interaction, especially
in cases of higher throughput of bulk solids.

3 Models
The easiest way to calculate the temporal and spatial off-
set from the time and place the particles are observed at is
to assume that all particles have an identical and known
motion pattern. This is done implicitly in current optical
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belt sorters explained in Section 2. However, this is clearly
a rough approximation. Especially bulk materials that do
not typically follow such a constant, linear motion violate
this assumption to such an extent that sorting becomes in-
feasible using current optical belt sorters.

3.1 Predictive tracking for optical belt
sorters

To alleviate this weakness, we have enhanced a prototype
of an optical belt sorter by adding an area scan camera.We
refer to this extension that allows us tomake full use of the
additional information obtained by the area scan camera
as TrackSort [3, 4]. While the delays explained in Section 2
are not reduced by the use of an area scan camera,we gain
a significant advantage by observing each particle at mul-
tiple time steps.

The tracking process to make use of the multiple ob-
servations can be divided into three phases that we can
visualize on a top view as sketched in Figure 3a. During
the tracking phase, we expect to obtain measurements of
all particles and can update our knowledge about each
particle’s position and velocity accordingly. The predic-
tion phase is necessary due to the delays explained in Sec-
tion 2. When a particle enters the prediction phase, the de-
cision about whether to active the corresponding nozzle
must have already been made. Therefore, we cannot rely
onmeasurements during the prediction phase and have to
use our acquired knowledge about the particle’s motion to
predict its movement. Themultiple observations obtained
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(a) Phases of the tracking.
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(b) Error of the implicit
model compared with the
error of a constant velocity
approach.

Figure 3: Illustrations of the different phases of the tracking and of
the occurring errors depending on the model used. For the old
implicit model, we assume the inspection line to be at the blue line
that separates the prediction and the tracking phase.

during the tracking phase can not only help usmake accu-
rate predictions, but also facilitate improved classifiers.

In our current prototype, we solve the measurement-
to-track association problem bymaximizing the global as-
sociation likelihood [5, Ch. 10.3] and use one Kalman filter
per track with a constant velocity model to estimate each
particle’s position and velocity. The uncertainty of the sys-
tem model was derived from empirical observations and
the measurement uncertainty was obtained by analyzing
the noise on recordings of static particles. Since visually
matching particles from one time step to the next is com-
putationally infeasible and often even theoretically impos-
sible,we treat themeasurements obtainedby thearea scan
camera as unlabeledmeasurements. Problems of this kind
are referred to asmultitarget tracking problems [5, 6] with-
out labels in literature. While multitarget tracking is chal-
lenging and still an active field of research, a constant ve-
locity model that extrapolates the particle’s position using
the observed velocity (also including the velocity compo-
nent perpendicular to the transport direction) suits the ap-
plication well enough to allow us to use simple solutions.
As sketched in Figure 3b, the constant velocity model is
an improvement comparedwith the old implicitmodel but
still offers room for improvement.

3.2 Improving models

Further optimization of the motion models used for the
tracking is key to optimizing the system’s performance.
First, the prediction accuracy as the critical quality cri-
terion strongly relies on an accurate model. Second, the
measurement-to-track assignment of themultitarget track-
ing depends on the accuracy of the prediction of the parti-
cles’ motions from one frame to the next.

For the latter, an accuratemodel can not only increase
the probability of the assignment being correct, it also al-
lows for significantly improving the run time performance
of the system. The measurement-to-track assignment is
computationally expensive and can even take up more
CPU time than the image processing task if naïve algo-
rithms are used. Using better models, we can refine a step
called gating [7, Ch. 4] in which the problem is simplified
and thusmade faster to solve at the cost of a negligible risk
of false assignments. Thus, evenmodels that are computa-
tionally more costly can have a net benefit on the run time
performance of the system, allowing us to track more par-
ticles concurrently and facilitate the use of cameras with
higher frame rates.

To derive improved models for the tracking, our first
aim is to model the entire system as accurately as pos-
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sible using realistic, three-dimensional physical models
considering particle–particle as well as particle–wall in-
teractions. Such simulation approaches could be the Dis-
crete Element Method (DEM) coupled with Computational
Fluid Dynamics (CFD) as introduced in the next section.
By having an accurate simulation at our disposal, we can
first improveour constant velocitymodel. For example, us-
ing a simulationwith a high resolution that respects all di-
mensions,we canaccurately derive the systemuncertainty
without the need for extensive experiments. In the second
step, we aim to derive new simplified models. These mod-
elsmay vary for different bulkmaterials.We can safely rely
on the classification decision because if the classification
is incorrect, using an incorrect prediction model will be
unlikely to do any harm. If an incorrect classification re-
sults in targeting one particle using the nozzles although
the correct decision is to not alter its flight path, then an in-
correct prediction will even give it a slightly better chance
to escape the attempted separation. If the decision not to
target the particlewith the separationmechanism ismade,
then the predicted position will be discarded and thus will
not induce any effect on the sorting performance.

3.3 Simulation with a coupled DEM–CFD
approach

In order to improve themotionmodels for the tracking and
to get a more detailed understanding of the bulk solid’s
behavior in optical sorters as well as to potentially im-
prove the design of optical sorters, particle-based simula-
tion approaches like the Discrete Element Method (DEM)
are applicable. The DEM was first introduced by Cun-
dall and Strack in 1979 [8]. It allows the detailed analy-
sis of particle–particle and particle–wall interactions. The
translational and rotational motion of each particle, also
allowing non-spherical shapes, is calculated using New-
ton’s and Euler’s equations of motion and can be written
as

𝑚
𝑖

𝑑
2
⃗𝑥
𝑖

𝑑𝑡
2
= 𝐹⃗
𝑐

𝑖
+ 𝐹⃗
𝑝𝑓

𝑖
+ 𝐹⃗
𝑔

𝑖
, (1)

̂𝐼
𝑖

𝑑𝑊⃗
𝑖

𝑑𝑡
+ 𝑊⃗
𝑖
× ( ̂𝐼
𝑖
𝑊⃗
𝑖
) = 𝛬

−1

𝑖
𝑀⃗
𝑖
, (2)

where𝑚
𝑖
is the particle mass, 𝑑2 ⃗𝑥

𝑖
/𝑑𝑡
2 the particle accel-

eration, 𝐹⃗𝑐
𝑖
the contact force, 𝐹⃗𝑔

𝑖
the gravitational force,

and 𝐹⃗𝑝𝑓
𝑖

the particle–fluid force, which is required to
model the particle–fluid interaction at the particle ejection
stage of the sorter. The second equation gives the angular
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the time-resolved position, velocity, and orientation of ev-
ery particle enables the investigation of attainable selec-
tivity and throughput of the optical sorter. The data can
further be used to optimize the employed particle tracking
by deriving improved motion models.

Tomodel the particle ejection by bursts of compressed
air, the DEM is coupled with Computational Fluid Dynam-
ics (CFD). The fluid phase is described by solving the vol-
ume averaged Navier–Stokes equations
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and thus,wedonot resolve the flowaround individual par-
ticles. Here, 𝑢⃗

𝑓
is the physical fluid velocity, 𝜌

𝑓
is the den-

sity, 𝑝 is the pressure, ⃗𝑓
𝑖𝑛𝑡

is the volumetric particle/fluid
interactionmomentum source employed in each CFD cell,
𝜖
𝑓
is the local fluidporosity, and𝜏 is thefluid viscous stress

tensor. Previous studies, like one recently conducted by
Fitzpatrick et al. [9], show that this approach can correctly
describe the complex particle–fluid interaction.

The optical belt sorter used for experimental inves-
tigations modeled within the DEM framework is shown
in Figure 4a. For initial experiments and validation pur-
poses, the system is first run in batch operation and with-
out particle ejection and consequently sorting. During first
investigations, a base case is defined and different oper-
ating parameters such as particle throughput and shape,
belt velocity and length as well as the amplitude of the vi-
brating feeder are altered in both experiments and sim-
ulations. Analysis and comparison of particle velocities,
orientations, and trajectories validate the simulation and
provide first insights into the general system behavior. Ini-
tially, different model shapes and their corresponding be-
haviors are examined (Figure 4b–d) and it is planned to
numericallymodel and investigate real bulk solids such as
coffee beans, rice, and glass shards in the near future.

Based on the obtained information regarding the par-
ticle behavior, the improved particle tracking, and the in-
sights into the particle ejection process, we aim to develop
a numerical model of the entire new optical sorter that
includes the sorting decisions and sorting process. This
model will allow the detailed analysis of every stage of the
sorting process and will help to gain insights whichwould
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Figure 4: DEM simulation of
the optical belt sorter (a) and
different particle shapes
(b–d) employed in
experiments and simulations.
The colors of particles on the
belt indicate their velocities
in the transport direction.

be difficult or expensive to obtain experimentally. In short,
themodel canbeused as a versatile design tool and for fur-
ther process optimization.

4 Initial results
While we are still at an early phase of the project, we have
laid the basic building blocks and already attained two ob-
jectives that we explain in more detail in this section. One
objective was to build a tool to test the tracking approach
using a simple model on recorded image data. The other
task was to develop a first DEM model for initial simula-
tions to confirm the suitability of this approach.

4.1 Tracking using a constant velocity model

For our first experiments, a simple tracking algorithm
was implemented in rapid prototyping programming lan-
guages. Using common image processing techniques such
as connected component analysis, we separate the par-
ticles of the bulk material from the background. Follow-
ing that, we calculate certain geometric features, for in-
stance their approximate centroids,whicharepassedon to
the multitarget tracking. In each data set, only particles of
a single bulk material were used and our goal was merely
to test the feasibility of the tracking and measure first im-
provements by the constant velocity model.

As shown in Figure 5, our assignments are highly ac-
curate, implying that we are able to predict the next mea-
surement with high precision. This suggests that the uti-
lized multitarget tracking algorithm is well suited to the
problem at hand. Nonetheless, we are planing on eval-

Figure 5: The result of our prototypical tracking algorithm is
visualized on an actual frame of a recorded dataset. The motion of
each particle is visualized as the path (red) of the eight most recent
position estimates (blue). That all motion paths are plausible
implies that the measurement-to-track assignments are correct in
this example.

uating other multitarget tracking algorithms such as the
JPDAF [10] by using very fast approximations [11, 12] and
investigating more expensive algorithms [13, 14] for low
numbers of particles. A more in-depth analysis of our re-
sults using the constant velocity model is given in [3].

4.2 DEM simulations

Initial simulations with the DEM model described in Sec-
tion 3.3 offer first insights into particle and system behav-
ior. At first, only the vibrating feeder, slide, and conveyor
belt are considered. The obtained information also allows
a detailed comparison with corresponding experiments.
As the simulations are initially conducted in batch opera-
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Figure 6: Particle mass flow within the optical sorter obtained at the
beginning of the conveyor belt.

tion, knowledge of the particlemass flowwithin the sorter
is of great importance. Figure 6 shows the particle mass
flow in the simulation measured at the beginning of the
conveyor belt. The simulation is performed with 50 g of
5mmwood spheres (Figure 4b) while the vibrating feeder
is set to an amplitude of 0.5 mm at50 Hz and the conveyor
belt moves at a velocity of 1.5 m/s. The graph in Figure 6
shows that the particlemass flow between the 5 and 9 sec-
ond mark is nearly constant at a value around 0.008 kg/s.
Hence, the mass flow in this time frame can be regarded
as stationary, which enables a system analysis neglecting
time dependencies.

A screenshot of the conveyor belt, taken from the sim-
ulation, can be seen in Figure 7. The vectors attached to
the particles show the velocity and the direction of the
movement while the particles’ colors indicate their angu-

Figure 7: DEM simulation with 5 mm wood spheres showing the top view of the conveyor belt. The vectors indicate the direction of the
movement and the particles’ colors describe their angular velocities.

lar velocities. The figure shows that most of the spheres
move parallel to the belt without any cross movements.
Some exceptions are highlighted in the box on the right.
These particles also have high angular velocities, originat-
ing from particle–particle and particle–wall interactions.
Crossmovements and particle interactions are expected to
drastically increase when applying higher mass flows and
when sorting bulk solids with higher tendencies to move
perpendicular to the transport direction. The analysis of
these and other system parameters form the basis of fur-
ther investigations and tracking model improvements.

5 Conclusions
Using an area scan camera to observe each particle atmul-
tiple time steps has great potential for improving the sep-
aration using improved predictions of the particles’ posi-
tions. Tomake optimal use of the additional data obtained
and optimize run time efficiency, accurate models are es-
sential.

Not only will the DEM–CFD approach help us derive
accuratemodels, it will also allowus to optimize every sin-
gle step of the sorting process. By being able to simulate
the whole process accurately, we can not only derive mod-
els, but also ensure that mechanical and structural parts
are built in a way that ensures that the particles’ motions
adhere to the derived models.

One goal of our research is to improve the probabil-
ity of hitting targeted particles, reducing by-catch, and
saving energy in the separation process by reducing the
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amount of compressed air used. The other objective is to
optimize the optical belt sorter regarding throughput, nec-
essary space, and cost while maintaining a sorting quality
that suits the needs of the users of optical belt sorters.
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