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Introduction

Figure 1: A numerical simulation of a multifractal wave function at the Quantum
Hall transition, courtesy of Achim Mildenberger and Ferdinand Evers,
2003.

In the past century the study of disordered systems has been a highly fruitful en-
terprise. Many modern physical effects, such as the Quantum Hall effect, can be fully
understood only if the role of disorder is taken into account. One of the earliest contri-
butions was Drude’s (classical) model for the electrical conductivity. [1] It explains on a
classical level why metals have a finite conductivity: electrons are constantly scattered
on disordered ions in the metal, loosing their forward momentum. Else the electrical
field along a wire would constantly accelerate the charge carriers. Current models of
diffusive transport are more sophisticated in their treatment of the microscopic environ-
ment, but the basic idea championed by Drude, that disorder causes electrons to scatter
and give up their forward momentum, leading to a finite conductivity, remains valid
until today.
Typically metals are weakly disordered systems, well-situated within the diffusive

parameter regime. (As long as there is no phase transition to e.g. a superconductor.)
But it is possible to increase disorder further, especially in semiconductors. An obvious
limit imposed here is through classical percolation: if the disorder is so strong that there
are no paths anymore that connect the leads one has attached to the sample, it will not
be possible to send a current through the system.1

1If the sample is large enough, quantum mechanical electron tunneling is suppressed exponentially.
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Introduction

In 1958 P. W. Anderson suggested that quantum mechanics could cause electronic
states to localize well before the classical percolation limit, completely suppressing (dif-
fusive) transport in such systems. [2] This phenomenon is known today as “Anderson
localization” or “strong localization”. It occurs in three dimensions for sufficiently strong
disorder (larger than a threshold value) and in two or one dimension for any finite value
of disorder. (At least within the model that Anderson treated. See below for excep-
tions.) We should note that localization means that the quantum mechanical wave
functions of the system decay exponentially with on a length scale called the localiza-
tion length, ξ. This means that even in the localized regime transport through a one-
or two-dimensional system may still be possible, provided it is small enough.
Anderson localization arises due to quantum mechanical interference between scatter-

ing paths of wave functions, essentially trapping the wave functions in a finite volume.
Together with Abrahams, Licciardello, and Ramakrishnan, Anderson later proposed
that localization can be understood in terms of scaling, i.e. how the conductivity of a
system changes with the system size. [3] They showed that “there is no true metallic
behavior” in two dimensions, as the so-called β-function (which is defined as the loga-
rithmic derivative of the conductance, β(g) = d(lnG)/d(lnL)) is strictly negative for
d ≤ 2 and only approaches 0 asymptotically for d = 2. This approach to understanding
localization has been widely successful and is one of the cornerstones of the modern
view on disordered systems.
There have been countless developments since, but two of the most important in-

clude the symmetry classification of disordered systems (pioneered among others by
Zirnbauer, [4]) and the nonlinear σ-model description of disordered systems, which was
first introduced by Gell-Mann to describe β decay [5] but has since been adopted in
condensed matter theory. It turns out that non-interacting disordered systems can be
classified into one of 10 symmetry classes that fully determine the effective low-energy
excitations of the system at large length scales. σ-models are the effective field the-
ories associated with each of the symmetry classes. Within these field theories it is
possible to calculate corrections to the standard Drude conductivity in the diffusive
regime that arise due to quantum interference. Weak localization is one such correction,
where the resistivity in the diffusive regime increases due to localization effects of the
wave function. This is often considered a precursor to Anderson localization. Research
into different symmetry groups has also lead to the opposite effect in certain spin-orbit
coupled systems, called weak antilocalization. There the resistivity is reduced due to
quantum interference effects.
The study of symmetry groups ties into the concept of topological insulators as well.

σ-models of different symmetry groups may allow for the existence of an additional
“topological term” in the action in certain dimensions. For example, the quantum spin
Hall (QSHE) phase is characterized by an additional topological invariant that distin-
guishes it from an ordinary insulator. This implies the presence of surface states that
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are protected by symmetry (and thus insensitive to edge effects) in a system that is
otherwise a bulk insulator. A more complete discussion of the Quantum Spin Hall Ef-
fect is available from Kane and Mele. [6] Also characterized by a topological invariant
is the standard quantum Hall effect (QHE). [7] The transition between plateaus of the
quantum Hall effect is an insulator-insulator transition between two different ground
states characterized by different Chern numbers. Wave functions at the critical An-
derson transition between these states exhibit multifractal behavior, as can be seen in
Fig. 1. Many of these topics are reviewed in [8], which is a good starting point to obtain
an overview of the field.
The effects mentioned here are part of a plethora of phenomena that occur in dis-

ordered quantum systems. It is important to note that all of these phenomena can be
found even when neglecting the interactions between the electrons. At low tempera-
tures, where renormalization effects due to the interaction between the electrons start
to play an increasingly important role, [9] it stands to reason that a proper description
of some systems is only possible if interactions are included. And while this is a very
difficult problem to tackle, there have been plenty of successes in attacking this problem.
A good starting point to obtain an overview over some recent developments is [8].
A major issue with many analytical and numerical developments is that they make

assumptions that restrict their applicability in terms of the disorder strength. For ex-
ample, many methods are only valid in the diffusive regime, where the disorder strength
is low. Our goal is to develop a new numerical tool that takes disorder into account
exactly, but is also capable of analyzing interaction effects beyond the mere mean field
level.
Our method of choice is the functional renormalization group. While it has mainly

been applied to homogeneous or single impurity systems, it has been very successful at
that. The main reason for its success is that it provides an a priori unbiased view on
instabilities on the system. It has been applied to determining the leading instabilities
in different parameter regimes of the Hubbard model (e.g. [10, 11, 12, 13, 14]), single
impurity models (e.g. [15]) and even spin systems (e.g. [16, 17, 18]). A good overview
is given by the recent review on the functional renormalization group in [19].
The basic principle begins the functional renormalization group is to introduce an

artificial infrared cutoff Λ into the bare propagator of the system by means of a reg-
ularization function. This causes all quantities of the system to acquire a dependency
on the cutoff. The regularizer is chosen in such a way that at Λ→∞ we may trivially
write down what the self-energy and the interaction vertex look like. The derivatives of
these quantities form a hierarchy of flow equations that we will integrate numerically.
At Λ→ 0 the modified propagator turns into the physical propagator of the system, so
after the numerical integration of the flow equations we have (in principle) obtained the
values of the self-energy and the interaction vertex of the interacting system.
Our goal is to formulate the FRG in terms of the eigenbasis of the non-interacting
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Introduction

part of the Hamiltonian that includes disorder exactly. The flow equations will then
inform us how interactions play a role for a given disorder configuration; averaging over
disorder is performed at the end.

1 Structure of this thesis

The first chapter contains the derivation of all equations related to the FRG procedure:
the flow equations, the initial conditions and how to obtain observables, starting from
the generic FRG equations found in the literature. Our second chapter will discuss
implementation details of our numerics. The focus of the third chapter is to demonstrate
the validity of our method by comparing it against other reference methods. We will
discuss the central approximation we make to be able to reach larger system sizes. The
fourth chapter will apply the methodology we have developed to look into the phase
diagram of the model system we study.
Large parts of this thesis have also been published in Ref. 20.
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1 Chapter 1

Methodology: Functional
Renormalization Group

In this chapter we give an overview over the basic idea of the functional renormalization
group method and derive the equations required for our study of inhomogeneous systems.

1.1 Flow equations

We begin with an interacting Fermionic Hamiltonian H, decomposing it into its non-
interacting and interacting parts,

H = H0 + U. (1.1)

The non-interacting part may be diagonalized,

H0 |α〉 = εα |α〉 . (1.2)

The entire Hamiltonian may now be written in terms of this basis,

H =
∑
α

εαĉ†αĉα +
1

4

∑
αβγδ

Uαβγδ ĉ
†
αĉ†β ĉδ ĉγ , (1.3)

where Uαβγδ is the antisymmetrized interaction matrix element. (In the following we
will assume that higher order interactions are absent.) In the case of a clean system the
states α correspond to the quasi-momentum (and possibly the spin of the particles).
The functional renormalization group introduces a cutoff in the bare propagator.

While it is also possible to use a cutoff in momentum space in clean systems (see e.g.
[10]), we are interested in studying inhomogeneous systems, where there is no regularity

1



1 Methodology: Functional Renormalization Group

in the single-particle states, hence we use a cutoff in frequency space instead. Following
Eq. (57) in Ref. 19, our modified propagator now reads

G0,Λ(iω) =
ΘΛ(ω)

iω −H0 + µchem
, (1.4)

where ΘΛ(ω) has the property of vanishing at Λ→∞ and approaching 1 at Λ→ 0; we
will discuss our choice for ΘΛ(ω) further along.

The introduction of this artificial infrared cutoff Λ into the propagator makes all other
quantities of the system depend on Λ. If we take the limit of Λ→∞, it can be shown
(see Eq (31) in Ref. 19) that the self-energy is zero and the effective interaction vertex
Γ is given by the bare interaction Û . On the other hand, taking the limit of Λ→ 0, we
recover the original system without the introduced cutoff. There is now a continuous
variable that connects the real system (Λ → 0), where the physical quantities are not
known a priori, with a trivial system (Λ→∞), where all quantities are known.

It is now possible to calculate the derivatives of the vertex functions (self-energy,
two-particle vertex, etc.) with respect to Λ. This gives us a hierarchy of differential
equations that give us the physical quantities when integrated. In this sense on can
draw a comparison to the classical RG, because in the functional RG we integrate a set
of coupled differential equations along a cutoff.

We will defer to Chapter. 4 of [21] for the derivation of the most generic form of the
flow equations, as that is quite involved. To summarize: one starts with the generating
functional for the vertex functions in a path integral formulation, whose derivative with
respect to Λ can be calculated if one replaces the bare propagator in the action with
Eq. 1.4. The resulting expression for the derivative can then be expanded in terms of
the Grassman fields of the generating functional and comparing the coefficients yields
the flow equations.

The flow equation for the self-energy, Eq. (50) in Ref. 19, reads

d

dΛ
ΣΛ(x′, x) =

∑
y,y′

SΛ(y, y′)ΓΛ(x′, y′;x, y), (1.5)

2



1.1 Flow equations

and that for the vertex, Eq. (52) in Ref. 19,

d

dΛ
ΓΛ(x′1, x

′
2;x1, x2)

=
∑
y1,y′1

∑
y2,y′2

GΛ(y1, y
′
1)SΛ(y2, y

′
2)

×
{

ΓΛ(x′1, x
′
2; y1, y2)ΓΛ(y′1, y

′
2;x1, x2)

−
[
ΓΛ(x′1, y

′
2;x1, y1)ΓΛ(y′1, x

′
2; y2, x2) + (y1 ↔ y2, y

′
1 ↔ y′2)

]
+
[
ΓΛ(x′2, y

′
2;x1, y1)× ΓΛ(y′1, x

′
1; y2, x2) + (y1 ↔ y2, y

′
1 ↔ y′2)

]}
−
∑
y,y′

SΛ(y, y′)Γ(6),Λ(x′1, x
′
2, y
′;x1, x2, y). (1.6)

Furthermore, we adopt the definition of Eq. (47) in Ref. 19 for the so-called single-scale
propagator,

SΛ = −GΛ

[
d

dΛ

(
G0,Λ

)−1
]
GΛ. (1.7)

We translate these quantities into our own nomenclature, where we explicitly write out
prefactors for sums and integrals, use units of ~ = 1 and kB = 1, and work in Matsubara
space. Furthermore, we separate the generic indices into Matsubara frequencies and
Hilbert space indices, x = (µ, ωn).

Since energy is conserved, we may rewrite the self-energy, the single-particle Green’s
functions, the single-scale propagator and the vertex to include the corresponding δ-
function,

ΣΛ
αβ(ωn;ωn′) → T−1δn,n′ΣΛ

αβ(ωn), (1.8)

G0,Λ
αβ (ωn;ωn′) → T−1δn,n′G0,Λ

αβ (ωn), (1.9)

GΛ
αβ(ωn;ωn′) → T−1δn,n′GΛ

αβ(ωn), (1.10)

SΛ
αβ(ωn;ωn′) → T−1δn,n′SΛ

αβ(ωn), (1.11)

ΓΛ
αβγδ(ωn, ωñ;ωn′ , ωñ′) → T−1δn+ñ,n′+ñ′ ×

ΓΛ
αβγδ(ωn, ωñ;ωn′ , ωñ′). (1.12)

3



1 Methodology: Functional Renormalization Group

Σα β = Γ
α β

Γ

α

β γ

δ

= − Γ3α

β γ

δ + Γ Γ

α

β γ

δ

−

Γ

Γ

β

α γ

δ

−

Γ

Γ

α

β δ

γ

+

Γ

Γ

β

α δ

γ

+

Γ

Γ

α

β γ

δ

Figure 1.1: Diagrammatic representation of the FRG flow equations for the self-
energy ΣΛ and the vertex ΓΛ. An additional bar denotes the single-
scale propagator SΛ, the other propagators are GΛ. External legs do
not entail a propagator.

Inserting this into Eq. (1.5), one obtains

d

dΛ
T−1δn,n′ΣΛ

αβ(ωn) = T 2
∑

ωmωm′

∑
µν

SΛ
µν(ωm)×

ΓΛ
ανβµ(ωn, ωm′ ;ω′n, ωm)×
T−1δm,m′T−1δn+m′,n′+m, (1.13)

and after evaluating the sum over the Matsubara frequency ωm′ , one arrives at

d

dΛ
ΣΛ
αβ(ωn) = T

∑
ωm

∑
µν

SΛ
µν(ωm)×

ΓΛ
ανβµ(ωn, ωm;ωn, ωm). (1.14)

Here, we have used that a δn,n′ appears on both sides and have multiplied the equation
by T .
In the same way the equation for the flow of the vertex, Eq. (1.6) may be converted to

our notation, again multiplying the equation by T and recognizing that all Kronecker-δs

4



1.2 Formalism at Zero Temperature

on the right hand side reduce to the δn+ñ,n′+ñ′ . We arrive at

d

dΛ
ΓΛ
αβγδ(ωn, ωñ;ωn′ , ωñ′) = T

∑
ωmωm̃

∑
µνρσ

GΛ
ρµ(ωm)SΛ

σν(ωm̃)×
{

ΓΛ
αβρσ(ωn, ωñ;ωm, ωm̃)ΓΛ

µνγδ(ωm, ωm̃;ωn′ , ωñ′)δ
(c)
m̃

+
[
ΓΛ
βνγρ(ωñ, ωm̃;ωn′ , ωm)ΓΛ

µασδ(ωm, ωn;ωm̃, ωñ′)δ
(ph,1)
m̃

+ ΓΛ
βµγσ(ωñ, ωm;ωn′ , ωm̃)ΓΛ

ναρδ(ωm̃, ωn;ωm, ωñ′)δ
(ph,2)
m̃

]
−
[
ΓΛ
ανγρ(ωn, ωm̃;ωn′ , ωm)ΓΛ

µβσδ(ωm, ωñ;ωm̃, ωñ′)δ
(ph,3)
m̃

+ ΓΛ
αµγσ(ωn, ωm;ωn′ , ωm̃)ΓΛ

νβρδ(ωm̃, ωñ;ωm, ωñ′)δ
(ph,4)
m̃

]}
−T

∑
ωm

∑
µν

SΛ
µν(ωm)Γ

(6),Λ
αβνγδµ(ωn, ωñ, ωm;ωn′ , ωñ′ , ωm), (1.15)

where δ(c)
m̃ and δ(ph,·)

m̃ respect the energy conservation of the vertex, e.g. δcm̃ = δn+ñ,m+m̃.
To simplify the notation, we kept a sum over m̃, even though it may be evaluated
immediately. A diagrammatic representation of these flow equations may be found in
Fig. 1.1.
We employ the standard truncation scheme described in Ref. 19 by neglecting Γ(6),Λ

and higher order terms, effectively dropping the last term of Eq. (1.15). We note that
this precludes us from performing calculations with the bare (unscreened) Coulomb
interaction, as a long-range interaction will violate the power counting argument used
to neglect these terms.

1.2 Formalism at Zero Temperature

For the most part, we will discuss the Formalism at T = 0. In that case, sums over
Matsubara frequencies are replaced by integrals,

T
∑
ωn

→ (2π)−1

∫
dω. (1.16)

Accordingly, the Kronecker-δs will be replaced by δ functions,

T−1δn,n′ → 2πδ(ω − ω′). (1.17)
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1 Methodology: Functional Renormalization Group

Eqs. (1.14,1.15) now read

d

dΛ
ΣΛ
αβ(ω) =

1

2π

∫
dω̄
∑
µν

SΛ
µν(ω̄)ΓΛ

ανβµ(ω, ω̄;ω, ω̄), (1.18)

d

dΛ
ΓΛ
αβγδ(ω, ω̃;ω′, ω̃′) =

1

2π

∫
dω̄dω̄′

∑
µνρσ

GΛ
ρµ(ω̄)SΛ

σν(ω̄′)×
{

ΓΛ
αβρσ(ω, ω̃; ω̄, ω̄′)ΓΛ

µνγδ(ω̄, ω̄
′;ω′, ω̃′)δ(c)(ω̄′)

+
[
ΓΛ
βνγρ(ω̃, ω̄

′;ω′, ω̄)ΓΛ
µασδ(ω̄, ω; ω̄′, ω̃′)δ(ph,1)(ω̄′)

+ ΓΛ
βµγσ(ω̃, ω̄;ω′, ω̄′)ΓΛ

ναρδ(ω̄
′, ω; ω̄, ω̃′)δ(ph,2)(ω̄′)

]
−
[
ΓΛ
ανγρ(ω, ω̄

′;ω′, ω̄)ΓΛ
µβσδ(ω̄, ω̃; ω̄′, ω̃′)δ(ph,3)(ω̄′)

+ ΓΛ
αµγσ(ω, ω̄;ω′, ω̄′)ΓΛ

νβρδ(ω̄
′, ω̃; ω̄, ω̃′)δ(ph,4)(ω̄′)

]}
, (1.19)

where again, δ(c)(ω̄′) and δ(ph,·)(ω̄′) respect the energy conservation of the vertex, e.g.
δ(ph,1)(ω̄′) = δ(ω̃ + ω̄′ − ω′ − ω̄).
We now proceed to take the static limit, i.e. by projecting all frequencies in these

equations to zero. For short-range interactions, power counting of the flow equations
demonstrates that the dominant contribution for small Λ comes from zero frequencies
and states close to the Fermi energy. This has been discussed extensively in [19], which
we will defer to here.
Taking the static limit, we arrive at

d

dΛ
ΣΛ
αβ =

1

2π

∫
dω̄
∑
µν

SΛ
µν(ω̄)ΓΛ

ανβµ, (1.20)

d

dΛ
ΓΛ
αβ =

1

2π

∫
dω̄
∑
µνρσ

{
GΛ
ρµ(ω̄)SΛ

σν(−ω̄)ΓΛ
αβρσΓΛ

µνγδ

+GΛ
ρµ(ω̄)SΛ

σν(ω̄)
[
ΓΛ
βνγρΓ

Λ
µασδ + ΓΛ

βµγσΓΛ
ναρδ

]
−GΛ

ρµ(ω̄)SΛ
σν(ω̄)

[
ΓΛ
ανγρΓ

Λ
µβσδ + ΓΛ

αµγσΓΛ
νβρδ

]}
. (1.21)

Note that the vertex ΓΛ is antisymmetric under exchange of the first or the last pair of
indices,

ΓΛ
αβγδ = −ΓΛ

βαγδ = −ΓΛ
αβδγ = ΓΛ

βαδγ . (1.22)

We now choose our cutoff ΘΛ(ω) to be a simple step function,

ΘΛ(ω) = Θ(|ω| − Λ), (1.23)
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1.2 Formalism at Zero Temperature

such that its derivative is
d

dΛ
ΘΛ(ω) = −δ(|ω| − Λ). (1.24)

Since the self-energy is not frequency dependent anymore, the frequency integrals may
now be solved analytically. For Eq. (1.20), we have to integrate∫

dω̄SΛ
µν(ω̄).

For the purpose of the integration, we will drop the indices, but remember that the
objects occurring are matrices and hence do not (in general) commute. Inserting Dyson’s
equation into Eq. (1.7), we have

S = −G

(
d

dΛ

[
G0
]−1
)
G = −G

(
d

dΛ

[
G−1 + Σ

])
G

= Ġ − GΣ̇G. (1.25)

We note that G = (Q − ΘΣ)−1Θ, where we use the shorthand Θ = Θ(|ω| − Λ) and
Q = iω −H0 + µchem. Using d

dΛA
−1(Λ) = −A−1(Λ)Ȧ(Λ)A−1(Λ), simple algebra yields

S = −δ

(
1 +

Θ

Q−ΘΣ
Σ

)
1

Q−ΘΣ
. (1.26)

Since the δ and Θ functions are to be taken at the same argument, we employ Morris’s
Lemma[22] to resolve this,

S = −δ
∫ 1

0
dt

(
1 + t

1

Q− tΣ
Σ

)
1

Q− tΣ
. (1.27)

Using the fact that
d

dt

1

Q− tΣ
=

1

Q− tΣ
Σ

1

Q− tΣ
and partial integration, the second summand of the integral yields

−
[

t

Q− tΣ

]1

0

+

∫ 1

0
dt

1

Q− tΣ
,

where it can be seen that the remaining integral cancels the first summand of the integral
in Eq. (1.27), so we arrive at

SΛ
µν(ω) = − δ(|ω| − Λ)

iω −H0 + µchem − ΣΛ

∣∣∣∣∣
µν

. (1.28)
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1 Methodology: Functional Renormalization Group

The frequency integral is now trivial, yielding

∫
dω̄SΛ

µν(ω̄) = −
∑
ω̄=±Λ

1

iω̄ −H0 + µchem − ΣΛ

∣∣∣∣∣
µν

. (1.29)

As the following quantity will appear also in the flow equation for the vertex, we will
define

PΛ
µν(ω̄) :=

1

iω̄ −H0 + µchem − ΣΛ

∣∣∣∣∣
µν

. (1.30)

Inserting Eqs. (1.29,1.30) into Eq. (1.20), the flow equation for the self-energy now reads

d

dΛ
ΣΛ
αβ = − 1

2π

∑
µν

(
PΛ
µν(Λ) + PΛ

µν(−Λ)
)

︸ ︷︷ ︸
=:ΠΣ,Λ

µν

ΓΛ
ανβµ. (1.31)

When it comes to the flow equation for the vertex, Eq. (1.21), one must take care that
the arguments for the δ and Θ functions are equal, so one may not simply take the result
derived for the single-scale propagator in the self-energy flow and apply it, but rather
must use the same kind of treatment of the δ and Θ functions for the entire expression,
on a term by term basis. Looking at the first term,∫

dω̄
∑
µνρσ

GΛ
ρµ(ω̄)SΛ

σν(−ω̄)ΓΛ
αβρσΓΛ

µνγδ,

it can be seen that by exchanging all traced indices in both vertices that appear, and
then renaming the summation indices, the formula may be rewritten as∫

dω̄
∑
µνρσ

SΛ
ρµ(−ω̄)GΛ

σν(ω̄)ΓΛ
αβρσΓΛ

µνγδ,

which is just an exchange of both propagators. Utilizing this, we may write it formulated
in terms of matrix products,

1

2
tr

∫
dω̄
[
S ′ΓTGTΓ + GΓTS ′TΓ

]
.

We note that the frequency of the single-scale propagator is negative here, which we
denote with prime for Q and Σ; the Θ and δ-functions only depend on the modulus.
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1.2 Formalism at Zero Temperature

Inserting Eq. (1.26) and using the same representation for G, we can separate four terms,

−δ
2

1

Q′ −ΘΣ′
ΓT

(
Θ

Q−ΘΣ

)T

Γ, (1.32)

−δ
2

Θ

Q−ΘΣ
ΓT

(
1

Q′ −ΘΣ′

)T

Γ, (1.33)

−δ
2

1

Q′ −ΘΣ′
Σ′

Θ

Q′ −ΘΣ′
ΓT

(
Θ

Q−ΘΣ

)T

Γ, (1.34)

−δ
2

Θ

Q−ΘΣ
ΓT

(
Θ

Q′ −ΘΣ′

)T

Σ′T
(

1

Q′ −ΘΣ′

)T

Γ. (1.35)

Since all of these terms occur underneath an integral over
∫

dω̄δ(|ω|−Λ), we may switch
primes within each term, and we note for future use that the terms of Eqs. (1.32,1.33)
are equal to each other.
We now apply Morris’s Lemma again. In both other terms, Eqs. (1.34,1.35), we can

rewrite them in terms of derivatives w.r.t. the integration variable t,

−δ
2

∫ 1

0
t2

(
d

dt

1

Q′ − tΣ′

)
ΓT

(
1

Q− tΣ

)T

Γdt, (1.36)

−δ
2

∫ 1

0
t2

1

Q− tΣ
ΓT

(
d

dt

1

Q′ − tΣ′

)T

Γdt. (1.37)

Partial integration of Eq. 1.36 yields

−δ
2

t2 1

Q′ − tΣ′
ΓT

(
1

Q− tΣ

)T

Γ

1

0

+
δ

2

∫ 1

0
2t

1

Q′ − tΣ′
ΓT

(
1

Q− tΣ

)T

Γdt

+
δ

2

∫ 1

0
t2

1

Q− tΣ
ΓT

(
d

dt

1

Q′ − tΣ′

)T

Γdt. (1.38)

One sees that the second term cancels Eqs. (1.32,1.33) and the third term cancels
Eq. (1.37), leaving the result

− δ

2

1

Q′ − Σ′
ΓT

(
1

Q− Σ

)T

Γ, (1.39)
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1 Methodology: Functional Renormalization Group

which can be rewritten in terms of the index notation as

− 1

2

∑
ω̄=±Λ

∑
µνρσ

PΛ
ρµ(−ω̄)PΛ

σν(ω̄)ΓΛ
αβρσΓΛ

µνγδ. (1.40)

We note that if one were to keep the frequency dependence of the vertex and the self-
energy, two cases need to be distinguished: for the case where all external frequencies
are zero, the same derivation applies, so our result holds there. For the case where at
least some external frequencies are non-zero, the arguments for the δ and Θ functions
differ, so one may directly insert Eq. 1.29 into the flow equations for the vertex.
An analogous treatment is possible for the other four terms in Eq. (1.21), if one

remembers that a simultaneous exchange of both pairs of external indices [α↔ β, γ ↔ δ]
has to give the same expression (due to the symmetry of Γ), so they may be rewritten
with a factor of 1

2([original] + [exchanged]).
This allows us to write down the flow equation for the vertex in the static limit,

d

dΛ
ΓΛ
αβγδ = − 1

2π

∑
µνρσ

∑
ω̄=±Λ

{
1

2
PΛ
µν(−ω̄)PΛ

ρσ(ω̄)ΓΛ
αβνρΓ

Λ
ρµγδ

+
1

2
PΛ
µν(ω̄)PΛ

ρσ(ω̄)
[
ΓΛ
βνγρΓ

Λ
ασδµ − ΓΛ

ανγρΓ
Λ
βσδµ − ΓΛ

βνδρΓ
Λ
ασγµ + ΓΛ

ανδρΓ
Λ
βσγµ

]}
= − 1

2π

∑
µνρσ

{
Πc,Λ
µνσρΓ

Λ
νργδΓ

Λ
αβσµ + Πph,Λ

µνρσ

[
ΓΛ
βνγρΓ

Λ
ασδµ − ΓΛ

ανγρΓ
Λ
βσδµ

]}
,

(1.41)

where we have used the symmetries of Γ to simplify the equations and have defined

Πc,Λ
µνσρ := PΛ

µν(Λ)PΛ
σρ(−Λ) (1.42)

Πph,Λ
µνσρ := PΛ

µν(Λ)PΛ
ρσ(Λ) + PΛ

µν(−Λ)PΛ
ρσ(−Λ). (1.43)

1.2.1 Initial Conditions

The initial condition for the flow equations are given by Eq (31) in Ref. 19,

ΓΛ0 [χ, χ̄] = Sint[χ, χ̄], (1.44)

where ΓΛ0 is the generating functional for all the vertices (the term proportional to χ̄χ
being the self-energy and the term proportional to χ̄χ̄χχ being the effective interaction
vertex), whereas Sint is the interacting part of the action.
Since that only consists of the quartic term in our setup, the initial conditions at

Λ→∞ are given by
ΣΛ→∞
αβ = 0 and ΓΛ→∞

αβγδ = Uαβγδ. (1.45)
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1.3 Systems with Spin

In order to solve the equations numerically, we need to start at a Λ0 that is still finite
but larger than all other energy scales in the system. For Λ > Λ0 one may assume a form
of (iω)−11 for the propagator, allowing us to analytically integrate the flow equations
from ∞ to Λ0. In case of the flow equation for the vertex, power counting in U and Λ0

immediately yields

ΓΛ0 − U ∼ −
∫ Λ0

∞
UU

1

Λ2
=

1

Λ0
UU, (1.46)

and hence
|ΓΛ0 − U |/|U | ∼ |U |/Λ0. (1.47)

Because of this we may simply assume that ΓΛ0 does not differ from ΓΛ→∞ and use

ΓΛ0
αβγδ = Uαβγδ. (1.48)

The same does not hold true for the flow equation for the self-energy, where the analytical
integral gives a non-negligible contribution,

ΣΛ0
αβ = − 1

2π

∑
µ

Uαµβµ lim
η→0+

∫ Λ0

∞

(
eiΛη

iΛ
− e−iΛη

iΛ

)
dΛ

= − 1

π

∑
µ

Uαµβµ lim
η→0+

η

∫ Λ0

∞
sinc(ηΛ)dΛ

=
1

π

∑
µ

Uαµβµ lim
η→0+

[∫ ∞
0

sinc(x)dx−O(η)

]

=
1

2

∑
µ

Uαµβµ. (1.49)

Here we have explicitly included the required convergence factor eiω0+ that appears in
the Green’s function in imaginary frequency space.

1.3 Systems with Spin

In Eqs. (1.31,1.41), the indices designate generic states in the Hilbert space. We will
now discuss the case where the system is fully SU(2) symmetric. Here, it is convenient to
separate the orbital degrees of freedom from the spin degrees of freedom, α → (α, σ1).
Our derivation will follow Ref. [23], but we will discuss the generic case without the
additional particle-hole symmetry. Single-particle quantities (self-energy, propagators)
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1 Methodology: Functional Renormalization Group

do not depend on the spin degree of freedom,

ΣΛ
(α,σ1)(β,σ2) = ΣΛ

αβδσ1σ2 , (1.50)

GΛ
(α,σ1)(β,σ2) = GΛ

αβδσ1σ2 , (1.51)

SΛ
(α,σ1)(β,σ2) = SΛ

αβδσ1σ2 . (1.52)

The spin structure of the vertex is determined by the fact that two particles may either
keep their spin or exchange it, and may thus be decomposed into

ΓΛ
(α,σ1),(β,σ2),(γ,σ3),(δ,σ4) = cI,Λ

αβγδδσ1σ3δσ2σ4

+cII,Λ
αβγδδσ1σ4δσ2σ3 ,

where cI and cII are the coefficients for each of these processes.
Using the antisymmetry of Γ, Eq. (1.22), we may exchange (γ, σ3) with (δ, σ4),

ΓΛ
(α,σ1),(β,σ2),(γ,σ3),(δ,σ4) = −ΓΛ

(α,σ1),(β,σ2),(δ,σ4),(γ,σ3)

= −cI,Λ
αβγδδσ1σ4δσ2σ3 − c

II,Λ
αβγδδσ1σ3δσ2σ4 .

By comparing the coefficients of the Kronecker-δs, we may identify

cI,Λ
αβγδ = −cII,Λ

αβδγ := −Γs,Λ
αβδγ ,

and hence write the vertex as

ΓΛ
(α,σ1),(β,σ2),(γ,σ3),(δ,σ4) = Γs,Λ

αβγδδσ1σ4δσ2σ3

−Γs,Λ
αβδγδσ1σ3δσ2σ4 . (1.53)

Using the symmetry of ΓΛ, one can see that Γs,Λ is still symmetric under exchange of
both pairs of indices,

Γs,Λ
αβγδ = Γs,Λ

βαδγ , (1.54)

but in general it is not antisymmetric with respect to the exchange of a single pair of
indices. Instead, one may identify the part of Γs,Λ that is antisymmetric under exchange
of α and β with the triplet channel of the vertex, whereas the part that is symmetric
under the exchange of α and β represents the singlet channel.
Inserting Eqs. (1.50,1.51,1.52,1.53) into Eq. (1.31), we have

d

dΛ
ΣΛ
αβδσ1σ2 = − 1

2π

∑
µν

∑
σ3

ΠΣ,Λ
µν

(
Γs,Λ
ανβµδσ1σ3δσ3σ2 − Γs,Λ

ανµβδσ1σ2δσ3σ3

)
= − 1

2π

∑
µν

ΠΣ,Λ
µν

(
Γs,Λ
ανβµ − 2Γs,Λ

ανµβ

)
δσ1σ2 ,
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1.3 Systems with Spin

and hence
d

dΛ
ΣΛ
αβ = − 1

2π

∑
µν

ΠΣ,Λ
µν

(
Γs,Λ
ανβµ − 2Γs,Λ

ανµβ

)
. (1.55)

To obtain the flow equation for ΓΛ,s, we must insert Eqs. (1.50,1.51,1.52,1.53) into
Eq. (1.41). To simplify our notation, we will use δ34

12 = δσ1σ2δσ3σ4 . For the first term
with Πc,Λ, we have

− 1

2π

∑
µνρσ

∑
σ5σ6

Πc,Λ
µνσρ

(
Γs,Λ
νργδδ

63
54 − Γs,Λ

νρδγδ
64
53

)(
Γs,Λ
αβσµδ

26
15 − Γs,Λ

αβµσδ
25
16

)
. (1.56)

Multiplying out the main product, there are four terms of combinations of Γs,Λ that
appear, ∑

σ5σ6

Γs,Λ
νργδΓ

s,Λ
αβσµδ

63
54δ

26
15 = Γs,Λ

νργδΓ
s,Λ
αβσµδ

23
14 .∑

σ5σ6

−Γs,Λ
νρδγΓs,Λ

αβσµδ
64
53δ

26
15 = −Γs,Λ

νρδγΓs,Λ
αβσµδ

24
13 ,

∑
σ5σ6

−Γs,Λ
νργδΓ

s,Λ
αβµσδ

63
54δ

25
16 = −Γs,Λ

νργδΓ
s,Λ
αβµσδ

24
13 ,∑

σ5σ6

Γs,Λ
νρδγΓs,Λ

αβµσδ
64
53δ

25
16 = Γs,Λ

νρδγΓs,Λ
αβµσδ

23
14 .

On the other hand, the left hand side of the flow equation reads

d

dΛ

(
Γs,Λ
αβγδδ

23
14 − Γs,Λ

αβδγδ
24
13

)
. (1.57)

We may thus look at the products that contain δ23
14 to obtain the first term of the flow

equation for Γs,Λ,

− 1

2π

∑
µνρσ

Πc,Λ
µνσρ

(
Γs,Λ
νργδΓ

s,Λ
αβσµ + Γs,Λ

νρδγΓs,Λ
αβµσ

)
δ23

14 . (1.58)

We may now proceed in doing the same for the particle-hole channel,

− 1

2π

∑
µνρσ

∑
σ5σ6

Πph,Λ
µνρσ ×{(

Γs,Λ
ανγρδ

16
53 − Γs,Λ

ανργδ
13
56

)(
Γs,Λ
βσδµδ

25
64 − Γs,Λ

βσµδδ
24
65

)
+
(

Γs,Λ
βνγρδ

26
53 − Γs,Λ

βνργδ
23
56

)(
Γs,Λ
ασδµδ

15
64 − Γs,Λ

ασµδδ
14
65

)}
. (1.59)
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1 Methodology: Functional Renormalization Group

Of the eight products that appear, we again pick out those that appear with a δ23
14 ,

where we use that ∑
σ5σ6

δ16
53δ

25
64 = δ23

14 ,
∑
σ5σ6

δ23
56δ

14
65 = 2δ23

14 ,∑
σ5σ6

δ26
53δ

14
65 = δ23

14 ,
∑
σ5σ6

δ23
56δ

15
64 = δ23

14 ,

so that we arrive at

− 1

2π

∑
µνρσ

Πph,Λ
µνρσ

(
2Γs,Λ

βνργΓs,Λ
ασµδ + Γs,Λ

ανγρΓ
s,Λ
βσδµ − Γs,Λ

βνργΓs,Λ
ασδµ − Γs,Λ

βνγρΓ
s,Λ
ασµδ

)
δ23

14 . (1.60)

Adding Eq. (1.58) and Eq. (1.60), the flow equation for Γs,Λ now reads

d

dΛ
Γs,Λ
αβδγ = − 1

2π

∑
µνρσ

{
Πc,Λ
µνσρ

(
Γs,Λ
νργδΓ

s,Λ
αβσµ + Γs,Λ

νρδγΓs,Λ
αβµσ

)
+Πph,Λ

µνρσ

(
2Γs,Λ

βνργΓs,Λ
ασµδ + Γs,Λ

ανγρΓ
s,Λ
βσδµ − Γs,Λ

βνργΓs,Λ
ασδµ − Γs,Λ

βνγρΓ
s,Λ
ασµδ

)}
. (1.61)

1.4 Finite Temperature

We will now discuss the form of the flow equations at finite temperature. In this case,
using a sharp Θ-function is ill-suited. Instead, we utilize the cutoff suggested in Ref. [24],
hence we replace Θ(|ω| − Λ) by χΛ(ωn), which is given by

χΛ(ωn) =


0, |ωn| ≤ Λ− πT,
1
2 + |ωn|−Λ

2πT Λ− πT ≤ |ωn| ≤ Λ + πT,
1, Λ + πT ≤ |ωn|,

(1.62)

and its derivative with respect to Λ is then given by

− (∂Λχ
Λ(ωn)) =

{
1

2πT Λ− πT ≤ |ωn| ≤ Λ + πT,
0 otherwise. (1.63)

We note that χΛ(ωn) → Θ(|ω| − Λ) as T → 0. The full Green’s function is now given
by

GΛ(ωn) =
χΛ(ωn)

iωn − Ĥ0 + µchem − χΛ(ωn)ΣΛ(ωn)
, (1.64)
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1.4 Finite Temperature

whereas the single-scale propagator, Eq. 1.7, reads

SΛ(ωn) =
∂Λχ

Λ(ωn)

iωn − Ĥ0 + µchem − χΛ(ωn)ΣΛ(ωn)
×(

iωn − Ĥ0 + µchem

) 1

iωn − Ĥ0 + µchem − χΛ(ωn)ΣΛ(ωn)
.

With this form of a cutoff function, the Matsubara sums that appear may be evaluated
analytically. Since Matsubara frequencies have a distance of 2πT from each other, the
derivative of the cutoff is only nonzero for a two Matsubara frequencies, whose magnitude
are that closest to the parameter Λ. Any form

T
∑
n

−(∂Λχ
Λ(ωn))f(ωn) =

1

2π

∑
|ωn|≈Λ

f(ωn). (1.65)

This structure is very similar to the situation at T = 0, where we have

1

2π

∫
dωδ(|ω| − Λ)f(ω) =

1

2π

∑
|ω|=Λ

f(ω). (1.66)

Again we drop the frequency-dependence of the self-energy and the vertex. Defining
P T,Λµν (ωn) as

P T,Λ(ωn) :=
1

iωn −H0 + µchem − χΛ(ωn)ΣΛ
, (1.67)

and P
′,T,Λ
µν , P

′′,T,Λ
µν as

P
′,T,Λ(ωn) := P T,Λ(ωn)(iωn −H0 + µchem)P T,Λ(ωn),

(1.68)
P

′′,T,Λ(ωn) := P T,Λ(ωn)χΛ(ωn), (1.69)

the flow equation for the self-energy now reads

d

dΛ
ΣΛ
αβ = − 1

2π

∑
|ωn|≈Λ

P
′,T,Λ
µν (ωn)ΓΛ

ανβµ. (1.70)

Setting all external frequencies to zero and dropping the frequency dependence of the
vertex, its flow equation is now given by

d

dΛ
ΓΛ
αβγδ = − 1

2π

∑
|ωn|≈Λ

∑
µνρσ

{
P

′′,T,Λ
µν (ωn)P

′,T,Λ
ρσ (−ωn)ΓΛ

αβσµΓΛ
νργδ +

P
′′,T,Λ
µν (ωn)P

′,T,Λ
ρσ (ωn)×[

ΓΛ
βνγρΓ

Λ
αµδσ − ΓΛ

αµγσΓΛ
βνδρ + ΓΛ

βµγσΓΛ
ανδρ − ΓΛ

ανγρΓ
Λ
βµδσ

]}
.(1.71)
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1 Methodology: Functional Renormalization Group

We note that χΛ(ωn)→ 1
2 for ωn → Λ, so if one takes the limit T → 0 and applies the

symmetries of the vertex, one recovers Eq. (1.41).

1.5 Observables and Correlators

1.5.1 Zero Temperature

Single-particle Observables at T = 0

Within our formalism, we may calculate both single-particle and two-particle observ-
ables. Single-particle observables may be expressed by the Green’s function, which is
given by

Gαβ(iω) =
1

iω − Ĥ0 + µ− Σ
eiω0+

∣∣∣∣∣
αβ

. (1.72)

The convergence factor eiω0+ is explicitly required here.
For example, the real space density matrix, ρij , is given by

ρij =
∑
αβ

V rn
iα

[
1

2π

∫ ∞
−∞

dω Gαβ(iω)eiω0+

]
V rn,−1
βj , (1.73)

where V rn
iα is the basis transform from the non-interacting eigenbasis of the inhomoge-

neous system to the real space basis. The frequency integral may be calculated analyt-
ically by going into the basis where G is diagonal, i.e. the eigenbasis of H + Σ. We will
denote indices in that basis by a tilde, e.g. µ̃ and the eigenvalues of H+ Σ with ε̃µ̃. The
basis transform from that basis into real space will be denoted by V ri

iµ̃. The integral may
now be performed analytically, closing the integration loop around the left half-plane,

ρij =
∑
µ̃

V ri
iµ̃

[
1

2π

∫ ∞
−∞

dω
eiω0+

iω − ε̃µ̃ + µchem

]
V ri,−1
µ̃j

=
∑

µ̃: electrons

V ri
iµ̃V

ri,−1
µ̃j , (1.74)

where the summation is now only performed over states below the chemical potential.

Single-particle Observables at T > 0

In order to obtain the result at finite temperature, T > 0, we must replace the integral
by a Matsubara sum, performing the inverse of Eq. (1.16). The sum may be performed
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1.5 Observables and Correlators

analytically, using the well-known result

T
∑
ωn

1

iωn − ξ
= nF(ξ), (1.75)

and we obtain

ρij =
∑
µ̃

V ri
iµ̃

T∑
ωn

1

iωn − ε̃µ̃ + µchem

V ri,−1
µ̃j

=
∑
µ̃

V ri
iµ̃nF(ε̃µ̃ − µchem)V ri,−1

µ̃j , (1.76)

which reproduces Eq. (1.74) for T → 0.

Single-particle Observables in Systems with Spin

In systems that are SU(2)-invariant, single-particle quantities don’t differ in spin chan-
nels. Using the definition in Eq. (1.51), which defines the single-particle Green’s function
per spin channel, orbital observables acquire a factor of two, whereas the expectation
value for the spin remains trivially zero,

ρij = 2


∑

µ̃: electrons V
ri
iµ̃V

ri,−1
µ̃j , T = 0∑

µ̃ V
ri
iµ̃nF(ε̃µ̃ − µchem)V ri,−1

µ̃j , T > 0
, (1.77)

〈
Si

〉
= 0. (1.78)

1.5.2 Density-Density Correlator

Two-particle observables may be rewritten in terms of single- and two-particle Green’s
functions. In the case of spinless Fermions the density-density correlator, Cdd

ij , may be
rewritten as

Cdd
ij =

〈
n̂in̂j

〉
=
〈

ĉ†i ĉiĉ
†
j ĉj

〉
=
〈

ĉ†j ĉ
†
i ĉiĉj

〉
+
〈

ĉ†i ĉi

〉
δij

= Cdd,(2)
ij +

〈
n̂i

〉〈
n̂j

〉
−
〈

ĉ†i ĉj

〉〈
ĉ†j ĉi

〉
+
〈

n̂i

〉
δij , (1.79)

where Cdd,(2)
ij is the part of the correlation function arising from the connected two-

particle Green’s function and thus the vertex. In the case of spinful Fermions, the
density-density correlator includes a sum over the spin degrees of freedom,

Cdd
ij =

∑
σσ′

〈
n̂iσn̂jσ′

〉
. (1.80)
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1 Methodology: Functional Renormalization Group

For systems that obey the full SU(2) symmetry, it reads

Cdd
ij = Cdd,(2)

ij + 4
〈

n̂iσ

〉〈
n̂jσ

〉
− 2
〈

ĉ†iσ ĉjσ

〉〈
ĉ†jσ ĉiσ

〉
+2
〈

n̂iσ

〉
δij , (1.81)

where σ is an arbitrary spin index that is not summed over, as the single-particle quan-
tities are proportional to δσσ′ .

Density-Density Correlator for Spinless Systems at T = 0

We will first derive the expression for Cdd,(2)
ij for the spinless case at T = 0. Since we are

looking at static quantities, but our formalism is derived in Matsubara frequency space,
we must perform a Fourier transform,

Cdd,(2)
ij =

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
×

G(2,c)
ijij (iω1, iω2, iω3, iω4), (1.82)

where G(2,c) is the two-particle connected Green’s function. Using the well-known rela-
tion between the two-particle connected Green’s function and the vertex,

G(2,c)

α

β γ

δ

= − Γ

α

β γ

δ

, (1.83)

we arrive at

G(2,c)
ijij (iω1, iω2, iω3, iω4) = −2π

∑
αβγδ

∑
α′β′γ′δ′

V rn
iα′V rn

jβ′ ×

Gα′α(iω1)Gβ′β(iω2)Γαβγδδ(iω1 + iω2 − iω3 − iω4)×
Gγγ′(iω3)Gδδ′(iω4)V rn,−1

γ′i V rn,−1
δ′j . (1.84)

In order to solve the frequency integral analytically, we again transform into the eigen-
basis of H + Σ. Eq. (1.84) now reads

G(2,c)
ijij (iω1, iω2, iω3, iω4) = −2π

∑
αβγδ

∑
µ̃ν̃ρ̃σ̃

V ri
iµ̃V

ri
jν̃ ×

Gµ̃µ̃(iω1)Gν̃ν̃(iω2)V in
µ̃αV

in
ν̃β ×

Γαβγδδ(iω1 + iω2 − iω3 − iω4)×
V in,−1
γρ̃ V in,−1

δσ̃ Gρ̃ρ̃(iω3)Gσ̃σ̃(iω4)V ri,−1
ρ̃i V ri,−1

σ̃j . (1.85)
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1.5 Observables and Correlators

For any given µ̃, ν̃, ρ̃, σ̃, the frequency-dependent part now reads

2π

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
Gµ̃µ̃(iω1)Gν̃ν̃(iω2)×

Gρ̃ρ̃(iω3)Gσ̃σ̃(iω4)δ(iω1 + iω2 − iω3 − iω4)

=

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
Gµ̃µ̃(iω1)Gν̃ν̃(iω2)×

Gρ̃ρ̃(iω3)Gσ̃σ̃(i(ω1 + ω2 − ω3)). (1.86)

Using the convention that ε̃µ̃ is the µ̃-th eigenvalue of H + Σ, we may now write

Gµ̃µ̃(iω1) =
1

iω1 − ε̃µ̃ + µchem
=:

1

iω1 − ξ̃µ̃
. (1.87)

All occurring integrals are of similar form and may be solved by simply closing the
integration loop around the left complex half-plane,∫

dω

2π

1

iω − z
1

iω − ξ
=
g(z, ξ)

z − ξ
. (1.88)

The exact result of the integral will depend on the position of each of the poles {x,
ξ} relative to the integration loop. If both were inside or outside, the integral gives
zero (either the residues cancel or there are no poles inside the loop), there is only a
contribution if there is just a single pole inside the loop. The residue is always ±(z−ξ)−1.
Therefore, we define g(z, ξ) to keep track of the correct sign. It may be represented as

g(z, ξ) = −g(ξ, z)

= Θ<(−z)Θ<(ξ)−Θ<(z)Θ<(−ξ), (1.89)

where Θ<(z) is the Heaviside step function of the real part of z.
Performing the first integral over ω1, we have∫

dω1

2π

1

iω1 − ξ̃µ̃
1

iω1 − (ξ̃σ̃ − iω2 + iω3)

=
g(ξ̃µ̃, ξ̃σ̃ + i(ω3 − ω2))

ξ̃µ̃ − ξ̃σ̃ + iω2 − iω3

. (1.90)

The expression g(ξ̃µ̃, ξ̃σ̃ + i(ω3 − ω2)) may be simplified further, since for real ω2,3, it is
equal to g(ξ̃µ̃, ξ̃σ̃).1 Applying this result sequentially, the integral in Eq. (1.86) has the
result

g(ξ̃µ̃, ξ̃σ̃)g(ξ̃σ̃ − ξ̃µ̃, ξ̃ν̃)g(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃, ξ̃ρ̃)
ξ̃µ̃ + ξ̃ν̃ − ξ̃ρ̃ − ξ̃σ̃

. (1.91)

1Note that while closing the integrals over ω2,3, those frequencies may obtain an imaginary part, but
since those paths have a vanishing contribution, this may be ignored.
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1 Methodology: Functional Renormalization Group

Further simplification is possible: if <ξ̃µ̃ > 0, then <ξ̃σ̃ must be less than zero, or the
contribution vanishes. In that case, it follows that <(ξ̃σ̃ − ξ̃µ̃) < 0, and we may deduce
in the same way that <ξ̃ν̃ should be greater than zero. Finally, <(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃) < 0
leads to the conclusion that <ξ̃ρ̃ < 0. On the other hand, if <ξ̃µ̃ < 0, the analogous
argument can be made with flipped inequalities. The only non-zero contributions arise
from combinations where the real parts of ξ̃µ̃ and ξ̃ν̃ have the same sign, but have the
opposite sign to both ξ̃ρ̃ and ξ̃σ̃. Using this result, Eq. (1.82) now reads

Cdd,(2)
ij =

∑
αβγδ

µ̃,ν̃: electrons∑
ρ̃,σ̃: holes

−
µ̃,ν̃: holes∑

ρ̃,σ̃: electrons

×
V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
V ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃βΓαβγδV

in,−1
γρ̃ V in,−1

δσ̃ . (1.92)

Density-Density Correlator for Spinless Systems at T > 0

At finite temperatures T > 0, the result is very similar. To derive it, we need to replace
the integrals in Eq. (1.86) by Matsubara sums according to the inverse of Eqs. (1.16,1.17),

T
∑
ωn

T
∑
ωm

T
∑
ωn′

Gµ̃µ̃(iωn)Gν̃ν̃(iωm)×

Gρ̃ρ̃(iωn′)Gσ̃σ̃(i(ωn + ωm − ωn′)). (1.93)

Inserting Eq. (1.87) into this expression, we may now perform the Matsubara sums
analytically, which are of the form

T
∑
ωn

1

iωn − z
1

iωn − ξ
=
nF(z)− nF(ξ)

z − ξ
, (1.94)

where nF is the Fermi function. We note that due to its periodicity we have nF(ξ̃±iωn′) =
nF(ξ̃) if ωn′ is a Matsubara function, so we may simplify the numerator again. Eq. (1.93)
is thus equal to

[nF(ξ̃µ̃)− nF(ξ̃σ̃)][nF(ξ̃σ̃ − ξ̃µ̃)− nF(ξ̃ν̃)]×
[nF(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃)− nF(ξ̃ρ̃)]

ξ̃µ̃ + ξ̃ν̃ − ξ̃ρ̃ − ξ̃σ̃
. (1.95)
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1.5 Observables and Correlators

Therefore, we have

Cdd,(2)
ij =

∑
αβγδ

∑
µ̃ν̃ρ̃σ̃

V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
×

[nF(ξ̃σ̃)− nF(ξ̃µ̃)][nF(ξ̃σ̃ − ξ̃µ̃)− nF(ξ̃ν̃)]×
[nF(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃)− nF(ξ̃ρ̃)]V

ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃βΓαβγδV

in,−1
γρ̃ V in,−1

δσ̃ . (1.96)

For orbitals far away from the Fermi energy, |ξ̃| � T , this expression goes over into the
expression for T = 0 and we arrive at Eq. (1.92) again.

Density-Density Correlator for Systems with Spin

In systems with spin we must also sum over two spin indices when calculating Cdd,(2)
ij . We

replace all orbital indices in Eq. (1.96) by pairs of orbital and spin indices, α→ (α, σ).
For systems with SU(2) symmetry all single-particle quantities are diagonal in spin
space, so after performing sums over all the relevant Kronecker-δs, we have

Cdd,(2)
ij =

∑
σσ′

∑
αβγδ

∑
µ̃ν̃ρ̃σ̃

V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
×

[nF(ξ̃σ̃)− nF(ξ̃µ̃)][nF(ξ̃σ̃ − ξ̃µ̃)− nF(ξ̃ν̃)]×
[nF(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃)− nF(ξ̃ρ̃)]V

ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃βΓ(α,σ)(β,σ′)(γ,σ)(δ,σ′)V

in,−1
γρ̃ V in,−1

δσ̃ . (1.97)

Inserting Eq. (1.53), we may perform the summation over the remaining spin indices
and arrive at

Cdd,(2)
ij =

∑
αβγδ

∑
µ̃ν̃ρ̃σ̃

V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
×

[nF(ξ̃σ̃)− nF(ξ̃µ̃)][nF(ξ̃σ̃ − ξ̃µ̃)− nF(ξ̃ν̃)]×
[nF(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃)− nF(ξ̃ρ̃)]V

ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃β

[
2Γs

αβγδ − 4Γs
αβδγ

]
V in,−1
γρ̃ V in,−1

δσ̃ . (1.98)
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At T = 0, the result is analogously given by

Cdd,(2)
ij =

∑
αβγδ

µ̃,ν̃: electrons∑
ρ̃,σ̃: holes

−
µ̃,ν̃: holes∑

ρ̃,σ̃: electrons

×
V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
V ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃β

[
2Γs

αβγδ − 4Γs
αβδγ

]
V in,−1
γρ̃ V in,−1

δσ̃ . (1.99)

Spin-Spin Correlator

In contrast to the expectation value of Si, the expectation value of Si · Sj does not
automatically vanish in systems with SU(2) symmetry. Using

Si =
∑
σσ′

ĉ†iσ~τσσ′ ĉiσ′ , (1.100)

where ~τ are the Pauli matrices. Using the identity

3∑
k=0

τkσσ′τkσ̄σ̄′ = 2δσσ̄′δσ′σ̄, (1.101)

we may write

Css
ij :=

〈
Si · Sj

〉
=

∑
k

∑
σσ′

∑
σ̄σ̄′

τkσσ′τkσ̄σ̄′

〈
ĉ†iσ ĉiσ′ ĉ

†
jσ̄ ĉjσ̄′

〉
= 2

∑
σσ′

〈
ĉ†iσ ĉiσ′ ĉ

†
jσ′ ĉjσ

〉
−
〈

n̂in̂j

〉
= 2

∑
σσ′

〈
ĉ†iσ ĉ†jσ′ ĉjσ ĉiσ′

〉
−
〈

n̂in̂j

〉
− 4δij

〈
n̂i

〉
= Css,(2)

ij −
〈

n̂in̂j

〉
− 4δij

〈
n̂i

〉
+2
∑
σσ′

[〈
ĉ†jσ′ ĉjσ

〉〈
ĉ†iσ ĉiσ′

〉
−
〈

ĉ†iσ ĉjσ

〉〈
ĉ†jσ′ ĉiσ′

〉]
= Css,(2)

ij + 4
〈

n̂iσ

〉〈
n̂jσ

〉
− 8
〈

ĉ†iσ ĉjσ

〉〈
ĉ†jσ ĉiσ

〉
−
〈

n̂in̂j

〉
− 4δij

〈
n̂i

〉
. (1.102)
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Inserting Eq. (1.81), quite a few terms cancel and we arrive at

Css
ij = Css,(2)

ij − Cdd,(2)
ij − 6

(〈
ĉ†iσ ĉjσ

〉〈
ĉ†jσ ĉiσ

〉
+ δij

〈
n̂i

〉)
. (1.103)

The expression for Css,(2)
ij may be derived in the same manner as the expression for

Cdd,(2)
ij . At finite temperatures, it reads

Css,(2)
ij = 2

∑
αβγδ

∑
µ̃ν̃ρ̃σ̃

V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
×

[nF(ξ̃σ̃)− nF(ξ̃µ̃)][nF(ξ̃σ̃ − ξ̃µ̃)− nF(ξ̃ν̃)]×
[nF(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃)− nF(ξ̃ρ̃)]V

ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃β

[
4Γs

αβγδ − 2Γs
αβδγ

]
V in,−1
γρ̃ V in,−1

δσ̃ . (1.104)

A more interesting quantity is the difference between Css,(2)
ij and Cdd,(2)

ij ,

Css′,(2)
ij = Css,(2)

ij − Cdd,(2)
ij

= 6
∑
αβγδ

∑
µ̃ν̃ρ̃σ̃

V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
×

[nF(ξ̃σ̃)− nF(ξ̃µ̃)][nF(ξ̃σ̃ − ξ̃µ̃)− nF(ξ̃ν̃)]×
[nF(ξ̃µ̃ + ξ̃ν̃ − ξ̃σ̃)− nF(ξ̃ρ̃)]V

ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃βΓs

αβγδV
in,−1
γρ̃ V in,−1

δσ̃ . (1.105)

At T = 0, the expression reads

Css′,(2)
ij = 6

∑
αβγδ

µ̃,ν̃: electrons∑
ρ̃,σ̃: holes

−
µ̃,ν̃: holes∑

ρ̃,σ̃: electrons

×
V ri
iµ̃V

ri
jν̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
V ri,−1
ρ̃i V ri,−1

σ̃j ×

V in
µ̃αV

in
ν̃βΓs

αβγδV
in,−1
γρ̃ V in,−1

δσ̃ . (1.106)

1.6 Reduction in the number of orbitals

We would like to emphasize that the flow equations for the self-energy and the vertex,
even in their simplest form, Eqs. (1.31,1.41), are still challenging computationally. In
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1 Methodology: Functional Renormalization Group

Figure 1.2: Selection of M orbitals (green) around µchem for which the vertex will
be renormalized. The self-energy will still be stored for all N orbitals,
including the remaining (purple) ones.

inhomogeneous systems, in general there are no further symmetries for us left to ex-
ploit, most notably there is no translational symmetry and hence no quasi-momentum
conservation, which would simplify these equations greatly – in translationally invariant
systems all single-particle quantities are diagonal in momentum space, and the vertex
only depends on three momenta, the fourth given by momentum conservation.
Furthermore, in translationally invariant systems the approximation that only mo-

menta on the Fermi surface are relevant is ubiquitously employed. The Brillouin zone is
divided into patches that each contain one of the tracked momenta on the Fermi surface
and the vertex is only calculated for those momenta. Whenever it needs to be evaluated
for other momenta, it is replaced by the vertex evaluated at known momenta within the
same patch. [10] This greatly decreases the degrees of freedom that need to be kept in
homogeneous systems.
In our setup this is not possible, since there is no concept of a well-defined Fermi

surface; the discrete orbitals of the inhomogeneous system can’t (in general) be char-
acterized in a systematic fashion. Therefore, we propose an alternative approach to
reducing the degrees of freedom of the problem, compatible with inhomogeneous sys-
tems: we store and calculate the vertex only for a reduced set of M orbitals around the
chemical potential, µchem, (typically half above and half below); see Fig. 1.2 for details.
The external indices of the flow equation for the vertex, Eq. 1.41, now only span a
reduced number of states. On the right hand side the vertex still needs to be evaluated
for orbitals not included in the list of selected state, there we choose to replace it by the
bare interaction,

ΓΛ
αβγδ →

{
ΓΛ
αβγδ {α, β, γ, δ} ⊆ SM
Uαβγδ otherwise

, (1.107)

where SM is the set of M selected orbitals. In the following, we will denote indices that
are to be taken from SM with bars, e.g. ᾱ, whereas indices that are to be taken from
the set of all orbitals without bars, e.g. α.
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1.6 Reduction in the number of orbitals

The flow of the self-energy will still be calculated for all orbitals, as it does not increase
the complexity of the calculation relative to the diagram of the vertex.
We note that at finite temperatures the approximation of choosing only M states

close to µchem is only valid if T � ∆M , where ∆M is the spacing between the lowest
and highest states for which the vertex dependency is kept.
Finally, we would like to comment on the choice forM at a given system size. As long

as the approximation holds that only physics close to the Fermi energy is relevant for
the FRG flow (as is also assumed in applications of the FRG for translationally invariant
systems), we can argue that the number of states for which the vertex is kept,M , should
grow sub-linearly with the total number of orbitals, N . In a translationally invariant
system, the Fermi surface is an object of dimensionality d− 1 within the d-dimensional
Brillouin zone. Since the number of states in the Brillouin zone grows as Ld, but the
number of states on a surface within that space grows as Ld−1, we conclude that even for
inhomogeneous systems, where we cannot define a clear Fermi surface, it is reasonable
to expect that the number of states required should be proportional to Ld−1, which can
be rewritten as Ld−1 = (Ld)(d−1)/d = N1−1/d. This gives us some confidence that the
number of states M we need to keep should grow as

√
N in two-dimensional systems.

Note that this does not hold true for zero-dimensional systems (e.g. quantum dots,
molecules), since the argument relies on taking the thermodynamic limit. We will revisit
those types of systems in our outlook, Sec. 5.2.
In Chapter 3 we will demonstrate the efficacy of this approximation and also revisit

the question of system size scaling.

1.6.1 Phase Transitions due to Interactions

One of the main applications of the functional renormalization group is the study of
phase diagrams, because it provides an unbiased view of competing instabilities of the
system. We will now discuss two cases: applying the FRG to a system in a parameter
regime where no symmetry is spontaneously broken, and applying it to a system in a
parameter regime where the ground state of the system has a spontaneously broken
symmetry.
First we must note that our approach tackles finite size systems. We may therefore

only extrapolate the behavior in the thermodynamic limit by increasing the system
size. More importantly, however, if one considers a system that in the thermodynamic
limit has a quantum critical point at U = 0, such that even with an infinitesimally
small interaction the symmetry is broken, for finite system sizes there will be a finite
U∗(L). Below this value the system will still remain adiabatically connected to the non-
interacting starting point, and only above that value will it start to show characteristics
of the symmetry-broken phase. It is therefore important to study the behavior of U∗(L)
with increasing system size to determine whether there is a phase transition at finite U
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1 Methodology: Functional Renormalization Group

or not. Finally, if there is a phase transition that the non-interacting system undergoes
(e.g. Anderson transition), it must be detected using the non-interacting quantities
instead of the method described for interaction-induced phase transitions.
In a parameter regime where the symmetries of the non-interacting system are intact

is trivial: the interaction will renormalize certain quantities. The FRG flow will continue
to the end and one has access to the full single and two-particle quantities of that system.
The more interesting case is when the ground state symmetry of a given system is

broken. Then at a critical scale Λc during the flow the vertex will diverge. The drastic
increase of the vertex with decreasing Λ is referred to as the flow to strong coupling. Once
this happens, one needs to stop the flow, because the current scheme is not sufficient to
describe the symmetry-broken phase. However, it is possible to infer a tentative phase
diagram by comparing the strength of two-particle correlators at Λc. This is the reason
why the FRG is considered to be an unbiased method, because there are no assumptions
made a priori as to which correlator will diverge most strongly. This will be the method
by which we will classify interaction-based phase transitions within our work.
There are cases in which competing order parameters influence each other (such as an-

tiferromagnetism and d-wave superconductivity), so that if possible one should continue
the flow to Λ → 0 to obtain information about the true phase diagram of the system.
This may be done via either the introduction of an infinitesimal symmetry-breaking
term in the action that becomes finite during the flow, as has been done for supercon-
ductivity in [25]. Alternatively, one may calculate the flow for the combined Bose-Fermi
system, where Fermions were decoupled via a Hubbard-Stratonovich transformation.[26]
Due to the computational cost that these procedures incur already for translationally
invariant systems, it is still an open question as to how to best adapt these schemes for
inhomogeneous systems.
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2 Chapter 2

Implementation

We discuss details of our implementation of the flow equations derived in previous chap-
ters. We cover details on how to efficiently implement the diagrams for the vertex flow
and the correlators, how to properly parallelize the code and our treatment of the chemical
potential during the renormalization procedure.
We implement the FRG procedure in C++, using the Eigen linear algebra library [27]

for matrix products and the HDF5 file format [28] for storage. We employ the OpenMP
3.1 standard [29] for parallelization.

2.1 Efficient Trace Evaluation

To discuss the computation complexity of the flow equations, we use N to denote the
number of total single-particle orbitals andM the number of states for which the vertex
flow is kept (see Section 1.6). With this in mind, the computational complexity of the
self-energy flow, Eqs. (1.31,1.55,1.70), is given by O(N4) – two loops for each of the outer
indices, two loops for the contraction with the non-diagonal single-scale propagator. At
first glance the flow of the vertex, e.g. Eq. (1.41) appears to have a complexity of O(N8).
However, one may define intermediate products, Ic,±, Iph,±,

Ic,+
µργ̄δ̄

=
∑
ν

PΛ,s
µν (Λ)ΓΛ

νργ̄δ̄ (2.1)

Ic,−
ᾱβ̄ρµ

=
∑
σ

PΛ,s
ρσ (−Λ)ΓΛ

ᾱβ̄σµ (2.2)

Iph,±
ᾱνγ̄σ =

∑
ρ

ΓΛ
ᾱνγ̄ρP

Λ,s
ρσ (±Λ), (2.3)
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2 Implementation

where each of these partial diagrams has a complexity of O(N5). The flow equation for
the vertex now reads

d

dΛ
ΓΛ
ᾱβ̄γ̄δ̄ = − 1

2π

∑
µρ

{
Ic,+
µργ̄δ̄

Ic,−
ᾱβ̄ρµ

+Iph,+
ᾱµγ̄ρI

ph,+
β̄ρδ̄µ

+ Iph,−
ᾱµγ̄ρI

ph,−
β̄ρδ̄µ

− Iph,+
β̄µγ̄ρ

Iph,+
ᾱρδ̄µ

− Iph,−
β̄µγ̄ρ

Iph,−
ᾱρδ̄µ

}
, (2.4)

with a computational complexity of O(N6). In the case of M < N , using the replace-
ment in Eq. (1.107), this reduces to O(N2M3) for the calculation of the intermediates
and to O(N2M4) for the trace.

Using our argument from Sec. 1.6 that M ∝
√
N , we expect a scaling of O(N4) for

two-dimensional systems.

2.1.1 GEMM kernels for Tensor evaluation

In order to evaluate the temporary products for the flow of the vertex, Eqs. (2.1,2.2,2.3),
it is advantageous to rewrite the expression in terms of a matrix product, e.g.

Ic,+
µ,(ργ̄δ̄)

=
∑
ν

PΛ,s
µν (Λ)ΓΛ

ν,(ργ̄δ̄), (2.5)

where we interpret (ργ̄δ̄) as a single index, because modern generic matrix-matrix mul-
tiplication (GEMM) kernels are highly optimized and perform far better than a simple
sum. For the cases where we calculate the renormalization of the vertex for all states,
this is trivial. Note that for some equations one needs to retain a copy of the vertex
with transposed indices to be able to do this. Since our implementation is typically
not constrained by the available memory but rather the available processing power, this
tradeoff is advantageous.

It is trickier to approximate the vertex according to Eq. (1.107). Instead of rewriting
the entire expression in terms of a GEMM kernel, we need to perform the loop on the
external indices explicitly. We may then split up the resulting matrix product into five
parts. Taking for example Eq. (2.1) and using that SM is the subset of states for which
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2.1 Efficient Trace Evaluation

ν

ρ

SM

SM

1

3

2

4 5

Figure 2.1: The subdivision of the GEMM kernel for the intermediate product
Ic,+ in the ν and ρ indices. The regions one to five in the diagram
correspond to the terms of Eqs. (2.6,2.7,2.8,2.9,2.10), respectively.

the vertex is renormalized, we have

Ic,+
µργ̄δ̄

=
∑
ν̄∈SM

PΛ,s
µν̄ (Λ)ΓΛ

ν̄ργ̄δ̄ [ρ ∈ SM ] (2.6)

+
∑
ν̄∈SM

PΛ,s
µν̄ (Λ)Uν̄ργ̄δ̄ [ρ < min(SM )] (2.7)

+
∑
ν̄∈SM

PΛ,s
µν̄ (Λ)Uν̄ργ̄δ̄ [ρ > max(SM )] (2.8)

+
∑

ν<min(SM )

PΛ,s
µν (Λ)Uνργ̄δ̄ (2.9)

+
∑

ν>max(SM )

PΛ,s
µν (Λ)Uνργ̄δ̄. (2.10)

We assume here that the non-interacting states are ordered in energy. The five subex-
pressions may then be written in terms of GEMM kernels with rectangular blocks of the
matrices PΛ,s and U··γ̄δ̄. Figure 2.1 shows the division into these terms in the plane of
ν and ρ indices.
There are no standard kernels for trace evaluation, e.g. Eq. (2.4), hence we implement

that directly in terms of a loop.
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2.1.2 Parallelization

In the era of computer systems with multiple processor cores, parallel computation has
become more and more important. We will now discuss how we exploit this in our
implementation. Within our code we use a parallelization scheme based on a shared
memory architecture, OpenMP [29]. It is in principle possible to utilize distributed
memory methods, such as MPI (Message Passing Interface, [30]), which allow the usage
of far more processor cores for the same calculation. However, it makes little sense to
utilize a large number of computer nodes for a single system if this has to be performed
multiple times if one keeps disorder averaging in mind. In the following we will discuss
the two most expensive parts of the calculation and how parallelization applies to them:
intermediate products for the vertex flow and trace evaluation.
The intermediate products offer a trivial way to parallelize: it is possible to use a

parallel version of the GEMM kernel to calculate the matrix products. In the case we
track the renormalization of the entire vertex, this would likely be the most efficient
avenue. In our case, however, the effective matrix size that is fed into the GEMM kernel
is relatively small (we want to calculate the vertex for as few states as possible), so
it is unlikely that using a parallel matrix product kernel will scale well even for a low
amount of processors. Instead, we parallelize the loops over the two outer indices in the
intermediate products and perform serialized matrix products on each processor. This
is trivially possible, since the calculations are independent of each other for any given
pair of external indices.
Similarly, for the evaluation of the trace, we parallelize the loops over all four external

indices and have each processor evaluate the trace for a given set of external indices
serially.
Further details on the parallelization are explained in Appendix A.

2.2 Chemical Potential

We want to keep the number of particles fixed to study the system at a given filling frac-
tion. Since our flow modifies the real part of the self-energy, we need to constantly adjust
the chemical potential during the renormalization procedure. We have the advantage
that disorder makes sure that we always have a finite level spacing.

2.2.1 Zero Temperature

At T = 0 we diagonalize the matrix H0 + ΣΛ to obtain the new quasi-particle energies
for a given Λ (including the initial Λ0, since ΣΛ0 6= 0). We choose our chemical potential
to be

µΛ
chem =

1

2
(ε̃ΛNe+1 + ε̃ΛNe), (2.11)
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2.2 Chemical Potential

where ε̃ΛNe
is the energy of the highest occupied quasi-particle state and ε̃ΛNe

the energy of
the lowest unoccupied quasi-particle state. We choose this representation over the more
ε̃ΛNe

+ 0+ to increase numerical stability and because it is value of µchem when taking
the T → 0 limit from finite temperature. Note that both choices become equivalent for
the limit of large system sizes (as long as the chemical potential is within a band), as
the mean level spacing goes to zero.

2.2.2 Finite Temperatures

At T > 0 we have to find the solution to the equation

Ne =
∑

ε̃Λα̃<µ
Λ
chem

nF(ε̃α̃ − µΛ
chem), (2.12)

where Ne is the number of electrons in the given system and ε̃Λα̃ are the quasi-particle
energies for a given Λ, i.e. the eigenvalues of H0 + ΣΛ, so the eigenvalues are needed
here as well.
Our algorithm to solve this equation for µchem works in three stages: obtain an initial

guess for µchem, µ(0)
chem, (trivially) obtain a second guess, µ(1)

chem, with sgn(Ne(µ
Λ,(1)
chem) −

Ne) = − sgn(Ne(µ
Λ,(0)
chem)−Ne) and then use the secant algorithm [31] to iteratively find

the final µchem.
The initial guess is taken to be the same as the value for T = 0, Eq. (2.11), since for

low temperatures the value is a very good approximation. We then calculate

µ
Λ,(0)
chem + sgn(Ne(µ

(0)
chem)−Ne)

∆

4
i,

where ∆ is the mean level spacing of the system and i is an integer that starts at 1

and is incremented until the condition sgn(Ne(µ
(1)
chem)−Ne) = − sgn(Ne(µ

(0)
chem)−Ne) is

satisfied. In practice i = 1 or i = 2 will already satisfy that condition, which is why ∆
4

is a good empirical choice here.1

Both initial guesses are then used as input for the secant algorithm. Since Ne(ε) is
monotonous and the value searched for is encompassed with both guesses, convergence
will be quite fast (10 to 20 iterations in practice). We consider the chemical potential
to be converged if the relative error of the number of electrons,∣∣∣∣∣∣Ne(µ

(i)
chem)−Ne

Ne(µ
(i)
chem)−Ne

∣∣∣∣∣∣ ,
1We cut this scheme off at i = 10, since it is only used to accelerate the convergence of the secant
algorithm, which is likely to also work if the second value does not satisfy the condition, albeit more
slowly.
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2 Implementation

is larger than the square root of the machine precision. While the smallest possible
error here would be of the order of ε̂N , with ε̂ being the machine precision and N the
number of orbitals in the system, the energies ε̃α̃ only have a precision of

√
ε̂ due to the

diagonalization procedure.

2.3 Correlators

Starting from Eq. (1.92), it is first necessary to transform the vertex into the Λ-
dependent quasi-particle basis,

Γ̃Λ
µ̃ν̃ρ̃σ̃ =

∑
αβγδ

V in
µ̃αV

in
ν̃βΓΛ

αβγδV
in,−1
γρ̃ V in,−1

δσ̃ . (2.13)

We apply each basis transform sequentially, applying the outer transformations first. In
between we transpose the vertex, so that we may apply the final two transformations
as outer transformations as well. Due to the symmetry of the vertex the resulting
expression is equivalent (even in the case of systems with SU(2) symmetry, which is
symmetric if both index pairs are swapped, as is the case here). This gives us the
following sequence of basis transformation steps:

Γ
Λ,(1)
µ̃βγδ =

∑
α

V in
µ̃αΓΛ

αβγδ (2.14)

Γ
Λ,(2)
µ̃βγσ̃ =

∑
δ

Γ
Λ,(1)
αβγδV

in,−1
δσ̃ (2.15)

Γ
Λ,(3)
βµ̃σ̃γ = Γ

Λ,(2)
µ̃βγσ̃ (2.16)

Γ
Λ,(4)
ν̃µ̃σ̃γ =

∑
ν̃

V in
ν̃βΓ

Λ,(3)
βµ̃σ̃γ (2.17)

Γ̃Λ
µ̃ν̃ρ̃σ̃ =

∑
ρ̃

Γ
Λ,(4)
ν̃µ̃σ̃γV

in,−1
γρ̃ (2.18)

We utilize a standard generic matrix-matrix multiplication (GEMM) kernel as provided
by the Eigen library for these products, interpreting the tensor as a matrix, e.g. ΓΛ

α,(βγδ).
When the scheme for reducing the number of states, Eq. (1.107), is applied, we employ
rectangular submatrices of the V in, since Γ is only of size CM4 but Γ̃ needs to be of size
CN4 .
Since there are also contributions from orbitals not included in the M selected states,

we also need to perform the same basis transformation for the bare interaction, U . Note
that it is faster to use a GEMM kernel for that multiplication as well, but due to the
structure of the formula, in contrast to the flow of the vertex itself it precludes us from
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2.4 Restarting

easily separating out the contributions for which we utilize the renormalized interaction
Γ. (The flow equation separates into 5 separate contributions, this would separate into
far more.) It is thus easier to simply transform the full object U and then add the
transform of Γ− U to that expression.
We then proceed to multiply the transformed vertex by the energy denominator of

Eq. (1.92),

Γ̃Λ,div
µ̃ν̃ρ̃σ̃ = Γ̃Λ

µ̃ν̃ρ̃σ̃

1

ε̃µ̃ + ε̃ν̃ − ε̃ρ̃ − ε̃σ̃
. (2.19)

Finally, we need to transform to real space and select the proper orbitals,

Cdd−pre,(2)
iν̃σ̃ =

∑
µ̃ρ̃

nµ̃,ρ̃V
ri
iµ̃Γ̃Λ,div

µ̃ν̃ρ̃σ̃V
ri,−1
ρ̃i (2.20)

Cdd,(2)
ij =

∑
ν̃σ̃

nν̃,σ̃V
ri
jν̃C

dd−pre,(2)
iν̃σ̃ V ri,−1

σ̃j , (2.21)

where nε̃,ε̃′ is the factor required to ensure that the proper occupation is used, see
Eqs. (1.92,1.96).
Because we transform into the basis of the quasi-particles for a given Λ, the trans-

formation matrices V in are Λ-dependent and that contribution cannot be calculated
just once initially. This means that for each Λ the density-density correlator incurs a
cost of O(N5). Eq. (2.19) has a complexity of O(N4) and Eq. (2.20) a complexity of
O(N5). This cannot be simplified further without additional approximations, making
it the most expensive object to calculate.
Fortunately, it is not required for the flow of the vertex or the self-energy. Therefore,

when we do not see a divergence in our flow in Λ, we calculate the density-density
correlator only once at the very end of the flow. In case a divergence is seen, we perform
a backtracking procedure: while we don’t store the vertex for every single iteration
step, we do keep it for the last nbt iterations. Once we detect a divergence, we reset the
system to the current iteration minus nbt steps (typically 10) and calculate the density-
density correlator at that iteration step and proceed to the next iteration again. This
is performed for a total of ndv ≤ nbt iterations (typically 1 or 2), where we don’t need
to recalculate the flow but can just use the known self-energy and the vertex.

2.4 Restarting

Calculations for larger systems may take a relatively long time. In case of technical
difficulties, we implement a restarting procedure that allows us to continue a calculation
at the point where it last stopped. We save the initial Λ, the step size, the number of
selected states M , the chosen target Λ. Furthermore, we keep the last self-energy and
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vertex as well as the number of the last iteration to complete. These quantities suffice
to reproduce the calculation at a later point in time.
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3 Chapter 3

Application to disordered systems

In this chapter we compare our FRG approach to exact diagonalization (ED) in 2D and
to the density matrix renormalization group (DMRG) in 1D and show that it provides
us with the means to characterize the ground state of the system. We also compare
our approximation that reduces the number of orbitals for which the vertex renormaliza-
tion flow is calculated with results that take into account all orbitals and show that our
approach for this type of approximation is justified.

3.1 Hamiltonian

One of the simplest possible models that includes both interactions and disorder is a
tight-binding model on a lattice with nearest-neighbor hopping, nearest-neighbor inter-
actions and on-site disorder, where we assume that the Fermions don’t have a spin. The
corresponding Hamiltonian reads

H = −t
∑
<ij>

ĉ†i ĉj +
∑
i

δεin̂i + U
∑
<ij>

n̂in̂j , (3.1)

where t is the hopping parameter, U the interaction strength and the δεi the on-site
energies, which are chosen from a box distribution with widthW centered around ε = 0.
We have a look at this model in both d = 1 and d = 2. In principle the FRG should

also be applicable in three dimensions, but the number of orbitals grows far greater with
linear system size in three dimensions. Even just 6 sites in each direction already gives
a total number of 216 orbitals.
In 2D this model could be realized in terms of a strongly screened two-dimensional

electron gas with a strong in-plane magnetic field. This would polarize all of the spins
due to the Zeemann effect, but have no orbital contribution.
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3 Application to disordered systems

3.2 Comparison with Exact Diagonalization (2D)

Our main goal is to apply this method to two-dimensional systems. We choose a simple
square lattice with periodic boundary conditions for our calculations and compare our
method to exact diagonalization for small enough system sizes (16 orbitals). In the
following we will discuss our implementation of exact diagonalization and then compare
results for some sample systems with the functional renormalization group to demon-
strate its efficacy.

3.2.1 Methodology

For our implementation of exact diagonalization, we construct the full Ne-particle

Hilbert space. Its dimension is

(
N
Ne

)
and grows exponentially with the number

of orbitals N . We systematically construct the basis states of that space and imple-
ment the action of the full many-body Hamiltonian on that basis (we do not explicitly
construct the matrix elements of the Hamiltonian itself). An iterative eigensolver for
sparse problems is employed to calculate the full many-body ground state for a given
system. We utilize the standard ARPACK package [32] in direct mode.1

For simple observables, such as the density, we may then simply calculate expectation
values with respect to the many-body ground state,〈

n̂i
〉

= 〈0| ĉ†i ĉi |0〉 . (3.2)

We also want to calculate the single-particle density of states, ρ(ε). This is given by the
expectation value

ρ(ε) = − 1

π
= trij

〈
ĉi

1

ε− Ĥ + E0 + iη
ĉ†j

〉
+

〈
ĉ†j

1

ε+ Ĥ − E0 + iη
ĉi

〉
, (3.3)

which we arrive at by Fourier transforming the definition of the retarded Green’s func-
tion. This expressions contains the inverse of a very large matrix, which needs to be
done for every single energy at which the density of states is to be evaluated at. Further-
more, directly inverting such a large matrix is only possible using iterative algorithms,
which would again have to be applied for every single energy. We therefore follow an
alternative approach as outlined in the PhD thesis of Alexander Braun [33]. One may
expand the denominator in terms of Chebyshev polynomials Tn(x), such that we get

c
(+)
ij,n = 〈0| ĉiTn

(
a(Ĥ − E0 − b)

)
ĉ†j |0〉 , c

(−)
ij,n = 〈0| ĉ†iTn

(
a(Ĥ − E0 − b)

)
ĉj |0〉 , (3.4)

1The shift-inverse mode is not required, since the eigenvalues we are interested in are taken from the
spectrum edges, not the center.
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3.2 Comparison with Exact Diagonalization (2D)

where E0 is the ground state energy. The variables a and b are scaling factors that arise
due to the fact that the Chebyshev polynomials are only well-defined in the interval
[−1, 1], so the Hamiltonian needs to be scaled to fit into that range. We note that since
we are calculating expectations in the Hilbert spaces for Ne + 1 and Ne−1 particles, we
need to take into account the extremal eigenvalues of the Hamiltonian in those spaces.
To make sure we don’t suffer from numerical artifacts, we scale the argument of the
Chebyshev polynomials into the interval [−0.9, 0.9].2 This gives us

δ = 0.1, (distance to interval boundaries)

a =
2(1− δ)

(εmax − E0)− (εmin − E0)
, (3.5)

b =
(εmax − E0) + (εmin − E0)

2
− δ, (3.6)

where εmin,max are the extremal many-body eigenvalues of the system withNe+1 (Ne−1)
particles and E0 is the ground state energy for Ne particles.
We may then rewrite the single-particle retarded Green’s function in terms of these

coefficients,

Gij(ω) = a
∞∑
n=0

(
α+
n

(
a(ω + iη ∓ b)

)
c

(+)
ij,n − α

−
n

(
a(ω + iη ∓ b)

)
c

(−)
ji,n

)
. (3.7)

The density of states is then given by the imaginary part of this expression traced over
the real space indices, which is why we only need to calculate the diagonal part of this
expression. If we terminate the expansion at a finite n, the formula remains only valid
for finite η, with

η &
1

anmax
. (3.8)

For further discussion on this topic we would like to defer to Alexander Braun’s thesis.
[33]
Exact diagonalization has its limits: the many-particle Hilbert space grows exponen-

tially with the system size. While it is in principle possible to increase the system size
further, we restrict our calculations to systems with 16 orbitals (L = 4), because it is
possible to perform the entire procedure (exact diagonalization, Chebyshev expansion)
within a single day for a single system.

3.2.2 Results

In the following we will present results comparing the functional renormalization group
method with exact diagonalization for the Hamiltonian of Eq. (3.1) on a square lattice

2Using exactly [−1, 1] does not work, since the polynomials are fixed at the boundaries of the interval.
One needs to distance oneself at least by relative error in the eigenvalues from the boundary.
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with 4×4 = 16 sites and periodic boundary conditions. We start with the regime of very
weak disorder and very weak interactions. We compare individual disorder configuration,
because agreement on that level automatically implies agreement in averaged quantities.
We use an exponential parametrization for the flow equations, Eqs. (1.31,2.4),

Λ = Λ0e−l∆s, l ∈ N, (3.9)

where Λ0 is the initial Λ at which the flow starts and l is our iteration number. This
parametrization has the advantage that it captures the physics close to the Fermi energy
well, as the integration mesh gets denser, while still being relatively fast in reaching that
point (having a wider mesh initially while Λ is much larger than the system’s energy
scales). Both flow equations are of the form

d

dΛ
A(Λ) = − 1

2π
B(Λ). (3.10)

Performing the integral from Λ(l) to Λ(l + 1), we arrive at the structure

A(Λ(l + 1)) = A(Λ(l)) +
Λ(l)∆s

2π
B(Λ(l)) (3.11)

for all of our flow equations, assuming that ∆s is sufficiently small. In the following
calculations we have chosen the parameters ∆s = 0.02 and Λ0 = 40. Unless we encounter
a divergence in the flow, we stop as soon as Λ < 10−4 (giving a total of lmax = 645
iterations).
We monitor the flow for divergencies by looking at the 2-norm of the vertex,

|ΓΛ| = M−4
√∑
ᾱβ̄γ̄δ̄

(ΓΛ
ᾱβ̄γ̄δ̄

)2. (3.12)

We assume that our flow has started to diverge as soon as the current norm of Γ has
exceeded a certain threshold relatively to the norm of Γ at the start of the flow, also
taking into account the derivative of the norm of Γ with respect to the flow parameter.
In that case we stop the flow, because this indicates an instability due to the interaction,
as was discussed in Sec. 1.6.1.
We expect the clean model at half filling to exhibit a charge density wave (CDW)

ordering for any finite U > 0 in the thermodynamic limit, in accordance with a renor-
malization group analysis by Shankar. [34] Remaining at half filling, if disorder is weak,
the interaction strength should therefore be chosen to be much weaker to ensure we
remain in a regime where finite size effects destroy the charge density wave ordering.
Fig. 3.1 shows the comparison of the real space density, n(r), and the density of states,
ρ(ε), between both methods. As per Eq. (3.8) the broadening for ED is given by the
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Figure 3.1: Comparison between the density n(r) between (b) the functional renor-
malization group and (c) exact diagonalization for a given disorder
realization (a) at t = 1, U = 0.001, W = 0.01, and ν = 1/2. The
mean square difference between both densities is 10−6. (d) Compari-
son between the density of states from ED and FRG, with a broadening
of η = 0.16t.
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3 Application to disordered systems

number of Chebyshev moments calculated (here 105). The density of states for the
FRG was broadened with the same η for ease of comparison. At these high values of η
the individual levels are broadened to such a degree that the lifting of the degeneracies
(a 4 × 4 clean square lattice with nearest-neighbor hopping has 5 eigenenergies, with
degeneracies 1, 4, 6, 4 and 1) due to the weak disorder is not visible.
It is unsurprising that both methods agree for such a low interaction, because we

expect even simple perturbation theory to hold for such low values of U , and even the
non-interacting system is quite close. By increasing the disorder strength the degenera-
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Figure 3.2: Comparison between the density n(r) between (a) the functional renor-
malization group and (b) exact diagonalization for the same (but
rescaled) disorder realization as in Fig. 3.1 but at t = 1, U = 0.1,
W = 1 and ν = 0.5. The mean square difference between both densi-
ties is 7.8 · 10−4.

cies between the non-interacting levels are further lifted. This allows us increase the
interaction strength without entering the charge density wave regime. This can be seen
in Fig. 3.2, where we have utilized the same disorder configuration, but have scaled the
on-site energies by a factor of 100.
We can see a clear quantitative agreement for low enough U so that no instabilities

occur. Remaining at weak to moderate disorder strengths, we will now look at an
increase of the interaction. If the disorder is weak enough the interaction will now
be strong enough to overcome finite-size effects and the system will establish CDW
ordering. Due to the fact that disorder is present the system behaves differently to
the clean system: without disorder the average density of a CDW state is still 0.5,
because the system is translationally invariant. The CDW can only be seen by looking
at higher-order correlators, such as the density-density correlator. This is not true in a

40



3.2 Comparison with Exact Diagonalization (2D)

disordered system: as soon as an infinitesimal amount of disorder is present, it breaks the
translational invariance of the system, causing the CDW to be pinned and the ground
state not to be degenerate anymore.
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Figure 3.3: Density n(r) from exact diagonalization (ED) at t = 1, W = 0.01,
U = 0.01 and ν = 0.5 for the disorder realization in Fig. 3.1 rescaled,
showing a pinned charge density wave.

This means that the density itself will exhibit an ordering with a wave vector of
Q = (π, π), i.e. a checkerboard pattern. We note that the density profiles of Figs. 3.1,3.2
are manifestly different. However, if we increase our interaction to U = 0.01 (for the
case that W = 0.01) the density profile of the system under exact diagonalization does
exhibit a checkerboard pattern, as can be seen in Fig. 3.3.
Recalling our discussion from Sec. 1.6.1, our implementation of the functional renor-

malization group will not be able to quantitatively access the charge density wave phase.
However, we expect the flow equations to diverge as to indicate that an instability is
present in the system. This is indeed what we see in our numerics, since our criterion for
aborting the calculation is hit on this system. Fig. 3.4 visualizes the flow of the vertex
norm up to that point, and we can clearly see the expected divergence.
Furthermore, the functional renormalization group allows us to determine the type

of instability that dominates the system at that point in the flow, which is often an
indication for the symmetry of the system’s ground state. Since we expect a charge
density wave in this system, we calculate the density-density correlator of the system at
the point where we abort the calculation. The nontrivial part of the correlator is given
by Eq. (1.92). Interpreting the real space indices as two-dimensional coordinates, we
may define

D(x,x′) = Cdd,(2)
i=(x,y),j=(x′,y′), (3.13)

which we may then Fourier transform and average over the entire sample to obtain a
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k-space representation,

D(k) = N−1
∑
xx′

eik(x−x′)D(x,x′). (3.14)

We use the periodic nature of the lattice and look at the real part of the correlator is
taken (the Fourier transform introduces an imaginary part). We expect this quantity
to be strongly peaked at (π, π) because of the charge density wave, which is what can
clearly be seen in Fig. 3.5. It is important to note that this is unbiased: we have not
used the fact that we expect a charge density wave phase at all in our FRG flow –
we have solved the flow equations numerically and once the flow starts to diverge the
correlators give us information about the type of instability that dominates the system.
These results also hold true if we take a look at higher disorder strengths. For this

small finite-size system increasing the disorder means that the CDW transition will
happen at larger interaction strength U . Let us first look at the in the symmetric phase:
atW = 5 and U = 0.1 the system does not exhibit a charge density wave. Fig. 3.6 shows
the real-space density and the density of states for this system. We do not show the the
plot for the real space density obtained via FRG, because the differences are minuscule;
the mean square difference in real-space densities is 10−4. Since disorder is strong, the
degeneracies between individual levels are lifted enough to ensure that Overall we have
a good agreement between the exact results and our method.
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Figure 3.5: The density-density correlator as defined in Eq. (3.14) at Λc for a
system with parameters t = 1, W = 0.01, U = 0.01 and ν = 0.5. Only
the real part is shown. The peak at (π, π) indicates that the system has
a CDW instability.

If we increase the interaction further, we will also see a charge density wave phase,
for example at U = 5. (In the finite system there will always be a CDW ground state as
long as U is large enough.) Fig. 3.7 confirms that the functional renormalization group
correctly predicts the dominating instability of the system due to interactions.
We have shown that we can successfully apply the functional renormalization group

method to disordered 2D systems, for a large range of disorder strengths. It provides
and unbiased view towards instabilities of the system due to interactions, while we can
treat disorder exactly at the same time. There are two outcomes of a calculation with
our formulation of the FRG: either we achieve convergence and we are able to obtain
quantitative results in the phase that does not have a spontaneously broken symmetry,
or our flow diverges and the leading instability in the FRG flow allows us to make an
inference about the ground state of the system. We thus have a tool that allows us to
study the phase diagram of disordered interacting systems, without being constrained
by the disorder strength.
Note that while we have only shown a single disorder configuration here, we have

verified our method with a multitude of random disorder realizations. The exact value
of U at which the phase transition happens will vary slightly with the realization, but
the agreement holds.
Since all of our calculations are done on finite-size systems, there are certain finite-

size effects that we need to take into account. As already mentioned, as L → ∞ the
clean system will order in a charge density wave at half filling for even an infinitesimal
interaction U . In every calculation we have seen, this only happens at finite U . We
therefore need to go to larger systems in order to extrapolate the limit of Uc(L). Only
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Figure 3.6: The density as obtained by exact diagonalization (a) at t = 1, W = 5,
U = 0.1 and ν = 0.5 for the disorder realization in Fig. 3.1 rescaled, in
the symmetric phase. The densities of states (b) for the same system
are compared between ED, FRG and also against the non-interacting
system.

such a calculation will allow us to make statements about the effect of disorder on the
phase transition.

3.3 Larger systems

We will now apply the functional renormalization group to larger systems, where ED
is not feasible anymore. As has been discussed in Sec. 1.6, we have developed an ap-
proximation to reduce the number of degrees of freedom in the calculation. Instead
of calculating the flow of the vertex for all orbitals of the system, we only keep the
dependency on M orbitals close to the Fermi energy. This is in analogy to projecting
the momenta of the vertex down onto the Fermi surface as done in clean system imple-
mentations of the FRG. Our difficulty lies in the fact that we do not have translational
invariance and thus no quasi-momentum conservation. Whenever we need to evaluate
the vertex for orbitals that are not included in the selected M , we cannot replace it by
the vertex evaluated for other orbitals, because we know of no systematic way to set
up such a mapping. Instead, we replace the vertex by the base interaction term of the
Hamiltonian.
In this section we will demonstrate that this approximation works in practice. We do

not compare our results to exact diagonalization, as that is unfeasible for larger system
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Figure 3.7: The density as obtained by exact diagonalization (a) at t = 1, W = 5,
U = 5 and ν = 0.5 for the disorder realization in Fig. 3.1 rescaled,
in the symmetry-broken phase, showing a pinned charge density wave.
Near Λc the density-density correlator obtained via FRG (b) shows
(π, π) ordering.

sizes. Instead we compare our results to our own FRG implementation in the limit
where the flow of the vertex is kept for all orbitals. (This was what has successfully
been compared to exact diagonalization in the previous section for smaller systems.)
In the following we will use a 6× 6 square lattice with periodic boundary conditions

at half filling, giving us 36 orbitals in total. We then calculate each system twice: once
where the flow of the vertex is calculated for all states of the system (our reference) and
once where we only keep the flow of the vertex for 16 states around the Fermi energy.

Choosing a random disorder realization, at W = 0.001t and U = 0.01t the 36 site
system exhibits a charge density wave. In both cases the norm of the vertex diverges, as
can be seen in Fig. 3.8. The divergence occurs at the same point in the flow, supporting
the rationale for our approximation. The true test, however, is whether the flow with
less states allows us to infer the instability. For this we calculate the density-density
correlator of that system, which has a contribution from ΓΛ and U in the case where
we reduce the number of states (this has been discussed in Sec. 2.3). Fig. 3.9 compares
the density-density correlator near Λc obtained from both calculations. We clearly
recognize the peak at (π, π) of the CDW instability in both calculations. Even with our
approximation we are able to detect instabilities in the system. This is not surprising,
because in a clean system the CDW instability relates to nesting of the Fermi surface;
so the most relevant states to capture this in disordered systems will be those close to
the Fermi energy, for which we explicitly keep the vertex.
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Finally, we perform the same comparison in the regime of the symmetric phase. This
occurs at e.g. W = 1, U = 0.01. The real space density is shown in Fig. 3.10. We
see that there is excellent agreement between the density profiles of both methods,
validating our approach. We also compare the density of states as shown in Fig. 3.11.
Since we are not comparing to exact diagonalization here, we have used a smaller η
to resolve nearly all quasi-particle energies of the system. Even for states that are not
within the M selected states both densities of states are in good agreement. (We do
expect them to become less so if we increase the interaction.) Subtracting both curves
from one another yields values of the order of 10−2 in these units.

3.4 Parallelization

In this section we will show the degree of parallelization of our code. This is necessary
to estimate a system size limit for our method. With a test system with N = 36 sites
and M = 16 states (so that the system size is sufficiently large that thread creation and
work scheduling does not take up a significant amount of time) we repeatedly run the
same calculation on a system with 12 cores, but each time with a different number of
threads. Speedup is typically defined as the time it takes a single thread to execute a
calculation divided the the time it takes Nt threads to execute a calculation. Fig. 3.12
shows the results. The linear scaling demonstrates that the strategy employed is close
to optimal, but there is room for improvement. At least for systems with that size or
larger, using up to 8 threads per calculation will speed up the calculation considerably.
The data point for 12 threads is likely an anomaly (the calculation even took longer
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Figure 3.9: The density-density correlator as obtained by the functional renormal-
ization group near Λc for the same disorder realization as in Fig. 3.8 at
t = 1, W = 0.001, U = 0.01 and ν = 0.5. We compare the full calcula-
tion that includes the vertex flow for all states (a) and the calculation
where the vertex flow is included only for states close to the Fermi en-
ergy (b). Both show a peak at (π, π), indicating a charge density wave
instability.
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Figure 3.10: The density as obtained by the functional renormalization group for
the same disorder realization as in Fig. 3.8 (rescaled) with t = 1,
W = 1, U = 0.01 and ν = 0.5. We compare the full calculation that
includes the vertex flow for all states (a) and the calculation where
the vertex flow is included only for states close to the Fermi energy
(b). The mean square difference between the densities is 2.8 · 10−4.
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Figure 3.12: Speedup of the FRG flow by parallelization. The scaling is linear but
suboptimal (the slope is slightly lower than 1.

than with 11 threads in absolute numbers). Possibly the system size is a little too small
so that processor cores run idle more. It could also be that the shared processor cache
is not large enough for all the data and it has to be fetched from memory excessively.

3.5 Scaling

We have seen previously that our method works well for a system with N = 36 sites
and M = 16 states. A single calculation with eight threads in parallel takes not quite
160s to complete. If we assume a scaling of N4 with the system size, see Sec. 2.1, this
means that increasing the system size to 64 should increase the number of states taken
into account to ≈ 21. The computation time for a single configuration should increase
by roughly a factor of 10. In practice, even with keeping just 16 states in a system with
64 orbitals, the time required for a single run increases by a factor of 20. This is most
likely due to cache locality, where (parts of) smaller systems might fit completely into
the processor’s cache and thus run faster. There is some room for optimization potential
in the memory access patterns.
A single 8 × 8 system takes between one and five hours of computation time on 8

cores. (Depending on the number of states one stores the flow of the vertex for.) A
16×16 system (256 orbitals) would require a computation time at least 16 times as high
(assuming that cache locality effects have no further deteriorating effect), increasing the
computation time for a single system to a range of between 1 and 4 days.

These tests were done on reasonably modern hardware. Cutting-edge hardware might
increase the speed by 10%− 15%, but not much more.
While there is still room for optimization in the code, it is doubtful that an improve-
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3 Application to disordered systems

ment of more than a factor of 2 can be achieved. Therefore system sizes of 16x16 seem to
be the upper limit of what can sensibly done with our method for these systems. (Keep
in mind that we need to perform multiple calculations to average over disorder and we
need to test multiple parameter ranges, so while it might be possible to run a single
larger system on even more cores, possibly using distributed memory parallelization, the
total amount of needed computations is immense.)

3.6 Comparison with DMRG (1D)

We have also tested our method on one-dimensional systems. Our setup is the Hamilto-
nian in Eq. (3.1), i.e. spinless Fermions with nearest-neighbor hopping, nearest-neighbor
interaction and on-site disorder, this time on a chain.
This time we compare our method to the density matrix renormalization group

(DMRG). It was first introduced by Steven White in 1992 [35] and has been a highly suc-
cessful tool in one-dimensional systems ever since. It is an iterative algorithm that tries
to find an optimal subspace of the many-body Hilbert space to represent the many-body
ground state of the system. The DMRG is equivalent to exact diagonalization if the size
of the subspace that is taken into account is increased to the full size of the many-body
Hilbert space. A review of the method may be found in [36]. The DMRG is more
efficient computationally than brute-force exact diagonalization but can be considered
a reference method for the system we want to test the FRG against.

3.6.1 Results

The DMRG results shown here have been provided by Felix Weiner using a DMRG code
developed by Peter Schmitteckert.
For the comparison we consider a small chain of L = 16 sites. In our FRG we keep

the flow of the vertex for all 16 states. At a given, fixed disorder configuration with
W = 0.2 and t = 1 we compare our results for three different interaction strengths:
U = 0.2, U = 1.5 and U = 2.5.
At U = 2 the clean system exhibits a CDW (Q = π) transition in one dimension.

Even if disorder modifies this slightly, the system will exhibit a CDW phase at U = 2.5,
which is not the case for the other two values we investigate. Fig. 3.13 shows the results
when comparing the real space densities obtained from both methods. For the lower
U = 0.2 the FRG reproduces the DMRG result quite well. However, while there is
qualitative agreement at U = 1.5, there is a quantitative difference. We reason that
U is already large enough that fluctuations of the CDW order parameter start to have
a significant influence on the system. Since the truncation scheme used in our flow
equations is not suited to enter the symmetry-broken phase, it stands to reason that it
is unable to quantitatively capture the effect of order parameter fluctuations below the
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Figure 3.13: Comparison between the real space density of a 16 site 1D chain be-
tween DMRG and FRG for U = 0.2 (a) and U = 1.5 (b). Both
calculations did not exhibit a divergency in the FRG flow.

phase transition. Nevertheless, the FRG still allows us to make qualitative predictions
in this regime.
At U = 2.5 the DMRG shows that a pinned CDW with Q = π is established. As

expected the FRG flow diverges and we calculate the density-density correlator near
the divergence. We plot the density-density correlator in Fig. 3.14. It clearly shows the
peak at k = π, thus allowing us to infer the CDW ground state of the system in that
parameter range.
There is a legitimate question to be asked regarding the application of our approach

to one dimensional systems. When comparing it to DMRG, it is undoubtedly true that
DMRG is far more flexible in what can be calculated in 1D. It is more expensive than
our FRG formulation, but depending on which quantities are required, modern DMRG
codes can handle hundreds of sites rather well, and we do not expect our method to be
able to reach orders of magnitude more than that without further approximations. On
the other hand, there have been other studies of one-dimensional systems with the help
of FRG. Impurities and boundaries have been studied extensively, for example in [15].
More recently there also have been studies of disordered systems with FRG that are able
to treat up to 105 sites [37]. In both cases additional constraints were imposed on the
form of the vertex and the self-energy. Broadly speaking it is assumed that only matrix
elements are allowed that are already present in the given Hamiltonian - those are then
renormalized. This has the interesting property that it brings the FRG conceptually
closer to the analytical renormalization group in that the flow equations describe the
renormalization of couplings that are typically already present in the Hamiltonian. (As
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Figure 3.14: Density-density correlator at U = 2.5, t = 1, W = 0.2 and ν = 0.5
one a 16 site one-dimensional chain. The disorder configuration is
the same as in Fig. 3.13. The correlator clearly shows a peak at
k = π, hinting at the CDW ordered ground state of the system.

always, the devil is in the details and we refer to the cited papers for a less simplified de-
scription.) While they are far more efficient than other methods, including our approach
or the DMRG, if one constrains oneself to the systems for which those particular FRG
schemes have been designed, we believe that these types of approximations will break
down for systems with stronger disorder that is not just a single impurity, because we
expect additional terms in the vertex and/or self-energy to be generated. Therefore we
do believe that our approach could fit a niche even in one dimension, allowing it to ac-
cess intermediate regimes too large for DMRG, but outside the scope of approximations
made in other schemes.
That all said, the most promising application of our approach with regard to dis-

ordered systems lies in two dimensions, where DMRG loses its efficiency. Since our
method treats disorder exactly and has no a priori bias with regard to the spontaneous
symmetry breaking due to the interaction, it can provide a description of the interplay
between disorder and interactions on the microscopic level.

3.7 Summary

We have demonstrated that it is possible to develop an FRG scheme that takes disorder
into account exactly. By comparison with reference methods in two and one dimensions
we have shown that we can make accurate qualitative and in many cases quantitative
predictions about the ground state of the system at small system sizes in 2D and 1D.
For slightly larger systems we have shown that our disorder version of the “Fermi surface
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projection” scheme works by comparing the FRG with and without the approximation.
This will enable us to reach comparatively large system sizes in the future, up to about
256 sites.
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4 Chapter 4

Phase diagram of our model
system

In this chapter we apply our method to the study of the phase diagram of our simple
model system.
The Hamiltonian of the model, Eq. 3.1, describes spinless Fermions on a 2D square

lattice with nearest-neighbor hopping, on-side disorder (from a box distribution with
width W ) and nearest-neighbor interactions (with strength U). All calculations are
performed at a filling fraction of ν = 1/2. We remind ourselves that in the clean
thermodynamic limit an RG analysis [34] shows that for arbitrarily small U a CDW
ground state is formed. At U = 0 Anderson’s scaling analysis [3] tells us that the
system will localize for arbitrarily small W .
We are now interested in the system when both U andW are finite. Fig. 4.1 illustrates

possible scenarios that may occur: it could be that U∗(W ) = 0 even for finiteW , so that
the system would undergo a CDW transition for any finite value of U . Alternatively,
disorder could destroy CDW order at low U and there could be a phase boundary at
finite U . The shape of the phase boundary is also in question, since it might help
decide which (if any) of these scenarios is true: whether there is a finite U above which
no Anderson insulator state survives, regardless of W , or whether there is a finite W
above which no CDW state survives, regardless of the strength of U . The two nontrivial
examples of possible U∗(W ) shown in Fig.4.1 illustrate this.
As we apply our method to finite size systems, we need to perform calculations for

multiple system sizes in order to be able to extrapolate to the thermodynamic limit.
Specifically, the transition to the CDW state will not happen at U∗ = 0 but rather at
U∗ > 0. As the precise value for U∗ for a given finite-size system at fixedW will depend
on the specific disorder realization, we need to average over multiple configurations,
otherwise our results could just be statistical anomalies.
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Figure 4.1: Speculative phase diagram for the model we are studying. At the re-
pulsive fixed point U = W = 0 the model reverts to a simple non-
interacting clean tight-binding model. The axis for W = 0 shows a
CDW transition in the ground state for arbitrarily small U , the axis
for U = 0 shows an Anderson insulator for arbitrarily small W . Our
interest lies in the features of the phase diagram at finite U and W .

The following strategy is used: we take a fixed disorder strengthW , generate multiple
disorder configurations for different system sizes. For each combination of disorder and
system size, we determine the value of U∗ at which that specific system undergoes the
CDW transition by performing multiple FRG calculations for different values of U . The
values for U∗ are subsequently averaged. We may now analyze the function U∗(1/L2)
for any given disorder strength W in an attempt to extrapolate to 1/L2 → 0.
Due to the amount of computer power required to perform these calculations, espe-

cially at large systems, the following results are averaged over only 5 disorder config-
urations each. (Note that we have not reused disorder configurations in these results,
every configuration is uniquely generated with a truly random seed.) Figure 4.2 shows
these results for five different values of W . The lack of statistics available in this data
is precludes any attempt at extrapolating to L → ∞. First of all, more configurations
will need to be calculated to reduce the error bars. However, there is some analysis that
is still possible with the data available.
First of all, we notice that U∗(W ) ≈W . For small systems this is unsurprising: if we

take a finite-size clean system, due to its symmetry many levels will be degenerate and
the energies are not spread out evenly within the band width. Once disorder is added to
the system, these degeneracies are lifted and the splitting is of the order of the disorder
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Figure 4.2: The interaction strength U∗ at which the transition from unordered to
CDW state happens in our finite size system, plotted over the inverse
system size 1/L2 for multiple different values of the disorder strength
W . The results have been averaged over 5 disorder configurations (see
text) and the standard deviation (1σ) is shown.

strength W . If U &W it can overcome this splitting, restoring CDW ordering.
However, if the disorder strength W becomes larger than the level spacing in the

clean case, which is certainly true for our calculations with W = 2 and W = 3 for the
larger system sizes, this argument does not hold anymore. (Once the density of states is
sufficiently smooth, we return to the classical RG understanding that effective disorder
and interaction strengths influence each other as the system size increases.) If we take
a look at the data points for W = 2 and W = 3, we do not see a decrease in U∗(W )
with the system size, as one would expect for very small W . This might be a hint that
there is indeed a finite U∗ for intermediate values of W . In fact, U∗(W = 3) seems to
increase with system size, which might even be an indication that CDW order does not
survive this disorder strength. This scenario is plotted in Fig. 4.3, where we have used
our results to infer parts of the phase diagram. Alternatively, if it turns out that the
system sizes studied are still too small to perform an extrapolation, this could hint at a
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transient finite-size regime worth to be studied.

Figure 4.3: The speculative phase diagram of our model, where we have plotted our
results for W = 2 and W = 3. We see hints of the CDW transition not
occurring at U = 0 anymore for finite W , and that disorder possibly
even destroys CDW order for sufficiently large W .

While this data does not allow us to draw definite conclusions about the phase diagram
of the system, it does hint at interesting physics at intermediate W that merit further
investigation, even in this relatively simple model. We have demonstrated that an
analysis of the phase diagram is possible with our method, but more computations are
required to complete the analysis.
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5 Chapter 5

Conclusion and Outlook

We summarize the main results of our work and give an outlook on future research.

5.1 Summary

Historically the development of new numerical methods has often contributed to the
understanding of phenomena in condensed matter systems. They may both provide
backing for existing analytical results as well as inspiration as to how to tackle a problem
from a different perspective. Very rarely do we see developments that revolutionize our
understanding of a given problem, such as the way the numerical renormalization group
(NRG) has allowed us to view Kondo systems in a new perspective [38] or the insights
that density functional theory (DFT) has given us in using effective single particle
pictures as descriptions for interacting systems. [39] Instead, most progress is typically
made by incremental refinements of existing methods, allowing them to be applied in
slightly different ways, gradually increasing our understanding. We hope that our work
will help in such a manner when it comes to interacting disordered systems.
In this thesis we have demonstrated that the functional renormalization group can

successfully be applied to disordered systems. Our approach takes disorder into account
exactly, while treating the interaction in an unbiased way, enabling us to make infer-
ences about the ground state behavior of the system we are studying. The method
development was done investigating a relatively simple model of spinless Fermions with
nearest-neighbor interaction and nearest-neighbor hopping. By comparing our results
to reference methods (exact diagonalization and DMRG) for small system sizes, we have
shown that our method works for these types of systems. Furthermore, we can scale
our method to larger system sizes by reducing the number of states for which the flow
of the vertex needs to be calculated. We have shown that this has no negative impact
on the efficacy of our method and that scaling to larger systems is indeed possible. Fur-
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thermore, we have confirmed that our implementation parallelizes well for a reasonable
amount of processors.
We have shown that this may be applied to the study of the ground state phase

diagram or a disordered interacting model. While further computations are required
to perform a more detailed analysis of that phase diagram, we have seen hints that at
intermediate disorder the CDW phase is suppressed, possibly being absent completely
at large disorder concentrations.

5.2 Outlook

Especially with increasing system size it will be interesting to look at the localization
length of the system (which can be calculated from the single-particle Green’s function)
and study how it is affected by interactions. This will open up another aspect of the
phase diagram of this model for further investigation. It is also pertinent to study filling
fractions other than ν = 1/2, as there is nothing in our method that requires this.
Beyond the study of the phase diagram of this simple model, the next step is to

apply our formulation of the FRG to more complex models. In non-interacting two-
dimensional systems a true metal-insulator transition is expected for a finite disorder
strength. Ostrovsky, Gornyi and Mirlin have argued [40] that the Coulomb interaction
destroys the supermetallic phase that the non-interacting model predicts. They also
state that this should not be the case for a short-range interaction that is weak enough,
while the supermetallic phase is suppressed for stronger short-range interaction. While
the long-range Coulomb interaction is inaccessible to our method (due to our truncation
scheme of the higher-order terms in the FRG flow), our method could investigate the
claim about short range interactions.
Another interesting application would be to study superconductor-insulator transi-

tions in superconducting films. Since we are not constrained in the disorder strength, it
should be possible to make statements about the transition point in such a system. (In
clean systems, the functional renormalization group as a large track record of study of
superconducting systems.)
Finally, an entirely different avenue of investigation is not directly related to disordered

systems. The equations derived here are not specific to disordered systems; the only
assumption made is that there is no (quasi-) momentum conservation. In principle, the
should be applicable to any inhomogeneous system. This opens up the idea of applying
the FRG to ab-initio calculations involving molecules. One of the goals of ab-initio
methods is to make quantitative predictions of real molecules. A quantity of interest
is the spectral gap and its exact position. The estimates obtained from ab-initio’s
workhorse Density functional theory (DFT) are often not accurate enough. Among the
methods proposed to improve upon the DFT results is GW , which is an approximation
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of the self-consistent Hedin equations [41] that neglects vertex corrections. However, it
has been shown that for some systems vertex corrections do become important [42] and
should not be neglected. Since the self-consistent GW cycle is already quite challenging
computationally, it might be possible to use our inhomogeneous formulation of the FRG
instead of or in addition to the GW cycle to include vertex corrections for the self-energy
and hopefully improve upon existing results. One obstacle to overcome in this scenario
is the Coulomb interaction: while a finite system provides a bound of the Coulomb
interaction by definition, it will have to be investigated how well our approach to keep
vertex corrections only for energies close to the Fermi energy will work in these kinds
of systems. The answer to that question will give us a bound for the system size this
can be applied to. (Since molecular calculations don’t often include a huge multitude of
different parameters – in contrast to a multitude of disorder configurations to average
over – it is sensible to consider parallelizing the code further in order to be able to tackle
larger systems.)
The development of this method and the demonstration of its efficacy has opened up

a multitude of exciting possibilities for its application. Interaction effects in disordered
systems remain an exciting topic and it is our hope that the tool we have created will
help further understanding in this area.
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A Appendix A

Implementation Details

This appendix provides further details about our implementation, discussing optimiza-
tions.

A.1 Symmetries of the Tensor

In the case of spinless Fermions, the vertex is antisymmetric with respect to exchange
of any of the outermost pairs of indices, Eq. 1.22,

ΓΛ
αβγδ = −ΓΛ

βαγδ = −ΓΛ
αβδγ = ΓΛ

βαδγ .

Thus the flow equations for ΓΛ need only be calculated for β > α and δ > γ and
other elements of ΓΛ follow directly. This saves slightly more than a factor of four of
computing time. (Per pair of indices only half as many elements need to be calculated.)
Listing 1 shows the associated pseudo-code.
It is still sensible to write the symmetry-connected elements at calculation time,

though: if the symmetry were only to be used at read time and the tensor were only
to be stored for an independent subset of indices, this would violate memory locality at
read time, the tensor elements read during the evaluation of the flow equations would
not necessarily lie close to each other in memory, causing cache misses and slowing
down the calculation. [43] Since tensor elements are read far more often than written,
the penalty incurred due to fact that writes are not memory local is minuscule compared
to the potential read penalty otherwise. It should also be noted that while storing all
elements of the vertex may require more memory, this is not the bottleneck: the size
of the vertex scales with O(M4), where M is the number of states in the subspace for
which the renormalization of the vertex is kept, while the time required for computa-
tions scales at least with O(N4) (see Chap. 3 for details), where N is the total number
of single-particle states of the system, easily outgrowing any memory requirements.
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for alpha = 0 .. (M - 1)
for beta = (alpha + 1) .. (M - 1)

for gamma = 0 .. (M - 1)
for delta = (delta + 1) .. (M - 1)

v = flowEquation(vertex , Lambda , alpha , beta , gamma , delta)
vertex(alpha ,beta ,gamma ,delta) += v
vertex(beta ,alpha ,gamma ,delta) -= v
vertex(alpha ,beta ,delta ,gamma) -= v
vertex(beta ,alpha ,delta ,gamma) += v

end for
end for

end for
end for

Listing 1: Pseudo-code that shows how the symmetries of the tensor may be used
to speed up computation. The code shown here does not yet include
parallelization.

A.2 Parallelization

Using the OpenMP standard [29] many loops may trivially be parallelized by simple
instructions that indicate to the compiler that a certain loop may be carried out in
parallel. Simply parallelizing the outer-most loop in Listing 1 will not be optimal,
however, since the workload is not distributed evenly. If we take just the α and β indices
and parallelize the loop over the α index, we can see in Fig. A.1 how the workload is
distributed unevenly among the different processors.
At first glance it might make sense to simply parallelize the loop over the β index,

but that is not optimal either, as the size of the loop changes for each α (α−1 elements
are traversed), which is frequently incommensurate with the number of processors - and
while incommensurability cannot always be avoided when parallelizing, it should ideally
only occur once at the end of an expensive loop, not multiple times within an expensive
loop.
We therefore choose to parallelize all four loops at the same time: we know that the

loop over a single pair of antisymmetric indices has M(M−1)
2 elements (simple triangular

equation), thus we have
(
M(M−1)

2

)2
elements in total. Note that the flow for a given set

of indices itself contains a loop over the inner indices of the equation, see Eq. 2.4, but
the size of that loop is constant. If we do this, the workload will be distributed evenly

among all processors – in the ideal case, where
(
M(M−1)

2

)2
is commensurate with the

number of processors; otherwise some processors may experience a single instance less
than the others.

We must now decompose the single loop index i ∈
[
0;
(
M(M−1)

2

)2
− 1

]
of the paral-
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Figure A.1: The inequality of workloads between different processors (here: four)
when parallelizing the nested loops for the tensor elements, causing
some processors to idle while others are still working.

lelized loop back into the original indices in order to be able to know which elements of
the vertex tensor to access. We first decompose it trivially into the left and right pairs,

iL = i/
M(M − 1)

2
, (A.1)

iR = i%
M(M − 1)

2
, (A.2)

where % is the integer modulo operation and / the integer division (round towards
zero). We must now decompose the index iL into the original pair of indices (α, β) (the
decomposition of iR is analogous). For this we first take a look at how to combine (α, β)
into a single index that continuously covers α < β. Assuming that the indices grow
first down and then right, see Fig. A.2, we can see that the number of index pairs we
must traverse left of a column is given by the c(c− 1)/2, where c is the column number
starting at 0. Since we start counting at 0, the first index of a column is hence given by
that number, and we may deduce the generic formula that maps a given column c and
row r to a unique index j by

j =
c(c− 1)

2
+ r. (A.3)

Simple algebra allows us to invert this formula and find the column c (we discard the
second solution of the quadratic equation that yields negative indices):

c =
1 +
√

1 + 8j − 8r

2
. (A.4)
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Figure A.2: The scheme used to assign each point of the triangle in the matrix
of indices (α, β) that indicates a traversed pair a continuous number.
The other indices are not traversed due to the symmetry of the vertex.

This still contains the unknown variable r for the row, but this can be eliminated easily,
since we know that the column number has to be an integer. If we assume r = 0 for the
first row, we can immediately write c = 1+

√
1+8j
2 . This is not valid anymore at r > 0,

but we know that the resulting number must lie between the real column number and
the next. Therefore, simply rounding down will yield the correct result here and we
arrive at the formulas for column and row as

c =

⌊
1 +
√

1 + 8j

2

⌋
, r = j − c(c− 1)

2
. (A.5)

With this, we have

α =

⌊
1 +
√

1 + 8iL
2

⌋
, β = iL −

α(α− 1)

2
, (A.6)

γ =

⌊
1 +
√

1 + 8iR
2

⌋
, δ = iR −

γ(γ − 1)

2
, (A.7)

With that we have reduced the four outer loops of the flow equation for the vertex
into an efficiently parallelizable loop over a single continuous index that we may then
decompose back into the original indices.

A.3 Fast Division and Modulo in Inner Loops

In our implementation of the self-energy flow, we require the integer modulo operation
with indices within the inner loop in order to more easily separate out the contributions
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from the renormalized and the bare vertices: for the contribution where we replace the
renormalized with the bare vertex, we traverse all N −M indices in a single loop, by
starting above the highest state we include in the renormalized vertex and wrapping
around using modulo N .
The integer modulo operation is typically implemented with the help of the integer

division operation. In current processor architectures, calculating an integer division
is expensive however, on modern processors it can take over 100 cycles in latency to
complete. [44, Table 15-4]
It is therefore advantageous to rewrite the integer division in terms of a multiplication

with the inverse relative to the finite field of the integer data type. While most compilers
do this for constant values of the divisor, values of the divisor that depend on run-time
input (such as the system size one wants to calculate) are not affected. In our inner loop
that calculates the self-energy flow, measurements showed that the modulo operation
was more expensive than the product between the bare vertex and the propagator.
We therefore implement the optimization ourselves, following the outline of [45]. Be-

fore the loop starts, we compute the multiplicative inverse for the divisor (i.e. our
current system size) and then use the much-faster multiplication instruction within the
loop.
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