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Effectively inverting the sign of material parameters is a striking possibility arising from the concept
of metamaterials. Here, we show that the electrical properties of a p-type semiconductor can be mimicked
by a metamaterial solely made of an n-type semiconductor. By fabricating and characterizing three-
dimensional simple-cubic microlattices composed of interlocked hollow semiconducting tori, we
demonstrate that sign and magnitude of the effective metamaterial Hall coefficient can be adjusted via
a tori separation parameter—in agreement with previous theoretical and numerical predictions.
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The properties of composites or rationally designed
artificial materials called metamaterials are generally not
in between those of their constituents; i.e., “one gets out
more than one puts in” [1,2]. Unbounded behavior is
possible, too. Sign reversal of an effective material param-
eter with respect to the constituents is a particularly striking
case. The availability of positive and negative parameter
values largely enhances our ability to mold waves and
fluxes. Thus, sign reversals have contributed much to the
excitement in the field of metamaterials. In the dynamic
case, they are well known by now. Examples are the
magnetic permeability [3–5], the refractive index [4,6,7],
the mechanical compressibility [8,9], the mass density
[10–12], or both of the latter [13–16]. In all of these
examples, the sign inversion arises from some sort of
internal resonance. For frequencies above the correspond-
ing eigenfrequency, the response exhibits a 180-degree
phase shift, i.e., a reversal of sign. Clearly, this mechanism
does not work in the stationary limit.
Moreover, for passive media in the stationary limit, due

to the second law of thermodynamics, reversing the sign of
transport coefficients like the electric conductivity, the heat
conductivity, or the diffusivity is even fundamentally
impossible. The Hall coefficient is a notable exception.
It is directly connected to the off-diagonal elements of the
electric conductivity tensor in the presence of a static
magnetic field. In the simplest case, the Hall coefficient AH

is equal to the inverse of the charge density, i.e., AH ¼ ρ−1.
A few years ago, building upon earlier work [17–19], Marc
Briane and Graeme W. Milton predicted theoretically that
the sign of the isotropic Hall coefficient can be reversed in
chainmail-like three-dimensional metamaterials [20].
Notably, art inspired science: Chainmail artist Dylon
Whyte suggested to them the three-dimensional structure
[21]. Sign reversal of the Hall coefficient in metamaterials
is interesting because one can, for example, effectively
mimic p-doped silicon when having only n-doped silicon

available as a constituent. However, an experimental
validation of this mind-boggling prediction has not been
published so far.
In this Letter, we present experimental evidence for the

predicted sign inversion of the effective Hall coefficient in
chainmail-like metamaterials. We show that the sign as well
as the magnitude of the Hall coefficient can be determined
by a geometrical separation parameter while fixing the

FIG. 1. Blueprint for the three-dimensional chainmail-like
metamaterial discussed in this Letter. It is composed of a
simple-cubic lattice of hollow tori. a is the lattice constant, R
the torus radius, r the wire radius, t the film thickness, and d the
separation parameter. The latter can be positive or negative; the
depicted configuration corresponds to d < 0.
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constituent material. The blueprint of the considered
structure is illustrated in Fig. 1.
The samples discussed here have been fabricated in three

steps. First, we write polymer structures by standard three-
dimensional dip-in galvo-scanner-based laser lithography
(Photonics Professional GT, Nanoscribe GmbH) using a
commercial photoresist (IP-S, Nanoscribe GmbH) on glass
substrates coated with a thin layer of indium-tin-oxide.
These polymer structures are insulating electrically and
merely serve as scaffolds. In a second step, using conformal
atomic-layer deposition (Savannah 100, Cambridge
Nanotech, Inc.), these support structures are coated with
a t ¼ 185 nm thin film of n-type ZnO. The films are grown
at 150 °C substrate temperature using diethylzinc and water
as precursors. The film thickness has been determined by

ellipsometry. We choose n-ZnO solely because we have
experience with its deposition from different experiments
[22] and because very smooth films can be achieved. Many
other semiconductor materials should be possible, too.
Third, to obtain Ohmic contacts, we evaporate titanium and
gold with thicknesses of 30 and 100 nm, respectively, by
using standard high-vacuum electron-beam evaporation.
The polymer roof plate on top of each structure casts a
shadow to protect the Hall bar. The Hall contacts stick out
of the roof’s shadow to the left and right. A gallery of
images of fabricated samples is shown in Fig. 2.
The samples are contacted in a home-built room-temper-

ature probe station by four tungsten needles, which are
connected to independent three-dimensional translation
stages. Using a home-built electronics, we can quickly

FIG. 2. Example images of fabricated three-dimensional metamaterial samples on glass substrates. (a)–(c) are oblique-view electron
micrographs; (c) is colored for clarity, and (d) is an optical micrograph. (a) Sequence of polymer structures with different separation
parameters d (compare to Fig. 1). At fixed parameters R, r, and t, the lattice constant a increases with increasing d (from bottom right to
top left). (b) Polymer structure coated with n-type ZnO with 4 × 4 × 5 unit cells and d < 0. (c) shows a Hall bar composed of 11 × 5 × 1
unit cells. The roof on top casts a shadow during evaporation of the metal contacts onto the substrate and the two pick-up contacts.
To ease the alignment of the tungsten contact needles, halfpipes have been fabricated on the left and right. (d) Structure as in (c) within
the home-built electrical probe station. The four electrical contact probes are visible.
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check the resistance between any of the twelve possible
pairs out of the four contacts. After proper alignment, all
combinations exhibit an Ohmic behavior. The longitudinal
resistance Rx ¼ Ux=Ix is typically around 2 kΩ. The probe
station also allows us to move a permanent magnet
combined with an iron yoke up and down with respect
to the fixed sample. The sign of the magnetic field can be
changed by mechanically rotating the magnet assembly by
180°. In the “on” position, the magnetic induction is about
one Tesla, precisely Bz ¼ �0.83 T. In the “off” position, it
is �0.03 T. These values have been measured at the
sample location using an independent commercial Hall
sensor (HGT-2010, Lake Shore Cryotronics, Inc.). In the
Hall measurements, the current Ix is imposed by a constant-
current source (B2901A source-measurement unit,
Keysight Technologies, Inc.).
As usual, the Hall voltage is inversely proportional to the

sample thickness along the direction of the magnetic field
vector. Large Hall voltages are desirable to obtain good
signal-to-noise ratios. Thus, we have performed all actual
measurements using Hall bars with only a single three-
dimensional lattice cell along the z-direction (see Fig. 2).
Precisely, the two polymer tori in the unit cell parallel to the
xy-plane are cut in half and then coated with n-type ZnO.
An example of acquired raw data of the transverse

voltage Uy vs real time is shown in Fig. 3(a). The temporal
peaks in the transverse voltage Uy arise from Faraday
induction into wire loops in our setup while the magnet is
moving. Hence, the voltages are defined with respect to
times at which the magnet is at rest (compare bottom panel,
showing the independently measured Bz vs time). The blue
and red traces in Fig. 3(a) provide direct experimental
evidence that the transverse voltage Uy ¼ U0 þ UH con-
sists of a magnetic-field independent contribution (that we
refer to as the offset voltage U0) and a contribution that
depends on the magnetic field Bz, i.e., the Hall voltage
UHðBzÞ. Such offset voltages are well known: For example,
they can result from asymmetries of the pick-up contacts or
fabrication imperfections breaking the cubic symmetry of
the microlattice. In our experiments, this sample-dependent
offset voltage U0 ∝ Ux ¼ RxIx is typically on the order of
1 mV at Ix ¼ 0.5 mA, which is about a thousand times
smaller than the voltageUx ¼ RxIx, yet it is still larger than
the Hall voltage. The offset voltage does not depend on the
applied magnetic field Bz. In contrast, the Hall voltage UH
does depend on the sign and amplitude of the magnetic
field. Thus, by changing the sign of the magnetic field, the
asymmetry offset voltage can simply be subtracted.
Figure 3(b) shows the extracted Hall voltage UH vs
injection current Ix for two different structures. As
expected, we find a proportional behavior for all samples,
allowing us to extract a Hall resistance RH ¼ UH=Ix for the
peak magnetic induction of jBzj ¼ 0.83 T.
The gallery of electron micrographs in Fig. 2 has already

shown structures with different separation parameter d

FIG. 3. (a) Measured transverse voltage Uy versus real time.
The two examples shown correspond to two Hall bars
[11 × 5 × 1 unit cells, cf., Figs. 2(c) and 2(d)] with different
separation parameters, namely d ¼ −22 μm (blue) and d ¼
4 μm (red). The magnet is moving in the shaded regions.
Apart from the asymmetry offset voltage U0, the voltage
reverses sign upon reversing the sign of the magnetic
induction Bz. The design parameters are R ¼ 36 μm,
r ¼ 6 μm, t ¼ 185 nm, and Ix ¼ 0.5mA. In the lower panel,
the measured magnetic flux Bz at the sample position vs time
is shown. The measurement has been performed using a
commercial Hall sensor. (b) Extracted Hall voltage (dots) vs
injection current Ix for the same samples. They exhibit
different slopes of the Hall voltage UH vs Ix, i.e., effective
Hall resistances RH of different sign. The effective Hall
coefficient results as AH ¼ RHLzð0.83 TÞ−1, with the Hall bar
thickness Lz ¼ a ¼ 4Rþ 2d. The straight lines are fits to the
data. The underlying n-type ZnO constituent material has
a negative Hall coefficient in bulk form. Thus, the case of
d ¼ −22 μm corresponds to a sign reversal of the Hall
coefficient.
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(also compare to Fig. 1). The behavior of the extracted
Hall resistance RH vs d is depicted in Fig. 4(a) for both
positive and negative values of d. Each data point corre-
sponds to a different sample, measured like in Fig. 3. We
find that the Hall resistance in Fig. 4 and hence the Hall
coefficient changes sign at around a separation parameter
of d ¼ −12 μm.
In the numerical calculations also shown in Fig. 4(a), we

use the commercial software package COMSOL Multiphysics
to solve the stationary continuity equation ~∇ · ðσ↔ ~∇ϕÞ ¼ 0

for the electrostatic potential ϕ ¼ ϕð~rÞ. We use the usual

form for the conductivity tensor σ
↔ ¼ σ

↔ð~rÞ in the presence of
a static homogeneous magnetic field ~B ¼ ð0; 0; BzÞ⊤ along
the z-axis within the linear regime [20,23],

σ
↔ ¼ σ0

0
B@

1 ~B 0

− ~B 1 0

0 0 1

1
CA:

~B ¼ σ0ρ
−1Bz is a dimensionless abbreviation, σ0 ¼ σ0ð~rÞ

is the piecewise constant zero-field conductivity, and ρ ¼
ρð~rÞ is the piecewise constant charge density. The linear

approximation is well justified for our conditions because
~B ≪ 1 andUH=Ux ≪ 1. The conductivity σ0 of the air voids
and of the polymer is assumed to be 0. Within the linear
regime and for fixed Ix, the nonzero ZnO conductivity σ0
does not enter the results and the ZnO charge density ρ
merely scales the Hall resistance in Fig. 4 according to
RH ∝ ρ−1. Thus, we have used ρ as a fit parameter with
ρ ¼ −2.6 × 106 Cm−3. We consider a finite metamaterial
Hall bar composed of 11 × 5 × 1 unit cells. Because of
fabrication limitations, the actual parameters are not quite
identical to the quoted design parameters (see Fig. 2).
Thus, we use the design parameters as above, except for
r ¼ 7.5 μm. This choice leads to excellent agreement
between theory and experiment. In particular, the zero
crossing at around d ¼ −12 μm is well reproduced. From
similar previous calculations [23] we can conclude that the
investigated geometries exhibit only small effects related to
the finite number of unit cells in all directions. The measured
signatures can thus be interpreted as effective bulk effects.
To clarify the underlying physics, Fig. 4(b) visualizes the

calculated Hall potential (false-color scale) for two char-
acteristic values of d and otherwise identical parameters.
We define the Hall potential as the difference of the
electrostatic potential ϕð~rÞ for Bz ¼ 0.83 T and that for
Bz ¼ 0. In this fashion, we subtract the overwhelmingly
large but trivial linear potential ramp due to the applied
voltage Ux. For clarity, only a part of the central region of
the Hall bar is shown. Upon changing d, two aspects
change. First, the Hall voltage is picked up differently by
the tori parallel to the yz-plane. Second, the tori parallel to
the xz-plane inject the electric current differently into the
torus parallel to the xy-plane. As a result, the outer (inner)
part of this torus is on nearly zero Hall potential (green) for
d ¼ −22 μm (d ¼ þ4 μm). Clearly, the two aspects are not
independent. Their interplay leads to the sign reversal and
shifts the zero crossing of RH away from d ¼ 0. Intuitively,
for a straight hollow cylinder, the zero crossing would have
to be at d ¼ 0 by symmetry. However, the curvature of the
torus breaks this symmetry.
In conclusion, we have experimentally demonstrated the

possibility of sign reversal of the static Hall coefficient in
chainmail-like three-dimensional metamaterials. Intuitively,
the sign reversal means that one can completely mimic the
electrical properties of p-doped silicon by using micro-
structured n-doped silicon. Mathematically, one can tailor
the sign and magnitude of the off-diagonal elements of the
effective electric conductivity tensor in the plane normal to
the magnetic-field vector. This freedom can be extended
to all off-diagonal elements bygoing fromcubic symmetry to
lower symmetries [24,25]. In this case, an unusual Hall
voltage parallel rather than orthogonal to the magnetic-field
vector may arise. The findings of this work also have
interesting possible implications for the dynamic Hall effect
(or photon-drag effect), which is a second-order nonlinear
optical process that can be nonzero in the presence of

FIG. 4. (a) Hall resistance RH vs separation parameter d as
extracted from data as shown in Fig. 3(b). Each full blue dot
corresponds to one sample and a measurement like in Fig. 3(b);
the open red dots are calculated. The solid curve is a guide to the
eye. Clearly, we find a sign reversal of the Hall resistance and
hence of the Hall coefficient around d ¼ −12 μm. The design
parameters are as in Fig. 3. (b) Corresponding calculated Hall
potential landscape in a part of the central region of the Hall bar
for two different values of d.
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inversion symmetry. Herein, the incident electromagnetic
wave replaces the applied static magnetic field and the
applied static electric field. By using chainmail-like meta-
materials, one could likewise control the sign andmagnitude
of second-harmonic generation or of the photon-drag
current.
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