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1 Introduction

The parameter ε′K/εK is the ratio of the measures of direct and indirect charge-parity

(CP ) violation in the Kaon system. While indirect CP violation is a per-mille effect

in the Standard Model (SM), ε′K is smaller by another three orders of magnitude than

εK , with |ε′K | ∼ O(10−6). A strong suppression by the Glashow-Iliopoulos-Maiani (GIM)

mechanism and an accidental cancellation of leading contributions in the Standard Model

makes ε′K/εK highly sensitive to new physics. The first element of the SM prediction for

ε′K is the calculation of initial conditions for Wilson coefficients and their renormalization

group evolution from the electroweak scale (of the order of W and top mass) down to the

hadronic scale of order 1 GeV, at which hadronic matrix elements are calculated. These

steps purely involve perturbative methods and have been carried out to leading order (LO)

in the strong coupling constant αs in refs. [1–4]. The next-to-leading order (NLO) involves

the electromagnetic coupling αEM ' 1/128 [5–8], the next higher order in αs [9–11], and

order αEMαs [11–13]. In terms of isospin amplitudes ε′K is given by (see e.g. ref. [14])

ε′K
εK

=
ω+√

2 |εK |ReA0

(
1

ω+
ImA2 − (1− Ω̂eff) ImA0

)
, (1.1)
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where AI ≡ 〈(ππ)I |H|∆S|=1
eff |K0〉 are isospin amplitudes and ω+ = (4.53 ± 0.02) × 10−2

(see refs. [14, 15] for the precise definition), |εK | = (2.228 ± 0.011) · 10−3, and ReA0 =

(3.3201 ± 0.0018) × 10−7 GeV are taken from experiment. Ω̂eff = (14.8 ± 8.0) × 10−2

parameterizes isospin-violating contributions [15, 16].

The |∆S| = 1 nonleptonic effective Hamiltonian for weak decays in the Standard Model

is given by [13]

H|∆S|=1
eff =

GF√
2
λu

10∑
i=1

Qi(µ)
(

(1− τ) zi(µ) + τvi(µ)
)

+ H.c. (1.2)

≡ GF√
2
λu

10∑
i=1

Qi(µ) (zi(µ) + τyi(µ)) + H.c., (1.3)

where λu = V ∗usVud and τ = −V ∗tsVtd/ (V ∗usVud). The operator basis Qi comprises ten

operators which are defined in ref. [13]; the current-current operators Q1 and Q2

Q1 = (s̄αuβ)V−A (ūβdα)V−A , Q2 = (s̄u)V−A (ūd)V−A , (1.4)

the QCD-penguin operators Q3 to Q6

Q3 = (s̄d)V−A
∑
q

(q̄q)V−A , Q4 = (s̄αdβ)V−A

∑
q

(q̄βqα)V−A , (1.5)

Q5 = (s̄d)V−A
∑
q

(q̄q)V+A , Q6 = (s̄αdβ)V−A

∑
q

(q̄βqα)V+A , (1.6)

and the QED-penguin operators Q7 to Q10

Q7 =
3

2
(s̄d)V−A

∑
q

eq (q̄q)V+A , Q8 =
3

2
(s̄αdβ)V−A

∑
q

eq (q̄βqα)V+A , (1.7)

Q9 =
3

2
(s̄d)V−A

∑
q

eq (q̄q)V−A , Q10 =
3

2
(s̄αdβ)V−A

∑
q

eq (q̄βqα)V−A , (1.8)

where V ∓ A represents γµ(1 ∓ γ5), α and β denote color indices, and eq is the electric

charge of the quark q. The corresponding Wilson coefficients zi and vi (or yi) serve as

effective couplings to these effective operators.

By virtue of the framework of effective theories, the parameter µ splits short distance

from long distance scales, effectively separating the perturbative high energy regime from

the non-perturbative realm of low energy QCD. Taking up the perturbative part of the

calculation, the Wilson coefficients have been determined through matching calculations

up to next-to-leading order at the scale MW [13]. The calculation of the hadronic matrix

elements, being non-perturbative quantities, is a major challenge and has recently been

performed on the lattice with unprecedented accuracy [17–20].

The combination of these calculations into a prediction for ε′K/εK requires a treat-

ment within renormalization group (RG) improved perturbation theory to sum up large

logarithms. However, it is known that the analytic determination of the required evolution
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matrix at the next-to-leading order suffers from singularities appearing in intermediate

steps of the calculation, which make a computational evaluation highly laborious and com-

plicated. The standard way to solve the NLO RG equations requires the diagonalization of

the LO anomalous dimension matrix γ̂
(0)
s and the NLO correction involves fractions whose

denominators contain the differences of eigenvalues of γ̂
(0)
s . Some of these denominators

vanish and are usually regulated in the numerical evaluation [11, 21]. In ref. [22] an ana-

lytic solution for the RG equations which is free of singularities is presented. This solution

involves the diagonalization of γ̂
(0)
s and gives explicit prescriptions to handle the different

cases in which the formulae of refs. [11, 21] develop singularities.

In this paper, we present a new singularity-free solution which permits an easy and

convenient numerical implementation. Instead of singularities our analytic formula has

undetermined parameters. However, we will show that these spurious parameters cancel

and leave the evolution matrix unambiguous. Unlike the solution of ref. [22] our new

formula requires neither the diagonalization of γ̂
(0)
s nor a distinct treatment of the part of

the RG evolution which involves the spurious singularities. Using our new RG evolution

and the latest lattice results [17–20], we calculate the ε′K/εK in the Standard Model at

next-to-leading order to find a value which is below the experimentally measured quantity

by 2.8σ.

The second objective of this paper is the derivation of a useful formula for the calcu-

lation of new physics contributions to ε′K/εK , in which we evaluate the evolution matrices

for scales far above the electroweak scale. To this end we identify a contribution of or-

der α2
EM/α

2
s in the evolution matrix which can become relevant for studies of TeV-scale

new physics, because αs decreases with increasing scale. We observe an approximately

logarithmic behavior of the evolution matrix as a function of the energy scale above the

electroweak scale.

This paper is organized as follows. In section 2, we briefly review the RG evolution of

the |∆S| = 1 effective Hamiltonian at the next-to-leading order. We give a detailed analysis

of the evolution matrix and its singularities and provide a new analytic solution without

singularities. Then we evaluate ε′K/εK in the Standard Model at the next-to-leading order

in section 3. In section 4, we work out the evolution matrices in the high-energy regime

explicitly for calculations of new physics contributions. The last section is devoted to

conclusions and discussion.

2 Renormalization group evolution of the ∆S = 1 Hamiltonian

In this section, we review the singularities in the RG evolution of the |∆S| = 1 effective

Hamiltonian at the next-to-leading order. Then we generalize the analytic ansatz of the

RG evolution given in the literature and present a solution, which is finite at all stages of

the calculation. Our solution contains free parameters, which we show to cancel from the

evolution matrix, and compare our singularity-free solution with the standard results from

the literature.

– 3 –
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2.1 Singularities in the evolution matrix

The evolution of the Wilson coefficients vi and zi from the W boson mass and the charm

mass respectively to the hadronic scale µ are given by

~v(µ) = Û3(µ, µc)M̂c(µc)Û4(µc,mb)M̂b(mb)Û5(mb,MW)~v(MW), (2.1)

~z(µ) = Û3(µ, µc)~z(µc), (2.2)

where Ûf (µ1, µ2) is the RG evolution matrix from µ2 down to µ1 and f is the number of

the active flavors between these two energy scales. The matrices M̂c,b represent match-

ing matrices between effective theories with different numbers of flavor and are given in

ref. [13]. Although the effect of the running of αEM is numerically negligible for ε′K/εK in

the Standard Model [13], we consider this effect to cover new-physics scenarios with largely

separate scales.

The general form of the evolution matrix is given by [23, 24],

Ûf (µ1, µ2) = Tgs exp

∫ gs(µ1)

gs(µ2)
dg′s

γ̂T (g′s)

β (g′s)
, (2.3)

with the gs-ordering operator Tgs and the anomalous dimension matrix γ̂ and the QCD β

function. The expansions of the latter two quantities and αEM up to NLO read:

γ̂ (gs(µ)) =
αs(µ)

4π
γ̂(0)
s +

αEM(µ)

4π
γ̂(0)
e +

α2
s(µ)

(4π)2 γ̂
(1)
s +

αEM(µ)αs(µ)

(4π)2 γ̂(1)
se , (2.4)

β (gs(µ)) = −gs(µ)

(
αs(µ)

4π
β0 +

α2
s(µ)

(4π)2 β1 +
αs(µ)αEM(µ)

(4π)2
βse1

)
, (2.5)

αEM(µ) = αEM(M)

{
1 +

αEM(M)

αs(µ)

βe0
β0

(
1− αs(µ)

αs(M)

)}−1

, (2.6)

where β0 = 11 − 2f/3, β1 = 102 − 38f/3, βse1 = −8/9(u + d/4), and βe0 = −4/3(4u/3+

d/3+`) are the leading and next-to-leading coefficients of the QCD and QED beta functions,

and u, d, ` are the numbers of the active up-type-quark, down-type-quark, and charged-

lepton flavors (f = u + d). γ̂
(0)
s is the LO QCD anomalous dimension matrix, and the

NLO corrections consist of the three remaining matrices, γ̂
(0)
e , γ̂

(1)
s , and γ̂

(1)
se , which are

the leading QED, next-to-leading QCD, and combined QCD-QED anomalous dimension

matrices, respectively.

The ansatz for the NLO evolution matrix (with µ1 < µ2) is given by [11, 21]

Ûf (µ1, µ2) = K̂(µ1)Û0(µ1, µ2)K̂ ′(µ2), (2.7)

where

K̂(µ1) =
(

1̂ +
αEM

4π
Ĵse

)(
1̂ +

αs(µ1)

4π
Ĵs

)(
1̂ +

αEM

αs(µ1)
Ĵe

)
, (2.8)

K̂ ′(µ2) =

(
1̂− αEM

αs(µ2)
Ĵe

)(
1̂− αs(µ2)

4π
Ĵs

)(
1̂− αEM

4π
Ĵse

)
, (2.9)
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and the LO evolution matrix

Û0(µ1, µ2) = Û0 (αs(µ1), αs(µ2)) = exp

[
γ̂

(0)T
s

2β0
ln
αs(µ2)

αs(µ1)

]
, (2.10)

where the QED contributions to the beta functions (βse1 , β
e
0) are discarded in this subsec-

tion 2.1.

The matrices K̂(µ1) and K̂ ′(µ2) encode the NLO corrections and depend on the number

of active flavors through the beta function and the anomalous dimension matrices. The

matrices Ĵe, Ĵs and Ĵse govern the leading electromagnetic, next-to-leading strong, and

next-to-leading combined strong-electromagnetic contributions to the RG evolution.

Differentiating eqs. (2.7) and (2.3) with respect to gs(µ1) yields the following differential

equation for K̂(gs(µ1)) [9, 23],

∂

∂gs(µ1)
K̂(gs(µ1))− 1

gs(µ1)
K̂(gs(µ1))

γ̂
(0)T
s

β0
=
γ̂T (gs(µ1))

β(gs(µ1))
K̂(gs(µ1)). (2.11)

The traditional ansatz in the literature is to take Ĵe, Ĵs and Ĵse as constant matrices for

any fixed number of flavors. The differential equation (2.11) then implies the following

equations for the matrices Ĵe, Ĵs and Ĵse [11],

Ĵs −

[
Ĵs,

γ̂
(0)T
s

2β0

]
=
β1

β0

γ̂
(0)T
s

2β0
− γ̂

(1)T
s

2β0
, (2.12)

Ĵe +

[
Ĵe,

γ̂
(0)T
s

2β0

]
=
γ̂

(0)T
e

2β0
, (2.13)

[
Ĵse,

γ̂
(0)T
s

2β0

]
=
γ̂

(1)T
se

2β0
+

[
γ̂

(0)T
e

2β0
, Ĵs

]
− β1

β0

γ̂
(0)T
e

2β0
. (2.14)

It is well known, however, that eqs. (2.12) and (2.13) develop singularities in the case

of three flavors. Furthermore, eq. (2.14) is even singular for any number of flavors.

We now show how these singularities arise. For this purpose, it is instructional to

transform eqs. (2.12)–(2.14) into the diagonal basis of γ̂
(0)T
s . This is a common procedure

in the literature since it allows to isolate the singularities and remove them “by hand”.

We stress that this is only for the purpose of a better understanding of the origin of these

singularities. A numerical evaluation of our solution does not require the diagonalisation

of γ̂
(0)T
s .

Upon transforming eqs. (2.12)–(2.14) into the basis where γ̂
(0)T
s,D = V̂ −1γ̂

(0)T
s V̂ is diag-

onal, the solutions of eqs. (2.12) and (2.13) take the form(
V̂ −1Ĵs,eV̂

)
ij

=
· · ·

2β0 ∓
(

(γ̂
(0)T
s,D )jj − (γ̂

(0)T
s,D )ii

) . (2.15)

We find singular solutions if the difference of two eigenvalues of γ̂
(0)T
s is equal to 2β0, which

is the case for three flavors: γ̂
(0)T
s,D has the elements 2 and −16 and 2βf=3

0 = 18, so that

– 5 –
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one denominator in eq. (2.15) vanishes with a generally non-zero numerator. When we

transform eq. (2.14) into the same basis(
V̂ −1ĴseV̂

)
ij

=
· · ·

(γ̂
(0)T
s,D )jj − (γ̂

(0)T
s,D )ii

, (2.16)

we find singular results for i = j and also for degenerate eigenvalues.

Nonetheless, once all relevant terms have been joined together, all these singularities

cancel and the evolution matrix Ûf (µ1, µ2) becomes finite [11]. This procedure, however,

requires taking care of each singularity by hand by adopting the aforementioned diagonal

basis, then regularizing the singularities and keeping track of them until the end of the

calculation. Indeed, Buras et al. have regulated some of the singularities by a logarithmic

term [13]. Subsequently, Adams and Lee have proposed a systematical solution for all

singularities [25], which, however, still requires the adoption of a certain diagonal basis.

The freedom of choosing the order of the eigenvalues on the diagonal of γ̂
(0)T
s,D involves

an ambiguity. This can pose a problem in computational implementations, since it is

absolutely necessary to use the same diagonal basis as Adams and Lee do, which is not the

one which orders eigenvalues by their numerical value. The solution in ref. [22] follows the

same line, after diagonalizing γ̂
(0)T
s,D several different cases must be considered: whenever

two eigenvalues differ by an integer multiple of 2β0 a special implementation is required.

In the next subsection we propose a solution which does not rely on a specific basis and

permits a much faster, easier and, in particular, more stable computational algorithm.

2.2 Removing the singularities

In order to eliminate the singularities, we generalize the Roma group’s ansatz [11, 21] by

adding a logarithmic scale dependence to the Ĵ matrices used in eqs. (2.8), (2.9) in the

following way

Ĵs → Ĵs(αs(µ)) = Ĵs,0 + Ĵs,1 lnαs(µ),

Ĵe → Ĵe(αs(µ)) = Ĵe,0 + Ĵe,1 lnαs(µ),

Ĵse → Ĵse(αs(µ)) = Ĵse,0 + Ĵse,1 lnαs(µ) + Ĵse,2 ln2 αs(µ). (2.17)

In addition, we extend eqs. (2.8), (2.9) as follows:

K̂(µ1, µ2) =
(

1̂ +
αEM

4π
Ĵse(αs(µ1))

)(
1̂ +

αs(µ1)

4π
Ĵs(αs(µ1))

)

×

(
1̂ +

αEM

αs(µ1)
Ĵe(αs(µ1))

+

(
αEM

αs(µ1)

)2(
Ĵee(αs(µ1))− βe0

β0

(
1− αs(µ1)

αs(µ2)

)
Ĵe(αs(µ1))

))
, (2.18)

K̂ ′(µ2) =

(
1̂− αEM

αs(µ2)
Ĵe(αs(µ2))−

(
αEM

αs(µ2)

)2(
Ĵee(αs(µ2))−

(
Ĵe(αs(µ2))

)2
))

×
(

1̂− αs(µ2)

4π
Ĵs(αs(µ2))

)(
1̂− αEM

4π
Ĵse(αs(µ2))

)
, (2.19)
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which somewhat resembles the NNLO QCD result of ref. [26]. Here we use the abbreviation

αEM ≡ αEM(µ2) and

Ĵee(αs(µ)) = Ĵee,0 + Ĵee,1 lnαs(µ). (2.20)

We systematically include O(α2
EM/α

2
s) corrections in the RG evolution. This contribution

has not been considered in the literature. Although appearing as O(α2
EM), these terms

can become sizable at high energies because of the awkward 1/α2
s dependence, making

them numerically comparable to O(αs). We note that this contribution does not receive

contributions from higher orders of the anomalous dimension matrix in eq. (2.4), but only

appears at the next-to-leading order.

With these generalizations we can now solve the differential equation in eq. (2.11).

Inserting our ansatz into eq. (2.11) we obtain the following nine matrix equations for the

nine constant matrices Ĵ :

Ĵs,1 −

[
Ĵs,1,

γ̂
(0)T
s

2β0

]
= 0, (2.21)

Ĵs,0 −

[
Ĵs,0,

γ̂
(0)T
s

2β0

]
=
β1

β0

γ̂
(0)T
s

2β0
− γ̂

(1)T
s

2β0
− Ĵs,1, (2.22)

Ĵe,1 +

[
Ĵe,1,

γ̂
(0)T
s

2β0

]
= 0, (2.23)

Ĵe,0 +

[
Ĵe,0,

γ̂
(0)T
s

2β0

]
=
γ̂

(0)T
e

2β0
+ Ĵe,1, (2.24)

[
Ĵse,2,

γ̂
(0)T
s

2β0

]
= 0, (2.25)

[
Ĵse,1,

γ̂
(0)T
s

2β0

]
=

[
γ̂

(0)T
e

2β0
, Ĵs,1

]
+ 2Ĵse,2, (2.26)

[
Ĵse,0,

γ̂
(0)T
s

2β0

]
=
γ̂

(1)T
se

2β0
+

[
γ̂

(0)T
e

2β0
, Ĵs,0

]
− β1

β0

γ̂
(0)T
e

2β0
− βse1

β0

γ̂
(0)T
s

2β0
+ Ĵse,1, (2.27)

Ĵee,1 +

[
Ĵee,1,

γ̂
(0)T
s

4β0

]
=
γ̂

(0)T
e

4β0
Ĵe,1 +

1

2

βe0
β0
Ĵe,1, (2.28)

Ĵee,0 +

[
Ĵee,0,

γ̂
(0)T
s

4β0

]
=
γ̂

(0)T
e

4β0
Ĵe,0 +

1

2

βe0
β0
Ĵe,0 +

1

2
Ĵee,1. (2.29)

These equations yield finite solutions for Ĵ . As an effect of the constant matrices Ĵs(,e,se),1,

the analytic singularities of eqs. (2.12)–(2.14) do not occur, because for the problematic

matrix elements now both sides of the equations are zero. We stress that one can solve

eqs. (2.21) to (2.29) without diagonalizing γ̂
(0)T
s ; these equations are mere systems of

linear equations for the 100 elements of Ĵs,e,ee,0,1 and Ĵse,0,1,2 each, which are quickly

– 7 –
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solved by computer algebra programs [27]. However, there are multiple solutions in some

of the inhomogeneous equations, because the corresponding homogeneous equations have

a non-trivial null space. As a consequence, these solutions for Ĵ depend on arbitrary

parameters, e.g. there are 16 undetermined components in the case of three active flavors.

These parameters, however, do not produce any ambiguity in physical results. In the next

subsection, we will show that they completely drop out after combining terms of the same

order and the evolution matrix in eq. (2.7) does not depend on these parameters. Therefore,

one can set them to arbitrary values from the beginning. In our calculation of ε′K/εK we

kept the parameters arbitrary as a crosscheck of the consistency of our calculation.

The procedure to determine the evolution matrix from µ2 to µ1 requires algebraically

solving the matrix equations (2.21)–(2.29) for a given number of active flavors and inserting

the solutions into the full evolution matrix in eq. (2.7). We use 10×10 anomalous dimension

matrices γ̂
(0)
s , γ̂

(0)
e , γ̂

(1)
s and γ̂

(1)
se [10–12, 24]. The solutions for the matrices Ĵ in the case

of three active flavors (with two active leptons) in naive dimensional regularization (NDR)

scheme with MS subtraction, are given as follows:

– 8 –
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Ĵs,0 =



−55/324 223/108 0 0 0 0 0 0 0 0

223/108 −55/324 0 0 0 0 0 0 0 0

−0.7392 −0.3061 −2.999 −0.6652 1.457 0.2171 0 0 0.3061 0.7392

0.3814 −0.1853 2.838 1.037 −0.05711 −0.004122 0 0 0.1853 −0.3814

0.3990 0.3264 1.850 1.444 −2.514 2.750 0 0 −0.3264 −0.3990

−1.181 −1.776 −7.095 −6.691 0.6263 4.528 0 0 1.776 1.181

0 0 0 0 0 0 −679/648 67/24 0 0

0 0 0 0 0 0 ts 3749/648 0 0

0 0 0 0 0 0 0 0 −55/324 223/108

0 0 0 0 0 0 0 0 223/108 −55/324



, (2.30)

Ĵs,1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −10/27 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



, (2.31)
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Ĵe,0 =



−4/27 0 0 0 0 0 0 0 0 0

0 −4/27 0 0 0 0 0 0 0 0

−0.001708 0.004962 0.002631 0.009301 −0.03258 −0.08924 0.0004431 0 −0.07795 0.002792

−0.004694 −0.001225 0.007331 0.01080 −0.02781 −0.07666 −0.006646 0 −0.01071 −0.08131

0.0004270 0.003537 −0.001407 0.001703 −0.008641 −0.02351 0.2102 2/5 0.001344 0.004454

−0.001829 −0.004273 0.002924 0.0004802 0.004780 0.01280 −0.04904 −8/135 −0.004205 −0.006649

2/15 −2/135 2/135 −2/15 59/270 19/90 te 3te − 50/81 26/135 2/45

−0.02605 0.005587 −0.01083 0.02081 −0.02530 0.06671 −te/3 + 38/729 −te + 8/27 −0.03366 −0.002023

0.09942 0.02428 −0.1174 −0.04438 −0.1994 −0.5362 2/35 −8/45 0.05967 0.05861

0.02623 0.02072 0.04112 −0.1125 −0.1951 −0.5158 −2/35 −4/15 0.01879 −0.06080



, (2.32)

Ĵe,1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −4/243 −4/81 0 0

0 0 0 0 0 0 4/729 4/243 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



, (2.33)
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Ĵse,0 =



3/8 9/8 0 0 0 0 0 0 0 0
−9/8 −3/8 0 0 0 0 0 0 0 0
−26.08 20.94 −25.20 22.07 4.847 8.717 16.02 0.00499 −26.20 20.63
21.87 −25.07 31.46 −15.23 −5.751 −8.314 7.459 0.05014 16.21 −30.05
2.409 2.535 −1.122 −0.9967 0.06192 −0.1911 2ts/5+142.6 0.02577 4.175 4.300
−1.581 −1.594 0.7172 0.7036 0.1306 0.1116 −8ts/135−51.94 −2.417 −2.729 −2.743
−15.68 −11.02 −59.91 −55.25 −309.3 8.235 0.08482 0.2545 7.761 11.53

−2ts/15+5.611 2ts/135+2.955 −2ts/135+19.78 2ts/15+17.12 −59ts/270+102.8 −19ts/90−3.773 −28ts/243+0.4857 −0.08482 −26ts/135−1.473 −2ts/45−4.129
27.12 −19.23 45.81 −0.03029 −8.332 −7.461 −8ts/45+1.621 −0.3044 18.81 −27.48
−21.04 26.43 −13.67 34.30 2.682 10.09 −4ts/15+3.035 0.8012 −26.07 21.45



+ V̂



tse1 0 0 0 0 0 0 0 0 0

0 tse2 0 0 0 0 0 0 0 0

0 0 tse3 tse4 0 0 0 0 0 0

0 0 tse5 tse6 0 0 0 0 0 0

0 0 0 0 tse7 0 0 0 0 0

0 0 0 0 0 tse8 0 0 0 0

0 0 0 0 0 0 tse9 tse10 0 0

0 0 0 0 0 0 tse11 tse12 0 0

0 0 0 0 0 0 0 0 tse13 0

0 0 0 0 0 0 0 0 0 tse14



V̂ −1, (2.34)

Ĵse,1 =



−1.485 −0.2623 0 0 0 0 0 0 0 0

−0.2623 −1.485 0 0 0 0 0 0 0 0

−0.3914 0.9178 −0.5086 0.8458 0.1026 0.1994 0 0 −1.075 0.8226

0.9599 −0.2650 1.225 −0.04511 −0.1655 −0.1095 0 0 0.6962 −1.117

−0.002595 −0.04387 −0.09552 −0.1368 0.1728 −0.03447 −0.1481 0 0.04387 0.002595

0.05517 0.000282 0.1661 0.1112 −0.2131 −0.3630 0.02195 0 −0.000282 −0.05517

0 0 0 0 0 0 −4ts/81 + 1.985 0 0 0

0.04938 −0.005487 0.005487 −0.04938 0.08093 0.07819 8ts/243− 0.9268 4ts/81− 0.9234 0.07133 0.01646

0.8624 −0.3145 0 0 0 0 0.06584 0 −0.1909 −0.7342

−0.3145 0.8624 0 0 0 0 0.09877 0 −0.7342 −0.1909



, (2.35)
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Ĵse,2 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 20/2187 0 0 0

0 0 0 0 0 0 −40/6561 −20/2187 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



, (2.36)

Ĵee,0 =



40/729 0 0 0 0 0 0 0 0 0
0 40/729 0 0 0 0 0 0 0 0

−0.002519 −0.003958 0.000955 −0.005971 0.03395 0.09227 12te/27083+0.001188 36te/27083+0.01576 0.02318 −0.002951
0.000504 −0.001464 −0.006771 −0.003253 0.03333 0.09097 −180te/27083+0.01104 −540te/27083+0.03144 0.004142 0.02686
0.005995 −0.003625 0.002241 −0.007379 0.01478 0.02625 8026te/104463−0.1123 8026te/34821−0.2909 0.007872 −0.001747
−0.001130 0.002451 −0.001997 0.001584 −0.003039 −0.002932 −9178te/313389+0.03477 −9178te/104463+0.08429 −0.000697 0.002884
−0.02801 0.01209 −0.01239 0.02771 −0.09800 −0.1928 −94te/243+0.06658 −94te/81+0.2660 −0.03582 0.004286
0.008577 −0.003761 0.004577 −0.007761 0.01725 0.01575 110te/729−0.03402 110te/243−0.1293 0.01058 −0.001761
−0.02099 −0.01189 0.02183 −0.01845 0.1185 0.2984 22te/189−0.005245 22te/63+0.02511 0.01247 −0.008604
−0.009687 −0.01325 −0.02604 0.01978 0.1295 0.3422 2te/63+0.03922 2te/21+0.1510 −0.001510 0.02511


, (2.37)

Ĵee,1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −16/2193723 −16/731241 0 0

0 0 0 0 0 0 80/731241 80/243747 0 0

0 0 0 0 0 0 −32104/25384509 −32104/8461503 0 0

0 0 0 0 0 0 36712/76153527 36712/25384509 0 0

0 0 0 0 0 0 376/59049 376/19683 0 0

0 0 0 0 0 0 −440/177147 −440/59049 0 0

0 0 0 0 0 0 −88/45927 −88/15309 0 0

0 0 0 0 0 0 −8/15309 −8/5103 0 0



, (2.38)
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where ts, te, and tse1,2,...,14 are the arbitrary parameters of the matrix equations. Our con-

vention for the matrix V̂ is (γ̂
(0)T
s,D )1,1 ≤ (γ̂

(0)T
s,D )2,2 ≤ · · · ≤ (γ̂

(0)T
s,D )10,10. Although eq. (2.34)

makes explicit reference to the the diagonal basis, the term involving V̂ completely drops

out from the evolution matrix (see next subsection), and thereby our solution for the latter

does not require any matrix diagonalisation. Our eqs. (2.18)–(2.29) hold in any opera-

tor basis. Moreover, if an ordinary four-dimensional basis transformation is applied to

eqs. (1.4)–(1.8), the corresponding RG matrices Ĵ... can be simply found by transforming

those in eqs. (2.30)–(2.38) in the same way as γ̂
(0)T
s . If the basis transformation is D-

dimensional, meaning that it involves evanescent operators, the Ĵ... matrices undergo an

additional scheme transformation [26, 28]. We collect the solutions for more than three

active flavors in appendix A.

Substituting the generalized ansatz of eqs. (2.18), (2.19) into eq. (2.7), we find the full

next-to-leading order evolution matrix,

Ûf (α1, α2) = Û0 (α1, α2) +
α1

4π
ÛQCD (α1, α2) +

αEM

α1
ÛQED (α1, α2)

+
αEM

4π
ÛQCD-QED (α1, α2) +

(
αEM

α1

)2

ÛQED-QED (α1, α2)

+O
(
α2

EM

αs
, α2

s, αsαEM, α
2
EM

)
, (2.39)

where we use the abbreviation α1,2 ≡ αs(µ1,2) for µ1 < µ2 and αEM ≡ αEM(µ2) with

ÛQCD (α1, α2) = Ĵs(α1)Û0 (α1, α2)− α2

α1
Û0 (α1, α2) Ĵs(α2), (2.40)

ÛQED (α1, α2) = Ĵe(α1)Û0 (α1, α2)− α1

α2
Û0 (α1, α2) Ĵe(α2), (2.41)

ÛQCD-QED (α1, α2) = Ĵse(α1)Û0 (α1, α2)− Û0 (α1, α2) Ĵse(α2)

+ Ĵs(α1)ÛQED (α1, α2)− α2

α1
ÛQED (α1, α2) Ĵs(α2), (2.42)

ÛQED-QED (α1, α2) = Ĵee (α1) Û0 (α1, α2)− α1

α2
ÛQED (α1, α2) Ĵe (α2)

−
(
α1

α2

)2

Û0 (α1, α2) Ĵee (α2)− βe0
β0

(
1− α1

α2

)
Ĵe(α1)Û0 (α1, α2) .

(2.43)

2.3 Cancellation of spurious parameters

We now present some details of the cancellation of the arbitrary parameters. First, we take

a look at the O(αs) part of the evolution matrix in eq. (2.39),

α1

4π
ÛQCD (α1, α2) =

α1

4π
Ĵs,0Û0(α1, α2)− α2

4π
Û0(α1, α2)Ĵs,0

+
α1 lnα1

4π
Ĵs,1Û0(α1, α2)− α2 lnα2

4π
Û0(α1, α2)Ĵs,1. (2.44)
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In the three-flavor regime, the matrix Ĵs,0 in eq. (2.30) contains an undetermined

component ts. Since the first and second term of ÛQCD in eq. (2.44) depend on different

scales, one naively could argue that the cancellation of any dependence has to take place

for each term independently of the other. However, we will show that this is not the case.

We locate the undetermined parameter in [Ĵs,0]8,7 = ts. The matrix product

Ĵs,0Û0(α1, α2) naturally contains a dependence on ts in the 8th row. Actually, this de-

pendence does cancel for all elements except for [Ĵs,0U0(α1, α2)]8,7 ⊃ (α2/α1)1/9ts. The

matrix product Û0(α1, α2)Ĵs,0 in the second term of ÛQCD naturally obtains the parameter

ts in the 7th column, and again the product consistently cancels this dependence for all

entries except for [Û0(α1, α2)Ĵs,0]8,7 ⊃ (α2/α1)−8/9ts. The full cancellations is thus only

achieved by taking both terms of the first line of eq. (2.44) into account and takes the form[α1

4π
ÛQCD (α1, α2)

]
8,7
⊃
[α1

4π
Ĵs,0Û0(α1, α2)− α2

4π
Û0(α1, α2)Ĵs,0

]
8,7

⊃ 1

4π

(
α1

(
α2

α1

) 1
9

− α2

(
α2

α1

)− 8
9

)
ts

= 0. (2.45)

The reason that causes the singularity to arise — eigenvalues of γ̂
(0)T
s differing by

2β0 in eq. (2.15) — is also responsible for the cancellation of the undetermined parameter

between the high and low scales. The difference of two eigenvalues of γ̂
(0)T
s by 2β0 causes a

difference of 1 in the exponents of (α2/α1) and indeed the spectrum of γ̂
(0)T
s /2β0 contains

both 1/9 and −8/9 as eigenvalues. Thus, this difference allows the prefactors α1 and α2 of

the first two terms in eq. (2.44) to exactly cancel these terms between the different scales

and entirely independent on the actual size of the scales.

Next, we focus on the arbitrary parameter te which appears in the matrix Ĵe,0 in

eq. (2.32) in the three flavor regime and must cancel in the ÛQED part of the evolution

matrix. Let us denote the te-dependent piece of Ĵe,0 with t̂e, where [t̂e]7,7 = te, [t̂e]7,8 = 3te,

[t̂e]8,7 = −te/3, [t̂e]8,8 = −te, and the other components are zero. Using the matrix V̂ it

can be written as t̂e = V̂ t̂′eV̂
−1, where [t̂′e]10,1 = −te and the other components are zero.

Then, in the evolution matrix, the te dependence takes the following form:

αEM

α1
ÛQED (α1, α2) ⊃ αEM

(
1

α1
Ĵe,0Û0 (α1, α2)− 1

α2
Û0 (α1, α2) Ĵe,0

)
⊃ αEMV̂

(
1

α1
t̂′eÛ0,D (α1, α2)− 1

α2
Û0,D (α1, α2) t̂′e

)
V̂ −1, (2.46)

where Û0,D (α1, α2) is defined as

Û0 (α1, α2) = V̂ diag

(α2

α1

)(
γ̂
(0)T
s,D

)
1,1

2β0

,

(
α2

α1

)(
γ̂
(0)T
s,D

)
2,2

2β0

, . . . ,

(
α2

α1

)(
γ̂
(0)T
s,D

)
10,10

2β0

 V̂ −1

(2.47)

≡ V̂ Û0,D (α1, α2) V̂ −1. (2.48)
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All components except for (10, 1) of the parenthesis in eq. (2.46) are zero trivially. The

cancellation of the (10, 1) component then proceeds in the same way as in the QCD case:[
1

α1
t̂′eÛ0,D (α1, α2)− 1

α2
Û0,D (α1, α2) t̂′e

]
10,1

=

(
1

α1

(
α2

α1

)− 8
9

− 1

α2

(
α2

α1

) 1
9

)
· (−te)

= 0. (2.49)

Therefore, the te dependence of ÛQED vanishes.

The cancellation of the parameters tse1,2,...,14 in the second matrix product of eq. (2.34)

is more trivial. Let us define the second matrix product as V̂ t̂seV̂
−1. In the evolution

matrix, the matrix t̂se appears only in the ÛQCD-QED part and the cancellation can be

understood in the following way:

αEM

4π
ÛQCD-QED (α1, α2) ⊃ αEM

4π

(
Ĵse,0Û0(α1, α2)− Û0(α1, α2)Ĵse,0

)
(2.50)

⊃ αEM

4π
V̂
[
t̂se, Û0,D (α1, α2)

]
V̂ −1

= 0, (2.51)

where we use the fact that (γ̂
(0)T
s,D )3,3 = (γ̂

(0)T
s,D )4,4 and (γ̂

(0)T
s,D )7,7 = (γ̂

(0)T
s,D )8,8 are pairwise

degenerate eigenvalues for any number of active flavors.

On the contrary, the cancellation of ts arising in ÛQCD-QED and te in ÛQED-QED is

highly non-trivial. The ts dependence, for example, resides in Ĵs,0, Ĵse,0 and Ĵse,1 which

appear in the matrix ÛQCD-QED. Logarithmic αs terms are accompanied by Ĵse,1 and by the

matrix products ĴsÛQED and ÛQEDĴs. Although we do not give an analytic explanation

for these cancellations in this paper, we have checked that taking the sum of all terms in

eqs. (2.42) and (2.43) eliminates any ts and te dependence of ÛQCD-QED and ÛQED-QED.

Now we have shown that the evolution matrix in eq. (2.39) is independent of the

undetermined parameters, so that we can set them to arbitrary values from the beginning.

These parameters are directly related to the singular components in eqs. (2.15), (2.16) of

the standard solution in the literature. Therefore, our method automatically regularizes

all singularities and these parameters correspond to the choices of the finite pieces of the

regulated expressions, which can therefore be viewed as scheme parameters.

We have also found that the cancellation of the parameters occurs between the high

and low scales. This insight is especially important when considering new physics at a high

scale. The Wilson coefficients for a given model are typically calculated at leading order

only. In the evolution to the scale of 1 GeV appropriate for Kaon physics one then usually

neglects the corrections to K̂ ′ in eq. (2.7) justified by the smallness of αs(µ2) compared to

αs(µ1). In the typical applications in flavor physics, which do not involve corrections of

order αEM, this procedure is scheme-independent. We here show that such a treatment is

inconsistent in view of the cancellation of the singularity regulating scheme parameters.

This inconsistency does not appear in the QCD and QED parts which are nonsingular

at f = 4, 5, 6. However the combined QCD-QED part, in which singularities persist for all

numbers of flavors, will yield results depending on unphysical arbitrary scheme parameters
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if parts of the evolution matrix are discarded in the described way. Instead, the pieces of

K̂ ′ which depend on the scheme parameters tse must be consistently retained.

2.4 Validation of the logarithmic contribution

Finally, let us comment on the logarithmic contributions Ĵs,1 and Ĵe,1. At the O(αs) part,

we have the following logarithmic contributions to the evolution matrix,

Ûf (α1, α2) ⊃ α1

4π
ÛQCD (α1, α2)

⊃ 1

4π

(
α1 lnα1Ĵs,1Û0 (α1, α2)− α2 lnα2Û0 (α1, α2) Ĵs,1

)
(2.52)

=
α1

4π

(
α2

α1

) 1
9

ln
α1

α2
Ĵs,1. (2.53)

In the Ĵs,1 matrix, the only nonzero component is [Ĵs,1]8,7 = −10/27. Using a calculation

parallel to the one in the previous subsection, we find that the only nonzero component

in the matrix product Ĵs,1Û0 (α1, α2) is [Ĵs,1Û0 (α1, α2)]8,7 = (α2/α1)1/9 · (−10/27), and

similarly [Û0 (α1, α2) Ĵs,1]8,7 = (α2/α1)−8/9 · (−10/27). Then, the (8, 7) component in

the parenthesis in eq. (2.52) becomes −(10/27)α1(α2/α1)1/9 ln(α1/α2), and we arrive at

eq. (2.53). We find that this result is consistent with eq. (40) of ref. [25], where, in order

to regulate the singularity, a small regulator ε is introduced in the eigenvalues of γ̂
(0)T
s .

With a similar calculation for the O(αEM/αs) part we obtain the following term,

Ûf (α1, α2) ⊃ αEM

α1
ÛQED (α1, α2)

⊃ αEM

(
1

α1
lnα1Ĵe,1Û0 (α1, α2)− 1

α2
lnα2Û0 (α1, α2) Ĵe,1

)

= αEM

(
1

α1
lnα1

(
α2

α1

)− 8
9

− 1

α2
lnα2

(
α2

α1

) 1
9

)
Ĵe,1

=
αEM

α1

(
α2

α1

)− 8
9

ln
α1

α2
Ĵe,1. (2.54)

This logarithmic contribution is also consistent with eq. (2.28) of ref. [13].

2.5 Higher orders in αEM and comparison with ref. [22]

The RG evolution in the pioneering papers [5, 6, 13] discards all terms which are quadratic

or higher-order in αEM. Our solution in eq. (2.39) is correct to order α2
EM/α

2
s, but neglects

terms of order α2
EM/αs and higher. The extra term is numerically unimportant for the SM

analysis, but matters in studies of new-physics contributions generated at very high scales,

where αs is small. We come back to this point in section 4.2. The RG evolution derived

in ref. [22] considers terms quadratic in αEM, including terms of order α2
EM/αs which we

neglect. In particular, the µ dependence of αEM affects the RG evolution at order α2
EM/α

2
s

and is therefore also included in ref. [22]. While ref. [22] addresses B decays, the derived

formulae equally apply to ε′K and were used in ref. [14]. We argue that the inclusion of
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α2
EM/αs terms in the RGE does not improve the prediction of ε′K/εK , because other terms

of the same order are not included in the standard NLO solution: for instance, at this

order the two-loop pure QED anomalous dimension matrix γ̂
(1)
e must be added to γ̂ (gs(µ))

in eq. (2.4).

Another issue are the ∆I = 1/2 operators

Q11 = (s̄αdα)V−A
(
b̄βbβ

)
V−A , Q12 = (s̄αdβ)V−A

(
b̄βbα

)
V−A , (2.55)

which are generated by electroweak box diagrams, so that their Wilson coefficients are of

order αEM. In agreement with ref. [6] we find a small impact of these operators, contributing

(−0.07×10−4) to ε′K/εK . Furthermore, this contribution dominantly comes from A2 which

is entered by Q11,12 through RG mixing triggered by γ̂
(0)
e and is thus O(α2

EM/αs) and to

be discarded. While the contribution of Q11,12 to A0 is formally part of the NLO solution

for ε′K/εK , it is numerically completely negligible (contributing −0.01× 10−4).

We close this section by comparing our solution of the RG equations in eqs. (2.17)–

(2.29) to the one in ref. [22]. Actually, the latter also regulates all the singularities by

logarithmic terms, and uses the diagonalisation of γ̂
(0)
s as described before eq. (2.15). The

matrices Ĵ... transform into Ĵ...,D ≡ V̂ −1Ĵ...V̂ when passing to the diagonal basis. Therefore

eqs. (2.21)–(2.29) also hold with the replacements γ̂
(0)
s → γ̂

(0)
s,D and Ĵ... → Ĵ...,D. In this

form one can most easily compare our result with eq. (47) of ref. [22]. The Û0, ÛQCD,

ÛQED, ÛQCD-QED, and ÛQED-QED correspond to O(ω0λ0), O(ω), O(λ), O(ωλ), and O(λ2)

terms in ref. [22], respectively. We have checked that our formulae of the RG evolution

matrices are numerically equivalent to those in ref. [22]. We find that our solution is easier

to implement and leads to a faster numerical evaluation.

3 ε′K/εK in the Standard Model at next-to-leading order

In this section, we evaluate ε′K/εK in the Standard Model at next-to-leading order, using

the evolution matrix derived in the previous section.

We calculate the Wilson coefficients vi and zi in eqs. (2.1) and (2.2) with the method-

ology of ref. [13]. Throughout this paper, the MS-NDR regularization scheme is used. For

the next-to-leading order RG evolution of the Wilson coefficients, we use the singularity-

free evolution matrix in eq. (2.39) and systematically discard higher-order contributions.

Table 1 shows our result of the Wilson coefficients at µ = 1.3 GeV, where yi ≡ vi − zi. We

decompose yi into the LO contribution O(1) and the four O(αEM/αs, αs, αEM, α
2
EM/α

2
s)

NLO terms, where O(1) refers to tree-level W -boson exchange combined with the one-gluon

anomalous dimension matrix γ̂
(0)
s in the RG evolution. Here we take αs(MZ) = 0.1185,

αEM(MW) = 1/128, mt = 163.3 GeV, mb = 4.18 GeV, and µc = 1.4 GeV, which is the

threshold scale between three and four flavor effective theories in eqs. (2.1) and (2.2). Note

that we include ln(m2
c/µ

2
c) contributions in the charm quark threshold correction zi(µc) in

eq. (2.2), where we use mc = 1.275 GeV [29]. To calculate αs(µ) we use RunDec:v1.0 with

two-loop accuracy [30].

Next we take the hadronic matrix elements from a recent lattice QCD calcula-

tion [17–20], using the real parts (CP -conserving parts) of the isospin amplitudes AI=0,2 =
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i zi (µ) yi (µ) O(1) O(αEM/αs) O(αs) O(αEM) O(α2
EM/α

2
s)

1 −0.3903 0 0 0 0 0 0

2 1.200 0 0 0 0 0 0

3 0.0044 0.0275 0.0254 0.0001 0.0007 0.0012 0

4 −0.0131 −0.0566 −0.0485 −0.0002 −0.0069 −0.0009 0

5 0.0039 0.0068 0.0124 0.0001 −0.0059 0.0001 0

6 −0.0128 −0.0847 −0.0736 −0.0003 −0.0099 −0.0008 0

7/αEM 0.0040 −0.0321 0 −0.1116 0 0.0760 0.0035

8/αEM 0.0019 0.1148 0 −0.0227 0 0.1366 0.0009

9/αEM 0.0051 −1.3815 0 −0.1267 0 −1.2581 0.0034

10/αEM −0.0013 0.4883 0 0.0217 0 0.4672 −0.0006

Table 1. Wilson coefficients at µ = 1.3 GeV, where the 7–10th components are divided by

αEM(MW). yi is decomposed into the LO contribution and the individual NLO corrections.

〈(ππ)I=0,2

∣∣∣H|∆S|=1
eff

∣∣∣K0〉 as additional constraints [13]. These amplitudes have been mea-

sured very precisely [19],

ReA0 = (3.3201± 0.0018)× 10−7 GeV, (3.1)

ReA2 = (1.4787± 0.0031)× 10−8 GeV. (3.2)

Since the real parts are dominated by Standard-Model tree-level coefficients z2 (see table 1),

they can be used to fix one of the hadronic matrix elements 〈(ππ)I |Qi (µ)|K0〉 ≡ 〈Qi (µ)〉I .
〈Q2〉0 dominates the real part of A0, but contributes to the imaginary part only through

the operator Fierz relations1

Q4 = −Q1 +Q2 +Q3, Q10 = Q2 +
1

2
(Q1 −Q3) . (3.3)

〈Q1〉0 is the second largest contribution and the remaining matrix elements are almost neg-

ligible. The situation is more handy in the case of A2, where the real part is parameterized

entirely by 〈Q2〉2 due to the fact that 〈Q1〉2 = 〈Q2〉2 in pure QCD [6, 13]. In our analysis

we derive values of 〈Q2〉0 and 〈Q2〉2 at the scale µ from the experimental measurements of

ReA0 and ReA2, respectively.2

1The Fierz relation for Q4 is modified by O(αs/4π) corrections [13], but these contributions are numer-

ically small [14].
2On the other hand, once one introduces the ratio

q =
z+(µ) (〈Q2〉0 + 〈Q1〉0)

z−(µ) (〈Q2〉0 − 〈Q1〉0)
with z±(µ) = z2(µ)± z1(µ), (3.4)

one can calculate ImAI/ReAI without using the fit of 〈Q2〉I to the data. Ref. [14] uses this strategy with the

parameter range 0 ≤ q ≤ 0.1. Basically, the difference with our method (corresponding to the q-dependent

terms in ref. [14]) only affects numerically subleading contributions (the i = 3, 4, 9, 10 components of

ImA0/ReA0). In either method the hadronic uncertainties are reduced compared to the choice to take all

matrix elements from lattice.
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The decay amplitude of K → (ππ)I=0 has been computed using a 2 + 1 flavor lattice

QCD simulation at the renormalization scale µ = 1.531 GeV [20]. In order to combine

these matrix elements with the Wilson coefficients evaluated in the three-flavor regime —

that is, at a scale below the charm quark mass — we need to evolve the hadronic matrix

elements down to a scale below µc. The isospin amplitude is given as

AI =
GF√

2
λu〈 ~Q(µ1)T 〉I ~C(µ1)

=
GF√

2
λu〈 ~Q(µ1)T 〉I Û3 (µ1, µ2) ~C(µ2)

=
GF√

2
λu〈 ~Q(µ2)T 〉I ~C(µ2), (3.5)

where µ1 < µ2 and Ci(µ) ≡ zi(µ) + τyi(µ). In the final line, we use the fact that the

physical amplitude AI is independent of the renormalization scale, so that

〈 ~Q(µ1)T 〉I = 〈 ~Q(µ2)T 〉I
(
Û3 (µ1, µ2)

)−1
. (3.6)

In practice, we first evaluate the hadronic matrix elements for the I = 0 states at

µ = 1.3 GeV from the lattice results [20] using a three flavor evolution matrix, cf. eq. (3.6).

Here we use α
(3)
s (1.531 GeV) = 0.353388 as in the lattice calculation of ref. [20]. Then

we determine 〈Q2(µ)〉0 (and 〈Q4,10(µ)〉0 through eq. (3.3)) from the experimental value of

ReA0 using the Wilson coefficients shown in table 1. We have taken the CKM parameters

from CKMfitter [31]. The results are shown in table 2a.

The decay amplitude of K → (ππ)I=2 has also been computed using a 2+1 flavor lattice

QCD simulations, albeit at the scale µ = 3.0 GeV [17–19]. According to ref. [18], one can

extract the lattice results in an operator basis renormalized by the MS-NDR regularization

scheme. From ref. [19], which is the latest lattice QCD calculation for I = 2, we obtain

MMS–NDR
(27,1) (3 GeV) = 3

√
3〈Q1(3 GeV)〉2 = 0.0502± 0.0031 (GeV)3, (3.7)

MMS–NDR
(8,8) (3 GeV) = 2

√
3〈Q7(3 GeV)〉2 = 0.993± 0.038 (GeV)3, (3.8)

MMS–NDR
(8,8)mix

(3 GeV) = 2
√

3〈Q8(3 GeV)〉2 = 4.547± 0.275 (GeV)3, (3.9)

where the results of the (/q, /q) intermediate scheme are taken as central value, while the

results of the (γµ, γµ) scheme are taken as uncertainty. Using the three flavor evolution

matrix in eq. (3.6), we obtain the hadronic matrix elements at µ = 1.3 GeV for the I = 2

states. Here, we use the lattice input αs value: α
(3)
s (3 GeV) = 0.24544 [18]. Then, from the

experimental value of ReA2 we determine 〈Q2(µ)〉2 (and 〈Q1,9,10(µ)〉2 through eq. (3.3),

〈Q1(µ)〉2 = 〈Q2(µ)〉2 and Q9 = 1
2 (3Q1 −Q3) which is a Fierz relation). The results are

shown in table 2b. Note that through the evolution matrices ÛQED and ÛQCD-QED this pro-

cedure generates small nonzero values of 〈Q3–6(µ)〉2, which are regarded as non-electroweak

penguin contributions to ImA2. Since the lattice simulations have not calculated them at

3.0 GeV, one should not use them at the lower hadronic scale µ. On the other hand,

they have been calculated with chiral perturbation theory [15, 16] and are included in the
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i 〈Qi (µ)〉MS–NDR
0 (GeV)3

1 −0.144± 0.046

2 0.105± 0.015

3 −0.040± 0.068

4 0.210± 0.069

5 −0.179± 0.068

6 −0.338± 0.121

7 0.154± 0.065

8 1.540± 0.372

9 −0.197± 0.070

10 0.053± 0.038

(a)

i 〈Qi (µ)〉MS–NDR
2 (GeV)3

1 0.01006± 0.00002

2 0.01006± 0.00002

3 —

4 —

5 —

6 —

7 0.127± 0.012

8 0.852± 0.052

9 0.01509± 0.00003

10 0.01509± 0.00003

(b)

B
(1/2)
1 (µ) 35.5± 11.2

B
(1/2)
2 (µ) 5.17± 0.71

B
(1/2)
3 (µ) −3.27± 5.60

B
(1/2)
5 (µ) 0.88± 0.33

B
(1/2)
6 (µ) 0.56± 0.20

B
(1/2)
7 (µ) 0.24± 0.10

B
(1/2)
8 (µ) 0.98± 0.24

B
(3/2)
1 (µ) 0.437± 0.001

B
(3/2)
7 (µ) 0.37± 0.03

B
(3/2)
8 (µ) 0.77± 0.05

(c)

Table 2. The hadronic matrix elements (a), (b) and B parameters (c) extracted from the lattice

calculations for I = 0 [20] and I = 2 [19]. The experimental values of the real parts of the amplitudes

have been used [19]. The large errors result from the quoted lattice errors on the hadronic matrix

elements. The experimental errors are small in comparison. We take µ = 1.3 GeV.
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isospin-violating corrections Ω̂eff of eq. (1.1).3 Therefore, we have decided to omit these

contributions at the hadronic scale µ.

To compare with the literature, we also extract B parameters from the hadronic matrix

elements in table 2c. These B parameters are defined as in ref. [14]:

〈Q6 (µ)〉0 = −4

√
3

2

(
m2
K

ms(µ) +md(µ)

)2

(FK − Fπ)B
(1/2)
6 (µ) , (3.10)

〈Q8 (µ)〉2 =
√

3

(
m2
K

ms(µ) +md(µ)

)2

FπB
(3/2)
8 (µ) . (3.11)

All other B parameters are defined in ref. [13]. For running quark masses, we use the

lattice results ms(2 GeV) = 93.8(2.4) MeV and md(2 GeV) = 4.68(16) MeV with the three-

flavor RG evolution [32]. Since the uncertainty from the strange quark mass is already

included in the lattice results of 〈Qi〉I as one of the systematic errors, we do not include it

in the estimation of uncertainties of the B parameters. The B parameters are consistent

with ref. [14], and we also confirmed the almost µ-independent behavior of B
(1/2)
6 (µ) and

B
(3/2)
8 (µ) [13]. Note that in the following analysis we will directly use the hadronic matrix

elements 〈Qi〉I rather than the B parameters.

Finally we combine the short-distance and long-distance contributions. The master

equation of ε′K/εK is given in eq. (1.1). Since the isospin-violating correction by the elec-

troweak penguins to ImA0 are already subtracted from Ω̂eff as 〈Q7–10〉0, one should evaluate

the last term in eq. (1.1) as(
1− Ω̂eff

)
ImA0 =

(
1− Ω̂eff

)
(ImA0)others +

1

a
(ImA0)EWP , a = 1.017, (3.12)

with the two terms representing the contributions from 〈Q3–6〉0 and 〈Q7–10〉0, respec-

tively [14]. In addition, the experimental values of ReA0 in eq. (3.1) and |εK | =

2.228 × 10−3 [29] are used. Our result for ε′K/εK in the Standard Model at the next-

to-leading order is(
ε′K
εK

)
SM-NLO

= (1.06± 4.66Lattice ± 1.91NNLO ± 0.59IV ± 0.23mt)× 10−4. (3.13)

The first error originates from the lattice-QCD simulations [19, 20] and is dominated by the

uncertainty stemming from 〈Q6〉0 (which is ±4.52×10−4) (see figure 2c). The uncertainties

from 〈Q3〉0 through eq. (3.3) and from 〈Q8〉2 are subleading (±0.77×10−4 and ±0.56×10−4,

respectively).

The second uncertainty comes from perturbative higher-order corrections, which we

estimate in two ways. Firstly, we estimate uncertainties from higher-order corrections to

the Wilson coefficients by calculating the RG evolution of the Wilson coefficients with a

different method. Instead of using the analytic evolution matrices formulated in section 2,

we solve the corresponding set of differential equations numerically.

d~v(µ)

d lnµ
= γ̂T (gs(µ))~v(µ),

d~z(µ)

d lnµ
= γ̂T (gs(µ))~z(µ). (3.14)

3The non-electroweak penguin contributions are calculated at µ = 1.0± 0.3 GeV [15, 16].
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(a) µc dependence of ε′K/εK .
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(b) µ dependence of ε′K/εK .
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(c) µ dependence of ImA0.
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Figure 1. (a) The µc dependence of ε′K/εK in the range 1.3<µc<3.0 GeV with µ=1.3 GeV. The µ

dependence of ε′K/εK (b), ImA0 (c) and ImA2 (d) in the range 0.8<µ<1.4 GeV with µc=1.4 GeV.

Since this RG evolution contains higher-order (namely O(α2
s, αsαEM)) corrections, the re-

sult is interpreted as a conservative estimate of the uncertainty in the short-distance con-

tributions. As a result, we find that the Wilson coefficients are shifted by about 10 percent

compared with table 1, and we obtain ε′K/εK = −0.32×10−4. Hence, we estimate that the

uncertainty from higher-order corrections is ±1.38× 10−4. Secondly, we have investigated

the µc and µ dependences of ε′K/εK . In figure 1a, we show the µc dependence of ε′K/εK
in the range 1.3 < µc < 3.0 GeV with fixed µ = 1.3 GeV. In figure 1b, we vary µ with

µc fixed at 1.4 GeV. We find that the µ dependence is small, ±0.77 × 10−4, while the µc
dependence is slightly larger, ±1.09 × 10−4. The scale µ enters the prediction in three

ways: first, the decomposition of the isospin-violating corrections in eq. (3.12) is imposed

at this scale. Second, the omitted non-electroweak penguin contributions to ImA2 depend

on µ, and third, the experimental values of ReA0 and ReA2 to fix 〈Q2(µ)〉2 and 〈Q2(µ)〉0
are imposed at the hadronic scale µ. In this process, we double-count the uncertainty from

the isospin-violating contributions, however, we find that these uncertainties are very small

compared with the uncertainties stemming from lattice and thus we have not investigated

them any further. We show the µ dependences of ImA0 (and not the µ dependence of

(1 − Ω̂eff) ImA0) and ImA2 in figures 1c and 1d, respectively. We add the three uncer-

tainties in quadrature. Strictly speaking, this double-counts some pieces of the unknown

higher-order corrections.
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The third uncertainty in eq. (3.13) stems from isospin-violating corrections [15, 16],

such as strong isospin violation (mu 6= md), non-electroweak penguin transitions in the

I = 2 state and ∆I = 5/2 corrections [33, 34]. The uncertainty is dominated by the non-

electroweak penguin contributions to ImA2, however, the uncertainty in ε′K/εK is small.

The last uncertainty in eq. (3.13) comes from the running mass of the top quark mt(mt)

= 163.3± 2.7 GeV [35]. Since the other uncertainties we have not elaborated here are neg-

ligibly small according to ref. [14], we have omitted them in our error estimate. Therefore,

our final result is (
ε′K
εK

)
SM-NLO

= (1.06± 5.07)× 10−4, (3.15)

which is consistent with refs. [14] and [20]. On the other hand, it is well-known that the

experimental value is much larger [36–41]. The current world average is [29],

Re

(
ε′K
εK

)
exp

= (16.6± 2.3)× 10−4. (3.16)

We observe that our prediction of ε′K/εK in the Standard Model is 2.8σ below the experi-

mental value. This small Standard Model prediction and thus the large tension is supported

by the large-Nc “dual QCD” approach [42–47], which is an entirely different approach to

low energy QCD than lattice gauge theory. There has been a dispute concerning the role of

final-state interactions (FSI) for the size of 〈Q6〉0, with the chiral perturbation community

favouring an enhancement of 〈Q6〉0 by FSI [48] and an opposing view of the large-Nc com-

munity [47]. Modern lattice calculations do include FSI [49] and will speak the final word

on FSI. Since the main uncertainty of the SM prediction for ε′K/εK comes from statistical

and systematical errors in the lattice calculation of the hadronic matrix elements for A0,

the expected progress in this field will sharpen the Standard Model prediction in the near

future [20].

We note that in absence of a lattice result for the hadronic matrix element and the

smallness of the corresponding Wilson coefficient, we omit the contribution from the chro-

momagnetic penguin operators Q8g = msgs/(16π2)sT aσµν(1−γ5)dGµν a (and the opposite-

chirality analogue Q̃8g). According to ref. [14], chromomagnetic penguins contribute |0.2–

0.7| × 10−4,4 to ε′K/εK , which rather small compared with the QCD-penguin and QED-

penguin contributions (see figure 2c). Even if we add this contribution as +0.7 × 10−4 to

the central value (to the higher-order uncertainty) of ε′K/εK , the discrepancy still persists

at 2.7 (2.8)σ.

In figure 2 we show the composition of ImA0, ImA2 and ε′K/εK with respect to the

operator basis. We observe that the positive dominant contribution to ε′K/εK comes from

Q6 while Q9 is subdominant. The dominant negative contribution comes from Q8 while

Q4 is subdominant. Remarkably, their sum almost cancels at next-to-leading order. This

leads to an extremely small central value of the Standard Model prediction for ε′K/εK .

4The sign depends on the sign of the hadronic matrix element. The preliminary lattice calculation of

〈π|Q8g|K〉 [50] and calculations in the chiral quark model [51–53] imply that a contribution to ε′K/εK is

positive at the leading order. However, next-to-leading order contributions to 〈(ππ)I=0|Q8g|K0〉 are expected

to mess up the leading order estimate because of a parametric enhancement ∝ 1/Nc ·m2
K/m

2
π [54, 55].
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Figure 2. Composition of ImA0, ImA2 and ε′K/εK with respect to the operator basis. We take

µ = 1.3 GeV. In subfigure 2c, the right (left) side of the dashed line represents positive (negative)

contributions.

Although the results of the Wilson coefficients by themselves are slightly different

when compared to the result of ref. [14], the products with the hadronic matrix elements

are well consistent.5 The main difference between this reference and our analysis is in the

subleading contributions. In ref. [14], the hadronic matrix elements 〈Q3(µ)〉0, 〈Q5(µ)〉0
and 〈Q7(µ)〉0 are set to be 0 as central values, while we have evaluated them from the

lattice data. The numerical difference in ε′K/εK is ∼ −1 × 10−4. We also find that the

contribution of O(α2
EM/α

2
s) terms, which has not been considered in the literature so far,

only contributes to ε′K/εK as little as −0.10 × 10−4. This term, however, can be relevant

in new-physics models with TeV-scale isospin violation.

4 Beyond the Standard Model

4.1 Preliminaries

Upon integrating out heavy degrees of freedom in models of new physics, new contributions

to Wilson coefficients of the Standard Model operators Qi (and their opposite-chirality

analogues Q̃i) arise.

As we have shown in the previous section, the Standard Model prediction of ε′K/εK
is significantly below the experimental data. Although the discrepancy is only 2.8σ at

present, its confirmation with higher significance by future lattice results may establish a

footprint of new physics. Indeed, several new physics models can alleviate the ε′K/εK ten-

sion, like generic flavor-violating Z and Z ′ models [56–58], 331 models [59–61], the Littlest

Higgs model with T -parity [62], flavor-violating additional pseudo-scalar models [63], and

the Minimal Supersymmetric Standard Model [64, 65].

Since ε′K/εK is linear in the Wilson coefficients, the SM and new-physics contributions

are simply additive:

ε′K
εK

=

(
ε′K
εK

)
SM

+

(
ε′K
εK

)
NP

. (4.1)

5Indeed, the values of y6〈Q6〉0 and y8〈Q8〉2 are in good agreement with ref. [14].
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Using the following effective Hamiltonian for the new physics contributions,

H|∆S|=1
eff, NP =

GF√
2

10∑
i=1

(
Qi(µ)si(µ) + Q̃i(µ)s̃i(µ)

)
+ H.c., (4.2)

where the opposite-chirality operators Q̃i are found from Qi by interchanging V − A ↔
V +A, the new physics contribution is given by(

ε′K
εK

)
NP

=
GFω+

2
∣∣εexp
K

∣∣ReAexp
0

×
[

1

ω+
〈 ~Q(µ)T 〉2 Im

[
~s(µ)− ~̃s(µ)

]
− 〈 ~Q(µ)T 〉0(1− Ω̂eff) Im

[
~s(µ)− ~̃s(µ)

]]
=

GFω+

2
∣∣εexp
K

∣∣ReAexp
0

[
1

ω+
〈 ~Q(µ)T 〉2 − 〈 ~Q(µ)T 〉0(1− Ω̂eff)

]
Im
[
~s(µ)− ~̃s(µ)

]
,

=
GFω+

2
∣∣εexp
K

∣∣ReAexp
0

〈 ~Qε′K (µ)T 〉 Im
[
~s(µ)− ~̃s(µ)

]
=

GFω+

2
∣∣εexp
K

∣∣ReAexp
0

〈 ~Qε′K (µ)T 〉Û (µ, µNP) Im
[
~s(µNP)− ~̃s(µNP)

]
, (4.3)

where the isospin-violating correction in eq. (3.12) is

(
1− Ω̂eff

)
ij

=


0.852 (i = j = 1–6)

0.983 (i = j = 7–10)

0 (i 6= j),

(4.4)

and we employed 〈Q̃i(µ)〉I = −〈Qi(µ)〉I and defined 〈 ~Qε′K 〉 as

〈 ~Qε′K (µ)T 〉 ≡ 1

ω+
〈 ~Q(µ)T 〉2 − 〈 ~Q(µ)T 〉0(1− Ω̂eff). (4.5)

The evolution matrix in eq. (4.3) is given by

Û (µ, µNP) ≡ Û3 (µ, µc) M̂c (µc) Û4 (µc,mb) M̂b(mb)Û5 (mb,mt) M̂t(mt)Û6 (mt, µNP) , (4.6)

Since the matching matrices depend only on the difference of the number of active up-

and down-type quark flavors, we take M̂t(m) = M̂c(m). Note that the RG evolution of the

opposite-chirality operators is the same as for the Standard Model operators and that these

two sets of operators do not mix with each other. We also note that the chromomagnetic

operators are omitted in our analysis.

In this section, we give a useful formula for the new physics contributions to ε′K/εK
considering the analytic solutions of the next-to-leading order evolutions matrices and the

hadronic matrix elements we derived. We note that we omit the weak boson exchanges

in the RG evolutions from µNP to MW, where µNP represents the matching scale between

the new physics and the effective Hamiltonian in eq. (4.2). Like the photon exchanges

one should treat weak boson exchanges as next-to-leading contributions. Note that large
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isospin violation in new-physics models enters ε′K/εK through the initial conditions of the

Wilson coefficients and not through the RG evolution.

We also should comment on the running of αEM. Above MW scale, we use e(µNP) =

g(µNP)g′(µNP)/
√
g2(µNP) + g′2(µNP), and βe0 = βg

′

0 / cos θ2
W(MZ), where βg

′

0 = −53/9 (µ <

mt) or −41/6 (µ > mt). Strictly speaking, we have to consider the running of θW for

consistency. However, we have checked that the numerical effect for an O(10 TeV) scale of

new physics is small. Therefore we use a fixed value: sin2 θW = 0.231.

4.2 Counting of orders

In a full next-to-leading order estimation, we have to consider the leading order term O(1)

arising from the one-loop QCD RG evolution as well as the terms defined as next-to-

leading order, which are: the one-loop QED correction O(αEM/αs), the QCD two-loop

correction O(αs), and the two-loop term including a photon and a gluon at O(αEM).

The next-to-leading order RG evolution matrix has an additional O(α2
EM/α

2
s) correction,

which appears only at this order. Hereafter, we will always refer to these orders when

labelling perturbative quantities of the Wilson coefficients and the evolution matrices as

~s0, ~se, ~ss, ~sse, ~see and Û0, Ûe, Ûs, Ûse, Ûee, respectively.

When we multiply two quantities which are given by a perturbation series, we have

to carefully keep track of and consistently discard higher orders of the perturbative series.

This is a subtle and cumbersome feature which complicates mathematical expressions. In

this context, equations of the RG evolution should be more of a symbolic character which

are exact in the limit of expanding the corresponding quantities to all orders. Since we

necessarily truncate the perturbation expansion of the Wilson coefficients as well as the

evolution matrices at some point, a product of them at next-to-leading order is represented

as follows:

〈 ~Qε′K (µ)T 〉
(
~s(µ)− ~̃s(µ)

)
= 〈 ~Qε′K (µ)T 〉Û(µ,µNP)

(
~s(µNP)− ~̃s(µNP)

)
(NLO)

= 〈 ~Qε′K (µ)T 〉
(
Û0 + Ûe + Ûs + Ûse + Ûee

)(
~s0 + ~se + ~ss + ~sse+~see

)
= 〈 ~Qε′K (µ)T 〉

 Û0~s0︸︷︷︸
=:~s0(µ)

+Û0~se + Ûe~s0︸ ︷︷ ︸
=:~se(µ)

+Û0~ss + Ûs~s0︸ ︷︷ ︸
=:~ss(µ)

+Û0~sse + Ûe~ss + Ûs~se + Ûse~s0︸ ︷︷ ︸
=:~sse(µ)

+Ûe~se + Ûee~s0+Û0~see︸ ︷︷ ︸
=:~see(µ)

+O
(
α2

EM

αs
,α2
s,αsαEM,α

2
EM

)

= 〈 ~Qε′K (µ)T 〉

~s0(µ) + ~se(µ) + ~ss(µ) + ~sse(µ) + ~see(µ)︸ ︷︷ ︸
=:~sNLO(µ)

+O
(
α2

EM

αs
,α2
s,αsαEM,α

2
EM

)

= 〈 ~Qε′K (µ)T 〉~sNLO(µ) +O
(
α2

EM

αs
,α2
s,αsαEM,α

2
EM

)
. (4.7)

– 26 –



J
H
E
P
1
2
(
2
0
1
6
)
0
7
8

Here we have suppressed the opposite-chirality coefficients ~̃s and the arguments of

Û(µ, µNP) and ~s(µNP) for better readability. This procedure defines ~sNLO(µ) as a next-to-

leading order quantity, where higher orders have been discarded consistently.

In view of undetermined Wilson coefficients, it is beneficial to arrange the terms above

according to the Wilson coefficients evaluated at the new physics scale as

〈 ~Qε′K (µ)T 〉~s(µ)
(NLO)

= 〈 ~Qε′K (µ)T 〉
[(
Û0 + Ûe + Ûs + Ûse + Ûee

)
~s0

+
(
Û0 + Ûe + Ûs

)
~se +

(
Û0 + Ûe

)
~ss + Û0~sse+Û0~see

]
, (4.8)

where we have again suppressed ~̃s and the arguments of Û(µ, µNP) and ~s(µNP). For given

numerical values for the hadronic matrix elements at a low scale and with our evolution

matrices connecting µNP with the low scale µ, we can determine the weights which multiply

the Wilson coefficients Im[~s(µNP)− ~̃s(µNP)] in eq. (4.8) for any chosen scale of new physics.

4.3 Evolution matrices at the TeV scale

Above the electroweak scale we observe an approximately logarithmic behavior of the

evolution matrix Û(µ, µNP) in eq. (4.6) with increasing energy scale. This observation

allows us to derive an approximation for the evolution matrix in the high energy region,

which has an error of only a few percent. We give approximate functions for all components

of the evolution matrix linking the new physics scale to the hadronic scale. Cast in the form

Û0,e,s,se,ee(µ, µNP) = Û1,fit + Û2,fit ln
µNP

1 TeV
, (4.9)

we combine them in terms of eq. (4.8).

Using the analytic evolution matrices evaluated in section 2 and the next-to-leading

order matching matrices M̂c,b,t, we obtain

Û0 (µ, µNP) + Ûe (µ, µNP) + Ûs (µ, µNP) + Ûse (µ, µNP) + Ûee (µ, µNP)

' Û0,1,fit + Û0,2,fit ln
µNP

1 TeV
, (4.10)

for the O(1) Wilson coefficients at the µNP scale, and

Û0 (µ, µNP) + Ûe (µ, µNP) + Ûs (µ, µNP) ' Ûe,1,fit + Ûe,2,fit ln
µNP

1 TeV
, (4.11)

Û0 (µ, µNP) + Ûe (µ, µNP) ' Ûs,1,fit + Ûs,2,fit ln
µNP

1 TeV
, (4.12)

Û0 (µ, µNP) ' Ûse,1,fit + Ûse,2,fit ln
µNP

1 TeV
, (4.13)

for the O(αEM/αs), O(αs), O(αEM) (or O(α2
EM/α

2
s)) Wilson coefficients at the µNP scale,

respectively. Here µ = 1.3 GeV and µc = 1.4 GeV are taken, and the fitting matrices Ûfit

are given in appendix B. We find that these approximate evolution matrices are highly

accurate in the range of 500 GeV–10 TeV.
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In order to estimate which Wilson coefficients are expected to gain large enhancements

through the RG evolution, we calculate weights for the Wilson coefficients at the µNP scale.

We regard the coefficients of 〈 ~Qε′K (µ)T 〉
∑

i Ûi (µ, µNP) (~s(µNP) − ~̃s(µNP)) in eq. (4.8) as

weights of the Wilson coefficients.

In table 3, we list the coefficient 〈 ~Qε′K (µ)T 〉(Û0+Ûe+Ûs+Ûse+Ûee) for the O(1) Wilson

coefficients at the scale µNP = 1, 3, 5 and 10 TeV in units of (GeV)3, where the hadronic

matrix elements of table 2 are taken. Similarly, the weights of the O(αEM/αs), O(αs),

and O(αEM) (or O(α2
EM/α

2
s)) Wilson coefficients are given in tables 4, 5, and 6, respec-

tively. Note that these values are not obtained by fitting but using the exact analytic

evolution matrices. We observe that these values are of course dominated by Û0, with

the sub-dominant contribution stemming from Ûe because of the 1/ω+ enhancement and

Ûs. We also find, that the largest weights come in the 7 and 8 components, and they are

further enhanced through the RG evolution in the high energy regime. Compared with the

coefficients at the weak scale,

〈 ~Qε′K (µ)T 〉Û0(µ,MW)

= (0.37, −0.02, 0.12, −0.29, 0.34, 0.83, 15.33, 54.09, 0.53, 0.08) , (4.14)

〈 ~Qε′K (µ)T 〉
(
Û0 + Ûe + Ûs + Ûse + Ûee

)
(µ, 1 TeV)

= (0.27, −0.06, 0.05, −0.19, 0.08, 0.31, 26.16, 88.61, 0.12, −0.08) , (4.15)

〈 ~Qε′K (µ)T 〉
(
Û0 + Ûe + Ûs + Ûse + Ûee

)
(µ, 10 TeV)

= (0.20, −0.11, −0.04, −0.15, −0.15, −0.08, 34.19, 113.60,−0.20, −0.22) , (4.16)

the weights of the 7 and 8 components increase by 50–100% through the RG evolution

at the scale of 1–10 TeV. If one omits the NLO correction Ûe + . . . Ûee in eq. (4.15), one

finds 22.77 and 76.05 for the 7th and 8th element (see table 6), which shows the impact

of the NLO corrections on these elements. Although the enhancement factor from the RG

evolution has been pointed out before in refs. [58, 60] within a leading-order analysis, it

has not been considered in most of the literature. We emphasize that this factor should

be included when one studies TeV-scale new-physics contributions to the QED-penguin

operators in order to alleviate the ε′K/εK discrepancy.

5 Conclusions and discussion

Based on the first complete lattice calculation of the hadronic matrix elements for the

K → ππ decay, we have evaluated the Standard-Model prediction of ε′K/εK at the next-

to-leading order. It is well known that the analytic RG evolution matrices for the ∆S = 1

nonleptonic effective Hamiltonian at the next-to-leading order contains singularities in in-

termediate steps of the calculation. These singularities make practical calculation laborious

even though appropriate regulators disappear from the final (physical) result. In this pa-

per, we have generalized the analytic ansatz of the Roma group [11, 21] to solve the RG

equations and derive a singularity-free solution by adding logarithmic terms to the ansatz.
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Coefficients 〈 ~Qε′K (µ)T 〉
(
Û0 + Ûe + Ûs + Ûse + Ûee

)
µNP [TeV] 1 3 5 10

s0,1 − s̃0,1 0.265 0.236 0.221 0.199

s0,2 − s̃0,2 −0.062 −0.085 −0.095 −0.108

s0,3 − s̃0,3 0.045 0.006 −0.014 −0.044

s0,4 − s̃0,4 −0.193 −0.178 −0.168 −0.153

s0,5 − s̃0,5 0.081 −0.016 −0.067 −0.145

s0,6 − s̃0,6 0.305 0.147 0.058 −0.076

s0,7 − s̃0,7 26.16 29.97 31.76 34.19

s0,8 − s̃0,8 88.61 100.46 106.02 113.60

s0,9 − s̃0,9 0.117 −0.024 −0.097 −0.201

s0,10 − s̃0,10 −0.084 −0.147 −0.177 −0.219

Table 3. The coefficient 〈 ~Qε′K (µ)T 〉(Û0 + Ûe + Ûs + Ûse + Ûee) for the O(1) Wilson coefficients at

the scale µNP in units of (GeV)3, where µ = 1.3 GeV.

Coefficients 〈 ~Qε′K (µ)T 〉
(
Û0 + Ûe + Ûs

)
µNP [TeV] 1 3 5 10

se,1 − s̃e,1 0.290 0.267 0.255 0.237

se,2 − s̃e,2 −0.076 −0.101 −0.112 −0.127

se,3 − s̃e,3 0.090 0.065 0.051 0.030

se,4 − s̃e,4 −0.234 −0.228 −0.222 −0.213

se,5 − s̃e,5 0.144 0.066 0.023 −0.042

se,6 − s̃e,6 0.423 0.301 0.230 0.120

se,7 − s̃e,7 26.29 30.14 31.93 34.38

se,8 − s̃e,8 88.77 100.67 106.24 113.85

se,9 − s̃e,9 0.216 0.101 0.041 −0.045

se,10 − s̃e,10 −0.096 −0.162 −0.193 −0.236

Table 4. The coefficient 〈 ~Qε′K (µ)T 〉(Û0 + Ûe + Ûs) for the O(αEM/αs) Wilson coefficients at the

scale µNP in units of (GeV)3, where µ = 1.3 GeV.

As a novel feature of our solution compared to refs. [22, 25] we do neither require the

diagonalization of the LO anomalous dimension matrix nor case-by-case implementations

for different eigenvalues of this matrix. Instead, the different cases are encoded in the

Ĵ matrices given in eqs. (2.30)–(2.38) and appendix A. The singular nature of the RG

equations leads to the presence of spurious parameters which cancel between the high-scale
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Coefficients 〈 ~Qε′K (µ)T 〉
(
Û0 + Ûe

)
µNP [TeV] 1 3 5 10

ss,1 − s̃s,1 0.288 0.266 0.254 0.236

ss,2 − s̃s,2 −0.086 −0.111 −0.122 −0.136

ss,3 − s̃s,3 0.096 0.071 0.058 0.037

ss,4 − s̃s,4 −0.219 −0.208 −0.200 −0.188

ss,5 − s̃s,5 0.091 0.004 −0.043 −0.113

ss,6 − s̃s,6 0.264 0.119 0.038 −0.086

ss,7 − s̃s,7 22.30 25.42 26.88 28.86

ss,8 − s̃s,8 75.45 85.00 89.47 95.57

ss,9 − s̃s,9 0.208 0.092 0.032 −0.055

ss,10 − s̃s,10 −0.108 −0.173 −0.204 −0.246

Table 5. The coefficient 〈 ~Qε′K (µ)T 〉(Û0 + Ûe) for the O(αs) Wilson coefficients at the scale µNP in

units of (GeV)3, where µ = 1.3 GeV.

Coefficients 〈 ~Qε′K (µ)T 〉Û0

µNP [TeV] 1 3 5 10

sse,1 − s̃se,1 0.391 0.401 0.406 0.412

sse,2 − s̃se,2 −0.075 −0.098 −0.108 −0.121

sse,3 − s̃se,3 0.154 0.167 0.173 0.181

sse,4 − s̃se,4 −0.356 −0.387 −0.402 −0.421

sse,5 − s̃se,5 0.448 0.495 0.517 0.546

sse,6 − s̃se,6 1.126 1.251 1.309 1.388

sse,7 − s̃se,7 22.77 26.06 27.60 29.70

sse,8 − s̃se,8 76.05 85.80 90.38 96.62

sse,9 − s̃se,9 0.556 0.568 0.574 0.582

sse,10 − s̃se,10 0.004 −0.027 −0.040 −0.058

Table 6. The coefficient 〈 ~Qε′K (µ)T 〉Û0 for the O(αEM) and O(α2
EM/α

2
s) Wilson coefficients at the

scale µNP in units of (GeV)3, where µ = 1.3 GeV.

and low-scale NLO terms in the RG evolution matrix and thereby do not produce any

ambiguity and play the role of scheme parameters with respect to the regularization of

the singularities. Thus we have explicitly proven that all singularities are automatically

treated in the proper way without the need for a manual regularization of the evolution

matrix. This feature also leads to a subtlety whenever the NLO evolution matrix is com-

– 30 –



J
H
E
P
1
2
(
2
0
1
6
)
0
7
8

bined with LO initial conditions for the Wilson coefficients, as one usually does in studies

of new-physics contributions to ε′K .

Using the improved RG evolution matrices and applying the recent lattice results,

we have calculated ε′K/εK in the Standard Model at the next-to-leading order. Our final

results is ε′K/εK = (1.06± 5.07)×10−4, which is 2.8σ below the measured value. Our result

is consistent with the recent literature and highlights a tension between the Standard-

Model prediction and experiment. The uncertainty is dominated by the lattice result

of 〈(ππ)0|Q6|K0〉. Therefore, upcoming improvements of lattice calculations will reveal

whether this tension really calls for new physics or not.

We have also evaluated the evolution matrices in the high energy region for calculations

of new physics contributions to ε′K/εK . To this end we have further obtained an easy-to-use

approximate formula for the RG evolution matrices in the TeV region at the next-to-leading

order and have also calculated the weights for each of the Wilson coefficients at the scale of

new physics. We observe that the largest weights come in the 7 and 8 components of the

Wilson coefficients and that they are further enhanced through the RG evolution between

electroweak and TeV scales. Here we confirm the feature noticed at LO in refs. [58, 60] and

find a further enhancement by the NLO corrections to the evolution matrices. Especially

the Wilson coefficients of the QED-penguin operators at the scale of 1–10 TeV increase by

50–100% compared with the Wilson coefficients at the weak scale.
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A Solutions for the matrices Ĵ

In this appendix, we summarize the solutions for the matrices Ĵ of eqs. (2.21)–(2.29). Here

we set all arbitrary parameters to be zero, which does not affect the evolution matrix in

eq. (2.39). We find that the matrices Ĵs,1, Ĵe,1, Ĵse,2 and Ĵee,1 are zero matrices in the case

where the active number of flavours is four, five or six.
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In the case of four active quark and three active lepton flavors, the matrices Ĵ are given as follows:

Ĵs,0 =



−0.05587 1.848 0 0 0 0 0 0 0 0

1.848 −0.05587 0 0 0 0 0 0 0 0

−0.9365 −0.4668 −4.736 −2.337 0.003212 0.3418 0.0008031 0.08546 −0.4697 0.3586

0.5649 −0.07649 3.954 2.101 2.963 −0.1944 0.7408 −0.04860 0.6414 −0.3081

0.4272 0.3745 2.458 1.908 −3.758 2.824 −0.6655 0.01002 0.05269 −0.1638

−1.279 −1.705 −8.527 −8.045 −11.11 5.288 −5.422 −0.3542 0.4257 −0.09234

0 0 0 0 0 0 −1.096 2.784 0 0

0 0 0 0 0 0 10.58 6.705 0 0

0 0 0 0 0 0 0 0 −0.05587 1.848

0 0 0 0 0 0 0 0 1.848 −0.05587



, (A.1)

Ĵe,0 =



−0.16 0 0 0 0 0 0 0 0 0

0 −0.16 0 0 0 0 0 0 0 0

0.003439 −0.005106 0.001425 −0.01567 0.03486 0.09318 −0.006889 −0.02519 −0.07039 −0.007484

−0.0005069 −0.01002 0.006128 −0.01290 0.01379 0.05192 −0.01036 0.006656 −0.004585 −0.1036

0.005392 −0.006428 −0.002926 −0.02657 0.07003 0.1814 0.1252 0.1139 0.01764 −0.006001

−0.003848 −0.0005921 0.003105 0.009616 −0.03212 −0.07626 −0.01869 0.05272 −0.01310 −0.006584

0.1939 −0.1130 0.1686 −0.4453 1.036 2.138 0.1791 −0.4654 0.4974 −0.1164

−0.04539 0.03811 −0.04301 0.1240 −0.2759 −0.5575 0.01411 0.2606 −0.1147 0.05233

0.1096 0.02356 −0.01178 −0.02391 −0.1192 −0.5136 0.1171 −0.2515 0.1747 0.08262

0.03175 0.02141 0.08054 −0.1001 −0.1933 −0.5465 −0.08608 −0.4136 0.05499 −0.04569



, (A.2)

Ĵse,0 =



0.375 1.125 0 0 0 0 0 0 0 0

−1.125 −0.375 0 0 0 0 0 0 0 0

−6.983 4.245 −14.00 8.408 3.891 5.925 15.05 0.5512 −13.32 8.650

4.789 −6.528 14.16 −7.925 −4.057 −6.102 5.913 −0.09229 6.279 −15.36

5.844 4.699 22.01 19.72 86.73 −2.892 121.9 −0.9073 6.526 4.236

−1.550 −2.109 −6.160 −7.277 −27.45 1.337 −42.88 −8.161 −1.571 −2.688

−16.91 −11.78 −84.30 −74.62 −347.6 11.87 −86.80 3.237 −5.914 2.873

4.544 3.345 26.74 24.34 110.6 −6.837 26.53 −1.799 0.2636 −2.134

7.741 −3.157 27.85 6.262 −0.2248 −5.260 −0.06204 −1.963 11.01 −11.03

−3.806 7.758 −3.113 20.22 8.580 7.661 2.683 3.178 −11.43 11.46



, (A.3)
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Ĵse,1 =



−1.437 −0.3260 0 0 0 0 0 0 0 0

−0.3260 −1.437 0 0 0 0 0 0 0 0

−0.1961 0.4893 −0.6832 0.6795 0.2602 0.1364 0.06504 0.03410 −0.9651 0.9651

0.5214 −0.09977 1.000 −0.2338 −0.05872 −0.01202 −0.01468 −0.003004 0.9009 −0.9009

0.05525 0.004740 0.2305 0.1295 1.006 −0.09577 0.06746 −0.02394 0.05052 −0.05052

0.01468 0.006783 0.07229 0.05649 −0.7178 −0.8597 −0.08158 −0.1054 0.007898 −0.007898

0 0 0 0 0 0 0.7365 0 0 0

0 0 0 0 0 0 −0.3915 −0.4379 0 0

0.4798 −0.07969 0 0 0 0 0 0 0.002400 −0.5651

−0.07969 0.4798 0 0 0 0 0 0 −0.5651 0.002400



, (A.4)

Ĵee,0 =



0.09387 0 0 0 0 0 0 0 0 0

0 0.09387 0 0 0 0 0 0 0 0

−0.007568 0.004171 −0.003074 0.01400 −0.02073 −0.04983 0.009393 0.05187 0.02577 0.005510

−0.003805 0.008022 −0.01301 0.01704 −0.002762 −0.01491 0.02298 0.05596 −0.004908 0.06248

0.006342 −0.003123 0.01278 −0.006150 0.002694 −0.01347 −0.08904 −0.1721 0.01264 −0.006294

−0.001112 0.003255 −0.006809 0.001925 0.007354 0.02220 0.02320 0.02432 0.000069 0.008803

−0.08221 0.08779 −0.06815 0.2718 −0.6678 −1.605 0.02205 0.3006 −0.2125 0.1274

0.02919 −0.03213 0.02574 −0.09691 0.2203 0.5159 −0.02866 −0.1783 0.07471 −0.04794

−0.02286 −0.03780 0.01157 −0.1058 0.3251 0.8688 0.02406 0.1580 0.01950 −0.06052

−0.01653 −0.02727 −0.06727 −0.001290 0.2567 0.6911 0.1135 0.4163 −0.01594 0.01271



. (A.5)

In the case of five active flavours, the matrices Ĵ are given as follows:

Ĵs,0 =



0.09940 1.528 0 0 0 0 0 0 0 0

1.528 0.09940 0 0 0 0 0 0 0 0

−0.8769 −0.5324 −5.350 −3.443 6.908 0.01534 0.6908 0.001534 0.09398 0.5551

0.3241 −0.2016 2.745 1.406 −5.349 0.05042 −0.5349 0.005042 0.3637 −0.2583

0.5565 0.5109 3.804 3.112 −3.433 2.928 −0.2259 0.01534 −0.2326 −0.3566

0.1455 −0.6772 −0.6268 −1.428 13.75 4.877 0.5228 −0.3080 0.7500 −0.3175

0 0 0 0 0 0 −1.174 2.775 0 0

0 0 0 0 0 0 8.519 7.957 0 0

0 0 0 0 0 0 0 0 0.09940 1.528

0 0 0 0 0 0 0 0 1.528 0.09940



, (A.6)
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Ĵe,0 =



−0.1739 0 0 0 0 0 0 0 0 0

0 −0.1739 0 0 0 0 0 0 0 0

−0.00008430 0.001850 0.0008760 0.006336 −0.01477 −0.03845 −0.01774 −0.05406 −0.08765 0.002382

−0.004461 −0.006971 0.008984 0.0005819 −0.009264 −0.01468 −0.01741 0.004557 −0.01788 −0.1082

0.005095 −0.003528 −0.0004455 −0.02594 0.05269 0.1345 0.1129 0.05212 0.01551 0.002383

−0.004149 −0.003101 0.003889 0.006674 −0.01610 −0.03635 −0.01215 0.08836 −0.01439 −0.01264

0.1078 0.09271 0.04484 0.3330 −0.6222 −2.183 0.08561 −0.8183 0.3009 0.1117

−0.01577 −0.03068 −0.01027 −0.1407 0.2713 0.8851 0.05531 0.3929 −0.04218 −0.02168

0.1440 −0.01065 −0.09022 −0.05549 −0.06738 −0.2646 0.2167 −0.08880 0.3031 −0.004212

0.06094 −0.01177 0.04954 −0.1338 −0.1006 −0.2569 −0.02778 −0.3062 0.1580 −0.1423



, (A.7)

Ĵse,0 =



0.375 1.125 0 0 0 0 0 0 0 0

−1.125 −0.375 0 0 0 0 0 0 0 0

−2.500 1.4315 −3.851 2.898 0.9962 2.635 10.87 −0.1166 −5.228 3.122

1.642 −2.134 4.912 −1.460 −1.726 −2.608 6.969 0.4229 1.620 −5.702

2.180 1.968 3.317 2.955 13.61 −0.6743 69.30 −0.1624 4.882 4.428

−0.6997 −1.109 −0.9273 −0.8342 −4.444 0.3460 −27.91 −5.246 −1.635 −2.910

−6.153 −3.916 −35.13 −28.90 −136.4 5.962 −13.59 0.7483 1.775 3.592

1.549 0.8194 12.28 9.893 45.61 −3.670 3.698 −0.4178 −1.493 −2.488

3.019 −0.8036 16.92 5.807 −9.717 −3.182 −1.440 −1.383 2.308 −3.745

−1.305 3.483 −3.346 11.38 −1.864 6.249 0.2816 2.227 −3.812 3.052



, (A.8)

Ĵse,1 =



−1.361 −0.3748 0 0 0 0 0 0 0 0

−0.3748 −1.361 0 0 0 0 0 0 0 0

0.1224 0.1600 −0.3109 0.4207 0.1276 0.1172 0.01276 0.01172 −0.1577 0.08237

0.1835 0.1929 0.6790 0.08838 −0.09612 0.000429 −0.009612 0.000043 0.02365 −0.1460

0.01271 −0.01502 0.03352 −0.04966 0.3448 −0.06405 −0.07195 −0.006405 0.02137 −0.02022

0.01922 0.01290 0.1219 0.1030 −0.3008 −0.3655 0.03423 0.04996 −0.003290 −0.01277

0 0 0 0 0 0 1.064 0 0 0

0 0 0 0 0 0 −0.6431 −0.8651 0 0

0.2542 0.009287 0 0 0 0 0 0 −0.5983 −0.3469

0.009287 0.2542 0 0 0 0 0 0 −0.3469 −0.5983



, (A.9)
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Ĵee,0 =



0.1159 0 0 0 0 0 0 0 0 0

0 0.1159 0 0 0 0 0 0 0 0

−0.006758 −0.000220 0.001054 −0.007266 0.02571 0.06903 0.01810 0.08137 0.03717 0.002972

−0.001817 0.005815 −0.01259 −0.005803 0.04023 0.09858 0.03282 0.07166 0.000845 0.07832

−0.001142 0.01273 0.001550 0.06754 −0.1345 −0.3735 −0.09641 −0.1631 −0.004201 0.004407

0.002002 −0.001365 −0.003840 −0.02566 0.05563 0.1504 0.02425 0.009857 0.007927 0.008735

−0.007347 −0.07684 −0.01964 −0.3217 0.5632 1.675 0.1525 0.6839 −0.01222 −0.06966

0.002651 0.02899 0.004425 0.1344 −0.2542 −0.7479 −0.07896 −0.3310 0.005741 0.01977

−0.07157 0.03534 0.03101 0.08707 −0.08769 −0.2702 −0.06562 −0.03941 −0.1143 0.06248

−0.05563 0.02067 −0.05241 0.08527 0.06749 0.1530 0.06268 0.3315 −0.1407 0.1353



. (A.10)

Above the scale MW in the f = 5 case only Ĵee,0 is replaced by

Ĵee,0 =



0.1020 0 0 0 0 0 0 0 0 0

0 0.1020 0 0 0 0 0 0 0 0

−0.006807 0.000021 0.001232 −0.006242 0.02332 0.06286 0.01511 0.07266 0.02996 0.003183

−0.002382 0.005057 −0.01143 −0.005667 0.03882 0.09606 0.03033 0.07109 −0.001430 0.06900

−0.000380 0.01202 0.001590 0.06336 −0.1261 −0.3519 −0.08537 −0.1542 −0.001936 0.004376

0.001464 −0.001586 −0.003427 −0.02457 0.05312 0.1445 0.02260 0.01625 0.006104 0.007528

−0.000419 −0.06346 −0.01667 −0.2598 0.4436 1.319 0.1296 0.5317 0.007078 −0.06051

0.001486 0.02427 0.003764 0.1115 −0.2096 −0.6173 −0.06592 −0.2708 0.002577 0.01708

−0.05788 0.03230 0.02696 0.08653 −0.1037 −0.3173 −0.05763 −0.07181 −0.08512 0.05362

−0.04767 0.01862 −0.04578 0.07839 0.04976 0.1078 0.05242 0.2757 −0.1201 0.1187



. (A.11)
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In the case of six active flavours, the matrices Ĵ are given as follows:

Ĵs,0 =



0.3146 1.056 0 0 0 0 0 0 0 0

1.056 0.3146 0 0 0 0 0 0 0 0

−1.600 −1.535 −12.36 −12.02 8.793 −1.131 2.198 −0.2828 −0.8657 −0.8686

0.8862 0.5280 7.429 7.255 −5.576 0.6539 −1.394 0.1635 0.8013 0.4058

0.6905 0.7180 5.579 5.023 −4.997 3.346 −0.9249 0.1452 0.3177 0.2199

0.1455 −0.6299 −0.3870 −1.489 7.913 5.885 −0.09758 −0.9513 0.8482 −0.5904

0 0 0 0 0 0 −1.298 2.766 0 0

0 0 0 0 0 0 8.303 9.690 0 0

0 0 0 0 0 0 0 0 0.3146 1.056

0 0 0 0 0 0 0 0 1.056 0.3146



, (A.12)

Ĵe,0 =



−0.1905 0 0 0 0 0 0 0 0 0

0 −0.1905 0 0 0 0 0 0 0 0

−0.004325 0.007185 0.009385 0.009390 −0.02752 −0.06628 −0.02694 −0.07676 −0.1194 0.02764

−0.009919 −0.002219 0.03288 −0.01917 −0.02621 −0.02129 −0.02834 0.01474 −0.06108 −0.09564

0.005509 −0.002168 −0.01074 −0.009225 0.03980 0.08293 0.1274 0.05083 0.03016 −0.005145

−0.004879 −0.003778 0.01343 −0.008532 −0.01554 −0.01330 −0.01789 0.1048 −0.02867 −0.01273

0.1518 0.04324 0.2197 0.2298 −0.1970 −1.348 0.2127 −0.8371 0.5734 0.07970

−0.02942 −0.01451 −0.04693 −0.1085 0.1550 0.6298 0.03875 0.4193 −0.1089 −0.01106

0.1723 −0.02276 0.05556 −0.02633 −0.008854 −0.3349 0.3311 −0.08373 0.5572 −0.08924

0.08303 −0.02141 0.1183 −0.1089 −0.1361 −0.3994 −0.03402 −0.4332 0.3145 −0.2324



, (A.13)

Ĵse,0 =



0.375 1.125 0 0 0 0 0 0 0 0

−1.125 −0.375 0 0 0 0 0 0 0 0

−1.717 0.4502 −4.641 1.340 1.346 3.309 6.823 −0.04493 −4.718 1.585

1.485 −0.6824 4.572 −1.354 −0.9936 −3.700 6.745 0.4676 3.500 −2.081

2.474 2.178 8.318 7.311 25.97 −1.158 48.94 −0.4794 6.973 6.144

−0.6938 −0.9269 −2.447 −2.263 −8.583 0.05831 −20.43 −7.770 −1.899 −3.039

−4.430 −2.583 −32.52 −26.58 −103.8 4.885 −26.00 1.075 0.3241 3.002

1.087 0.2394 11.23 7.972 34.52 −1.077 7.739 −0.2204 −0.7237 −2.909

1.392 −0.5260 11.12 3.336 −9.094 −3.990 −4.493 −2.786 3.083 −2.243

−0.9953 1.721 −6.237 4.523 −0.8947 6.267 −1.189 3.698 −3.152 3.108



, (A.14)
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Ĵse,1 =



−1.215 −0.4779 0 0 0 0 0 0 0 0

−0.4779 −1.215 0 0 0 0 0 0 0 0

0.03954 0.1511 −0.5005 0.3909 0.2004 0.09779 0.05009 0.02445 −0.1793 0.2458

0.1726 0.1039 0.6485 −0.07127 −0.05979 0.04647 −0.01495 0.01162 0.2136 −0.1041

0.02675 −0.003629 0.1532 0.03172 0.4150 −0.09556 0.04074 −0.02389 0.04375 −0.03219

0.009964 0.01439 0.08856 0.1063 −0.4370 −0.6094 0.002421 0.1197 0.000558 0.01162

0 0 0 0 0 0 0.2520 0 0 0

0 0 0 0 0 0 −0.4467 −1.088 0 0

0.1161 −0.000709 0 0 0 0 0 0 −0.6925 −0.4811

−0.000709 0.1161 0 0 0 0 0 0 −0.4811 −0.6925



, (A.15)

Ĵee,0 =



0.1391 0 0 0 0 0 0 0 0 0

0 0.1391 0 0 0 0 0 0 0 0

−0.003752 −0.006197 −0.01666 −0.01541 0.04809 0.1273 0.03381 0.1356 0.06098 −0.02018

0.000326 0.001314 −0.05390 0.004611 0.07978 0.1672 0.06923 0.1516 0.02842 0.07314

0.002820 0.007589 0.02592 0.04766 −0.1033 −0.2861 −0.1243 −0.2192 −0.000268 0.01032

−0.000053 0.001118 −0.02262 −0.01220 0.05444 0.1313 0.04123 0.03780 0.01107 0.01113

−0.004754 −0.04852 −0.04424 −0.2157 0.2605 0.8907 0.1751 0.6774 0.000729 −0.1105

0.009495 0.01675 0.02216 0.1040 −0.1569 −0.5103 −0.08580 −0.3685 0.03165 0.02339

−0.06667 0.03419 0.000002 0.06611 −0.03570 −0.1442 −0.07226 −0.1137 −0.1609 0.1208

−0.07613 0.02859 −0.1156 0.05588 0.1459 0.3689 0.1048 0.5101 −0.2848 0.2398



. (A.16)
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B Approximation of evolution matrices

In this appendix we list the approximate evolution matrices Ûfit of eqs. (4.10)–(4.13).

The evolution matrices for the O(1) Wilson coefficients are

Û0,1,fit =



1.381 −0.6586 0 0 0 0 0 0 0 0

−0.6579 1.383 0 0 0 0 0 0 0 0

−0.02657 0.04460 1.347 −0.5061 0.1084 0.3509 0.01854 0.05795 −0.05577 0.05648

0.03219 −0.08950 −0.7163 1.076 −0.1140 −0.5954 −0.02081 −0.1003 0.1029 −0.0863

0.006732 0.009857 0.06040 0.03421 0.8730 0.3916 −0.009192 0.006706 −0.002316 −0.002685

0.04266 −0.1445 −0.1220 −0.5808 1.196 3.844 −0.04416 −0.2361 0.1676 −0.1556

−0.006910 −0.000813 −0.005331 0.005611 −0.01547 −0.01260 0.8834 0.3349 −0.01980 −0.006946

−0.006196 0.000386 −0.005099 0.009086 −0.02131 −0.05363 1.377 5.070 −0.02191 −0.004320

−0.008814 −0.000827 0.005846 0.000204 −0.007655 −0.005259 −0.02659 −0.01518 1.348 −0.6634

0.002569 −0.000270 −0.004176 0.01113 0.002071 −0.000822 0.008502 0.004499 −0.6453 1.377



, (B.1)

Û0,2,fit =



0.04902 −0.06578 0 0 0 0 0 0 0 0

−0.06571 0.04921 0 0 0 0 0 0 0 0

−0.002858 0.004911 0.04273 −0.04448 0.01743 0.06239 0.003106 0.01145 −0.005919 0.007786

0.004467 −0.006409 −0.05801 0.02537 −0.02718 −0.09404 −0.004846 −0.01681 0.008209 −0.01020

0.000051 −0.000773 0.000153 −0.005655 0.004400 0.04479 −0.000598 −0.000873 0.001332 −0.001328

0.007679 −0.01904 −0.001577 −0.08913 0.1533 0.3766 −0.01304 −0.05873 0.02464 −0.03331

−0.000971 0.000008 −0.001421 0.000965 −0.003372 −0.003838 −0.000828 0.04034 −0.003464 −0.000859

−0.002034 0.000038 −0.002690 0.002769 −0.008055 −0.01680 0.2019 0.6221 −0.008119 −0.001580

−0.001513 −0.000057 0.000438 −0.000632 −0.002303 −0.001513 −0.005736 −0.003896 0.04208 −0.06626

0.000823 −0.000001 −0.000722 0.001962 0.000930 −0.000258 0.002827 0.001194 −0.06154 0.04840



. (B.2)

–
38

–
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The evolution matrices for the O(αEM/αs) Wilson coefficients are

Ûe,1,fit =



1.384 −0.6596 0 0 0 0 0 0 0 0

−0.6596 1.384 0 0 0 0 0 0 0 0

−0.02644 0.04449 1.347 −0.5063 0.1084 0.3508 0.01869 0.05786 −0.05398 0.05588

0.03221 −0.08918 −0.7165 1.076 −0.1138 −0.5947 −0.02013 −0.09927 0.1027 −0.08501

0.006614 0.009876 0.06024 0.03434 0.8727 0.3913 −0.01040 0.007747 −0.002679 −0.002541

0.04268 −0.1441 −0.1221 −0.5803 1.196 3.845 −0.04218 −0.2321 0.1682 −0.1550

−0.007192 −0.001077 −0.005373 0.005309 −0.01602 −0.005198 0.8816 0.3370 −0.0213 −0.006792

−0.004750 −0.000363 −0.002599 0.006771 −0.01759 −0.04805 1.385 5.079 −0.01599 −0.005018

−0.009682 −0.001318 0.009455 0.000347 −0.008310 −0.004251 −0.02899 −0.01618 1.347 −0.6649

0.003240 0.000337 −0.006239 0.01228 0.002650 −0.000994 0.009981 0.004416 −0.6448 1.380



, (B.3)

Ûe,2,fit =



0.04959 −0.06613 0 0 0 0 0 0 0 0

−0.06613 0.04959 0 0 0 0 0 0 0 0

−0.002814 0.004885 0.04276 −0.04452 0.01748 0.06243 0.003194 0.01153 −0.005538 0.007572

0.004455 −0.006361 −0.05804 0.02537 −0.02712 −0.09391 −0.004734 −0.01663 0.008081 −0.009949

0.000025 −0.000747 0.000109 −0.005599 0.004337 0.04466 −0.000661 −0.000532 0.001256 −0.001236

0.007654 −0.01896 −0.001614 −0.08899 0.1534 0.3766 −0.01270 −0.05792 0.02470 −0.03318

−0.001020 −0.000042 −0.001512 0.000625 −0.002880 −0.001394 −0.000771 0.04163 −0.003738 −0.000825

−0.001700 −0.000089 −0.001936 0.002320 −0.007113 −0.01521 0.2036 0.6241 −0.006620 −0.001725

−0.001794 −0.000100 0.000773 −0.000779 −0.002622 −0.001291 −0.006709 −0.004276 0.04126 −0.06661

0.000955 0.000077 −0.001109 0.002185 0.001279 −0.000036 0.003500 0.001712 −0.06132 0.04896



. (B.4)

–
39

–
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The evolution matrices for the O(αs) Wilson coefficients are

Ûs,1,fit =



1.411 −0.7127 0 0 0 0 0 0 0 0

−0.7127 1.411 0 0 0 0 0 0 0 0

−0.009379 0.03849 1.428 −0.5372 0.05796 0.3276 0.009884 0.05309 −0.03652 0.03661

0.01918 −0.06796 −0.7546 1.116 −0.1185 −0.6070 −0.02120 −0.1018 0.07697 −0.06536

−0.005195 0.01615 0.009571 0.06192 0.8626 0.1512 0.001064 0.02609 −0.01979 0.01784

0.02719 −0.1165 −0.1074 −0.5139 1.020 3.416 −0.03532 −0.1846 0.1343 −0.1238

−0.007192 −0.001077 −0.005373 0.005309 −0.01602 −0.005198 0.8044 −0.01284 −0.02130 −0.006792

−0.004750 −0.000363 −0.002599 0.006771 −0.01759 −0.04805 1.166 4.362 −0.01599 −0.005018

−0.009682 −0.001318 0.009455 0.000347 −0.008310 −0.004251 −0.02899 −0.01618 1.373 −0.7181

0.003240 0.000337 −0.006239 0.01228 0.002650 −0.000994 0.009981 0.004416 −0.6980 1.406



, (B.5)

Ûs,2,fit =



0.05237 −0.06874 0 0 0 0 0 0 0 0

−0.06874 0.05237 0 0 0 0 0 0 0 0

−0.001807 0.004179 0.04830 −0.04670 0.01449 0.05948 0.002493 0.01111 −0.003888 0.006388

0.003138 −0.005261 −0.06167 0.02726 −0.02594 −0.09351 −0.004500 −0.01681 0.006327 −0.008337

−0.000731 0.000706 −0.001981 0.001873 −0.004333 0.01923 0.000445 0.003261 −0.001199 0.001503

0.005578 −0.01553 −0.002278 −0.07695 0.1317 0.3191 −0.01019 −0.04632 0.01977 −0.02734

−0.001020 −0.000042 −0.001512 0.000625 −0.002880 −0.001394 −0.01510 −0.002932 −0.003738 −0.000825

−0.001700 −0.000089 −0.001936 0.002320 −0.007113 −0.01521 0.1673 0.5064 −0.006620 −0.001725

−0.001794 −0.000100 0.000773 −0.000779 −0.002622 −0.001291 −0.006709 −0.004276 0.04404 −0.06921

0.000955 0.000077 −0.001109 0.002185 0.001279 −0.000036 0.003500 0.001712 −0.06393 0.05174



. (B.6)

–
40

–
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The evolution matrices for the O(αEM) and O(α2

EM/α
2
s) Wilson coefficients are

Ûse,1,fit =



1.394 −0.7045 0 0 0 0 0 0 0 0

−0.7045 1.394 0 0 0 0 0 0 0 0

−0.009453 0.03820 1.428 −0.5374 0.05790 0.3279 0.009686 0.05425 −0.04508 0.03987

0.01931 −0.06738 −0.7551 1.116 −0.1184 −0.6078 −0.02089 −0.1042 0.08184 −0.07190

−0.005225 0.01599 0.009690 0.06182 0.8626 0.1514 0.005876 0.02676 −0.01998 0.01742

0.02740 −0.1156 −0.1079 −0.5135 1.020 3.415 −0.02789 −0.1626 0.1356 −0.1214

0 0 0 0 0 0 0.8305 0 0 0

0 0 0 0 0 0 1.188 4.394 0 0

0 0 0 0 0 0 0 0 1.394 −0.7045

0 0 0 0 0 0 0 0 −0.7045 1.394



, (B.7)

Ûse,2,fit =



0.04914 −0.06644 0 0 0 0 0 0 0 0

−0.06644 0.04914 0 0 0 0 0 0 0 0

−0.001818 0.004086 0.04834 −0.04679 0.01446 0.05962 0.002471 0.01164 −0.005626 0.007251

0.003145 −0.005101 −0.06177 0.02741 −0.02592 −0.09379 −0.004515 −0.01783 0.007658 −0.009488

−0.000730 0.000669 −0.001957 0.001837 −0.004334 0.01930 0.001106 0.003520 −0.001234 0.001403

0.005619 −0.01524 −0.002424 −0.07670 0.1318 0.3187 −0.007642 −0.03995 0.02017 −0.02644

0 0 0 0 0 0 −0.01058 0 0 0

0 0 0 0 0 0 0.1759 0.5171 0 0

0 0 0 0 0 0 0 0 0.04914 −0.06644

0 0 0 0 0 0 0 0 −0.06644 0.04914



. (B.8)

–
41

–
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