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Introduction

Let us start with a question: How much area can a closed curve of a given length

` bound?

This problem, often called Dido’s problem or isoperimetric problem, is a very

classical question in geometry. Efforts to answer it are inequalities of the shape

area ≤ f(length)

for some function f : R+ → R+. But a full answer would be an inequality of

this kind, such that for every ` > 0 there really exists a closed curve γ of length

` which bounds a region of area f(`). This is very difficult, even if one looks at

curves in the Euclidean plane. Of course, it is known that

area ≤ 1

4π
length2

holds with equality if and only if the curve is circle (see [10] for a discussion of

it), but it needs a lot of work to prove this. Consequently there is little hope to

get such sharp inequalities for many other metric spaces.

This leads to a more asymptotic way of looking at the question. Hence one only

looks for the growth type of the function f , this means one asks whether it is for

example exponential or polynomial and if so of which degree. Luckily, it turns

out that this interpretation of the problem is much more manageable. So it is

an easy exercise to prove the quadratic growth in the case of the Euclidean plane.

The above example is one way to enter the world of large scale geometry. Instead

of isometry invariants as in classical geometry, the large scale geometry is inter-

ested in quasi-isometry invariants. These are geometric properties of a metric

space, which are preserved under quasi-isometries which are maps as follows:

Definition.

Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is a quasi-isometry,

if there are constants A, b, c, b′, c′ > 0 and another map g : Y → X, such that

1

c
· dX(x1, x2)− b ≤ dY (f(x1), f(x2)) ≤ c · dX(x1, x2) + b

for all x1, x2 ∈ X, and

1

c′
· dY (y1, y2)− b′ ≤ dX(g(y1), g(y2)) ≤ c′ · dY (y1, y2) + b′

for all y1, y2 ∈ Y , and
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dX((g ◦ f)(x), x) ≤ A and dY ((f ◦ g)(y), y) ≤ A

for all x ∈ X and all y ∈ Y .

Visually, two metric spaces are quasi-isometric if they look the same from far

away.

The quasi-isometry invariants examined in this thesis are the filling functions

and the higher divergence functions, which are a modification of the filling func-

tions. Both are generalisations of the isoperimetric problem.

Our definition of the filling functions uses Lipschitz chains. These are finite

formal sums

a =
∑
i

ziαi(∆
m) with zi ∈ Z

of Lipschitz maps αi from a m-simplex to the metric space we examine. We call

a Lipschitz chain a a cycle if it is closed, i.e. if ∂a = 0. Then the (m + 1)-

dimensional filling function describes how difficult it is to fill Lipschitz m-cycles

by Lipschitz (m + 1)-chains, this means to find an (m + 1)-chain with the m-

cycle as boundary. The difficulty is measured by the maximally needed (m+ 1)-

volume of the filling Lipschitz (m + 1)-chain in terms of the m-volume of the

filled Lipschitz m-cycle, up to an equivalence relation which only notices the

growth rate.

The higher divergence functions do something similar. They, roughly speaking,

measure the difficulty to fill an outside an r-ball lying Lipschitz m-cycle with an

outside a ρr-ball, 0 < ρ ≤ 1, lying Lipschitz (m + 1)-chain. The difference to

the filling functions, the no-go-area in the space, destroys a possibly existing ho-

mogeneity of the metric space and so makes it more difficult to construct fillings.

The filling functions of non-positively curved spaces are well understood. In

the case of the Euclidean space, which has constant curvature 0, the (m + 1)-

dimensional filling function grows like `
m+1
m . Further it is known that the (m+1)-

dimensional filling function of a Hadamard space does not grow faster than `
m+1
m

(see Stefan Wenger [37]). And in the case of symmetric spaces of non-compact

type, there is the more explicit result of Enrico Leuzinger in [22], that the (m+1)-

dimensional filling function grows exactly as `
m+1
m as long as m is smaller than

the rank of the symmetric space and it grows linearly in the dimensions above.

For the higher divergence functions the situation is much the same (see for ex-

ample [36], [7]), albeit not elaborated in such a way.

So, leaving the world of non-positively curved spaces suggests itself for finding

new interesting results. As strictly positively curved spaces are of bounded dia-

meter and so quasi-isometric to points, one has to look at spaces with the whole
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spectrum of curvature. A rich class of such spaces form the nilpotent Lie groups.

These Lie groups have all three types of curvature in every point (see Joseph A.

Wolf [39]). José Burillo in [9] and Robert Young in [42] and [43] computed for

one of the most prominent examples of nilpotent Lie groups, namely the complex

Heisenberg Group, that one can see all three types of the curvature.

Theorem.

Let G = Hn
C be the complex Heisenberg Group of dimension 2n+ 1. Then holds:

F j+1(`) ∼ `
j+1
j for j < n,

Fn+1(`) ∼ `
n+2
n ,

F j+1(`) ∼ `
j+2
j+1 for j > n.

In the dimensions below n + 1 the behaviour is Euclidean, which is related to

the abundance of flat subspaces up to dimension n. In the dimensions above

n+ 1 the behaviour is sub-Euclidean and hence related to the behaviour of the

filling functions of spaces with negative curvature. Most interesting, in dimension

n + 1 one can observe the new, super-Euclidean growth rate, which highlights

the occurrence of positive curvature.

One of the mainly used properties of the complex Heisenberg Group to prove

the above result is that its Lie algebra allows a grading. This means it can be

written as

g = V1 ⊕ V2 with [V1, V1] = V2 and [V1, V2] = [V2, V2] = 0 .

This property generalises to the class of stratified nilpotent Lie groups. With

this property one gets additional structures on the Lie groups. The most helpful

of them are the family of scaling automorphism st : G → G, and the sub-

Riemannian metric, for which the scaling automorphisms are homotheties.

We apply the techniques of Burillo and Young to prove a similar division of

Euclidean, super- and sub-Euclidean growth of the filling functions of strati-

fied nilpotent Lie groups under some algebraic condition on their Lie algebras.

Further we use the results for the filling functions to establish lower and up-

per bounds on the higher divergence functions of these stratified nilpotent Lie

groups.

We will see that the generalised Heisenberg Groups over the Hamilton qua-

ternions and over the octonions satisfy the conditions for our theorems. So we

get a direct generalisation of the behaviour of the filling functions of the com-

plex Heisenberg Groups to the filling functions of its relatives defined over the

quaternions and the octonions.
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Structure of this thesis

In Chapter 1 we provide the basic definitions and properties of the examined

invariants (filling function, Dehn functions and higher divergence functions).

Further we introduce the class of stratified nilpotent Lie groups and their asymp-

totic cones, the Carnot Groups. We give the definitions of some special families

of stratified nilpotent Lie groups. We also provide some background to the h-

principle and to metric currents, which are needed as technical tools.

In Chapter 2 we state the main results of this thesis. Further the geometric

meaning of the algebraic conditions is discussed.

Chapter 3 acts as a short overview of the main tools for the proofs. In this

chapter we also state the theorems of Burillo and Young, which we will use in

the proofs.

In Chapter 4 we develop our main auxiliary technique: the horizontal approx-

imation.

In the following Chapters we prove the main results. The proofs are divided

into the results for the filling functions in Chapter 5, the results for the higher

divergence functions in Chapter 6 and the results for the Heisenberg Groups and

the symmetric spaces in Chapter 7.

In Chapter 8, the last chapter, we formulate a list of open questions which arise

from our results.
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1 Background

In this chapter we give the basic definitions of the objects we want to examine.

We also state some known properties and results.

1.1 Filling functions

Filling functions describe the difficulty to fill a given cycle with a chain. The

base case coincides with the isoperimetric problem discussed in the Introduction:

How much area is needed to fill a loop by a disk? There is a just as well natural

generalisation to higher-order filling functions, which quantify higher connectiv-

ity by describing the difficulty of filling m-cycles by (m + 1)-chains. They are

harder to compute, but give a finer distinction of the large scale geometry of the

metric space.

Definition.

Let X be a metric space and m ∈N. Further denote by Hm the m-dimensional

Hausdorff-measure of X. The m-dimensional volume of a subset A ⊂ X is

volm(A) := Hm(A) .

We denote by ∆m the m-simplex equipped with an Euclidean metric.

Definition.

Let X be a metric space and m ∈N.

A Lipschitz m-chain a in X is a (finite) formal sum a =
∑

j zjαj of Lipschitz

maps αj : ∆m → X with coefficients zj ∈ Z.

The boundary of a Lipschitz m-chain a =
∑

j zjαj is defined as the Lipschitz

(m− 1)-chain

∂a =
∑
j

(
zj

m∑
i=0

(−1)iαj|∆m
i

)
where ∆m

i denotes the ith face of ∆m.

A Lipschitz m-chain a with zero-boundary, i.e. ∂a = 0, is called a Lipschitz

m-cycle.

A filling of a Lipschitz m-cycle a is a Lipschitz (m + 1)-chain b with boundary

∂b = a.
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We define the mass of a Lipschitz m-chain a as the total volume of its summands:

mass(a) :=
∑
j

zj volm(αj(∆
m)) .

If X is a Riemannian manifold, the volume of such a summand is given by

volm(αj(∆
m)) =

∫
∆m Jαj dλ, where dλ denotes the m-dimensional Lebesgue-

measure and Jαj is the jacobian of αj . This is well defined, as Lipschitz maps

are, by Rademacher’s Theorem, almost everywhere differentiable.

Given a m-cycle, one is interested in the best possible filling of it, i.e. the

filling with the smallest mass. To deduce a property of the space X, one varies

the cycle and examines how large the ratio of the mass of the optimal filling and

the mass of the cycle can get. This leads to the filling functions:

Definition.

Let n ∈ N and let X be a n-connected metric space. For m ≤ n the (m+ 1)th-

filling function of X is given by

Fm+1
X (l) = sup

a
inf
b

mass(b) ∀l ∈ R+,

where the infimum is taken over all (m + 1)-chains b with ∂b = a and the su-

premum is taken over all m-cycles a with mass(a) ≤ l.

As we are mostly interested in the large scale geometry of the space X, the exact

description of the filling functions is of less importance to us. Indeed we only

look at the asymptotic growth rate of the functions. We do this by the follow-

ing equivalence relation, which makes the growth rate of the filling functions an

quasi-isometry invariant.

Definition.

Let f, g : R+ → R+ be functions. Then we write f 4 g if there is a constant

C > 0 with

f(l) ≤ Cg(Cl) + Cl + C ∀l ∈ R+.

If f 4 g and g 4 f we write f ∼ g. This defines an equivalence relation.

We read this notation f 4 g as “f is bounded from above by g ” respectively
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“g is bounded from below by f ” according whether we are more interested in f

or g.

Proposition 1.1 (see for example [40, Lemma 1]).

Let X and Y be n-connected metric spaces. Then holds:

X quasi-isometric to Y ⇒ F j+1
X ∼ F j+1

Y ∀j ≤ n.

Let’s look at the example of the filling functions of the n-dimensional Euclidean

space. They were first computed by Herbert Federer and Wendell H. Fleming

in [13].

Example.

The filling functions of the Euclidean space Rn are

F j+1
R (l) ∼ l

j+1
j for j ≤ n− 1.

This enables us to use the terms Euclidean, sub-Euclidean respectively super-

Euclidean filling function for filling functions with the same, strictly slower re-

spectively strictly faster growth rate than l
j+1
j .

The following theorem generalises the Euclidean case to spaces with non-positive

curvature. For a proof see [37].

Theorem 1.2.

The filling functions of an n-dimensional Hadamard space X are

F j+1
X (l) 4 l

j+1
j for j ≤ n− 1.

The fact that a Riemannian manifold with non-positive curvature has Euclidean

or sub-Euclidean filling functions in all dimensions yields a sufficient criterion

for positive curvature: Let M be a Riemannian manifold with a super-Euclidean

filling function in some dimension, then there is some positive curvature on M .
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1.2 Dehn functions

The Dehn functions form another family of filling invariants. The most ba-

sic example defined for finitely presented groups is the classical Dehn function,

which measures the number of relations needed to reduce a word representing

the identity to the empty word. Even if there are open problems, as for example

the growth rate of the classical Dehn function of SL4(Z), the behaviour of this

invariant is well understood (see for example [6], [8], [38], [41]). They originally

were defined in a combinatorial way for finitely presented groups. Using the

lemma of Švarc-Milnor, their equivalence classes by the above defined equival-

ence relation for functions R+ → R+ coincide with the ones of a homotopical

version of the filling functions. As this definition is more geometric, we prefer it.

Definition.

Let M be a m-connected Riemannian manifold or a simplicial complex and let

Γ be a (finitely generated) group which acts properly discontinuously and cocom-

pactly on M by isometries. Further let Dm+1 be the closed unit ball in Rm+1

and Sm its boundary.

The m-dimensional (Lipschitz) Dehn function (of M) is given by

δmM (l) = sup
f

inf
h

volm+1(h) ∀l ∈ R+,

where the supremum is taken over all Lipschitz maps f : Sm →M with the bound

volm(f) ≤ l and the infimum is taken over all Lipschitz maps h : Dm+1 → M

with h|∂Dm+1 = f .

Compared with the definitions in the previous section, the (Lipschitz) Dehn func-

tions are homotopical analogues of the (homologically defined) filling functions.

So it is not surprising, that the equivalence classes of the Dehn functions are

invariant under quasi-isometries:

Proposition 1.3 (see for example [2, Corollary 3]).

Let X and Y be n-connected Riemannian manifolds or simplicial complexes.

Then holds:

X quasi-isometric to Y ⇒ δjX ∼ δ
j
Y ∀j ≤ n.

Whenever a group Γ acts on a Riemannian manifold or a simplicial complex

M as in the definition above, Γ and M are quasi-isometric by the lemma of

Švarc-Milnor. This implies, that any two m-connected Riemannian manifolds
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or simplicial complexes M1, M2 with such a Γ-action are quasi-isometric and

so have equivalent m-dimensional Dehn functions. This again implies that the

equivalence class of the m-dimensional Dehn function of M in fact only depends

on Γ. So it is convenient to speak of the m-dimensional Dehn function of Γ and

denote it by δmΓ .

A subject recently undergoing intense study are the Dehn functions of non-

cocompact lattices in semi-simple Lie groups of rank k. They are expected to

be of Euclidean growth up to dimension k − 1 and of exponential growth in the

dimension above. Leuzinger and Young proved this conjecture in [24] for lattices

of Q-rank 1, but the general case is still open.

Last but not least in this section we are interested in the relationship of these

two filling invariants, the filling functions and the Dehn functions.

Proposition 1.4 (compare [14], [22]).

Let M be a n-connected Riemannian manifold or a simplicial complex and let Γ be

a group which acts properly discontinuously and cocompactly on M by isometries.

Then holds:

δ1
Γ 4 F 2

M ,

δ2
Γ 4 F 3

M ,

δjΓ ∼ F
j+1
M for j ≥ 3.

Here one sees that the notation of the filling functions and the Dehn functions,

more precisely the notation of the exponent which indicates the dimension, are

not chosen very luckily: The exponent in the notation of the Dehn function de-

notes the dimension of the boundary which is to fill, and the exponent in the

notation of the filling function denotes the dimension of the filling chain. But as

these are the established notations in literature, we use them.

1.3 Higher divergence functions

Another way to examine the asymptotic geometry of a space and to find quasi-

isometry invariants is to study the topology at infinity. A quantitative version of

this are the higher divergence functions, which, roughly speaking, measure the
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difficulty to fill a m-cycle lying outside an r-ball with an outside a ρr-ball lying

(m+ 1)-chain (for some 0 < ρ ≤ 1).

Let X be a simply connected metric space with basepoint o ∈ X.

Definition.

Let r > 0. We call a Lipschitz chain a in X r-avoidant, if image(a)∩Br(o) = ∅.

� r

a

r

r

Figure 1: An r-avoidant cycle a with a ρr-avoidant filling (compare [7]).

One now wants to fill r-avoidant cycles by (nearly) r-avoidant chains. To do this,

we need the cycle to be a boundary. In contrast to the case of the filling func-

tions, here it doesn’t suffice that X is highly connected as the avoidant-condition

can be imagined as deleting the r-ball around the basepoint. This leads to the

following definition:

Definition.

For 0 < ρ ≤ 1 we call X (ρ, n)-acyclic at infinity, if every r-avoidant Lipschitz

j-cycle a has a ρr-avoidant filling for all 0 ≤ j ≤ n, i.e. there is a ρr-avoidant

Lipschitz (j + 1)-chain b with ∂b = a.

The divergence dimension divdim(X) of X is the largest integer n, such that X

is (ρ, n)-acyclic at infinity for some ρ.

It can be easily seen, that the divergence dimension is always smaller than

dimX − 2, as there are (dimX − 2)-cycles homotopic to the boundary of the
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r-ball Br(o) around o. These cycles, of course, are not boundaries of chains in

X \Br(o).

In the following let m be always less or equal to the divergence dimension of

X.

Given an r-avoidant m-cycle one is interested, similar to the case of the filling

functions, in the best possible avoidant filling of it. Now the virtual hole, arisen

by making the ball around the basepoint a no-go area, complicates the geometry

of the space. Therefore it is not so easy to produce from this a asymptotic prop-

erty of the space. So there is need of some technical parameters, whose use will

be explained later.

Definition.

For 0 < ρ ≤ 1 and α > 0 we set

divmρ,α(r) := sup
a

divmρ (a, αrm) := sup
a

inf
b

mass(b) ∀r ∈ R+,

where the infimum is taken over all ρr-avoidant (m + 1)-chains b with ∂b = a

and the supremum is taken over all r-avoidant m-cycles a with mass(a) ≤ αrm.

Then the mth-divergence function of X is the 2-parameter family

Divm(X) := {divmρ,α}ρ,α .

Above we asked m to be less or equal to the divergence dimension. Alternatively

one could set the infimum over the empty set as ∞. In this case, the divergence

dimension is the biggest number n ∈ N, such that there is an ρ ∈ (0, 1] with

divjρ,α <∞ for all j ≤ n.

The functions divmρ,α are very explicit in terms of the metric. For example if

one scales the metric by a constant c > 0 the functions will scale to divmρ,α(c ·).
As we are mostly interested in the asymptotic behaviour, we look at the equival-

ence classes of the higher divergence functions Divm(X) under the below defined

equivalence relation for special 2-parameter families of functions. This makes

Divm(X) an quasi-isometry invariant.
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Definition.

a) A positive 2-parameter m-family is a 2-parameter family F = {fs,t} of func-

tions fs,t : R+ −→ R+, indexed over 0 < s ≤ 1, t > 0, together with a fixed

integer m.

b) Let m ∈ N and let F = {fs,t} and H = {hs,t} be two positive 2-parameter

m-families, indexed over 0 < s ≤ 1, t > 0.

Then we write F � H, if there exists thresholds 0 < s0 ≤ 1 and t0 > 0, as

well as constants L,M ≥ 1, such that for all s ≤ s0 and all t ≥ t0 there is a

constant A ≥ 1 with:

fs,t(x) ≤ AhLs,Mt(Ax+A) +O(xm) .

If both F � H and H � F , so we write F ∼ H. This defines an equivalence

relation.

We read this notation F 4 H as “F is bounded from above by H” respectively

“H is bounded from below by F ” depending on whether we are more interested

in F or H.

The nicest (and very special) case is that of a positive 2-parameter m-family

F = {fs,t}s,t bounded from above (or below) by a constant positive 2-parameter

m-family H, i.e. H = {h}s,t. This means that all functions fs,t are bounded

from above (or below) by the same growth type. As this will often appear in the

following, we just write h for the constant positive 2-parameter m-family {h}s,t
(supposing, that it is clear which m we mean).

Remark.

We consider Divm(X) as positive 2-parameter m-family, indexed by ρ and α.

The relation ”�” (and consequently ”∼”) only captures the asymptotic beha-

viour of the functions for r →∞ :

Let h : R+ → R+ be an increasing function. If B ≥ 1 and divmρ,α(B) ≤ h(B)

then divmρ,α(r) ≤ B · h(B +Br) for all r ≤ B, because both sides are increasing.

So we need to examine the relation ”�” (and consequently ”∼”) only for r larger

than an arbitrary constant B = B(ρ, α) ≥ 1.

The proof of the following proposition can be found in [1, Prop. 2.2]. It uses the

fact that one can vary the parameter ρ by multiplying the constant L in the equi-

valence relation and that the constant A is chosen after the parameters ρ and α

(at this point there is an error in the appropriate definition of equivalence in [1]).
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Proposition 1.5.

Let n ∈N and le X,Y be metric spaces with basepoints and let divdim(X) ≥ n

and divdim(Y ) ≥ n. Then holds:

X quasi-isometric to Y ⇒ Divj(X) ∼ Divj(Y ) ∀j ≤ n.

Again we look at the example of the n-dimensional Euclidean space and its

higher divergence functions.

Example.

The higher divergence functions of the Euclidean space Rn are

DivjRn(r) ∼ rj+1 for j ≤ n− 2 = divdim(Rn).

As in the case of the filling functions, this enables us to use the terms Euclidean,

sub-Euclidean respectively super-Euclidean jth-divergence for jth-divergence func-

tions with the same, strictly slower respectively strictly faster growth rate than

rj+1.

It remains to explain the importance of the upper bound αrm on the mass of

the r-avoidant m-cycles. In general there is the need of an upper bound in terms

of r to prevent the possibility to choose cycles with exponential mass and at

least exponential filling mass (e.g. a codimension ≥ 2 sphere of radius er in Rn),

which would make Divm always exponential. The explicit choice of polynomial

growth of degree m is mostly due to the fact, that the higher divergence were

originally introduced for symmetric spaces. There the bound αrm is exactly the

right one to prove the following result of Leuzinger:

Theorem 1.6 (see [21]).

Let X be a symmetric space of non-compact type and rank k.

Then holds:

DivjX(r) 4 rj+1 for j ≤ k − 2,

Divk−1
X (r) ∼ er .

This shows, that higher divergence functions detect the rank of a symmetric

space. A similar result for the more general case of Hadamard spaces is proved

in [36] by Wenger.
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Other recent results are due to Cornelia Druţu and Jason Behrstock, who com-

puted in [4] higher divergence functions for mapping class groups. Their results

show, that there is a change from super-Euclidean to Euclidean growth at the

dimension equal to the rank of maximal abelian subgroups of the mapping class

group.

1.4 Integral currents

For the proofs of some of our main results we need the notion of integral currents.

These are functionals which can be seen as a completion of the space of Lipschitz

chains. Here we will only give the basic definitions and will state the for our

purpose most important properties. For a comprehensive study see [3] and [13].

We will state all the definitions in the most general setting of complete metric

spaces, as we will need them in particular for Carnot groups (G, dc). The original

idea of currents is due to Federer and Fleming and the setting of the Euclidean

space Rn. As we will see later, many of their results can be transferred to

Riemannian manifolds.

Let X be a complete metric space and m ∈N ∪ {0}.
Denote by Dm(X) the R-vector space of (m + 1)-tuples (f, π1, ..., πm) of real

valued Lipschitz functions on X with the restriction that f has a bounded set

of values.

Definition.

An m-dimensional metric functional on X is a map

T : Dm(X)→ R , (f, π1, ..., πm) 7→ T (f, π1, ..., πm)

such that for every ω, η ∈ Dm(X) and every t ≥ 0 holds:

(i) |T (ω + η)| ≤ |T (ω)|+ |T (η)| (subadditivity),

(ii) |T (tω)| = t · |T (ω)| (positive 1-homogeneity).

For metric functionals one can define the boundary operator and the push-forward

along a Lipschitz map.
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For ω = (f, π1, ..., πm) ∈ Dm(X) denote by dω the (m+ 2)-tuple

dω := (1, f, π1, ..., πm) ∈ Dm+1(X) .

Definition.

Let T be an m-dimensional metric functional on X. Then the boundary of T is

given by

∂T (ω) = T (dω)

for all ω ∈ Dm−1(X).

Definition.

Let T be an m-dimensional metric functional on X and let ϕ : X → Y be a

Lipschitz map from X into another complete metric space Y . The push-forward

of T along ϕ is the metric functional on Y given by

ϕ#T (g, τ1, ..., τm) := T (g ◦ ϕ, τ1 ◦ ϕ, ..., τm ◦ ϕ)

for all (g, τ1, ..., τm) ∈ Dm(Y ).

Let T be an m-dimensional metric functional on X, ϕ : X → Y be a Lipschitz

map from X into another complete metric space Y and ω = (g, τ1, ..., τm−1) ∈
Dm−1(Y ). Then one can execute the following computation:

ϕ#(∂T )(ω) =∂T (g ◦ ϕ, τ1 ◦ ϕ, ..., τm−1 ◦ ϕ) = T (1, g ◦ ϕ, τ1 ◦ ϕ, ..., τm−1 ◦ ϕ)

=T (1 ◦ ϕ, g ◦ ϕ, τ1 ◦ ϕ, ..., τm−1 ◦ ϕ) = ϕ#T (1, g, τ1, ..., τm−1)

=∂(ϕ#T )(ω)

So we see, that boundary and push-forward commute.

Another important operation on metric functionals is the restriction:

Definition.

Let T be an m-dimensional metric functional on X and η = (g, τ1, ..., τk) ∈
Dk(X), k ≤ m. The restriction of T to η is the (m − k)-dimensional metric

functional on X given by

Txη(f, π1, ..., πm−k) := T (fg, τ1, ..., τk, π1, ..., πm−k)

for all (f, π1, ..., πm−k) ∈ Dm−k(X).
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An important example of a restriction is the case η = (1A) ∈ D0(X) for a Borel

set A ⊂ X. The restriction of an m-dimensional metric functional T to η is given

by

Txη(f, π1, ..., πm) = T (1Af, π1, ..., πm) = T (f|A, π1, ..., πm) .

In the following we will denote it briefly by TxA.

Definition.

Let T be an m-dimensional metric functional on X. Then T is called of finite

mass, if there exists a finite Borel measure µ on X, such that

|T (f, π1, ..., πm)| ≤
m∏
i=1

Lip(πi)

∫
X
|f |dµ

for all (f, π1, ..., πm) ∈ Dm(X).

The minimal measure µ with this property is denoted by ‖T‖. The number

M(T ) := ‖T‖(X) is called the mass of T .

In literature often ‖T‖ is called mass of T , too. But if one is interested in

metric functionals (in particular in integral currents) as relatives of Lipschitz

chains, then the measure M corresponds more closely with the measure “mass”

of Lipschitz chains.

Definition.

The support of an m-dimensional metric functional T on X is the set

spt(T ) := {x ∈ X | ‖T‖(Br(x)) > 0 ∀r > 0} .

Now we are ready to do the first step of specialising:

Definition.

An m-dimensional metric functional T on X is called an m-dimensional current

if it satisfies the following properties:

(i) T is multi-linear.

(ii) If for all i ∈ {1, ...,m} the sequence (πji )j converges pointwise to πi for

j →∞ and if supi,j Lip(πji ) <∞, then holds:

T (f, πj1, ..., π
j
m)

j→∞−−−→ T (f, π1, ..., πm) (continuity).
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(iii) If there are Borel sets Bi ⊂ X, i ∈ {1, ...,m}, such that πi is constant on

Bi and the set {x ∈ X | f(x) 6= 0} is contained in the union
⋃m
i=1Bi, then

holds:

T (f, π1, ..., πm) = 0 (locality).

(iv) T has finite mass, i.e. M(T ) <∞.

The set of m-dimensional currents on X is denoted by Mm(X).

Example.

Let X = Rn, B ⊂ Rn be a Borel set and dλn the Lebesgue measure of Rn. Then

every function β ∈ L1(B,R) induces an n-dimensional current [[β]] ∈ Mn(Rn)

by

[[β]](f, π1, ..., πn) :=

∫
B
βf det(

(
∂πi
∂xj

)
i,j

) dλn .

It can be proved, that restriction and push-forward map currents onto currents

(see [3]). But the boundary of a current is not always a current again. The

properties (i), (ii) and (iii) in the above definition are preserved, but the finite

mass postulation can be violated.

Definition.

A current T ∈Mm(X) is called normal, if its boundary ∂T is again a current.

As a convention, all currents in M0(X) are called normal. The set of normal

m-dimensional currents on X is denoted by Nm(X). On this set one defines the

measure of normal mass by

N(T ) := M(T ) + M(∂T ) .

As ∂(∂T ) = 0 for all metric functionals, one sees that normal currents are

mapped under the boundary operator onto normal currents.

To define the integral currents we need the notion of rectifiability. For this

we denote for m ∈N the m-dimensional Hausdorff-measure of X by Hm.
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Definition.

Let U be a subset of X and m ∈N. Then U is called

a) m-rectifiable, if there exists a bounded subset V ⊂ Rm and a surjective

Lipschitz map φ : V → U .

b) countably m-rectifiable, if U is the union of countably many m-rectifiable

subsets Ui ⊂ X.

c) countably Hm-rectifiable, if there exists a countably m-rectifiable set S ⊂ X,

such that Hm(U \ S) = 0.

This leads to the notion of rectifiability of currents:

Definition.

Let m ≥ 1 and T ∈Mm(X).

a) T is called integer rectifiable, if

i) the measure ‖T‖ is concentrated on a countably Hm-rectifiable set and

vanishes on all Borel sets B with Hm(B) = 0,

ii) and for every Lipschitz map ϕ : X → Rm and every open subset U ∈ X
there is a function β ∈ L1(Rm,Z), such that ϕ#(TxU) = [[β]].

b) T is called an integral current, if T is normal and integer rectifiable. The set

of m-dimensional integral currents on X is denoted by Im(X).

Integral currents are mapped under the boundary operator onto integral cur-

rents, as the following theorem states:

Theorem 1.7 (see [3, Theorem 8.6]).

Let m ≥ 1 and T ∈ Im(X) be an m-dimensional integral current. Then its

boundary is again an integral current ∂T ∈ Im−1(X).

Now we explain how every Lipschitz m-chain can be associated with a m-

dimensional integral current.
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Lets consider a Lipschitz m-chain

a =
n∑
j=1

zjαj

with zj ∈ Z and αj : ∆m → X Lipschitz.

Then a gives rise to a m-dimensional integral current

a# :=
n∑
j=1

zjαj#[[1∆m ]] ∈ Im(X) .

In the case that X is a Riemannian manifold, one gets coinciding mass for

the Lipschitz chain and the associated integral current: mass(a) = M(a#)

(see [3], [38]).

In the case of X = Rn, there is a bijection between the classical integral currents

defined by Federer and Fleming in [13] and the above defined (metric) integral

currents. This means, that for every m ≤ n there is a map

Im(Rn)→ IFFm (Rn) , T 7→ T̃

such that

M(T ) ≤M(T̃ ) ≤ c(n,m) ·M(T )

where c(n,m) > 0 is a constant only depending on the dimension m of the in-

tegral current T and the dimension of the space Rn (see [3]).

1.5 Filling invariants for integral currents

We will use integral currents to prove our results for the filling invariants for

Lipschitz chains. In order to do this, we modify already existing results concern-

ing filling invariants for integral currents. So we have to introduce isoperimetric

inequalities and higher divergence functions for integral currents. This is mainly

done by replacing the words ’Lipschitz chain’ by ’integral current’ in the respect-

ive definitions.

Definition.

Let X be a complete metric space and let m ∈ N. Then X satisfies an isoperi-

metric inequality of rank δ for Im(X), if there is a constant C > 0, such that for
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every integral current T ∈ Im(X) with ∂T = 0, there exists an integral current

S ∈ Im+1(X) with ∂S = T and

M(S) ≤ C ·M(T )δ .

To define higher divergence functions for integral currents we need, as in the

case of Lipschitz chains, some auxiliary technical terms:

Definition.

Let (X, o) be a complete metric space with basepoint and let r > 0. We call

an integral current T on X r-avoidant, if spt(T ) ∩ Br(o) = ∅. Further (X, o)

is (ρ, n)-acyclic at infinity for integral currents, if for every r-avoidant integral

current T ∈ Ij(X) with ∂T = 0 there is an ρr-avoidant integral current S ∈
Ij+1(X) with ∂S = T , for all j ≤ n.

The divergence dimension of (X, o) for integral currents is the maximal number

n ∈ N, such that there is an ρ ∈ (0, 1], such that (X, o) is (ρ, n)-acyclic at

infinity for integral currents.

From now on let m be less or equal the divergence dimension of (X, o) for integ-

ral currents.

Definition.

For 0 < ρ ≤ 1 and α > 0 we set

d̂iv
m

ρ,α(r) := sup
a

inf
b
M(b)

where the infimum is taken over all ρr-avoidant (m+1)-dimensional integral cur-

rents S ∈ Im+1(X) with ∂S = T and the supremum is taken over all r-avoidant

m-dimensional integral currents T ∈ Im(X) with M(T ) ≤ αrm and ∂T = 0.

Then, for m ∈ N, the mth-divergence function of X for integral currents is

the 2-parameter family

D̂iv
m

(X) := {d̂iv
m

ρ,α}ρ,α .

As for the higher divergence functions Divm(X) for Lipschitz chains, we consider

D̂iv
m

(X) as a positive 2-parameter m-family and look at the equivalence classes

with respect to the equivalence relation for positive 2-parameter m-families intro-

duced in Section 1.3. Remember that we denote a constant positive 2-parameter
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m-family F = {f}s,t briefly by f .

The main result we will use is the following theorem due to Wenger:

Theorem 1.8 (see [36, Prop. 1.8]).

Let X be a complete Riemannian manifold and m ∈N. If there is an δ < m+1
m ,

such that X satisfies an isoperimetric inequality of rank δ for Im(X), then holds:

D̂iv
m

(X) 4 rδm .

This theorem implies sub-Euclidean upper bounds for the higher divergence func-

tions for integral currents, whenever a sub-Euclidean isoperimetric inequality for

integral currents is satisfied.

1.6 Asymptotic cones

For the previously defined invariants of the large scale geometry of a metric

space X, one follows the idea to examine the asymptotic behaviour of functions.

Another way to encode the large scale geometry of X is to examine how the ap-

pearance of X behaves if one “zooms out”. Formally this leads to the concept of

asymptotic cones. For the definition of these objects, we need some preparation.

Definition.

Let ω ⊂ P(N) be a family of subsets of N.

a) The family ω is a filter on N, if the following is satisfied:

i) ∅ /∈ ω ,

ii) A ∈ ω, B ⊂ A ⇒ B ∈ ω ,

iii) A,B ∈ ω ⇒ A ∩B ∈ ω .

b) A filter ω is called an ultrafilter, if it is maximal, i.e. if there is another filter

ω′ with ω ⊂ ω′, then already holds ω = ω′.

c) An ultrafilter is called non-principal, if it doesn’t contain any finite set.



18 1 Background

Another way to understand a non-principal ultrafilter ω is to consider it as a

probability measure ω̂ on N. Then one has to demand, that for all subsets of

N, ω̂ only takes values in {0, 1} and that for all finite subsets B ⊂ N holds

ω̂(B) = 0.

Definition.

Let ω be a non-principal ultrafilter and

x : N→ R ∪ {∞} , n 7→ xn

be a sequence.

The ω-limit of x, denoted as limω xn, is the unique point xω ∈ R ∪ {∞}, such

that for every open neighbourhood U of xω holds x−1(U) ∈ ω.

In the alternative view of non-principal ultrafilters as probability measures, one

can describe the ω-limit of a sequence x = (xn)n∈N as the unique point xω ∈
R ∪ {∞}, such that for every open neighbourhood U of xω holds

ω̂({n ∈N | xn ∈ U}) = 1 .

In both views one sees immediately, that there have to be infinitely many ele-

ments of x = (xn)n∈N in every open neighbourhood of the ω-limit xω.

Definition.

Let (Xn, dn)n∈N be a sequence of metric spaces and let ω be a non-principal ul-

trafilter. The ultralimit of (Xn, dn)n∈N is the metric space (Xω, dω) defined as

follows:

Let X∞ := ×
n∈N

Xn and x = (xn)n∈N, y = (yn)n∈N ∈ X∞. Then set

dω(x, y) := limω(dn(xn, yn))

and

Xω := X∞/ ∼0

where x ∼0 y if and only if dω(x, y) = 0.

If further on ∈ Xn, n ∈ N, are basepoints, then the based ultralimit is the

(connected) metric space ((Xo
ω, dω), o), where

o = (on)n∈N and Xo
ω = {x ∈ Xω | dω(x, o) <∞} .
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Now we are able to define the asymptotic cone of a pointed metric space with

respect to a non-principal ultrafilter.

Definition.

Let (X, d) be a metric space and o ∈ X be a basepoint. Further let ω be a non-

principal ultrafilter and r : N→ R ∪ {∞} be a sequence with limω rn =∞.

The based ultralimit of ((X, 1
rn
d), o) is called asymptotic cone of X.

Ultralimits of metric spaces are a generalisation of limits with respect to

(pointed) Gromov-Hausdorff convergence in the following sense:

Proposition 1.9 (compare [18]).

Let ((Xn, dn), pn)n∈N be a sequence of pointed proper metric spaces converging

in the sense of pointed Gromov-Hausdorff convergence to a pointed proper metric

space ((X, d), p).

Then ((X, d), p) is isometric to the based ultralimit ((Xp
ω, dω), p) for all non-

principal ultrafilters ω.

The for us most interesting case in the above proposition is the one of an in the

sense of pointed Gromov-Hausdorff convergence converging sequence ((X, 1
rn
d), o).

In this case the limit space is isometric to the, now up to isometry unique, asymp-

totic cone of (X, d, o).

1.7 Stratified nilpotent Lie groups

The achievement about filling functions and higher divergence functions is mostly

limited to spaces of non-positive sectional curvature. Further one requires by

Theorem 1.2 positive curvature for the chance to produce examples of super-

Euclidean filling functions. As spaces of strictly positive curvature are bounded,

we have to examine spaces with curvature of different types. By results of

Wolf [39] nilpotent Lie groups provide a rich class of such spaces.

A Lie group G with Lie algebra g is called nilpotent, if its lower central series

G = G1 BG2 BG3 B ... with Gj+1 = [G,Gj ]

determines to the trivial group in finitely many steps. Here the bracket [G,Gj ]

denotes the commutator group, i.e. the group generated by all commutators of



20 1 Background

elements of G and Gj . This condition is equivalent to the condition that the

lower central series of the Lie algebra

g = g1 ≥ g2 ≥ g3 ≥ ... with gj+1 = [g, gj ]

determines in finitely many steps to the null-space. Here the bracket [g, gj ] de-

notes the linear subspace of g generated by all brackets of element of g and gj .

In both cases, group and algebra definition, the minimal number of steps in the

lower central series needed to arrive at the trivial group or at the null-space,

respectively, is the same, say d. It is called the degree of nilpotency of G and g.

For brevity we call a nilpotent Lie group of nilpotency degree d in the following

short d-step nilpotent Lie group.

In the examples for filling functions and higher divergence functions above, we

examined the Euclidean space Rn. This space with its additive group structure

is the unique simply connected abelian Lie group of dimension n. As nilpotency

is one natural way to generalise being abelian (this can be seen as 1-step nilpo-

tent), nilpotent Lie groups lend themselves to be the next candidates.

Our main concern is for a special class of nilpotent Lie groups, the stratified

nilpotent Lie groups. Their advantage is, that they additionally admit a family

of self-similarities which are automorphisms. Further these self-similarities have

nice properties concerning left-invariant (sub-)Riemannian metrics on the group.

Definition.

A stratified nilpotent Lie group is a simply connected d-step nilpotent Lie group

G with Lie algebra g together with a grading

g = V1 ⊕ V2 ⊕ ...⊕ Vd

with [V1, Vj ] = V1+j where Vm = 0 if m > d.

For example, every simply connected 2-step nilpotent Lie group G is such a strat-

ified nilpotent Lie group with grading g = V1 ⊕ [g, g], where V1 is isomorphic to

g/[g, g].

Recall that on a Lie group G any two left-invariant Riemannian metrics are

equivalent. This means, if g and g′ are left-invariant Riemannian metrics on G,

then there is a constants L > 0, such that

1

L
· g ≤ g′ ≤ L · g .

From this it follows directly, that (G, g) and (G, g′) are quasi-isometric. So for
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our purpose to understand the asymptotic geometry of G, both metrics lead to

the same results. Therefore it doesn’t matter which left-invariant Riemannian

metric we choose.

Most of time in which we will work explicitly with the Riemannian metric, we

will choose, for technical reasons, a left-invariant Riemannian metric such that

Vi is orthogonal to Vj whenever i 6= j. We call such a metric fitting to the grading.

Now we can introduce the above mentioned self-similarities on a stratified nil-

potent Lie group.

Definition.

Let G be a stratified nilpotent Lie group with grading g = V1 ⊕ ...⊕ Vd of its Lie

algebra. For every t > 0 we define the map

ŝt : g→ g , ŝt(vj) := tjvj for vj ∈ Vj .

As ŝt is an automorphism of the Lie algebra, there is an uniquely determined

automorphism st : G → G of the Lie group G with L(st) := dest = ŝt. We call

this automorphism st scaling automorphism.

As the elements of the first layer V1 of the grading of the Lie algebra g are scaled

least, they play an outstanding role.

Definition.

The elements of the first layer V1 are called horizontal.

Definition.

a) Let M be a Riemannian manifold, G be a stratified nilpotent Lie group and

f : M −→ G be a Lipschitz map.

Then f is horizontal, if all the tangent vectors of its image lie in the subbundle

H :=
⋃
g∈G

dLgV1

of the tangent bundle of G.

b) Let X be a simplicial complex and f : X −→ G be a Lipschitz map. Then f is

m-horizontal, if f is horizontal on the interior of all j-simplices, j ≤ m, of X.
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Lemma 1.10.

Let G be a stratified nilpotent Lie group.

a) To be horizontal is a left-invariant property, i.e. if f is a horizontal map,

then Lg ◦ f is a horizontal map for all g ∈ G (see [10, 2.2.1]).

b) To be horizontal is invariant under scaling automorphisms, i.e. if f is a

horizontal map, then st ◦ f is a horizontal map for all t > 0 (see [10, 2.2.1]).

We now equip G with a left-invariant Riemannian metric g fitting to the grad-

ing of g with associated length metric dg. Then we get the following scaling

estimates:

dg(st(p), st(q))

{
≤ t · dg(p, q) for t ≤ 1

≥ t · dg(p, q) for t ≥ 1
∀p, q ∈ G.

In the above inequalities holds equality in both cases if and only if the distance

of p and q is realised by a piecewise horizontal path. So we get in this special

case:

dg(st(p), st(q)) = t · dg(p, q) ∀t > 0.

This leads to the following important property:

Lemma 1.11.

Let G be a stratified nilpotent Lie group with Riemannian metric g fitting to the

grading of g and let a be a horizontal Lipschitz m-chain in (G,dg). Further let

t > 0 and st : G→ G be a scaling automorphism.

Then holds:

mass(st(a)) = tm ·mass(a) .

Proof.

As the mass of a Lipschitz m-chain is defined as the sum of the m-dimensional

volume of its summands, it suffices to prove

volm(st ◦ a) = tm · volm(a)

for any horizontal Lipschitz m-chain a = α1 : ∆m → G.

By the definition of the scaling automorphism, we have exp−1 ◦st = ŝt ◦ exp−1.
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So we get:

volm(st ◦ a) =

∫
∆m

Jst◦a(x) dλ

=

∫
∆m

detD
(
(exp−1 ◦L(st◦a(x))−1) ◦ (st ◦ a)

)
(x) dλ

(1)
=

∫
∆m

detD
(

exp−1 ◦st ◦ La(x)−1 ◦ a
)
(x) dλ

=

∫
∆m

detD
(
ŝt ◦ exp−1 ◦La(x)−1 ◦ a

)
(x) dλ

(2)
=

∫
∆m

det
(t . . .

t

 ·D(exp−1 ◦La(x)−1 ◦ a)(x)
)
dλ

=

∫
∆m

tm · detD((exp−1 ◦La(x)−1) ◦ a)(x) dλ

= tm ·
∫

∆m

Ja(x) dλ

= tm · volm(a)

The equality (1) holds as st is a group automorphism. As a is a horizontal

m-chain, we have that D(exp−1 ◦La(x)−1 ◦ a)(x) always lies in a m-dimensional

subspace of V1 and so is linearly scaled by ŝt. Therefore equality (2) holds.

On a stratified nilpotent Lie group there is another interesting metric. It is called

the Carnot-Carathéodory metric. It is the left-invariant sub-Riemannian metric

dc induced by h = V1. This means it is the length metric defined by the length

with respect to the Riemannian metric g of horizontal curves:

dc(p, q) := inf{Length(c) | c piecewise horizontal curve with c(0) = p, c(1) = q}

A stratified nilpotent Lie group equipped with its Carnot-Carathéodory metric

is called a Carnot group.

For the Carnot-Carathéodory metric, the nicest possible scaling behaviour holds:

dc(st(p), st(q)) = t · dc(p, q) ∀p, q ∈ G.

The Carnot-Carathéodory metric is a length metric using the same length func-

tional as the Riemannian distance. Further is the class of admissible curves a

subset of all the piecewise smooth curves which are admissible for the Riemann-

ian distance. So we get the following relation between the two metric spaces

(G, dc) and (G, dg), which later will become important:
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Lemma 1.12.

Let G be a stratified nilpotent Lie group with left-invariant Riemannian metric

g and associated length metric dg and induced Carnot-Carathéodory metric dc.

Then the identity map

ι : (G, dc)→ (G,dg), x 7→ x

is 1-Lipschitz, i.e.

dg(x, y) ≤ dc(x, y) for all x, y ∈ G.

For the geometry of stratified nilpotent Lie groups the first layer V1 of the grad-

ing of the Lie algebra plays an important role. In the following definition we

look at it more analytically, such that we can define certain possible properties

of subspaces of V1. Later the presence of these properties will be very useful.

Definition.

Let G be a stratified nilpotent Lie group of dimension n with Lie algebra g.

Let H be the horizontal distribution induced by the first layer V1. Further let

n1 = dimV1. Then this distribution can be described as the set of common zeros

of a set of 1-forms {η1, ..., ηn−n1}. These forms induce a (vector-valued) form

Ω = (ω1, ..., ωn−n1) : Λ2V1 → g/V1
∼= Rn−n1 ,

the curvature form, where the ωi denote the differentials ωi := dηi for

i = 1, ..., n− n1.

Let (σij) ∈ R(n−n1)×k. For a k-dimensional subspace S ⊂ V1 consider the system

of equations

ωi(ξ,Xj) = σij i = 1, ..., n− n1 and j = 1, ..., k

where {Xj} is a basis of S.

Then S is called Ω-regular, if for any (σij) ∈ R(n−n1)×k the system of equations

has a solution ξ ∈ V1 .

Further a subspace S ⊂ V1 is called Ω-isotropic, if Ω restricted to Λ2S is the

zero form.

Let b1, ..., bn be a basis of the Lie algebra g, such that b1, ..., bn1 span the first

layer V1. Then one can choose the 1-forms ηi as the dual forms of the remaining

basis vectors bn1+1, ..., bn:

ηi = b∗n1+i i ∈ {1, ..., n− n1} .
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Using the formula

(p+ 1)!(d γ)(X0, ..., Xp) =
∑
i<j

(−1)i+j+1γ([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xp)

for the differential of a left-invariant p-form γ, one gets

ωi(X0, X1) =
1

2
· b∗n1+i([X0, X1]) .

So we see, that an Ω-isotropic subspace S is nothing else than an abelian sub-

algebra, which is totally contained in the first layer V1 of the Lie algebra.

Further we can interpret the property “Ω-regular”, as something like in general

position.

A more geometric interpretation of these subspaces will be given in Chapter 2.

We close this section mentioning two important properties of Carnot groups:

Proposition 1.13 (see [29]).

Let G be a stratified nilpotent Lie group equipped with a left-invariant Riemann-

ian metric g with associated length metric dg. Then the metric spaces (G, 1
r dg, e)

converge in the pointed Gromov-Hausdorff sense for r →∞ to (G, dc, e), where

dc denotes the Carnot-Carathéodory metric.

This means, that the group G equipped with its Carnot-Carathéodory metric,

is the (up to isometry) unique asymptotic cone of (G, dg).

It can be shown (see [27, Theorem 2]), that the Hausdorff-dimension D of (G, dc)

is given by

D =
d∑
j=1

j · dimVj

where d is the degree nilpotency of G and the Vj are the summands of the

grading of the Lie algebra g. We will see this number again, when we establish

the equivalence classes of high-dimensional filling functions of stratified nilpotent

Lie groups.

1.8 Heisenberg Groups and their generalisations

The most basic examples of non-abelian stratified nilpotent Lie groups are simply

connected 2-step nilpotent Lie groups. And the most basic example of a simply
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connected 2-step nilpotent Lie group is the classical Heisenberg Group. One way

to define it is as the subgroup

Heis =


1 x z

0 1 y

0 0 1

 | x, y, z ∈ R


of Gl3(R).

Then the natural way to generalise it is as the group of real upper triangular

(n× n)-matrices with ones on the diagonal.

Definition.

Let n ∈N be greater or equal 3. The n(n−1)
2 -dimensional Lie group

Nn = {A = (aij) ∈ Gln(R) | ajj = 1, aij = 0 ∀ 1 ≤ j < i ≤ n}

is called the group of unipotent upper triangular (n× n)- matrices.

By construction one obtains the classical Heisenberg Group for n = 3:

N3 = Heis .

As a simply connected 2-step nilpotent Lie group, the Heisenberg group is auto-

matically a stratified nilpotent Lie group. One would like to have this property

for its generalisation, too. But as Nn is no longer 2-step nilpotent if n ≥ 4, one

has to construct the grading of the Lie algebra explicitly.

Lemma 1.14.

Let n ∈ N, n ≥ 3, and Nn be the group of unipotent upper triangular (n × n)-

matrices. Then Nn is simply connected, (n − 1)-step nilpotent and for its Lie

algebra nn holds:

(i) The Lie algebra is given by

nn = {B = (bij) ∈ Mat(n,R) | bjj = 0, bij = 0 ∀ 1 ≤ j < i ≤ n} .

(ii) The decomposition

nn = V1 ⊕ ...⊕ Vn−1

with

Vm = {B = (bij) ∈ Mat(n,R) | bij = 0 ∀j 6= i+m} , m ∈ {1, ..., n− 1}
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is a grading in the sense of the definition of stratified nilpotent Lie groups,

i.e. [V1, Vm] = Vm+1.

Therefore Nn is a stratified nilpotent Lie group.

The proof of this lemma is a short computation.

Another way to generalise the classical Heisenberg Group Heis is inspired by

its property to be 2-step nilpotent, to have an 1-dimensional centre and by the

relations of the Lie algebra heis of Heis. This is given by

heis = 〈X,Y, Z〉R

with

X =

0 1 0

0 0 0

0 0 0

 , Y =

0 0 0

0 0 1

0 0 0

 and Z =

0 0 1

0 0 0

0 0 0


as vector space and with

[X,Y ] = Z

as the only non-trivial bracket of the generators.

This generalises to the family of matrix Lie groups given as

Hn =


1 xT z

0 In y

0 0 1

 | x, y ∈ Rn, z ∈ R

 ⊂ Gln+2(R)

where In denotes the (n× n) unit matrix.

One can check, that Hn is a (2n+1)-dimensional 2-step nilpotent Lie group and

that its Lie algebra is given by

hn = 〈X1, ..., Xn, Y1, ..., Yn, Z〉R

with

Xj =

0 eTj 0

0 0 0

0 0 0

 , Yi =

0 0 0

0 0 ei
0 0 0

 and Z =

0 0 1

0 0 0

0 0 0

 , j, i ∈ {1, ..., n}

where ek denotes kth unit vector. The only non-trivial brackets of the generators

are

[Xj , Yj ] = Z , j ∈ {1, ..., n} .
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As it is 2-step nilpotent and simply connected it is a stratified nilpotent Lie

group with the grading

hn = 〈X1, ..., Xn, Y1, ..., Yn〉R ⊕ 〈Z〉R .

By using exponential coordinates, this leads to the following abstract way to

construct these Lie groups:

Definition.

The complex Heisenberg Group Hn
C of dimension 2n+ 1 is as manifold

Hn
C

:= Cn × Im C

where C denotes the complex numbers. The group law is given by

(z, x)(w, y) := (z + w, x+ y − 1

2

n∑
i=1

Im(ziwi)) .

This is a 2-step nilpotent Lie group with (real) Lie algebra hnC = V1 ⊕ V2 where

V1 = Cn, V2 = Im C ∼= R and with the bracket

[(Z,X), (W,Y )] = (0,

n∑
i=1

Im(ZiWi)) .

It can be seen as the unique simply connected Lie group with Lie algebra gener-

ated by

B := {j1, ..., jn, k1, ..., kn,K}
and with the only non-trivial brackets of the generators

[k, j] = K if both elements in the bracket have the same index.

Remark.

The Lie algebras hnC and hn are isomorphic.

The isomorphism is given by sending ju 7→ Yu and ku 7→ Xu, u ∈ {1, ..., n}.

The advantage of this definition is, that we can get two new generalisations of

this family of 2-step nilpotent Lie groups. We construct them by just replacing

the division algebra C by its relatives: The quaternions and the octonions.

It is notable, that doing the same construction with R, the real numbers, pro-

duces the abelian Lie group (Rn,+).
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Definition.

The quaternionic Heisenberg Group Hn
H of dimension 4n+ 3 is as manifold

Hn
H

:= Hn × Im H

where H denotes the Hamilton quaternions. The group law is given by

(z, x)(w, y) := (z + w, x+ y − 1

2

n∑
i=1

Im(ziwi)) .

This is a 2-step nilpotent Lie group with (real) Lie algebra hnH = V1 ⊕ V2 where

V1 = Hn, V2 = Im H and with the bracket

[(Z,X), (W,Y )] = (0,
n∑
i=1

Im(ZiWi)) .

It can be seen as the unique simply connected Lie group with Lie algebra gener-

ated by

B := {h1, ..., hn, i1, ..., in, j1, ..., jn, k1, ..., kn, I, J,K}
and with the only non-trivial brackets of the generators

[a, h] = A for a ∈ {i1, ..., in, j1, ..., jn, k1, ..., kn}, (here A denotes the capital let-

ter of the choice of a)

and

[k, j] = I, [i, k] = J, [j, i] = K

if both elements in the bracket have the same index.

Definition.

The octonionic Heisenberg Group Hn
O of dimension 8n+ 7 is as manifold

Hn
O

:= On × Im O

where O denotes the Cayley octonions. The group law is given by

(z, x)(w, y) := (z + w, x+ y − 1

2

n∑
i=1

Im(ziwi)) .

This is a 2-step nilpotent Lie group with (real) Lie algebra hnO = V1 ⊕ V2 where



30 1 Background

V1 = On, V2 = Im O and with the bracket

[(Z,X), (W,Y )] = (0,
n∑
i=1

Im(ZiWi)) .

It can be seen as the unique simply connected Lie group with Lie algebra generated

by

B := {d1,..., dn, e1,..., en, f1,..., fn, g1,..., gn, h1,..., hn, i1,..., in, j1,..., jn, k1,..., kn,

E, F,G,H, I, J,K}

and with the only non-trivial brackets of the generators

[a, d] = A

for a ∈ {e1, ..., en, f1, ..., fn, g1, ..., gn, h1, ..., hn, i1, ..., in, j1, ..., jn, k1, ..., kn},
(here A denotes the capital letter of the choice of a)

and

[i, f ] = [k, h] = [j, g] = E,

[e, i] = [j, h] = [g, k] = F,

[k, f ] = [e, j] = [h, i] = G,

[i, g] = [f, j] = [e, k] = H,

[g, h] = [f, e] = [k, j] = I,

[h, f ] = [g, e] = [i, k] = J,

[f, g] = [e, h] = [j, i] = K

if both elements in the bracket have the same index.

We constructed the complex Heisenberg Group Hn
C as 2-step nilpotent with 1-

dimensional centre (and relations inspired by the classical Heisenberg Group

Heis). As for a 2-step nilpotent stratified nilpotent Lie group the centre of

the Lie algebra is given by the second layer V2 of the grading, we have Im H

respectively Im O as centre of the quaternionic respectively octonionic Heisen-

berg Groups. These are not 1-dimensional (indeed they are 3- respectively 7-

dimensional) and so we lost this property by our further generalisation. But we

conserved the nilpotency of degree 2 and and as the groups are simply connected,

we obtain two families of stratified nilpotent Lie groups.

To close this chapter, it should be mentioned, that the above defined general-

ised Heisenberg Groups are not only abstractly constructed Lie groups. They

rather arise in geometry as natural generalisations of the complex Heisenberg



1.9 The h-principle 31

Groups. For seeing this one has to consider the complex hyperbolic spaces

SU(n, 1)/ S(U(n)×U(1)), the quaternionic hyperbolic spaces

Sp(n, 1)/(Sp(n)×Sp(1)) and the Cayley plane F4(−20) / SO(9) of real dimensions

2n, 4n respectively 16. In these spaces the horospheres are biLipschitz equivalent

to the Heisenberg Groups Hn−1
C

, Hn−1
H respectively H1

O. So they are of more

general interest, for example for the geometry of non-cocompact lattices in the

above mentioned hyperbolic spaces.

If one adds the real hyperbolic space SO(n, 1)/ SO(n) of dimension n to the

above list, the horospheres become biLipschitz equivalent to the ”real Heisen-

berg Group” (Rn−1,+). So, by the classification of rank 1 symmetric spaces (see

for example [19]), the Heisenberg Groups can be seen as horospheres in rank 1

symmetric spaces of non-compact type.

1.9 The h-principle

For the proofs of our main theorems we will need m-horizontal triangulations.

We will produce them by approximating ordinary triangulations by subdivided

m-horizontal ones. To do this, we use a technique called the h-principle.

The h-principle (or homotopy principle) is a method to solve systems of par-

tial differential equations (or inequalities) by homotopical techniques.

Such a system of partial differential equations is given by a set of equations

imposed on a unknown smooth map f and its partial derivatives. For example

consider a smooth map f : Rn → Rq and let the system of partial differential

equations be of order r, this means that only partial derivatives up to order r

are involved. Then a solution at a point x ∈ Rn can be viewed as a point(
x, f(x), f ′(x), f (2)(x), ..., f (r)(x)

)
∈ Rn ×Rq ×Rqd(n,1) × ...×Rqd(n,r)

where d(n, s) denotes the number of all partial derivatives of order s. Denote the

subset of such points by R. Then every section with image in R, i.e. a map

F : Rn → R ⊂ Rn ×Rq ×Rqd(n,1) × ...×Rqd(n,r)

with

pr1 ◦ F = idRn

where pr1 denotes the projection to the first factor, consists of point-wise solu-

tions of the system of partial differential equations. But in most cases its pro-

jection pr(F ) : Rn → Rq to the second factor will be no solution of the system

of partial differential equations, not even locally, i.e. there is no open neighbour-
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hood U of x such that F has the shape

F (y) = (y, pr(F )(y), pr(F )′(y), ..., pr(F )(r)(y))

for all y ∈ U .

The approach of the h-principle is to examine whether such a formal solution

F is homotopic in R to a genuine solution of the system of partial differential

equations. If one knows, that for a special type of system of partial differential

equations every formal solution is homotopic to a genuine solution, then the ex-

istence of a formal solution guarantees the existence of a genuine solution.

We want to give a short introduction to the vocabulary and the basic ideas

of the h-principle. For a more detailed introduction see [12].

We start with some notations, which are used in the relevant literature (com-

pare [12], [15]).

Definition.

Let f : Rn → Rq be a smooth map and x ∈ Rn and r ∈ N. For s ∈ N denote

by f (s)(x) the lexicographically ordered tuple of partial derivatives of order s, i.e.

the entries of f (s)(x) are

Dαf(x) with α = (α1, α2, ..., αn) and

n∑
i=1

αi = s ,

where Dαf(x) stands on the left hand side of Dβf(x) iff there is a t ∈ {1, ..., n}
such that αi = βi for all i < t and αt < βt.

The r-jet of f at x is the tuple

Jrf (x) :=
(
f(x), f ′(x), ..., f (r)(x)

)
.

Let d(n, s) denote the number of all partial derivatives of order s of a function

f : Rn → R. Then the r-jet Jrf (x) can be considered as a point in the space

Rq ×Rqd(n,1) ×Rqd(n,2) × ...×Rqd(n,r) = RqN(r)

with N(r) = 1 +
∑r

j=1 d(n, j).

For x ∈ Rn, the space {x} × RqN(r) contains all possible r-jets at the point

x of maps Rn → Rq.
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Definition.

The space

Jr(Rn,Rq) := Rn ×RqN(r)

is called the space of r-jets of maps Rn → Rq.

Definition.

Let V be a smooth manifold and p : X → V be a fibration. A section is a map

F : V → X with p ◦ F = idV .

Every map f : Rn → Rq can be viewed as a section of the fibration p : Rn×Rq →
Rn by sending x 7→ (x, f(x)). Analogously each section F : Rn → Rn×Rq, x 7→
(x, y(x)) of the fibration p : Rn ×Rq → Rn can be seen as a function Rn → Rq

by sending x 7→ y(x). From now on we use the term section, as we later treat a

more general setting.

Definition.

Let f : Rn → Rn ×Rq be a section. The map

Jrf : Rn → Jr(Rn,Rq) , x 7→ Jrf (x)

is called the r-jet of f .

Let V be an n-dimensional smooth manifold. We want to define the space of

r-jets of sections V → X for a (n+ q)-dimensional smooth fibration p : X → V .

To do this we have to use the local trivialisations. So we have to consider r-jets

up to change of coordinates.

For a subset A ⊂ V we denote by Op(A) an arbitrary small (not specified)

open neighbourhood of A. For a point v ∈ V we denote by Op(v) the open

neighbourhood Op({v}).

Definition.

Let v ∈ V and f : Op(v) → X and g : Op(v) → X be two local sections with

f(v) = g(v) =: x. Then f and g are r-tangent, if there is neighbourhood U ⊂ X
of x and a local trivialisation ϕ : U → Rn ×Rq such that

Jrϕ∗f (ϕ(v)) = Jrϕ∗g(ϕ(v))

where ϕ∗f = ϕ ◦ f ◦ p ◦ (ϕ|Op(x))
−1 and ϕ∗g = ϕ ◦ g ◦ p ◦ (ϕ|Op(x))

−1 .
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The r-tangency class of a section f : Op(v) → X at a point v ∈ V is called

the r-jet of f at v and is denoted by jrf (v).

As we now have defined r-jets at points, we are able to define the space of r-jets:

Definition.

The space of r-jets X(r) is the space of all r-tangency classes of local sections

f : Op(v)→ X , v ∈ V .

Let f : V → X be a section. The map

jrf : V → X(r), v → jrf (v)

is called the r-jet of f .

The above definition induces the smooth fibration pr : X(r) → V .

One has to distinguish between two types of sections F : V → X(r) of the

space of r-jets: sections induced by sections f : V → X and the rest.

Definition.

Let pr0 : X(r) → X(0) = X be the projection to 0-tangency classes and let

F : V → X(r) be a section.

a) The section bsF := pr0 ◦ F : V → X is called the base section of F .

b) The section F is holonomic, if F = jrbsF . The space of all holonomic sections

is denoted by HolX(r).

If one denotes the space of sections V → X by SecX and the space of sections

V → X(r) by SecX(r), one can consider the jet map

jr : SecX → SecX(r), f → jrf .

Then the space of holonomic sections is exactly the image of the jet map:

HolX(r) = jr(SecX) .

In the introduction to this section we motivated the h-principle from the view

point of systems of partial differential equations. But there is no need to define
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the set R by such a system. In practice it’s often easier to describe the set R
than the corresponding system of equations.

So one defines a partial differential relation R directly as a subset of the jet space:

Definition.

a) A partial differential relation is a subset R ⊂ X(r) of the jet space.

b) A section F : V → R is called formal solution of R. We denote the set of

formal solutions of R by SecR. If a solution F ∈ SecR is holonomic it is

called genuine solution of R. For the set of genuine solutions we write HolR.

Sometimes we will also call the base section bsF : V → X of a genuine solution

F a genuine solution of R, too.

In the following all families of maps are at least continuous.

Definition.

Let p : X → V be a fibration and let R ⊂ X(r) be a partial differential relation.

a) R satisfies the h-principle, if every formal solution of R is homotopic in

SecR to a genuine solution.

b) R satisfies the parametric h-principle if each homotopy F t : V → R in SecR
with F 0, F 1 ∈ HolR can be deformed in SecR to a homotopy in HolR while

F 0 and F 1 are fixed.

c) Let A ⊂ V be a subset. R satisfies the local h-principle near A if every formal

solution F : Op(A) → R is homotopic to a genuine solution by a homotopy

F t : Op(A)→ R.

d) Let A ⊂ V be a subset. R satisfies the C0-dense local h-principle near

A if R satisfies the local h-principle near A and for every formal solution

F0 : Op(A) → R and for every arbitrary small neighbourhood U ⊂ X of

bsF0, there is a homotopy F t : Op(A) → R from F0 to a genuine solution

such that bsF t stays in U , i.e. bsF t(Op(A)) ⊂ U for all t ∈ [0, 1].
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Definition.

Let R ⊂ X(r) be a partial differential relation and let In be the unit cube in Rn.

a) R is locally integrable if for every map h : In → V and every family of

sections Fp : h(p) → R, p ∈ In, and every family of holonomic extension

F̃p : Op(h(p))→ R, p ∈ Op(∂In) there is a family of holonomic extension

F̄p : Op(h(p))→ R, p ∈ In

such that F̃p = F̄p ∀p ∈ Op(∂In).

b) Let DiffV (X(r)) be the group of fiber-preserving diffeomorphisms of X(r).

Then there is the projection map π : DiffV (X(r)) → Diff(V ), restricting dif-

feomorphisms of X(r) to V .

Then R is Diff(V)-invariant if there is a homomorphism j : Diff(V ) →
DiffV (X(r)) with π ◦ j = id and if for every h ∈ Diff(V ) the action s 7→
h∗s, s ∈ X(r) leaves R invariant, where h∗ denotes the image of the diffeo-

morphism h under the homomorphism j : Diff(V )→ DiffV (X(r)).

c) R is microflexible if the following holds: Let Km = [−1, 1]m and denote for

m < n = dimV by Θm the pair (Kn,Km ∪ ∂Kn). Then for every m < n

and every sufficiently small open ball U ⊂ V and any pair (A,B) ⊂ U × U
diffeomorphic to Θm and every holonomic section F 0 : Op(A) → R and

every holonomic homotopy F t : Op(B)→ R, t ∈ [0, 1] which is constant over

Op(∂B), there is a number σ > 0 such that there is a holonomic homotopy

F̃ t : Op(A)→ R, t ∈ [0, σ] which extends F t and is constant over Op(∂A).

A very important example of a Diff(V )-invariant partial differential relation is

the following:

Definition.

Let W , V be smooth manifolds, n ≥ dimV , and let S ⊂ GrnW be a subset of

the n-planes in the tangent bundle TW . An immersion f : V → W is called

S-directed if df maps the tangent bundle TV into S.

We denote the corresponding differential relation by RS.

Lemma 1.15 (see [12, Chapter 7]).

The differential relation RS of S-directed immersions is Diff(V )-invariant for

every S ⊂ GrnW .
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1.10 Holonomic approximation

Holonomic approximation is one way to prove, that the (local) h-principle is

satisfied. To do this, one first constructs holonomic approximations of formal

solutions and then shows that these are homotopic. The proofs of the statements

in this section can be found in [12].

In the following let V be a Riemannian manifold. Further we assume that X(r)

is equipped with an Euclidean structure near F , this means with a family of

Euclidean metrics on the fibres in a neighbourhood of the image of the section

F . We denote the corresponding (local) distance-function by d.

Definition.

Let V be a smooth manifold. A polyhedron P ⊂ V is a closed subset of V , which

can be obtained as an union of simplices of a smooth triangulation of V .

Definition.

Let δ > 0. A diffeotopy ht : V → V , t ∈ [0, 1], is called δ-small, if

dV (v, ht(v)) < δ

for all v ∈ V and all t ∈ [0, 1].

Theorem 1.16 (Holonomic Approximation Theorem (compare [12, 13.4.1])).

Let R be a locally integrable microflexible differential relation, A ⊂ V be a poly-

hedron of positive codimension and let F : Op(A)→ R be a section.

Then there exists for arbitrary δ, ε > 0 a δ-small diffeotopy ht : V → V , t ∈ [0, 1],

and a holonomic section F̃ : Op(h1(A))→ R such that

d(F̃ (v), F (v)) < ε ∀v ∈ Op(h1(A)) .

Similar theorems holds for the relative and the parametric h-principle:

Theorem 1.17 (Relative Version of Theorem 1.16).

Let R be a locally integrable microflexible differential relation, A ⊂ V be a poly-

hedron of positive codimension and let F : Op(A)→ R be a section. Further let

B ⊂ A be a subpolyhedron of A and F : Op(B)→ R be already holonomic.

Then there exists for arbitrary δ, ε > 0 a δ-small diffeotopy ht : V → V , t ∈ [0, 1],

fixed on Op(B), and a holonomic section F̃ : Op(h1(A)) → R coinciding on
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Op(B) with F such that

d(F̃ (v), F (v)) < ε ∀v ∈ Op(h1(A)) .

Theorem 1.18 (Parametric Version of Theorem 1.16).

Let R be a locally integrable microflexible differential relation, A ⊂ V be a poly-

hedron of positive codimension and let Fz : Op(A)→ R be a (continuous) family

of sections parametrized over [0, 1]m with m ∈N, such that Fz is holonomic for

z ∈ Op(∂[0, 1]m).

Then there exists for arbitrary δ, ε > 0 a family of δ-small diffeotopies htz : V → V ,

t ∈ [0, 1], z ∈ [0, 1]m, such that htz = idV for z ∈ Op(∂[0, 1]m). Further there is

a (continuous) family of holonomic sections F̃z : Op(h1(A))→ R coinciding for

z ∈ Op(∂[0, 1]m) with Fz such that

d(F̃ (v), F (v)) < ε ∀v ∈ Op(h1(A)) .

Using the above theorems one can prove that (locally integrable) microflexible

Diff(V )-invariant differential relations satisfy several versions of the h-principle

(see [12]):

Theorem 1.19 (Local h-principle (compare [12, 13.5.1])).

Every locally integrable microflexible Diff(V )-invariant differential relation sat-

isfies the C0-dense local h-principle near any polyhedron A ⊂ V of positive codi-

mension.

Theorem 1.20 (h-principle for open manifolds (compare [16, p.79], [12, 13.5.2])).

Every microflexible Diff(V )-invariant differential relation R satisfies the para-

metric h-principle.

1.11 h-principle for sheaves

As mentioned at the beginning of Section 1.9, we will use the h-principle to

construct m-horizontal triangulations. To do this, we need some results of

Mikhael Gromov formulated in an alternative language of the h-principle, the

h-principle for sheaves. This is closely related to h-principle treated above. For

proofs and other details compare [15].
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Definition (compare [15] or [33]).

a) A quasi-topology on a set A is a subset Tquasi of the set

{f : T → A | T topological space}

of all maps from topological spaces into A, such that the following holds:

(i) If f : T1 → A is in Tquasi and if ϕ : T2 → T1 is continuous, then the

composition f ◦ ϕ is in Tquasi.

(ii) Let f : T → A be a map. If there is for every point p ∈ T a neighbour-

hood Up of p such that f|Up
is in Tquasi, then f is in Tquasi.

(iii) Let P1, P2 be two closed subsets of T with T = P1∪P2 and let f : T → A

be a map. If f|P1
, f|P2

are in Tquasi, then f is in Tquasi.

b) Let (A, T Aquasi) and (B, T Bquasi) be two quasi-topological spaces, i.e. sets equipped

with quasi-topologies. A map F : A → B is called continuous in the sense

of quasi-topologies if for all topological spaces T and all maps ϕ : T → A in

T Aquasi the composition F ◦ ϕ is in T Bquasi.

Definition.

Let V be a smooth manifold and U ⊂ V .

a) A sheaf Φ over V is called continuous if every set Φ(U) is equipped with a

quasi-topology, such that for all inclusions ι : U ↪→ U ′ ⊂ V the maps Φ(ι) are

continuous in the sense of quasi-topologies.

b) Let Φ be a continuous sheaf over V and denote by ΦV the continuous sheaf

over V × V defined by

(i) The sections are by V parametrized families of sections of Φ.

(ii) For U,W ⊂ V open subsets ΦV (U ×W ) is defined as (Φ(U))W .

(iii) A map Q→ ΦV (U ×W ) is continuous if and only if the corresponding

map Q×W → Φ(U) is continuous.

Then we define Φ∗ as the restriction of ΦV to the diagonal ∆ ⊂ V × V .
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The sections of Φ∗ are continuous families of germs ϕv ∈ Φ(v). On the other

hand, every section of Φ can be seen as a unique constant family of sections of

Φ with parameter space V , i.e. as a section of Φ∗. This makes Φ into a subsheaf

of Φ∗. Denote this inclusion homomorphism of sheaves by D.

Definition.

Let A,A′ be quasi-topological spaces and α : A→ A′ be a continuous map. Then

α is a microfibration if for all compact polyhedra P and all continuous maps

ϕ : P → A and all homotopies Φ′ : P × [0, 1]→ A′ with Φ′|P×{0} = ϕ′ defined as

ϕ′ = α ◦ ϕ, there is a positive σ ∈ (0, 1] and a map Φ : P × [0, σ]→ A such that

Φ|P×{0} = ϕ and α ◦ Φ = Φ′|P×[0,σ].

P� _

�

ϕ // A
α // A′

P × [0, σ]

∃Φ

::

� _

�
P × [0, 1]

Φ′

;;

Definition.

Let Φ be a continuous sheaf over V .

a) Φ satisfies the h-principle (for sheaves), if for any open subset U ⊂ V every

section ϕ ∈ Φ∗(U) can be homotoped to Φ(U) ⊂ Φ∗(U).

b) Φ satisfies the local h-principle (for sheaves) near A ⊂ V , if Φ(Op(A)) sat-

isfies the h-principle (for sheaves).

c) Φ is microflexible if for any pair C ′ ⊂ C ⊂ V of compact subsets the restric-

tion map Φ(C)→ Φ(C ′) is a mircofibration.

Remark.

a) There is a close connection between differential relations and sheaves:

Let R ⊂ X(r) be a differential relation for a fibration p : X → V . Then for

k ∈N≥r ∪ {∞} the space of Ck-solutions of R forms a sheaf Φ over V . The

sheaves Φ(U), U ⊂ V , are the Ck-solutions of R over U .
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b) Let Φ be the sheaf of (generic) solutions of a differential relation R ∈ X(r) and

Ψ be the sheaf of continuous sections V → R (i.e. of formal solutions). Then

there is a homomorphism J : Φ∗ → Ψ such that (J ◦ D)(f) = jrf : U → R
for all open subsets U ⊂ V and all f ∈ Φ(U). If this J is a weak homotopy

equivalence, the h-principle for the sheaf Φ implies the h-principle for the

relation R.

Looking at the definition of the local h-principles, one can see immediately

that this relationship stays true for the local case.

c) Let again Φ be the sheaf of solutions of a differential relation R ∈ X(r). Then

one can prove that the microflexibility of Φ implies the microflexibility of R
(just take C = A, C ′ = B ∪ ∂A and P = {•} in the respective definitions).
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2 Main results

In this chapter we state our main results. We do this separately for statements

about filling function, higher divergence functions and more concrete results for

generalised Heisenberg Groups and applications to rank 1 symmetric spaces.

Summarized, our results show that stratified nilpotent Lie groups behave Euclid-

eanly in low dimensions, this means similar to flat spaces, and sub-Euclideanly

in high dimensions, this means similar to negatively curved spaces. For some

examples, including the generalised Heisenberg Groups, we prove the appear-

ance of the third possible kind, i.e. dimensions of super-Euclidean behaviour.

This corresponds to the three types of sectional curvature, which appear in every

point of a nilpotent Lie group (compare [39]).

Remark.

In stratified nilpotent Lie groups equipped with the sub-Riemannian metric there

are no Lipschitz chains (of positive mass) in high dimensions (i.e. dimensions

greater than the maximal dimension of abelian subalgebras of the first layer of

the grading of the Lie algebra, compare [25]). So it’s more reasonable to exam-

ine filling functions and higher divergence functions for the Riemannian metric.

Therefore every statement about this two invariants for stratified nilpotent Lie

groups will be with respect to a left-invariant Riemannian metric.

In the sub-Riemannian case the problem is rather how to define suitable analogues

to filling functions and higher divergence functions without using Lipschitz chains

(or integral currents, for which the same problem turns up).

Nevertheless, the Carnot-Carathéodory metric is an useful tool to examine the

geometry of stratified nilpotent Lie groups. Whenever we use the Carnot-

Carathéodory metric, we will highlight it by the notation (G,dc).

2.1 Filling functions of stratified nilpotent Lie groups

First we describe our results for the filling functions. We will prove, that the

existence of a (k+1)-dimensional, Ω-regular abelian subalgebra in the first layer

of the Lie algebra leads to Euclidean filling functions up to dimension k+ 1. For

technical reasons we additionally assume the existence of a scalable lattice in G.

Remember the notation st : G→ G , t > 0, for the scaling automorphisms of a

stratified nilpotent Lie group (see Section 1.7).
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Theorem 1.

Let G be a stratified nilpotent Lie group equipped with a left-invariant Riemann-

ian metric. Further let g be the Lie algebra of G and V1 be the first layer of the

grading and let k ∈ N. If there exists a lattice Γ ⊂ G with s2(Γ) ⊂ Γ and a

(k + 1)-dimensional Ω-isotropic, Ω-regular subspace S ⊂ V1, then holds:

F j+1
G (l) ∼ l

j+1
j for all j ≤ k.

Let d denote the degree of nilpotency of G. Then further holds F k+2
G (l) 4 l

k+1+d
k+1 .

The upper bound on F k+2
G is the (higher dimensional) analogue to Gromov’s

bound δΓ(n) 4 n1+d on the (1-dimensional) Dehn function for nilpotent groups

in [28, 5.A′.5] (see also [30]) as there is the relation δk+1 4 F k+2 (see Proposition

1.4).

Remark.

Gromov proved in [28] the following dimension-formula for Ω-isotropic, Ω-regular

subspaces S ⊂ V1:

dimV1 − dimS ≥ dimS(dim g− dimV1) (∗)

For the existence of Ω-isotropic, Ω-regular subspaces this means, that the ho-

rizontal distribution has to be large, i.e. dimV1 >> codimg V1. This formula

comes from the fact, that the Ω-isotropy and Ω-regularity of S implies that the

linear map

Ω• : V1 → Hom(S, g/V1), X 7→ Ω(X, )

is surjective and vanishes on S. The left hand side in the above inequality equals

the dimension of V1/S and the right hand side the dimension of Hom(S, g/V1).

As S is in the kernel of Ω• we get by the surjectivity of Ω• the inequality as

necessary condition.

And on the other hand Gromov proved, that (∗) is sufficient for generic Ω, i.e.

for a class of forms, which form an open and everywhere dense subset.

Our second result refers to “high dimensions”. We assume the existence of a

scalable lattice and a (k + 1)-dimensional abelian Ω-regular subalgebra in the

first layer of the Lie algebra.. Then we can prove sub-Euclidean filling func-

tions in the k dimensions below the dimension of the group (if the group is not

abelian). So the geometry of stratified nilpotent Lie groups is not Euclidean in

high dimensions.
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Theorem 2.

Let G be an n-dimensional stratified nilpotent Lie group equipped with a left-

invariant Riemannian metric. Further let g be the Lie algebra of G with grading

g = V1 ⊕ ... ⊕ Vd. Denote by D =
d∑
i=1

i · dimVi the Hausdorff-dimension of

the asymptotic cone of G and let k ∈ N. If there exists a lattice Γ ⊂ G with

s2(Γ) ⊂ Γ and a (k + 1)-dimensional Ω-regular, Ω-isotropic subspace S ⊂ V1,

then holds:

Fn−jG (l) ∼ l
D−j

D−j−1 for all j ≤ k − 1.

Note that every lattice Γ in a nilpotent Lie group G is cocompact. So G and

Γ are quasi-isometric. Therefore their asymptotic cones are isometric and have

coinciding Hausdorff-dimensions.

Therefore the above result extends a classical result of Nicolas Varopoulos (see

[17], [34]).

Theorem (compare [34]).

Let Γ be a lattice in an n-dimensional nilpotent Lie group G. Further denote by

D the Hausdorff dimension of the asymptotic cone of Γ. Then holds:

δn−1
Γ (l) ∼ l

D
D−1 .

Varopoulos’ result corresponds to the case j = 0 in Theorem 2 (remember the

different meaning of the exponents in the notation of the filling functions and

the Dehn functions, discussed in Section 1.2).

Now we turn to the special case of simply connected 2-step nilpotent Lie groups.

As seen in Section 1.7, all simply connected 2-step nilpotent Lie groups are strat-

ified nilpotent Lie groups and so fit to our situation. We will see that in every

such group there is a lattice Γ which satisfies the condition s2(Γ) ⊂ Γ. So this

doesn’t remain a restriction to the Lie group and we can drop this requirement.

This leads to the following version:

Theorem 3.

Let G be an n-dimensional simply connected 2-step nilpotent Lie group equipped

with a left-invariant Riemannian metric. Further let g be the Lie algebra of G

with grading g = V1 ⊕ V2. Let n2 = dimV2 and let k ∈ N. If there exists a

(k + 1)-dimensional Ω-regular, Ω-isotropic subspace S ⊂ V1, then holds:

(i) F j+1
G (l) ∼ l

j+1
j for all j ≤ k,
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(ii) F k+2
G (l) 4 l

k+3
k+1 ,

(iii) Fn−jG (l) ∼ l
n+n2−j

n+n2−j−1 for all j ≤ k − 1.

Now it would be interesting to know, what happens in the dimension above the

maximal dimension of an Ω-regular, Ω-isotropic subspace of V1. The above the-

orems only give us a (super-Euclidean) upper bound on the filling function in this

dimension. The following theorem, which generalises a theorem of Wenger [38,

Theorem 5.2], states a super-Euclidean lower bound in the special case, that the

maximal dimension of Ω-regular, Ω-isotropic subspaces of V1 coincides with the

maximal dimension of Ω-isotropic subspaces of V1.

Theorem 4.

Let G be a stratified nilpotent Lie group equipped with a left-invariant Riemann-

ian metric. Further let g be the Lie algebra of G with grading g = V1 ⊕ ...⊕ Vd.
Let k0, k1 ∈N, such that (k0 + 1) is the maximal dimension of an Ω-regular, Ω-

isotropic subspace of V1 and (k1 + 1) is the maximal dimension of an Ω-isotropic

subspace of V1. Further let one of the following two conditions be satisfied:

a) There is an k0 ≤ k ≤ k1 such that there is an integral current T ∈ Icptk+1(G, dc)

with ∂T = 0 and T 6= 0 but no integral current S ∈ Icptk+2(G,dc) with ∂S = T .

b) The two numbers k0 and k1 coincide: k0 = k1 =: k.

Then holds:

F k+2
G (l) � l

k+2
k+1 .

We will see in the proof, that condition b) implies condition a). Nevertheless we

allow condition b) to stand in the theorem, as it is easier to check directly for

some specific groups.

A stratified nilpotent Lie group which fulfils the conditions of Theorem 4 has at

least one super-Euclidean filling function. This wouldn’t be possible, if the group

would be a space of non-positive curvature. Of course a stratified nilpotent Lie

group can’t be a space of strictly positive curvature, as it is diffeomorphic to

some RN and therefore not bounded. So the above theorem recovers for (some)

stratified nilpotent Lie groups the result of Wolf [39] about the appearance of all

different types of sectional curvature.

We will see, that the Heisenberg Groups Hn
C, Hn

H and Hn
O are such groups.
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2.2 Higher divergence functions of stratified nilpotent Lie

groups

Our results for the filling functions of stratified nilpotent Lie groups lead directly

to lower bounds for the higher divergence functions. This is, as we will see in

the proof, mainly due to the left-invariance of the Riemannian metric. In the

low dimensions we obtain the following theorem:

Theorem 5.

Let G be a stratified nilpotent Lie group equipped with a left-invariant Riemann-

ian metric. Further let g be the Lie algebra of G and V1 be the first layer of the

grading and let k ∈ N. If there exists a lattice Γ ⊂ G with s2(Γ) ⊂ Γ and a

(k + 1)-dimensional Ω-isotropic, Ω-regular subspace S ⊂ V1, then holds:

DivjG(r) < rj+1 for all j ≤ k.

In the high dimensions we obtain additional upper bounds for the higher diver-

gence functions, which coincide with the lower bounds. The lower bounds come

in the same way as in the low dimensions, while the upper bounds are possible

to establish because the filling functions are sub-Euclidean (in contrast to the

Euclidean filling functions in the low dimensions).

To establish the upper bounds on the higher divergence functions it is important

to know the divergence dimension of the stratified nilpotent Lie group. Every

simply connected nilpotent Lie group of dimension n is polynomial Lipschitz

equivalent to Rn via the exponential map exp : Rn ∼= g → G. This means

that the Lipschitz constants of exp and exp−1 on balls of radius R grow at

most polynomial in R. Using this, one can construct in G (ρr-avoidant) fillings

with polynomial bounded mass of (r-avoidant) cycles from Euclidean ones (com-

pare [28, Chapter 5]) and vice versa. Therefore G and Rn have the same diver-

gence dimension: divdim(G) = n− 2.

Theorem 6.

Let G be an n-dimensional stratified nilpotent Lie group equipped with a left-

invariant Riemannian metric. Further let g be the Lie algebra of G with grading

g = V1 ⊕ ... ⊕ Vd. Denote by D =

d∑
i=1

i · dimVi the Hausdorff-dimension of

the asymptotic cone of G and let k ∈ N. If there exists a lattice Γ ⊂ G with

s2(Γ) ⊂ Γ and a (k + 1)-dimensional Ω-regular, Ω-isotropic subspace S ⊂ V1,

then holds:

Divn−jG (r) ∼ r
(D−j)(n−j−1)

D−j−1 for all 2 ≤ j ≤ k.
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As we can reduce the conditions of Theorem 1 and Theorem 2 in the case of

simply connected 2-step nilpotent Lie groups (see Theorem 3), we can do the

same for Theorem 5 and Theorem 6 and obtain:

Theorem 7.

Let G be an n-dimensional simply connected 2-step nilpotent Lie group equipped

with a left-invariant Riemannian metric. Further let g be the Lie algebra of G

with the grading g = V1 ⊕ V2, let n2 = dimV2 and let k ∈ N. If there exists a

(k + 1)-dimensional Ω-regular, Ω-isotropic subspace S ⊂ V1, then holds:

(i) DivjG(r) < rj+1 for all j ≤ k,

(ii) Divn−j−1
G (r) ∼ r

(n+n2−j)(n−j−1)
n+n2−j−1 for all 2 ≤ j ≤ k.

2.3 Results for generalised Heisenberg Groups

In [42] and [43] Young computes upper bounds for filling functions of the com-

plex Heisenberg Groups Hn
C. His technique for the dimensions ≤ n + 1 is the

foundation of our upper bounds in Theorem 1. The proof of the upper bounds

in Theorem 2 is based on the technique he uses for the dimensions 2n+ 1 down

to n + 2. Both techniques of Young need a lot of conditions, which are a lot of

work to check explicitly for each specific group. Our new conditions are much

easier to check for a single group and we will do this for the quaternionic and

octonionic Heisenberg Groups. Young verified his conditions for the complex

Heisenberg Groups and together with the coinciding lower bounds computed by

Burillo [9] they get:

F j+1
Hn

C
(l) ∼


l
j+1
j for 1 ≤ j < n,

l
n+2
n ,

l
j+2
j+1 for n < j ≤ 2n.

So the filling functions of the complex Heisenberg Groups are known in all di-

mensions. This comes as Young’s first technique works for the first n dimensions,

providing Euclidean bounds, plus the super-Euclidean bound in the dimension

above and Young’s second technique works for the n dimensions below the di-

mension of the group. And the conditions for the first technique are contained

in the conditions for the second one, so the symmetry (n from below and n from

above) is no coincidence.

As the dimensions of the quaternionic and octonionic Heisenberg Groups Hn
H
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and Hn
O are bigger than 2n+1 = dimHn

C, there remains a gap in the dimensions

between (n+1) and (3n+3) respectively (7n+7). For these dimensions we can’t

compute the filling functions with our techniques. But we obtain the following

bound on the filling functions of the quaternionic and octonionic Heisenberg

Groups:

Corollary 2.1.

Let Hn
H be the 4n+ 3 dimensional quaternionic Heisenberg Group.

Then holds:

i) F j+1
Hn

H
(l) ∼ l

j+1
j for j < n,

ii) Fn+1
Hn

H
(l) 4 l

n+2
n ,

iii) Fm+1
Hn

H
(l) ∼ l

m+4
m+3 for 3n+ 3 < m < 4n+ 3.

Corollary 2.2.

Let Hn
O be the 8n+ 7 dimensional octonionic Heisenberg Group.

Then holds:

i) F j+1
Hn

O
(l) ∼ l

j+1
j for j < n,

ii) Fn+1
Hn

O
(l) 4 l

n+2
n ,

iii) Fm+1
Hn

O
(l) ∼ l

m+8
m+7 for 7n+ 7 < m < 8n+ 7.

The proof of Theorem 5 and Theorem 6 (respectively Theorem 7) on the higher

divergence functions only uses the bounds on the filling functions. So these the-

orems remain true if one replaces the conditions of them by the bounds on the

filling functions established in Theorem 1 and Theorem 2 (respectively Theorem

3). Using the bounds for the complex Heisenberg Groups (computed in [42]

and [43]) we get the following behaviour of the higher divergence functions:

Corollary 2.3.

Let Hn
C be the 2n+ 1 dimensional complex Heisenberg Group.

Then holds:

i) DivjHn
C

(r) < rj+1 for j < n,
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ii) DivnHn
C

(r) < rn+2 ,

iii) DivmHn
C

(r) ∼ r
(m+2)m

m+1 for n+ 1 ≤ m < 2n.

And for the quaternionic and octonionic Heisenberg Groups we obtain:

Corollary 2.4.

Let Hn
H be the 4n+ 3 dimensional quaternionic Heisenberg Group.

Then holds:

i) DivjHn
H

(r) < rj+1 for j < n,

ii) DivmHn
H

(r) ∼ r
(m+4)m

m+3 for 3n+ 3 < m < 4n+ 2.

Corollary 2.5.

Let Hn
O be the 8n+ 7 dimensional octonionic Heisenberg Group.

Then holds:

i) DivjHn
O

(r) < rj+1 for j < n,

ii) DivmHn
O

(r) ∼ r
(m+8)m

m+7 for 7n+ 7 < m < 8n+ 6.

In the above Corollaries 2.1 and 2.2 concerning the filling functions of the qua-

ternionic and the octonionic Heisenberg Groups we only stated upper bounds in

dimension n. This is due to the fact, that the technique for the lower bounds,

used by Burillo in [9] to compute the lower bounds in dimension n for the complex

Heisenberg Groups, is very special. Indeed it can’t be generalised to stratified nil-

potent Lie groups, not even to the octonionic Heisenberg Groups as the example

of H1
O (discussed below) shows. But in the case of the quaternionic Heisenberg

Groups we managed to compute the desired lower bound in dimension n:

Theorem 8.

Let Hn
H be the quaternionic Heisenberg Group of dimension 4n+ 3.

Then holds:

Fn+1
Hn

H
(l) ∼ l

n+2
n .

So the quaternionic Heisenberg Groups have at least one strictly super-Euclidean

filling function.
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By the discussion following Theorem 1, one can see, that n is the maximal

possible dimension of an Ω-isotropic, Ω-regular subspace S of V1 in the grading

of the Lie algebra of the quaternionic respectively octonionic Heisenberg Group

Hn
H respectively Hn

O. This follows from the equalities

dimV1 − n = 4n− n = 3n = n(4n+ 3− 4n) = n(dim g− dimV1)

for the quaternionic case, and

dimV1 − n = 8n− n = 7n = n(8n+ 7− 8n) = n(dim g− dimV1)

for the octonionic case.

And as the left hand side is strictly decreasing and the right hand side is strictly

increasing in the dimension of the Ω-regular, Ω-isotropic horizontal subspace,

the necessary condition for the existence of such a subspace is not satisfied for

any dimension greater than n.

One could think, that this is only a technical appearance, i.e. there could be

the same behaviour of the filling functions in the dimensions above n. But

Theorem 8 shows, that for the quaternionic Heisenberg Groups, this is not the

case and we observe a change from Euclidean to super-Euclidean behaviour of

the filling functions. The same holds in the case of the complex Heisenberg

Groups (see [9] and [42]) and for the octonionic Heisenberg Groups (see Corol-

lary 2.6). Unfortunately, in contrast to the complex and the quaternionic case,

the technique of Burillo doesn’t work in the octonionic case (compare the discus-

sion in Section 2.4). But we will see, that for Hn
O the number n is the maximal

dimension of Ω-isotropic subspaces of V1, too. So Theorem 4 applies and we get

at least a super-Euclidean lower bound:

Corollary 2.6.

Let Hn
O be the octonionic Heisenberg Group of dimension 8n+ 7.

Then holds:

Fn+1
Hn

O
(l) � l

n+1
n .

The additional lower bound for the (n + 1)-dimensional filling function of the

quaternionic Heisenberg Group Hn
H stated in Theorem 8 and lower bound for

the (n+ 1)-dimensional filling function of the octonionic Heisenberg Group Hn
O

stated in Corollary 2.6 induce lower bounds for the higher divergence function

in dimension n. As in the case of the complex Heisenberg Group Hn
C we observe

a change from Euclidean to super-Euclidean behaviour.
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Corollary 2.7.

Let Hn
H be the 4n+3 dimensional quaternionic Heisenberg Group and Hn

O be the

8n+ 7 dimensional octonionic Heisenberg Group.

Then holds:

DivnHn
H

(r) < rn+2

and

DivnHn
O

(r) � rn+1 .

2.4 Application to lattices in rank 1 symmetric spaces

For n ≥ 2 the Corollaries 2.1 and 2.2 show that the 2-dimensional filling function

F 2 of Hn
H and Hn

O is of quadratic type in both cases (see also [42]). Furthermore,

one can use the fact that there is a gap between linear and quadratic Dehn

functions (see [5]). This means that a sub-quadratic Dehn function has to be

linear. By the relation δ1 4 F 2 and the fact that the above groups are not

hyperbolic (and therefore can’t have linear Dehn funcitons), their Dehn functions

δ1 are quadratic, too. Christophe Pittet computed the Dehn function of H1
H

(which is cubic) in [31] and so the Dehn function of Hn
H is known for all n ∈N.

Unfortunately there is an error in Pittet’s computation of the Dehn function of

H1
O (mentioned in [23]). And annoyingly this error can’t be repaired, because

the used proposition in [31] needs a 2-form ω of the shape

ω =
∑

xi∈B1,Yi∈B2

αi(Y
∗
i ∧ x∗i ) 6= 0

with differential

dω =
∑

xi∈B1,Yi∈B2

αi d(Y ∗i ∧ x∗i ) = 0

where B1 = {d, e, f, g, h, i, j, k} and B2 = {E,F,G,H, I, J,K}. The condition

on the differential leads to a system of linear equations with no non-trivial solu-

tion. So there is no such 2-form and Pittet’s technique doesn’t work for H1
O.

One could think, that Burillo’s technique [9] could solve this problem, but this

leads to the same requirement of a 2-form with the properties described above.

This means the 2-dimensional filling function of H1
O is still unknown, while the

2-dimensional filling function of Hn
O is known for all n ≥ 2.

Nevertheless our results have an application to the (higher dimensional) Dehn

functions of non-uniform lattices is the complex and quaternionic hyperbolic

spaces:
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Corollary 2.8.

Let n ∈ N≥3 and X be the complex hyperbolic space SU(n, 1)/S(U(n) × U(1))

of dimension 2n or the quaternionic hyperbolic space Sp(n, 1)/(Sp(n) × Sp(1))

of dimension 4n. Further let Γ be a group acting properly discontinuously by

isometries, such that the quotient space X/Γ is of finite volume, but not compact.

Then holds:

δjΓ(l) ∼ l
j+1
j for 1 ≤ j < n− 1.

Remark.

Let X be the complex hyperbolic plane SU(2, 1)/ S(U(2) × U(1)) of dimension

4 or the quaternionic hyperbolic plane Sp(2, 1)/(Sp(2) × Sp(1)) of dimension 8

and Γ a group acting properly discontinuously on X by isometries, such that the

quotient space has finite volume but is not compact. It is proved in [31] that:

δΓ(l) ∼ δ1
Γ(l) ∼ l3 .

2.5 Geometrical Interpretation

All of our theorems have conditions concerning the existence of Ω-regular, Ω-

isotropic subspaces in the first layer of the grading of Lie algebra. The proofs

following in the next chapters will use this algebraic conditions in a more or

less technical manner. But it is interesting what the geometrical meaning of

these subspaces is. Furthermore, one can explain geometrically the change of the

behaviour of the filling invariants at the maximal dimension of such subspaces.

A good grasp of the meaning of the maximal dimension of an Ω-regular, Ω-

isotropic subspace S ⊂ V1 one can get from the view point of differential geo-

metry. More explicitly, one has to look at the sectional curvature. For the

sectional curvature of a Lie group equipped with a left-invariant Riemannian

metric, there is the following formula (see [26]):

Let G be a Lie group with Lie algebra g and let {e1, ..., en} be an orthonor-

mal basis of g. Define the numbers αuvw by

[eu, ev] =
n∑

w=1

αuvwew .
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Then holds for the sectional curvature K:

K(ei, ej) =
n∑
k=1

(1

2
αijk(−αijk + αjki + αkij)

− 1

4
(αijk − αjki + αkij)(αijk + αjki − αkij)− αkiiαkjj

)

Now consider G as 2-step nilpotent with the grading

g = V1 ⊕ [V1, V1]

of its Lie algebra. Further let {e1, ..., en1} be an orthonormal basis of V1 and

{en1+1, ..., en} an orthonormal basis of V2 := [V1, V1]. As G is 2-step nilpotent,

one gets

[eu, ev] = 0 if u ≥ n1 + 1 or v ≥ n1 + 1

and [eu, ev] ∈ V2 for all v, u ∈ {1, ..., n}. Therefore αuvw = 0, whenever u /∈
{1, ..., n1} or v /∈ {1, ..., n1} or w ≤ n1.

For the sectional curvature in the case i, j ≤ n1 follows:

K(ei, ej) =
n∑

k=n1+1

(1

2
αijk(−αijk + 0 + 0)− 1

4
(αijk − 0 + 0)(αijk + 0− 0)− 0 · 0

)
=

n∑
k=n1+1

(
− 1

2
(αijk)

2 − 1

4
(αijk)

2
)

= −3

4

n∑
k=n1+1

(αijk)
2

=: K1,1

And in the case i ≤ n1 and j ≥ n1 + 1:

K(ei, ej) =

n1∑
k=1

(
0(−0 + 0 + αkij)−

1

4
(0− 0 + αkij)(0 + 0− αkij)− 0 · 0

)
=

n1∑
k=1

1

4
(αkij)

2

=
1

4

n1∑
k=1

(αkij)
2

=: K1,2
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In the case, that both vectors are from the basis of V2, the sectional curvature

equals 0.

One can see, that K1,1 ≤ 0 with equality if and only if [ei, ej ] = 0; and K1,2 ≥ 0

with equality if and only if for all k ∈ {1, ..., n1} holds: πej ([ek, ei]) = 0, where

πej denotes the projection on the subspace 〈ej〉.

Let S ⊂ V1 be an Ω-isotropic, Ω-regular subspace of maximal dimension, say

of dimension m, and let the basis {e1, ..., en} be chosen in way, such that

S = 〈e1, ..., em〉. Then one gets:

1) K(ei, ej) = 0 if i, j ≤ m.

2) For all ej with m + 1 ≤ j ≤ n1 there exists an i ∈ {1, ...,m}, such that

K(ei, ej) < 0.

3) For all ej with j ≥ n1+1 there exists an i ∈ {1, ...,m}, such that K(ei, ej) > 0.

The first property comes by the Ω-isotropy, the second by the maximality of the

dimension and the third by the Ω-regularity.

This shows, that every plane in S has sectional curvature = 0. But whenever

one extends S by another direction, one gets a plane with sectional curvature 6= 0.

So one can explain the Euclidean behaviour of the filling invariants up to the

maximal dimension of Ω-regular, Ω-isotropic subspaces by the flatness of these

subspaces. The super-Euclidean behaviour in the dimension above is related to

the positive curvature, which occurs whenever one adds a direction not contained

in the first layer of the grading.

Another way to see the necessity of the Ω-regularity is the following example:

The paper [9] of Burillo contains the interesting result:

For n ≥ 4 the group Nn of unipotent upper triangular (n × n)-matrices the

2-dimensional filling function fulfils

F 2
Nn

(l) < l3 � l
1+1
1

which is a strictly super-Euclidean behaviour.

This is no contradiction to Theorem 1, as the first layer of the grading

nn = V1 ⊕ ...⊕ Vn−1 has dimension n and the dimension of nn is n(n−1)
2 .



56 2 Main results

Therefore

dimV1 −m = n−m ≥ m(
n2 − 3n

2
) = m(

n(n− 1)

2
− n) = m(dim nn − dimV1)

holds never true for m ≥ 2. By the discussion after Theorem 1, there can’t exist

a 2-dimensional Ω-isotropic, Ω-regular subspace S of V1 and therefore Theorem 1

doesn’t apply.

On the other hand, there is a bn2 c-dimensional Ω-isotropic subspace of V1, gen-

erated by the matrices E2k−1,2k = (ei,j), 1 ≤ k ≤ bn2 c, with only non-zero entry

e2k−1,2k = 1.

This shows, as bn2 c ≥ 2 for n ≥ 4, that the condition of the Ω-regularity is of

crucial importance for the Euclidean behaviour of the filling functions.
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3 Strategy of the Proofs

In this chapter we give a short sketch of the plan of action to prove our results

and state the theorems of Burillo and Young which we are going to use.

3.1 Filling functions

For the proofs of the bounds on the filling functions we will use the following

theorems. The first of them, due to Burillo, will be crucial to establish lower

bounds on the filling functions.

Theorem 3.1 (see [9, Prop. 1.2]).

Let G be a stratified nilpotent Lie group equipped with a left-invariant

Riemannian metric and let m ∈ N. If there exists a Lipschitz m-chain b and a

closed G-invariant m-form γ in G and constants C, r, s > 0 such that

1) mass(st(∂b)) ≤ Ctr ,

2)
∫
b γ > 0 ,

3) s∗tγ = tsγ ,

then holds FmG (l) < l
s
r .

The following two theorems, both due to Young, are essential to establish upper

bounds on the filling functions. For these theorems we need the notion of hori-

zontal maps introduced in Section 1.7.

Theorem 3.2 (see [42, Thm. 3]).

Let G be a stratified nilpotent Lie group equipped with a left-invariant

Riemannian metric, let (τ, f) be a triangulation of G and let φ : τ → G be a

m-horizontal map in bounded distance to f . Further let (η, h) be a triangulation

of G × [1, 2] which restricts on G × {1} to (τ, f) and on G × {2} to (τ, s2 ◦ f)

and let ψ : η → G be an m-horizontal map which extends φ and s2 ◦ φ (i.e.

ψ
(m)
|h−1(G×{1}) = φ(m) and ψ

(m)
|h−1(G×{2}) = s2 ◦ φ(m)). Then holds:

F j+1
G (l) 4 l

j+1
j for all j ≤ m− 1.



58 3 Strategy of the Proofs

Theorem 3.3 (see [43, Prop. 8]).

Let G be a stratified nilpotent Lie group equipped with a left-invariant

Riemannian metric and let Γ ⊂ G be a lattice with s2(Γ) ⊂ Γ and let (τ, f) be

a Γ-adapted triangulation, i.e. f is Γ-equivariant. Further let (τ̃ , f̃) be a s2(Γ)-

adapted triangulation of G × [1, 2], such that for i ∈ {1, 2} the restriction to

G× {i} coincides with the triangulation (τ, si ◦ f). Denote by D the Hausdorff-

dimension of the asymptotic cone (G, dc) of G. If there is a s2(Γ)-equivariant,

m-horizontal, piecewise smooth map ψ : G × [1, 2] ∼= τ̃ → G with ψ(g, 2) =

s2(ψ(s 1
2
(g), 1)), then holds:

Fn−jG (l) 4 l
D−j

D−j−1 for all j ≤ m− 1.

To check that our conditions imply the conditions of these theorems, we will

use the h-principle and microflexibility. Roughly speaking, the existence of the

Ω-regular, Ω-isotropic subspace will give us small horizontal submanifolds, which

we are able to agglutinate to the desired triangulation.

We will give a proof by contradiction to establish the super-Euclidean lower

bound on the filling function in the dimension above the maximal dimension of

Ω-regular, Ω-isotropic subspaces. More precisely, we will show that an Euclidean

upper bound on the filling function of the Riemannian manifold (G, d) implies

an Euclidean isoperimetric inequality for integral currents in the metric space

(G, dc). Then we will show, that our conditions exclude this possibility.

3.2 Higher Divergence Functions

The lower bounds on the higher divergence functions follow mainly by the ho-

mogeneity of Lie groups. The idea is to move the hard-to-fill cycle out of the

r-ball around the base point. For the upper bounds in the high dimensions we

will use that sub-Euclidean fillings stay near the filled boundary. For technical

reasons we will have to use the terminology of integral currents, as these form

the completion of the space of Lipschitz chains.

In particular, our proofs don’t use the conditions like the existence of an Ω-

regular, Ω-isotropic subspace directly, rather they need the deduced bounds on

the filling functions.
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3.3 Generalised Heisenberg Groups and the application

Most of our results for the generalised Heisenberg Groups Hn
K for K ∈ {C,H,O},

follow as direct corollaries of our general theorems for stratified nilpotent Lie

groups. In fact we will show, that Hn
K has in all three cases an n-dimensional

Ω-regular, Ω-isotropic subspace of the first layer V1.

More work is to do to establish the bounds on the (n + 1)-dimensional filling

functions:

For the lower bound on the (n + 1)-dimensional filling function of the qua-

ternionic Heisenberg Group Hn
H we will use the above stated theorem of Burillo.

For this we have to construct the needed Lipschitz chain and the differential

form explicitly.

The lower bound on the (n + 1)-dimensional filling function of the octonionic

Heisenberg Group Hn
O is again a corollary of our general Theorem 4 for strati-

fied nilpotent Lie groups. To see this, we will show that the maximal dimension

of Ω-regular, Ω-isotropic subspaces and the maximal dimension of Ω-isotropic

subspaces coincide for Hn
O.

The application to rank 1 symmetric spaces follows directly from the results for

the generalised Heisenberg Groups by using the ’horosphere-trick’ (see [22]).
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4 Horizontal approximation

To apply Theorem 3.2 and Theorem 3.3 of Young, we need to approximate a

triangulation (τ, f) of a stratified nilpotent Lie group G by a (k + 1)-horizontal

map ψ : τ → G. In this chapter we collect the techniques to do this.

We consider G equipped with the sub-Riemannian metric dc. We further will

use a lot the properties Ω-isotropic and Ω-regular, so remember the definition of

the curvature form Ω (see Section 1.7).

4.1 Some definitions

Let W be a simplicial complex and let V be a smooth manifold. We call a map

f : W → V smooth, immersion or horizontal if the respective property holds for

f restricted to each single simplex of W .

Definition.

Let W ′ be a simplicial complex and let V be a smooth manifold. A map f : W ′ →
V is a folded immersion if W ′ has a locally finite covering by compact subcom-

plexes, W ′ =
⋃
W ′i , such that f is smooth on each simplex of W ′ and sends each

W ′i homeomorphically to a smooth compact submanifold (with boundary) of V .

If V = G is a stratified nilpotent Lie group, we call a folded immersion f hori-

zontal (and/or Ω-regular) if f(W ′i ) is horizontal (and/or Ω-regular) for all i.

Definition.

Let G be a stratified nilpotent Lie group and let T and T ′ be m-dimensional

simplicial complexes. We say f ′ : T ′ → G approximates f : T → G, if for

every neighbourhood U ⊂ G× T of the graph {(f(x), x) | x ∈ T} of f and every

neighbourhood V ⊂ T × T of the diagonal {(x, x) | x ∈ T} there are proper

homotopy equivalences ϕ : T → T ′ and ϕ′ : T ′ → T such that:

i) The graph of ϕ ◦ ϕ′ is contained in V .

ii) The graph of f ′ ◦ ϕ is contained in U .
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4.2 The folded approximation theorem

To construct approximations of maps into stratified nilpotent Lie groups by ho-

rizontal ones, we need the following Lemma:

Lemma 4.1 (local h-principle, [16, 4.2.A′], compare [11] and [15, 2.3.2]).

Let G be a stratified nilpotent Lie group with grading g = V1⊕ ...⊕ Vd of the Lie

algebra. Further let T be an m-dimensional simplicial complex.

Then the sheaf of horizontal, Ω-regular, smooth immersions f : T → G is micro-

flexible and satisfies the local h-principle. In particular, for every Ω-regular,

Ω-isotropic m-dimensional subspace S ⊂ V1 and every g ∈ G there exists a germ

of smooth integral submanifolds Wi ⊂ G at g with Tg(Wi) = dLgS.

This is a corollary of the Main Theorem of [15, 2.3.2] as the differential operator

which sends smooth maps f : T → G to the induced forms {f∗(ηi)}i is infinites-

imal invertible on Ω-regular horizontal immersions (compare [15, 2.3.1]).

Proposition 4.2 (Folded Approximation Theorem, [16, 4.4]).

Let G be a stratified nilpotent Lie group and let T be a m-dimensional simplicial

complex.

Then a continuous map f0 : T → G admits an approximation by folded hori-

zontal Ω-regular immersions f ′ : T ′ → G if and only if there is a continuous

map T 3 x 7→ Sx, where Sx is the translate of an Ω-regular, Ω-isotropic m-

dimensional subspace S ⊂ V1.

Proof.

Let f0 : T → G be continuous and let f ′ : T ′ → G be a folded horizontal Ω-

regular immersion approximating f0. Then, by definition, there is a homotopy

equivalence ϕ : T → T ′. The pullback under ϕ of the folded tangent bundle over

T ′ provides a continuous map T 3 x 7→ Sx ⊂ dLf0(x)V1. This proves the ”only

if” part.

Let’s turn towards the ”if” direction:

As the sheaf of horizontal Ω-regular immersions f : T → G are microflexible,

Diff(V )-invariant and by Lemma 4.1 locally integrable, we can use Theorem 1.16

to prove the above Proposition for the (m− 1)-skeleton T (m−1) of T :

T (m−1) is a subpolyhedron of codimension 1 and

F0 : Op(T (m−1))→ R, x 7→ (f0(x), Sx)
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is a formal solution near T (m−1). With Theorem 1.19 there is a genuine solution

F : Op(T (m−1))→ R homotopic to F0 and such that f = bsF is arbitrary close

to f0.

It remains to prove the existence of the approximation in the top-dimensional

case under the assumption that f0 is an horizontal Ω-regular immersion near the

(m− 1)-skeleton of T .

We can treat each simplex ∆m ⊂ T separately. So let f0 : ∆m → G be an

horizontal Ω-regular immersion near ∂∆m ⊂ T (m−1).

We consider ∆m as ∆m = (∂∆m × [0, 1])/ ∼ , with ∼ the equivalence relation

defined by (x, 1) ∼ (y, 1) ∀x, y ∈ ∂∆m. Denote by ∆(t) the layer ∂∆m × {t}.

Δ

(0)

(1)

(t)Δ

Δ

Figure 2: The layers of ∆m for m = 2.

Each of this layers ∆(t) has dimension ≤ m− 1. We look at the maps

F t0 : Op(∆(t))→ R, x→ (f0(x), Sx)

and by Theorem 1.19 we get horizontal Ω-regular immersions f t : Op(∆(t))→ G

close to f0 (for t = 0 we take f0 = f0). With Theorem 1.18, the parametric

version of Theorem 1.16, we can choose the family {f t} to be continuous in t.

Now let ε > 0 be sufficiently small, such that the 2ε-neighbourhood of the t-layer

N2ε(t) := (∂∆m × ((t− 2ε, t+ 2ε) ∩ [0, 1]))/ ∼

is contained in Op(∆(t)) for all t. We define the (holonomic) homotopy

H0 :
(
N ε

3
(0) ∪N ε

3
(ε)
)
× [0, 1]→ G ,

(x, t) 7→

{
f0(x), if x ∈ N ε

3
(0)

f t(x), if x ∈ N ε
3
(ε)

.

The microflexibility gives a positive t1 ∈ (0, 1] such that we can extend H0 on

Op(∆(0))× [0, t1]. Then we replace f0 by H0
t1 .
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We define the (holonomic) homotopy

H1 :
(
N ε

3
(t1 − ε) ∪N ε

3
(t1 + ε)

)
× [0, 1]→ G ,

(x, t) 7→

{
f t1(x), if x ∈ N ε

3
(t1 + ε)

f t1+t(x), if x ∈ N ε
3
(t1 − ε)

where f s = f1 for all s ≥ 1.

The microflexibility gives a positive t2 ∈ (0, 1] such that we can extend H1 on

Op(∆(t1))× [0, t2]. We replace f t1 by H1
t2 .

We define the (holonomic) homotopy

H2 :
(
N ε

3
(t1 + t2 − ε) ∪N ε

3
(t1 + t2 + ε)

)
× [0, 1]→ G ,

(x, t) 7→

{
f t1+t2(x), if x ∈ N ε

3
(t1 + t2 − ε)

f t1+t2+t(x), if x ∈ N ε
3
(t1 + t2 + ε)

.

The microflexibility gives a positive t3 ∈ (0, 1] such that we can extend H2 on

Op(∆(t1 + t2))× [0, t3]. We replace f t1+t2 by H2
t3 .

We continue this procedure until we reach f1. As the number t1 depends con-

tinuously on the layers, i.e. on t ∈ [0, 1], there is the minimum min{ti} > 0 and

so we only need finitely many steps (less than d 1
min{ti}e many).

We define T ′ :=
⋃
N 2

3
ε(ti) as the disjoint union of the closed 2

3ε-neighbourhoods

of the ∆(ti). Further we make identifications corresponding to the intersections

of their images under the H i
ti+1

and give it a simplicial structure such that the

∆(ti) are contained in the (m−1)-skeleton. T ′ is obviously homotopy equivalent

to T . Then we get the approximating map as

f ′ :=
⋃
H i
ti+1

: T ′ → G

where f ′
|Nε(ti)

= H i
ti+1

.

The above proof shows, that we need folded immersions only in the top-dimension

(i.e. in dimension m, the dimension of the Ω-regular, Ω-isotropic subspace S).

In lower dimensions we can consider T as a subcomplex of an m-dimensional

simplicial complex T̃ and the local h-principle yields an Ω-regular horizontal

immersion

f̃ : Op(T )→ G

approximating f0 on T and the desired approximation is given by f := f̃|T .
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Figure 3: Schematical illustration of he images of the f ti (left) and the images
of the H i

ti+1
(right) for m = 2.

Corollary 4.3 ( [16, 4.4 Corollary]).

Let G be a stratified nilpotent Lie group with Lie algebra g and m ∈N. Further

let S be a m-dimensional Ω-isotropic, Ω-regular horizontal subspace of g. Then

every continuous map f0 : T → G from an m-dimensional simplicial complex

T into the stratified nilpotent Lie group G can be approximated by continuous,

piecewise smooth, piecewise horizontal maps f : T → G.

Proof.

We define Sx = dLf0(x)S and get a horizontal approximation f ′ : T ′ → G

by Proposition 4.2. As f ′ approximates f0, there is a homotopy equivalence

ϕ : T → T ′ and we can use f = f ′ ◦ ϕ as the desired approximation.

Remark.

a) Later we want to use horizontal approximations in the Riemannian manifold

(G,dg). For the change from the Carnot-Carathéodory metric to the Rieman-

nian metric one can use the fact, that both metrics dc and dg induce the same

topology on G (see [20, Proposition 2.26]). What one really needs to trans-

port the above results to G equipped with a left-invariant Riemannian metric

is, that every continuous map f : T → (G,dc) is also continuous as map

f : T → (G, dg). This holds in any case if the by dc induced topology is finer

than the topology of the Riemannian manifold. This is true, as the identity

map ι : (G, dc)→ (G,dg) is 1-Lipschitz (compare Lemma 1.12) and therefore

continuous. So every open set in (G, dg) is also open as subset of (G, dc).

Further is the notion of being horizontal in both cases the same. So the above

lemma yields a piecewise horizontal approximation of f0 with respect to the

Riemannian metric.
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b) The above Proposition 4.2 and its Corollary 4.3 hold true for each microflex-

ible differential relation RS of S-directed immersions on a smooth manifold

M . The points one has to change are to demand the map x 7→ Sx to be a

continuous map into S and the resulting immersion will be S-directed instead

of horizontal. Then the proof goes exactly the same way as above, one has just

to replace the G by M , the translates of the Ω-regular, Ω-isotropic subspaces

by S and horizontal by S-directed.
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5 Proofs for Filling Functions

In this chapter we give the proofs for the bounds on the filling functions of

stratified nilpotent Lie groups. We start with the proof of Theorem 1.

5.1 The proof of Theorem 1

Theorem 1 states the following behaviour of the filling functions of a stratified

d-step nilpotent Lie group G equipped with a left-invariant Riemannian metric:

If there is a (k+ 1)-dimensional Ω-isotropic, Ω-regular subspace of the first layer

of the grading of the Lie algebra and a lattice Γ ≤ G with s2(Γ) ⊂ Γ, then holds:

The filling functions are Euclidean up to dimension k + 1 and bounded from

above by a rational function of degree k+1+d
k+1 in dimension k + 2.

To prove Theorem 1 we split its statement into three parts: The upper bounds

in the dimensions from dimension 2 up to dimension k + 1, the lower bounds in

these dimensions and the upper bound in dimension k + 2. We prove the first

part in Proposition 5.1, the second part in Proposition 5.2 and finally the third

part in Proposition 5.3.

Proposition 5.1.

Let G be a stratified nilpotent Lie group with Lie algebra g and V1 as first layer

of the grading of the Lie algebra. Further let k ∈ N and let d be the degree

of nilpotency of G. If there exists a lattice Γ with s2(Γ) ⊂ Γ and a (k + 1)-

dimensional Ω-isotropic, Ω-regular subspace S ⊂ V1, then holds:

F j+1
G (l) 4 l

j+1
j for all j ≤ k.

Proof.

First we look at the quotient M = G/Γ. As G is a simply connected nilpotent

Lie group and as Γ is a lattice in G, we know by [32, Theorem 2.18] that Γ is

torsion free. So M is a smooth manifold.

Let (τM , fM ) be a triangulation of M . This triangulation (τM , fM ) lifts to a

Γ-invariant triangulation (τ, f) of G.

By [42, Lemma 4.5] we get an s2(Γ)-invariant triangulation (η, f̃) of G × [1, 2]

which restricts on G×{1} to (τ, f) and on G×{2} to (τ, s2 ◦f). Here, the s2(Γ)-

action on G × {1, 2} is defined by ϕγ(g, i) = (s 1
3−i

(γ)g, i) for (g, i) ∈ G × {1, 2}
and γ ∈ s2(Γ).
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Define the map ψ0 : η → G by ψ0 = prG ◦f̃ where prG : G × [1, 2] → G de-

notes the projection to the first factor. Let further f (k+1) : τ (k+1) → G and

ψ
(k+1)
0 : η(k+1) → G be the restrictions of f and ψ0 to the (k + 1)-skeletons of τ

and η.

As there is a (k + 1)-dimensional Ω-isotropic, Ω-regular subspace S ⊂ V1, the

group G fulfils the conditions of Corollary 4.3 for m = k + 1. Therefore (men-

tioning the remark following Corollary 4.3) we can approximate f (k+1) by a

horizontal map

φ(k+1) : τ (k+1) → G .

Further, as ψ0 extends f and s2 ◦ f , i.e.

ψ0|f̃−1(G×{1}) = f and ψ0|f̃−1(G×{2}) = s2 ◦ f

we can, using again Corollary 4.3, approximate ψ
(k+1)
0 by a horizontal map

ψ(k+1) : η → G

which extends φ(k+1) and s2 ◦ φ(k+1), i.e.

ψ
(k+1)

|f̃−1(G×{1}) = φ(k+1) and ψ
(k+1)

|f̃−1(G×{2}) = s2 ◦ φ(k+1) .

Now we extend φ(k+1) and ψ(k+1) to the whole simplicial complexes such that

ψ : η → G extends φ : τ → G and s2 ◦ φ : τ → G. We do this by filling

successively the boundary of each r-simplex ∆̃r of η, r ≥ k + 2, by a Lipschitz

map ψ(r) : ∆̃r → G with ψ(r)(∂∆̃r) = ψ(r−1)(∂∆̃r). This can be done as G is

contractible.

So we have the triangulations (τ, f) and (η, f̃) and the (k + 1)-horizontal maps

φ and ψ in bounded distance to f and f̃ as required in Theorem 3.2.

So G fulfils the conditions for Young’s filling theorem and we get the bound

F j+1
G (l) 4 l

j+1
j for all j ≤ k.

To prove the remaining lower bounds in Theorem 1 we use Theorem 3.1 of

Burillo:

We have to construct a (j + 1)-form γ and a closed (j + 1)-chain b for the con-

stants r = j and s = j + 1 for 1 ≤ j ≤ k. To do this we use again the results

of the previous chapter, in particular the local integrability, i.e. the existence of

germs of horizontal submanifolds.
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Proposition 5.2.

Let G be a stratified nilpotent Lie group equipped with a left-invariant Riemann-

ian metric. Let g be the Lie algebra of G and V1 be the first layer of the grading of

the Lie algebra and let k ∈N. If there exists a (k + 1)-dimensional Ω-isotropic,

Ω-regular subspace S ⊂ V1 then holds:

F j+1
G (l) < l

j+1
j for all j ≤ k.

Proof.

Let 1 ≤ j ≤ k. We will show that there exist γ and b which fulfil the conditions

of Burillo’s filling theorem for r = j and s = j + 1 (Theorem 3.1).

Let X1, ..., Xk+1 be a basis of S and define Sj = 〈X1, ..., Xj+1〉. By Lemma 4.1

there is an integral submanifold M to Sj ⊂ S, i.e. TpM = dLpSj ∀p ∈ M ,

where dLg denotes the differential of the left-multiplication by g ∈ G. Let ε > 0

and b = BM
ε (id) be the ε-ball in M . Further let γ = X∗1 ∧X∗2 ∧ ...∧X∗j+1, where

X∗i denotes the G-invariant dual-form to Xi defined by X∗u(Xv) = δuv. Then γ

is a closed G-invariant (j+ 1)-form as all of the Xi lie in Sj ⊂ S ⊂ V1 which has

trivial intersection with [g, g].

It remains to check the conditions of Theorem 3.1:

1) mass(st(∂b)) = mass(∂b) · tj as ∂b ⊂M is a horizontal j-cycle.

As constant we can choose C = mass(∂b).

2)
∫
b γ > 0 as γ is a multiple of the volume form of M .

3) s∗tγ = tj+1γ as all Xi lie in V1 and γ is a (j + 1)-form.

So the conditions of Theorem 3.1 are fulfilled for r = j and s = j + 1. Therefore

holds for all j ≤ k: F j+1
G (l) < l

j+1
j .

It now remains to prove the upper bound in the dimension above the dimension

of the Ω-regular Ω-isotropic subspace S:

Proposition 5.3.

Let G be a stratified d-step nilpotent Lie group equipped with a left-invariant

Riemannian metric. Let g be the Lie algebra of G and V1 be the first layer of

the grading of the Lie algebra and let k ∈ N. If there exists a lattice Γ with

s2(Γ) ⊂ Γ and a (k + 1)-dimensional Ω-isotropic, Ω-regular subspace S ⊂ V1,

then holds:

F k+2
G (l) 4 l

k+1+d
k+1 .
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Proof.

With the proof of Proposition 5.1 we have the triangulations (τ, f), (η, f̃) and

the (k + 1)-horizontal maps φ, ψ in bounded distance to f anf f̃ . Therefore

the conditions of [42, Theorem 7] are fulfilled for a function ∼ tk+1+d (compare

also [42, Discussion before Theorem 8]).

Let ∆ = ∆k+2 be a (k + 2)-simplex of τ . Then φ is already horizontal on ∂∆.

Identify ∆ with the cone Cone(∂∆) = (∂∆×[0, 1])/(∂∆×{0}) over the boundary.

Define the map

h∆ : ∆→ G, (x, a) 7→ sa(φ(x)) .

Then h∆ coincides with φ on ∂∆. Further holds

mass((st ◦ h∆)(∆)) ≤ tk+1+d ·mass(h∆(∆))

as in every point the tangent space to h∆ is the span of a (k + 1)-dimensional

horizontal subspace and another vector v. As G is d-step nilpotent, for v holds

‖st(v)‖ ≤ td‖v‖. Replace φ by φ′|∆ = h∆ for every (k + 2)-simplex ∆ of τ and

extend φ′ to all of τ (compare with the proof of Proposition 5.1).

With the same techniques one can construct a sufficient map ψ′.

By [42, Theorem 7] follows: F k+2
G (l) 4 l

k+1+d
k+1 .

So we obtain the lower bounds on the filling functions by Proposition 5.2 and

Proposition 5.3. Together with the upper bounds from Proposition 5.1 this

proves Theorem 1.

5.2 The proof of Theorem 2

Theorem 2 states sub-Euclidean filling functions in the k highest dimensions, if

there is a (k + 1)-dimensional Ω-isotropic, Ω-regular subspace of the first layer

of the grading of the Lie algebra and a lattice Γ ≤ G with s2(Γ) ⊂ Γ.

Similarly as for the proof of Theorem 1, we split the statement of Theorem 2

into parts. In Proposition 5.4 we prove the upper bounds and in Proposition 5.5

we prove the lower bounds on the filling functions.

Proposition 5.4.

Let G be an n-dimensional stratified nilpotent Lie group equipped with a left-

invariant Riemannian metric. Let g be the Lie algebra of G with grading
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g = V1 ⊕ ... ⊕ Vd. Further let D =
d∑
i=1

i · dimVi be the Hausdorff-dimension of

the asymptotic cone of G and let k ∈ N. If there exists a lattice Γ ⊂ G with

s2(Γ) ⊂ Γ and a (k + 1)-dimensional Ω-regular, Ω-isotropic subspace S ⊂ V1,

then holds:

Fn−jG (l) 4 l
D−j

D−j−1 for all j ≤ k − 1.

Proof.

We want to use Young’s filling theorem for high dimensions (Theorem 3.3). So

we have to check that our conditions imply the conditions of this theorem. This

means we have to construct an s2(Γ)-adapted triangulation (τ̃ , f̃) of G × [1, 2],

such that the restrictions to G × {i}, i = 1, 2 are transformed into each other

by the scaling s2. Further we need a piecewise smooth, s2(Γ)-equivariant, k-

horizontal map ψ : τ̃ → G with ψ(x, 2) = s2(ψ(s 1
2
(x), 1)). Here we used the

notation (x, t) for points in τ̃ as this simplicial complex is homeomorhic to

G× [1, 2]. Further does s 1
2

denote the change from the triangulation of G× {2}
to the triangulation of G× {1}.

We look at the quotient M = G/Γ. As G is a simply connected nilpotent

Lie group and as Γ is a lattice in G, we know by [32, Theorem 2.18] that Γ is

torsion free. So M is a smooth manifold.

Let (τM , fM ) be a triangulation of M . Then (τM , fM ) lifts to a Γ-adapted tri-

angulation (τ, f) of G.

Let M2 = G/s2(Γ). This is again a smooth manifold. The Γ-adapted triangula-

tion (τ, f) projects down to a triangulation (τM2 , fM2) of M2.

Denote by si(τ) the triangulation (τ, si ◦ f). Let ϕγ : τ → τ , γ ∈ Γ, be the

Γ-action on τ . Then we define the s2(Γ)-action on s1(τ) by ϕ1
γ = ϕs 1

2
(γ) and on

s2(τ) by ϕ2
γ = ϕγ for γ ∈ s2(Γ). In respect to this actions, both triangulations

are s2(Γ)-adapted.

As in [42, Proposition 4.5] we can extend the projected triangulation to a tri-

angulation (τ̃M2 , f̃M2) of M2 × [1, 2], such that this restricts to si(τ)/s2(Γ) on

M2 × {i}, i = 1, 2. Then (τ̃M2 , f̃M2) lifts to a s2(Γ)-adapted triangulation (τ̃ , f̃)

of G× [1, 2] with the required restrictions.

To construct the map ψ we use the h-principle on M2. The translates of the

(k + 1)-dimensional Ω-regular, Ω-isotropic subspace S ⊂ V1 descend to a con-

tinuous subbundle of the tangent bundle of M2 (consisting of (k+1)-planes). As

the property to be microflexible is local, it descends to M2, too. So we can use

Proposition 4.2 (remember the Remark at the end of Chapter 4).

As τ̃M2 is homeomorphic to M2× [1, 2], we can write each point of τ̃M2 as (x, t),

where the second entry is the image of the point in the second factor of M2×[1, 2].
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Denote by prM2
the projection to the first factor of M2 × [1, 2]. Define the map

ψ0 : {(x, 1) ∈ τ̃M2} →M2 , (x, 1) 7→ prM2

(
f̃M2(x, 1)

)
= prM2

(
f(x)s2(Γ)

)
.

We approximate ψ0 on {(x, 1) ∈ τ̃M2} by a (k + 1)-horizontal immersion ψ1
M2

using Proposition 4.2. Then we lift ψ1
M2

to a s2(Γ)-equivariant map ψ′ : τ → G

and define

ψ2
M2

: {(x, 2) ∈ τ̃M2} →M2 , (x, 2) 7→ prM2

(
(s2 ◦ ψ′)(s 1

2
(x))s2(Γ)

)
where s 1

2
(x) denotes the change from the triangulation s2(τ) to the triangulation

s1(τ).

Then we extend ψ1
M2

and ψ2
M2

to a Lipschitz map ψ′M2
from τ̃M2 toM2 by defining

ψ′M2 |τ̃ (0)M2

= ψ0|τ̃ (0)M2

on the vertices and then successively filling the boundaries of

the simplices.

To complete the construction we use (the relative version of) the Holonomic

Approximation Theorem (Theorem 1.16) and approximate ψ′M2
on all of τ̃M2 ,

fixed on {(x, i) ∈ τ̃M2 | i ∈ {1, 2}}, by a k-horizontal, piecewise smooth map

ψM2 : τ̃M2 →M2

with ψM2(x, i) = ψ′M2
(x, i) for all (x, i) ∈ τ̃M2 with i ∈ {1, 2}.

This map rises to a s2(Γ)-equivariant, piecewise smooth, k-horizontal map

ψ : τ̃ → G with ψ(x, 2) = s2(ψ(s 1
2
(x), 1)).

So the conditions of Theorem 3.3 are fulfilled and we get Fn−jG (l) 4 l
D−j

D−j−1

for all j ≤ k − 1.

It remains to prove the lower bounds. As in the proof of the low dimensions

(Theorem 1), we will use Burillo’s filling theorem (see Theorem 3.1).

Proposition 5.5.

Let G be an n-dimensional stratified nilpotent Lie group equipped with a left-

invariant Riemannian metric. Let g be the Lie algebra of G with grading

g = V1 ⊕ ... ⊕ Vd. Further let D =

d∑
i=1

i · dimVi be the Hausdorff-dimension of

the asymptotic cone of G and let k ∈ N. If there exists a (k + 1)-dimensional

Ω-isotropic subspace S ⊂ V1, then holds:

Fn−jG (l) < l
D−j

D−j−1 for all j ≤ k.
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Proof.

As all left-invariant Riemannian metrics on G are biLipschitz equivalent, we can

choose one of our liking. So let the left-invariant Riemannian metric on G fitting

to the grading of g, i.e. Vs ⊥ Vt for s 6= t.

Let j ≤ k. We will use the filling theorem of Burillo (see Theorem 3.1) with

m = n− j.
To do this, we consider the grading g = V1⊕ ...⊕Vd. We choose an orthonormal

basis B1 = {v(1)
1 , ..., v

(1)
dimV1

} of V1, such that the vectors v
(1)
1 , ..., v

(1)
k+1 span the

(k+ 1)-dimensional Ω-regular, Ω-isotropic subspace S ⊂ V1. Then we choose on

each summand Vi an orthonormal basis

Bi = {v(i)
1 , ..., v

(i)
dimVi

}

which gives us an orthonormal basis B =
⋃d
i=1Bi of the Lie algebra g.

As m-chain b we choose now the image under the exponential map of the unit

cube in all coordinates of B except v
(1)
1 , ..., v

(1)
j , i.e.

b = exp({
d∑
i=1

dimVi∑
q=1

αi,q · v(i)
q | 0 ≤ αi,q ≤ 1 ∀i ∀q, and α1,q = 0 for 1 ≤ q ≤ j}) .

The vectors of the ith layer Vi of the Lie algebra are scaled under the scaling

automorphism L(st) : g→ g in the way

L(st)(v
(i)) = tiv(i) .

So we have for the cube b

mass(st(b)) = tD−j mass(b) .

The proof of this scaling behaviour follows the same lines as the proof of Lemma

1.11. The only difference is, that the tangent space of the image of the chain b al-

ways is a translate of g/W for W = 〈v(1)
1 , v

(1)
2 , ..., v

(1)
j 〉. Therefore the differential

of the sclaing automorphism ŝt is the matrix
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Dŝt =



t
. . .

t

t2

. . .

t2

t3

. . .

td



with (dimV1− j) many t’s on the diagonal and dimVi many ti’s on the diagonal

for 2 ≤ i ≤ d. So the determinant of this matrix is tD−j and this implies the

scaling behaviour.

Then the boundary ∂b of b consists of all unit cubes contained in b of dimension

one smaller than b and with one additional coordinate set 1 or 0. This further

by now constant coordinate has scaled under the scaling automorphism at least

linearly, and so we get

mass(st(∂b)) ≤ tD−j−1 ·mass(∂b) .

Next we need to construct the G-invariant, closed m-form γ. We do this by

choosing γ as the volume form of b:

γ = (v
(1)
j )∗ ∧ ... ∧ (v

(d)
dimVd

)∗ .

Here v∗ denotes the dual form of v ∈ g. This form γ is by definition G-invariant

and ∫
b
γ = mass(b) > 0

as γ is the volume form of b.

For the scaling behaviour of γ we get

s∗tγ = tD−jγ

with the same argument as above for the scaling behaviour of the cube b.

So it remains to show, that γ is closed. For that, we recall the formula for

the differential of a G-invariant p-form ω:

(p+ 1)!(dω)(X0, ..., Xp) =
∑
s<t

(−1)s+t+1ω([Xs, Xt], X0, ..., X̂s, ..., X̂t, ..., Xp) .
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The key essence of this formula is that it suffices to examine “pre-images” of

basis vectors under the Lie bracket to compute the differential of γ. This follows

as a dual form v∗ only sees the projection to the subspace spanned by v. To be

precise, the differential of v∗ is

2 · (dv∗)(X,Y )
(1)
= v∗([X,Y ])

(2)
=

∑
u,w∈B
[u,w]=v

u∗(X) · w∗(Y ) =
∑

u,w∈B
[u,w]=v

(u∗ ∧ w∗)(X,Y )

where (1) holds by the above formula and (2) is the evaluation by computing

the “length” of the projection to the subspace 〈v〉 ⊂ g.

For the left-invariant m-form γ this leads to

dγ =
1

(m+1)!

d∑
i=1

dimVi∑
q=1

∑
v,w∈B

[v,w]=v
(i)
q

(-1)i+q+1v∗∧w∗∧(v
(1)
j+1)∗∧...∧(̂v

(i)
q )∗∧...∧(v

(d)
dimVd

)∗.

Now let i ≥ 2 (the case i = 1 is trivial, as V1 has zero intersection with the image

of the Lie bracket). Let v
(i)
q ∈ Vj be one of the above chosen basis vectors. For

each pair

x =

d∑
s=1

dim(Vs)∑
t=1

αstv
(s)
t , y =

d∑
s=1

dim(Vs)∑
t=1

βstv
(s)
t ∈ g

with [x, y] = v
(i)
q we get:

[x, y] =
d∑

s1,s2=1

dim(Vs)∑
t1,t2=1

αs1t1βs2t2 [v
(s1)
t1

, v
(s2)
t2

] .

By this and by the linearity of differential forms we can assume without loss of

generality, that x and y are basis vectors in B.

We first look at the case i = 2. In this case we have x, y ∈ B1 as [V1, Vu] = Vu+1.

The first k + 1 vectors v
(1)
1 , ..., v

(1)
k+1 span the Ω-isotropic subspace S ⊂ V1 and

therefore [v
(1)
s , v

(1)
t ] = 0 for 1 ≤ s, t ≤ k+ 1. So at least one of the vectors x and

y has to be in B1 \ {v(1)
1 , ..., v

(1)
k+1}. But all dual forms of basis vectors v

(1)
` with

` > k + 1 > j − 1 are part of γ (and are not the deleted v
(2)
i ). Therefore all

these summands in dγ are zero.

Now let i ≥ 3. Then at least one of the vectors x and y has to be a basis vector

in a layer V` with 2 ≤ ` ≤ i−1. But again all the dual forms of such basis vectors

are part of γ and unequal to the deleted v
(i)
q . Therefore all these summands in

dγ are zero, too.

This implies

dγ = 0
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and we can apply Burillo’s theorem and gain

Fn−jG (l) < l
D−j

D−j−1

which is the desired bound.

5.3 The proof of Theorem 3

Theorem 3 reduces the conditions of Theorem 1 and Theorem 2 in the case of

2-step nilpotent Lie groups. It omits the condition of the existence of the lat-

tice Γ, but doesn’t weaken the statements about the filling functions. Therefore

Theorem 3 follows from Theorem 1 and Theorem 2 if in every 2-step nilpotent

Lie group there exists a lattice with the requested scaling property. So we only

have to prove the following lemma:

Lemma 5.6.

Let G be a simply connected 2-step nilpotent Lie group with Lie algebra g. Then

there exists a lattice Γ ⊂ G with s2(Γ) ⊂ Γ.

Proof.

Let g = V1 ⊕ V2 be the grading of the Lie algebra. Then take a basis

B1 = {v(1)
1 , v

(2)
1 , ..., v

(dimV1)
1 }

of the first layer. For V2 we complete {1
2 [a, b] | a, b ∈ B1} to a basis

B2 = {v(1)
2 , v

(2)
2 , ..., v

(dimV2)
2 }

of V2. This leads to a Basis B = B1 ∪B2 of the Lie algebra g.

Now let

Z := 〈{b | b ∈ B}〉Z ⊂ g

be the Z-span of this basis. Then Z is, by construction, closed under the Lie

bracket [·, ·] and fulfils L(s2)(Z) ⊂ Z as 2t ∈ Z for all t ∈ Z.

Then define

Γ := 〈exp(Z)〉 .

Then Γ ≤ G is a lattice :

The structural constants with respect to the basis B of g are rational. The set Z
is lattice of maximal rank in the Q-span gQ of B. Therefore the group generated
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by exp(Z) is a lattice in G (see [32, Theorem 2.12]).

The Baker-Campbell-Hausdorff formula in the case of 2-step nilpotent Lie groups

reduces to

exp(x) exp(y) = exp(x+ y +
1

2
[x, y])

and so for h = exp(x), g = exp(y) ∈ Γ with x, y ∈ Z holds:

hg = exp(x) exp(y) = exp(x+ y +
1

2
[x, y])

The product hg is in exp(Z) as 1
2 [x, y] ∈ Z. (One can see this by writing

x =
∑

b∈B αbb and y =
∑

b∈B βbb). Therefore holds Γ = exp(Z).

Every g ∈ Γ can be written as

g = exp(
∑
b∈B1

nbb+
∑
b∈B2

mbb)

and so

s2(g) = exp
(
L(s2)(

∑
b∈B1

nbb+
∑
b∈B2

mbb)
)

= exp(
∑
b∈B1

2nbb+
∑
b∈B2

4mbb) ∈ Γ .

Therefore Γ fulfils s2(Γ) ⊂ Γ.

5.4 The proof of Theorem 4

Theorem 4 states the following for a stratified nilpotent Lie group G equipped

with a left-invariant Riemannian metric: The filling function in dimension k+2 is

super-Euclidean, if there is either a unfillable (k+1)-dimensional integral current

in the Carnot group (G, dc) or the maximal dimension of Ω-regular, Ω-isotropic

subspaces is k+ 1 and coincides with the maximal dimension of Ω-isotropic sub-

spaces.

Recall that we denote the set of integral m-currents by Im(G) and set of in-

tegral m-currents with compact support by Icptm (G).

For the proof of Theorem 4 we need two propositions. The first is due to Wenger:
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Proposition 5.7 ( [38, Proposition 3.6]).

Let G = (G, d) be a stratified nilpotent Lie group equipped with a left-invariant

Riemannian metric and denote by G∞ = (G, dc) the same group equipped with

its Carnot-Carathéodory metric. If G satisfies an Euclidean isoperimetric in-

equality for Icptm (G), then G∞ satisfies an Euclidean isoperimetric inequality for

Icptm (G∞).

The original proposition in [38] presumes an Euclidean isoperimetric inequality

for Im(G). But an examination of the proof yields, that only an Euclidean iso-

perimetric inequality for Icptm (G) is needed.

Further we need the following proposition:

Proposition 5.8.

Let G be a Lie group equipped with a left-invariant Riemannian metric. Let

m ∈N and δ ≥ 1. If Fm+1
G 4 lδ, then G satisfies an isoperimetric inequality of

rank δ for Icptm (G).

Proof.

Let T ∈ Icptm (G) with T 6= 0 and ∂T = 0. Note, that in particular ∂T is

associated to a Lipschitz chain, i.e. ∂T = a# for the Lipschitz chain a = 0.

Now embed G isometrically in some RN and look at T and ∂T from now on as

integral currents of RN .

Let η > 0 be arbitrary small. With [13, Lemma 5.7] we get:

There is an integral current S ∈ Im+1(RN ), such that

i) T − ∂S is a Lipschitz chain,

ii) N(S) = M(S) + M(∂S) ≤ η and

iii) spt(S) ⊂ Uη(spt(T )).

As G is an isometrically embedded Riemannian manifold, it is a local Lipschitz

neighbourhood retract. This means, there is a neighbourhood U of G in RN and

a locally Lipschitz map

ϕ : U → G with ϕ(g) = g ∀g ∈ G.

Now let η > 0 be sufficiently small, such that spt(S) ⊂ U . Then the map

ϕ̄ := ϕ| spt(S) : spt(S)→ G is locally Lipschitz.
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For x ∈ spt(S) we denote by U(x) the maximal neighbourhood of x such that ϕ̄

is Lipschitz on U(x).

As T − ∂S is associated a Lipschitz chain, it has compact support. Therefore

there is a finite cover

d⋃
i=1

U(xi) with x1, ..., xd ∈ spt(T − ∂S) .

So one can subdivide T − ∂S in finitely many smaller simplices (i.e. simplicial

chains αj : ∆→ spt(T − ∂S)), such that each αj(∆) is completely contained in

one of the U(Xi).

As now ϕ̄ is Lipschitz on each αj(∆), we obtain the Lipschitz chain

ϕ∗(T − ∂S) =

l∑
j=1

ϕ̄ ◦ αj

on G.

Further the support of T is compact. Therefore the closure of the 2η-neighbourhood

of spt(T ) is compact. So we can divide spt(S) in finitely many Borel sets Av,

such that each of these sets is completely contained in one of the neighbourhoods

U(x), x ∈ spt(S). One can do this as RN is second-countable. Then, as ϕ̄ is

Lipschitz on each Av ⊂ U(xv), we obtain the integral current

ϕ∗(S) =

n∑
v=1

ϕ̄#(SxAv)

on G.

Further holds

mass(ϕ∗(T − ∂S)) ∼M(T )

as ϕ̄ is Lipschitz on each simplex and M(∂S) ≤ η.

Now let l := M(T ) and let b be a Lipschitz chain in G with ∂b = ϕ∗(T−∂S) and

mass(b) 4 lδ. Such a chain exists due to the condition on the filling function.

So we get

∂(b# + ϕ∗(S)) = ∂b# + ∂ϕ∗(S) = ∂b# + ϕ∗(∂S)

= ϕ∗(T − ∂S) + ϕ∗(∂S) = T − ϕ∗(∂S) + ϕ∗(∂S)

= T
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and

M(b# + ϕ∗(S)) 4 lδ

as ϕ̄ is Lipschitz on each restriction and M(S) ≤ η.

Now we are prepared for the proof of Theorem 4. We start with the easy case,

that condition a) is fulfilled and prove that this implies the desired bound on

the filling function.

Proposition 5.9.

Let G be a stratified nilpotent Lie group equipped with a left-invariant Riemann-

ian metric. Further let g be the Lie algebra of G with grading g = V1 ⊕ ...⊕ Vd.
Let k0, k1 ∈N, such that (k0 + 1) is the maximal dimension of an Ω-regular, Ω-

isotropic subspace of V1 and (k1 + 1) is the maximal dimension of an Ω-isotropic

subspace of V1. If there is an k0 ≤ k ≤ k1, such that there is an integral current

T ∈ Icptk+1(G, dc) with ∂T = 0 and T 6= 0, but no integral current S ∈ Icptk+2(G, dc)

with ∂S = T , then holds

F k+2
G (l) � l

k+2
k+1 .

Proof.

So there is an k0 ≤ k ≤ k1 such that there is an integral current T ∈ Icptk+1(G, dc)

with ∂T = 0 and T 6= 0 but no integral current S ∈ Icptk+2(G, dc) with ∂S = T .

This means, that (G, dc) doesn’t satisfy an isoperimetric inequality of rank δ

for Icptk+1(G,dc) for any δ < ∞, and in particular no Euclidean isoperimetric

inequality for Icptk+1(G, dc). By Proposition 5.7, G doesn’t satisfy an Euclidean

isoperimetric inequality for Ik+1(G) and by Proposition 5.8 we have

F k+2
G (l) � l

k+2
k+1

as desired.

We finish the proof of Theorem 4 by showing, that if condition b) is fulfilled this

implies that condition a) is satisfied.

Lemma 5.10.

Let G be a stratified nilpotent Lie group equipped with a left-invariant Riemann-

ian metric. Further let g be the Lie algebra of G with grading g = V1 ⊕ ...⊕ Vd.



5.4 The proof of Theorem 4 81

Let k0, k1 ∈N, such that (k0 + 1) is the maximal dimension of an Ω-regular, Ω-

isotropic subspace of V1 and (k1 + 1) is the maximal dimension of an Ω-isotropic

subspace of V1.

If the two numbers k0 and k1 coincide, then there is for k := k0 = k1 an in-

tegral current T ∈ Icptk+1(G, dc) with ∂T = 0 and T 6= 0 but no integral current

S ∈ Icptk+2(G, dc) with ∂S = T .

Proof. Suppose k + 1 is the maximal dimension of Ω-regular, Ω-isotropic sub-

spaces of V1. Using the h-principle (as in the proof of Theorem 1), we can

construct an (k+ 1)-horizontal triangulation of G. The boundary of any (k+ 2)-

simplex ∆(k+2) forms an horizontal Lipschitz (k + 1)-chain a = ∂∆(k+2) 6= 0

with ∂a = 0. Viewed as current, this gives us the integral current T := a# ∈
Icptk+1(G, dc). As k + 1 is the maximal dimension of Ω-isotropic subspaces of V1

too, we have by [25, Theorem 1.1], that (G, dc) is purely Hk+2-unrectifiable and

so there are no non-trivial integral (k + 2)-dimensional currents on (G, dc). So

condition a) holds.

The combination of Proposition 5.9 and Lemma 5.10 proves Theorem 4.

By this last proof, we finished the verification of the results for the filling func-

tions in the general setting of stratified nilpotent Lie groups. We will use these

results to prove the results for the higher divergence functions and the applica-

tions to the Heisenberg Groups.
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6 Proofs for Higher Divergence Functions

We proceed with the statements about the higher divergence functions.

The statements about the higher divergence functions of a stratified nilpotent

Lie group equipped with a left-invariant Riemannian metric can be naturally

divided into two parts: The lower bounds and the upper bounds.

Due to this subdivision we split the proof in the separated treatment of lower

and upper bounds. To establish the lower bounds we will prove the more general

Proposition 6.1, which deduces lower bounds on the higher divergence functions

from lower bounds on the filling functions in the setting of arbitrary Lie groups.

Our technique for the upper bounds on the higher divergence functions (Propos-

ition 6.2) needs sub-Euclidean lower bounds on the filling functions and so only

works in the top dimensions.

6.1 Lower bounds

We consider a Lie group G equipped with a left-invariant Riemannian metric.

So if we transport a cycle by left-multiplication, there is no change of the mass

of the cycle or of the mass bounded by the cycle. We use this fact to prove the

following proposition, which provides the lower bounds for the higher divergence

functions stated in the Theorems 5, 6 and 7.

Proposition 6.1.

Let G be a Lie group equipped with a left-invariant Riemannian metric and let

m ∈N, such that divdim(G) ≥ m. If the filling function Fm+1
G is bounded from

below by a function h : R+ → R+, then holds:

DivmG (r) < h(rm) .

Proof.

By assumption holds for the (m+ 1)-dimensional filling function

Fm+1
G (l) < h(l) .

So there is a constant C ≥ 1 such that for every l > 0 there exists a m-cycle al
with mass mass(al) = l such that every (m + 1)-chain b with boundary ∂b = a

has to fulfil

C ·mass(b) + Cl + C ≥ h(l) .
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Let α0 = 1 and ρ0 < 1, such that G is (ρ0,m)-acyclic at infinity. We have to

show, that there are constants L,M ≥ 1, such that for all ρ ≤ ρ0 and all α ≥ α0

there is a constant A ≥ 1 with:

A · divmLρ,Mα(Ar +A) +O(rm) ≥ h(rm) .

To do this, we use the above ’hard-to-fill’-cycle al with l = rm.

As al is a priori not r-avoidant, we transport it out of the r-ball around 1 ∈ G
by left-multiplication with some suitable group element g ∈ G and obtain the

r-avoidant m-cycle g • al. For the mass we obtain

mass(g • al) = mass(al) = l

as the metric is left-invariant.

The left-invariance of the metric also guarantees that the property ’hard-to-fill’ is

preserved under the left-multiplication, i.e. every (m+1)-chain b with boundary

∂b = g • al has

mass(b) < h(l) .

As the ρr-avoidance of the filling is an additional restriction to the (m+1)-chain,

the above inequality for the mass of b holds true for ρr-avoidant (m+ 1)-chains

b with boundary ∂b = g • al. Here we need the assumption divdimG ≥ m for

the existence of such ρr-avoidant fillings.

Now we choose L = M = 1 and for ρ ≤ ρ0 and α ≥ α0 we set A = α · C.

Then we get

A · divmLρ,Mα(Ar +A) +O(rm) ≥ A · divmρ,α(Ar +A) +A · rm +A

(1)

≥ C · divmρ,1(r) + C · rm + C

(2)

≥ C ·mass(b0) + C · rm + C

(3)

≥ h(rm)

where (1) holds true, as α ≥ 1, A ≥ C ≥ 1 and as divmρ,α(r) is increasing in α

and r. Further (2) holds true, as we have the r-avoidant ’hard-to-fill’ m-cycle al
with mass(al) = l = rm ≤ α · rm and as divdim(G) ≥ m there is some optimal

ρr-avoidant filling b0 of al. And (3) holds true, as b0 is a filling of al and therefore

has to fulfil this inequality by the lower bound on the filling function.

With this Proposition 6.1 and our results for the filling functions (Theorem 1,

Theorem 2 and Theorem 3) we get the lower bounds in Theorem 5, Theorem 6

and Theorem 7.
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6.2 Upper bounds

Theorem 6 states the following for an n-dimensional stratified nilpotent Lie group

G: If k + 1 is the maximal dimension of Ω-regular, Ω-isotropic subspaces in the

first layer of the grading of the Lie algebra g of G, then there are sub-Euclidean

upper bounds of the higher divergence functions in the k highest dimensions. In

particular, this upper bounds coincide with the lower bounds established in the

previous Section 6.1.

To obtain the upper bounds for the higher divergence functions, we prove a more

general theorem: We deduce sub-Euclidean upper bounds for higher divergence

functions from sub-Euclidean upper bounds for filling functions.

Proposition 6.2.

Let M be a complete Riemannian manifold and m ∈ N, m ≤ divdim(M). If

there is a δ < m+1
m , such that the (m + 1)-dimensional filling function Fm+1

M (l)

is bounded from above by lδ, then holds:

DivmM (r) 4 rδm .

Proof.

First choose a basepoint x0 ∈ M and let α ≥ 1 and ρ0 = 1
4 . Let r0 > 0 be

sufficiently large. Further let C > 0, such that

Fm+1
M (αrm) ≤ C · (αrm)δ ∀r ≥ r0.

Let a be an r-avoidant Lipschitz m-cycle of mass(a) ≤ αrm =: l.

The condition on the (m + 1)-dimensional filling function of M implies the ex-

istence of a Lipschitz (m+ 1)-chain b (not necessarily avoidant) with

i) ∂b = a and

ii) mass(b) ≤ C · lδ .

Now let T = a# be the Lipschitz cycle a considered as integral current. Then

there is an integral current S ∈ Im+1(M) with

i) ∂S = T and

ii) M(S) ≤ C · lδ .

For example, S = b# would be an appropriate choice.
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So the proof of [36, Lemma 3.1] (see also [35, Lemma 3.4]) together with the

computation in the proof of [36, Proposition 1.8] yields the following:

For x ∈ M and t > 0 denote by B(x, t) the closed ball of radius t around

x.

For sufficiently large r and every ε > 0 there is an integral current Sε ∈ Im+1(M)

with:

i) ∂Sε = T ,

ii) M(Sε) ≤ C · lδ + ε ,

iii) sptSε ⊂M \B(x0,
1
2r) .

Now we have an 1
2r-avoidant integral current Sε, that “fills” the Lipschitz cycle

a. From this integral current we construct a ρ0r-avoidant Lipschitz (m+1)-chain

of the desired mass that fills a as follows:

For A ⊂ RN and t > 0 denote by B(A, t) := {y ∈ RN | ∃x ∈ A : ‖x− y‖2 ≤ t}.
At first we use the Nash embedding theorem to embed M isometrically in some

RN . Consider Sε as an integral current in RN . Then [13, Lemma 5.7] provides

for every η > 0 the existence of a Lipschitz (m+ 1)-chain b′ε,η such that:

i) ∂b′ε,η = a ,

ii) mass(b′ε,η) ≤ C · lδ + ε+ η ,

iii) b′ε,η ⊂ B(spt(Sε), η) .

As M ⊂ RN is a local Lipschitz neighbourhood retract, we can retract b′ε,η to a

Lipschitz (m+ 1)-chain bε,η on M (compare proof of Proposition 5.8) with

i) ∂bε,η = a ,

ii) mass(bε,η) ≤ Lm+1C · lδ + Lm+1ε+ Lm+1η ,

iii) bε,η ⊂ B(spt(Sε), Lη) ,

where L denotes the Lipschitz constant of the retraction.

So for η sufficiently small, i.e. such small that ρ0r < r − (Lη + 1
2r) = 1

2r − Lη,
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the Lipschitz chain bε,η is an ρ0r-avoidant filling of the cycle a. Further holds

for the mass of bε,η:

mass(bε,η) ≤ Lm+1C · lδ + Lm+1ε+ Lm+1η = Lm+1C · (αrm)δ + Lm+1ε+ Lm+1η

4 rmδ

This proves the claim.

Theorem 2 provides for an n-dimensional stratified nilpotent Lie group G with

a lattice Γ, such that s2(Γ) ⊂ Γ, and with an Ω-isotropic, Ω-regular subspace

S ∈ V1 of dimension k+ 1, the following upper bound on the filling functions:

Fn−jG (l) 4 l
D−j

D−j−1 for j ≤ k.

Whenever G is not abelian, i.e. not isomorphic to Rn, the Hausdorff-dimension

D is strictly larger than n. Therefore holds

D − j + 1

D − j
<
n− j + 1

n− j

and the above proposition applies for m = n − j with 2 ≤ j ≤ k. Here j has

to be less or equal 2, as the divergence dimension of an n-dimensional stratified

nilpotent Lie group is n− 2 (mentioned earlier in Chapter 2).

Therefore holds

Divn−jG (r) ∼ r
(D−j)(n−j−1)

D−j−1 for all 2 ≤ j ≤ k,

where the lower bounds are obtained Proposition 6.1 and the upper bounds are

obtained by Proposition 6.2. (For the case G ∼= Rn see [1].)

Together with the lower bounds obtained in Section 6.1 this proves Theorem 5,

Theorem 6 and Theorem 7.
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7 Proofs for Heisenberg Groups and the

Application

Most of the results for the generalised Heisenberg Groups are corollaries of the

results for stratified nilpotent Lie groups. These ones we will treat in Section 7.1.

The super-Euclidean lower bounds on the filling function in dimension n of the

quaternionic Heisenberg Group Hn
H follows not as such a corollary, so it needs a

more extensive proof, which we treat in Section 7.3. The super-Euclidean lower

bounds on the filling function in dimension n of the octonionic Heisenberg Group

Hn
O follow as a corollary of Theorem 4. We treat its proof in Section 7.2.

Finally, it remains to prove Corollary 2.8 about the Dehn functions of non-

cocompact lattices in the complex and quaternionic hyperbolic spaces. We do

this in Section 7.4.

7.1 Proofs of the Corollaries 2.1, 2.2, 2.3, 2.4 and 2.5

The complex, quaternionic and otonionic Heisenberg groups are two step nil-

potent. Therefore there exists, by Lemma 5.6, in each case a lattice with the

needed scaling properties. In other words, we can use Theorem 3 and Theorem 7

to prove the corollaries concerning the filling functions and the higher divergence

functions of the complex, quaternionic and otonionic Heisenberg Groups (except

the lower bounds on Fn+1).

For the following remember the bases of the Lie algebras hnH and hnO introduced

in Section 1.8.

Proposition 7.1.

Let G be the quaternionic Heisenberg Group Hn
H or the octonionic Heisenberg

Group Hn
O and g the respective Lie algebra. Then there is an n-dimensional Ω-

regular, Ω-isotropic subspace S ⊂ V1 of the first layer of the grading g=V1 ⊕ [g, g].

Proof.

i) In the quaternionic case we define Z1 = I, Z2 = J , Z3 = K and ηi = Z∗p ,

where Z∗p denotes the dual form to Zp. Then we get by the general formula

for left-invariant differential m-forms on Lie groups

(m+ 1)!(d γ)(Y0, ..., Ym) =
∑
i<j

(−1)i+j+1γ([Yi, Yj ], X0, ..., Ŷi, ..., Ŷj , ..., Ym)
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the following components of the curvature form Ω:

ωi = d ηi =
1

2
·

∑
[Xl,Xm]=Zi

X∗l ∧X∗m where Xq ∈ {hq, iq, jq, kq}.

We choose S = 〈h1, ..., hn〉 ⊂ V1, which is Ω-isotropic as [hu, hv] = 0 and

therefore ωi(hu, hv) = 0 for all u, v ∈ {1, ..., n}.
It remains to give for every choice of σpq a solution ξ for ωp(ξ, hq) = σpq for

p = 1, 2, 3 and q = 1, ..., n. Let Xpq denote the unique element in {iq, jq, kq}
with [Xpq, hq] = Zp (compare Section 1.8). Then one can check by a short

computation, that such a solution is given by the following element:

ξ =
∑
p,q

σpqXpq .

ii) In the octonionic case we define Z1 = E, Z2 = F , Z3 = G, Z4 = H, Z5 = I,

Z6 = J , Z7 = K and ηp = Z∗p , where Z∗p denotes the dual form to Zp. Then

we get by the general formula for left-invariant differential m-forms on Lie

groups the following components of the curvature form Ω:

ωi = d ηi =
1

2
·

∑
[Xl,Xm]=Zi

X∗l ∧X∗m where Xp ∈ {eq, fq, gq, hq, iq, jq, kq}

We choose S = 〈d1, ..., dn〉 ⊂ V1, which is Ω-isotropic as [du, dv] = 0 and

therefore ωi(du, dv) = 0 for all u, v ∈ {1, ..., n}.
It remains to give for every choice of σpq a solution ξ for ωp(ξ, dq) = σpq
for p = 1, 2, 3, 4, 5, 6, 7 and q = 1, ..., n. Let Xpq denote the unique element

in {eq, fq, gq, hq, iq, jq, kq} with [Xpq, dq] = Zp (compare Section 1.8). Then

one can check by a short computation, that such a solution is given by the

following element:

ξ =
∑
p,q

σpqXpq .

By the above Proposition 7.1, the quaternionic and the octonionic Heisenberg

Groups fulfil the conditions of Theorem 3 and Theorem 7 as they are 2-step nilpo-

tent. So Corollary 2.1 and Corollary 2.2 follow by Theorem 3 and Corollary 2.4

and Corollary 2.5 follow by Theorem 7 as the Hausdorff-dimension of Hn
H is

4n+ 3 and the Hausdorff-dimension of Hn
O is 8n+ 7.

For the proof of Corollary 2.3 concerning the higher divergence functions of the

complex Heisenberg Group Hn
C, we use [42, Corollary 1.1] and [43, Theorem 1],
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which together state the following behaviour of the filling functions:

F j+1
Hn

C
(`) ∼ `

j+1
j for j < n,

Fn+1
Hn

C
(`) ∼ `

n+2
n ,

F j+1
Hn

C
(`) ∼ `

j+2
j+1 for j > n.

With Proposition 6.1 and Proposition 6.2 this proves Corollary 2.3.

7.2 The proof of Corollary 2.6

To prove Corollary 2.6 we use Theorem 4. We have seen above, that there is an

n-dimensional Ω-regular, Ω-isotropic subspace in the first layer V1 of Hn
O. So the

lemma below implies, that condition b) in Theorem 4 is satisfied.

Lemma 7.2.

There is no (n + 1)-dimensional Ω-isotropic subspace S ⊂ V1 in the octonionic

Heisenberg Group Hn
O.

Proof.

We prove this in two steps:

Step 1): Every n-dimensional Ω-isotropic subspace W ⊂ V1 is Ω-regular.

Let W = 〈w1, ..., wn〉R be an n-dimensional Ω-isotropic subspace spanned by

wp = (wd1p , w
d2
p , ...., w

kn
p ) for 1 ≤ p ≤ n,

with coordinates with respect to the basis {d1, ..., kn} of the first layer V1 of the

grading of Lie algebra.

Let Z1 = E, Z2 = F , Z3 = G, Z4 = H, Z5 = I, Z6 = J and Z7 = K. Then

holds for l ∈ {1, 2, 3, 4, 5, 6, 7}:
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d ηl( , wp) =
∑

q
[Xm,dq ]=Zl

w
dq
p X

∗
m +

∑
q

[Xm,eq ]=Zl

w
eq
p X

∗
m +

∑
q

[Xm,fq ]=Zl

w
fq
p X

∗
m

+
∑

q
[Xm,gq ]=Zl

w
gq
p X

∗
m +

∑
q

[Xm,hq ]=Zl

w
hq
p X

∗
m +

∑
q

[Xm,iq,]=Zl

w
iq
p X

∗
m

+
∑

q
[Xm,jq ]=Zl

w
jq
p X

∗
m +

∑
q

[Xm,kq ]=Zl

w
kq
p X

∗
m

So we get:

d η1( , wp) =
∑
q

(
w
dq
p e
∗
q+w

fq
p i
∗
q+w

hq
p k
∗
q +w

gq
p j
∗
q −w

eq
p d
∗
q−w

iq
p f
∗
q −w

kq
p h
∗
q−w

jq
p g
∗
q

)

d η2( , wp) =
∑
q

(
w
dq
p f
∗
q +w

iq
p e
∗
q+w

hq
p j
∗
q +w

kq
p g
∗
q−w

fq
p d
∗
q−w

eq
p i
∗
q−w

jq
p h
∗
q−w

gq
p k
∗
q

)

d η3( , wp) =
∑
q

(
w
dq
p g
∗
q +w

fq
p k
∗
q +w

jq
p e
∗
q+w

iq
p h
∗
q−w

gq
p d
∗
q−w

kq
p f
∗
q −w

eq
p j
∗
q −w

hq
p i
∗
q

)

d η4( , wp) =
∑
q

(
w
dq
p h
∗
q+w

gq
p i
∗
q+w

jq
p f
∗
q +w

kq
p e
∗
q−w

hq
p d
∗
q−w

iq
p g
∗
q−w

fq
p j
∗
q −w

eq
p k
∗
q

)

d η5( , wp) =
∑
q

(
w
dq
p i
∗
q+w

hq
p g
∗
q +w

eq
p f
∗
q +w

jq
p k
∗
q−w

iq
p d
∗
q−w

gq
p h
∗
q−w

fq
p e
∗
q−w

kq
p j
∗
q

)

d η6( , wp) =
∑
q

(
w
dq
p j
∗
q +w

fq
p h
∗
q+w

eq
p g
∗
q +w

kq
p i
∗
q−w

jq
p d
∗
q−w

hq
p f
∗
q −w

gq
p e
∗
q−w

iq
p k
∗
q

)

d η7( , wp) =
∑
q

(
w
dq
p k
∗
q +w

gq
p f
∗
q +w

hq
p e
∗
q+w

iq
p j
∗
q −w

kq
p d
∗
q−w

fq
p g
∗
q−w

eq
p h
∗
q−w

jq
p i
∗
q

)
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As W is Ω-isotropic, the curvature form(
Ω(wp, )

)
p

=
((

d η1(wp, ), d η2(wp, ), ...,d η7(wp, )
))

p

can be interpreted as a linear isomorphism V1/W ∼= R7n → R7n.

For σ = (σpq) ∈ R7n this leads, as the wp are linear independent, to a system

Aξ = σ of linear equations with an invertible matrix A ∈ R7n×7n. So there

always exists a solution and W is Ω-regular.

Step 2): There is no (n+ 1)-dimensional Ω-isotropic subspace S ⊂ V1.

Assume there is an (n+1)-dimensional Ω-isotropic subspace S = 〈s1, ..., sn+1〉R
of V1. Then W = 〈s1, ..., sn〉R is Ω-isotropic and n-dimensional. Claim 1 implies

that W is Ω-regular. So the linear map

ΩW
• : V1 → Hom(W, g/V1), X 7→ Ω(X, )

is surjective and vanishes on S. Therefore:

7n− 1 = 8n− (n+ 1) = dim(V1/S)

≥ dim(V1/ kern(ΩW
• ) = dim(image(ΩW

• ))

= dim(Hom(W, g/V1)) = n(8n+ 7− 8n)

= 7n

But this is a contradiction and such an S can’t exist.

7.3 The proof of Theorem 8

Here we compute the (n + 1)-dimensional filling function of the quaternionic

Heisenberg Group Hn
H. As Hn

H fulfils the conditions of Theorem 3, we already

have the super-Euclidean upper bound:

Fn+1
Hn

H
(l) 4 l

n+2
n .

Thus we only have to prove the corresponding lower bound.
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Proposition 7.3.

Let Hn
H be the quaternionic Heisenberg Group of dimension 4n+ 3.

Then holds:

Fn+1
Hn

H
(l) < l

n+2
n .

Proof.

We will use Burillo’s filling theorem (see Theorem 3.1). To this end, we have to

construct a Lipschitz (n+ 1)-chain b in Hn
H and a closed Hn

H-invariant (n+ 1)-

form η on Hn
H with the correct scaling behaviour.

For this we avail ourselves of the constructions Burillo did in the proof of [9, The-

orem 2.1] to obtain the lower bound for the filling function Fn+1
Hn

C
of the complex

Heisenberg Group. We denote the there constructed (n+ 1)-chain by b′ and the

corresponding (n+ 1)-form by γ.

Now let x1, ..., xn, y1, ..., yn, Z be the usual basis of the Lie algebra hnC of the

complex Heisenberg Group Hn
C and h1, ..., kn, I, J,K the basis of the Lie algebra

hnH of the quaternionic Heisenberg Group Hn
H (compare Section 1.8).

Then the complex Heisenberg Group Hn
C embeds as Lie subgroup into the qua-

ternionic Heisenberg Group Hn
H. We do this on the Lie algebra level via the

map

xi 7→ ki , yi 7→ hi , Z 7→ K .

Hence we can consider the in [9] constructed (n+ 1)-chain b′ as an (n+ 1)-chain

in the quaternionic Heisenberg Group Hn
H. We set b := b′. The above embedding

respects the grading of the Lie algebras, i.e. vectors of the first layer are mapped

to vectors of the first layer and vectors of the second layer are mapped to vectors

of the second layer. Therefore the boundary ∂b of the chain b has the same

scaling behaviour in the quaternionic Heisenberg Group Hn
H as before in the the

complex Heisenberg Group Hn
C, i.e. mass(st(∂b)) ≤ mass(∂b) · tn.

Consequently it only remains to construct a closed, Hn
H-invariant (n + 1)-form

η on Hn
H, such that η restricts on the embedded Hn

C to the in [9] constructed

closed, Hn
C-invariant (n + 1)-form γ on Hn

C (this would imply condition 2) in

Theorem 3.1) and satisfies

s∗t η = tn+2η .

The form γ is given (with respect to the above notation for Hn
C ⊂ Hn

H) by

γ = (−1)n ·K∗ ∧ h∗1 ∧ ... ∧ h∗n

where for v ∈ hnH the symbol v∗ denotes the dual form of v.

We start the construction of η by defining some special n-forms. Let Sn be
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the set of all (Hn
H-invariant) n-forms S of the shape

S = h∗l ∧ ... ∧ h∗m ∧ i∗p ∧ ... ∧ i∗q

with increasing index within the h∗-part, increasing index within the i∗-part and

such that every number in {1, ..., n} appears as index of an h∗ or an i∗, as well

with an even number of i∗’s. In particular, each integer between 1 and n appears

exactly once as index.

For example in the case n = 3 we get:

S3 = {h∗1 ∧ h∗2 ∧ h∗3, h∗1 ∧ i∗2 ∧ i∗3, h∗2 ∧ i∗1 ∧ i∗3, h∗3 ∧ i∗1 ∧ i∗2} .

Further let Tn be the set of all (Hn
H-invariant) n-forms T of the shape

T = h∗l ∧ ... ∧ h∗m ∧ i∗p ∧ ... ∧ i∗q

with increasing index within the h∗-part, increasing index within the i∗-part and

such that every number in {1, ..., n} appears as index of an h∗ or an i∗, as well

with an odd number of i∗’s. In particular, each integer between 1 and n appears

exactly once as index.

For example in the case n = 3 we get:

T3 = {i∗1 ∧ i∗2 ∧ i∗3, h∗1 ∧ h∗2 ∧ i∗3, h∗1 ∧ h∗3 ∧ i∗2, h∗2 ∧ h∗3 ∧ i∗1} .

Each of this n-forms in Sn and Tn can be obtained either from h∗1 or from i∗1
by adding successively h∗r+1 or i∗r+1 in the rth step at the last position of the

h∗-part respectively at the last position of the i∗-part. If one now gives h∗1 the

sign “+” and i∗1 the sign “−” this induces a sign to each of the n-forms S ∈ Sn

and T ∈ Tn by the following rule:

Let Ar be the signed r-form before adding h∗r+1 or i∗r+1. Then:

• If Ar has an even number of i∗’s, we change the sign if we add i∗r+1, but

not if we add h∗r+1.

• If Ar has an odd number of i∗’s, we change the sign if we add h∗r+1, but

not if we add i∗r+1.

In the following we denote for S ∈ Sn respectively T ∈ Tn the signed n-form by

S̃ respectively T̃ .
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We observe, that if S and T only differ at position r, for the signs holds:

sign(S̃) = (−1)n−r+1 · sign(T̃ ) .

This is true, as after the step r of adding h∗ or i∗, the two forms have different

signs. In each of the following steps one of the forms will change its sign and

the other one will not. So the signs of S̃ and T̃ differ if and only if the number

n− r of remaining steps is even.

Now we arrived at the point where we are able to define our candidate for the

Hn
H-invariant (n+ 1)-form η:

η := (−1)n ·

(∑
S∈Sn

K∗ ∧ S̃ −
∑
T∈Tn

J∗ ∧ T̃

)

The only form in Sn ∪ Tn, which is not zero when restricted to Hn
C, is

h∗1 ∧ h∗2 ∧ ... ∧ h∗n ∈ Sn .

As the sign of this form is “+”, the form η coincides with γ on Hn
C.

Further holds

s∗t η = tn+2η

as each summand in η consists of n dual forms of vectors of the first layer of the

grading of the Lie algebra hnH which scale linearly and one dual form of a vector

of the second layer of the grading which scales quadratically.

It remains to show that η is closed. As for this purpose the sign (−1)n has

no effect, we will neglect it in the following.

For fixed r ∈ {1, ..., n} let (Sp)p∈P be a numbering of the forms S ∈ Sn contain-

ing h∗r . Then for each p ∈ P there is an unique Tp ∈ Tn containing i∗r , such that

Sp and Tp only differ at position r. This means Tp arises from Sp by just repla-

cing h∗r by i∗r . This gives a numbering (Tp)p∈P of the forms T ∈ Tn containing i∗r
associated to the numbering (Sp)p∈P . Analogously let (Sq)q∈Q be a numbering

of the S ∈ Sn containing i∗r . Then for each q ∈ Q there is an unique Tq ∈ Tn
containing h∗r , such that Sq and Tq only differs at position r. This means that

Tq arises from Sq by just replacing i∗r by h∗r . This gives a numbering (Tq)q∈Q of

the forms T ∈ Tn containing h∗r associated to the numbering (Sq)q∈Q.

Further let p and q be the (n − 1)-forms obtained by deleting the position in

which Sp and Tp differ and the position in which Sq and Tq differ, respectively.

(Here it makes no difference whether one does this in the respective form T ∈ Tn
or S ∈ Sn.)
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Then holds:

(n+ 2)! dη =
∑
S∈Sn

n∑
t=1

(k∗t ∧ h∗t + j∗t ∧ i∗t ) ∧ S̃ −
∑
T∈Tn

n∑
t=1

(j∗t ∧ h∗t + i∗t ∧ k∗t ) ∧ T̃

=
n∑
t=1

(∑
S∈Sn

(k∗t ∧ h∗t + j∗t ∧ i∗t ) ∧ S̃ −
∑
T∈Tn

(j∗t ∧ h∗t + i∗t ∧ k∗t ) ∧ T̃

)

=
n∑
t=1

( ∑
S∈Sn
with h∗t

j∗t ∧ i∗t ∧ S̃ +
∑
S∈Sn
with i∗t

k∗t ∧ h∗t ∧ S̃

−
∑
T∈Tn
with h∗t

i∗t ∧ k∗t ∧ T̃ −
∑
T∈Tn
with i∗t

j∗t ∧ h∗t ∧ T̃

)

=
n∑
t=1

(∑
p∈P

[
j∗t ∧ i∗t ∧ S̃p − j∗t ∧ h∗t ∧ T̃p

]

+
∑
q∈Q

[
k∗t ∧ h∗t ∧ S̃q − i∗t ∧ k∗t ∧ T̃q

])

=

n∑
t=1

(∑
p∈P

[
(−1)xp · j∗t ∧ i∗t ∧ h∗t ∧ p− (−1)yp · j∗t ∧ h∗t ∧ i∗t ∧ p

]

+
∑
q∈Q

[
(−1)xq · k∗t ∧ h∗t ∧ i∗t ∧ q− (−1)yq · i∗t ∧ k∗t ∧ h∗t ∧ q

])

where for each t ∈ {1, ..., n} the family (Sp)p∈P is a numbering of the S ∈ Sn

containing h∗t and the family (Sq)q∈Q is a numbering of the S ∈ Sn containing i∗t .

Before we continue the computation, we have to identify the signs of the sum-

mands. We do this by computing the congruence classes modulo 2 of exponents

of the −1’s. These exponents arise by pulling the h∗t ’s and i∗t ’s from inside of

Sp, Sq, Tp and Tq to the third positions.

Denote by #m
h A the number of h∗’s in A ∈ Sn ∪ Tn with index smaller than m

and by #m
i A the number of i∗’s in A ∈ Sn∪Tn with index smaller than m. Then

for fixed t we have for the exponents xp, xq, yp and yq the following congruences

modulo 2:

xp = #t
hSp
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yp = sign(S̃p)− sign(T̃p) + #n
hTp + #t

iTp
≡ (n− t+ 1) + (n+ 1) + (t− 1−#t

hSp)

≡ 2n+ 1−#t
hSp

≡ 1 + #t
hSp

xq = sign(S̃q)− sign(T̃q) + #n
hSq + #t

iSq
≡ (n− t+ 1) + (n) + (t− 1−#t

hTq)

≡ 2n−#t
hTq

≡ #t
hTq

yq = #t
hTq

We used for this, that Sp and Tp respectively Sq and Tq only differ at posi-

tion t and so one has #t
hSp = #t

hTp and #t
hSq = #t

hTq.

Further holds for the needed permutations the following:

j∗t ∧ i∗t ∧ h∗t = (−1)1 · j∗t ∧ h∗t ∧ i∗t

k∗t ∧ h∗t ∧ i∗t = (−1)2 · i∗t ∧ k∗t ∧ h∗t

Therefore we can continue with the computation:

(n+ 2)! dη =
n∑
t=1

(∑
p∈P

[
(−1)xp · j∗t ∧ i∗t ∧ h∗t ∧ p− (−1)yp · j∗t ∧ h∗t ∧ i∗t ∧ p

]

+
∑
q∈Q

[
(−1)xq · k∗t ∧ h∗t ∧ i∗t ∧ q− (−1)yq · i∗t ∧ k∗t ∧ h∗t ∧ q

])

=

n∑
t=1

(∑
p∈P

(−1)#t
hSp ·

[
j∗t ∧ i∗t ∧ h∗t ∧ p− (−1)1 · j∗t ∧ h∗t ∧ i∗t ∧ p

]

+
∑
q∈Q

(−1)#t
hTq ·

[
k∗t ∧ h∗t ∧ i∗t ∧ q− i∗t ∧ k∗t ∧ h∗t ∧ q

])

=
n∑
t=1

(∑
p∈P

(−1)#t
hSp ·

[
j∗t ∧ i∗t ∧ h∗t ∧ p− (−1)1+1 · j∗t ∧ i∗t ∧ h∗t ∧ p

]

+
∑
q∈Q

(−1)#t
hTq ·

[
k∗t ∧ h∗t ∧ i∗t ∧ q− (−1)2 · k∗t ∧ h∗t ∧ i∗t ∧ q

])
= 0

So η is closed and therefore the conditions of Theorem 3.1 are fulfilled and we

get Fn+1
Hn

H
(l) < l

n+2
n .
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Together with upper bound Fn+1
Hn

H
(l) 4 l

n+2
n from Corollary 2.1 this proves The-

orem 8.

7.4 The proof of Corollary 2.8

We have to prove the remaining corollary concerning the non-cocompact lat-

tices in the complex and quaternionic hyperbolic spaces. The main part of

Corollary 2.8 comes by the filling functions of the complex and quaternionic

Heisenberg Groups. So we only have to connect the Dehn functions of the lat-

tices with the filling functions of the Heisenberg Groups.

Lemma 7.4 (Corollary 2.8).

Let n ∈ N≥3 and X be the complex hyperbolic space SU(n, 1)/S(U(n) × U(1))

of dimension 2n or the quaternionic hyperbolic space Sp(n, 1)/(Sp(n) × Sp(1))

of dimension 4n. Further let Γ be a group acting properly discontinuously by

isometries, such that the quotient space X/Γ is of finite volume, but not compact.

Then holds:

δjΓ(l) ∼ l
j+1
j for 1 ≤ j < n− 1.

Proof.

For the complex hyperbolic case this is proved in [22, Theorem 5].

For the quaternionic case we use, as in the proof of [22, Theorem 5], that Γ acts

geometrically on a space X0 obtained from the quaternionic hyperbolic space

Sp(n, 1)/ Sp(n) × Sp(1) by removing a Γ-invariant family of horoballs. By the

Lemma of Švarc-Milnor, Γ is quasi-isometric to X0 and so δjΓ ∼ δjX0
∼ F j+1

X0
for

all 1 ≤ j ≤ n−1. The filling functions of X0 are equivalent to the filling functions

of any of its boundary components (see [22, Theorem 5], [28, 5.D.(5)(c)]), which

are horospheres in Sp(n, 1)/ Sp(n)× Sp(1).

The horospheres in the quaternionic hyperbolic space Sp(n, 1)/ Sp(n) × Sp(1)

are biLipschitz equivalent to the quaternionic Heisenberg Group Hn−1
H .

By Corollary 2.1 we get δjΓ(l) ∼ F j+1
X0

(l) ∼ l
j+1
j for all 1 ≤ j ≤ n− 1.
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8 Some open questions

We computed the filling functions for stratified nilpotent Lie groups under the as-

sumption of the existence of Ω-regular, Ω-isotropic subspaces of the first layer of

the Lie algebra. Our results suggest a division of the behaviour of the filling func-

tions in a part of Euclidean growth in the low dimensions, strictly sub-Euclidean

growth in the highest dimensions and at least one dimension of strictly super-

Euclidean growth in between. Whether this is still true without the algebraic

condition, is an open question.

Burillo proved a cubic lower bound for the filling area function of the group Nn

of unipotent upper triangular n×n-matrices for n ≥ 4. So Gromov’s conjecture

(see [28, 5.D.]) about the first super-Euclidean filling function of a nilpotent Lie

group is wrong. The group Nn is (n− 1)-step nilpotent and Gromov’s heuristic

argument is mainly based on observations for the complex Heisenberg Groups

which are 2-step nilpotent. So we ask:

Question 1.

Does every stratified nilpotent Lie group of nilpotency degree 2 have Euclidean

filling functions up to the maximal dimension of horizontal submanifolds and a

super-Euclidean filling function in the dimension above?

In Section 2.3 we gave a positive answer to this question for the quaternionic and

octonionic Heisenberg Groups. Further we reduced this problem by Theorem 4

to a question on the existence of boundaries without fillings in the corresponding

Carnot Group (without consideration of mass).

An important reason why we are interested in (non-abelian) nilpotent Lie groups

is the fact, that they have sectional curvature of both signs, negative and posit-

ive, at each point. All spaces of non-positive curvature have no super-Euclidean

filling functions, so it would be interesting, if the positive curvature at every

point could be seen by the filling functions:

Question 2.

Does every (non-abelian) nilpotent Lie group have a super-Euclidean filling func-

tion in some dimension?

This question may be easier to answer, if one restricts it to stratified nilpo-

tent Lie groups:
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Question 2b.

Does every stratified nilpotent Lie group have a super-Euclidean filling function

in some dimension?

A more explicit problem concerns the filling function in dimension n for the

octonionic Heisenberg Group Hn
O. We proved lower bounds proportional to `

n+2
n

for the filling function of the quaternionic Heisenberg Group Hn
H. But this

technique fails for the octonionic Heisenberg Group Hn
O as we discussed above.

Nonetheless we proved, that the filling function of Hn
O is super-Euclidean, but

the exact growth type is still unknown. So:

Question 3.

What is the exact growth type of the filling function in dimension n of the oc-

tonionic Heisenberg Group Hn
O?

Another question arises for the higher divergence functions of stratified nilpotent

Lie groups. We computed the exact growth rate for higher divergence functions

in the high dimensions, but in the lower dimensions we only have been able to

establish Euclidean lower bounds.

Question 4.

Are there Euclidean upper bounds for the higher divergence functions of strati-

fied nilpotent Lie groups in low dimensions?
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