
Multilinear Maps
in Cryptography

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften /
Ingenieurwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Julia Hesse

aus Seeheim-Jugenheim

Tag der mündlichen Prüfung: 02.11.2016

Erster Gutachter: Prof. Dr. Dennis Hofheinz

Zweiter Gutachter: Prof. Dr. Marc Fischlin

Für

Elin

�

und

Niki.

♥

Danksagung

Kryptographie! Wer hätte es gedacht? Meine Eltern hätten vermutlich eher auf
ein Gebiet gewettet, das mit technischen Zeichnungen einhergeht. Nun, dann hät-
ten sie mir damals nicht dieses Buch über Geheimschriften geben sollen. Dies war
aber auch ihr letzter Fehler, denn ab hier haben andere übernommen. Allen vo-
ran möchte ich Willi Geiselmann und Jörn Müller-Quade nennen, die seit vielen
Jahren Vorlesungen über Kryptographie in Karlsruhe halten, die nicht nur mir Lust
auf mehr gemacht haben. Für Jörns anschließendes Vertrauen bin ich bis heute sehr
dankbar, denn dies zusammen mit seiner herzlichen Art hat mich damals endgültig
überzeugt, den Schritt zur Promotion zu wagen.

Dennis, der diese Arbeit inhaltlich betreut hat, habe ich meine Ausbildung sowohl
in kryptographischer als auch in wissenschaftlicher Hinsicht zu verdanken. Seine
Passion für ungelöste theoretische Probleme hatte und hat auf mich eine äußerst
ansteckende Wirkung. Wer Dennis kennt, der weiß, dass er mit Hingabe alles und
jeden analysiert. Kryptographie, Politik, die letzte Doppelkopfrunde und - mit einer
gehörigen Portion Ehrlichkeit und Selbstironie - auch uns selbst. Was hatten wir
Spaß! Danke, Dennis, für diese schöne Zeit.

Was wäre die Arbeit ohne nette Kollegen, Mitautoren, Freunde...? Viele von Ih-
nen haben meine Zeit am Institut ungemein bereichert. Allen voran meine lieben
Freunde Andy und Flo, deren Motivation und emotionaler Beistand auch erheblich
zur Fertigstellung dieser Arbeit beigetragen hat. Ich danke Jessi für viele lustige
Momente (besonders in Hotelzimmern). Dirk, der immer eine passende Katze
oder Würschtl gefunden hat. Lisa, die ich am liebsten mitgenommen hätte. Der
Doppelkopfgruppe und dem Kickerteam für lustige Abende und hochemotionale
Mittagspausen-Fights. Brandon für seine Oma (die den besten Kartoffelsalat der
Welt macht!). Bernhard für viele Gespräche und leckeren Obstsalat. Frau Manietta
für die vielen Nerven, wenn ich mal wieder die Elternzeit falsch beantragt hatte.
Marc für den netten Empfang und das Begutachten dieser Dissertation. Kenny for
inviting me to RHUL (twice!). Eduarda for being the most annoying and most won-
derful co-author I had so far. Alex, Anna-Louise, Antonio, Björn, Carmen, Christoph,
Daniel, David, Erik, Gunnar, Holger, Jiaxin, Jochen, Mario, Matthias N, Matthias G,
Matthias H, Patrik, Rafael, Simon, Tibor, Tobi, Willi, es war schön mit euch!

Meine Eltern haben mich mein ganzes Leben lang unterstützt und mir zur Seite
gestanden. Egal ob Blumenladen oder Mathestudium. Es erscheint mir absurd, dies
hier zu Papier zu bringen und ich hoffe, dass ich meine Dankbarkeit dafür noch sehr,
sehr viele Male anders ausdrücken kann.

Zu guter Letzt danke ich meiner kleinen Familie, die mit Abstand am meisten
unter der Fertigstellung dieser Arbeit gelitten hat. Ohne Nikis Unterstützung und
sein Verständnis wäre das alles nicht möglich gewesen.

Contents

1 Introduction 1
1.1 Cryptography Based on the Discrete Logarithm Problem 1
1.2 Advances from Mathematics: Pairings 2
1.3 Generalizing Pairings: Multilinear Maps 3
1.4 State of the Art . 4
1.5 Contributions of this Thesis . 6
1.6 Other Results . 8
1.7 Organization . 10

2 Preliminaries 13
2.1 Notation . 13
2.2 Vectors and Matrices . 13
2.3 Multilinear Maps and Graded Encoding Schemes 14
2.4 Cryptographic Assumptions in the Discrete-Log based Setting 17
2.5 Lossy Trapdoor Functions . 19
2.6 Public-Key Encryption . 20

2.6.1 Homomorphic Public-Key Encryption 21
2.7 Dual-Mode NIZK Proof Systems . 22

3 Graded Encoding Schemes from Obfuscation 25
3.1 Overview . 25

3.1.1 The (Non-Graded) Approximate Multilinear Map of AFHLP . 26
3.1.2 Our New Graded Encoding Scheme 27

3.2 Preliminaries . 29
3.2.1 Languages with Hard Membership 29
3.2.2 Obfuscators . 30

3.3 Approximate Multilinear Maps . 31
3.3.1 Syntax . 31
3.3.2 Overview of AFHLP . 32

3.4 Our GES Construction . 35
3.4.1 Setup . 35
3.4.2 Encodings and Equality . 36
3.4.3 Addition . 38
3.4.4 Multiplication . 39
3.4.5 Sampling . 40
3.4.6 Extraction . 41

3.5 Indistinguishability of Encodings . 41

Contents

3.6 Hard Problems . 48
3.6.1 Hardness of MDDH . 48
3.6.2 Downgrading Attacks . 50
3.6.3 Hardness of RANK . 51

4 Compact Lossy Trapdoor Functions from Multilinear Maps 55
4.1 Overview . 55

4.1.1 More Technical Details . 56
4.1.2 Efficiency . 59

4.2 Lossy Trapdoor Functions from Encrypted Matrices 60
4.3 New Methods for Compressing LTDFs from Encrypted Matrices . . . 62
4.4 Lossy Trapdoor Functions from DDH using Asymmetric Multilinear

Maps . 63
4.4.1 Correctness and Security of our Construction 65
4.4.2 Efficiency and Optimizations 69
4.4.3 Construction of Large Invertible Matrices from few Randomness 69

4.5 Lossy Trapdoor Functions from k-LIN using Symmetric Multilinear
Maps . 72
4.5.1 Lossy Trapdoor Functions based on k-LIN 72
4.5.2 Compressing the Public Description 73

5 New Composite-To-Prime-Order Transformations 75
5.1 Overview . 75
5.2 Preliminaries . 77
5.3 Our Framework . 78
5.4 Our Constructions . 80

5.4.1 Warm-Up: A Projecting Pairing based on the 2-SCasc Assump-
tion . 81

5.4.2 Projecting Multilinear Maps from any Matrix Assumption . . . 82
5.4.3 Projecting and Canceling Multilinear Maps 85

5.5 The Polynomial Viewpoint . 94
5.6 Optimality and Impossibility Results 96

5.6.1 Optimality of Polynomial Multiplication 96
5.6.2 Optimality of our Projecting Multilinear Map from the SCasc-

Assumption . 98
5.6.3 Extended Impossibility Results for Projecting and Canceling . 98

5.7 Efficiency Considerations for our Constructions 100
5.7.1 Efficiency of the Projecting Constructions 100
5.7.2 Efficiency of the Projecting and Canceling Constructions . . . 101

5.8 Applications . 102
5.8.1 Instantiating Groth Sahai Proofs 102
5.8.2 Efficient Implementation of the k-times Homomorphic BGN

Cryptosystem . 105
5.9 A Unified View on Different Projecting Pairings From the Literature . 107

5.9.1 Efficiency Improvement for Seo’s Construction 109
5.10 Implementation with Multilinear Map Candidates 110

5.10.1 Using the Candidate Multilinear Maps from [51] 110

Contents

5.10.2 Using the Approximate Multilinear Maps from [3] or the GES
from Chapter 3 . 112

6 Concluding Remarks 113

Zusammenfassung

WAS SIND MULTILINEARE ABBILDUNGEN? Multilineare Abbildungen sind mächtige
Primitive in der Kryptographie. Beschrieben sind sie schnell: sie bilden k Gruppen
ab in eine weitere Gruppe und sind linear in jeder Komponente. Notiert man die
Gruppen (auch multilineare Gruppen genannt) multiplikativ und nennt die Abbil-
dung e, dann gibt uns die Linearität folgende Gleichung:

e(ga1
1 , . . . , gakk) = g

∏k

i=1 ai
T .

Aus dieser Gleichung wird ersichtlich, dass uns e ermöglicht, ohne Kenntnis der
Exponenten Produkte “im Exponenten” zu bilden (auch wenn wir dabei in einer
neuen Gruppe landen).

MULTILINEARE ABBILDUNGEN IN DER KRYPTOGRAPHIE. In der Kryptographie ist
man hauptsächlich interessiert an multilinearen Gruppen, in denen schwere Berech-
nungsprobleme existieren. Dabei gilt ein Problem als schwer, wenn kein effizien-
ter Lösungsalgorithmus bekannt ist. Ein Beispiel für ein solches, im Zusammen-
hang mit multilinearen Abbildungen besonders interessantes Problem ist die Berech-
nung des diskreten Logarithmus (DLOG). Dessen Schwierigkeit ist die Vorausset-
zung dafür, dass Multiplikation im Exponenten nicht “einfach so”, also ohne Ver-
wendung der multilinearen Abbildung möglich ist. Tatsächlich basiert die Sicher-
heit von kryptographischen Konstruktionen in multilinearen Gruppen jedoch auf
schwierigeren Problemen, die mit Hilfe der multilinearen Abbildung nicht trivial
lösbar sind. Beispiele für solche Konstruktionen sind funktionale Verschlüsselung
(multi-input functional encryption), nicht interaktiver Schlüsselaustausch zwischen
vielen Benutzern (non-interactive multi-user key exchange) und ununterscheidbare
Programmobfuszierung (indistinguishability obfuscation).

EIGENER BEITRAG. Das Forschungsgebiet der multilinearen Abbildungen und ihrer
Verwendung in der Kryptographie ist noch recht jung. Beispielsweise wurden Kan-
didaten für k-lineare Abbildungen für k > 2 erst vor wenigen Jahren vorgeschlagen.
In dieser Dissertation leisten wir die folgenden Beiträge zu diesem Gebiet:

• Existenz: Wir geben einen neuen Kandidaten für eine (Approximation einer)
multilinearen Abbildung an. Unser Kandidat bietet zusätzliche Funktionalität
indem er paarweises Multiplizieren im Exponenten ermöglicht.

• Anwendung: Wir zeigen, wie man mit den von multilinearen Abbildungen
bereitgestellten Multiplikationen im Exponenten bestimmte in der Kryptogra-
phie verwendete Funktionen (lossy trapdoor functions) kompakt darstellen
kann.

• Effizienz: Wir beschreiben eine Transformation, durch die man bestimmte
Kryptosysteme, welche multilineare Abbildungen benötigen, um ein Vielfaches
effizienter implementieren kann.

Chapter 1
Introduction

In the 1970s, the invention of the first public-key cryptosystems launched a whole
new area of cryptographic research. Public-key cryptosystems allow (two) parties
to establish a secret among them only from publicly available information. This re-
moves the burden of first establishing a secret through different means from the
already long known secret key cryptosystems. Triggered by the seminal works
of Merkle [92] and Diffie and Hellman [39], countless public key constructions
for key exchange, encryption, digital signatures and more cryptographic primitives
have been invented. The growing list includes famous examples such as the Diffie–
Hellman Key Exchange [39] and the RSA cryptosystem [101], both being essential
components of widely used protocols such as TLS, S/MIME and SSH. Established no-
tions of security for public key constructions include semantic security for encryption
and existential unforgeability for digital signatures. It is well known that proving a
construction to achieve one of these notions would imply solving a problem that has
been depriving theorists from sleep since the middle of the last century 1. Mean-
while, it is common practice to prove the security of a cryptographic construction
with respect to an assumption. Such an assumption usually states computational
hardness of a mathematical problem. For example, security of the Diffie–Hellman
Key Exchange relies on the hardness of computing the discrete logarithm in a cyclic
group, while the RSA cryptosystem can only be secure when factoring large num-
bers is hard. Besides these two main directions, lattice-based cryptography relies on
the hardness of computational problems in lattices. And of course, one can always
introduce more specific assumptions, e.g., from the field of algebraic coding theory
[88], or hit the big score by successfully basing security on NP-complete problems
(e.g., [91]). This thesis, however, is in the setting where security is based on the
hardness of computing discrete logarithms.

1.1 Cryptography Based on the Discrete Logarithm
Problem

DISCRETE LOGARITHMS. In cryptography, talking about discrete logarithms requires
a cyclic group G of finite order n with generator g. Now the discrete logarithm of an
element h ∈ G with respect to basis g is (the uniquely determined) a ∈ Zn such that
ga = h. In other words, computing the discrete logarithm reverses exponentiation.
This computation, called DLOG, can be relatively easy. For example, if G is the
additive group Zn itself, one can use the Extended Euclidean Algorithm to solve
DLOG in polynomial time, i.e., O(log2(n)2). However, no efficient algorithm for

1The P versus NP problem, see, e.g., http://www.claymath.org/millennium-problems

1

1 Introduction

computing DLOG in any group is known. The best known algorithms in, e.g.,
multiplicative subgroups of finite fields, are Index Calculus algorithms, which have
sub-exponential runtime. Even worse, there are elliptic curves2 where we cannot
apply Index Calculus. Here, the best known algorithms run in O(

√
n), where n

is the size of the group3. While the intractability of DLOG regarding these two
families of groups might be annoying for algorithmicians, cryptographers quite like
it4.

THE NEED FOR STRONGER ASSUMPTIONS. Unfortunately, groups with a presumably
hard DLOG problem alone are not sufficient for cryptographic purposes. DLOG,
as it turns out, is often too hard to admit a reduction from the security of a crypto-
graphic construction. Security can thus only be shown under stronger assumptions,
leaving hardness of DLOG to be a necessary but not sufficient condition. Some of
these stronger (but nowadays standard) assumptions historically arose from stating
the security of a cryptographic construction. The probably most famous example
is the computational Diffie–Hellman assumption (CDH), which demands that given
(only the public keys of two users executing the Diffie–Hellman Key Exchange proto-
col) ga, gb it is hard to compute (the shared key of the Diffie–Hellman Key Exchange)
gab. It is straightforward to see that this assumption can only hold in groups where
DLOG is hard, while the converse is not known to be true. The vast majority of cryp-
tographic constructions in the discrete-log type setting rely on assumptions stronger
than CDH. All of them exploit the fact that computing or even recognizing products
“in the exponent” is hard.

1.2 Advances from Mathematics: Pairings

A pairing is an efficiently computable nontrivial bilinear map e that maps two cyclic
groups G1, G2 to another cyclic group GT , where potentially G1 = G2 (in this case
we refer to e as symmetric, otherwise as asymmetric). G1 and G2 are often referred
to as bilinear groups. Until a few years ago, the only known constructions were
the Weil and the Tate pairing and variations thereof. Here, G1 and G2 are elliptic
curves and GT is a finite field. What makes these maps interesting for cryptographic
purposes is the bilinearity property

e(ga1 , gb2) = e(g1, g2)ab.

A pairing thus gives us something close to multiplication “in the exponent” - but
what is the point of having the product of the exponents in a different group? Let us
have a closer look at this map.

2The points of an elliptic curve form a group together with an operation that is probably best ex-
plained by looking at a picture, e.g., in [111], on page 56.

3We note that there are methods that exhibit specific properties of the group and can run faster in
certain scenarios. For example, the Pollard Rho Algorithm runs in O(k√p), where p is the largest
prime factor of the group order and k its multiplicity.

4At least as long as they do not think about the dark clouds on the horizon, where there are quantum
computers that will render all cryptography based on factorization and discrete logarithms insecure
[109].

2

1.3 Generalizing Pairings: Multilinear Maps

PAIRINGS AS PROBLEM SOLVERS. In this thesis, we assume that GT is neither G1 nor
G2

5. Bilinearity refutes injectivity of e so that we do not have an inverse map. It
is not obvious, even not in the symmetric case, how to use a pairing to multiply
exponents in the source groups. Nonetheless, we can use it to multiply exponents in
another group. This directly implies that certain cryptographic assumptions, such as
hardness of recognizing products “in the exponent” (the decisional Diffie–Hellman
Assumption, or DDH), become easy in the presence of a symmetric pairing. More-
over, Menezes, Okamoto and Vanstone gave a polynomial reduction (often referred
to as the MOV attack, [90] of DLOG on an elliptic curve with a symmetric pairing
to DLOG in the finite field GT . In certain cases6, i.e., when the order of GT is com-
parably small, the sub-exponential Index Calculus methods for solving DLOG in
GT outperform the square-root algorithms for solving DLOG in the elliptic curves.
This renders certain classes of elliptic curves useless for cryptographic constructions
whose security is based on the hardness of DLOG.

PAIRINGS IN CRYPTOGRAPHIC CONSTRUCTIONS. After being used only to scratch can-
didates from the pool of groups used in cryptography for nearly a decade, pair-
ings received the attention of cryptographers again. In the year 2000, Joux used
them in the first ever known construction of non-interactive key exchange among
three users [76]. The construction is a generalization of the Diffie–Hellman Key
Exchange. It advises a user to compute a shared key K ∈ GT from two public keys
ga, gb ∈ G and a secret key c ∈ Zp as K := e(ga, gb)c = e(g, g)abc by using a sym-
metric pairing e : G × G → GT . From that point on, pairings were rehabilitated.
Within the next years, they led to a series of breakthrough instantiations of so far
only theoretical concepts such as identity-based encryption [12] and key agreement
[106], non-interactive zero-knowledge proof systems [63], short signatures [15],
and attribute-based encryption [105, 62].

1.3 Generalizing Pairings: Multilinear Maps

MULTILINEAR MAPS. One can generalize the Diffie–Hellman Key Exchange even
more to include up to k + 1 users for any k ∈ N. To combine k exponents from
cyclic groups G1, . . . , Gk with a resulting shared key in a target group GT , we need
a mapping between G1, . . . , Gk and GT that is linear in each component:

e(ga1
1 , . . . , gakk) = e(g1, . . . , gk)

∏k

i=1 ai .

These so-called multilinear maps (or k-linear map in the above case) were intro-
duced in [16], together with desirable applications such as the generalized Diffie–
Hellman Key Exchange. To be of any interest for cryptographic purposes, it should
at least be hard to compute DLOG in the source and target groups of e. Even more,
for instantiating the k + 1-user Diffie–Hellman Key Exchange protocol, we require
a map where computing (or, for stronger security, recognizing) products of k + 1
exponents is hard in either the source group and target groups of e.

5We note that a very recent line of research, starting with [83], investigates the existence and cryp-
tographic relevance of self-bilinear maps, where source and target groups are identical.

6Considering the latest progress in computing DLOG in finite fields, [65] gives an overview of which
curves should be avoided due to the MOV attack.

3

1 Introduction

Simple as they are, multilinear maps turned out to be an extremely powerful
primitive in cryptography. We refer the reader to the upcoming section for appli-
cations. In fact, as it is often the case with powerful tools, researchers even have
started doubting their existence at all. Currently, the question is: Can we make them
or can we break them?

GRADED ENCODING SCHEMES. Very recently, the notion of graded encoding systems
(GES) was introduced by [51]. Roughly speaking, a GES is an approximate version
of groups equipped with a multilinear map, but instead of groups one has sets of
non-unique encodings of exponents. In most cases7, applications relying on multi-
linear maps can be easily modified to use a GES instead. Besides, a GES offers the
additional functionality of multiplying two exponents (with the result lying in an
intermediate set, often referred to as a “level”) instead of providing only a way of
multiplying k exponents at once, as with a k-linear map. We mention cryptographic
applications exploiting this graded property of a GES as the chapter unfolds.

RESEARCH ON MULTILINEAR MAPS. From what we have seen so far, the following
natural questions arise.

• Constructions: Can we construct a GES (or multilinear map)?

• Applications: Can we find new ways to use a GES (or multilinear map) for
cryptographic purposes?

• Efficiency: Can we speed up cryptographic constructions that make use of a
GES (or multilinear map)?

1.4 State of the Art

CONSTRUCTIONS. The first candidate construction of a GES was proposed by Garg,
Gentry and Halevi [51]. Their scheme (dubbed GGH) works with ideal lattices and
uses growing noise in encodings to argue about an upper bound on multiplications
in the exponent. Unfortunately, this noise also prevents the operation in each source
set from being closed. It also hinders efficient procedures, e.g., for recognizing en-
codings of zero or extracting unique representations from encodings, both required
by many cryptographic constructions. In GGH, eliminating the noise can only be
done in the target set by extracting a unique representation, but this comes at a
price: one can no longer compute with extracted elements. To enable extraction
or zero-testing, GGH proposes to publish additional information about the secret
values of the scheme. Unfortunately, this makes GGH prone to attacks (dubbed
zeroizing attacks, [51] that turned out to be quite devastating [59]. Ever since,
there is an ongoing flurry of fixes and attacks, where [32, 24, 57, 34, 31] is not an
exhaustive list.

But what about applications that neither require zero-testing nor extraction, like,
e.g., indistinguishability obfuscation (iO) [6]? This cryptographic primitive com-
putes a circuit from one of two input/output-equivalent circuits but does not reveal

7See Section 4.1.1 or [119] for applications where it is not known how to implement them with a
generic GES.

4

1.4 State of the Art

which circuit was used. It has been proven to be an extremely powerful tool in cryp-
tographic constructions [104]. Recently, a candidate construction was proposed
[52] that uses a weaker form of multilinear maps without zero-testing and extrac-
tion. One can thus hope to implement it using GGH without the fatal publishing of
additional information. [93] shows that there are still attacks, against which [52]
was immunized shortly after [55]. As of today, it seems to be possible to securely in-
stantiate iO with GGH. Obviously, more investigations are required to clarify which
security GGH provides in each of the aforementioned cases.

In the meantime, other constructions of GESs have been proposed. [35] uses
techniques similar to those of GGH but works over the integers instead of using
ideal lattices. Unfortunately, zeroizing attacks seem to be even more devastating
for this candidate and its subsequent version [37], resulting in a total break of the
scheme [59, 21, 36, 30, 29].

Taking a completely different approach, the work of Albrecht et al. [3] aims at
providing multilinear maps in a setting where the underlying groups have random-
ized encodings. In a nutshell, they build a group with a multilinear map from a
cyclic group with a hard Diffie–Hellman-like problem by adding auxiliary informa-
tion to each element8. To show that various cryptographic assumptions hold in their
construction, [3] makes generic use of iO. Relying on heavy assumptions such as
iO is the main drawback of their construction, but still their result reduces the task
of finding a multilinear map to the task of finding an indistinguishability obfuscator.
As argued above, this might be a problem that is easier to solve.

APPLICATIONS. Besides being used for constructing iO [52, 119], graded encoding
schemes have several other important applications in cryptography. Among them
are the first ever known constructions of so far only theoretical concepts, like multi-
user non-interactive key exchange (as explained above), attribute-based encryption
for general circuits [53], constrained pseudo random functions for general circuits
[19], full domain hash [75] and multi-input functional encryption [61, 14]9. Appli-
cations that can be implemented with both multilinear maps and a GES are witness
encryption [54], low overhead broadcast encryption [20] and programmable hash
functions [48].

EFFICIENCY. When it comes to implementing any application relying on multilinear
maps, even in the bilinear case the bottleneck in efficiency is the computation of
the map. To get an insight into possible measures of tweaking this, we first look at
existing efficiency improvements for pairings. We identify the following three kinds
of improvements: we can a) find a map that can be computed faster by construction,
or b) find better parameters (i.e., elliptic curves in the case of pairings) or, finally,
c) optimize the algorithms for evaluating the map. For pairings, the most notable
work in a) includes studies of optimality of pairings [113] or optimizing an existing
pairing, the Eta Pairing, to be easier to compute [72]. Better parameters can be
found by looking into properties of elliptic curves, e.g., by choosing BLS12 curves for
computing asymmetric pairings with 192-bit security [4]. Another line of research
aims at replacing groups of composite order with (several copies of) groups of prime
order [45, 87]. This enhances performance since groups of prime order can be

8See Section 3.3 for a summary of their construction.
9In a recent result, multi-input functional encryption is achieved from pairings [1].

5

1 Introduction

chosen significantly smaller (e.g., 256 bit size) than groups of composite order (e.g.,
2048 bit size) to resist factorization attacks. Of course, one then has to argue how a
pairing on composite-order groups can be emulated using a pairing on prime-order
groups. And finally, one can speed up Miller’s Algorithm [5], which has been the
best known way to evaluate pairings since its invention in 1986.

For multilinear maps, the focus currently lies on finding new constructions and
dealing with attacks on existing ones. There is thus much room for improvements
in all aforementioned cases. Regarding a), GGHLite [82] was proposed, followed by
further optimizations in [2]10. For b), one strategy is to apply the aforementioned
transformations from composite order to prime order. Unfortunately, none of the
existing approaches for pairings scales to the multilinear case (see Section 5.4 for
the actual numbers).

1.5 Contributions of this Thesis

In this thesis, we shed more light on all of the research questions posed above.
Our contributions are threefold. First, we give a construction of a GES that is, as
of today and to our knowledge, the only construction in which certain multilinear
assumptions can hold. Second, we use multilinear maps to make a cryptographic
primitive called lossy trapdoor function more efficient. And finally, we give a new
composite-to-prime-order transformation. Besides being more efficient than existing
transformations already in the case of pairings, our construction is the only one that
can be applied to composite-order cryptosystems using multilinear maps (or a GES,
respectively). Let us discuss these contributions in more detail below.

Constructions

In our first contribution, we propose a new candidate graded encoding scheme in
[43]. Technically, we adopt the approach of [3] and equip a cyclic group G = 〈g〉
with auxiliary information. More detailed, an encoding of a is of the form

(ga, auxiliary information).

In [3], the auxiliary information stashes away a linear polynomial that evaluates to a
at a secret fixed point. To achieve a graded property, we view exponents not only as
linear polynomials but polynomials of higher degrees. Tying the maximum degree to
the level gives us different sets of encodings in each level. Polynomial multiplication
in the exponent is then a bilinear map in each two of these sets. Of course, we have
to find means to enable multiplication in the exponent without giving away too
much, since we still want to restrict the number of possible multiplications to a
specific value. For this, like [3], we use iO.

We want to highlight several drawbacks, benefits and implications of our con-
struction. Obviously, the main drawback is the dependence on iO. Additionally, we
were not able to give an efficient procedure for testing validity of encodings (in the
sense that the auxiliary information is honestly generated). Turning to benefits, our

10Implementations can be found in, e.g., 5Gen [84], a software stack that aims at providing libraries
for applications using multilinear maps.

6

1.5 Contributions of this Thesis

construction admits efficient algorithms for several tasks. E.g., testing equality of
encodings (simply compare the first entry) or extracting a canonical form (simply
cut the auxiliary information) both come essentially for free. Our GES is the first to
enable efficient computation with unique representations of encodings in the target
set, which in our construction is simply the cyclic group G. Regarding security, we
are able to give a clean reduction from a multilinear variant of DDH (called MDDH)
to a standard cryptographic assumption called SDDH in G (using iO and a bilin-
ear group)11. Regarding the attacks from the literature on existing GES candidates,
we are optimistic that none of these techniques apply to our candidate, since we
do not use any noise. Furthermore, like [3] for the case of multilinear maps, our
construction reduces the task of finding a GES to the task of finding iO.

Applications

A family of lossy trapdoor functions (LTDF) is a collection of functions parametrized
by two fixed values for input size and lossiness. A function from this collection is
either injective or not injective. The latter functions, also called the lossy ones, loose
as many bits of information about the input as the lossiness parameter dictates. The
key property now is that injective and lossy functions are indistinguishable.

LTDFs are a powerful primitive with many applications in cryptography. To men-
tion just one example, LTDFs can be used to build IND-CCA secure encryption
[99, 94]. We refer the reader to Chapter 4 for a more elaborated list of applica-
tions.

LTDFs themselves are known to exist under various cryptographic assumptions.
In the DLOG-based setting, the first constructions had a public description of O(n2)
group elements [99, 46, 115] where n is the (bit)size of the function’s input. Later,
this was improved to O(n) group elements using a pairing [23]. Unfortunately,
the techniques of [23] do not seem to generalize to the multilinear case to achieve
further improvements. This is where our work begins. In [73], we give a technique
to further compress the description of DLOG-based LTDFs to O(n2/k) using a k-
linear map. A nice side effect is that, already for the case of pairings (k = 2), our
LTDF is shorter than the one from [23].

Unfortunately, it seems to be hard to implement our LTDF, as well as LTDFs in
general, with GGH. The reason is that, roughly speaking, noise might carry infor-
mation about the input, making it harder to argue for lossiness of a function. To
implement our compact LTDF, we can choose the noise-free multilinear map and
GES constructions from [3] and [43], respectively12.

Efficiency

In [71], we propose a new transformation that renders cryptographic constructions
in composite-order groups using a k-linear map more efficient. Looking at these

11Using the same set of assumptions, namely SDDH, iO and a bilinear group, we can also show
hardness of an assumption about deciding the rank of an encoded matrix (called RANK).

12We mention here that the assumptions required by our constructions, namely either DDH or the
k-Linear Assumption, are not known to hold in [3], [43]. Considered more optimistically, they are
also not known to be false and both constructions already provide security regarding RANK, which
is only slightly weaker than the k-Linear Assumption.

7

1 Introduction

constructions (e.g., [60, 13, 18, 79, 114, 89], we see that security often relies on
the fact that membership in certain subgroups is hard to recognize. Often, appli-
cations using multilinear maps in composite-order groups (e.g., [114, 89] exploit
properties such as orthogonality of subgroups (in the sense that pairing two sub-
groups of different order yields the neutral element). The technical difficulty is to
make sure that our emulated composite-order groups and, especially, the emulated
map on these groups provide all of these features.

All existing approaches from the literature [45, 89, 108, 107, 85, 86] are des-
ignated for the case of pairings. To emulate a composite-order group, they take
several (say, n) copies of a group of prime order p. Elements are now vectors of
prime-order group elements. Regarding security, recognizing subgroup elements
now corresponds to recognizing linear subspaces of Znp . A pairing can be obtained
by multiplying vectors “in the exponent” using the underlying prime-order pairing.
All existing transformations multiply vectors using a tensor product, resulting in a
large number of prime-order pairing evaluations. Again, we find ourselves in a sit-
uation where existing techniques for pairings do not work for the multilinear case.
Namely, generalizing any of the existing transformations to the k-linear case (where
we have to multiply k vectors instead of 2) results in an exponential number of
prime-order pairing evaluations.

In our transformation, we follow the same approach but switch to a more efficient
vector multiplication. In a nutshell, we interpret vectors as coefficient vectors of
a polynomial and use polynomial multiplication as a k-linear map. We can then
apply existing techniques to speed up polynomial multiplication in the exponent
and thus reduce the number of required prime-order map evaluations to k2. Our
transformation is already the most efficient one in the bilinear case and results in,
e.g., implementations of Groth-Sahai proof systems [63] that are roughly two times
faster as before.

1.6 Other Results

I also investigated cryptographic topics that are not closely related to multilinear
maps and thus do not appear in this thesis. All of them are in the area of public key
cryptography. The first result considers a new security notion for non-interactive
key exchange (e.g., the aforementioned Diffie–Hellman Key Exchange). Here, non-
interactivity is in general achieved by assuming the existence of a public key infras-
tructure (PKI). The second result, roughly speaking, is about avoiding the tedious
update process of a PKI that, in practice, can be huge. Is a PKI lost if there is an
attack on the cryptosystem? We identify properties of cryptosystems that help us in
rescuing the system without having to update the whole PKI. Short abstracts of both
the aforementioned results follow.

Universally Composable Non-Interactive Key Exchange

In [47], we give a new security notion for non-interactive key exchange (NIKE) in
the Universal Composability framework (UC). This framework supports a modular
analysis of protocols consisting of several phases. Regarding NIKE, e.g., there are
two phases: the establishment of a public key infrastructure (PKI) and the actual

8

1.6 Other Results

computation of the shared key between two parties. But what security does the
shared key provide if a malicious PKI is used? Existing game-based security notions
for NIKE take this into account by admitting adversaries that pins “bad” public keys
on the PKI. Unfortunately, this results in a tedious game and complicates the se-
curity analysis of NIKE protocols. Our new notion in the UC framework improves
on this by splitting up the protocol according to its phases and analyzing the se-
curity of each phase by itself. This simplifies the analysis of NIKE protocols and
gives us modularity: any UC-secure protocol realizing phase one (distribution of the
PKI) combined with any UC-secure protocol realizing phase two (computation of
the shared key) results in a UC-secure NIKE protocol. Moreover, the UC framework
guarantees composability with arbitrary other protocols, including parallel execu-
tions of the protocol itself.

Besides defining the new security notion by giving ideal functionalities for each
phase of a NIKE, we investigate relations to existing game-based notions. We find
that game-based security of NIKE is equivalent to static security in the UC frame-
work (where static means that the adversary may not corrupt any parties after the
protocol was started). We also give evidence that a non-static (i.e., adaptive) notion
is hard to achieve without using hash functions modeled ideally as random oracles.

Reconfigurable cryptography: A flexible approach to long-term security

In [74], we define the concept of reconfigurable cryptography. Reconfigurable here
means that there is a procedure that increases the security of a cryptosystem on-the-
fly. For practical purposes, we are only interested in fast reconfiguration procedures.
Faster than, e.g., the process of updating a whole PKI used by the cryptosystem. For
this, a reconfigurable cryptosystem uses a common reference string (CRS) between
all participants that can be updated (and downloaded) in a few seconds. A subtlety
lies in the level of security that we want to improve: since computing the secret
keys from the PKI is an upper bound on the overall security of the system (we call
this the “long-term” security), we need to introduce an additional parameter for the
“short-term” security that we want to increase on-the-fly. We are only interested
in reconfigurable schemes where reconfiguration actually increases the short-term
security and where we do not have an a priori bound on the number of possible
reconfigurations.

Besides defining reconfigurable cryptosystems and their security, we give three
constructions: 1) A reconfigurable encryption scheme that admits reconfiguration
in the sense that the cryptosystem is transferred to another (possibly larger) group.
This is a nice form of reconfiguration, but also hard to achieve: we did not manage
to get it from standard cryptographic assumptions and have to rely on iO instead.
2) We give a reconfigurable encryption scheme where, upon reconfiguration, short-
term security relies on a weaker assumption. More detailed, short-term security
relies on the k-SCasc assumption (see 2.4 for a definition) that is known to imply
k + 1-SCasc for any k ∈ N. And 3), we propose a reconfigurable signature scheme
with similar reconfiguration properties from non-interactive zero-knowledge proof
systems.

9

1 Introduction

1.7 Organization

Chapter 2 lists the basic definitions we work with. Afterwards, we elaborate on our
construction of a GES in Chapter 3. Our construction of a LTDF can be found in
Chapter 4. Chapter 5 then explains our composite-to-prime-order transformation.
We finish with some concluding remarks in Chapter 6.

10

Own Publications

Conference papers

• Julia Hesse, Dennis Hofheinz, and Daniel Kraschewski. Lossy trapdoor func-
tions with compact keys from multilinear maps. Unpublished manuscript.

• Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded
encoding schemes from obfuscation. Unpublished manuscript.

• Julia Hesse, Dennis Hofheinz, and Andy Rupp. Reconfigurable cryptography:
A flexible approach to long-term security. In Eyal Kushilevitz and Tal Malkin,
editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 416-445. Springer,
Heidelberg, January 2016.

• Eduarda S. V. Freire, Julia Hesse, and Dennis Hofheinz. Universally compos-
able non-interactive key exchange. In Michel Abdalla and Roberto De Prisco,
editors, SCN 2014, volume 8642 of LNCS, pages 1-20. Springer, Heidelberg,
September 2014.

• Gottfried Herold, Julia Hesse, Dennis Hofheinz, Carla Ràfols, and Andy Rupp.
Polynomial spaces: A new framework for composite-to-prime-order transfor-
mations. In Juan A. Garay and Rosario Gennaro, editors, Crypto 2014, Part I,
volume 8616 of LNCS, pages 261-279. Springer, Heidelberg, August 2014.

Others

• Julia Rohlfing. Paarungen auf elliptischen Kurven und ihre Anwendung in der
Kryptografie. Diplomarbeit, Universität Karlsruhe (TH), Germany, April 2009.

11

Chapter 2
Preliminaries

2.1 Notation

The security parameter will be denoted by λ ∈ N and we assume that, if not stated
explicitly, it is implicitly given to all algorithms in the unary representation 1λ. By
an algorithm we mean a stateless Turing machine. For a probabilistic algorithm A,
y ← A(x; r) denotes the process of running A on input x and with randomness
r ∈ RA , and assigning y the result. We write y ← A(x) for y ← A(x; r) with
uniform r. If A’s running time is polynomial in λ, then A is called probabilistic
polynomial-time (PPT). For a finite set S, we denote its cardinality by |S| and the
process of sampling s uniformly from S by s R← S. Throughout this thesis ⊥ denotes
a special error symbol, and poly(·) stands for a fixed (but unspecified) polynomial.

We call a function η : N → R negligible if for all c ∈ N there is a λ0 ∈ N such
that for all λ > λ0 it holds that |η(λ)| < 1

λc . We denote the set of all negligible

functions by NEGL. We write D0
c≈ D1 to denote computational indistinguishability

of two distributions D0, D1, meaning that no efficient PPT algorithm can decide
with non-negligible success if an element x is drawn from D0 or D1. Statistical
indistinguishability is denoted by

s≈.
We use multiplicative notation for groups, except for Chapter 5, where we use ad-

ditive notation to visually distinguish between the group operation and polynomial
multiplication. Let G be a cyclic group of order ord generated by g. If the generator
g is clear from the context, then by [a] := ga we denote the implicit representation
of a ∈ Zord in G. To distinguish between implicit representations in the domains
G, Gi and the target group GT of a multilinear map we use [·], [·]i and [·]T , respec-
tively. More generally, we also define such representations for sets H ⊂ Znord by
[H] := {[a] | a ∈ H} ⊂ Gn.

2.2 Vectors and Matrices

We will write matrices in bold capital letters, e.g., M, and denote vectors with an
overhead arrow, e.g., ~x. Given any matrix M, we denote its determinant by det(M),
its rank by rank(M) and its trace by tr(M). We denote the identity matrix by I, or
by In respectively if we want to highlight that it is of size n×n. We use 0 and 0n for
the all-zero matrix of size n×n accordingly.

We generalize the implicit notation in groups to vectors and matrices. Namely, if
G is a group of order ord and ~x ∈ Znord and M ∈ Zm×nord we write [~x] := ([xi])i ∈ Gn
and [M] := ([mi,j])i,j ∈ Gm×n. We define a special matrix-vector product ∗ by
[M] ∗ ~x = M ∗ [~x] := [M~x] and [~x] ∗M = ~x ∗ [M] = [~xM], where M and ~x are both

13

2 Preliminaries

defined over Zp with suitable dimensions. (Note that ∗ is efficiently computable.)
Furthermore, we will sometimes identify ~f ∈ Znord with the coefficients of a poly-

nomial f in some space V with respect to a (fixed) basis q0, . . . , qn−1 of V , i.e.,
f =

∑n−1
i=0 fiqi (e.g., V = {f | f ∈ Zord[X], deg(f) < n} and qi = Xi). In this case

we may also write [f] := [~f].
We will use the mathematical concept of the tensor product of two matrices (also

called the Kronecker product). One important property of the Kronecker product is
that the size of the result is the product of the sizes of the two inputs. This will be
helpful for the compression of public keys containing matrices. While the classical
Kronecker product combines elements using the group operation, we will give a
generalized definition which implies the classical definition.

Definition 2.2.1 (Generalized Kronecker product). For m,n, q, r ∈ N let M ∈
Gm×n1 ,M′ ∈ Gq×r2 be defined over groups G1, G2 and φ : G1 × G2 → GT a function,
where GT is also a group. We extend φ to matrices of group elements in a component-
wise fashion (i.e., φ(m,M′) for M′ = (m′i,j) is the matrix (φ(m,m′i,j))). Then the
generalized Kronecker product M⊗φ M′ is defined as

M⊗φ M′ :=

φ(m1,1,M′) φ(m1,2,M′) . . .
φ(m2,1,M′) φ(m2,2,M′)

...
. . .

 ∈ Gmq×nrT .

When G1 = G2 = GT with φ(g, h) := gh we obtain the classical Kronecker product,
which will be denoted by ⊗. For this case we recall some basic calculation rules
which we will mainly use in Section 4.4. For matrices M,M′,Q,Q′ over the same
field K we have

M⊗ (Q + Q′) = M⊗Q + M⊗Q′ if Q and Q′ are of the same size

MM′ ⊗QQ′ = (M⊗Q) · (M′ ⊗Q′) if the matrix products MM′ and

QQ′ are defined

det(M⊗M′) = det(M)n′ · det(M′)n if M is of size n×n and M′ is of size n′×n′

rank(M⊗M′) = rank(M) · rank(M′)

2.3 Multilinear Maps and Graded Encoding Schemes

Definition 2.3.1 (Multilinear map). Let k, ord ∈ N and G1, . . . , Gk, GT be cyclic
groups of order ord. A k-linear map e : G1 × · · · × Gk −→ GT is a map with the
following properties:

• Multilinearity: e is k-linear in the sense that for all i ∈ [k] and α ∈ Zord we
have

e(g1, . . . , g
α
i , . . . , gk) = e(g1, . . . , gk)α.

• Non-Degeneracy: for each set of generators g1, . . . , gk of the groups G1, . . . , Gk,
the element e(g1, . . . , gk) generates GT .

14

2.3 Multilinear Maps and Graded Encoding Schemes

If G1 = · · · = Gk we say e is a symmetric map, otherwise e is called asymmetric. We
call (G1, . . . , Gk, GT , e, ord) a k-linear group.

Definition 2.3.2 (k-linear group generator). We define a k-linear group generator
to be an algorithm Gk that gets as input λ ∈ N and outputs tuples of the form

(k,G1, . . . , Gk, GT , e, ord, g1, . . . , gk, gT)← Gk(λ),

where G1, . . . , Gk, GT are descriptions of cyclic groups with ord ∈ N, dlog2(ord)e = λ,
gi generates Gi (i ∈ [k]), gT generates GT and e : G1 × · · · × Gk → GT is a k-linear
map. We call Gk(λ) symmetric if G1 = . . . = Gk, and we refer to it as a prime-order
group generator it only outputs groups of prime order.

In the case k = 1 we will not need the map and define the output of the group
generator G1(λ) to be the tuple (G, ord, g).

GRADED ENCODING SCHEMES. We recall (a slight variant of) the definition of graded
encoding schemes from Garg, Gentry and Halevi (GGH) [51]. To this end, we start
by defining graded encoding systems. Notice the small but fine difference in the
name: a graded encoding system is a mathematical structure, while a graded en-
coding scheme is this very structure together with a set of efficient algorithms for
various tasks.

Definition 2.3.3 (Graded Encoding System). Let R be a (non-trivial) commutative
ring and S := {S(a)

i ⊂ {0, 1}∗ : a ∈ R, 0 ≤ i ≤ κ} a system of sets. Then (R,S) is
called a κ-graded encoding system if the following conditions are met.

1. For each level i ∈ {0, . . . , κ} and for any a1, a2 ∈ R with a1 6= a2 we have that
S

(a1)
i ∩ S(a2)

i = ∅.

2. For each level i ∈ {0, . . . , κ}, the set {S(a)
i : a ∈ R} is equipped with a binary

operation “+” and a unary operation “−” such that for all a1, a2 ∈ R and every
u1 ∈ S(a1)

i , u2 ∈ S(a2)
i it holds that

u1 + u2 ∈ S(a1+a2)
i and − u1 ∈ S(−a1)

i .

Here, a1 + a2 and −a1 denote addition and negation is R.

3. For each two levels i, j ∈ {0, . . . , κ} with i+ j ≤ κ, there is a binary operation “×”
such that for all a1, a2 ∈ R and every u1 ∈ S(a1)

i , u2 ∈ S(a2)
j it holds that

u1 × u2 ∈ S(a1·a2)
i+j .

Here, a1 · a2 denotes multiplication in R.

The difference to the GGH definition is that we do not require the operations “+”
and “×” to be associative or commutative. (Indeed, our upcoming construction does
not satisfy these properties.) We are not aware of any applications that require the
associativity or commutativity of encodings. However, we stress that the operations
“+” and “×” must respect the ring operations from R. For instance, while we may

15

2 Preliminaries

have (u1 + u2) + u3 6= u1 + (u2 + u3) for some ui ∈ S(ai)
j , both the left-hand and the

right-hand sides lie in S(a1+a2+a3)
j .

In the setting of graded encoding systems, we refer to an element a ∈ R as an
exponent and a bit string u ∈ S

(a)
i as an encoding of a. Further, we write Si :=⋃

a∈R S
(a)
i for the set of all level-i encodings.

We now define graded encoding schemes by introducing explicit algorithms for
manipulating encodings of a graded encoding system.

Definition 2.3.4 (Graded Encoding Scheme (GES)). Let (R,S) be a κ-graded en-
coding system. A graded encoding scheme (GES)

Γ = (Setup,Eq,Add,Mult,Sam,Ext)

associated to (R,S) consists of the following PPT algorithms.

Setup(1λ, 1κ): On input the security parameter 1λ and the (multi)linearity 1κ, it out-
puts parameters of Γ (which are assumed to be provided to all other algorithms).
We note that this algorithm runs in time poly(λ) as long as κ is polynomial in λ.

Eqi(h1, h2): For i ∈ {0, . . . , κ} and two encodings h1 ∈ S
(a)
i and h2 ∈ S

(b)
i , this

deterministic algorithm outputs 1 if and only if a = b in R.

Addi(h1, h2): This deterministic algorithm performs the “+” operation of (R,S) in
level i. For i ∈ {0, . . . , κ} and encodings h1 ∈ S(a1)

i and h2 ∈ S(a2)
i this algorithm

outputs an encoding in h ∈ S(a1+a2)
i .

Multi,j(h1, h2): This deterministic algorithm performs the “×” operation of (R,S). For
i, j ∈ {0, . . . , κ} with i + j ≤ κ and encodings h1 ∈ S(a1)

i and h2 ∈ S(a2)
j this

algorithm outputs an encoding in S(a1·a2)
i+j .

Sami(a): For i ∈ {0, . . . , κ} and a ∈ R, this probabilistic algorithm samples an en-
coding from S

(a)
i .

Exti(h): For i ∈ {0, . . . , κ} and input h ∈ Si, this deterministic algorithm outputs a
bit string. Algorithm Exti is required to respect membership in S(a)

i in the sense
that it outputs identical strings for any two encodings h1, h2 ∈ S(a)

i

We now define a κ-MLG scheme, a restricted version of a graded encoding scheme
where encodings belong to levels 0, 1 and κ only and the Mult algorithm takes κ
encodings at level 1 and outputs an encoding at level κ.

SYMMETRIC MLG SCHEMES. A symmetric κ-linear group scheme is a κ-graded en-
coding scheme associated to (R,S), where (R,S) is defined similarly to a κ-graded
encoding system except that S := {S(a)

i ⊂ {0, 1}∗ : a ∈ R, i ∈ {0, 1, κ}} and
the “×” operation is redefined as a κ-ary map that for any a1, . . . , aκ ∈ R and any
u1 ∈ S(a1)

1 , . . . , uκ ∈ S(aκ)
1 satisfies

u1 × · · · × uκ ∈ S(a1···aκ)
κ .

The associated Mult algorithm on inputs hi ∈ S
(ai)
1 for i ∈ {1, . . . , κ} outputs an

encoding in S(a1···aκ)
κ . Algorithms Eq, Add, Sam and Ext are defined analogously and

restricted to i ∈ {0, 1, κ} only.

16

2.4 Cryptographic Assumptions in the Discrete-Log based Setting

2.4 Cryptographic Assumptions in the Discrete-Log based
Setting

We list the computational problems whose presumed hardness1 is the basis for the
constructions in this thesis. We start with classical DDH and (stronger) variations
thereof, followed by a whole class of Diffie–Hellman-like assumptions called matrix
assumptions. Finally, we formulate two assumptions in groups equipped with a
multilinear map.

DIFFIE–HELLMAN-LIKE ASSUMPTIONS. For all definitions in this paragraph, G1 de-
notes the group generator from Definition 2.3.2 that outputs tuples of the form
(G, ord, g).

Definition 2.4.1 (Decisional Diffie–Hellman Assumption (DDH)). We say that the
DDH assumption holds with respect to G1 if

Advddh
G1,A(λ) := 2 · Pr

[
DDHAG1(λ)

]
− 1 ∈ NEGL,

where game DDHAG1(λ) is shown in Figure 2.1 (top left).

Definition 2.4.2 (q-SDDH Assumption (q-SDDH) [10, 118]). For q ∈ N we say that
the q-SDDH assumption with respect to G1 if

Advq-sddh
G1,A (λ) := 2 · Pr

[
q-SDDHAG1(λ)

]
− 1 ∈ NEGL,

where game q-SDDHAG1(λ) is shown in Figure 2.1 (top right).

Definition 2.4.3 (k-Linear Assumption (k-LIN)). We say that the k-LIN assumption
with respect to G1 if

Advk-lin
G1,A(λ) := 2 · Pr

[
k-LINAG1(λ)

]
− 1 ∈ NEGL,

where game k-LINAG1(λ) is shown in Figure 2.1 (bottom).

Notice that DDH is equal to 1-LIN. Via re-randomization of the generator of
the group, one can show that hardness of q-SDDH implies that of (q − 1)-SDDH.
Similarly, k-LIN implies (k + 1)-LIN.

Instead of using G1 as a generator, in all above assumptions we can switch to the
multilinear setting by using a symmetric multilinear group generator Gk instead.
Note that the existence of a map and a target group plays no role in stating the
assumptions, since all generated elements lie in the source group. Then, DDH and
q-SDDH cannot hold if we use a symmetric group generator Gn with n ≥ 2. The
same holds for k-LIN using a symmetric group generator Gn where k < n.

MATRIX ASSUMPTIONS. For our composite-to-prime-order transformation in Chap-
ter 5 it will be convenient to use a framework for Diffie–Hellman-like assumptions
introduced in [42]. In a nutshell, the so-called matrix assumptions state that it is
hard to recognize whether an (encoded) vector lies in the image of an (encoded)
matrix or not. Different distributions of matrices then yield different assumptions.
The framework captures many assumptions that are already known in the literature.

1As common in cryptography, we use the terms “problem X is hard” and “the X assumption” inter-
changeably.

17

2 Preliminaries

DDHAG1
(λ)

PP←$ G1(λ)
b←$ {0, 1}
α, β, τ0←$ Zord
τ1 ← αβ
b′←$A(PP, [α], [β], [τb])
Return (b = b′)

q-SDDHAG1
(λ)

PP←$ G1(λ)
b←$ {0, 1}
ω, τ0←$ Zord
τ1 ← ωq+1 (mod ord)
b′←$A(PP, {[ωi]}qi=1, [τb])
Return (b = b′)

k-LINAG1
(λ)

PP←$ G1(λ)
b←$ {0, 1}
α1, . . . , αk+1, r1, . . . , rk, τ0←$ Zord
τ1 ← αk+1(r1 + · · ·+ rk)
b′←$A(PP, [α1], . . . , [αk+1], [α1r1], . . . , [αkrk], [τb])
Return (b = b′)

Figure 2.1: The DDH, q-SDDH and k-LIN security games.

Definition 2.4.4 (Matrix Distributions and Assumptions [42]). Let n, ` ∈ N, n > `.
We call Dn,` a matrix distribution if it outputs (in probabilistic polynomial time, with
overwhelming probability) matrices A ∈ Zn×`ord of full rank `. Dn,` is called polyno-
mially induced if it is defined by picking ~s ∈ Zdp uniformly at random and setting
ai,j := pi,j(~s) for some polynomials pi,j ∈ Zp[~X] whose degrees do not depend on the
security parameter. We define D` := D`+1,`. Furthermore, we say that the Dn,`-Matrix
Diffie-Hellman assumption or just Dn,` assumption for short holds relative to the
group generator G1 if for all PPT adversaries D we have

AdvDn,`,G1(D) = Pr[D(PP, [A], [A~w]) = 1]−Pr[D(PP, [A], [~u]) = 1] = NEGL(λ) ,

where the probability is taken over the output PP = (G, ord, g) ← G1(λ), A ← Dn,`,
~w ← Z`ord, ~u← Znord and the coin tosses of the adversary D.

We note that all of the standard examples of matrix assumptions are polynomially
induced and further, in all examples we consider in this thesis, the degree of pi,j is
1. In particular, we will refer to the following examples of matrix distributions, all
for n = `+ 1:

SC` : A =


−s 0 ... 0 0
1 −s ... 0 0
0 1 0 0
.
.
.

. . .
. . .

0 0 ... 1 −s
0 0 ... 0 1

 L` : A =


s1 0 0 ... 0
0 s2 0 ... 0
.
.
.

.

.

.
. . .

.

.

.
0 0 0 ... s`
1 1 1 ... 1

 U` : A =
(s1,1 ... s1,`

.

.

.
.
.
.

s`+1,1 ... s`+1,`

)
,

where s, si, si,j ← Zp. Up to sign, the SC` assumption, introduced in [42], is the
`-symmetric cascade assumption (`-SCasc). The L` assumption is actually the `-LIN
assumption in matrix language, and the U` assumption is the `-uniform assumption.
More generally, we can also define the Un,` assumption for arbitrary n > `. Note that
the Un,` assumption is the weakest matrix assumption (with the worst representation
size) and implied by any other Dn,` assumption [42]. In particular `-Lin implies the
`-uniform assumption as shown by Freeman.

As before, we can switch matrix assumptions to the multilinear setting by using
a symmetric multilinear group generator Gk instead of G1. If we use a k-linear

18

2.5 Lossy Trapdoor Functions

κ-MDDHAΓ (λ)
PP←$ Setup(1λ, 1κ)
b←$ {0, 1}
a1, . . . , aκ+1, z←$ Zord
hi←$ Sam1(ai)
h∗0←$ Samκ(z)
h∗1←Mult(h1, . . . , hκ)aκ+1

b′←$ A(PP, {hi}κ+1
i=1 , h

∗
b)

Return (b = b′)

(κ,m, n, r0, r1, l)-RANKAΓ (λ)
PP←$ Setup

(
1λ, 1κ

)
b←$ {0, 1}
Mb←$ Rkrb

(
Zm×nord

)
Hb←$ Saml(i,j)(Mb)
b′←$ A

(
PP,Hb

)
Return (b = b′)

Figure 2.2: Left: The MDDH security game. The sampler algorithms output canonical en-
codings. The κ-ary algorithm Mult is defined by applying the 2-ary algorithm
Mult of the scheme iteratively to inputs. Right: The security game for RANK.
Here, Rkr(Zm×np) denotes the uniform distribution over m×n matrices of rank
r in Zp. Entries of the matrix Hb encoding Mb belong to different (nonzero)
levels as specified by the function l.

group generator with k ≤ `, [42] shows that the `-SCasc, `-Lin, and the `-uniform
assumption hold in the generic group model [110]. On the other hand, every D`
assumption is trivially false using a k-linear group generator with k > `.

MULTILINEAR ASSUMPTIONS. All assumptions introduced so far share the property
that the elements given to the adversary lie in the source group. This will change
now that we introduce assumptions where the adversary also receives elements from
the target group of a multilinear map. Since, in Chapter 3, we aim at constructing
a GES where such multilinear assumptions hold, we will formulate the assumptions
using the syntax of Definition 2.3.4 instead of using a multilinear group generator.

THE κ-MDDH PROBLEM [17, 51]. For κ ∈ N we say that the κ-MDDH problem is
hard for a GES Γ := (R,S) with |R| = ord if

Advκ-mddh
Γ,A (λ) := 2 · Pr

[
κ-MDDHAΓ (λ)

]
− 1 ∈ NEGL,

where game κ-MDDHAΓ (λ) is shown in Figure 2.2 (left).

THE (κ,m, n, r0, r1, l)-RANK PROBLEM [42]. For κ,m, n, r0, r1 ∈ N and a level
function l : [m] × [n] −→ [κ], we say that the (κ,m, n, r0, r1, l)-RANK problem is
hard for a GES Γ := (R,S) with |R| = ord if

Adv(κ,m,n,r0,r1,l)-rank
Γ,A (λ) := 2 · Pr

[
(κ,m, n, r0, r1, l)-RANKAΓ (λ)

]
− 1 ∈ NEGL,

where game (κ,m, n, r0, r1, l)-RANKAΓ (λ) is shown in Figure 2.2 (right).

2.5 Lossy Trapdoor Functions

Definition 2.5.1 (Lossy trapdoor functions ([99])). Let n, l be polynomial functions
in the security parameter λ with l ≤ n. A collection of (n, l)-lossy trapdoor functions
(LTDF) consists of the following four PPT algorithms:

• Injective sampling. Sinj takes as input n and l and outputs the description of
an injective function f over the domain {0, 1}n along with a trapdoor tdf .

19

2 Preliminaries

• Lossy sampling. Sloss takes as input n and l and outputs the description of a
lossy function f over the domain {0, 1}n with image size at most 2n−l.

• Function evaluation. F takes as input the description of a function f generated
by Sinj or Sloss as well as an input vector x ∈ {0, 1}n and outputs f(x).

• Inversion. F−1
ltdf takes as inputs a tuple (f, tdf) generated by Sinj and an image

f(x) and outputs x.
We require that injective and lossy functions f (sampled by Sinj , resp. Sloss) are com-
putationally indistinguishable.

As mentioned in [99], the indistinguishability of lossy and injective functions al-
ready implies that the injective functions are hard to invert without knowing the
trapdoor tdf . This is due to the fact that an algorithm with non-negligible advan-
tage in inverting the injective function can be used in a straightforward way to
distinguish both types of functions with non-negligible probability.

2.6 Public-Key Encryption

The seminal cryptosystem of ElGamal was the first public-key encryption scheme
in the discrete-log based setting. It is closely related to the Diffie–Hellman key ex-
change as follows: to encrypt a message, one creates a (temporary) Diffie–Hellman
key pair, computes the shared key with the Diffie–Hellman public key of the re-
ceiver and then uses this shared key to blind the message. The ciphertext contains
the blinded message together with the temporary public key. The receiver computes
the shared Diffie–Hellman key and unblinds the message. A more formal definition
of the cryptosystem follows.

Definition 2.6.1 (ElGamal cryptosystem ([49]). The ElGamal cryptosystem is de-
fined by the algorithms Setup, KeyGen, Enc and Dec as follows.

• Setup(λ) runs a group generator G1(λ) to obtain (G, ord, g). Setup outputs the
schemes’ public parameters PP = (ord, G, g).

• KeyGen(PP) chooses z ∈ Zord randomly and outputs (pk, sk) := ([z], z).
• Enc(PP, pk,m; r), with r,m ∈ Zord, outputs c := (c1, c2) with (c1, c2) :=

([r], pkr[m]).
• Dec(PP, sk, c) parses c =: (c1, c2) and outputs m = logg

(
c2
csk

1

)
.

For convenience, we will often omit PP from the arguments of the algorithms Enc and
Dec, and write Encpk(m; r) (or simply Enc(m; r), when the reference to pk is clear) for
Enc(PP, pk,m; r).

A straightforward reduction shows that the above variant of the ElGamal cryp-
tosystem is semantically secure if DDH holds in G. Note that this implies that
DLOG is hard in G as well and thus decryption only works for “small” messages
m. For convenience, we also allow using Enc and Dec with vectors or matrices by
computing encryption and decryption component wise, i.e.,

Enc ~pk(~m;~r) := (Encpk1(m1; r1),Encpk2(m2; r2), . . .).

20

2.6 Public-Key Encryption

IND-CPAAΠ(λ):
(sk, pk)←$ Gen(1λ)
(m1,m1, st)←$ A1(pk)
b←$ {0, 1}
c←$ Enc(m, pk)
b′←$ A2(c, st)
Return (b = b′)

Figure 2.3: IND-CPA security of a (homomorphic) PKE scheme.

2.6.1 Homomorphic Public-Key Encryption

SYNTAX. A homomorphic public-key encryption (PKE) scheme for a determinis-
tic circuit family C = {Cλ}λ∈N of arity at most a(λ) is a tuple of PPT algorithms
Π := (Gen,Enc,Dec,Eval) such that (Gen,Enc,Dec) is a conventional public-key en-
cryption scheme with message space {0, 1}λ and Eval is a deterministic algorithm
that on input a public key pk a circuit C ∈ Cλ and ciphertexts c1, . . . , cn with
n ≤ a(λ) outputs a ciphertext c. Without loss of generality, we assume that secret
keys of a homomorphic PKE scheme are the random coins used in key generation.
This will allow us to check key pairs for validity.

CORRECTNESS AND COMPACTNESS. We require that scheme Π := (Gen,Enc,Dec) is
perfectly correct as a PKE scheme; that is, for any λ ∈ N, any m ∈ {0, 1}λ, any
(sk, pk)←$ Gen(1λ), and any c←$ Enc(m, pk) we have that Dec(c, sk) = m. We
also require the FHE scheme to be fully compact in the following sense. For any
λ ∈ N, any m1, . . . ,mn ∈ {0, 1}λ with n ≤ a(λ), any C ∈ Cλ, any (sk, pk)←$ Gen(1λ)
and any ci←$ Enc(mi, pk) we have that Eval(pk,C, c1, . . . , cn) is in the range of
Enc(C(m1, . . . ,mn), pk).

A fully homomorphic encryption (FHE) scheme is a homomorphic PKE that cor-
rectly and compactly supports any circuit family containing polynomial-sized cir-
cuits of polynomial arity (for any a priori fixed polynomial bounds on the size and
arity). In our constructions, full correctness and compactness are used to ensure
that the outputs of the addition and multiplications circuits can be iteratively oper-
ated on. This in particular means that our GES is “noise-free” in the sense that its
correctness is not affected by the number of operations operated on encodings.

We note that although most homomorphic PKE proposals in the literature are
not perfectly correct, this property is usually assumed in the literature (cf. [58]).
Indeed, it is plausible that perfectly correct homomorphic PKE can be achieved from
standard homomorphic PKE constructions by adapting the probability distribution
of the noise to a bounded distribution and applying worst-case bounds in all steps.

SECURITY. The IND-CPA security of a homomorphic PKE scheme is defined identi-
cally to a standard PKE scheme without reference to the Dec and Eval algorithms.
Formally, we require that for any legitimate PPT adversary A := (A1,A2),

Advind-cpa
Π,A (λ) := 2 · Pr

[
IND-CPAAΠ(λ)

]
− 1 ∈ NEGL,

where game IND-CPAAΠ(λ) is shown in Figure 2.3. Adversary A is legitimate if it
outputs two messages of equal lengths.

21

2 Preliminaries

2.7 Dual-Mode NIZK Proof Systems

In our constructions we will rely on special types of “dual-mode” non-interactive
zero-knowledge (NIZK) proof systems. These systems have two common refer-
ence string (CRS) generation algorithms that produce indistinguishable CRSs in the
“binding” and “hiding” modes. They are also perfectly complete in both modes,
perfectly sound and extractable in the binding mode, and perfectly witness indistin-
guishable (WI) and perfectly zero knowledge (ZK) in the hiding mode. The standard
prototype for such schemes are the pairing-based Groth–Sahai proofs [63], and us-
ing a generic NP reduction to the satisfiability of quadratic equations we can obtain
a suitable proof system for any NP language.2 We formalize the syntax and security
of such proof systems next.

SYNTAX. A (group) setup algorithm G is a PPT Turing machine that on input 1λ out-
puts gpk. A ternary relation R(gpk, x, w) is a deterministic algorithm that outputs
1 for true or 0 for false. A dual-mode extractable non-interactive zero-knowledge
(NIZK) proof system Σ for setup G and relation R consists of six algorithms as fol-
lows. (1) BCRS(gpk) on input gpk in the support of G outputs a (binding) common
reference string crs and an extraction trapdoor tdext; (2) HCRS(gpk) on input gpk in
the support of G outputs a (hiding) common reference string crs and a simulation
trapdoor tdzk; (3) Prove(gpk, crs, x, w) on input gpk a first coordinate in the support
of G, a common reference string crs, an instance x, and a witness w, outputs a proof
π; (4) Ver(gpk, crs, x, π) on input gpk, crs, an instance x, and a proof π, outputs 1
for accept or 0 for reject; (5) WExt(tdext, x, π) on input an extraction trapdoor tdext,
an instance x, and a proof π, outputs a witness w; and (6) Sim(tdzk, x) on input the
simulation trapdoor tdzk and an instance x, outputs a simulated proof π.

We require the extractable dual-mode NIZK Σ for (G,R) to meet the following
requirements.

CRS INDISTINGUISHABILITY. For gpk←$ G(1λ), the two common reference strings
generated through BCRS(gpk) and HCRS(gpk) are computationally indistinguish-
able. Formally, we require the advantage of any PPT adversary A defined below to
be negligible.

Advcrs
Σ,A(λ) :=2 · Pr

[
b←${0, 1}; gpk←$ G(1λ); (crs0, tdext)←$ BCRS(gpk);
(crs1, tdzk)←$ HCRS(gpk); b′←$ A(gpk, crsb) : b = b′

]
− 1

PERFECT COMPLETENESS UNDER BCRS AND HCRS. For any λ ∈ N, any gpk←$ G(1λ),
any (crs, tdext)←$ BCRS(gpk), any (x,w) such that R(gpk, x, w) = 1, and any
π←$ Prove(gpk, crs, x, w), verification always succeeds, i.e., Ver(gpk, crs, x, π) = 1.
We require this property to also hold for any choice of hiding CRS.

PERFECT SOUNDNESS UNDER BCRS. For any λ ∈ N, any gpk←$ G(1λ), any common
reference string (crs, tdext)←$ BCRS(gpk), any x for which R(gpk, x, w) = 0 for all
w ∈ {0, 1}∗, and any π ∈ {0, 1}∗ we have that Ver(gpk, crs, x, π) = 0.

2We note that extraction in Groth–Sahai proofs does not recover a witness for all types of statements.
(Instead, for some types of statements, only gwi for a witness variable wi ∈ Zp can be recovered.)
Here, however, we will only be interested in witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit
strings, in which case extraction always recovers w. (Specifically, extraction will recover gwi for all
i, and thus all wi too.)

22

2.7 Dual-Mode NIZK Proof Systems

PERFECT EXTRACTION UNDER BCRS. For any λ ∈ N, any (gpk)←$ G(1λ), any com-
mon reference string (crs, tdext)←$ BCRS(gpk), any (x, π) with Ver(gpk, crs, x, π) =
1, and any w←$ WExt(tdext, x, π) we have that R(gpk, x, w) = 1.

PERFECT WITNESS INDISTINGUISHABILITY UNDER HCRS. For any λ ∈ N, any (gpk)←$

G(1λ), any (crs, tdzk)←$ HCRS(gpk), and any (x,wb) such that R(gpk, x, wb) = 1
for b ∈ {0, 1}, the two distributions πb←$ Prove(gpk, crs, x, wb) are identical.

PERFECT ZERO KNOWLEDGE UNDER HCRS. For any λ ∈ N, any (gpk)←$ G(1λ), any
(crs, tdzk)←$ HCRS(gpk), any (x,w) such that R(gpk, x, w) = 1, we have that the
two distributions π0←$ Prove(gpk, crs, x, w) and π1←$ Sim(tdzk, x) are identical.

23

Chapter 3
Graded Encoding Schemes from Obfuscation

In this chapter, we contribute to the question whether there exist a multilinear map
or graded encoding scheme, respectively. Namely, we give a construction of a graded
encoding scheme. Since we adopt techniques from [3], we also give details of their
construction and highlight the differences to our GES in the further course.

3.1 Overview

OUR CONSTRUCTION. Technically, we extend the non-graded multilinear map con-
struction from AFHLP [3] to a GES. Our construction requires several ingredients
(see below), but all of them can be instantiated with a pairing-friendly group in
which (a suitable variant of) the strong decisional Diffie–Hellman (SDDH) assump-
tion [9] holds, and a sub-exponentially secure indistinguishability obfuscator. We
prove that the multilinear decisional Diffie–Hellman (MDDH) assumption [51] holds
relative to our GES, provided that the used ingredients are secure in the above sense.
Similarly, we show that a variety of “matrix rank problems” [42] holds in our set-
ting, a problem that is known to succumb already to very weak forms of zeroizing
attacks [51, Section 4.4].

Our definition of a GES essentially implements the “dream version” of GESs [51],
but differs in two aspects:

• GGH do not permit sampling for specific values a ∈ R. (Instead, GGH provide
an algorithm to sample a random a along with its encoding.)

• GGH’s zero-testing algorithm is substituted with an equality test (through Eqi)
above. Our equality test must only work for consistent encodings from some
S

(a)
i and S(b)

i . In contrast, the dream version of GGH requires that the set S(0)
i

is efficiently recognizable.

RELATIONS TO INDISTINGUISHABILITY OBFUSCATION. Our construction is generic and
modular. In particular, we reduce the quest to develop a secure GES to the quest
for a secure indistinguishability obfuscator. This seems natural (and is standard
in most areas of cryptography), but given the history of previous GES candidates
(which were based on complex algebraic or combinatorial assumptions), this is not
an “understood feature” at all for GESs. In fact, taken together with [52], our re-
sult shows a (somewhat loose) equivalence of indistinguishability obfuscation (iO)
and GESs, in the presence of a pairing-friendly group. This equivalence is loose for
two reasons. First, the assumptions on both ends of the equivalence do not match:
[52] construct iO from a GES which support very strong computational assump-
tions (much stronger than MDDH). On the other hand, we use iO to construct a
GES in which we can (at this point) only prove comparatively mild (though still

25

3 Graded Encoding Schemes from Obfuscation

useful) computational assumptions (such as MDDH). Still, there seems no inherent
barrier to proving stronger computational assumptions for our construction, and we
leave open to tighten this equivalence. Second, going through our equivalence is
not without (sub-exponential) security loss. Namely, we require probabilistic indis-
tinguishability obfuscation, which can be constructed from iO [28], but currently
only through a sub-exponential reduction.

3.1.1 The (Non-Graded) Approximate Multilinear Map of AFHLP

ENCODINGS. Since our own construction is an extension of the (non-graded) ap-
proximate multilinear map of [3], we first recall their work. Simplifying slightly,
AFHLP encode a group element gz (from a cyclic group G of order p) as

h = (gz, c = Enc((α, β), pk), π) ,

where
• c is a homomorphic encryption (under some public key pk) of exponents
α, β ∈ Zp,

• π is a non-interactive zero-knowledge proof that these exponents represent z
in the sense that gz = gαuβ for a publicly known group element u. (Hence, if
we write u = gω, we have z = α+ β · ω.)

Hence, AFHLP simply enhance the group element gz ∈ G by an encrypted repre-
sentation of its discrete logarithm z (and a suitable consistency proof). This added
information will be instrumental in computing a multilinear map on many encod-
ings. Note that since c and π will not be uniquely determined, there are many
possible encodings of a G-element gz.

ADDITION. Encodings in the AFHLP construction can be added with an (obfuscated)
public circuit Add. This circuit takes as input two encodings h1 = (gz1 , c1, π1) and
h2 = (gz2 , c2, π2), and computes the new encoding h1 + h2 = (gz, c, π) as follows:

1. gz = gz1+z2 is computed using the group operation in G;
2. c is computed homomorphically from c1 and c2 (adding the encrypted expo-

nent vectors (αi, βi));
3. the consistency proof π is computed using the decryption key sk as a witness to

show that the resulting c indeed contains a valid representation of z = z1 +z2.
Here, only the computation of π requires secret information (namely, the decryption
key sk). This secret information allows to derive a valid representation (α, β) of gz.
The most delicate part of the security proof from [3] is to argue that the obfuscated
circuit knowing sk does not help in solving (a multilinear variant of) the decisional
Diffie–Hellman problem.

THE MULTILINEAR MAP. The AFHLP encodings can also be multiplied with an (ob-
fuscated) public circuit Mult; this takes as input κ encodings h1, . . . , hκ with hi =
(gzi , ci, πi), and outputs a single group element g

∏κ

i=1 zi . (Hence, elements from the
target group GT are trivially and uniquely encoded as G-elements.) To compute
g
∏
zi from the hi, Mult first checks the validity of all proofs πi, and then uses the

decryption key sk to retrieve representations (αi, βi). If all πi are verifying proofs,

26

3.1 Overview

we may assume that zi = αi + βi · ω (for u = gω), so we can write

g
∏κ

i=1 zi =
κ∏
i=0

(gωi)γi for (γ0, . . . , γκ) = (α1, β1) ∗ · · · ∗ (ακ, βκ) , (3.1)

where “∗” denotes the convolution product of vectors.1 The values gω
i

(for i ≤ κ)
are hardwired into Mult, so Mult can compute g

∏
zi through Equation (3.1). Note

that this way, Mult can compute a κ-linear map on encodings, but not a (κ+1)-linear
map. This observation is the key to showing that the MDDH assumption holds
in this setting. (Indeed, the MDDH assumption states that given κ + 1 encodings
h1, . . . , hκ+1 as above, it is hard to distinguish g

∏κ+1
i=1 zi from random.)

3.1.2 Our New Graded Encoding Scheme

In the following, we will describe the main ideas for our GES.

ENCODINGS IN OUR SCHEME. In our GES, we generalize the linear representation of
exponents in AFHLP to polynomials of higher degree. Additionally, we divide encod-
ings into levels by restricting the maximum degree of the representing polynomial
in each level. More formally, level-` encodings take the form

h = (gz, c = Enc(P, pk), π, `) ,

where
• gz ∈ G for a cyclic group G (that does not depend on `) of prime order p,
• P ∈ Zp[X] is a polynomial of degree up to `, represented by its coefficient

vector from Z`+1
p ,

• c is the encryption (under a fully homomorphic encryption scheme) of P ,
• π is a non-interactive zero-knowledge proof of the equality gz = gP (ω), where
ω is defined through public values u0, . . . , uκ ∈ G with ui = gω

i
. (Hence,

gz = gP (ω) is equivalent to gz =
∏
i u

γi
i for P (X) =

∑
i γiX

i.)
The encodings of AFHLP can be viewed as level-1 encodings in our scheme (with
linear polynomials P).

ADDING ENCODINGS. Encodings can be added using a public (obfuscated) circuit
Add that proceeds similarly to the AFHLP scheme. In particular, Add adds the gz and
c parts of the input encodings homomorphically, and derives a consistency proof π
with the decryption key sk as witness.

MULTIPLYING ENCODINGS. The pairings ei,j : Gi × Gj −→ Gi+j are implemented
over our encodings by (obfuscated) circuits Multi,j . Circuit Multi,j takes as input two
encodings h1 = (gz1 , c1, π1, i) and h2 = (gz2 , c2, π2, j) at levels i and j, respectively.
The output of Multi,j is a level-(i + j) encoding h = (gz, c, π, i + j), computed as
follows:2

1Recall that the multiplication of polynomials can be implemented through the convolution product
on the respective coefficient vectors. In particular, we have

∏κ

i=0 γiX
i =
∏κ

i=1(αi + βiX).
2Since Multi,j can be used to multiply two encodings at level i as long as 2i ≤ κ, our GES can be

viewed as symmetric. We note that we do not deal with the construction of generalized GES.

27

3 Graded Encoding Schemes from Obfuscation

• gz is computed as gz = g(P1·P2)(ω), where the polynomials P1 and P2 are ex-
tracted from c1 and c2 with sk, then multiplied to form P := P1 · P2 ∈ Zp[X],
and finally used to compute

g(P1·P2)(ω) = gP (ω) =
i+j∏
`=0

uγ`` for P (X) =
i+j∑
`=0

γ`X
` .

(Note that since u0, . . . , uκ are public, this value can be computed as long as
i+ j ≤ κ.)

• c is computed homomorphically from c1 and c2, as an encryption of the poly-
nomial P1 · P2.

• The consistency proof π (showing that indeed gz = gP (ω) for the polynomial
P encrypted in c) is computed with the decryption key sk as witness.

The key insight needed to show that the MDDH assumption holds for our GES is
the same as in AFHLP’s non-graded, approximate multilinear map. Namely, observe
that any Multi,j can only multiply encodings if i + j ≤ κ. To compute the first
component gz of any “higher-level” encoding, one would seem to require gω

`
values

for ` > i+ j. Under the SDDH assumption in G, such gω
`

look random, even when
given u0, . . . , uκ. Of course, to turn this observation into a full proof, more work is
required.

NEGLECTED DETAILS. For a useful GES, it should be possible to generate encodings
with “known discrete logarithm”; that is, we would like to be able to generate encod-
ings for an externally given (or at least known) z ∈ Zp. For this reason, the standard
way to generate encodings (at any level) is to set up P as a constant polynomial of
the form P (X) = z ∈ Zp. (That is, we “reserve space” in c for polynomials P of
degree ` in level-` encodings, but, by default, use only constant polynomials.) For
this type of encoding with “low-degree P ,” however, our security argument above
does not apply. Rather, it requires that the degree of P increases at higher levels.

Hence, the central technical piece in our MDDH security proof will be a “switching
theorem” that allows to replace a low-degree P in an encoding with an equivalent
high-degree P ′ (that satisfies P ′(ω) = P (ω)). The proof of this switching theorem
is delicate, since it must work in a setting with (obfuscated) algorithms that use
the decryption key sk. (Note that free access to sk would allow the retrieval of the
used polynomial P from an encoding, and hence would prevent such a switching of
polynomials.)

To this end, we will use double encryptions c (instead of the single encryption
c = Enc(P, pk) described above), along with a Naor–Yung-style consistency proof
in π. However, this consistency proof does not show equality of encryptions, but
equivalence of encrypted representations P, P ′ in the sense of P (ω) = P ′(ω). This
allows to switch representations without invalidating the consistency of the double
encryption. As a result, the full consistency language used for π is considerably more
complicated than the one sketched before. Additionally, the proof of our switching
theorem requires a special and explicit “simulation trapdoor” and Groth–Sahai-style
dual-mode proof systems.

We note that similar complications arose already in AFHLP’s proof, and required
similar measures. The main technical difference in our setting is that our multi-
plication circuits Multi,j output encodings (and not just group elements as in the

28

3.2 Preliminaries

multilinear map of AFHLP). Hence, our Multi,j circuits also need to construct con-
sistency proofs π, which requires additional secrets (as witnesses) in the description
of Multi,j and which entails additional steps in our switching theorem. (We give
more details on the technical differences with AFHLP in the main body. However,
we note that, in addition to providing a graded encoding scheme, we also provide
simplified proofs and a single construction in which both the MDDH and a “matrix
rank” assumption, which we call RANK, hold simultaneously.)

ASSUMPTIONS. In summary, our construction uses a cyclic group in which the SDDH
assumption holds, a probabilistic indistinguishability obfuscation scheme [28], a
fully homomorphic encryption (FHE), a dual-mode non-interactive zero-knowledge
proof systems, and a language with hard membership. However, we note that all of
these assumptions are implied by pairing-friendly SDDH groups (equipped with an
asymmetric pairing) and sub-exponentially secure indistinguishability obfuscation
(see [64, 28]). We stress that plausible candidates for both ingredients exist (e.g.,
by combining [51] and [52] to an indistinguishability obfuscator candidate).

3.2 Preliminaries

CIRCUITS. A polynomial-sized deterministic circuit family C := {Cλ}λ∈N is a se-
quence of sets Cλ of poly(λ)-sized deterministic circuits (for a fixed polynomial
poly(λ)). We assume that for all λ ∈ N all circuits C ∈ Cλ share a common in-
put domain ({0, 1}λ)a(λ), where a(λ) is the arity of the circuit family, and an output
co-domain {0, 1}λ. A randomized circuit family is defined similarly except that the
circuits also take random coins r ∈ {0, 1}rl(λ), for a polynomial rl(λ) specifying the
length of necessary random coins. To make the coins used by a circuit explicit (e.g.,
to view a randomized circuit as a deterministic one) we write C(x; r).

3.2.1 Languages with Hard Membership

In our proofs of security we also rely on languages for which the membership
problem is hard and whose yes-instances have unique witnesses. Formally, such
a language family is defined as a triple of PPT algorithms Λ := (GenL,YesSamL,
NoSamL,RL) as follows. (1) GenL(1λ) is randomized and on input the security pa-
rameter outputs a language key lk; (2) YesSamL(lk) is randomized and on input the
language key lk outputs a yes-instance y; (3) NoSamL(lk) is randomized and on in-
put the language key lk outputs a no-instance y; and (4) RL(lk, y, w) is deterministic
and on input lk, an instance y and a witness w outputs 1 for true or 0 for false.

We require RL to satisfy the following correctness requirements. For all λ ∈
N, all lk←$ GenL(1λ) and all y←$ YesSamL(lk) there is a w ∈ {0, 1}∗ such that
RL(lk, y, w) = 1. For a given lk, we denote the set of yes-instance by Llk . For all
λ ∈ N, all lk←$ GenL(1λ) and all y←$ NoSamL(lk) there is no w ∈ {0, 1}∗ such
that RL(lk, y, w) = 1. We also require RL to have unique witnesses: for all λ ∈ N,
all lk←$ GenL(1λ), all y←$ YesSamL(lk) and all w,w′ ∈ {0, 1}∗ if RL(lk, y, w) =
RL(lk, y, w′) = 1 then w = w′.

Finally, the language is required to have a hard membership problem in the sense

29

3 Graded Encoding Schemes from Obfuscation

that for any PPT adversary A

Advmem
Λ,A (λ) := 2 · Pr

[
b←$ {0, 1}; lk←$ GenL(1λ); y0←$ NoSamL(lk);
y1←$ YesSamL(lk); b′←$ A(lk, yb) : b = b′

]
− 1 ∈ NEGL .

Such languages can be instantiated using the DDH problem as follows. Algorithm
GenL(1λ) outputs the description of a prime-order group (G, g, p, 1) as lk. Algorithm
YesSamL(lk) samples a Diffie–Hellman tuple (ga, gb, gab), and NoSamL(lk) outputs
a non-Diffie–Hellman tuple (ga, gb, gc) for a random c 6= ab (mod p) when b = 0.
Relation RL on instance (g1, g2, g3) and witness w = a checks if g1 = ga and g3 =
ga2 . The hardness of membership for this language family follows from the DDH
assumption.

3.2.2 Obfuscators

SYNTAX AND CORRECTNESS. A PPT algorithm Obf is called an obfuscator for a (de-
terministic or randomized) circuit class C = {Cλ}λ∈N if Obf on input the security
parameter 1λ and the description of a (deterministic or randomized) circuit C ∈ Cλ
of arity a(λ) outputs a deterministic circuit C. For deterministic circuits, we require
Obf to be perfectly correct in the sense the circuits C and C are functionally equiv-
alent; that is, that for all λ ∈ N, all C ∈ Cλ, all C←$ Obf(1λ,C), and all mi ∈ {0, 1}λ
for i ∈ [a(λ)] we have that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ)). For randomized
circuits, the authors of [28] define correctness via computational indistinguishabil-
ity of the outputs of C and C. For our constructions we do not rely on this property
and instead require that C and C are functionally equivalent up to a change in ran-
domness; that is, for all λ ∈ N, all C ∈ Cλ, all C←$ Obf(1λ,C) and all mi ∈ {0, 1}λ
for i ∈ [a(λ)] there is an r such that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ); r).We note
that the construction from [28] is correct in this sense as it relies on a correct in-
distinguishability obfuscator and a PRF to internally generate the required random
coins.

SECURITY. The security of an obfuscator Obf requires that for any legitimate PPT

adversary A := (A1,A2)

AdvObf,A(λ) := 2 · Pr
[
INDAObf(λ)

]
− 1 ∈ NEGL,

where game IND is shown in Figure 3.1 (left). Depending on the adopted notion
of legitimacy, different security notions for the obfuscator emerge; we consider the
following one.

X-IND SAMPLERS [28]. Roughly speaking, the first phase of A := (A1,A2) is an
X-IND sampler if there is a set X of size at most X such that the circuits output by
A are functionally equivalent outside X , and furthermore within X the outputs of
the circuits are computationally indistinguishable. Formally, let X(·) be a function
such that X(λ) ≤ 2λ for all λ ∈ N. We call A := (A1,A2) an X-IND sampler if there
are sets Xλ of size at most X(λ) such that the following two conditions holds:

(1) For all (even unbounded) D the advantage function below is negligible.

Adveq
A,D(λ) := Pr

[
(C0,C1, st)←$ A1(1λ); (x, r)←$ D(C0,C1, st) :
C0(x; r) 6= C1(x; r) ∧ x /∈ Xλ

]

30

3.3 Approximate Multilinear Maps

INDAObf(λ):
(C0,C1, st)←$ A1(1λ)
b←$ {0, 1}
C←$ Obf(1λ,Cb)
b′←$ A2(C, st)
Return (b = b′)

Sel-INDDA(λ):
(x, z)←$ D1(1λ)
(C0,C1, st)←$ A1(1λ)
b←$ {0, 1}; r←$ {0, 1}rl(λ)

y ← Cb(x; r)
b′←$ D2(y,C0,C1, st, z)
Return (b = b′)

Figure 3.1: Left: Indistinguishability security of an obfuscator. We requireA1 to output two
circuits of equal sizes. Right: Static-input (a.k.a. selective) X-IND property of
A := (A1,A2).

(2) For all non-uniform PPT distinguishers D := (D1,D2)

X(λ) ·Advsel-ind
A,D (λ) := X(λ) ·

(
2 Pr

[
Sel-INDDA(λ)

]
− 1

)
∈ NEGL,

where game Sel-INDDA(λ) is shown in Figure 3.1 (right). This game is named
“static-input-IND” in [28] and has a selective (or static) flavor sinceD1 chooses
a differing-input x before it gets to see the challenge circuits. We call an ob-
fuscator meeting this level of security a probabilistic indistinguishability obfus-
cator [28] and use PIO instead of Obf to emphasize this.

REMARK. We note that samplers that output two (possibly randomized) circuits
(C0,C1) for which the output distributions of C0(x) and C1(x) are identical on any
input x, are Sel-IND-secure for any function X(λ). The circuits samplers that we
will use in our security proofs enjoy this property.

3.3 Approximate Multilinear Maps

In this section we recall the approximate multilinear maps due to AFHLP [3]. The
authors construct both symmetric and asymmetric multilinear maps. Their symmet-
ric construction can be seen as a starting point for our GES, and we give an overview
of it here.

3.3.1 Syntax

We start with the syntax of multilinear group (MLG) schemes [3]. Informally, a
κ-MLG scheme is a restricted form of a graded encoding scheme where encodings
belong to levels 0, 1 and κ only and the Mult algorithm takes κ encodings at level
1 and outputs an encoding at level κ. We formalize MLG schemes using the notion
introduced for GESs below.

SYMMETRIC MLG SCHEMES. A symmetric κ-linear group scheme is a κ-graded en-
coding scheme associated to (R,S), where (R,S) is defined similarly to a κ-graded
encoding system except that S := {S(a)

i ⊂ {0, 1}∗ : a ∈ R, i ∈ {0, 1, κ}} and
the “×” operation is redefined as a κ-ary map that for any a1, . . . , aκ ∈ R and any
u1 ∈ S(a1)

1 , . . . , uκ ∈ S(aκ)
1 satisfies

u1 × · · · × uκ ∈ S(a1···aκ)
κ .

31

3 Graded Encoding Schemes from Obfuscation

The associated Mult algorithm on inputs hi ∈ S(ai)
1 for i ∈ [κ] outputs an encoding in

S
(a1···aκ)
κ . Algorithms Eq, Add, Sam and Ext are defined analogously and restricted

to i ∈ {0, 1, κ} only.

3.3.2 Overview of AFHLP

In a nutshell, [3] works with redundant encodings of elements h of the base group
G of the form h = gx0(gω)x1 where gω comes from an SDDH instance. Vector
~x = (x0, x1) represents element h. The set S1 consists of all strings of the form
(h, c1, c2, π) where h ∈ G, ciphertext c1 is a homomorphic encryption under public
key pk1 of a vector ~x representing h, ciphertext c2 is a homomorphic encryption
under a second public key pk2 of another vector ~y also representing h, and π is a
NIZK proof showing consistency of the two vectors ~x and ~y. Here consistency means
that the plaintexts vectors ~x and ~y underlying c1 and c2 encode the same group
element h. Note that each element of the base group G is multiply represented in
S1, but that equality of elements in S1 is easy to test (via checking the equality of
first components).

Addition of two elements in S1 is carried out by an obfuscation of a circuit
CAdd[sk1, sk2], which has the two secret keys hardwired in, as follows. The circuit
checks the respective proofs, adds the group elements in G and uses the additive
homomorphic property of the encryption scheme to combine ciphertexts. It then
uses (sk1, sk2) as a witness to generate a new NIZK proof showing the equality of
encodings. Note that the new encoding is as compact as those for the two input
encodings.

The multilinear map on inputs (hi, ci,1, ci,2, πi) for 1 ≤ i ≤ κ is computed using an
obfuscation of a circuit CMap[sk1, ω], which has sk1 and ω hardwired in, as follows.
The circuit recovers the exponents of hi in the form (xi,1 + ω · xi,2) from ci,1 via the
decryption algorithm Dec(·, sk1). It then uses these to compute the group element
g
∏
i
(xi,1+ω·xi,2), which is defined to be the output of Mult. (The target set Sκ is

therefore G, the base group.) The κ-linearity of Mult follows immediately from the
form of the exponent.

In the original paper, this construction is generalized to the asymmetric setting via
representations of the form g〈~x,~ω〉 with ~x, ~ω ∈ Z`N for ` ∈ {2, 3} (where 〈~x, ~ω〉 denotes
inner products modulo the base-group order). Two special cases of ~ω, namely ~ω :=
(1, ω) and ~ω := (1, ω, ω2), are used to construct two MLG schemes where the MDDH
and RANK problems are hard, respectively.

In more detail, AFHLP [3] construct a symmetric κ-linear group scheme Γ relying
on the following building blocks:

1. An algorithm SetupG that samples (a description of) a group G, along with a
generator g of G and the group order p.

2. A probabilistic indistinguishability obfuscator Obf.
3. An additively homomorphic public-key encryption scheme Π with plaintext

space Zp (or alternatively, a perfectly correct FHE scheme).
4. An extractable dual-mode NIZK proof system Σ.
5. A language family Λ with hard membership problem and unique witnesses.
We recall their construction in the sections that follow.

SETUP. The algorithm Setup for the GES Γ gets as input 1λ and 1κ. It samples

32

3.3 Approximate Multilinear Maps

parameters PPG←$ SetupG(1λ) with PPG := (G, g, p, 1), generates two encryption
key pairs (pkj , skj)←$ Gen(1λ) (for j = 1, 2), and a vector ~ω ∈ Z`p where ` ∈ {2, 3}.
G is called the base group. It then samples lk←$ GenL(1λ), and sets

gpk := (PPG, pk1, pk2, [~ω], lk).

Let G(1λ) denote the randomized algorithm corresponding to the above steps that
outputs gpk.

The setup algorithm continues by generating a CRS crs′←$ BCRS(gpk) using the
dual-mode NIZK procedure BCRS, and also a no-instance of Llk via y←$ NoSamL(lk).
Setup then sets crs := (crs′, y).

Finally, Setup constructs two obfuscated circuits CMap and CAdd of circuits CMap
and CAdd which will be described in the addition and multilinear map routines
below, respectively. Setup then outputs the scheme parameters

PP := (gpk, crs,CAdd,CMap).

LEVEL-0 ENCODINGS. The set of all level-0 encodings, S0, is defined to be Zp. Since
efficient algorithms for equality checking, sampling, extraction and addition are well
known, we omit including these in the following sections. Note that the algorithm
for adding encodings, which is described below, can be used to implement a multi-
plication of level-0 encodings with encodings at higher levels, which is required by
many applications.

LEVEL-κ ENCODINGS. Set Sκ := G and use algorithms associated with G for equality
checking, sampling, extraction and addition.

LEVEL-1 ENCODINGS. Encodings in S1 are tuples of the form h = ([z], c1, c2, π) where
c1, c2 are two ciphertext in the range of Enc(·, pk1) and Enc(·, pk2), respectively,
and π is a NIZK proof under crs for a proof system corresponding to (G,R :=
R1 ∨ R2) as follows. Algorithm G(1λ) outputs gpk as defined above. Relation R1
on input gpk, tuple ([z], c1, c2), and witness (~x, ~y, ~r1, ~r2, sk1, sk2) accepts iff [z] ∈ G,
the representations of [z] as ~x, ~y ∈ Z`p are valid with respect to [~ω] in the sense that

[z] = [〈~x, ~ω〉] ∧ [z] = [〈~y, ~ω〉],

(where 〈·, ·〉 denotes inner product) and the following ciphertext validity condition
(with respect to the inputs to the relation) is met:

c1 = Enc(~x, pk1;~r1) ∧ c2 = Enc(~x, pk2;~r2)
∨

(pk1,sk1)=Gen(sk1) ∧ (pk2,sk2)=Gen(sk2) ∧ ~x=Dec(c1,sk1) ∧ ~y=Dec(c2,sk2).

Relation R2 depends on Λ and on input gpk, an encoding ([z], c1, c2), and witness
wy accepts iff R(lk, y, wy) accepts. We note that AFHLP does not come with a validity
check for encodings for the same reason our construction fails to provide such an
algorithm. (See Section 3.4.2 for more details.)

EQUALITY. The equality algorithm Eq1 returns true iff their first components match
in G. The correctness follows from the fact that G has unique encodings.

33

3 Graded Encoding Schemes from Obfuscation

Circuit CAdd[gpk, crs, sk1, sk2, tdext;
R←](h, h′):

1. if ¬Val1(h) ∨ ¬Val1(h′) return ⊥
2. parse ([z], c1, c2, π)← h and ([z′], c′1, c′2, π′)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. // explicitly check relation R1 for h, h′ with witness sk1, sk2

4.1 ~x← Dec(c1, sk1); ~y ← Dec(c2, sk2)
~x′ ← Dec(c′1, sk1); ~y′ ← Dec(c′2, sk2)

4.2a if ([z] 6= [〈~x, ~ω〉]) ∨ ([z] 6= [〈~y, ~ω〉]) goto 5a
4.2b else if ([z′] 6= [〈~x′, ~ω〉]) ∨ ([z′] 6= [〈~y′, ~ω〉])

goto 5b
4.2c else goto 5c // R1 accepts h, h′ with witness sk1, sk2

5a. // R1 does not accept h
5a.1 w′y ←WExt(tdext, ([z], c1, c2), π; R←)
5a.2 if ¬R2(gpk, (([z], c1, c2)), w′y) return ⊥
5a.3 π′′ ← Prove(gpk, crs, ([z′′], c′′1 , c′′2), w′y; R←)

5b. repeat 5a with h′ // R1 does not accept h′

5c. π′′ ← Prove(gpk, crs, ([z′′], c′′1 , c′′2), (sk1, sk2); R←)
6. return ([z′′], c′′1 , c′′2 , π′′)

Circuit CMap[gpk, crs, ~ω, sk1](h1, . . . , hκ):
1. for i = 1 . . . κ

1.1 if ¬Val1(hi) return ⊥
1.2 ([zi], ci,1, ci,2, πi)← hi
1.3 ~xi ← Dec(ci,1, sk1)

2. z ←
∏κ
i=1〈~xi, ~ω〉 (mod p)

3. return [z]

Figure 3.2: Top: Circuit for addition of encodings. Bottom: Circuit implementing the mul-
tilinear map.

ADDITION. This section gives a description of Add1 for adding level-1 encodings. The
public parameters of the scheme contain an obfuscation of the circuit CAdd shown
in Figure 3.2 (top). Note that steps 5a or 5b are never reached with a binding crs′
(but they may be reached with a hiding crs′ later in the analysis). Add1 runs the
obfuscated circuit on the input encodings. The correctness of this algorithm follows
from the correctness of Π, the completeness of Σ and the correctness, in our sense
of (the possibly probabilistic) obfuscator Obf; see Section 3.2.2 for the definitions.

THE MULTILINEAR MAP. The multilinear map for Γ, on input κ encodings hi =
([zi], ci,1, ci,2, πi), uses sk1 to recover the representation vectors ~xi. It then uses the
explicit knowledge of ~ω to compute the output of the map as

e(h1, . . . , hκ) :=
[
κ∏
i=1
〈~xi, ~ω〉

]
.

The product in the exponent can be efficiently computed over Zp for any polynomial
level of linearity κ and any ` as it uses ~xi and ~ω explicitly. The κ-linearity of the map
follows from the linearity of each of the multiplicands in the above product (and the
completeness of Σ, the correctness of Π, and the correctness of the obfuscator Obf).
An obfuscation CMap of the circuit implementing this operation (see Figure 3.2,

34

3.4 Our GES Construction

bottom) will be made available through the public parameters and e is defined to
run this circuit on its inputs.

SAMPLING. For sampling level-1 encodings, let ~x and ~y be vectors in Z`p satisfying
〈~x, ~ω〉 = 〈~y, ~ω〉, set [z] := [〈~y, ~ω〉] (which can be computed using [~ω] and explicit
knowledge of ~x) and define the output of Sam1 to be

h←
(
[z], c1 = Enc(~x, pk1;~r1), c2 = Enc(~y, pk2;~r2),
π = Prove(gpk, crs, ([z], c1, c2), (~x, ~y, ~r1, ~r2); r

)
.

More concretely, AFHLP set ~x = ~y = (z, 0) when ` = 2 and ~x = ~y = (z, 0, 0) when
` = 3. (These representations are called canonical.)

EXTRACTION. The extraction algorithm, on input ([z], c1, c2, π) ∈ S
(z)
1 , applies a

universal hash function to [z].

3.4 Our GES Construction

We now present our construction of a graded encoding scheme Γ according to the
syntax introduced in Definition 2.3.4. We will use the following ingredients in our
construction. A similar set of building blocks were used in [3].

1. A group setup algorithm SetupG(1λ) that samples (the description of) a group
G, along with a random generator g of G and the group order p and the
identity element 1.3 We implicitly assume efficient algorithms for checking
group membership, performing the group operation, inversion, and randomly
sampling group elements. We further assume that every group element has a
unique binary representation. We will also rely on a randomness extractor for
this group.

2. A general-purpose probabilistic indistinguishability obfuscator PIO that we
assume is secure against X-IND samplers.

3. A perfectly correct and IND-CPA-secure fully homomorphic PKE scheme Π
with plaintext space Zκ+1

p .
4. An extractable dual-mode NIZK proof system Σ.
5. A language family Λ with hard membership problem and unique witnesses.

Given the above components, with formal syntax and security as defined in Defini-
tion 2.3.4, our graded encoding scheme Γ consists of the algorithms detailed in the
sections that follow.

Following [42], we also use the bracket notation to compactly denote elements in
G. That is, we write [z] and [z′] for two elements gz and gz

′
in G and denote their

product gzgz
′

by [z] + [z′].

3.4.1 Setup

The Setup algorithm of Γ gets as input 1λ and 1κ. It samples PPG←$ SetupG(1λ)
with PPG := (G, g, p, 1), generates two encryption key pairs (pkj , skj)←$ Gen(1λ)
for j = 1, 2, and an element ω←$ ∈ Zp. We will refer to G as the base group. It sets

[~ω] := ([ω], . . . , [ωsκ]),
3It is conceivable that our security proofs also hold for non-prime p up to statistical defect terms

related to randomization of elements modulo a composite number.

35

3 Graded Encoding Schemes from Obfuscation

a vector of sκ elements in the base group G, with κ the number of desired levels
and s ∈ N a system parameter. (Depending on s, the arising construction will
have different properties. For s ≥ 1, we get a construction in which the MDDH
assumption holds; for s ≥ 2, we get a construction in which additionally the RANK
problem is hard.) It then samples lk←$ GenL(1λ), and sets

gpk := (PPG, pk1, pk2, [~ω], lk).

We define G(1λ) to be the randomized algorithm that runs the above steps and
outputs gpk. This algorithm will be used to define the NIZK proof system.

The Setup algorithm then generates a binding CRS (crs′, tdext)←$ BCRS(gpk), and
also a no-instance of Llk via y←$ NoSamL(lk). It sets crs := (crs′, y). (The relation
R that the NIZK should support will be defined shortly in Section 3.4.2.)

Finally, it constructs two obfuscated circuits CMult and CAdd of circuits CMult and
CAdd, which will be described in Section 3.4.3 and Section 3.4.4, respectively. Setup
also selects a seed hk for a randomness extractor and outputs the scheme parameters

PP := (gpk, crs, hk,CAdd,CMult).

3.4.2 Encodings and Equality

LEVEL-0 ENCODINGS. We treat algorithms for level-0 encodings separately in our
construction as they behave somewhat differently to those from the other levels.
For instance, when multiplied by other encodings, they do not result in an increase
in encoding levels. The canonical choice for level-0 encodings is the ring Zp, which
we adopt. These encodings, therefore, come with natural algorithms for generation,
manipulation and testing of elements. Algorithm Mult when applied to inputs one
of which is at level 0 corresponds to multiplication with the element in the zeroth
level. The latter can in turn be implemented with a shift-and-add algorithm that
employs the encoding addition Add of Section 3.4.3. We omit explicit mention of
operations for level-0 encodings to ease notation and focus on the more interesting
cases at levels 1 and above.4

LEVEL-κ ENCODINGS. We set Sκ := G in our scheme and use the algorithms associ-
ated with G for generation, equality testing, and addition of encodings at level κ.
Once again, we omit these operations from the addition circuit for clarity. The mul-
tiplication circuit can only be called on a level-κ together with a level-0 encoding,
which we have already excluded. However, we still have to deal with outputs at
level κ in Mult.

OTHER LEVELS. For 0 < ` < κ and z ∈ Zp, the encodings in S(z)
` consist of all tuples

of the form
h := ([z], c1, c2, π, `),

where c1, c2 are two ciphertexts in the range of Enc(·, pk1) and Enc(·, pk2), respec-
tively,5 and π is a verifying NIZK proof under crs′ that:

4We mention that previous GESs used more complex level-0 encodings, and since their encodings
were noisy, they allowed only a limited number of operations on each encoding. Hence, imple-
menting Mult on level-0 inputs via shift-and-add could be too costly in their settings.

5This “honest-ciphertext-generation” condition is necessary for the (bi)linearity of our addition and

36

3.4 Our GES Construction

(1) either c1 and c2 contain polynomials P1 and P2 of degree at most s`, such that
P1(ω) = P2(ω) = z,

(2) or y ∈ Llk (or both).
More formally, π must be a verifying proof that (gpk, ([z], c1, c2, `)) satisfies one
relation R1 or R2 as follows.

Relation R1 on input gpk, an encoding ([z], c1, c2, `), and a witness (P1, P2, ~r1, ~r2,
sk1, sk2) accepts iff all of the following hold:

• [z] ∈ G;
• both P1 and P2 are polynomials over Zp of degree ≤ s` (given by their coeffi-

cient vectors);
• both P1 and P2 represent z in the sense that [z] = [P1(ω)] and [z] = [P2(ω)];
• both ci are encryptions of (or decrypt to) Pi in the following sense:

for both i ∈ {1, 2} : ci = Enc(Pi, pki;~ri)
∨

for both i ∈ {1, 2} : (pki, ski) = Gen(ski) ∧ Pi = Dec(ci, ski).

Note that there are two types of witnesses that can be used in proof generation for
R1, namely (P1, P2, ~r1, ~r2) and (sk1, sk2).

Let RL be the relation for the trapdoor language Λ. Relation R2, given gpk, an
encoding, and a witness wy, accepts iff RL(lk, y, wy) accepts. (Note that the output
of R2 is independent of input encodings.) Hence, intuitively, R2 provides an explicit
trapdoor to simulate consistency proofs (in case y ∈ Llk).

We define R := R1 ∨ R2 and assume that Σ is a proof system with respect to
(G,R) with G as defined in Section 3.4.1.

VALID AND CONSISTENT ENCODINGS. The following convention will be useful in the
context of valid of encodings and the correctness of out scheme. We call an encoding
h valid if the proof π verifies correctly under crs′. We write Val`(h) iff h is valid and
the level implicit in h matches `. We call h consistent (with respect to gpk) if h is
in the language defined by the first three conditions of relation R1 as well as the
first clause of the disjunction above. (In particular, the corresponding ciphertexts
c[i] are possible outputs of Enc(Pi, pki); this implies that these ciphertexts behave as
expected under the homomorphic evaluation algorithm Eval.) Note that consistency
implies validity but the converse is not necessarily the case and hence a valid en-
coding may not lie in any S`. For example this would be the case if an “anomalous”
ciphertext decrypts correctly to a valid representation, but does not lie in the range
of Enc. Furthermore, validity can be publicly and efficiently checked, while this is
not necessarily the case for consistency. We note, however, that if the encryption
scheme does not allow for anomalous ciphertexts, our GES would also have effi-
ciently recognizable encodings. We leave the construction of such FHE schemes as
an open problem.

ALGORITHM Eq. The equality algorithm Eq` returns 1 iff the first components of
the inputs match. The correctness of this algorithm follows from the fact that the
base group G has unique representations. (Recall from GES syntax that Eq` is only
required to work with respect to consistent encodings.)

multiplication algorithms. Unfortunately, this also prevents the sets S(z)
` from being efficiently

recognizable.

37

3 Graded Encoding Schemes from Obfuscation

Circuit CAdd[gpk, crs, sk1, sk2, tdext](`, h, h′): // for 1 ≤ ` ≤ κ− 1
1. if ¬(Val`(h) ∧ Val`(h′)) then return ⊥
2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c′2, π′, `)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. P1 ← Dec(c1, sk1); P2 ← Dec(c2, sk2)
P ′1 ← Dec(c′1, sk1); P ′2 ← Dec(c′2, sk2)

5. if [z] 6= [P1(ω)] ∨ [z] 6= [P2(ω)] ∨ [z′] 6= [P ′1(ω)] ∨ [z′] 6= [P ′2(ω)] then
5.1. w′y←$ WExt(tdext, ([z], c1, c2), π)
5.2. if ¬R2(gpk, ([z], c1, c2, `), w′y) then return ⊥
5.3. π′′←$ Prove(gpk, crs, ([z′′], c′′1 , c′′2), w′y)

6. else π′′←$ Prove(gpk, crs, ([z′′], c′′1 , c′′2), (sk1, sk2))
7. return ([z′′], c′′1 , c′′2 , π′′, `)

Figure 3.3: The probabilistic circuit used to add encodings for levels 1 ≤ ` ≤ κ − 1. The
checks at 5 are never passed in an honest execution of the protocol. We empha-
size that the test in step 5 is implemented using the values [ωi]. The random
coins needed for randomized operations are internally generated after obfus-
cating with PIO.

POLYNOMIAL REPRESENTATIONS. A significant conceptual difference with the work
of AFHLP is that we represent exponents in Zp with polynomials instead of vectors.
This generalization enables natural notion of levels corresponding to the degrees of
the representing polynomials. We observe that, a level-` encoding h is not a valid
level-`′ encoding if `′ 6= ` as the perfectly sound proof π included in h depends on
the instance and in particular on the level.

3.4.3 Addition

We now provide a procedure for adding two level-` encodings h = ([z], c1, c2, π, `)
and h′ = ([z′], c′1, c′2, π′, `) in S`. Conceptually, our addition circuit operates similarly
to that of AFHLP. The main difference is that encodings contain polynomials and the
levels. We exploit the structure of the base group as well as the homomorphic prop-
erties of the encryption scheme to “add together” the first and second components
of the inputs. We then use (sk1, sk2) as a witness to generate a proof π′′ that the
new tuple is well formed. For technical reasons we check both the validity of h and
h′ (by checking π and π′) and their consistency (using (sk1, sk2)).

Figure 3.3 details the operation of the addition circuit CAdd. A PIO of this circuit
will be made public via the parameters PP. We emphasize that step 5, that is, the
explicit consistency check, is never reached under a binding crs′ (due to the perfect
soundness of the proof system), but they may be reached with a hiding crs′ later in
the security analysis. Let us expand on this.

In the analysis, we need to specify how CAdd behaves if it encounters valid inputs
(in the sense the proofs pass NIZK verification), but nevertheless are inconsistent in
the sense that at least one of encodings does not decrypt to a valid representation.
Let us call such inputs bad.

With the knowledge of secret keys, such bad inputs can be recognized, and the
natural choice would be to define CAdd to abort when this is the case. With this
choice, however, we run into the following problem. During the security proof we
will set the addition circuit to answer all valid inputs (including bad ones) with

38

3.4 Our GES Construction

simulated proofs. On the other hand, the original addition circuit rejects such in-
puts. (Furthermore, it cannot even simulate proofs for wrong statements, and hence
cannot answer bad inputs with valid-looking proofs.)

On a high level, we would like to modify how CAdd reacts on bad inputs so that
it uses a NIZK simulation trapdoor on bad inputs. The difficulty with this strategy
is that no such simulation trapdoor exists when the NIZK CRS is binding. Hence,
we create our own NIZK trapdoor through an extra “OR branch” in the proved
statement (akin to the Feige–Lapidot–Shamir transform). This gives us a little more
flexibility in defining and using that trapdoor.

More specifically, recall that our CRS is of the form crs = (crs′, y) where crs′
is a binding CRS for the dual-mode NIZK proof system, and y is a no-instance of
Llk . However our actual means to fake proofs will be to switch y to a yes-instance
and use a witness wy to produce proofs. Specifically, in the security proof, we will
eventually let CAdd use a simulation trapdoor wy (instead of a simulation trapdoor
for the NIZK). The benefit of this is that CAdd will know an extraction trapdoor td ′ext
(that of course only exists if the CRS crs′ is in the binding mode) which it can use
to extract a witness from a given proof π. Thus, whenever CAdd encounters a bad
input, it can extract a witness w′y, which must at that point be a simulation trapdoor
wy. This simulation trapdoor wy can then immediately be used to produce a fake
proof π′′ even upon bad inputs. In other words, CAdd knows no simulation trapdoor
a priori, but it can extract one from any simulated proof for a false statement.

The Add` algorithm simply runs the obfuscated circuit on the input encodings and
`. The correctness of this algorithm follows from that of Π, the completeness of
Σ and the correctness, in our sense, of the (probabilistic) obfuscator PIO. Note
that FHE correctness is only guaranteed to hold with respect to ciphertexts that are
in the range of encryption or evaluation (and not necessarily for anomalous ones
that decrypt correctly). This, in particular, means that we cannot enlarge the set
of encodings to contain all valid ones (as opposed to just consistent ones) to get
efficient decidability of encoding sets as correctness can no longer be established.
(See also remark on validity on page 37.) Note that full compactness ensures that
the ciphertexts output by Add` are in the range of encryption, and hence they can
be further operated on with Eval.

3.4.4 Multiplication

Given two encodings h = ([z], c1, c2, π, `) and h′ = ([z′], c′1, c′2, π′, `′) at levels ` and
`′ respectively, the multiplication algorithms operates analogously to addition as
follows. The corresponding circuit CMult has both decryption keys and now also
ω ∈ Zp hardwired in. After validity checks and decrypting the input ciphertexts,
it performs the multiplication of the polynomials encrypted under ci and c′i homo-
morphically using a convolution operation on the coefficient vectors. However, it
cannot obviously compute the element [zz′] in the base group G. Suppose c1 and c′1
encrypt polynomials P and P ′ of degrees at most s` and s`′ respectively and such
that [z] = [P (ω)] and [z′] = [P ′(ω)]. The multiplication circuit uses the explicit
knowledge of ω and polynomials P and P ′ to compute [zz′] = [(P ∗P ′)(ω)].6 Circuit

6Observe that with the explicit knowledge of P ∗P ′ and the powers ([ωi])1≤i≤sκ it is also possible to
compute [zz′] as long as P ∗ P ′ is of degree ≤ sκ; this will be exploited in the security analysis in

39

3 Graded Encoding Schemes from Obfuscation

Circuit CMult[gpk, crs, ω, sk1, sk2, tdext](`, `′, h, h′): // for 1 ≤ `, `′ ≤ κ− 1
1. if ¬(Val`(h) ∧ Val`′(h′)) ∨ `+ `′ > κ then return ⊥
2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c′2, π′, `′)← h′

3. c′′1 ← c1 ∗ c′1; c′′2 ← c2 ∗ c′2
4. P1 ← Dec(c1, sk1); P2 ← Dec(c2, sk2)
P ′1 ← Dec(c′1, sk1); P ′2 ← Dec(c′2, sk2)

5. z′′ ← (P1 ∗ P ′1)(ω)
6. if [z] 6= [P1(ω)] ∨ [z] 6= [P2(ω)] ∨ [z′] 6= [P ′1(ω)] ∨ [z′] 6= [P ′2(ω)] then

6.1. w′y←$ WExt(tdext, ([z], c1, c2), π)
6.2. if ¬R2(gpk, ([z], c1, c2), w′y) then return ⊥
6.3. π′′←$ Prove(gpk, crs, ([z′′], c′′1 , c′′2), w′y)

7. else π′′←$ Prove(gpk, crs, ([z′′], c′′1 , c′′2), (sk1, sk2))
8. If (`+ `′ = κ) then return [z′′] else return ([z′′], c′′1 , c′′2 , π′′, `+ `′)

Figure 3.4: Circuit used for multiplying encodings for levels 1 ≤ `, `′ ≤ κ − 1. Step 6 is
never reached in an honest execution of the protocol with a binding crs. The
random coins needed for randomized operations are internally generated after
obfuscating with PIO.

CMult is shown in Figure 3.4. Note that similarly to addition, step 6 performs ex-
plicit checks of consistency of encodings that will only be used in the analysis under
a hiding crs′.

The correctness of these maps follows from the correctness of Π and PIO, and
the completeness of Σ.

ENABLING GRADED MULTIPLICATION. The main difference between our circuit CMult
and that of [3] is that here we need to output auxiliary information (c1, c2, π) for
multiplied encodings at output levels below κ. This information allows the multi-
plication algorithm to operate in a graded fashion as any output encoding by CMult
can be fed back into CMult as long as it lies at a level ` < κ.7 In order to enable
CMult to generate this auxiliary information, we use an encryption scheme that is
also homomorphic with respect to multiplication in the plaintext ring. In contrast,
AFHLP only rely on an additively homomorphic encryption scheme.

3.4.5 Sampling

Given polynomials P1 and P2 of degree at most s` and satisfying P1(ω) = P2(ω) = z

we can generate an encoding from S
(z)
` by computing

h←
(
[z], c1 = Enc(P1, pk1;~r1), c2 = Enc(P2, pk2;~r2),

π = Prove(gpk, crs, ([z]i, c1, c2, `), (P1, P2, ~r1, ~r2); r), `
)
.

(3.2)

Hence, our sampling algorithm Sam`(z) sets P1(X) = P2(X) = z ∈ Zp and com-
putes an encoding through Equation (3.2). We call these the canonical encodings
of z, independently of `. We note that this procedure is that in [3] adapted to the
generalized notion of polynomial representations.

Section 3.6.
7Recall that encodings at level κ can only be multiplied with level-0 encodings, i.e., with elements in
Zp.

40

3.5 Indistinguishability of Encodings

κ-SwitchAΓ (λ):
(PP;ω)←$ Setup(1λ, 1κ) // ω generated within Setup
((P0,1, P0,2), (P1,1, P1,2), `, st)←$ A1(PP, ω)
b←$ {0, 1}; ~r1, ~r2←$ {0, 1}rl(λ)

c1 ← Enc(Pb,1, pk1;~r1); c2 ← Enc(Pb,2, pk2;~r2)
π←$ Prove(gpk, crs, ([Pb,1(ω)], c1, c2, `), (Pb,1, Pb,2, ~r1, ~r2))
hb ← ([Pb,1(ω)], c1, c2, π, `)
b′←$ A2(hb, st)
Return (b = b′)

Figure 3.5: Game formalizing the indistinguishability of encodings. (This game is specific
to our construction Γ from Section 3.4.) An adversary is legitimate if it outputs
polynomials such that P0,1(ω) = P0,2(ω) = P1,1(ω) = P1,2(ω) of degree at most
s`. We note that A gets explicit access to secret exponent ω generated at setup.
Here rl(λ) is a polynomial indicating the length of the random coins used by the
encryption algorithm.

3.4.6 Extraction

Since at each level ` the first component [z] is unique for each set S(z)
` , we may

extract a uniform string from h = ([z], c1, c2, π, `) for a uniform z by applying a
randomness extractor seeded with hk to [z].

3.5 Indistinguishability of Encodings

We show that a key property used by AFHLP in the analysis of their multilinear
map [3, Theorem 5.3] is also exhibited by our graded scheme. Roughly speaking,
this property states that for any given level `, any two valid encodings of the same
Zp-element are computationally indistinguishable. This claim is formalized via the
κ-Switch game shown in Figure 3.5. Note that in this game, we allow the adver-
sary to not only choose the representation polynomials, but also let him see part
of the private information not available through the public parameters, namely the
exponent ω.

Theorem 3.5.1 (Encoding switch). Let Γ be the GES constructed in Section 3.4 with
respect to an X-IND-secure probabilistic obfuscator PIO, an IND-CPA-secure encryp-
tion scheme Π, a dual-mode NIZK proof system Σ, and a language family Λ. Then,
encodings of the same ring element z ∈ Zp are indistinguishable at all levels. More
precisely, for any legitimate PPT adversary A there are PPT adversaries B1, B2, B3 and
B4 of essentially the same complexity as A such that for all λ ∈ N

Advκ-switch
Γ,A (λ)≤3 ·

(
Advmem

Λ,B1(λ) + 6 ·AdvPIO,B2(λ) + Advcrs
Σ,B3(λ)

)
+

2 ·Advind-cpa
Π,B4

(λ).

The proof of this result follows largely that in [3] and we include it for complete-
ness. The main difference is that we have to deal with obfuscations of the new
multiplication circuit.

Outline. We proceed via a sequence of 5 games, starting with κ-Switch and ending
in a game where the challenge encoding is independent of the bit b. Figure 3.6

41

3 Graded Encoding Schemes from Obfuscation

shows the steps used in the proof of the theorem. We use helper Lemma 3.5.2 for
changing the addition and multiplication circuits to “forget” (one or both) the secret
keys and the extraction trapdoor. We now justify each of these steps in more detail
below. We let Wi denote the event that Gamei outputs 1.

42

CAdd CMult c1 c2
Game crs′ y knows knows contains contains Remark

0 binding 6∈ Llk sk1, sk2, tdext sk1, sk2, tdext Pb,1 Pb,2

1 hiding ∈ Llk wy sk1, wy Pb,1 Pb,2 Lemma 3.5.2 (i = 1)

2 hiding ∈ Llk wy sk1, wy Pb,1 P1,2 IND-CPA wrt. pk2

3 binding 6∈ Llk sk1, sk2, tdext sk1, sk2, tdext Pb,1 P1,2 Lemma 3.5.2 (reverse, i = 1)

4 hiding ∈ Llk wy sk2, wy Pb,1 P1,2 Lemma 3.5.2 (i = 2)

5 hiding ∈ Llk wy sk2, wy P1,1 P1,2 IND-CPA wrt. pk1

Encoding indep. of b

Figure 3.6: Outline of the proof steps of Theorem 3.5.1. The underlined secret key in the “CMult knows” column indicates the key that is used
in decryption to construct [z′′]. For instance, in Game0, key sk1 is used to obtain P1 and P ′1, which are then used to compute [z′′] =
[(P1 ∗ P ′1)(ω)] within CMult.

43

3 Graded Encoding Schemes from Obfuscation

Game0: This is the κ-Switch game (see Figure 3.5) with a binding crs′ and y 6∈
Llk . The addition and multiplication circuits are defined in Figure 3.3 and
Figure 3.4, respectively.

Game1: We change the public parameters so that they include a hiding crs′, a yes
instance y via YesSamL(lk) and obfuscations of circuits ĈAdd and Ĉ(1)

Mult (see
Figure 3.7). Thus, the second circuit uses sk1 to decrypt the first ciphertexts
given as inputs. Observe that these circuits use the witness wy to y ∈ Llk to
produce the output proofs π′′, and therefore the simultaneous knowledge of
decryption keys sk1, sk2 is no longer needed. By Lemma 3.5.2 we have that

|Pr[W0(λ)]− Pr[W1(λ)]| ≤ Advmem
Λ,B1(λ) + 6 ·AdvPIO,B2(λ) + Advcrs

Σ,B3(λ).

Game2: This game generates the second challenge ciphertext c2 by encrypting poly-
nomial P1,2 even when b = 0. We bound this transition via the IND-CPA secu-
rity of Π with respect to pk2. The reduction will choose a first decryption key
sk1 and a witness wy so as to be able to construct Ĉ(1)

Mult. It will also generate a
NIZK simulation trapdoor tdzk (recall the CRS is in the hiding mode) to con-
struct simulated proofs π for the (inconsistent) challenge encoding hb. Note
that the perfect ZK property guarantees that these proofs are identically dis-
tributed to the real ones in Game1. More detailed, in Game1 the polynomial
P1,2 is encrypted under pk2 regardless of the value of the bit b. Thus, on A1’s
response ((P0,1, P0,2), (P1,1, P1,2), `, st), the game sets c1 ← Enc(Pb,1, pk1) for
a random bit b, and c2 ← Enc(P1,2, pk2). We claim that

|Pr[W1(λ)]− Pr[W2(λ)]| ≤ Advind-cpa
Π,B4

(λ).

Consider a PPT distinguisher B4 against the IND-CPA security of scheme Π
(with respect to key pair (sk2, pk2)) as follows. The distinguisher runs Game1
and uses the adversary A as a subroutine. When it receives A1’s outputs
((P0,1, P0,2), (P1,1, P1,2), `, st), B4 generates c1←$ Enc(Pb,1, pk1) for a random
bit b. It then submits (Pb,2, P1,2) to its IND-CPA challenger and gets back a
challenge c∗. It sets c2 := c∗. The proof π on the instance x := ([z], c1, c2, `) is
generated using the simulation trapdoor of the proof system guaranteed by the
zero-knowledge property. (Note that in contrast to the Naor–Yung paradigm
we do not prove an invalid statement and do not need to rely on simulation
soundness.) Namely, π←$ Sim(tdzk, x). Finally, B4 sets h := ([z], c1, c2, π, `)
and runs A2(h, st) to get a bit b′. It returns (b = b′). Game1 and Game2 dif-
fer only in how c2 and π for the challenge encoding are generated. First note
that real and simulated proofs are identically distributed under the hiding crs′.
Second, letting d denote the IND-CPA challenge bit, when d = 0 ciphertext
c2 encrypts Pb,2 and B4 perfectly simulates Game1 for A, and when d = 1
ciphertext c2 encrypts P1,2 and B4 perfectly simulates Game2.

Game3: The public parameters are changed back so that they include a binding crs′,
a no-instance y←$ NoSamL(lk) and obfuscations of circuits CAdd and CMult
of Figure 3.3 and Figure 3.4. Once again by Lemma 3.5.2 (in the reverse
direction and with i = 1) we have that

|Pr[W2(λ)]− Pr[W3(λ)]| ≤ Advmem
Λ,B1(λ) + 6 ·AdvPIO,B2(λ) + Advcrs

Σ,B3(λ).

44

3.5 Indistinguishability of Encodings

Circuit ĈAdd[gpk, crs, wy](`, h, h′):
1. if ¬(Val`(h) ∧ Val`(h′)) then return ⊥
2. parse ([z], c1, c2, π, `)← h, and ([z′], c′1, c′2, π′, `)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. // omitted: depends on sk1 and sk2
5. π′′←$ Prove(gpk, crs, ([z′′], c′′1 , c′′2 , `), wy)
6. // omitted: depends on sk1 and sk2
7. return ([z′′], c′′1 , c′′2 , π′′, `)

Circuit Ĉ(i)
Mult[gpk, crs, ω, ski, wy](`, `′, h, h′):

1. if ¬(Val`(h) ∧ Val`′(h′)) ∨ `+ `′ > κ then return ⊥
2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c′2, π′, `′)← h′

3. c′′1 ← c1 · c′1; c′′2 ← c2 · c′2
4. Pi ← Dec(ci, ski); P ′i ← Dec(c′i, ski) // depends on ski only
5. z′′ ← (Pi ∗ P ′i)(ω)
6. π′′←$ Prove(gpk, crs, ([z′′], c′′1 , c′′2 , `+ `′), wy)
7. // omitted: depends on sk1 and sk2
8. If (`+ `′ = κ) then return [z′′] else return ([z′′], c′′1 , c′′2 , π′′, `+ `′)

Figure 3.7: Top: Circuit ĈAdd where witness wy to y ∈ Llk is used to produce π′′. Note that
the secret keys (sk1, sk2) or the extraction trapdoor tdext are no longer used by
this circuit. Bottom: Circuits Ĉ(i)

Mult were only one key ski is used to decrypt Pi
and P ′i and witness wy to y ∈ Llk is used to produce π′′. The secret key sk[3− i]
and the extraction trapdoor tdext are not used by this circuit.

Game4: The public parameters are changed so that they include a hiding crs′, a yes-
instance y←$ YesSamL(lk) and obfuscations of circuits Ĉ(2)

Mult and ĈAdd (see
Figure 3.7). Observe that knowledge of sk1 is no longer needed. Similarly to
Game1, by Lemma 3.5.2 with i = 2 we have that

|Pr[W3(λ)]− Pr[W4(λ)]| ≤ Advmem
Λ,B1(λ) + 6 ·AdvPIO,B2(λ) + Advcrs

Σ,B3(λ).

Game5: This transitions is defined analogously to that introduced in Game2. The
polynomial encrypted under public key pk1 is P1,1 regardless of the bit b.
Thus, after receiving ((P0,1, P0,2), (P1,1, P1,2), `, st) from A1, the game sets
c1 ← Enc(P1,1, pk1), and c2 ← Enc(P1,2, pk2). Using a similar argument to
that for Game2 we get that

|Pr[W4(λ)]− Pr[W5(λ)]| ≤ Advind-cpa
Π,B4

(λ).

Finally, note that the challenge encoding in Game5 is independent of the random
bit b and the advantage of any (even unbounded) adversary A is identically 0.

We now prove the helper lemma that we relied upon in the above.

Lemma 3.5.2 (Forgetting secret keys). Let Γ be the GES from Section 3.4 with re-
spect to an X-IND-secure probabilistic obfuscator PIO, an IND-CPA-secure encryp-
tion scheme Π, a dual-mode NIZK proof system Σ, and a language family Λ. For
i = 1, 2, consider the modified parameter generation algorithm Setup(i) that samples

45

3 Graded Encoding Schemes from Obfuscation

a yes-instance y ∈ Llk and outputs obfuscations of the circuits ĈAdd and Ĉ(i)
Mult shown

in Figure 3.7. Let

Advκ-forget
Γ,i,A (λ) : GES := 2 · Pr

[
PP0←$ Setup(1λ, 1κ); PP1←$ Setup(i)(1λ, 1κ);
b←$ {0, 1}; b′←$ A(PPb) : b = b′

]
− 1.

Then, for any i ∈ {1, 2} and any PPT adversary A there are PPT adversaries B1,B2 and
B3 of essentially the same complexity as A such that for all λ ∈ N

Advκ-forget
Γ,i,A (λ) ≤ Advmem

Λ,B1(λ) + 6 ·AdvPIO,B2(λ) + Advcrs
Σ,B3(λ).

Proof. We provide an outline of the game hops in Figure 3.8 and give the details
next.

Game0: We start with a game that runs A on PP0; that is with an obfuscation of
CAdd and CMult (see Figure 3.3 and Figure 3.4), and a no-instance y 6∈ Llk .

Game1: Our first change consists in modifying the obfuscated CMult so that in step 5
it uses Pi and P ′i (instead of P1 and P ′1) to construct [z′′]. (Both keys are still
needed in step 4.) Note there is no change when i = 1, but when i = 2 we
show this modification leads to a functionally equivalent circuit. Indeed, since
the NIZK proof system is perfectly sound (the crs′ is binding) and y /∈ Llk , any
valid encoding must satisfy P1(ω) = Pi(ω). Hence, using (Pi, P ′i) instead of
(P1, P

′
1) leads to the same circuit outputs. The security of the obfuscator can

be used to bound the difference in the outputs of Game0 and Game1.

Game2: We sample y ∈ Llk instead of y /∈ Llk . By the hardness of deciding mem-
bership for Llk , this only negligibly changes the game’s output.

Game3: We hardwire the witness wy to y ∈ Llk in CAdd and CMult, and remove tdext
from both circuits. We claim that this change does not change the functionality
of CAdd and CMult at all. To see this, recall that Llk has unique witnesses.
Hence, any witness w′y extracted by CAdd or CMult in Game2 must be equal
to the hardwired witness wy in Game3. Since crs′ is binding, extraction will
always succeed in Game2 (if it comes to step 5.1 in CAdd or step 6.1 in CMult).
Thus this transition can be justified by the security of the obfuscator (for two
circuits).

Game4: The string crs′ included in the public parameters is changed to the hiding
mode. Hence proofs generated under crs′ will be perfectly witness indistin-
guishable in this game. This hop can be justified by the CRS indistinguishabil-
ity of the dual-mode NIZK proof system.

46

CAdd CMult
Game crs′ y knows knows π′′-witness Remark

0 binding /∈ Llk sk1, sk2, tdext sk1, sk2, tdext (sk1, sk2) or w′y
1 binding /∈ Llk sk1, sk1, tdext ski, sk[3− i], tdext (sk1, sk2) or w′y PIO/soundness

2 binding ∈ Llk sk1, sk1, tdext ski, sk[3− i], tdext (sk1, sk2) or w′y Llk hard

3 binding ∈ Llk sk1, sk2, wy ski, sk[3− i], wy (sk1, sk2) or wy PIO/unique wy

4 hiding ∈ Llk sk1, sk2, wy ski, sk[3− i], wy (sk1, sk2) or wy CRS indist.

5 hiding ∈ Llk wy ski, wy wy (always) PIO/WI

Figure 3.8: Outline of the proof of Lemma 3.5.2. The underlined element in the “CMult knows” column indicates which secret key is used to decrypt
information used to construct [z′′]. For instance, in Game0, sk1 is used to obtain P1 and P ′1, which are used to compute [z′′] = [(P1∗P ′1)(ω)]
by CMult. The “or” expressions in the “π′′-witness” column specify which π′′-witness is used in steps 5.3 and 6 of CAdd (resp. steps 6.3
and 7 of CMult). Hence, in Game0 the CAdd circuit uses (sk1, sk2) to construct π′′ in case P1(ω) = P2(ω) = z and P ′1(ω) = P ′2(ω) = z′.
Otherwise, CAdd uses the extracted wy as witness in π′′.

47

3 Graded Encoding Schemes from Obfuscation

Game5: Here, once again change the way CAdd and CMult prepare proofs π′′. Specif-
ically, we let CAdd and CMult to always use the hardwired wy as witness to
construct π′′, independently of whether or not the encodings h, h′ are consis-
tent. Hence, CAdd and CMult do not need to perform the explicit consistency
check anymore. This means that CAdd no longer needs sk1 or sk2, and CMult
only needs ski (to retrieve Pi and P ′i from ci and c′i). These modifications
do not change the output distributions of CAdd and CMult. Indeed, we have
only changed the witness used for π′′-proofs. By the perfect witness indistin-
guishability of the proof system (under a hiding CRS), the distributions of the
resulting proofs remain identical. Hence, we can use the obfuscator’s indis-
tinguishability security against X-IND samplers twice to justify our transition
from Game4 to Game5.

Observe that in Game5 the modified public parameters are identically distributed
to PP1. Indeed, we have y ∈ Llk by the change introduced in Game2, the CRS
crs′ is hiding by the change in Game4, and circuits CAdd and CMult always use a
hardwired wy as a witness to construct π′′-proofs. Furthermore, CMult uses ski to
retrieve Pi and P ′i , in order to compute [z′′] = [(Pi ∗ P ′i)(ω)]. These changes render
CAdd identical to ĈAdd and CMult identical to Ĉ(i)

Mult.

3.6 Hard Problems

We are now ready to show that the MDDH and RANK problems are hard for our
GES. On top of extending AFHLP’s results to the graded setting, our results in this
section improve [3] in two independent directions: First, we provide simpler and
tighter proofs of security. Second, we generalize their results so that for a single
instantiation of the GES both the MDDH and RANK problems are hard.

One corollary of these results is that there are no “zeroizing” attacks on our
scheme as such attacks immediately lead to the break of MDDH and RANK prob-
lems [30, 33, 51]. Indeed, a second motivation for studying the security of the
RANK problem (on top of its applications) is the tighter relation that it has with
zeroizing attacks [51, Section 4.4]. Put differently, by proving the RANK problem
intractable, we rule out a wider class of zeroizing attacks.

3.6.1 Hardness of MDDH

Recall that the GES of Section 3.4 represents an element z ∈ Zp at level ` with
polynomials P1 and P2 of degree at most s` such that Pj(ω) = z, where s is a system
parameter. To show that MDDH holds it is sufficient to set s := 1, but we prove the
following more general result.

Theorem 3.6.1 ((sκ + s − 1)-SDDH =⇒ κ-MDDH). Let Γ be the GES constructed
in Section 3.4 with an s ≥ 1 and with respect to a base group G and an X-IND-secure
probabilistic obfuscator PIO. Then, for any κ ∈ N and any PPT adversary A there are
PPT adversaries B1, B2 and B3 of essentially the same complexity as A such that for all
λ ∈ N

Advκ-mddh
Γ,A (λ) ≤ (κ+ 1) ·Advκ-switch

Γ,B1 (λ) + AdvPIO,B2(λ) + Adv(sκ+s−1)-sddh
G,B3

(λ).

48

3.6 Hard Problems

Proof. We provide a simpler proof compared to that of [3, Theorem 6.2] at the
expense of relying on the slightly stronger κ-SDDH (instead of the (κ − 1)-SDDH)
problem for s = 1. At a high level, our reduction has two steps: 1) Switch all
encodings from polynomials of degree 0 to those of degree 1; and 2) Randomize the
κ-MDDH challenge using the κ-SDDH instance. The key difference with the proof
of [3, Theorem 6.2] is that we no longer need to carry out a two-step process to
randomize the exponent of the MDDH challenge. In particular, we do not change
the implementation of the multiplication circuit according to a κ-SDDH challenge.

We give a sequence of κ + 4 games, where in the last game, for case b = 1 the
challenge exponent z is also uniformly distributed. Below we let Wi denote the
event that Gamei outputs 1.

Game0: This is the κ-MDDH problem (Figure 2.2, middle). We use Pi,1 and Pi,2 to
denote the canonical degree-zero representation polynomials of ai as gener-
ated by the sampler Sam1(ai).

Game1–Gameκ+1: In this sequence of games, Gamei proceeds similarly to Gamei−1
with the difference that the representations Pi,1, Pi,2 of the i-th challenge
encoding hi (which are at level 1) are no longer of the form

Pi,1(X) = Pi,2(X) := ai

but set to
Pi,1(X) = Pi,2(X) := Xs + ai − ωs.

These representation polynomials are valid and of degree exactly s, the maxi-
mum allowed degree at level 1 with GES parameter s. We claim that

|Pr[Wi−1(λ)]− Pr[Wi(λ)]| ≤ Advκ-switch
Γ,B1 (λ) for 1 ≤ i ≤ κ+ 1.

Given an attacker A distinguishing Gamei−1 and Gamei, we build a PPT ad-
versary B1 against the game κ-Switch of Figure 3.5. Algorithm B1 outputs
((Pi−1,1, Pi−1,2), (Pi,1, Pi,2), ` = 1, st) representing a uniform value ai in Zp,
where (Pi−1,1, Pi−1,2) is as in Gamei−1 and (Pi,1, Pi,2) as in Gamei as above.
Observe B1 can indeed construct these polynomials because it knows ω and ai
explicitly (and furthermore they are admissible because at level 1 polynomials
can have degree up to s). Algorithm B1 receives an encoding hi of ai that has
(Pi+b−1,1, Pi+b−1,1) for a random bit b embedded in it. It uses hi to simulate
Gamei+b−1 for A, and outputs what A outputs.

Gameκ+2: This game only introduces a conceptual change: the i-th source exponent
is changed to a′i = ai + ωs for randomly chosen ai ∈ Zp and 1 ≤ i ≤ κ + 1.
Also, the polynomial representations of a′i is set to Pκ+2,1(X) ≡ Pκ+2,2(X) =
Xs + ai, which has the same degree as the polynomials in Gameκ+1. This
means that the exponent of the target encoding h∗b when b = 1 is

z∗1 = Q(ω) := (ωs + a1) · · · (ωs + aκ+1). (3.3)

Note thatQ has degree sκ+s and its (sκ+s)-th coefficient is 1. The distribution
from which the κ+ 1 exponents a′i are drawn has not changed and is uniform.
Therefore

Pr[Wκ+1(λ)] = Pr[Wκ+2(λ)].

49

3 Graded Encoding Schemes from Obfuscation

Gameκ+3: The differences with the previous game are two-fold. First, when b =
1, the challenge encoding h∗1 = [Q(ω)] is generated evaluating polynomial
Q(X) at X = ω in the exponent using

(
[1], [ω], . . . , [ωsκ+s]

)
, and the explicit

knowledge of the coefficients (q0, . . . , qsκ+s) of polynomial Q(X) obtained by
expanding Equation (3.3). This change is purely conceptual.

The second difference is that we obfuscate circuit C∗Mult which has the pow-
ers

(
[1], [ω], . . . , [ωsκ]

)
hardwired in and computes the map implicitly in the

exponent. In more detail, this circuit extracts the representation polynomials
P1, P ′1 from the input encodings (at levels ` and `′ respectively) and evaluates
P ′′ := P1 ∗ P ′1 at ω in the exponent using

(
[1], [ω], . . . , [ωsκ]

)
. The latter is

possible because by the perfect soundness of the proof system under a bind-
ing CRS, P1 (respectively, P ′1) is of degree at most s` (respectively, s`′), and
therefore P ′′ is of degree at most s(`+`′) ≤ sκ. This modification therefore re-
sults in a functionally equivalent circuit (both compute [P ′′(ω)]). Since C∗Mult
is of polynomial size, we conclude that obfuscations of these two circuits are
indistinguishable:

|Pr[Wκ+1(λ)]− Pr[Wκ+2(λ)]| ≤ AdvPIO,B2(λ).

Gameκ+4: We regard the degree (sκ + s) polynomial Q(X) of Equation (3.3) as a
multivariate Zp-polynomial Q′(Y1, . . . , Ysκ+s) in sκ+s unknowns by renaming
variables Xi to Yi. In this game when b = 1 the challenger samples random
ω, τ ∈ Zp and sets

h∗1 = [z∗1] := [Q′(ω, ω2, . . . ωsκ+s−1, τ)],

where Q′ is evaluated in the exponent using ([ωi])0≤i≤sκ+s−1 and [τ]. We
emphasize that circuit C∗Mult still has

(
[1], [ω], . . . , [ωsκ]

)
hardwired as in the

previous game. We claim that

|Pr[Wκ+3(λ)]− Pr[Wκ+4(λ)]| ≤ Adv(sκ+s−1)-sddh
G,B3

(λ).

This immediately follows because an adversary B3 against (sκ+ s− 1)-SDDH
on receiving challenge (([ωi])0≤i≤sκ+s−1, [τ]

)
can simulate Gameκ+3 if τ =

ωsκ+s, or Gameκ+4 if τ is random.

To see that Pr[Wκ+4] = 1/2 it suffices to show that in Gameκ+4 exponent z∗1 is
randomly distributed over Zp. This follows because the leading coefficient of Q′ is
1, and therefore the map f(X) := Q(ω, . . . , ωsκ+s−1, X) defines a bijection over Zp
mapping a uniform τ into a uniform z∗1 = f(τ).

3.6.2 Downgrading Attacks

It might appear that our GES could be subject to a “downgrading” attack as follows.
Start with any consistent encoding h at level ` whose representation polynomial is
of degree 0. Then “maul” h into an encoding at a lower level `′ < ` by simply chang-
ing ` to `′ in h. Then use this malleability to attack, say, MDDH where challenge
encodings are canonical and of degree 0 (see Section 3.4.5).

What is crucial and prevents this downgrade attack is the proof system. The
consistency proof π proves that the encrypted values correspond to a polynomial P

50

3.6 Hard Problems

of degree up to ` such that P (ω) = z. Note that this statement depends on `. Hence,
a proof for a level-2 encoding cannot be “reused” for a level-1 encoding, as in the
attack: a single proof will not necessarily pass against two different statements even
if they both have the same witness. In order to downgrade, the proof would have to
be changed.

Indeed, suppose that one had a method for changing a proof π2 of a level-2 en-
coding to a proof π1 of the level-1 encoding (that is derived by simply omitting
encrypted coefficients, as in a downgrading attack). Consider what happens if one
start with equivalent level-2 encoding (in the sense of our switching lemma) with
degree-2 polynomials P . Then, the statement that π1 proves becomes false, so any
such attack would contradict the soundness of the proof system.

3.6.3 Hardness of RANK

We show that the RANK problem for the construction with s ≥ 2 (where encodings
at level ` have representation polynomials of degree at most s`) is hard. A stan-
dard hybrid argument shows that the hardness of (κ,m, n, r, r+ 1, l)-RANK implies
the hardness of (κ,m, n, r0, r1, l)-RANK for all r1 > r0. We prove that the former
problem is hard next.

Theorem 3.6.2 (SDDH =⇒ RANK). Let Γ be the GES constructed in Section 3.4
with an s ≥ 2 and with respect to a base group G and an X-IND-secure probabilistic
obfuscator PIO. Let p(λ) denote the size of the base group G, (κ,m, n, r) be integers
with r ≥ κ, and l : [m]× [n] −→ [κ] be an arbitrary level function. Then, for any PPT

adversary A there are PPT adversaries B1, B2 and B3 of essentially the same complexity
as A such that for all λ ∈ N

Adv(κ,m,n,r,r+1,l)-rank
Γ,A (λ) ≤ 3 ·Advκ-switch

Γ,B1 (λ) + AdvPIO,B2(λ) +

(sκ− 1) ·Adv(sκ−1)-sddh
G,B3

(λ) + 1
p(λ) .

The proof technique follows that of AFHLP [3, Theorem 7.1], and is adapted to
the graded setting where the entries of Hb may lie at any (nonzero) level. Here
we also present a tighter reduction and prove the theorem more generally for any
s ≥ 2. We start with an outline of the main idea and give a formal proof afterwards.

Outline. To prove the theorem we need to generate a matrix H0, which encodes a
rank-r matrix M0 with entries at arbitrary levels, and gradually transform it into a
matrix H1 that encodes a rank-(r + 1) matrix M1.8

EMBEDDING THE SDDH CHALLENGE. Ideally, we would like to reduce RANK to the
weakest 1-SDDH assumption. To this end, consider the G-matrix

[W] :=
[

[1] [ω]
[ω] [τ]

]
,

where ω ∈ Zp is the secret exponent of Γ. This matrix can be formed (in the expo-
nent) from a 1-SDDH challenge in G, and we will exploit the fact that if τ = ω2 then

8Compare this with the MDDH case, where the challenge lives in the last level Sκ = G.

51

3 Graded Encoding Schemes from Obfuscation

W has rank 1, and if τ is uniform then it has rank 2 (with overwhelming probabil-
ity). We then rely on the observation that an encoding of ω2 can be obtained at any
level knowing [ω2] only in the exponent. Concretely, the polynomial representation
of ω2 at an arbitrary level ` ≥ 1 can be set to P (X) = X2 as we allow polynomials
representations of degree at most s`. Here is where we use the fact that s ≥ 2 as
this technique would not work for s = 1.

LIFTING. To generate an m× n matrix M0 of rank r (or r+ 1 after the 1-SDDH hop
above) we use the standard technique of embedding the identity matrix I[r − 1] in
the diagonal:

M0 =

W
Ir−1

0

 ,
where 0 denotes a zero matrix of dimension (m− r − 1)× (n− r − 1) to bring the
matrix up to dimension m × n. Moreover, via the random self-reducibility of the
RANK problem (via multiplication of the instance with explicit random invertible
matrices) matrix M0 can be randomized to a uniform one in Rkr(Zm×np). Since this
randomization is linear, we can generate H0 with entries at arbitrary levels even
when ω and τ are only known in the exponent.

BREAKING CORRELATION WITH CMult. We can construct a circuit that is functionally
equivalent to CMult and that uses the powers [~ω] = ([1], [ω], . . . , [ωsκ]) only. The
latter circuit outputs ([z], c1, c2, π, `) (or simply [z] for level κ), where z is the evalu-
ation of a polynomial of degree at most sκ at point ω. We then invoke the q-SDDH
assumptions for 2 ≤ q ≤ sκ − 1 to gradually randomize the higher powers [ωi] for
i ≥ 2 one at a time, so that we can embed a 1-SDDH tuple in the challenge matrix
H0 as explained above. This yields the encoding of a rank-(r + 1) matrix.

Proof. We give a sequence of games starting with the RANK game, and finish-
ing with a game that samples matrices of rank r + 1, independently of the bit b,
with overwhelming probability. The games are virtually the same as those provided
in [3], however we have saved some games reducing the complexity of the reduc-
tion (by a factor of mn − 3 in the advantage of game κ-Switch.) Below, we let Wi

denote the event that Gamei outputs 1.

Game0: This is the original (κ,m, n, r, r + 1, l)-RANK problem for r ≥ κ as shown
in Figure 2.2 (right).

Game1: When b = 0, this game encodes the random matrix M0 (over Zp) of rank
r differently. Instead of using constant polynomials m1,2, m2,1, and m2,2 for
entries (1, 2), (2, 1) and (2, 2) of M0, it uses the following polynomial repre-
sentations to prepare the encoding matrix, where ω is the secret exponent of
Γ.

P1(X) = P2(X) := X +m1,2 − ω for entry (1, 2)
P1(X) = P2(X) := X +m2,1 − ω for entry (2, 1)
P1(X) = P2(X) := X2 +m2,2 − ω2 for entry (2, 2)

52

3.6 Hard Problems

These encodings are of degrees exactly 1, 1 and 2 respectively. Hence, using
an argument similar to that for Theorem 3.6.1 we get that for an algorithm B1

|Pr[W0(λ)]− Pr[W1(λ)]| ≤ 3 ·Advκ-switch
Γ,B1 (λ).

Game2: In this game, when b = 0 we change the way the matrix H = H0 is gener-
ated. Define the Zp-matrix

W :=
[

1 ω
ω ω2

]
,

for secret exponent ω ∈ Zp, and the (m× n) matrix M′ over Zp

M′ :=

W
Ir−1

0

 , (3.4)

where I[r − 1] is the identity matrix of order r − 1, and 0 is the (m− r − 1)×
(n− r − 1) zero matrix.

The game uses [W], the matrix W in the exponent with entries in G, to
form an encoded matrix H′ corresponding to M′. We note that the poly-
nomial representations used to encode entries m′1,2 = ω and m′2,1 = ω are
P1(X) = P2(X) := X, and that used to encode entry m′2,2 = ω2 is P1(X) =
P2(X) := X2 (as in Game1). Finally, the game sets H = L ·H′, where L is
a random invertible matrix of dimension m × m over Zp. Observe that this
transformation is linear, and therefore the game can construct the entries of
H from the encoded matrix H′ and the Zp-matrix L using algorithm Add of Γ.

We claim that
Pr[W1(λ)] = Pr[W2(λ)].

To see this, we first note that challenge matrix H is an encoding of matrix
M := L ·M′ (by correctness of Add). Next, to see that M is randomly dis-
tributed overm×nmatrices of rank r, observe that: (1) M′ has rank r because
W has rank 1 and (2) M = L ·M′ is a uniformly distributed rank-r matrix, be-
cause the left action of invertible matrices GLm×m(Zp) is transitive in the set
of Zp-matrices of dimension m×n and rank r (cf. the random self-reducibility
of the RANK problem).

Game3: The difference with the previous game is that Setup outputs (the obfusca-
tion of) a different circuit C∗Mult that has the tuple [~ωs] = ([1], [ω], . . . [ωsκ])
hardwired in, extracts polynomials P1 and P ′1 from its inputs, and evaluates
P1 ∗ P ′1 at point ω in the exponent using [~ωs]. We claim that for an algorithm
B2

|Pr[W2(λ)]− Pr[W3(λ)]| ≤ AdvPIO,B2(λ).

This follows from the fact that C∗Mult knowing [~ωs] is functionally equivalent to
CMult knowing ω in the clear. Indeed the perfect soundness and completeness
of the NIZK proof system (with respect to a binding CRS) guarantees that the
extracted polynomial representations P1 and P ′1 are of degrees ` and `′ such

53

3 Graded Encoding Schemes from Obfuscation

that ` + `′ ≤ 2κ. Hence, the powers of ω included in [~ωs] suffice to evaluate
P1 ∗ P ′1 in the exponent, and explicit knowledge of powers of ω are no longer
needed in the subsequent games.

Game3+i for 1 ≤ i ≤ sκ− 2: In these games we randomize the powers of ω one by
one, starting with the highest power. Here Setup instead of [~ωs] includes the
following vector [~gi] in gpk.

[~gi] :=
(
[1], [ω], . . . , [ωsκ−i], [τsκ−i+1], [τsκ−i+2], . . . , [τsκ]

)
,

where τsκ−i+j are fresh random values in Zp. Observe that in particular (the
obfuscation of) circuit C∗Mult has [~gi] hard-coded and therefore is not a bilinear
map anymore. An attacker against (sκ−i)-SDDH can embed a challenge tuple
([1], [ω], . . . , [ωsκ−i], [τsκ−i+1]) in the first sκ− i+ 1 positions of [~gi]. Then, if
τsκ−i+1 = ωsκ−i+1 this simulates Game3+i−1, otherwise it simulates Game3+i.
This shows that for 1 ≤ i ≤ sκ− 2:

|Pr[W3+i−1(λ)]− Pr[W3+i(λ)]| ≤ Adv(sκ−i)-sddh
G,B′3

(λ).

Gamesκ+2: We continue the above sequences of game with i = sκ − 1 but now
also change how W is generated. The game samples random ω and τi for
2 ≤ i ≤ sκ, in Zp. Then it hard-codes [~gsκ−1] =

(
[1], [ω], [τ2] . . . , [τsκ]

)
in

C∗Mult, and sets the minor W of M′ (see Equation (3.4)) to

W =
[

1 ω
ω τ2

]
.

An encoding of ω and τ2 can be generated only with the knowledge of [ω], [τ2]
(setting the polynomial representations to P (ω)

i (X) = X, and P
(τ)
i (X) = X2

respectively). An adversary against 1-SDDH can embed its challenge ([ω], [τ2])
to simulate Gamesκ+1 if τ2 = ω2, or Gamesκ+2 if τ2 is random. Thus

|Pr[Wsκ+1(λ)]− Pr[Wsκ+2(λ)]| ≤ Adv1-sddh
G,B′3

(λ).

Finally, Pr[Wsκ+2(λ)] ≤ 1/2 + 1/p(λ) because even when b = 0, the rank of
M = L·M′ is r+1 with overwhelming probability over the choice of τ2. (Concretely,
the probability that τ2 = ω2 is 1/p(λ).)

The simplified advantage term in the theorem statement follows form the observa-
tion that for any q′ ≤ q and any algorithm B′3, there is an algorithm B3 of essentially
the same complexity such that

Advq
′-sddh

G,B′3
(λ) ≤ Advq-sddh

G,B3
(λ).

This can be proved easily using a re-randomization of the generator for the base
group.

54

Chapter 4
Compact Lossy Trapdoor Functions from

Multilinear Maps

In this chapter, we contribute to the question about how multilinear maps or graded
encoding schemes, respectively, can be used for cryptographic purposes. Namely, we
explain how both tools can be used to construct compact lossy trapdoor functions
in the DLOG-based setting.

4.1 Overview

LOSSY TRAPDOOR FUNCTIONS (LTDFS). A family of lossy trapdoor functions is a
collection {f} of functions f : {0, 1}n → {0, 1}∗, some of which are invertible (given
a suitable trapdoor f−1), and some of which are lossy (in the sense that their image
is smaller than their preimage). Moreover, invertible and lossy functions should be
computationally indistinguishable.

Introduced by [99], LTDFs have proven to be an extremely useful cryptographic
building block. For instance, LTDFs imply various types of public-key encryption
(including IND-CCA secure [99, 94], deterministic [8], and selective-opening se-
cure [7] encryption), oblivious transfer protocols [99], and several other funda-
mental building blocks (including collision-resistant hash functions [99], trapdoor
one-way functions [99], and correlation-secure trapdoor one-way functions [103]).
As can be expected for such a foundational primitive, there exist various construc-
tions of LTDFs from different computational assumptions (e.g., from DDH [99, 115],
k-Linear [46, 23, 115], LWE [99, 115], DCR [46, 67], QR [46], or specialized as-
sumptions [68, 115]).

However, perhaps somewhat surprisingly, all known LTDF instances in the discrete
log setting (i.e., from the DDH, the k-Linear, or similar assumptions in cyclic groups
of known order) share one disadvantage. Namely, the size of the public description
of the function as well as its output size is at least a linear number of group elements
in the (bit)size n of the function’s input.1 In other words, we know of no compact
LTDFs in the discrete log setting.2

OUR CONTRIBUTION: LTDFS WITH COMPACT PUBLIC DESCRIPTION. In this work, we
improve the situation by constructing LTDFs with at least a compact public descrip-
tion size. Before, known constructions of LTDFs in the discrete log setting with input

1Perhaps this may appear less surprising, given that we do not even know a mere trapdoor one-way
function in the discrete log setting with a more compact description or output.

2Note that straightforward generic approaches (such as using a function with small input size several
times, on different parts of a larger input, and concatenating the results) may extend the input size
at the cost of lossiness. We are not interested in such trade offs here.

55

4 Compact Lossy Trapdoor Functions from Multilinear Maps

(bit)size n have a public description size of O(n2) group elements [99, 46, 115], or
– when assuming a bilinear map – O(n) group elements [23].

We describe two new LTDF constructions, both in the discrete log setting, and as-
suming that a multilinear map is available. Our first construction assumes an asym-
metric k-linear map, in the sense that all input elements come from different groups.
Our second construction assumes a symmetric k-linear map, in the sense that all in-
put elements for the map come from the same group. Both of our LTDFs have a
very short, O(k · n2/k)-sized (resp. O(n2/k)-sized) public description in the respec-
tive source group(s) of the multilinear map. Upon invocation, this short description
is then uncompressed into an O(n2)-sized public description for the LTDF from [99]
(resp. [46, 115]) in the target group. Then the LTDF from [99] (resp. [46, 115]) is
applied with the uncompressed public description.

This is conceptually similar to the way [23] first uncompress a public descrip-
tion into the target group of a bilinear map, and then apply the LTDF from [99].
However, even though it yields similarly efficient LTDFs in the bilinear case, our
compression strategy is very different from that of [23]. In particular, as we will
explain below, while the strategy of [23] does not scale beyond the bilinear case,
ours does.

4.1.1 More Technical Details

THE LTDF OF [99]. For a more detailed technical overview, we focus on our first
LTDF. Our LTDF builds upon the LTDF of [99] (the “PW-LTDF”), which we now
briefly review. The PW-LTDF works in a cyclic group G = 〈g〉 of prime order p,
and its public description consists of a matrix C = Enc(M) = (ci,j)ni,j=1 that is
the component-wise encryption of a matrix M := (mi,j) ∈ Zn×np .3 The underlying
encryption scheme must be additively homomorphic, so that an evaluation f(~x) =
Enc(~x ·M) = (

∏n
i=1 c

xi
i,j)nj=1 (which is simply a component-wise encryption of the

vector ~x ·M) can be computed efficiently from C and ~x = (xi)ni=1 ∈ {0, 1}n. If M
is the all-zero matrix, then this evaluation becomes lossy, and if M is an invertible
matrix, then also F can be efficiently inverted (e.g., by decrypting and then applying
M−1)4. Thus, when implemented with ElGamal encryption, lossy and invertible
LTDF instances are computationally indistinguishable under the DDH assumption
in G.

THE STRATEGY OF BOYEN AND WATERS TO COMPRESS THE PUBLIC DESCRIPTION OF

THE PW-LTDF. Clearly, the public description size of O(n2) group elements of the
PW-LTDF is unsatisfactory. Hence, [23] devise a strategy to compress the public
description of the PW-LTDF in a setting with a bilinear map e : G × G → GT . The
overall idea is to construct a matrix C of encryptions as above in the target group
GT , and then proceed as in the PW-LTDF. Specifically, [23] find a way to suitably
blind group elements ui, vi ∈ G (for i ∈ {1, . . . , n}), such that encryptions of e(ui, vj)
can be computed exactly for i 6= j. This yields all elements of a ciphertext matrix
C (of zero-encryptions) as with the PW-LTDF, except for the diagonal elements. De-
pending on how the diagonal of C is completed, the corresponding PW-LTDF will be

3For now, we ignore here a subtlety concerning the used encryption public keys and choice of random
coins.

4In [99], M is always the identity matrix in case of an invertible function.

56

4.1 Overview

lossy or injective. Hence, depending on whether a lossy or injective function is de-
sired, the corresponding diagonal elements are added (uncompressed) to the public
description. This leads to a public description size of O(n) group elements (where
the diagonal and non-diagonal elements of C are both encoded with O(n) group
elements). However, note that while it may be possible to further compress the
description of the non-diagonal elements of C in a multilinear setting, it is unclear
how the diagonal of C itself can be compressed at all.

OUR STRATEGY. Our LTDF assumes an asymmetric multilinear map, i.e., we assume
cyclic groupsG1, . . . , Gk, GT and a k-linear map e : G1×· · ·×Gk → GT . We will also
assume that the DDH assumption holds in each group Gi. Like [23], we construct
a PW-LTDF description in GT from information in the source groups. To this end,
we start with many small matrices Mi ∈ Z

k√n× k√n
p (for i ∈ {1, . . . , k}), and their

respective component-wise encryptions Ci = Enc(Mi) in Gi. We then compute C
from the Ci as

C := C1 ◦ · · · ◦ Ck (4.1)

for a suitable operation ◦ on encrypted matrices. Ideally, we would like to have that
Enc(Mi) ◦ Enc(Mj) = Enc(Mi ⊗Mj) for the Kronecker product ⊗. Namely, such
a map would multiply the matrix dimensions, which means that a sufficiently large
matrix C can be constructed from few and small Ci. (In other words, our compres-
sion strategy would lead to small public descriptions.) Besides, rank(Mi ⊗Mj) =
rank(Mi) · rank(Mj), so we end up with C = Enc(M) with all-zero, resp. invertible
M whenever all Mi are all-zero, resp. invertible. Hence, depending on the Mi, the
eventual LTDF becomes lossy or invertible. (Assuming a secure encryption scheme,
these cases are computationally indistinguishable.)

WHY STRAIGHTFORWARD APPROACHES FAIL. Unfortunately, we do not know how
to efficiently implement an operation ◦ as above. Intuitively, the reason is that
there appears to be no suitable encryption scheme that would allow to multiply
encrypted messages using a multilinear map. To explain the issues that arise, let us
consider two natural candidates of suitable encryption schemes. Perhaps the most
straightforward idea would be to use ElGamal “with the message in the exponent”
(as used in [99]), such that the encryption of m under public key pk = [z] and with
random coins r is Encpk(m; r) = ([r], pkr · [m]). To implement an operation ⊗ on the
plaintext space publicly (i.e., with knowledge only of the Ci), we would need to be
able to multiply ciphertexts under different public keys, possibly using a multilinear
map. Concretely, given Encpk(m; r) = ([r], [zr+m]) and Encpk′(m′; r′) = ([r′], [z′r′+
m′]), we would need to compute pk ′′ = [r′′] and Encpk′′(mm′; r′′) = ([r′′], [z′′r′′ +
mm′]) for some r′′, z′′. While we can compute [rr′]T using a bilinear map (implicitly
setting r′′ := rr′), it is unclear how one would compute [z′′r′′ + mm′]T along with
a suitable pk ′′ = [z′′]T . (For instance, we could compute [(zr + m)(z′r′ + m′)]T =
[zz′rr′+mm′+zrm′+z′r′m]T , which equals our desired result [zz′rr′+mm′]T except
for the unwanted “cross-terms” zrm′ + z′r′m. Unfortunately, we do not know how
to isolate these terms.)

Another approach would involve the Boneh-Goh-Nissim PKE scheme [13]. This
scheme works in a cyclic group of composite order N = pq, and ciphertexts are of
the form c := grp · gmq for public elements gp, gq of order p, resp. q, and random coins
r. Note that in case of such groups, a multilinear map must satisfy e(gp, gq) = 1, so

57

4 Compact Lossy Trapdoor Functions from Multilinear Maps

that plaintexts can be easily multiplied using e(grpgmq , gr
′
p g

m′
q) = grr

′
p gmm

′
q . The prob-

lem with this approach is hence not the operation ◦ itself, but establishing that lossy
and invertible Ci are computationally indistinguishable. At this point, we should
mention one necessary property of the PW-LTDF encrypted matrix C we have ne-
glected so far. Namely, the used public keys and encryption random coins in C
must be correlated (or, re-used), in a way such that the encryption random coins
of f(~x) = Enc(M · ~x) reveal only a limited amount of information about ~x. With
the BGN scheme, this translates to the property that the matrix R = (ri,j)ni,j=1 of
random coins used to produce C = (Enc(mi,j ; ri,j))i,j has low rank. With an opera-
tion ◦ sketched above, this translates to the requirement that the random matrices
Ri used to produce the building block matrices Ci are similarly of low rank. With
this requirements on the random coins, it seems hard to show that Ci that encrypt
low-rank Mi are computationally indistinguishable from Ci that encrypt invertible
Mi.5

OUR APPROACH. In a nutshell, our solution is to use the ElGamal encryption scheme
(as described above), and to implement an operation ◦ as in Equation (4.1) that only
implements an “approximation” of the Kronecker product on the plaintext matrices.
Concretely, we start with ElGamal ciphertext matrices Ci = Enc(Mi) as above. We
then define Ci ◦ Cj as the Kronecker product of matrices, where multiplication of
encryptions is defined as component-wise pairing.6 Note that this way, the matrices
Ri of random coins are combined through a Kronecker product (such that the final
randomness matrix R of the final description C from Equation (4.1) is of low rank
if all Ri are low-rank), but the plaintext matrix M is “polluted” (even recursively)
with cross-terms of the form z′r′m+ rzm′.

The good news with this is that it is easy to see that encryptions Ci of all-zero
matrices lead to an encryption C of an all-zero matrix, suitable to evaluate a lossy
function in the sense of [99]. The bad news, however, is that it is not immediately
clear how an encryption C of an invertible matrix can be generated.7 Hence, the
main technical work is to show that C encrypts an invertible matrix (at least with
high probability) once all Ci encrypt invertible matrices. (The necessary argument
proceeds inductively and uses nontrivial linear algebra.)

OUR LTDF IN THE SYMMETRIC SETTING. The LTDF sketched above uses the ElGamal
encryption scheme, whose security relies on the DDH assumption. Hence, we can-
not use that assumption in a setting with a symmetric multilinear map (i.e., with a
multilinear map e : G × · · · × G → GT). Instead, in a symmetric setting, we offer
a construction based on the k-Linear-based LTDF from [46, 115]. Very briefly, this
LTDF uses as public description a matrix C = [M] = ([mi,j])i∈{1,...,n} of group ele-

5Of course, one can always assume that such an indistinguishability holds, which essentially implies
that we assume indistinguishability of lossy and invertible functions. However, we could not show
that this is implied by a more “natural” computational assumption.

6More formally, for C = (ci,j)mi,j=1 and C′ = (c′i,j)m
′

i,j=1, we let C ◦ C′ be the ciphertext matrix
C′′ = (c′′i,j)m·m

′
i,j=1 with c′′(i−1)m′+i′+1,(j−1)m′+j′+1 = ci,j ◦ c′i′,j′ , where multiplication of individual

ciphertexts c ◦ c′ = (gr, gzr+m) ◦ (gr
′
, gz

′r′+m′
) = (e(g, g)rr

′
, e(g, g)zz

′rr′+mm′+z′r′m+rzm′
) is

defined through component-wise pairing. We implicitly set the public key of c ◦ c′ as e(g, g)zz
′
.

7While one would expect that C encrypts a “reasonably random” matrix once all Ci encrypt random
matrices, note that this is not true information-theoretically: the combined entropy contained in
all Ci is much lower than the entropy of a uniformly random C.

58

4.1 Overview

ments, where the function becomes invertible iff the exponent matrix M = (mi,j)
has full rank. Using a Kronecker product strategy similar to (but simpler as) the
one above, we can reconstruct C ∈ Gn×nT as a Kronecker product “in the exponent”
C = C ′ ◦ · · · ◦ C ′ for C ′ ∈ G`×`.

The advantage over our asymmetric construction is a smaller description size
(since only one building block matrix has to be stored). The disadvantage is that we
have to rely on the k-Linear assumption (which does not hold, e.g., in the setting
of the recent approximative multilinear map candidate from [51]). In particular,
already the matrix C ′ has to be of dimension ` > k in a setting with a k-linear
map. Furthermore, as inherited from the k-Linear-based LTDFs from [46, 115], the
lossiness of our LTDF is lower than in the asymmetric case.

POSSIBLE IMPLEMENTATIONS OF MULTILINEAR MAPS. We formulate our LTDFs with
generic multilinear maps. In the bilinear case, this means they can be implemented
using standard (symmetric or asymmetric) pairings. In the multilinear case (with
k > 2), one could hope that our constructions can be implemented with the recent
approximative multilinear map candidates due to [51], resp. [35]. Unfortunately,
this does not appear to be the case, even regardless to any security considerations:
due to the randomized nature of encodings of group elements in [51, 35], the LTDF’s
output may come with a small noise, which may depend on the input even in the
lossy case.8

The recently proposed approximation of a multilinear map of [3] (see 3.3 for a
summary), on the other hand, seems to be suitable for implementing our LTDFs.
Like [51, 35], their construction also makes use of randomized encodings in the
source group, but maps them to unique encodings. The output of the map is in
fact an element of a cyclic group. This allows further computations with output
elements of the multilinear map as needed, e.g., for evaluating and inverting our
LTDFs. Furthermore, the same techniques as in [99, 23, 46] can be used to argue
why our LTDFs are lossy.

4.1.2 Efficiency

To construct an n×n-matrix in a setting with an asymmetric (resp. symmetric) k-
linear map, we require k (resp. 1) k

√
n× k
√
n-matrices. (Note that in case of a sym-

metric multilinear map, we must have k
√
n > k to enjoy any kind of lossiness.) This

results in a public description of 2kn2/k (resp. n2/k) G-elements.
The computational complexity of a function evaluation mainly depends on the

time to uncompress the compressed public description. In the asymmetric (resp. sym-
metric) setting, this amounts to 2n2 (resp. n2) evaluations of the k-linear map. Ad-
ditionally, there are 2n3 (resp. n3) group operations in order to actually evaluate the
function.

In Table 4.1, we contrast and compare these figures to that of existing LTDFs in
the discrete log setting.

8One cannot easily use the noiseless “canonical representation” of an encoding from [51, 35], since
these canonical representation do not allow further computations (as necessary for LTDF inver-
sion). Alternatively, one could hope to argue that even the noise information could be made
lossy (as, e.g., in [99] for the LWE-based LTDF). However, due to the different nature of noise in
[51, 35], it does not seem clear how to do so.

59

4 Compact Lossy Trapdoor Functions from Multilinear Maps

Scheme Assumption Type of map Description size Lossiness
PW08 [99] DDH none n2 + 2n n− log2(|G|)
FGKRS10 [46, 115] k-LIN none n2 n− k log2(|G|)
BW10 [23] bilinear DDH bilinear (A/S) 5n n− log2(|G|)
Ours (Section 4.4) DDH bilinear (A) 4n n− log2(|G|)
Ours (Section 4.5) 2-LIN bilinear (S) n n− 2 log2(|G|)
Ours (Section 4.4) DDH k-linear (A) 2kn2/k n− log2(|G|)
Ours (Section 4.5) k-LIN k-linear (S) n2/k n− k log2(|G|)

Table 4.1: Efficiency characteristics of different LTDF constructions in the discrete log set-
ting. As assumption in groups allowing (asymmetric) multilinear maps, DDH
means the DDH assumption in every source group. “Type of map” denotes the
necessary multilinear map, where “A” means asymmetric, and “S” symmetric. The
“size of public description” is measured in group elements.

4.2 Lossy Trapdoor Functions from Encrypted Matrices

In 2008, Peikert and Waters ([99]) introduced the concept of lossy trapdoor func-
tions and realized them from both the (decisional) Diffie-Hellman and from lattice-
based assumptions. Both constructions use matrices with component wise encrypted
entries. We will review their generalized concept in this section.

Let Setup, KeyGen, Enc and Dec denote algorithms of an additively homomor-
phic public key encryption scheme with message space Zp. Let · denote the ho-
momorphic operation, i.e., Encpk(m; r) · Encpk(m′; r′) = Encpk(m + m′; r′′), where
the first parameter is the message and the second parameter is the encryption
randomness. We require that r′′ depends solely on r and r′ and the encryption
scheme remains secure when randomness is reused.9 For convenience, we write
Encpk(m; r)x :=

∏x
i=1 Encpk(m; r). Additionally, observe that the encryption scheme

allows another type of homomorphic operation, namely combining encryptions us-
ing the same randomness as follows (we will also write this operation multiplica-
tively):

Encpk(m; r)Encpk′(m′; r) = ([r], pkr[m])([r], pk ′r[m′]) def=
([r], pkr[m]pk ′r[m′]) = Encpk·pk′(m+m′; r).

We also extend the definition of the “matrix-vector product in the exponent” ∗ from
Section 2.1 to an “encrypted matrix-vector product” in the obvious way. That is,
for ~y = (yi) = (Encpki(xi; ri)) and a matrix M = (mi,j) over Zp, define ~y ∗M :=
(
∏
i Encpki(xi; ri)

mi,j)j; analogously for M ∗ ~y, and C ∗ ~x and ~x ∗ C for an encrypted
matrix C and a vector ~x over Zp. Note that ∗ is computed using the homomorphic
operation. We will solely deal with terms where only one of the two possible types
of homomorphic operations occur.

Let PP denote the public parameters of the encryption scheme (generated by
Setup). For input size n = n(λ) ∈ N we define a matrix of n2 encryptions as follows:

CM(PP, ~pk, ~r) :=
(
Encpkj (mi,j ; ri)

)
i,j∈{1,...,n}

,

where M ∈ {0n, In}, (pki, ski)i∈{1,...,n} ← KeyGen(PP), (ri)i∈{1,...,n} randomly cho-
sen. For simplicity, if it follows from the context which keys and randomness are

9Like [69], who also explain (other) LTDF constructions from homomorphic encryption, we do not
assume any particular homomorphic property concerning the randomness.

60

4.2 Lossy Trapdoor Functions from Encrypted Matrices

used when building the matrix, we will omit the parameters and write CM :=
CM(PP, ~pk, ~r). We call a matrix of this form PW-matrix (where PW stands for Peik-
ert and Waters).

By construction, CM is an entry-wise encryption of either the zero matrix or the
identity matrix, where encryptions in each row use the same randomness and in
each column the entries are encrypted under the same public key as depicted below.

CM =


pk1 ↓ pk2 ↓ . . .

Encpk1(m1,1; r1) Encpk2(m1,2; r1) . . .
Encpk1(m2,1; r2) Encpk2(m2,2; r2) . . .

...
...

. . .

 ← r1
← r2
...

We define the four algorithms, Sinj , Slossy, Fltdf and F−1
ltdf :

• Injective sampling. Sinj takes as input n ∈ N, runs Setup(λ) to obtain system
parameters PP, obtains (pki, ski)i∈{1,...,n} ← KeyGen(PP), draws random val-
ues (ri)i∈{1,...,n} for the encryption scheme, computes CI and outputs the func-
tion description CI and the trapdoor td = (ski)i∈{1,...,n}. (Recall the definition
of the matrices I and 0 from Section 2.1.)

• Lossy sampling. Sloss takes as input n ∈ N, runs Setup(λ) to obtain system
parameters PP, obtains (pki, ski)i∈{1,...,n} ← KeyGen(PP), draws random val-
ues (ri)i∈{1,...,n} for the encryption scheme and outputs the function descrip-
tion C0.

• Function evaluation. Fltdf takes as input a description CM and x ∈ {0, 1}n
and outputs y := ~x ∗ CM, where ~x is the input x written as row vector and ∗
denotes the special matrix-vector product as defined above. Hence, the result
is a vector y with components

yj :=
n∏
i=1

Encpkj (mi,j ; ri)xi .

• Inversion. F−1
ltdf takes as inputs a tuple (CI, ~sk) generated by Sinj and an

image y. It then reconstructs x component wise by computing xj = Decskj (yj)
for all j ∈ {1, . . . , n} and outputs x.

We now explain why the function evaluation algorithm Fltdf is lossy when running
with inputs generated by the lossy sampling algorithm Sloss. By definition, Fltdf
outputs a vector ~y = (yj)j∈{1,...,n} with yj :=

∏n
i=1 Encpkj (mi,j ; ri)xi , where the

encryption randomness does not depend on j. Thus all encryptions in ~y use the same
randomness, denoted by r(~r, x) to point out the dependencies. In the lossy case ~y
contains only encryptions of zeros, thus messages and public keys are independent
of the input x. Therefore, there is only one value in ~y containing information about
x, namely r(~r, x). This means that only |r(~r, x)| bits of information about x are
revealed. If we require Setup to generate parameters PP where the encryption
randomness comes from a group of size p, there are only p possible values y for 2n
possible inputs x. Therefore Fltdf , when running with input C0 from Sloss and the
parameters are chosen such that log2(p) < n, loses n− log2(p) bits of information.

61

4 Compact Lossy Trapdoor Functions from Multilinear Maps

In the injective case, i.e., Fltdf running with input CI from Sinj , function evalua-
tion is invertible because the vector ~y contains encryptions of all bits of x under the
n different public keys, all using again the same randomness r(~r, x). Knowledge of
the secret keys therefore suffices to recover the single bits of x.

In the original paper ([99]), the authors instantiated their construction with an
ElGamal-like encryption scheme based on DDH. The public description of the func-
tion is the matrix CM, resulting in rather large public parameters of size O(n2).
There have been efforts to compress these public parameters, namely by Boyen and
Waters ([23]). Their idea is to move the encryptions to the target group of a pairing.
They publish O(n) elements of the domain groups, which then can be combined us-
ing the pairing to compute the encrypted matrix. The main difficulty is to assure
that the main diagonal remains uncomputable to avoid distinguishability of the two
function types. The drawback of this method is that there is a natural linear lower
bound for the size of the public parameters, because the main diagonal already has
n elements and is contained in the public key.

4.3 New Methods for Compressing LTDFs from Encrypted
Matrices

To further improve the size of the public parameters of a lossy trapdoor function
from encrypted matrices we have to find a method to compress the main diagonal
of the matrix CM. Our approach is to build CM from smaller matrices C′M, C′′M using
a tensor product. This way, a matrix of size n×n can be computed using two matrices
of size

√
n×
√
n, reducing the size of the lossy trapdoor function’s public description

to O(
√
n

2). As we will show, one can even apply this method several times to
further compress the matrices. Note that the tensor product preserves the structure
of public keys and randomness of C′M and C′′M, in the sense that the resulting matrix
has products of encryptions using the same randomness in each row, under the same
public keys in each column and thus is again a PW-matrix. Concretely,

CM := C′M ⊗φ C′′M =
(
Encpk′j (mi,j ; r′i)

)
i,j∈{1,...,n}

⊗φ
(
Encpk′′j (mi,j ; r′′i)

)
i,j∈{1,...,n}

=


pk′1, pk

′′
1 ↓ pk′1, pk

′′
2 ↓ . . .

φ(Encpk′
1
(m1,1; r′1),Encpk′′

1
(m1,1; r′′1)) φ(Encpk′

1
(m1,1; r′1),Encpk′′

2
(m1,2; r′′1)) . . .

φ(Encpk′
1
(m1,1; r′1),Encpk′′

1
(m2,1; r′′2)) φ(Encpk′

1
(m1,1; r′1),Encpk′′

2
(m2,2; r′′2)) . . .

...
...

. . .


← r′1, r

′′
1

← r′1, r
′′
2

...

for a suitable function φ and the straightforward extension of the generalized Kro-
necker product from Definition 2.2.1 to encryptions from a homomorphic encryption
scheme.

There are two main problems that arise with this construction. First, in the lossy
case, not all encryption schemes have the property that there is a function φ such
that φ(Encpk(0; r),Encpk′(0; r′)) is again an encryption of zero (so that C′0 ⊗φ C′′0 is
still an encryption of the all-zero matrix). Second, observe that in the injective case
C′I ⊗φ C′′I contains products of encryptions of 0 and 1. Depending on the encryption
scheme and φ, those products of encryptions might not encrypt 0. Instead, they

62

4.4 Lossy Trapdoor Functions from DDH using Asymmetric Multilinear Maps

encrypt some “cross terms” that might also depend on the randomness and public
keys. Thus CI might not preserve the plaintext matrix I properly and we will get
non-zero encryptions of messages outside the main diagonal. The final plaintext
matrix could even be of low rank, potentially making the function lossy. This inhibits
the straightforward recovery of inputs using the techniques from Section 4.2.

Our first construction uses ElGamal encryption “in the exponent” to compute the
encryptions in C′M and C′′M. Then CM is obtained by choosing the function φ to
be a pairing e and compute CM as C′M ⊗e C′′M. This way, CM is still a PW-matrix
and encrypts the all-zero matrix in the lossy case. It remains to show that in the
injective case we can still derive functions Fltdf , F−1

ltdf from CM. The overall idea is
to keep track of and make up for all “message-randomness cross terms” that arise in
the plaintext matrix of CM when applying the tensor product. This construction is
described in Section 4.4. Using the same techniques and a multilinear map, we can
further compress the public description of our LTDF (see Section 4.4.2 for details).

In Section 4.5 we apply our technique of compressing matrices using a Kronecker
product to a k-LIN-based lossy trapdoor function from [46].

4.4 Lossy Trapdoor Functions from DDH using Asymmetric
Multilinear Maps

In this section we describe our lossy trapdoor function based on DDH and asym-
metric multilinear maps. For simplicity, we start with explaining it using a bilinear
map. We instantiate the generic construction from Section 4.2 with the DDH-based
ElGamal-like encryption scheme from Definition 2.6.1, also used in [23]. We give
now a formal description of our lossy trapdoor function. See Figure 4.1 for an in-
formal overview over the four algorithms that it consists of.

INJECTIVE SAMPLING. To sample an injective function with input size n, the in-
jective sampling algorithm runs a prime order bilinear group generator G2(n −
l) to obtain two groups G1, G2 of order p equipped with an asymmetric pairing.
It then computes and outputs two PW-matrices C′M((p,G1, g1), [~z ′]1, ~r ′) ∈ (G1 ×
G1)

√
n×
√
n,C′′M((p,G2, g2), g~z ′′2 , ~r ′′) ∈ (G2×G2)

√
n×
√
n of size

√
n×
√
n, where M is a

plaintext matrix that is arbitrary but invertible (e.g. M = I). The matrices are com-
puted using the encryption scheme from Definition 2.6.1, i.e., using randomness
~r ′, ~r ′′

R← Z
√
n

p and secret keys ~z ′, ~z ′′ obtained from KeyGen(p,G1, g1), respectively
KeyGen(p,G2, g2), which means that ~z ′ and ~z ′′ are also random vectors from Z

√
n

p .

C′M =

([r′1]1, [r′1z′1 +m1,1]1) ([r′1]1, [r′1z′2 +m1,2]1) . . .
([r′2]1, [r′2z′1 +m2,1]1) ([r′2]1, [r′2z′2 +m2,2]1) . . .

...
...

. . .



C′′M =

([r′′1]2, [r′′1z′′1 +m1,1]2) ([r′′1]2, [r′′1z′′2 +m1,2]2) . . .
([r′′2]2, [r′′2z′′1 +m2,1]2) ([r′′2]2, [r′′2z′′2 +m2,2]2) . . .

...
...

. . .


Additionally, Sinj outputs the secret keys ~z ′, ~z ′′ as trapdoors.

63

4 Compact Lossy Trapdoor Functions from Multilinear Maps

• Sinj(n, l) −→ (C′M,C′′M, ~z ′, ~z ′′), where
– C′M := C′M((p,G1, g1), ~r ′, ~z ′) ∈ (G1 × G1)

√
n×
√
n, i.e., an entry

c′i,j of C′M is computed as c′i,j := Enc[~z ′j]1(mi,j ;~r ′i) = ([r′i]1, [r′iz′j+
mi,j]1)

– C′′M := C′′M((p,G2, g2), ~r ′′, ~z ′′) ∈ (G2 ×G2)
√
n×
√
n

– ~r ′, ~r ′′, ~z ′, ~z ′′
$←− Z1×

√
n

p

– M← Z
√
n×
√
n

p with rank(M) =
√
n, M =: (mi,j)i,j∈{1,...,√n}

– (2, G1, G2, GT , e, p, g1, g2)←− G2(n− l)
• Sloss(n, l) −→ (C′0,C′′0), where

– C′0 := C′0((p,G1, g1), ~z ′, ~r ′) ∈ (G1 ×G1)
√
n×
√
n

– C′′0 := C′′0((p,G2, g2), ~z ′′, ~r ′′) ∈ (G2 ×G2)
√
n×
√
n

– ~r ′, ~r ′′, ~z ′, ~z ′′
$←− Z1×

√
n

p

– (2, G1, G2, GT , e, p, g1, g2)←− G2(n− l)
• Fltdf (C′M,C′′M, x) −→ y, where

– y := x ∗ CM̃, i.e., yj =
∏n
i=1 c

xi
i,j with (ci,j)i,j∈{1,...,n} := CM̃

– CM̃ := C′M ⊗e C′′M ∈ Gn×n

• F−1
ltdf (CM̃, ~z ′, ~z ′′, y) −→ x, where

– x := Dec
~zM̃−1(y ∗ M̃−1), ~z := ~z ′ ⊗ ~z ′′ ∈ Z1×n

p

– M̃ := (m̃i,j)i,j∈{1,...,n} with m̃i,j := Deczj (ci,j)
– (ci,j)i,j∈{1,...,n} := CM̃

Figure 4.1: A formal description of our LTDF using ElGamal-like encryption based on DDH.

64

4.4 Lossy Trapdoor Functions from DDH using Asymmetric Multilinear Maps

LOSSY SAMPLING. The lossy sampling algorithm does the same as the injective sam-
pling algorithm, except it computes the PW-matrices as encryptions of the all-zero
matrix (i.e., M = 0) and does not output the secret keys.

FUNCTION EVALUATION. The evaluation algorithm first computes a PW-matrix CM̃
of size n by combining the smaller PW-matrices of the sampling algorithms using
the tensor product on bilinear groups. The randomness and keys used in CM̃ can
be computed from the randomness and keys of the smaller matrices. Then the
algorithm proceeds as in the generic construction, i.e., computes and outputs y :=
x ∗ CM̃ for a binary input vector x.

INVERSION. Observe that inverting an output y of Fltdf is not as straightforward as
in the generic construction, because Sinj did not encrypt the identity matrix but an
invertible matrix M. Even worse, this M is not preserved by the tensor product
because of the aforementioned cross terms. Thus, CM̃ generally encrypts a matrix
M̃ 6= M ⊗M. However, note that the encryption scheme allows us to multiply
an encrypted matrix M̃ with another matrix, e.g., with M̃−1. The result is the
encrypted identity matrix. Now M̃ can in fact be computed from CM̃ using the
trapdoor (the secret keys used in the encryptions of CM̃). If M̃ is invertible (see
remark below), M̃−1 exists and we can compute y′ := y ∗M̃−1. Note that y′ is equal
to the image of x under a PW-matrix CIn using different keys as in CM̃ (but the same
randomness). Since those keys are computable, F−1

ltdf can proceed with y′ as in the
generic construction.

4.4.1 Correctness and Security of our Construction

The construction requires the plaintext matrix M̃ of CM̃ to be invertible. Let S′ :=
(r′iz′j)i,j∈{1,...,√n}, S′′ := (r′′i z′′j)i,j∈{1,...,√n} denote the two matrices containing the
randomness and public keys used in C′M,C′′M. Then it is easy to see that

M̃ = M⊗M + M⊗ S′′ + S′ ⊗M,

where M ⊗ S′′ + S′ ⊗M are the cross terms that arise from the tensoring. Note
that S′,S′′ are random matrices of rank 1 (up to a negligible statistical distance).
Assuming the matrix M̃ to be invertible in this setting seems quite reasonable, and
indeed we will see in Section 4.4.3 that this holds with overwhelming probability,
even in a more general case.

Lemma 4.4.1. For M ∈ Z
√
n×
√
n

p with rank(M) =
√
n and random matrices S′,S′′ ∈

Z
√
n×
√
n

p (each of rank 1), the matrix M̃ := M⊗M + M⊗ S′′ + S′ ⊗M is invertible
at least with probability 1− (2

p−1 + 2
p + 1

p
√
n).

Proof. See Lemma 4.4.8 with k = 2.

Lemma 4.4.2. If the algorithm Fltdf runs with matrices generated by Sloss(n, l), it
loses l := n− log2(p) bits of information about the input vector x ∈ {0, 1}n.

Proof. The proof is as in the generic construction. In the lossy case, y contains one
group element that depends on x, namely Rx := g

∑n

i=1 rixi with ri := (ci,1)1 ∈ GT
for i ∈ {1, . . . , n}, (ci,j)i,j∈{1,...,n} := CM̃. Note that the element Rx is the first

65

4 Compact Lossy Trapdoor Functions from Multilinear Maps

element of each tuple in y because the same randomness is used in the rows of the
PW-matrix CM̃. F−1

ltdf therefore maps from {0, 1}n to a subset of size |GT | = p, and
thus loses n− (n− l) = l bits of information.

Lemma 4.4.3. The scheme is correct in the sense that if the algorithm Fltdf runs with
input vector x and matrices generated by Sinj , the inversion algorithm recovers x except
with negligible probability over the choice of f .

Proof. Remember that the encryption scheme is additively homomorphic and thus
satisfies

Enc[z](m; r)m′ = ([r]m′ , [rz +m]m′) = ([rm′], [rzm′ +mm′]) = Enc[z](mm′; rm′).

Moreover, remember that the encryption scheme allows combining encryptions us-
ing the same randomness as follows (which we also write multiplicatively):

Enc[z1](m1; r)Enc[z2](m2; r) = ([r], [z1r +m1])([r], [z2r +m2])
= ([r], [z1r +m1][z2r +m2])
= Enc[z1+z2](m1 +m2; r).

We derive some basic rules from these properties. Let Z ∈ Zn×np be a matrix where

every row is equal to ~z ∈ Z1×n
p , R,M ∈ Z

√
n×
√
n

p arbitrary matrices and ~x ∈ Z1×n
p .

Then it follows that

~x ∗ Enc[Z](M; R) = Enc[~z](~xM; ~xR). (4.2)

Similarly, if ~r ∈ Z1×n
p is a vector with equal entries, ~z, ~y ∈ Z1×n

p arbitrary vectors
and M ∈ Zn×np an arbitrary matrix, then

Enc[~z](~y;~r) ∗M = Enc[~z]∗M(~yM;~r). (4.3)

For correctness we have to show that for every output (C′M,C′′M, ~z ′, ~z ′′) of Sinj we
have F−1

ltdf (CM̃, ~z ′, ~z ′′, Fltdf (C′M,C′′M, x)) = x. Let R ∈ Zn×np be the matrix containing
the randomness used in the encryptions of CM̃ (note that R has equal columns) and
similarly Z be the matrix containing all secret keys used in CM̃ (every row of Z is
equal to ~z with ~z := ~z ′ ⊗ ~z ′′). Using the notation and rules from above we get

F−1
ltdf (CM̃, ~z ′, ~z ′′, Fltdf (C′M,C′′M, x)) = F−1

ltdf (CM̃, ~z ′, ~z ′′, x ∗ CM̃)

= F−1
ltdf (CM̃, ~z ′, ~z ′′, x ∗ Enc[Z](M̃; R))

(4.2)= F−1
ltdf (CM̃, ~z ′, ~z ′′,Enc[~z](xM̃;xR))

= Dec
~zM̃−1(Enc[~z](xM̃;xR) ∗ M̃−1)

(4.3)= Dec
~zM̃−1(Enc[~z]∗M̃−1(xM̃M̃−1;xR))

= Dec
~zM̃−1(Enc[~zM̃−1](x;xR))

= x.

Note that, since R has equal columns, xR is a vector with equal entries. This is an
essential condition for applying rule (4.3). Also note that F−1

ltdf is only computable

if M̃ is invertible. Applying Lemma 4.4.1, it follows that F−1
ltdf outputs x with proba-

bility 1− (2
p−1 + 2

p + 1
p
√
n).

66

4.4 Lossy Trapdoor Functions from DDH using Asymmetric Multilinear Maps

The next Lemma shows computational indistinguishability of the
√
n×
√
n-sized

matrices generated by Sloss and Sinj under the DDH assumption. We will need this
result to show security of our construction, i.e., indistinguishability of the n×n-sized
matrices computed by Fltdf .

Lemma 4.4.4. If the groups generated by G2 satisfy the DDH assumption, the matri-
ces C′0,C

′′
0 generated by Sloss are computationally indistinguishable from the matrices

C′M,C′′M generated by Sinj , for any (independent) distribution of the plaintext matrix
M.

Proof. This result is not surprising since the case M = I has already been proven
in [23]. We split the proof in three parts. Let (2, G1, G2, GT , e, p, g1, g2) denote
the output of G2. We denote the public parameters of the groups G1 and G2 by
PP i := (Gi, p, gi) for i ∈ {1, 2}. First, we show that in each of the groups G1, G2,
two PW-matrices encrypting either a uniformly random matrix Q or the all-zero
matrix are computationally indistinguishable, i.e., for i ∈ {1, 2} and n ∈ N it holds
that

C0(PP i, ~pk, ~r)
c≈ CQ(PP i, ~pk, ~r), (4.4)

where ~pk ∈ Znp is taken from (pki, ski)i∈{1,...,n} ← KeyGen(PPi), r
R← Znp and Q R←

Zn×np .
Next, we show that for i ∈ {1, 2} and n ∈ N it holds that

(M,C0(PP i, ~pk, ~r))
c≈ (M,CM(PP i, ~pk, ~r)), (4.5)

where ~pk is again generated by KeyGen, r R← Znp and M is generated according to
the given plaintext distribution.

We conclude the proof of Lemma 4.4.4 by showing that for n ∈ N

(C′0(PP1, ~pk
′
, ~r ′),C′′0(PP2, ~pk

′′
, ~r ′′)) c≈ (C′M(PP1, ~pk

′
, ~r ′),C′′M(PP2, ~pk

′′
, ~r ′′)),

(4.6)

where ~pk
′
, ~pk
′′

are again generated by KeyGen and ~r ′, ~r ′′ R← Znp .

PROOF OF EQUATION (4.4). For a proof of the statement in one of the groups, e.g.
G1, we define a series of n + 1 subsequent games Gamek, k ∈ {0, . . . , n}. Gamek
contains a tuple (A, [~z]1, ~r) with ~z, ~r

R← Znp and a matrix A = (ai,j)i,j∈{1,...,n} with
tuples ai,j as entries defined as follows:

ai,j = ([ri]1,Ri,j) with Ri,j
R← G1 for i ≤ k

ai,j = ([ri]1, [rizj]1) for i > k.

Observe that in game Gamen we have A = CQ(PP1, [~z]1, ~r) for a random Q ∈ Gn×n1
and in game Game0 we have A = C0(PP1, [~z]1, ~r).

Now let ([1]1, [x]1, [y]1, [z]1) denote a DDH challenge tuple. We show how we can
use a distinguisher between two subsequent games to solve the DDH challenge. For
this we first draw ~a,~b

R← Znp . We use ~a,~b to re-randomize the DDH challenge tuple
as follows: for each i ∈ {1, . . . , n} we compute a new DDH tuple as ([1]1, [x]1, [yai+
bi]1, [xbi + zai]1). Note that if z = xy, the new tuples contain n encryptions of zero

67

4 Compact Lossy Trapdoor Functions from Multilinear Maps

under n different (and random) public keys [yai + bi]1 =: [si]1, i ∈ {1, . . . , n}. If z 6=
xy, the new tuples contain n encryptions of random values (z−xy)ai, i ∈ {1, . . . , n}.
We then choose k ∈ {1, . . . , n}, draw random elements ~r R← Znp and Ri,j

R← G1 and
compute the matrix A as

A :=



([r1]1,R1,1) ([r1]1,R1,2) . . . ([r1]1,R1,n)
...

... . . .
...

([rk−1]1,Rk−1,1) ([rk−1]1,Rk−1,2) . . . ([rk−1]1,Rk−1,n)
([x]1, [xb1 + za1]1) ([x]1, [xb2 + za2]1) . . . ([x]1, [xbn + zan]1)
([rk+1]1, [rk+1s1]1) ([rk+1]1, [rk+1s2]1) . . . ([rk+1]1, [rk+1sn]1)

...
... . . .

...


.

Note that we implicitly set the randomness in row i to ri := x and the public key
in each column j ∈ {1, . . . , n} to [sj]1. The matrix contains encryptions of random
elements in row k if z 6= xy and encryptions of zero otherwise. Thus, if z 6= xy we
are in game Gamek and if z = xy we are in game Gamek−1.

Since Game0 and Gamen cannot be distinguishable without any of two subse-
quent games in between being distinguishable, we have shown that C0(PP1, [~z]1, ~r)
c≈ CQ(PP1, [~z]1, ~r).

PROOF OF EQUATION (4.5). We show (M,C0) c≈ (M,CQ) c≈ (M,CM) for a random
matrix Q ∈ Zl×lp . The first indistinguishability follows directly from Equation (4.4).

For showing (M,CQ) c≈ (M,CM), we again use Equation (4.4) to obtain a PW-
matrix C which encrypts 0l or a random matrix Q′, draw a matrix M according
to the given plaintext distribution, and compute the tuple (M,C · [M]). If C = C0
we computed (M,CM), else (M,CQ). Note that Q is again a random matrix since
Q = M + Q′.

PROOF OF EQUATION (4.6). We define the following set of three games.

Game0 : (C′0(PP1, ~pk
′
, ~r ′),C′′0(PP2, ~pk

′′
, ~r ′′))

Game1 : (C′0(PP1, ~pk
′
, ~r ′),C′′M(PP2, ~pk

′′
, ~r ′′))

Game2 : (C′M(PP1, ~pk
′
, ~r ′),C′′M(PP2, ~pk

′′
, ~r ′′))

Indistinguishability can be shown via a straightforward reduction from Eq. 4.5. Note
that Eq. 4.5 also contains the plaintext matrix M, which makes it easy to compute
C′′M on the right hand side of Game1 and Game2.

Putting it all together we obtain the following result:

Theorem 4.4.5. If the groups generated by G2(n − l) satisfy the DDH assumption,
the algorithms Sinj , Sloss, Fltdf and F−1

ltdf define a collection of (n,l)-lossy trapdoor
functions.

Proof. See Lemma 4.4.2, Lemma 4.4.3, Lemma 4.4.4.

68

4.4 Lossy Trapdoor Functions from DDH using Asymmetric Multilinear Maps

4.4.2 Efficiency and Optimizations

For evaluating inputs of size n, the public description of our LTDF from DDH us-
ing bilinear groups is given by two PW-matrices of size

√
n×
√
n. Since we have

two group elements per ciphertext, the matrices consist of 4
√
n

2 = 4n group ele-
ments. This is asymptotically as efficient as the constructions of Boyen and Waters
([23]), which also have a public description of linear size. But in contrast to the
construction from [23], our LTDF’s public description can be further compressed
using multilinear maps of higher order than 2 in a straightforward way. Namely,
we apply the tensor product several times and build our final PW-matrix recur-
sively from smaller PW-matrices. Furthermore, since ⊗ is associative and hence ⊗e
just as well, we can evaluate the tensor products in an arbitrary order. Using a k-
linear map for some k ∈ N we can start combining 2 matrices C(1)

M and C(2)
M and

successively append matrices C(i)
M for i = 3, . . . , k from the right, i.e., computing

(((C(1)
M ⊗e C(2)

M)⊗e C(3)
M)⊗e ...)....

If we again denote the matrices containing secret keys and randomness used in
C(i)

M with Si for i = 1, . . . , k for some k ∈ N, then the plaintext matrix Li of the
intermediate result after i matrices have been combined can be computed using the
following recursive formula:

(L1,R1) := (M,S1)
(Li,Ri) := (Li−1 ⊗M + Li−1 ⊗ Si + Ri−1 ⊗M,Ri−1 ⊗ Si).

We will analyze the invertibility of the matrix Lk, the plaintext matrix of the final
PW-matrix, in the next section.

We now examine the size of the public description of our general construction.
Using an asymmetric k-linear map we can combine k PW-matrices of size k

√
n× k
√
n

each using different randomness and public keys and obtain a matrix of size n×n.
If the matrix M is invertible, with overwhelming probability the resulting matrix
describes an injective function (see Lemma 4.4.8). If M = 0, the resulting matrix
describes a lossy function. The proofs of lossiness, invertibility and indistinguisha-
bility can be directly translated from the bilinear to the multilinear setting. Overall
we obtain a lossy trapdoor function using a k-linear map with a public description
size in O(k(k

√
n)2).

4.4.3 Construction of Large Invertible Matrices from few Randomness

In this chapter, we provide evidence for the invertibility of our lossy trapdoor func-
tion. Namely, we show that if we start with “small” invertible matrices and recur-
sively combine them as described in Section 4.4.2, we obtain a PW-matrix encrypt-
ing a plaintext matrix that is invertible with overwhelming probability.

Lemma 4.4.6. Let Q ∈ Zn×np be of rank 1, let M ∈ Zn×np be invertible and let z ∈ Zp.
Then it holds:

1. If Q is uniformly random (but still a rank-1 matrix) and M is constant, then the
matrix M + Q is invertible with probability 1− 1

p−1 .

2. If Q and M are constant, and z is uniformly random, then the matrix z ·M + Q
is invertible at least with probability 1− 2

p .

69

4 Compact Lossy Trapdoor Functions from Multilinear Maps

Proof. W.l.o.g., M is the identity matrix—otherwise we perform an according basis
transformation. Since rank(Q) = 1, we have that 0 is an eigenvalue of Q with
multiplicity n − 1 and thus the characteristic polynomial of Q can be written as
xn−1(x − λ) with λ ∈ Zp\{0}. In other words, every rank-1 matrix has exactly one
non-zero eigenvalue. In the following, let λ always denote this eigenvalue of Q.
Further, note that the following four assertions are equivalent:

• The matrix z · I + Q is not invertible.

• There exists a vector x 6= 0, such that (z · I + Q)x = 0.

• There exists a vector x 6= 0, such that Qx = −zx.

• We have that −z is an eigenvalue of Q.

With this in mind, we can easily prove the two claims our lemma consists of.

1. If Q is uniformly random, then by symmetry reasons its unique non-zero
eigenvalue λ must also be uniformly random over Zp\{0}. This yields:

Pr
[
I + Q is not invertible

]
= Pr[−1 = λ] = 1

p−1 .

2. If Q is constant and z is uniformly random, we have:

Pr
[
z · I + Q is not invertible

]
≤ Pr

[
−z ∈ {0, λ}

]
= 2

p .

Lemma 4.4.7. Let T ∈ Zn×np be uniformly random of rank 1. Then, the statistical
distance between tr(T) and uniform randomness is upper bounded by 1

pn .

Proof. First of all, note that we can write T as the outer product of two vectors
r, s ∈ Znp , which are uniformly random subject to the sole condition that none of
them is all-zero. In particular, r and s are statistically independent of each other.
Further, note that tr(T) is just the inner product of r and s, which we henceforth
denote by 〈r|s〉. Moreover, let the statistical distance of any two random variables
X,Y be denoted by ∆(X,Y).

Now, let r′ be uniformly random over Znp (including the all-zero vector). Hence,
〈r′|s〉 is uniformly distributed over Zp. I.e., the statistical distance of tr(T) from
uniform randomness can be written as ∆

(
〈r|s〉, 〈r′|s〉

)
. However, by construction it

holds:
∆
(
〈r|s〉, 〈r′|s〉

)
≤ ∆

(
(r, s), (r′, s)

)
= ∆(r, r′) = 1

pn .

Lemma 4.4.8. Let M1,S1, . . . ,Mk,Sk ∈ Zn×np be given, where the Mi are arbitrary
but fixed full-rank matrices and the Si are uniformly random of rank 1. Let (L1,R1) :=
(M1,S1) and let inductively Li := Li−1 ⊗Mi + Li−1 ⊗ Si + Ri−1 ⊗Mi and Ri :=
Ri−1⊗Si, where ⊗ denotes the Kronecker product. Then, Lk is invertible at least with
the following probability:

1−
(

k

p− 1 + 2(k − 1)
p

+ k − 1
pn

)
.

70

4.4 Lossy Trapdoor Functions from DDH using Asymmetric Multilinear Maps

Proof. Our proof is by induction on k and consists of three steps. First, we compute
the probability ρ1 that L1 and L1 + R1 are invertible, which is the base case. Next,
we compute the probability ρ2 that Li + Ri is invertible, conditioned to the event
that Li−1 + Ri−1 is already invertible. Finally, we estimate the probability ρ3 that Li
is invertible, conditioned to the event that Li−1 and Li−1 +Ri−1 are both invertible.
By the Union bound, the matrices L1, . . . ,Lk and L1 + R1, . . . ,Lk + Rk are all
simultaneously invertible at least with probability 1−

(
(1− ρ1) + (k − 1)(1− ρ2) +

(k − 1)(1− ρ3)
)
, which will directly yield the assertion of our lemma.

Step 1 (computation of ρ1). We show: The matrices L1 and L1 +R1 are invertible
with probability 1− 1

p−1 .

Since L1 = M1, this matrix is always invertible by assumption. Moreover, as L1 +
R1 = M1 + S1, this matrix is invertible by Lemma 4.4.6.1 with probability 1− 1

p−1 ,
as claimed.

Step 2 (computation of ρ2). We show: Given that Li−1 + Ri−1 is invertible, we
have that Li + Ri is invertible with probability 1− 1

p−1 .

Note that by construction we have:

Li + Ri = Li−1 ⊗Mi + Li−1 ⊗ Si + Ri−1 ⊗Mi + Ri−1 ⊗ Si
= (Li−1 + Ri−1)⊗ (Mi + Si).

Since Li−1 + Ri−1 is invertible by our induction hypothesis, we only have to show
that Mi + Si is invertible. However, by Lemma 4.4.6.1 this is the case with proba-
bility 1− 1

p−1 , as claimed.

Step 3 (estimation of ρ3). We show: Given that Li−1 and Li−1 + Ri−1 are both
invertible, we have that Li is invertible at least with probability 1− 2

p −
1
pn .

As Mi is invertible by assumption and Li−1 + Ri−1 is invertible by our induction
hypothesis, we can set:

T := Si ·M−1
i K := Li−1 · (Li−1 + Ri−1)−1 L′ := Ini +K ⊗ T.

Hence, the matrix Li = L′ · ((Li−1 + Ri−1) ⊗Mi) is invertible if and only if L′ is
invertible. In other words, we have to show that det(L′) 6= 0. Note that we can write
T = U · V with U ∈ Zn×1

p and V ∈ Z1×n
p , since rank(T) = rank(Si) = 1. Also note

that tr(T) = V · U . Let t := tr(T). It follows by Sylvester’s determinant theorem:

det
(
L′
)

= det
(
Ini + (K ⊗ U) · (Ini−1 ⊗ V)

)
= det

(
Ini−1 + (Ini−1 ⊗ V) · (K ⊗ U)

)
= det

(
Ini−1 + t ·K

)
.

Thus, it suffices to show that Ini−1 + t ·K is invertible, which by definition of K is
equivalent to (t+1)·Li−1+Ri−1 being invertible. However, t is statistically indepen-
dent of (Li−1,Ri−1) and 1

pn -close to uniform randomness by Lemma 4.4.7. More-
over, Li−1 is invertible by our induction hypothesis and rank(Ri−1) = rank(Si−1 ⊗
. . . ⊗ S1) = rank(Si−1) · . . . · rank(S1) = 1. Combining all this with Lemma 4.4.6.2,
we can finally conclude that (t+1) ·Li−1 +Ri−1 is invertible at least with probability
1− 2

p −
1
pn .

71

4 Compact Lossy Trapdoor Functions from Multilinear Maps

• Sinj(λ, n) −→ ([M],M), where
– M R← Rn(Zn×np)
– (g,G, p)←− G1(λ)

• Sloss(λ, n, l) −→ [M], where
– M R← Rk(Zn×np)
– (g,G, p)←− G1(λ)

• Fltdf ([M], x) −→ y with y := [M] ∗ x
• F−1

ltdf (M, y) −→ x with x := DLOGg(M−1 ∗ y) ∈ {0, 1}n, where
the discrete logarithm DLOGg(h) of a group element is computed
by brute forcea

aNote that since this discrete logarithm will always only be a bit, this can be done
efficiently.

Figure 4.2: A formal description of the LTDF based on d-LIN from [46].

4.5 Lossy Trapdoor Functions from k-LIN using Symmetric
Multilinear Maps

Freeman et al. ([46]) constructed an LTDF based on k-LIN with a public descrip-
tion that is also a matrix. Although they do not use the same technique as Peikert
and Waters with structured keys and randomness, their approaches have certain
similarities. In this chapter we will describe their construction and give a method
to compress the public parameters of their lossy trapdoor function using symmetric
multilinear maps.

4.5.1 Lossy Trapdoor Functions based on k-LIN

We informally describe the construction of an LTDF based on k-LIN from [46].
Similar to Peikert and Waters, they use the fact that a map x 7→ Cx with a matrix C
is injective if C is invertible. If C is singular, the lossiness depends on the rank of C
and the number of group elements. When C is simply a matrix [M] with M secret,
then the d-LIN assumption implies indistinguishability of [M] and [M′] where M
has full rank and M′ has rank d (see [95], Lemma A.1.).

For a more formal description let Rd(Zn×np) denote the set of n×n-matrices defined
over Zp of rank d with d ∈ {1, . . . , n} and n ∈ N. Let G be a group generator that,
on input λ ∈ N outputs a tuple (p,G, g) where G is a group of order p with |p| = λ
and generator g. The LTDF of [46] is then formally defined in Figure 4.2.

Theorem 4.5.1 (Th. 6.2 from [46]). If the k-LIN assumption holds in G, then the
above algorithms define a collection of (n, l)-lossy trapdoor functions for l := n −
log2(p) · k.

Observe that lossiness is guaranteed by the choice of the rank k of the lossy matrix.
Namely, for a lossy matrix M of rank k, the vector [M]∗x is contained in a subgroup
of size pk. For an injective matrix M there are 2n possible vectors [M] ∗ x, since

72

4.5 Lossy Trapdoor Functions from k-LIN using Symmetric Multilinear Maps

• Sinj(λ, n, l) −→ ([M],M), where

– M R← R k√n(Z
k√n×k

√
n

p)
– (k,G,GT , e, p, g)←− Gk(λ)
– k ∈ N with k = 2i for some i ∈ N such that λ = dn−l

kk
e (we

have k < k
√
n if λ > 1)

• Sloss(λ, n, l) −→ ([M]), where
– M R← Rk(Z

k√n×k
√
n

p)
– (k,G,GT , e, p, g)←− Gk(λ)
– k ∈ N with k = 2i for some i ∈ N such that λ = dn−l

kk
e (we

have k < k
√
n if λ > 1)

• Fltdf ([M], x) −→ y, where
– y := [M̃] ∗ x
– [M̃] := [M]⊗e · · ·⊗e [M] = [M⊗· · ·⊗M] ∈ Gn×nT (where the

tensor product is applied k − 1 times)
• F−1

ltdf (M, y) −→ x, where

– x := M̃−1 ∗ y
– M̃ := M⊗· · ·⊗M (where the tensor product is applied k−1

times)

Figure 4.3: A formal description of the compressed LTDF based on the
construction from [46].

injectivity assures exactly one image per possible input. Since pk = 2n−l, this leads
to a lossiness of l bits as claimed.

Obviously the LTDF described in Figure 4.2 has a public description size in O(n2),
where n denotes the size of the binary input vector x.

4.5.2 Compressing the Public Description

We now compress the outputs of Sinj and Sloss using a tensor product in the expo-
nents. We formally describe our modified version of the construction from [46]. Let
G∗ be the symmetric group generator from Definition 2.3.2. Our compressed LTDF
is then described in Figure 4.3.

Recall that for the tensor product it holds that rank(M⊗M′) = rank(M)·rank(M′)
and thus rank(M) =

∏k
i=1 rank(Mi). Therefore, the rank of the lossy matrix [M] is

kk, and the lossiness of the final construction is n− log2(p) · kk. Indistinguishability
of injective and lossy public keys follows directly from the k-LIN assumption in G.
Correctness of invertibility can be shown as in the original construction.

For evaluating inputs of size n, our lossy trapdoor function described above thus
has a public description size of (k

√
n)2 G-elements.

73

Chapter 5
New Composite-To-Prime-Order Transformations

In this chapter, we consider efficiency of cryptographic constructions using multi-
linear maps. We focus on a certain class of cryptosystems that make use of cyclic
groups of composite order. In particular in combination with a multilinear map
e, groups of composite order exhibit several interesting properties. (For instance,
e(P1,P2) = 1 for elements P1,P2 of co-prime order. Or, somewhat more generally,
the map operates on the different prime-order components of G independently.)
Already in the case of pairings, this enables interesting technical applications (e.g.,
[114, 89]), but also comes at a price. Namely, to accommodate suitably hard com-
putational problems, composite-order groups have to be chosen substantially larger
than prime-order groups. Specifically, it should be hard to factor the group order.
This leads to significantly slower operations in composite-order groups: [45] sug-
gests that for realistic parameters, Tate pairings in composite-order groups are by a
factor of about 50 less efficient than in prime-order groups. It is thus interesting to
try to find substitutes for the technical features offered by composite-order groups
in prime-order settings.

5.1 Overview

FREEMAN’S COMPOSITE-ORDER-TO-PRIME-ORDER TRANSFORMATION. Freeman [45]
has offered a framework and tools to semi-generically convert cryptographic con-
structions from a composite-order to a prime-order setting. Similar transformations
have also been implicit in previous works [63, 114]. The premise of Freeman’s
approach is that composite-order group elements “behave as” vectors over a prime
field. In this interpretation, composite-order subgroups correspond to linear sub-
spaces.

Moreover, we can think of the vector components as exponents of prime-order
group elements; we can then associate, e.g., a composite-order subgroup indis-
tinguishability problem with the problem of distinguishing vectors (chosen either
from a subspace or the whole space) “in the exponent.” More specifically, Free-
man showed that the composite-order subgroup indistinguishability assumption can
be implemented in a prime-order group with the Decisional Diffie-Hellman (or
with the k-linear) assumption. A pairing operation over the composite-order group
then translates into a suitable “multiplication of vectors,” which can mean different
things, depending on the desired properties. For instance, Freeman considers both
an inner product and a Kronecker product as “vector multiplication” operations (of
course with different effects).

LIMITATIONS OF FREEMAN’S APPROACH. Freeman’s work has spawned a number of

75

5 New Composite-To-Prime-Order Transformations

follow-up results that investigate more general or more efficient conversions of this
type [89, 108, 107, 85, 86]. We note that all of these works follow Freeman’s inter-
pretation of vectors, and even his possible interpretations of a vector multiplication.
Unfortunately, during these investigations, certain lower bounds for the efficiency
of these transformations became apparent. For example, Seo [107] proves lower
bounds both for the computational cost and the dimension of the resulting vector
space of arbitrary transformations in Freeman’s framework. More specifically, Seo
reports a concrete bound on the number of required prime-order pairing operations
necessary to simulate a composite-order pairing.

However, of course, these lower bounds crucially use the vector-space interpre-
tation of Freeman’s framework. Specifically, it is conceivable that a (perhaps com-
pletely different) more efficient composite-order-to-prime-order transformation ex-
ists outside of Freeman’s framework. Such a more efficient transformation could
also provide a way to implement, e.g., the widely used Groth-Sahai proof sys-
tem [63] more efficiently.

OUR CONTRIBUTION: A DIFFERENT VIEW ON COMPOSITE-ORDER-TO-PRIME-ORDER

CONVERSIONS. In this work, we take a step back and question several assumptions
that are implicitly made in Freeman’s framework. We exhibit a different composite-
order-to-prime-order conversion outside of his model, and show that it circumvents
previous lower bounds. In particular, our construction leads to more efficient Groth-
Sahai proofs in the symmetric setting (i.e., with a symmetric pairing). Moreover,
our construction can be implemented from any matrix assumption [42] (includ-
ing the k-linear assumption) and scales better to multilinear settings than previous
approaches. In the following, we give more details on our construction and its
properties.

A TECHNICAL PERSPECTIVE: A POLYNOMIAL INTERPRETATION OF LINEAR SUBSPACE.
To explain our approach, recall that Freeman identifies a composite-order group
with a vector space over a prime field. Moreover, in his work, subgroups of the
composite-order group always correspond to uniformly chosen subspaces of a certain
dimension. Of course, such “unstructured” subspaces only allow for rather generic
interpretations of composite-order pairings (as generic “vector multiplications” as
above).

Instead, we interpret the composite-order group as a very structured vector space.
More concretely, we interpret a composite-order group element as (the coefficient
vector of) a polynomial f(X) over a prime field. In this view, a composite-order
subgroup corresponds to the set of all polynomials with a common zero s (for a
fixed and hidden s). Composite-order group operation and pairing correspond to
polynomial addition and multiplication. Moreover, the hidden common zero s can
be used as a trapdoor to decide subgroup membership, and thus to implement a
“projection” in the sense of Freeman.

Specifically, our “vector multiplication” is very structured and natural, and there
are several ways to implement it efficiently. For instance, we can apply a convolution
on the coefficient vectors, or, more efficiently, we can represent f as a vector of
evaluations f(i) at sufficiently many fixed values i, and multiply these evaluation
vectors component-wise. In particular, we circumvent the mentioned lower bound
of Seo [107] by our different interpretation of composite-order group elements as
vectors.

76

5.2 Preliminaries

Another interesting property of our construction is that it scales better to the
multilinear setting than previous approaches. For instance, while it seems possible
to generalize at least Freeman’s approach to a “projecting pairing” to a setting with a
k-linear map (instead of a pairing), the corresponding generic vector multiplication
would lead to exponentially (in k) large vectors in the target group. In our case, a
k-linear map corresponds to the multiplication of k polynomials, and only requires
a quadratic number of group elements in the target group.1

In the description above, f is always a univariate polynomial. With this inter-
pretation, we can show that the SCasc assumption from Escala et al. [42] implies
subgroup indistinguishability. However, we also provide a “multivariate” variant of
our approach (with polynomials f in several variables) that can be implemented
with any matrix assumption (such as the k-linear and even weaker assumptions).
Furthermore, in the terminology of Freeman, we provide both a “projecting,” and a
“projecting and canceling” pairing construction (although the security of the “pro-
jecting and canceling” construction requires additional complexity assumptions).

APPLICATIONS. The performance improvements of our approach are perhaps best
demonstrated by the case of Groth-Sahai proofs. Compared to the most efficient pre-
vious implementations of Groth-Sahai proofs in prime-order groups with symmetric
pairing [108, 42], we almost halve the number of required prime-order pairing op-
erations (cf. Table 5.1). As a bonus, we also improve on the size of prime-order
group elements in the target group, while retaining the small common reference
string from [42].

Additionally, we show how to implement a variant of the Boneh-Goh-Nissim
encryption scheme [13] in prime-order groups with a k-linear map. As already
sketched, this is possible with Freeman’s approach only for logarithmically small k.

STRUCTURAL RESULTS. Of course, a natural question is whether our results are
optimal, and if so, in what sense exactly. We can settle this question, in the following
sense: we show that the construction sketched above is optimal in our generalized
framework. We also prove a similar result for our construction from general matrix
assumptions.

OPEN PROBLEMS. In this work, we focus on settings with a symmetric pairing
(resp. multilinear map). It is an interesting open problem to extend our approach
to asymmetric settings. Furthermore, the conversion that leads to a canceling and
projecting map (in the terminology of Freeman) requires a nonstandard complexity
assumption (that however holds generically, as we prove). It would be interesting
to find constructions from more standard assumptions.

5.2 Preliminaries

INTERPOLATING SETS. Let ~X = (X1, . . . , Xd) be a vector of variables. Let W ⊂ Zp[~X]
be a subspace of polynomials of finite dimension m. Given a set of polynomials
{r0, . . . , rm−1}which are a basis ofW , we say that ~x1, . . . , ~xm ∈ Zdp is an interpolating

1We multiply k polynomials, and each polynomial should be of degree at least k, in order to allow for
suitable subgroup indistinguishability problems that are plausible even in face of a k-linear map.

77

5 New Composite-To-Prime-Order Transformations

set for W if the matrix  r0(~x1) ... rm−1(~x1)
...

...
r0(~xm) ... rm−1(~xm)


has full rank. It can be easily seen that the property of being an interpolating set is
independent of the basis. Further, when p is exponential (and m and the degrees of
ri are polynomial) in the security parameter, any m random vectors ~x1, . . . , ~xm form
an interpolating set with overwhelming probability.

5.3 Our Framework

We now present our definitional framework for composite-to-prime-order transfor-
mations. Basically, the definitions in this section will enable us to describe how
groups of prime order p with a multilinear map e can be converted into groups of
order pn for some n ∈ N with a multilinear map ẽ. These converted groups will
then “mimic” certain features of composite-order groups. Since ẽ is just a composi-
tion of several instances of e, we will refer to e as the basic multilinear map. We start
with an overview of the framework of Freeman ([45]), since this is the established
model for such transformations. Afterwards, we describe our framework in terms of
differences to the model of Freeman.

FREEMAN’S MODEL. Freeman identifies some abstract properties of bilinear com-
posite order groups which are essential to construct some cryptographic protocols,
namely subgroup indistinguishability, the projecting property and the canceling
property. For Freeman, a symmetric bilinear map generator takes a bilinear group
of prime order p with a pairing e and outputs some groups H ⊂ G,GT of order pn

for some n ∈ N and a symmetric bilinear map ẽ : G × G → GT , computed via the
basic pairing e. Useful instances of such generators satisfy the subgroup indistin-
guishability assumption, which means that it should be hard to decide membership
in H ⊂ G. Further, the pairing is projecting if the bilinear map generator also
outputs some maps π, πT defined respectively on G,GT which commute with the
pairing and such that kerπ = H. The pairing is canceling if ẽ(H,H′) = 0 for some
decomposition G = H⊕H′.

INSTANTIATIONS. Further, Freeman gives several concrete instantiations in which
the subgroups H output by the generator are sampled uniformly. More specifically,
in the language of [42], the instantiations sample subgroups according to the Un,`
distribution. Although his model is not specifically restricted to this case, follow-
up work seems to identify “Freeman’s model” with this specific matrix distribution.
For instance, the results of [89] on the impossibility of achieving the projecting
and canceling property simultaneously or the impossibility result of Seo [107], who
proves a lower bound on the size of the image of a projecting pairing, are also in
this setting.

OUR MODEL. Essentially, we recover Freeman’s original definitions for the symmetric
setting, however with some subtle additional precisions. First, we extend his model
to multilinear maps and, like Seo [107], distinguish between basic multilinear map
operations (e) and multilinear map operations (ẽ), since an important efficiency
measure is how many e operations are required to compute ẽ. The second and main

78

5.3 Our Framework

block of differences is introduced with the goal of making the model compatible with
several families of matrix assumptions, yielding a useful tool to prove optimality
and impossibility results. For this, we extend Freeman’s model to explicitly support
different families of subgroup assumptions and state clearly what the dependency
relations between the different outputs of the multilinear group generator are. In
Section 5.9 the advantages of the refinement of the model will become apparent.

Definition 5.3.1. Let k, `, n, r ∈ N with k > 1 and r ≥ n > `. A (k, (r, n, `))
symmetric multilinear map generator Gk,(r,n,`) takes as input a security parameter λ
and a symmetric prime-order k-linear map generator Gk and outputs in probabilistic
polynomial time a tuple (MGk,H,G,GT , ẽ), where

• MGk := (k,G,GT , e, p,P,PT) ← Gk(1λ) is a description of a prime order sym-
metric k-linear group,

• G ⊂ Gr is a subgroup of Gr with a minimal generating set of size n,
• H ⊂ G is a subgroup of G with a minimal generating set of size `,
• ẽ : Gk → GT is a non-degenerate k-linear map.

We assume that elements in H,G are represented as vectors in Gr. With this
representation, it is natural to identify elements in these groups with vectors in
Zrp in the usual way, via the canonical basis. Via this identification, any subgroup
H ⊂ Gr spanned by [~b1], . . . , [~b`] corresponds to the subspace H of Zrp spanned by
~b1, . . . ,~b`, and we write H = [H]. Further, we may assume that GT = GmT and
elements of GT are represented by m-tuples of GT , for some fixed m ∈ N, although
we do not include m as a parameter of the multilinear generator.

In most constructions n = r, in which case we drop the index r from the defini-
tion, and we simply refer to such a generator as a (k, (n, `)) generator Gk,(n,`). We
always assume that membership in G is easy to decide.2 In the case where n = r
and G = Gr this is obviously the case, but otherwise we assume that the description
of G includes some auxiliary information which allows to test it (like in [108], [86]
and our construction of Section 5.4.3).

Definition 5.3.2 (Properties of multilinear map generators). Let Gk,(r,n,`) denote a
(k, (r, n, `)) symmetric multilinear map generator as in Definition 5.3.1 with output
(MGk,H,G,GT , ẽ). We define the following properties:

• Subgroup indistinguishability. We say that Gk,(r,n,`) satisfies the subgroup
indistinguishability property if for all PPT adversaries D,

AdvGk,(r,n,`)(D) =Pr[D(MGk,H,G,GT , ẽ, x) = 1]−
Pr[D(MGk,H,G,GT , ẽ, u) = 1] = η(λ),

where the probability is taken over (MGk,H,G,GT , ẽ) ← Gk,(r,n,`)(1λ), x ←
H, u← G and the coin tosses of the adversary D.

2We note that none of the current candidate constructions of approximate multilinear maps (e.g.,
[51, 3]) or graded encoding systems (see Chapter 3) provide efficient algorithms for deciding
group membership. This will not affect our results, but of course hinders certain applications
(such as Groth-Sahai proofs).

79

5 New Composite-To-Prime-Order Transformations

• Projecting. We say that (MGk,H,G,GT , ẽ) is projecting if there exist two non-
zero homomorphisms π : G → G, πT : GT → GT such that kerπ = H and
πT (ẽ(x1, . . . , xk)) = ẽ(π(x1), . . . , π(xk)) for any (x1, . . . , xk) ∈ Gk. For the
special case r = n = ` + 1, G := Gn we can equivalently define the maps
π : Gn → G, πT : GT → GT such that kerπ = H and πT (ẽ(x1, . . . , xk)) =
e(π(x1), . . . , π(xk)) (matching the original definition of [63]). As usual, we say
that Gk,(r,n,`) is projecting if its output is projecting with overwhelming probabil-
ity.

• Canceling. We say that (MGk,H1,G,GT , ẽ) is canceling if there exists a decom-
position G = H1⊕H2. Note that this means that for any x1 ∈ Hj1 , . . . , xk ∈ Hjk

except for j1 = . . . = jk, we have that ẽ(x1, . . . , xk) = 0. We call Gk,(r,n,`)
canceling if its output is canceling with overwhelming probability.

So far, the definitions given match those of Freeman (extended to the k-linear
case) except that we explicitly define the basic k-linear group MGk which is used
in the construction. We will now introduce two aspects of our framework that are
new compared to Freeman’s model. First, we will define multilinear generators that
sample subgroups according to a specific matrix assumptions. Then, we will define
a property of the multilinear map ẽ that will be very useful to establish impossibility
results and lower bounds.

Definition 5.3.3. Let k, `, n, r ∈ N with k > 1, r ≥ n > ` and Dn,` be a matrix dis-
tribution. A (k, (r, n, `),Dn,`) multilinear map generator Gk,(r,n,`),Dn,` is a (k, (r, n, `))
multilinear map generator which outputs a tuple (MGk,H,G,GT , ẽ) such that the dis-
tribution of the subspaces H such that H = [H] equals Dn,` for any fixed choice of
MGk.

As usual, in the case where r = n, we just drop r and refer to a (k,Dn,`) mul-
tilinear map generator Gk,Dn,` . We conclude our framework with a definition that
enables us to distinguish generators where the multilinear map ẽ may or may not
depend on the choice of the subgroups.

Definition 5.3.4. We say that a (k, (r, n, `),Dn,`) multilinear map generator with
output (MGk,H,G,GT , ẽ) as in Definition 5.3.3 defines a fixed multilinear map if the
random variable H (s.t. H = [H]) conditioned on MGk and the random variable
(G,GT , ẽ) conditioned onMGk are independent.

5.4 Our Constructions

All of our constructions arise from the following polynomial point of view: The key
idea is to treat G = Gn as an implicit representation of some space of polynomi-
als. Polynomial multiplication will then give us a natural multilinear map. For
subspaces H(~s) that correspond to polynomials sharing a common root ~s, this mul-
tilinear map will turn out to be projecting. We will first illustrate this idea by means
of a simple concrete example where subgroup decision for H(~s) is equivalent to 2-
SCasc (Section 5.4.1). Then we show that actually any polynomially induced matrix
assumption gives rise to such a polynomial space and thus allows for the construc-
tion of a k-linear projecting map (Section 5.4.2). Finally, by considering G along

80

5.4 Our Constructions

Table 5.1: Efficiency of different symmetric projecting k-linear maps. The size of the do-
main (n) and codomain (m) of ẽ is given as number of group elements of
G and GT , respectively. Costs are stated in terms of application of the basic
map e, group operations (gop) including inversion in G/GT , and `-fold multi-
exponentiations of the form e1[a1] + · · ·+ e`[a`] (`-mexp) in G/GT . Note that we
use an evaluate-multiply-approach for the computation of ẽ.

Construction Ass. Co-/Domain Cost ẽ Cost π Cost πT

Freeman, k = 2 [45] U2 9/3 9 e 3 3-mexp 9 9-mexp

Seo, k = 2 [107] U2 6/3 9 e + 3 gop 3 3-mexp 6 6-mexp

This work, k = 2 SC2 5/3 5 e + 22 gop 1 2-mexp 1 5-mexp

This work, k = 2 U2 6/3 6 e + 12 3-mexp1 1 3-mexp 1 6-mexp

Freeman, k > 2 Uk (k+1)k/k+1 (k+1)k+1 e k+1 (k+1)-mexp (k+1)k (k+1)k -mexp

This work, k > 2 Uk
(

2k
k

)
/k+1

(
2k
k

)
e +
(

2k
k

)
k (k+1)-mexp1 1 (k+1)-mexp 1

(
2k
k

)
-mexp

This work, k > 2 SCk k2 +1/k+1 (k2 +1) e + (k3 +k) k-mexp1 1 k-mexp 1 k2 +1-mexp

1For the construction based on SCk, the involved exponents are relatively small, namely the biggest
one is (d k

2+1
2 e)

k. Also for Uk, the involved exponents can usually be made small.

with the multilinear map as an implicit representation of a polynomial ring mod-
ulo some reducible polynomial, we are able to construct a multilinear map which is
both projecting and canceling (see Section 5.4.3). See Table 5.1 for an overview of
the characteristics of our projecting map constructions in comparison with previous
work.

5.4.1 Warm-Up: A Projecting Pairing based on the 2-SCasc Assumption

Let (k = 2, G,GT , e, p,P,PT) ← Setup2(1λ) be the output of a symmetric prime-
order bilinear group generator. We set G := G3 and GT := G5

T . For any [~f] =
([f0], [f1], [f2]) ∈ G = G3, we identify ~f with the polynomial f = f0 + f1X + f2X

2 ∈
Zp[X] of degree at most 2. Similarly, any [~f]T ∈ GT corresponds to a polynomial
of degree at most 4. Then the canonical group operation for G and GT corresponds
to polynomial addition (in the exponent), i.e., [~f] + [~g] = [~f + ~g] = [f + g] and
[~f]T + [~g]T = [f + g]T . Furthermore, polynomial multiplication (in the exponent)
gives a map ẽ : G× G→ GT ,

ẽ([~f], [~g]) :=
([∑
i+j=0

fiPj
]
T
, . . . ,

[∑
i+j=4

fiPj
]
T

)
= [f · g]T .

It is easy to see that (G,GT , ẽ) is again a bilinear group setting, where the group
operations and the pairing ẽ can be efficiently computed.

A SUBGROUP DECISION PROBLEM. For some fixed s ∈ Zp let us consider the subgroup
H

(s) ⊂ G formed by all elements [~f] ∈ G such that ~f viewed as polynomial f has
root s, i.e., H(s) = {[f] ∈ G | f(s) = 0}. In other words, H(s) consists of all [f] with
f of the form

(X − s)(f ′1X + f ′0), (5.1)

where f ′1, f
′
0 ∈ Zp. Thus, given [f] and [s], the subgroup decision problem for

H
(s) ⊂ G means to decide whether f is of this form or not. Viewing Equation (5.1)

81

5 New Composite-To-Prime-Order Transformations

as matrix-vector multiplication, we see that this is equivalent to deciding whether ~f
belongs to the image of the 3× 2 matrix

A(s) :=
(
−s 0
1 −s
0 1

)
. (5.2)

Hence, our subgroup decision problem corresponds to the 2-SCasc problem (cf. Def-
inition 2.4.4) which is hard in a generic bilinear group [42].

PROJECTIONS. Given s, we can simply define projection maps π : G → G and
πT : GT → GT by polynomial evaluation at s (in the exponent), i.e., [~f] is mapped
to [f(s)] and [~f]T to [f(s)]T . Computing π, πT requires group operations only. Ob-
viously, it holds that ker(π) = H(s) and e(π([~f1]), π([~f2])) = πT (ẽ([~f1], [~f2])).

SAMPLING FROM H
(s). Given [(−s, 1, 0)], [(0,−s, 1)] ∈ G, a uniform element from

H
(s) can be sampled by picking (f ′0, f ′1) ← Z2

p and, as with any matrix assumption,
computing the matrix-vector product[(

−s 0
1 −s
0 1

)
·
(
f ′0
f ′1

)]
=
[(
−sf ′0, f ′0 − sf ′1, f ′1

)T]
.

Again, this can be done using the group operation only.

EFFICIENCY. Computing ẽ in our construction corresponds to polynomial multiplica-
tion. Although this multiplication happens in the exponent (and we are “only” given
implicit representations of the polynomials), we are not forced to stick to schoolbook
multiplication. We propose to follow an evaluation-multiplication-interpolation ap-
proach (using small interpolation points) where the actual interpolation step is post-
poned to the computation of πT .

More precisely, so far we used coefficient representation for polynomials over G
and GT with respect to the standard basis. However, other (s-independent) bases
are also possible without affecting security. For efficiency, we propose to stick to this
representation for G but to use point-value representation for polynomials over GT
with respect to the fixed interpolating set M := {−2,−1, 0, 1, 2} (cf. Section 5.2).
This means we now identify a polynomial g in the target space with the vector
(g(−2), g(−1), g(0), g(1), g(2)).

More concretely, to compute ẽ([f1], [f2]) = ([(f1f2)(x)]T)x∈M , we first evaluate f1
and f2 (in the exponent) with all x ∈ M , followed by a point-wise multiplication
([f1(x)f2(x)]T)x∈M = (e([f1(x)], [f2(x)]))x∈M . This way, ẽ can be computed more
efficiently with only five pairings. Computing π is unchanged. To apply πT , one first
needs to obtain the coefficient representation by interpolation and then evaluate
the polynomial at s. However, this can be done simultaneously and as the 1 × 5
matrix describing this operation can be precomputed (given s) it does not increase
the computational cost much.

5.4.2 Projecting Multilinear Maps from any Matrix Assumption

In the following, we will first demonstrate that for any vector space of polynomials,
the natural pairing given by polynomial multiplication is projecting for subspaces
consisting of polynomials sharing a common root. We will then show that any (poly-
nomially induced) matrix assumption can equivalently be considered as a subspace

82

5.4 Our Constructions

assumption in a vector space of polynomials of this type. This way, we obtain a nat-
ural projecting multilinear map for any polynomially induced matrix assumption.

A PROJECTING MULTILINEAR MAP ON VECTOR SPACES OF POLYNOMIALS. LetMGk :=
(k,G,GT , e, p,P,PT) ← Setupk(1λ) be the output of a prime-order k-linear group
generator. Let V ⊂ Zp[~X] be a vector space of polynomials of dimension n for which
we fix basis q0, . . . , qn−1. Then for any [~f] ∈ G := Gn we can identify the vector ~f =
(f0, . . . , fn−1) with a polynomial f =

∑
fiqi ∈ V . In the 2-SCasc example above, V

corresponds to univariate polynomials of degree at most 2 and the basis is given by
1, X,X2. On V , we have a natural k-linear map given by polynomial multiplication:
multk : V k → Zp[~X],multk(f1, . . . , fk) = f1 · · · fk. LetW ⊂ Zp[~X] be the span of the
image of multk and m its dimension. Then we can again fix a basis r0, . . . , rm−1 of
W to identify polynomials with vectors. In the 2-SCasc example above, W consists
of polynomials of degree at most 4 and we chose the basis 1, X,X2, X3, X4 of W
for our initial presentation. From polynomial multiplication, we then obtain a non-
degenerate k-linear map

ẽ : Gk → GmT , ẽ([~f1], . . . , [~fk]) = [f1 · · · fk]T .

Now consider a subspace H(~s) ∈ G of the form H
(~s) = {[f] ∈ G | f(~s) = 0}. It

is easy to see that ẽ is projecting for this subspace: A projection map π : G → G
with ker(π) = H

(~s) is given by evaluation at ~s, i.e., π([~f]) = [f(~s)]. Similarly,
πT : GmT → GT is defined by πT ([~g]T) = [g(~s)]T and by construction we have
e(π([~f1]), . . . , π([~fk])) = [f1(~s) · · · fk(~s)]T = [(f1 · · · fk)(~s)]T = πT (ẽ([~f1], . . . , [~fk])).

FROM A POLYNOMIALLY INDUCED MATRIX DISTRIBUTION TO A SPACE OF POLYNOMIALS.
Now, let Dn−1 be any polynomially induced matrix distribution as defined in Defini-
tion 2.4.4 and let A(~X) ∈ (Zp[~X])n×(n−1) be the polynomial matrix describing this
distribution. Then we set G := Gn and consider the subspace [Im A(~s)] for some ~s.
We now show that we can identify G with a vector space V of polynomials, such that
the subspace Im A(~s) corresponds exactly to polynomials having a root at ~s. To this
end, consider the determinant of (A(~X)||~F) as a polynomial d in indeterminates ~X
and ~F . Since we assume that A(~s) has generically3 full rank a given vector ~f ∈ Znp
belongs to the image of A(~s) iff the determinant of the extended matrix (A(~s)||~f) is
zero, i.e., d(~s, ~f) = 0. To obtain the desired vector space V with basis q0, . . . , qn−1,
we consider the Laplace expansion of this determinant to write d as

d(~X, ~F) =
n−1∑
i=0

Fiqi(~X). (5.3)

for some polynomials qi(~X) depending only on A. For SC2, we have qi = Xi. We
note that in all cases of interest the qi are linearly independent.

Thus, we may now identify [~f] ∈ G with the implicit representation of the poly-
nomial f = d(~X, ~f) =

∑
i fiqi and as f(~s) =

∑
i fiqi(~s) = 0 iff ~f ∈ Im A(~s) we

have H(~s) = [Im A(~s)] = {[f] ∈ G | f(s) = 0}. Hence, we may construct a pro-
jecting k-linear map from polynomial multiplication as described in the previous
paragraph.

3This means that A(~s) will be full rank with overwhelming probability and this is indeed equivalent
to d 6= 0. To simplify the exposition, we may assume that the sampling algorithm is changed to
exclude ~s where A(~s) does not have full rank.

83

5 New Composite-To-Prime-Order Transformations

Working through the construction, one can obtain explicit coordinates as follows:
let W be the span of {qi1 · · · qik | 0 ≤ ij < n} and fix a basis r0, . . . , rm−1 of W . This
determines coefficients λ(i1,...,ik)

t in qi1 · · · qik =
∑m−1
t=0 λ

(i1,...,ik)
t rt.

Recall that ẽ : (Gn)k → GmT is defined as ẽ([~f1], . . . , [~fk]) = [f1 · · · fk]T , expressed
as an element of GmT via the basis~r. In coordinates this reads

ẽ([~f1], . . . , [~fk]) = (
∑

j1≤...≤jk

λ
(j1,...,jk)
0 ·

∑
(i1,...,ik)∈
τ(j1,...,jk)

e([f1,i1], . . . , [fk,ik]), . . . , (5.4)

∑
j1≤...≤jk

λ
(j1,...,jk)
m−1 ·

∑
(i1,...,ik)∈
τ(j1,...,jk)

e([f1,i1], . . . , [fk,ik])),

where [f1,i1 · · · fk,ik]T simply denotes (f1,i1 · · · fk,ik)PT and τ(j1, . . . , jk) denotes the
set of permutations of (j1, . . . , jk). The last optimization can be done as qi1 · · · qik =
qj1 · · · qjk for (i1, . . . , ik) ∈ τ(j1, . . . , jk). For the same reason, we have m =

(n+k−1
k

)
in the worst case. In this way, the target group in our constructions is always smaller
than the target group in Freeman’s construction (generalized to k ≥ 2), which is of
size nk.

The following theorem summarizes our construction and its properties:

Theorem 5.4.1. Let k > 1, n ∈ N, and Dn−1 be a polynomially induced matrix
distribution. Let Gk,Dn−1 be an algorithm that on input of a security parameter 1λ and a
symmetric prime-order k-multilinear map generator Gk outputs (MGk,H(~s),G,GT , ẽ),
where

• MGk := (k,G,GT , e, p,P,PT)← Gk(1λ),
• G := Gn, H(~s) := [Im A(~s)], A(~s)← Dn−1,
• GT := GmT , where m equals the dimension of

W := {
∑

0≤i1,...,ik≤n−1
αi1,...,ikqi1 · · · qik |αi1,...,ik ∈ Zp}

(as vector space), and q0(~X), . . . , qn−1(~X) ∈ Zp[~X] are polynomials such that

det(A(~X)||~F) =
n−1∑
i=0

Fiqi(~X)

for the matrix A(~X) describing Dn−1, and
• ẽ : Gk → GT is the map defined by Equation (5.4) for a basis r0, . . . , rm−1 of W .

Then Gk,Dn−1 is a (k,Dn−1) multilinear map generator. It is projecting, where the pro-
jection maps π : G → G and πT : GT → GT defined by π(~f) :=

∑n−1
i=0 qi(~s)[fi] and

πT (~g) :=
∑m−1
i=0 ri(~s)[Pi]T are efficiently computable given the trapdoor ~s. Further-

more, if the Dn−1 assumption holds with respect to Gk, then subgroup indistinguisha-
bility holds with respect to Gk,Dn−1 .

Example 5.4.2. We can construct a projecting k-linear map generator satisfying sub-
group indistinguishability under k-SCasc (which is hard in a k-linear generic group
model). For Gk,SCk , we would get n = k + 1 and qi(X) = Xi if k is even and
qi(X) = −Xi when k is odd, where 0 ≤ i ≤ k. Using the basis rt(X) = Xt for
W if k is even and rt(X) = −Xt if k is odd for 0 ≤ t ≤ k2, we obtain λ(i1,...,ik)

t = 1 for
t = i1 + · · ·+ ik and λ(i1,...,ik)

t = 0 else. Note that we have m = k2 + 1.

84

5.4 Our Constructions

Example 5.4.3. We can also construct a k-linear map generator from k-lin. For Gk,Lk ,
we would have n = k + 1, and polynomials qk(X0, . . . , Xk−1) = X0 · · ·Xk−1 and
qi(X0, . . . , Xk−1) = −

∏
j 6=iXj for 0 ≤ i ≤ k− 1. As a basis for W we can simply take

{qj1 · · · qjk | 0 ≤ j1 ≤ . . . ≤ jk ≤ k} yielding m =
(n+k−1

k

)
.

Example 5.4.4. Like Freeman, we could also construct a k-linear map generator from
the Uk assumption. Although the polynomials qi(X1,1, . . . , Xk,k+1), 0 ≤ i ≤ k, associ-
ated to Gk,Uk have a much more complex description than in the k-lin case, the image
size of the resulting map is the same, namely m =

(n+k−1
k

)
, because a basis of the

image is also {qj1 · · · qjk | 0 ≤ j1 ≤ . . . ≤ jk ≤ k}.

EFFICIENCY. As in our setting any change of basis is efficiently computable, the
security of our construction only depends on the vector space V (which in turn
determines W), but not on the bases chosen. So we are free to choose bases that
improve efficiency. We propose to follow the same approach as in Section 5.4.1:
Select points ~x0, . . . , ~xm−1 that form an interpolating set forW and represent f ∈W
via the vector f(~x0), . . . , f(~xm−1). This corresponds to choosing the basis of W
consisting of polynomials r0, . . . , rm−1 ∈ W such that ri(~xj) = 1 for i = j and 0
otherwise. For the domain V , the choice is less significant and we might simply
choose the qi’s that the determinant polynomial gives us. Then we can compute
ẽ([~f1], . . . , [~fk]) by an evaluate-multiply approach using only m applications of e.
Note that the evaluation step can also be done pretty efficiently if the qi’s have small
coefficients (which usually is the case). For details see Section 5.7.

5.4.3 Projecting and Canceling Multilinear Maps

OVERVIEW. By considering polynomial multiplication modulo a polynomial h, which
has a root at the secret s, we are able to construct a (k, (n = ` + 1, `)) symmetric
multilinear map generator with a non-fixed pairing that is both projecting and can-
celing. Our first construction relies on a k′ := k + 1-linear prime-order map e. The
one additional multiplication in the exponent is used to perform the reduction mod-
ulo h. Based on this construction, we propose another (k, (r = 2`, n = ` + 1, `))
symmetric multilinear map generator that requires only a k′ = k-linear prime-order
map. The security of our constructions is based on variants of the `-SCasc assump-
tion. We need to extend `-SCasc by additional given group elements to allow for
reduction in the exponent, e.g., in the simplest case hints of the form [Xi mod h]
are given. In Section 5.4.3 we show that our constructions are secure for ` ≥ k′ in
generic k′-linear groups. We note that, to the best of our knowledge, this is the first
construction of a map that is both projecting and canceling and naturally generalizes
to k > 2. In Section 5.7.2 we consider efficiency of our constructions.

First Construction: Using a (k + 1)-linear Prime-Order Map

In order to obtain a multilinear map that is both projecting and canceling we modify
our construction based on SCasc from Section 5.4.1. On a high level, our construc-
tion works as follows. We will again identify vectors from G = Gn with polynomials
Zp[X] (in the exponent) with polynomial addition as the group operation. But now,

85

5 New Composite-To-Prime-Order Transformations

our k-linear map will correspond to polynomial multiplication modulo some poly-
nomial h(X) (where h(X) will depend on s). To retain the projecting property, we
ensure that h(X) has a root at s, so X−s divides h(X). The orthogonal complement
to H(s) for the canceling property will then correspond to the span of h(X)

X−s , using

the fact that (X − s) · h(X)
X−s mod h = 0.

We want to point out that, since in this construction modular reduction consumes
one multiplication in the exponent, to emulate a canceling k-linear map ẽ, our first
construction will require a k′ = k + 1-linear basic prime-order map e. This will be
improved in the upcoming section.

Let 2 ≤ k < k′ < n.4 We start with a basic symmetric k′-linear group generator
(k′, G,GT , e, p,P,PT)← Gk′ for groups of prime order p. The polynomial by which
we reduce is chosen as follows: Fix any degree n polynomial h′(X), which for
efficiency we select as h′(X) := Xn and set h(X) = h′(X) − h′(s) = Xn − sn for
s

R← Zp. This choice ensures that X−s divides h. We set G := Gn and GT := GnT and
note that, with the notation from Section 5.4.1, we can identify (using coefficient
representation for polynomials everywhere) these two sets with the ring Zp[X]/(h),
whose elements are represented by polynomials f ∈ Zp[X] of degree at most n− 1.
We again use polynomial addition as group operation and define our composite-
order k-linear map ẽ : G × · · · × G → GT by polynomial multiplication modulo the
polynomial h:

ẽ([~f1], . . . , [~fk]) := [f1 · · · fk mod h]T .

This requires reducing a polynomial of degree k(n − 1) modulo h. To perform
this, the crucial observation is that the map g 7→ g mod h sending a polynomial
g =

∑
giX

i of degree at most k(n − 1) to a polynomial of degree at most n − 1
is a linear map for h fixed. Viewed as a matrix, its coefficients are given by hi,j
where hi(X) := Xi mod h =

∑n−1
j=0 hi,jX

j for 0 ≤ i ≤ k(n − 1). In other words,

g mod h =
∑
j

∑k(n−1)
i=0 gihi,jX

j . Combining this with the definition of polynomial
multiplication, we thus may compute ẽ([f1], . . . , [fk]) as

(k(n−1)∑
i=0

∑
j1+...+jk=i

[hi,0 · f1,j1 · · · fk,jk]T , . . . ,
k(n−1)∑
i=0

∑
j1+...+jk=i

[hi,n−1 · f1,j1 · · · fk,jk]T
)
,

where for our choice of h′(X) = Xn, hi,j = 0 if j 6= i mod n and hj+`n,j = s`. The
k-linear pairing ẽ is efficiently5 computable with the basic k′ ≥ k + 1-linear map e,
provided we know the [hi,j] that appear here. For this reason, we need to publish
the [hi,j] as additional “hints”. For our choice of h′(X), this means publishing the
κ = k−1 hints [sn], [s2n], . . . [sn(k−1)]. It is easy to see that, for other choices of (pub-
licly known) h′(X), all [hi,j] can be efficiently computed from [h′(s)], . . . , [h′(s)k−1]
as linear functions and vice versa. Of course, publishing these hints changes the
security assumption we have to make. We will show in Theorem 5.4.6 that our
construction is secure in the generic k′-linear group model.

4Our construction works for arbitrary n > k′. A larger n leads to a less efficient construction, but
also permits a security proof based on a weaker assumption.

5Note that doing it this way means computing exactly nk basic pairings and is thus only efficient if n
and k are constant. However, we stress that our construction becomes more efficient if we assume
a “graded” k-linear map where we can compute intermediate results, i.e., products of less than k
polynomials.

86

5.4 Our Constructions

For the smallest meaningful choice n = 4, k = 2, k′ = 3, our construction trans-
lates to

ẽ([~f], [~f ′]) =
(
[f0f

′
0 + s4f1f

′
3 + s4f2f

′
2 + s4f3f

′
1]T , [f0f

′
1 + f1f

′
0 + s4f2f

′
3 + s4f3f

′
2]T ,

[f0f
′
2 + f1f

′
1 + f2f

′
0 + s4f3f

′
3]T , [f0f

′
3 + f1f

′
2 + f2f

′
1 + f3f

′
0]T
)
,

which can be computed with a basic 3-linear map e from [~f], [~f ′], [s4] using 16 eval-
uations of e.

SUBGROUPS. Again, consider the subgroup H(s) ⊂ G formed by all elements [~f] ∈ G
such that f(s) = 0. Note that, since X − s divides h, reducing modulo h does not
change whether a polynomial has a root at s. As seen before, deciding membership
inH(s) is equivalent to deciding whether an element lies in the image of an n× (n−
1)-matrix A(s) from Equation (5.2). Since the polynomials [hi] provide additional
information about s, subgroup indistinguishability does not correspond to the (n−
1)-SCasc assumption anymore, but to the new extended (κ = k − 1, n − 1)-SCasc
assumption relative to Gk′ defined below. We will later show that this assumption
holds in the generic group model.

Definition 5.4.5 (Extended SCasc assumption). Let k′, n, κ,∈ N, k′ < n and consider
(k′, G,GT , e, p,P,PT)← Gk′ for a k′-linear map generator Gk′ . Set h(X) := Xn − sn

for s R← Zp. Let A ∈ Zn×n−1
p be of the form (5.2) with −s in the main diagonal and

~w ∈ Zn−1
p , ~u ∈ Znp . We say that the extended (κ, n − 1)-SCasc assumption holds

relative to Gk′ if for all PPT algorithms A we have that∣∣Pr
[
A([sn], [s2n], . . . , [sκn], [A], [A~w]) = 1

]
−

Pr
[
A([sn], [s2n] . . . , [sκn], [A], [~u])) = 1

]∣∣
is negligible, where the probability is taken over the random choices of s, h′, ~w, ~u.

Projecting the elements of H(s) to 0G and sampling from the subgroups works as
in Section 5.4.1. This uses that (f mod h)(s) = f(s) if X− s divides h. Additionally,
we have G = H

(s)⊕H(s,⊥), where H(s,⊥) := {[f] ∈ G |∃α ∈ Zp[X] : f(X) = α h
X−s}.

Note that h(X) has no double root at s with overwhelming probability, so this sum
is a direct sum. It holds that ẽ([P1], . . . , [Pn]) = 0GT if [Pi] ∈ H(s) and [Pj] ∈ H(s,⊥)

for any i 6= j.
Altogether, we have that ẽ : G × · · · × G → GT is a symmetric projecting and

canceling k-linear map, where the group operations and ẽ can be efficiently com-
puted. Note that the pairing now depends on s, hence our construction is not a fixed
pairing as defined in Definition 5.3.4. We discuss the efficiency of our construction
in Section 5.7.

CHOOSING THE POLYNOMIAL h′(X). In our construction, we made the choice of
h′(X) = Xn for reasons of efficiency. But our construction works for any fixed
choice of h′(X). In fact, we may even sample a random h′(X) according to any
distribution. If we do the latter, we may also keep h′(X) secret along with s (which
leads to a weaker security assumption). In any case, we may w.l.o.g. always assume
that the constant coefficient of h′(X) is 0, as this does not affect h.

For our construction, if h′(X) is secret, we still need to ensure that all [hi,j] are
known, so we need to publish more hints (namely a subset of the [hi,j] from which

87

5 New Composite-To-Prime-Order Transformations

all others can be computed) rather than only [h′(s)], . . . , [h′(s)k−1], hurting efficiency
even more. Our security proof in the generic group model supports any choice of
h′(X) (random or not, public or not), provided h′(X) is sampled independently
from s.

One issue that may appear is that for applications one might want h(X) to split
completely as h(X) = (X − s1) · · · (X − sn), as this affects the behaviour of orthog-
onality: In this case, one can have n non-zero vectors [f1], . . . , [fn] that are pairwise
ẽ-orthogonal by setting fi = h

X−si . This means ẽ([fi], [fj], [P3], . . . , [Pk−1]) = [0]T
for all i 6= j and arbitrary P3, . . . ,Pk−1. For our choice of h′(X) = Xn, we have that
h(X) = (X − s)(X − ζs) · · · (X − ζn−1s) splits completely iff there exists a primitive
nth root of unity ζ ∈ Zp, i.e., p mod n = 1.

One might also directly sample h(X) = (X − s1) · · · (X − sn) for uniform choices
of si. While not covered by our restriction that h be sampled as h(X) = h′(X)−h′(s)
with (h′(X), s) independent, our security proof extends to that case, as discussed in
Theorem 5.4.7.

Modification: Using a k-linear Prime-Order Map

For our previous construction of a projecting and canceling k-linear map with a
non-fixed pairing, a basic k′ = k + 1-linear prime-order map is required. We will
now give a modification that only requires a k-linear prime order map. The trade
off will be that our construction gives a (k = k′, (r, n, ` = n − 1)) multilinear map
generator as in Definition 5.3.3 with r > n, meaning that our group G rather than ẽ
will depend on s and is embedded in some larger space G ⊂ Gr, where ẽ is defined
on Gr in a way independent from s.

Intuitively, one additional multiplication in the exponent is needed in order to per-
form the reduction, i.e., multiply products f1,j1 . . . fk,jk of coefficients of f1, . . . , fk
with coefficients hi,j for the reduction. If for one factor, say a1,j1 , we were given
[a1,j1hi,j] rather than [a1,j1], this problem would not occur. To put us in this situa-
tion, we may consider first a simple extended version of G: Let Gext ⊂ Gr, where
r = (κ+1) ·n = kn and κ = k−1 is the number of hints we needed in the preceding
construction, be defined as 6

Gext = {([f], [snf], [s2nf], . . . , [sκnf]) | [f] ∈ G}.

Similarly consider Hext
(s) ⊂ Gext, defined as Hext

(s) = {[f], [fsn], . . . ∈ Gext | f(s) =
0}. This just means that whoever initially computed [f] in an application, computes
and sends all [f · sn·i] alongside with it. We publish [A(s)], [snA(s)], . . . , sκnA(s)]
to allow efficient sampling from H

(s). This contains [sn], [s2n], . . . , [sκn], allowing
efficient sampling from G. Testing membership in G is possible knowing [sn] using
only a bilinear pairing. We still have dim Gext = dim G = n, but we redundantly use
r = (κ + 1)n base group elements to represent elements from Gext, i.e., this yields
a (k, (r = (κ + 1)n, n, ` = n − 1)) multilinear map generator as in Definition 5.3.3
with r > n. Our efficiently computable symmetric projecting and canceling k-linear

6For general public h′(X), this is to be changed to [f], [h′(s)f], . . . [h′(s)κf] and for secret h′(X) to
a (subset of) [f], [h0,0f], . . . , [hn(k−1),n−1f], increasing κ.

88

5.4 Our Constructions

map is

ẽext : Gext
k → GT ∼= Gn,

ẽext(([f1], . . . , [sκnf1]), . . . , ([fk], . . . , [sκnfk])) = [f1 · · · fk mod h]T ,

or, more efficiently, a k-linear map Gext × Gk−1 → GT .
In this construction, for every [~f] ∈ G, we are provided with [sinfj] for any

0 ≤ i ≤ κ, 0 ≤ j < n. But in fact, subsets of those are already sufficient to per-
form the multiplication and modular reduction. Restricting to such a subset can
only improve security and reduces r, so we consider as our final proposal another
extended version of G, where we reduce r to r = 2n−2. Consider Gext ⊂ G2n−2 and
similarly H(s)

ext ⊂ Gext, defined as

Gext =
{

([f], [snf2], [snf3], . . . , [snfn−1])
∣∣∣∣∣ [f] ∈ G, f =

n−1∑
i=0

fiX
i

}
.

To see that this works out, write the product P = f1 · · · fk of polynomials fi =∑
fi,jX

j as P =
∑
j PjXj . To compute P mod (Xn− sn), we need to multiply each

Pj by sin, where i = d jne. Each Pj is a sum of terms f1,j1 · · · fk,jk with
∑
` j` = j,

where one can easily verify that for k < n, in each such summand, we must have at
least d jne factors with j` ≥ 2. Consequently, we can compute [g mod h] by picking
up enough sn-factors for each summand if we are given only [snfi,j] for j ≥ 2. This
yields an efficiently computable k-linear map

ẽext : Gext
k → GT ∼= Gn,

ẽext(([f1], . . . , [snf1,n−1]), . . . , ([fk], . . . , [snfk,n−1])) = [f1 · · · fk mod h]T ,
which is still both projecting and canceling. To allow sampling and membership
testing we publish [A(s)] and [snA(s)]. Given the concrete form of A(s), this means
publishing [s], [sn], [sn+1]. Needing only a k′ = k-linear basic map allows us to
perform our construction based on (a modified version of) k-SCasc (rather than
k + 1-SCasc). The minimal interesting example with k = 2, n = 3 then reads as
follows:

ẽext(([f0], [f1], [f2], [s3f2]), ([f ′0], [f ′1], [f ′2], [s3f ′2])) =(
[f0f

′
0 + f1(s3f ′2) + (s3f2)f ′1]T , [f0f

′
1 + f1f

′
0 + (s3f2)f ′2]T , [f2f

′
0 + f1f

′
1 + f0f

′
2]T
)
.

This can be computed with only a 2-linear map using 9 basic pairing operations. In
general, this construction requires nk applications of e, both for Gext and Gext.

For Gext our security assumption changes into asking that

(MGk, [A(s)], [snA(s)], . . . , [sκnA(s)], [A(s)~w], . . . , [sκnA(s)~w]) and

(MGk, [A(s)], [snA(s)], . . . , [sκnA(s)], [~u], . . . , [sκn~u])
be computationally indistinguishable for MGk ← Gk, s, ~w, ~u uniform. Note that
the [sinA(s)] given here are required to sample from Gext and [sn] is contained in
[snA(s)], which allows to test membership in Gext. The security assumption for Gext
is analogous and reads that

(MGk, [s], [sn], [sn+1], [A(s)~w], [(snA(s)~w)2], . . . , [(snA(s)~w)n]) and

(MGk, [s], [sn], [sn+1], [~u], [snu2], . . . , [snun])
be computationally indistinguishable.

89

5 New Composite-To-Prime-Order Transformations

Proof of Generic Security of our Projecting and Canceling Constructions

We now show that the constructions presented in this section are secure in a generic
multilinear group model. Note that the following theorem also covers all our con-
structions where the distribution of h′(X) might contain no randomness at all and
the distinguisher A may only get a subset of the data {h′(X), [h′(s)], . . .} or some-
thing efficiently computable from that (like [hi,j]), making it only harder for A.
In particular, setting h′(X) := Xn, it covers the Extended SCasc assumption from
Definition 5.4.5.

Theorem 5.4.6. Let n > k and κ ≥ 0 arbitrary but fixed. Let A(X) be the matrix
associated to the n− 1-SCasc assumption. Then for any algorithm A in the generic k-
linear group model, making at most poly(log p) many oracle queries, its distinguishing
advantage∣∣Pr[A(p, h′(X), [h′(s)i](i=1,...,κ), [A(s)], [A(s)~w], [h′(s)iA(s)~w](i=1,...,κ)) = 1]−

Pr[A(p, h′(X), [h′(s)i](i=1,...,κ), [A(s)], [~u], [h′(s)i~u](i=1,...,κ)) = 1]
∣∣

is negligible, where h′(X) R← Zp[X] of degree n is sampled according to any distribution
(but independent from s, ~w, ~u), s← Zp, ~w ← Zn−1

p , ~u← Znp uniform.

Proof. W.l.o.g. we may assume k = n − 1. We may further assume that h′(X) is
a fixed, public polynomial, containing no randomness: Clearly, the distinguishing
advantage η of A is the expected value (over the choice of h′(X)) of the conditional
advantage E[η|h′]. Our argument will show that A’s advantage for h′(X) fixed is
bounded by some negligible function, where the bound does not depend on h′(X).
This effectively means that we consider adversaries that may even depend non-
uniformly on h′(X).

Let us first consider the case where the distributions, which we want to show to
be indistinguishable, are given by

(p, [h′(s)], [s], [A(s)~w]) and (p, [h′(s)], [s], [~u]), respectively.

The general case will follow as a by-product of our proof, as we will (almost) pretend
that multiplying by [h′(s)] is for free and does not consume a pairing, so A can
compute the missing data itself. h′(X) is a public constant and the entries of [A(s)]
are either [0], [1] (which we assume to be given as part of the group’s description /
oracle) or [s].

Following [42], this implies that the assumption we are about to prove is polyno-
mially induced (i.e., the inputs to the adversary are obtained by evaluating bounded-
degree polynomials in uniformly chosen unknowns). Consider the ideals

Isubgroup =
(
H − h′(S), S −X, ~Z −A(S) ~W

)
∈ Zp[H,X, S, ~W, ~Z] and

Iuniform =
(
H − h′(S), S −X

)
∈ Zp[H,X, S, ~W, ~Z].

Here, ~Z − A(S) ~W is shorthand for the n polynomial relations of a matrix-vector
product, whereA(S) is the n×n−1 matrix of the SCasc assumption with polynomials
as entries, so Ai,i = −S,Ai,i+1 = 1 and Ai,j = 0 for j /∈ {i, i+ 1}.

90

5.4 Our Constructions

The H-variable corresponds to the hint that makes this different from the non-
extended SCasc assumption, the X-variable corresponds to the known entries of the
matrix A, the Z-variables to either [A~w] or [~u] and ~W, S are the uniformly chosen
unknowns. ~W, S are only accessible to the adversary via the relations from the
ideals. Note that these two ideals encode all relationships between these data.

Now, consider the ideals Jsubgroup = Isubgroup ∩ Zp[H,X, ~Z], Juniform = Iuniform ∩
Zp[H,X, ~Z], which encode the relations in those variables (H,X, ~Z) that the ad-
versary sees. By [42, Theorem 3] (which was only proven for matrix assumptions,
but the statement and proof extend directly to our setup), it suffices to show that
Jsubgroup,≤n−1 = Juniform,≤n−1, the subscripts denoting restriction to total degree
≤ n− 1.

As mentioned briefly above we will strengthen the adversary and allow it to com-
pute polynomials p(H, ~Z,X) of degree totaling at most k = n− 1 in (~Z,X), i.e., we
lift any degree restrictions on H. This means showing Jsubgroup,(~Z,X)-degree ≤n−1 =
Juniform,(~Z,X)-degree ≤n−1.

Translated back from the language of ideals to generic algorithms, this corre-
sponds to allowing the adversary to multiply by h′(S) for free (provided the degrees
of all polynomials appearing remain bounded), thereby allowing it to compute the
missing data. As a side remark, the bound κ (which gives a restriction on how A is
allowed to multiply by h′(S)) is required, because otherwise equality of those ide-
als, restricted by degrees, no longer is equivalent to generic security (and hence the
translation back from the language of ideals to generic algorithms fails). Working
through [42, Theorem 3] gives a bound on the distinguishing advantage via the
Schwarz-Zippel lemma, which depends on the maximal degree of any polynomial
that can appear. To ensure this bound is negligible, we need κ to be constant (and
the bound is uniform in h′(X)). Still, we can forget about κ in our proof here from
now on.

To compute Jsubgroup and Juniform from Isubgroup and Iuniform, we need to eliminate
the S and ~W -variables. Elimination of S means just using X − S to plug in X for
S. Elimination of the ~W -variables can be done as in the security proof of the non-
extended SCasc (the additional hint H does not affect that part of the proof), so we
have

Jsubgroup =
(
H − h′(X), d(Z,X)

)
and

Juniform =
(
H − h′(X)

)
.

where d(Z,X) = ±Z0 ± Z1X ± . . . ± Zn−1X
n−1 is the determinant polynomial

of SCasc for some specific choice of signs. It was shown in [42] to be absolutely
irreducible.

Of course, Juniform ⊂ Jsubgroup. So, assume towards a contradiction that there
exists some adversarially computable polynomial p(H, ~Z,X) ∈ Jsubgroup \ Juniform of
total degree in ~Z,X at most k = n − 1. By definition this implies that there exist
polynomials a, b ∈ Zp[H, ~Z,X] such that

p(H, ~Z,X) = a(H, ~Z,X) · d(~Z,X) + b(H, ~Z,X) · (H − h′(X)). (5.5)

The existence of b in the above equation (for p, a fixed) is equivalent to just plugging

91

5 New Composite-To-Prime-Order Transformations

in h′(X) for any occurrence of H, so we have

p′(~Z,X) := p(h′(X), ~Z,X) = a(h′(X), ~Z,X) · d(~Z,X) = a′(~Z,X) · d(~Z,X), (5.6)

where a′(~Z,X) := a(h′(X), ~Z,X) 6= 0 ∈ Zp[~Z,X], as otherwise p ∈ Juniform.

Let us give some intuition what we need to show here. The theorem from [42]
essentially says that the only thing the adversary can do if the determinant d is irre-
ducible is to compute this determinant or a multiple thereof. This remains true in
our case. For the usual SCasc assumption this was easily shown to be impossible,
because the determinant had a higher degree than anything the adversary could
compute. In our case, the situation changes, because the adversary has the polyno-
mial H, which corresponds to Sn, at its disposal and Sn has the same degree as d.
It is actually still easy to show that the adversary can not compute d itself. The real
problem is to show that this also holds for multiples a(h′(X), ~Z,X) · d(~Z,X).

To prove our theorem, we will show that indeed a′ = 0 is the only solution of
Eq. (5.6), even when extending the base field to an algebraic closure Zp.
Let us make another assumption simplifying the proof: Changing h′(X) into h′(X)+
c for any constant c ∈ Zp does not affect the statement of the theorem. By using
such a change, we may assume that h′(X) is square-free. Note here that the con-
dition that h′(X) + c be square-free is equivalent to requiring the discriminant of
h′(X) + c 6= 0. The discriminant of h′(X) + c is a polynomial in c, which equals
the resultant ResX(dh′

dX , h
′(X) + c) up to some normalization constant. Computing

the determinant of the Sylvester matrix for this resultant results in a leading term
of nncn−1, so the discriminant does not vanish identically and we can find a value c
(in the base field, even, if n ≥ p) such that h′(X) + c is square-free.

Let a0, . . . , an−1 be the n distinct roots of h′(X) in Zp. After performing a linear,
invertible change of variables (which does not affect anything at hand here), we
may consider the variables ~Z ′ instead of ~Z, defined by

Z ′i = d(~Z, ai) =
∑
j

±Zj · aji

and express everything in terms of ~Z ′, redefining p, p′, a, a′, d accordingly as if we
had made h′ square-free and expressed everything in terms of ~Z ′ from the beginning.
This will simplify things later, as now d(~Z ′, ai) = Z ′i. Note here that the matrix of
the linear map relating ~Z ′ and ~Z is a Vandermonde matrix and hence invertible.

Our proof will proceed in two steps. In the first step, we will show that if h′

divides p′ (which corresponds to p(H, ~Z,X) being a multiple of H), then we can
divide everything by H to obtain another non-trivial solution of Equation (5.6) with
smaller degrees. In the second step, we will show that it is always the case the h′

divides p′. This leads to a contradiction.

For the first step, let us consider the case where h′ divides p′ and consequently h′

divides a′ · d. Since Zp[H, ~Z ′, X] is factorial, d(~Z ′, X) is absolutely irreducible and
h′ can’t divide d for degree reasons, this means that h′ must divide a′. In this case,
we may divide both p′ and a′ by h′ to obtain another solution (p̃′, ã′) of (5.6) with
a′ = ã′ ·h′, p′ = p̃′ ·h′. Note that we can uniquely recover p from p′ due to the degree
restriction: For any polynomial f ∈ Zp[~Z ′, X], let C(f) ∈ Zp[H, ~Z ′, X] be the unique
polynomial of degree at most n − 1 in X, such that C(f)(h′(X), ~Z ′, X) = f(~Z ′, X).

92

5.4 Our Constructions

By uniqueness, we have H ·C(p̃′) = C(h′ · p̃′). Consequently, p = C(p′) = C(h′ · p̃′) =
H · C(p̃′). This means that H divides p and we may divide p by H to obtain p̃, such
that (p̃, C(ã′)) is another solution of (5.5). Note that by construction p̃ still satisfies
the degree restrictions and ã′ 6= 0. After performing this transformation from p to
p̃ finitely many times, we are in the case where h′ does not divide p′, so we may
w.l.o.g. assume from now on that h′ does not divide p′.

We now show in the second step that h′ divides p′, leading to a contradiction. For
this, we take Equation (5.6) modulo h′

p′′(~Z ′, X) := p′(~Z ′, X) mod h′ = p(0, ~Z ′, X) = (a′(~Z ′, X) · d(~Z ′, X)) mod h′.

The degree restrictions on p imply that p′′ is now a polynomial of total degree at
most n− 1.

Let us plug in ai for X in both sides of this equation. Since ai was defined as a
root of h′ we have (f mod h′)(ai) = f(ai) and by definition of the Z ′i ’s in terms of Zi,
we obtain:

p′′(~Z ′, ai) = a′(~Z ′, ai) · d(~Z ′, ai) = a′(~Z ′, ai) · Z ′i, for all 0 ≤ i ≤ n− 1.

Now consider the coefficient c~α ∈ Zp[X] of ~Z ′~α in p′′(~Z ′, X). Since p′′(~Z ′, ai)
is divisible by Z ′i, we must have c~α(ai) = 0 whenever αi = 0. If |α|1 = γ, there
are at least n − γ indices i, such that αi = 0. Consequently, c~α has at least n − γ
distinct roots. But our degree restriction on p′′ means that c~α can have degree at
most n− 1− γ. Hence all c~α are 0 and p′′ = 0. This in turn means that h′ divides p′,
which we ruled out above, giving us a contradiction. This shows that such a p can’t
exist, finally finishing the proof.

Generic Security For h Composed of Random Linear Factors

In our first construction of a projecting and canceling pairing above, we discussed
that it might be desirable to choose h as h(X) = (X − s1) · · · (X − sn), where s1
corresponds to s. This is not of the form h(X) = h′(X) − h′(s1) where h′(X) is
sampled independently from s = s1 and hence our proof above does not directly
apply to this case. However, the case h(X) = (X − s1) · · · (X − sn) is essentially
equivalent to setting h′(X) uniform, conditioned on the event that h′(X) − h′(s1)
splits completely over the base field. Intuitively, we expect that conditioning on the
event that h′(X) − h′(s1) splits completely can not change generic security. The
reason is that generic security can be expressed as an equality of ideals up to some
degree as in [42] or by the Uber-Assumption Theorem from [11, 22]. In any case,
it boils down to a problem of linear algebra, which does not depend on whether we
are in Zp or in the algebraic closure Zp and in the latter case, every polynomial splits
completely. Rather than making this precise, we will show the stronger statement
that security of choosing h = (X− s1) · · · (X− sn) is implied by security of choosing
h = h′(X)− h′(s1), h′ uniform in the standard model.

Theorem 5.4.7. Let n > k and let Gk be a symmetric prime-order k-linear group
generator. Consider a PPT adversary A with advantage

η =
∣∣Pr

[
A(MGk, [h0,0], . . . , [hk(n−1),n−1], [A], [A~w]) = 1

]
−

Pr
[
A(MGk, [h0,0], . . . , [hk(n−1),n−1], [A], [~u]) = 1

]∣∣,

93

5 New Composite-To-Prime-Order Transformations

where MGk := (k,G,GT , e, p,P,PT) ← Gk(1λ), s1, . . . , sn ∈ Zp, ~u ∈ Znp , ~w ∈ Zn−1
p

uniform, h(X) = (X − s1) · · · (X − sn) and hi,j is the jth coefficient of Xi mod h.
Assume η > 1

poly(λ) .
Then there exists another PPT adversary A′ with

η′ =
∣∣Pr

[
A′(MGk, [h0,0], . . . , [hk(n−1),n−1], [A], [A~w]) = 1

]
−

Pr
[
A′(MGk, [h0,0], . . . , [hk(n−1),n−1], [A], [~u]) = 1

]∣∣ > η(λ),

whereMGk := (k,G,GT , e, p,P,PT)← Gk(1λ), s1 ∈ Zp, ~u ∈ Znp , ~w ∈ Zn−1
p uniform,

h′(X) ← Zp[X] is a uniformly chosen polynomial of degree n with leading coefficient
1 and constant coefficient 0, h(X) = h′(X) − h′(s1) and hi,j is the jth coefficient of
Xi mod h.

Proof. With overwhelming probability, the si in the first variant are pairwise differ-
ent and in the second variant h = h′(X) − h′(s1) is square-free. So it is sufficient
to consider the (statistically close) variants, where we sample (s1, . . . , sn) uniform,
conditioned on being pairwise different, respectively (h′, s1) uniform, conditioned
on h′(X)− h′(s1) square-free. For s1, . . . , sn pairwise different, the map

(s1, . . . , sn) 7→ (s1, h
′ = (X − s1) · · · (X − sn)− s1 · · · sn)

is exactly (n − 1)! to 1. As a consequence, if we sample (h′(X), s1), conditioned on
the event Split that h′(X)− h′(s1) completely splits over Zp, we obtain exactly the
same distribution on h as if we had sampled h as h(X) = (X − s1) · · · (X − sn).
Further, we have Pr[Split] = 1

(n−1)! . By a standard argument, there exists at least
an η

2 -fraction of “good” choices of h in the first variant, where the advantage of A,
conditioned on this h, is at least η

2 .
As a consequence, simply running A on the second variant will give us a condi-

tional advantage of at least η
2 for at least a η

2·(n−1)! - fraction of “good” choices of
h. For other values of h, we can simply guess to obtain an advantage of 0. Un-
fortunately, we cannot easily detect whether we have a good h. However, we can
define A′ as follows: First run a statistical test, which outputs 1 with overwhelming
probability if the conditional advantage of A for the given h is at least η

4 and out-
puts 0 with overwhelming probability, if the conditional advantage of A is at most
η
8 . If this test outputs 1, A′ can simply use A to output its final answer, otherwise A′
just guesses. Note that since η > 1

poly(λ) , such a statistical test can be performed in
probabilistic polynomial time, using the fact that A′ can create instances for given
MGk, [hi,j], [A] itself by sampling its own ~w’s respectively ~u’s. Also, note that this
reduction is not black-box, because the code of A′ depends on the advantage η.

5.5 The Polynomial Viewpoint

In the construction of our projecting multilinear map in Section 5.4.2, we claimed
that the qi’s we obtained there were linearly independent for all interesting matrix
assumptions. We will make this more precise now, saying what the uninteresting
matrix assumptions are here: For this, let A ∈ (Zp[~X])n×(n−1) be a matrix describ-
ing a generically full rank, polynomially induced matrix assumption. This gives us
subspaces H(~s) ⊂ Gn with H(s) = [Im A(~s)]. Consider the case where for any fixed

94

5.5 The Polynomial Viewpoint

value of ~s, for ~w ∈ Znp uniform, the distribution of one of the components, say the
last one, of A(~s)~w is uniform and independent from the other components. This
last component then has no bearing whatsoever on the hardness of distinguishing
([A(~s)], [A(~s)~w]) from ([A(~s)], [~u]) for [~u] uniform and we might just as well drop it.
Slightly more generally, consider the following definition:

Definition 5.5.1. Let A ∈ (Zp[~X])n×(n−1) be a matrix describing a (generically) full
rank, polynomially induced matrix distribution as above. We call A or its associated
matrix distribution redundant, if there exists a matrix B ∈ Zn×np , independent from ~s,
such that for all fixed ~s the last component of B ·A(~s)~w is uniform and independent
from the other components over a uniformly random choice of ~w.

Even if the qi’s are not linearly independent, we can still view elements as poly-
nomials as follows: as in Section 5.4.2, consider the determinant polynomial d =
det(A(~X)||~F) as a polynomial in ~X, ~F and let

d =
∑

qi(~X) · Fi

be its Laplace expansion. So the qi’s are (up to sign) the determinants of the (n −
1) × (n − 1)-minors of A. Let V ⊂ Zp[~X] be their span. Even if the qi’s may
be linearly dependent, we can still map vectors to polynomials as we did before.
For any [~f] ∈ Gn, we can consider the polynomial

∑
fiqi. This means we have a

surjective map

Φ: Gn ∼= G→ V,Φ([~f]) =
∑
i

fiqi(~X)

realizing the polynomial viewpoint.

Theorem 5.5.2. Let A ∈ (Zp[~X])n×(n−1) be a matrix describing a generically full
rank, polynomially induced matrix distribution, which is not redundant. Then Φ is
bijective.

Proof. Consider the case where Φ is not injective. Then there exist a non-zero vector
[~v] ∈ ker Φ. By definition, Φ([~v])(~s) =

∑
i qi(~s)vi = 0 = d(~s,~v) for all ~s. So actually,

[~v] ∈ H(~s) = [Im A(~s)] for all ~s. Let B be some invertible matrix such that B~v
is the last unit vector. Then (0, . . . , 0, 1) ∈ Im BA(~s), hence the last component
from a random element from this image is uniform and independent from the other
components, contradicting that A is not redundant.

We remark that, by setting ẽ([~f1], . . . , [~fk]) := [Φ(~f1) · · ·Φ(~fk)]T , we can define
a projecting multilinear map either way. If Φ is not injective, the effect of Φ is
exactly to drop any redundant components. The only place where we need that Φ is
injective is for the lower bounds in our optimality proof in Section 5.6.2. Of course,
with redundant matrix assumptions, one can beat this lower bound as follows: Take
a projecting multilinear map for a Dn,n−1 matrix assumption with image size m
and artificially increase n by redundant components (this corresponds to adding an
identity matrix block with A becoming block diagonal) and have the multilinear
map ignore them (which is what our map does).

95

5 New Composite-To-Prime-Order Transformations

5.6 Optimality and Impossibility Results

In this section we consider various flavors of optimality of our construction. Addi-
tionally, we elaborate on an existing result from the literature regarding the non-
existence of a projecting and canceling pairing.

5.6.1 Optimality of Polynomial Multiplication

First, we show that for any polynomially induced matrix assumption D`+1,`, the
projecting multilinear map resulting from the polynomial viewpoint is optimal in
terms of image size.

Theorem 5.6.1. Let k > 0, and let D`+1,` be a polynomially induced matrix assump-
tion and let q0, . . . , q` be the polynomials associated to D`+1,` as defined in Equa-
tion (5.3) in Section 5.4.2 and let W ⊂ Zp[~X] be the space of polynomials spanned by
{qi1 . . . qik | 0 ≤ ij ≤ `}. Let (MGk,H, G`+1, GmT , ẽ) be the output of any other fixed
(k,D`+1,`) projecting multilinear map generator. Then, m := dimW ≤ m.

Gk GmT

Gk GT

ẽ

(
π(~s)
)k

π
(~s)
T

e

Gk × . . .× Gk GmT × . . .×GmT

Gk × . . .×Gk GT × . . .×GT

(ẽ, . . . , ẽ)((
π(~s1)

)k
, . . . ,

(
π(~sm)

)k) (
π

(~s1)
T , . . . , π

(~sm)
T

)
(e, . . . , e)

Figure 5.1: Left: Projecting property. Right: The diagram repeated m times for an interpo-
lating set ~s1, . . . ~sm for W .

PROOF INTUITION. The first part of the proof shows that w.l.o.g. we can assume
that π(~s)

T ◦ ẽ is polynomial multiplication for all ~s, that is, for any [~f1], . . . , [~fk] ∈
G`+1, πT (ẽ([~f1], . . . , [~fk])) = [(f1 . . . fk)(~s)]T . This follows from the commutative
diagram on the left, i.e., the projecting property, together with the fact that, because
H has co-dimension 1, the map π(~s) must (up to scalar multiples) correspond to
polynomial evaluation at ~s. The intuition for the second part of the proof is given
by Figure 5.1. Here we show that if ~s1, . . . ~sm is an interpolating set for W , then
the span of

{(
π

(~s1)
T (~x), . . . , π(~sm)

T (~x)
)
|~x ∈ ẽ(Gk)

}
⊂ GmT is of dimension m. This

dimension can be at most the dimension of the span of ẽ(Gk), showing m ≤ m.
We now give the formal proof of Theorem 5.6.1

Proof. By assumption, H = H
(~s) is the subspace of G = G`+1 spanned by the rows

of the matrix [A(~s)], for some ~s ∈ Zdp, and by definition of q0, . . . , q`, if [A(~s)] has
full rank, H(~s) = {~f = (f0, . . . , f`) |

∑`
i=0 fiqi(~s) = 0}.

The fact that the map is projecting (cf. Definition 5.3.2 or Figure 5.2) guarantees
that for everyH(~s) there exist π(~s) : G→ G, and π(~s)

T : GT → GT , such that kerπ(~s) =
H

(~s) and e(π(~s)(~x1), . . . , π(~s)(~xk)) = π
(~s)
T (ẽ(~x1, . . . , ~xk)) for any ~x1, . . . , ~xk, where e is

the basic pairing operation inMGk. We stress that π(~s) and π(~s)
T may depend on H,

while by assumption, the multilinear map ẽ is fixed and thus independent of H.
We structure the proof into two steps: The first step is a lemma, which says that

π(~s) can be viewed as polynomial evaluation at ~s.

96

5.6 Optimality and Impossibility Results

Gk GmT

Gk GT

ẽ

(
π(~s)
)k

([~f1], . . . , [~fk]) 7→ (π(~s)([~f1]), . . . , π(~s)([~fk])) π
(~s)
T

e

Figure 5.2: The projecting property

Lemma 5.6.2. For any ~s ∈ Zdp, there exists some µ(~s) ∈ Z∗p such that π(~s)(~f) =
µ(~s)∑`

i=0 fiqi(~s).

Proof. Since H(~s) has co-dimension 1 in G`+1, any two maps G`+1 → G, both with
kernels H(~s), differ by a non-zero scalar multiple. By definition, kerπ(~s) = H

(~s).
Since the map π̃ : G`+1 → Gwhich sends ~f ∈ G`+1 to f(~s) =

∑`
i=0 fiqi(~s) is another

linear map with kernel H(~s) = {~f ∈ G`+1 | f(~s) = 0}, the claim follows.

Without loss of generality we assume in the following that µ(~s) = 1 for all ~s. This
follows from the fact that if ẽ satisfies the projecting property with respect to the
maps π(~s), π

(~s)
T then the same property is satisfied by the maps ((µ(~s))−1π(~s)) and

((µ(~s))−kπ(~s)
T).

For the second step, we consider the commutative diagram Figure 5.3 for an
interpolating set ~s1, . . . , ~sm for W .

Gk GmT

Gk × . . .× Gk GmT × . . .×GmT

Gk × . . .×Gk GT × . . .×GT

Ẽ = (ẽ, . . . , ẽ)

Π =
((
π(~s1)

)k
, . . . ,

(
π(~sm)

)k)
ΠT =

(
π

(~s1)
T , . . . , π

(~sm)
T

)
E = (e, . . . , e)

ẽ

∆Gk x 7→ (x, . . . ,x) ∆Gm
T

x 7→ (x, . . . ,x)

Figure 5.3: Figure 5.2 repeated m times for an interpolating set ~s1, . . . ~sm for W .

With the above Lemma 5.6.2 it holds that

e
((
π(~si))k([~f1], . . . , [~fk])

)
= e

(
[f1(~si)], . . . , [fk(~si)]

)
= [(f1 · · · fk)(~si)]T ,

where fj(~X) is the polynomial defined by fj(~X) =
∑
t qt(~X)fj,t. It follows that,

going first down, then right in the diagram,

E(Π(∆Gk([~f1], . . . , [~fk]))) =
(
[(f1 · · · fk)(~s1)]T , . . . , [(f1 · · · fk)(~sm)]T

)
,

from which f1 · · · fk ∈ W can be interpolated via a linear map. It follows that the
span of the image of E ◦Π ◦∆Gk has dimension at least m = dimW . But traversing
the diagram first right, then down, we see that the image of E ◦Π◦∆Gk is contained
in (ΠT ◦∆GmT

)(GmT), where ΠT ◦∆GmT
is a linear map. So the dimension of the span

of the image of E ◦ Π ◦ ∆Gk can be at most dimGmT = m. This implies m ≤ m,
finishing the proof.

97

5 New Composite-To-Prime-Order Transformations

5.6.2 Optimality of our Projecting Multilinear Map from the
SCasc-Assumption

As a result of our general viewpoint, we can actually show that the projecting
multilinear map based on the SCasc-assumption is optimal among all polynomi-
ally induced matrix assumptions Dn,` that are not redundant. Non-redundancy
rules out the case where some components of ~z are of no help (even information-
theoretically) in distinguishing ~z ∈ G from ~z ∈ H(s). See 5.5.1 for a formal definition
of redundancy.

Theorem 5.6.3. Let n = `+ 1 and Dn,` be a polynomially induced matrix distribution
which is not redundant. Let (MGk,H, Gn, GmT , ẽ) be the output of some projecting
(k,Dn,`) multilinear map generator with a fixed multilinear map. Then, m ≥ `k + 1.

Note that the projecting pairing based on the polynomial viewpoint of the `-SCasc-
assumption reaches this bound and is hence optimal.

Proof. We may identify Gn with some subspace V ⊂ Zp[~X] of dimension n. By
Theorem 5.6.1 above, we may assume w.l.o.g. that ẽ is polynomial multiplication,
as this only makes m smaller. Hence we can also identify GmT with some subspace
W ⊂ Zp[~X] of dimension m. Let > be any monomial ordering on Zp[~X]. Let
q0, . . . , q` be a basis of V in echelon form with respect to >. This implies that the
leading monomials satisfy LM(q0) > . . . > LM(q`). Now consider the elements

qk0 = r0 =q0 · · · q0q0

r1 =q0 · · · q1q0

...

r` =q0 · · · q0q`

r`+1 =q0 · · · q0q1q`

...

r2` =q0 · · · q0q`q`

. . .

. . .

r(k−1)`+1 =q0q` · · · q`
...

r`k =q`q` · · · q`

(the definition of ri+1 differs from that of ri in one single index being greater by
one). All ri ∈ W by construction and LM(r0) > LM(r1) > . . . > LM(r`k) by the
properties of a monomial order. It follows that the ri are linearly independent,
showing m = dimW ≥ `k + 1.

5.6.3 Extended Impossibility Results for Projecting and Canceling

In his original paper [45], Freeman gives several constructions of bilinear pairings
which are either projecting or canceling — but not both. Subsequently, Meiklejohn
et al. [89] give evidence that it might be hard to obtain both features simultane-
ously: they proved that there is no fixed projecting and canceling pairing for the U`
assumption. We restate their result here.

Theorem 5.6.4. ([89]) Any symmetric (2,U`) bilinear generator with a fixed pairing
cannot be simultaneously projecting and canceling, except with negligible probability
(over the output of the generator).7

7Their claim is that it is impossible to achieve both properties under what they call a “natural use” of
the `-Lin assumption although they are really using the uniform assumption.

98

5.6 Optimality and Impossibility Results

It could be the case that, as it happened for the lower bounds for the image size, a
change of assumption could suffice to construct a projecting and canceling pairing.
However, the proof of [89] seems hard to generalize to other Dn=`+1,` assumptions.
In this section, we give a very simple but limited extension of Freeman’s result to
any (2,L`) and any (2,SC2) bilinear generator. It remains an open question if the
impossibility results extend to (2,SC`), for ` > 2.

Lemma 5.6.5. Let (k = 2,H1, G
n,GT , ẽ) be the output of a symmetric canceling (k =

2, (n = ` + 1, `)) bilinear map generator. Then ẽ(Gk) ⊂ GT is a vector space of
dimension at most `(`+ 1)/2.

Proof. The map ẽ can be alternatively defined as a linear map from G⊗G→ GT . First
we note that, since ẽ is symmetric, the maximum dimension of the image of ẽ (which
w.l.o.g. is GmT , for some m ∈ N) is (`+ 1)(`+ 2)/2. This follows because the kernel
of ẽ must contain all the symmetry relations , i.e., the span of all ~ei⊗~ej − ~ej ⊗ ~ei.
Additionally, since the map is canceling, and G = H1 ⊕H2, it follows that H1⊗H2
must also be in the kernel (note that if this is the case, by symmetry so is H2 ⊗H1).
Since H1 ∩ H2 = {0}, we have that H1⊗H2 intersects the span of the symmetry
relations only trivially. Since the dimension ofH1⊗H2 is `, it follows that the size of
the image is at most m := (`+1)(`+2)

2 − ` = `(`+1)
2 + 1.

The lemma also means that there is no (2,L`) bilinear generator with a fixed
pairing which is both projecting and canceling, because according to Section 5.6.1
the image size would be at least (`+1)(`+2)

2 , while Lemma 5.6.5 says the image is at
most `(`+1)

2 + 1.8 Further, we can prove that there is no (2,SC2) bilinear generator
with a fixed pairing which is both projecting and canceling (more generally, this
extends to any D3,2 matrix distribution), since the optimality results of Section 5.6.1
and Section 5.6.2 imply that the image size would be at least 5 while Lemma 5.6.5
says the image size would be at most 4. It remains an open question to see if other
impossibility results for `-SCasc can be proven for ` > 2.

With these impossibility results, it is not surprising that all projecting and cancel-
ing constructions are for non-fixed pairings in the sense of Definition 5.3.4. Indeed,
in [108] Cheon and Seo construct a pairing which is both projecting and canceling
but not fixed since, implicitly, the group G depends on the hidden subgroup H. In
our language, the pairing of Seo and Cheon is a (2, (r = `2, n = ` + 1, `)) pairing,
i.e., G ⊂ G`

2
of dimension n = ` + 1. Recently, Lewko and Meiklejohn [86] simpli-

fied this construction, obtaining a (2, (r = 2`, n = ` + 1, `)) bilinear map generator.
Our (2, (r = 2`, n = ` + 1, `)) pairing achieving both properties from Section 5.4.3
(and which generalizes to any (k, (r = 2`, n = ` + 1, `)) with ` ≥ k) uses com-
pletely different techniques. A direct comparison of [108], [86] with our pairing is
not straightforward, since in fact they use dual vector spaces techniques and their
pairing is not really symmetric.

8We note that this last result about (2,L`) bilinear generators is not proven in [89]. Although
the authors talk about a natural use of the `-Lin assumption, their results are for the uniform
assumption.

99

5 New Composite-To-Prime-Order Transformations

5.7 Efficiency Considerations for our Constructions

In some instantiations of multilinear settings, computing the (basic) mapping e is
significantly more expensive than computing the group operation or even an ex-
ponentiation. For instance, this is the case for all instantiations of bilinear maps
over elliptic curves we currently know. In such settings it might be worthwhile to
strive for trade offs between applications of e and less expensive operations. In Sec-
tion 5.7.1 we consider such trade offs for our projecting map constructions while
Section 5.7.2 deals with the projecting and canceling maps.

5.7.1 Efficiency of the Projecting Constructions

For our constructions of projecting maps in Section 5.4.1 and Section 5.4.2, com-
puting ẽ corresponds to usual multiplication of polynomials. Hence, we may apply
methods for fast polynomial multiplication to reduce the number of applications of
e. Concretely, we may follow an evaluate-multiply-interpolate approach. Consider
the case that we are given the polynomials f1, . . . , fk all from a subspace V of di-
mension n (e.g., univariate polynomials of degree at most n− 1), and we know that
their product lies in a subspace W of dimension m (e.g., k = 2 and W contains all
univariate polynomials of degree at most 2n − 2, so m = 2n − 1). Then we can
first evaluate all fj at m publicly known points x0, . . . , xm−1 that form an interpo-
lating set for W , then multiply f1(xi) · · · fk(xi) for any i to obtain (f1 · · · fk)(xi),
from which our desired result f1 · · · fk can be interpolated. One thing to note here
is that the map sending a polynomial f ∈ W to the vector f(x0), . . . , f(xm−1) is
a bijective linear map, whose coefficients depend only on the publicly known xi,
so both evaluation and interpolation can be computed without any pairings. As a
consequence, using this approach for computing ẽ, we can reduce the number appli-
cations of e to m at the cost of having to apply some linear maps, which correspond
to multi-exponentiations in G.

Intermediate trade offs are possible here. For instance, it is easy to see that the
Karatsuba algorithm [78] can immediately be applied to our bilinear map based
on 2-SCasc. This would reduce the number of basic pairing applications from a
naive 9 to 6 (rather than all the way to 5) at the cost of only 9 additional group
operations (e.g., see [116]). Note that there are also generalizations of Karatsuba
to the multivariate case, e.g., [117].

Since interpolation is a publicly known linear map, this just corresponds to choos-
ing a basis for W and has no effect on the hardness of subgroup indistinguishability.
In particular, this means we do not need to interpolate in the end, but can simply
use [(f1 · · · fk)(x0)]T , . . . , [(f1 · · · fk)(xm−1)]T ∈ GmT as the final result, representing
polynomials in the target space by their evaluations at the interpolating set.

This observation means that we should choose the interpolation points in such a
way that computations of the map G → Gm, [f] 7→ ([f(x0)], . . . , [f(xm−1]) should
be cheap. If vectors from G correspond to polynomials via coefficient representa-
tion, we can simply choose small xi (usually, this has the downside of making the
coefficients for interpolation large, which does not matter here). Concretely, for our
2-SCasc based construction, we chose interpolation points as M = {−2,−1, 0, 1, 2}.
Given coefficients [f0], [f1], [f2] of a polynomial f = f0 + f1X + f2X

2 of degree
at most 2, one can compute [f(−2)], [f(−1)], [f(0)], [f(1)], [f(2)] with only 11 addi-

100

5.7 Efficiency Considerations for our Constructions

tions/inversions. Furthermore, it is possible to amortize the cost of evaluation, if
the same [f] is used in several applications of ẽ.

Computing π : G→ G for known ~s is a linear map and hence corresponds to one
n-multi-exponentiation. For our SCasc-based constructions, this means computing
[f0 + sf1 + s2f2 + . . .] from [f] and s. Since f0 is not multiplied by anything, we
really only have a n − 1-multi-exponentiation and one group operation. For the
computation of πT : GT → GT , this latter saving is no longer possible if we represent
elements from W by their evaluations. Instead, [f(s)]T = πT ([P0]T , . . . , [Pm−1]T) is
computed as πT ([P0]T , . . . , [Pm−1]T) =

∑
i ri(~s) · [Pi]T , where the coordinate [Pi]T

corresponds to the value Pi = f(xi) of some polynomial f at xi. This corresponds
to the basis r0, . . . , rm−1 of W , determined by ri(xj) = 0 if i 6= j and 1 otherwise.
Note that the ri are known and computing ri(~s) is just a computation in Zp (which
is fast).

5.7.2 Efficiency of the Projecting and Canceling Constructions

Let us briefly consider our projecting and canceling constructions from Section 5.4.3
based on variants of SCasc. Computation of π and πT can be done as in the project-
ing construction. So let us turn our attention to the efficiency of ẽ respectively ẽext
with respect to the application of fast multiplication algorithms. Here the the situa-
tion is more intricate as we also need to perform modular reduction in the exponent.
Furthermore, we chose h′(X) = Xn, which gives us an advantage if we stay in the
coefficient representation, as the reduction modulo Xn−sn has an easier form then.

The naive way of computing either ẽ or ẽext requires exactly nk applications of the
k′-linear e and nk − nk−1 additions in GT . For ẽext from the modified construction
in Section 5.4.3, this is the best method we are aware of, both in the Gext and in the
Gext variant.

For ẽ from the first construction in Section 5.4.3, we can use some ideas from
efficient polynomial multiplication to improve this. Perhaps the most simple idea
which, however, only works in certain settings is the following: Let us first assume
that we are given a k′-linear basic map e to implement our k-linear map ẽ as in the
first construction in Section 5.4.3. Moreover, assume that e is not given as a “mono-
lithic block” but as a series of pairings ei,j : G(i)×G(j) → G(i+j) like it is the case for
the currently known multilinear map candidates. In such a setting, it is possible to
first compute products consisting of only k factors and then multiply (linear combi-
nations of) these sub products with another factor. This enables us to first compute
the coefficients of [(f1 · · · fk)] in G(k) using the fast polynomial multiplication al-
gorithms as described before and subsequently, perform the modular reduction by
multiplying these coefficients with the appropriate reduction term [sin] for appro-
priate i by means of ek,1. Note that we can perform polynomial interpolation onto
intermediate results, which means we can use a multiplication tree, reducing the
number of interpolation points required for intermediate products. Also, we inter-
polate in the end, so the final modular reduction can be performed in the coefficient
representation. This way, (only counting applications of e), for the multiplication,
we need at most (or exactly if k is a power of 2) k(n−1)dlog2 ke+k−1 applications
of some ei,j , and for the reduction we need k(n − 1) − n applications of ek,1. This
makes a total of (at most) k(n− 1)d1 + log2 ke+ k − n− 1 (bilinear) pairings. Note
that this counts bilinear pairings, i.e., only “partial” k′-linear pairings and hence can

101

5 New Composite-To-Prime-Order Transformations

not be directly compared to applications of a k′-linear map.
Now, assume we are given a k + 1-linear basic map as a black-box, i.e., not as a

series of pairings. We use the evaluate-multiply approach as before, so consider the
interpolating set x0, . . . , xk(n−1) with interpolation polynomials ri such that ri(xj) =
0 for i 6= j and 1 otherwise. Let

ri mod h =
n−1∑
j=0

hi,jX
j .

Note that the [hi,j]’s are computable from the [hi,j]’s and xi’s. Then we can compute
ẽ([f1], . . . , [fk]) as

ẽ([f1], . . . , [fk]) = [f1 · · · fk mod h]T =

n−1∑
j=0

k(n−1)∑
i=0

hi,jf1(xi) · · · fk(xi)Xj


T

.

This requires kn(n− 1) + n applications of e. Note that we can not make use of the
special form of h(X) = Xn − sn this way and this is worse than the naive approach
for small values of n, k (but much better asymptotically). Also for small values of n
and k and h of a general form, there are dedicated tricks to reduce the number of
basic map applications. For instance, in the case k = 2, n = 3, and general h, we
may compute ẽext (which is defined in a similar way as our modified construction
in Section 5.4.3 for special h = Xn − sn) using 12 applications of e compared to 15
using the naive approach.

5.8 Applications

In this section, we will exemplarily illustrate how applications benefit from our
more efficient and general constructions. I.e., using our projecting pairing from
Section 5.4.1, we can improve the performance of Groth-Sahai proofs by almost
halving the number of required prime-order pairing operations (cf. Table 5.1). Ad-
ditionally, in Section 5.8.2, we show how to implement a k-linear variant of the
Boneh-Goh-Nissim encryption scheme [13] using the projecting multilinear map
generator Gk,SCk .

5.8.1 Instantiating Groth Sahai Proofs

BASICS ABOUT GROTH SAHAI PROOFS. Groth Sahai proofs are NIZK proofs of satis-
fiability of a set of equations in a bilinear groupMG2 := (2, G,GT , e, p,P,PT). The
proofs follow a basic commit-and-prove approach (for a formalization of this see
[41]) in which the witness for satisfiability (some elements in G or in Zp, depend-
ing on the equation type) is first committed to and then the proof shows that the
committed value satisfies the equation. The common reference string includes some
commitment keys which can be generated in two computationally indistinguishable
ways: in the soundness setting, the keys are perfectly binding and in the witness
indistinguishability setting they are perfectly hiding.

Groth-Sahai proofs [63] are the most natural application of projecting bilinear
maps. They admit various instantiations in the prime-order setting. It follows easily

102

5.8 Applications

from the original formulation of Groth and Sahai that their proofs can be instan-
tiated based on any Dn,` assumption and any fixed projecting map. Details are
given in [42] but only for the projecting pairing corresponding to the symmetric
bilinear tensor product. The only point where our construction differs from the
one given in ([42], section 4.4) is in the definition of the symmetric bilinear map
F , which we define to be ẽ, the projecting bilinear map corresponding to polyno-
mial multiplication defined in Section 5.4.2. The pairing ẽ is described by a tuple
(MG2, [A],G = G`+1, GmT , ẽ), A ← D`. The only information related to F which
has to be included in the common reference string are some matrices [H1], . . . , [Hη]
whose purpose is to ensure that the proof is correctly distributed among all proofs
satisfying the verification equation.

Define for any two vectors of elements of G of equal length r, [~X] = ([~x1], . . . , [~xr]),
[~Y] = ([~y1], . . . , [~yr]), the maps • associated with F = ẽ as [~X]•[~Y] =

∑r
i=1 ẽ([~xi], [~yi]).

More specifically, the information which depends on F which is in the setup is the
following (depending on the equation type):

• Pairing product equations. In this case, H1, . . . ,Hη are a basis of the space
of all matrices which are a solution of the equation [UH] • [U] = [0]T , where
U is the commitment key. (This commitment key is either of the form [U] =
[A||A~w] or [U] = [A||A~w − ~z] for random ~w and a public ~z /∈ Im(A).)

• Multi-scalar multiplication equations. In this case, H1, . . . ,Hη are a basis of
the space of all matrices which are a solution of the equation [AH]•[U] = [0]T .

• Quadratic equations. In this case, H1, . . . ,Hη are a basis of the space of all
matrices which are a solution of the equation [AH] • [A] = [0]T .

We discuss how these matrices ought to be defined when F = ẽ, polynomial mul-
tiplication via the identification between polynomials and vectors in G`+1 defined
by D`. The matrices are independent of the choice of basis for the image space W ,
since a change of basis corresponds to multiplication by an invertible matrix. There-
fore, these matrices can be chosen depending only on D`, without having to specify
W .

For the pairing of Seo [107] and which corresponds also to our construction for
U` and `-Lin, these matrices are the same as the ones given in [42], namely matrices
of the appropriate size which encode the symmetric relations which are in the ker-
nel of ẽ. On the other hand, for `-SCasc, additional relations — apart from the ones
derived from symmetry — appear only for pairing product equations. For concrete-
ness, we give an exact description of the matrices for the 2-SCasc assumption:

• Pairing product equations. A choice of basis is:

H1 :=

 0 1 0
−1 0 0
0 0 0

 ,H2 :=

 0 0 1
0 0 0
−1 0 0

 ,H3 :=

 s 0 0
−2s s 0
2s 1− 2s s− 1

 ,
where s ∈ Zp describes A, namely A = A(s).

• Multi-scalar multiplication equations. A choice of basis is:

H1 :=

 0 1
−1 0
0 0

 .

103

5 New Composite-To-Prime-Order Transformations

• Quadratic equations. A choice of basis is:

H1 :=
(

0 1
−1 0

)
.

It can be easily seen that compared to the assumptions U2, and 2-Lin (see [63, 42]),
the only difference is the matrix H3. As we announced, the intuition is that Hi,
i 6= 3, encode the symmetric relations in the kernel of ẽ, while for PPE’s an additional
element in the kernel appears (which accounts for the smaller image size of our
pairing).

EFFICIENCY DISCUSSION. The important efficiency measures for GS proofs are com-
mon reference string size, proof size, prover’s and verification’s efficiency. The proof
size (for a given equation) depends only on the size of the matrix assumption, that
is of n, `, so it is omitted in our comparison. Essentially, so does the efficiency of
the prover, with some minor differences which are discussed below. For the rest, the
discussion goes as follows:

• Size of the common reference string. `-SCasc assumption is the most ad-
vantageous from this point of view (as noted in [42]) since the commitment
keys can be described more compactly in this case. Note that the matrices
[Hi] do not have to be published since they are fixed and computable from the
common reference string. The size of the common reference string depends
essentially one size of the commitment key, which is n + ReG(Dn,`), where
ReG(Dn,`) is the representation size of the matrix assumption Dn,`, which is 1
for `-SCasc, ` for `-Lin and (`+ 1)` for U`. Therefore, the `-SCasc instantiation
is the most advantageous from the point of view of the size of the common
reference string (regardless of the pairing used), as pointed out in [42].

• Prover’s computation. The cost of computing a commitment depends roughly
on the sparseness of the matrix A. For instance, for the uniform assumption
with ` = 2, a commitment costs at least 6 exponentiations, so lin2 and 2-SCasc
are more advantageous. On the other hand, the instantiation of proofs for
PPE using 2-SCasc requires in comparison to compute additionally rH3, for
some r ← Zp. This can be done very efficiently by computing simply [rs] and
[r] and obtaining rH3 via doubling and the group operation. Following [41],
the prover’s computation can be reduced significantly by allowing a prover
to choose its own common reference string and then proving its correctness.
This allows the prover to minimize the number of exponentiations, since the
prover knows s ∈ Zp and can compute most operations in Zp. Obviously the
same trick applies here.

• Verification cost Verification cost is the efficiency measure which depends
more on the choice of pairing, as it typically involves several evaluations of
the map F . Since the map ẽ can be computed more efficiently than F , the
verification cost is significantly reduced for many equation types. For instance,
using our map derived from 2-SCasc we can save 4 basic pairing evaluations
per evaluation of ẽ.

104

5.8 Applications

We emphasize that this discussion is for general equation types. For some specific
types — like linear equations with constants in G, the new map does not imply more
efficient verification.

We conclude that the 2-SCasc instantiation with polynomial multiplication is def-
initely the most efficient implementation for GS NIZK proofs in symmetric bilinear
map, not only because of the size of the common reference string as pointed out
in [42] but also from point of view of efficiency of verification. For instance, this
leads to a saving of 12 pairing evaluations for proving that a committed value is a
bit b ∈ {0, 1}.

5.8.2 Efficient Implementation of the k-times Homomorphic BGN
Cryptosystem

In this section we show how to implement a multilinear variant of the Boneh-Goh-
Nissim (BGN) encryption scheme from [13] with prime-order multilinear groups.
We proceed as follows: first we transform a given prime-order multilinear group into
a projecting composite-order multilinear group using the results from Section 5.4.2.
As seen in Section 5.6.2, the most efficient way to do this is using the k-SCasc
assumption. We write the generator, already given in Example 5.4.2, again in more
detail. In the next step, we show how to implement the BGN cryptosystem in those
groups and compare the implementation costs to implementations of k-BGN derived
from the work of Freeman ([45]) and Seo ([107]).

Example 5.8.1 (A generator for the BGN cryptosystem). Let k ∈ N and SCk denote
the matrix distribution belonging to the symmetric cascade assumption from Defini-
tion 2.4.4. Let Gk−BGN be an algorithm that, on input a security parameter λ ∈ N,
does the following:

• ObtainMGk := (k,G,GT , e, p,P,PT) from a symmetric k-linear group genera-
tor Gk(λ).

• Let G := Gk+1,GT := Gk
2+1
T .

• Choose s R← Zp and let H(s) ⊂ G,H(s)
T ⊂ GT as in Section 5.4.1.

• Let ẽ([~f1], . . . , [~fk]) := [f1 · · · fk]T .
• Output the tuple (MGk,H(s),G,GT , ẽ).

Observe that Gk−BGN is a (k,SCk) multilinear map generator. Additionally, Gk−BGN
is projecting for H(s) w.r.t. the maps π : G → G, [~f] 7→ [f(s)] and π′ : GT → GT ,
[~f]T 7→ [f(s)]T . Both maps can be computed efficiently given s. From the discussion in
Section 5.4.1 it follows that if Gk satisfies the k-SCasc assumption, then Gk−BGN satis-
fies the subgroup indistinguishability property. As seen in Section 5.4.2, the computa-
tion of the map ẽ can be optimized using techniques for fast polynomial multiplication.

The BGN scheme as introduced in [13] is additively and one time multiplicatively
homomorphic. It uses a pairing and can be extended in a straightforward way to
work with a k-linear map for arbitrary k ∈ N. The resulting encryption scheme is
then k−1 times multiplicatively homomorphic. We now describe how to implement
the scheme using Gk−BGN .
Setup(1λ): Run Gk−BGN to obtain (MGk,H(s),G,GT , ẽ). Afterwards, output PK :=

(p,G,GT , ẽ,P, [s]) and SK := s.

105

5 New Composite-To-Prime-Order Transformations

Enc(PK,m): To encrypt a message in G, draw h0, . . . , hk
R← Zp \ {0} and compute

h := [(−sh0, h0 − sh1, . . . , hk−1 − shk, hk)] ∈ H(s) using [s] from PK. Set
P0 := [(1, 0, . . . , 0)]. Compute and output the ciphertext as

c := m · g0 + h = [(−sh0 +m,h0 − sh1, . . . , hk−1 − shk, hk)].

Encryption in GT works similarly.
Dec(SK, c): Decryption in G and GT works by applying π, i.e., evaluating c, inter-

preted as polynomial c(X), in SK = s. For this, parse c := (c1, . . . , cl) and
compute π(c) = [c(s)] = [c1 + s · c2 + · · ·+ sl · cl]. Output m = logg(c(s)).

Add(PK, c, c′): We assume c, c′ ∈ G. Draw ĥ
R← H

(s). Compute and output

c+ c′ + ĥ = (m+m′) · g0 + h+ h′ + ĥ.

Adding encrypted messages in GT works just as in G.
Mult(PK, c1, . . . , ck): We require c1, . . . , ck ∈ G. Draw ĥ

R← H
(s)
T . Compute and

output
ẽ(c1, . . . , ck) + ĥ = (m1 · . . . ·mk)g0

T + h̃+ ĥ,

where P0
T := [(1, 0, . . . , 0)]T and h̃ ∈ H(s).

Observe that correctness of decryption follows from c(s) = [−sh0 + m + s(h0 −
sh1) + · · · + sk−1(hk−1 − shk) + sk(hk)] = [m + h(s)] = [m]. The number of G-
exponentiations required for encryption and decryption is equal to the number of
copies of G used for G and GT , i.e., k + 1 for G and k2 + 1 for GT .

Corollary 5.8.2. The above scheme is semantically secure if the group generator Gk
satisfies the k-SCasc assumption.

Proof. Semantic security follows from a straightforward adaption of Theorem 3.1
from [13] and the fact that Gk−BGN satisfies the subgroup indistinguishability prop-
erty if Gk satisfies the k-SCasc assumption.

COMPARISON TO AN EXTENSION OF FREEMAN’S CONSTRUCTION ([45]). The project-
ing pairing from [45] has a natural extension to the multilinear case. For k ∈ N,
the k-linear extension of the symmetric bilinear generator of [45], Theorem 2.5, is a
(k,Uk) multilinear map generator (note that Freeman uses the uniform distribution
to generate subgroups). We can define the k-linear map such that it is projecting,
following [45], Section 3.1 (using the notation from the original paper). Thus, we
let the generator compute ẽ as ẽ([~f1], . . . , [~fk]) := e(g, . . . , g)~f1⊗···⊗~fk . This setting
can be further optimized for multilinear maps if we use an asymmetric prime-order
map as a starting point for an asymmetric generator. We will not go into the details,
since the construction is essentially the same as in [45], Example 3.3, naturally ex-
tended to the multilinear setting. On a high level, the main advantage is that we
can keep the dimension of the subgroups and thus the composite-order groups small
(i.e., Gi := G2

i), leading to a smaller (though still exponentially large) number of
basic multilinear map evaluations to compute ẽ. Note that even the asymmetric
generator, using Gi = G2

i , requires 2k group elements to describe ciphertexts in the
base groups. This is because the BGN cryptosystem has to be adjusted to work with
an asymmetric map (see [45], Section 5, for details).

106

5.9 A Unified View on Different Projecting Pairings From the Literature

Generator ciphertexts (in G/GT) Enc/Dec (in G/GT) Mult
(el. from G) (el. from GT) (exp. in G) (exp. in GT) (exp. in GT) (eval. of e)

Freeman, symm. k + 1 (k + 1)k (k + 1)2 (k + 1)2k - (k + 1)k+1

Freeman, asymm. 2k 2k · k 22 22k - 2k

Seo, symmetric k + 1
(2k
k

)
(k + 1)2 (2k

k

)2
- (k + 1)k

Our Gk−BGN k + 1 k2 + 1 k + 1 k2 + 1 - (k + 1)k
Our Gk−BGN , opt. k + 1 k2 + 1 k + 1 k2 + 1 (k3 + k)k k2 + 1

Table 5.2: Implementation costs and ciphertext sizes of k-BGN using different generators.

COMPARISON TO AN EXTENSION OF SEO’S CONSTRUCTION ([107]). As we explained
in Section 5.3, in the constructions of Freeman, subgroups are always sampled ac-
cording to the uniform assumption. Under this condition, Seo ([107]) proved that
Freeman’s construction of a projecting pairing is not optimal in the symmetric case.
For this case, Seo gives a projecting pairing that is optimal in Freeman’s model and,
as seen in Section 5.9, matches our construction for the uniform assumption, and
can therefore be generalized to the multilinear case (see Example 5.4.4).

The implementation costs and ciphertext sizes of k-BGN using different genera-
tors are described in Table 5.2. We used the generators obtained by extending the
construction of Freeman, the generator Gk,Uk used by Seo ([107]) and our most
efficient generator Gk−BGN . The latter is listed twice, differing in the method to
compute the mapping ẽ (naively or optimized using techniques for fast polynomial
multiplication.) Costs are stated in terms of application of the basic map e and ex-
ponentiations in G, respectively GT . To keep the exposition simple, we measure
ciphertext sizes of the coefficient representation (not the optimized point-value rep-
resentation introduced in Section 5.4). Observe that our construction is the only one
for which trade offs between basic multilinear map evaluations and exponentiations
are known.

5.9 A Unified View on Different Projecting Pairings From
the Literature

In this section, we compare our constructions for the special case of a 2-linear map
with previous constructions of Groth and Sahai9 ([63]) and Seo ([107]). We use
the language of Seo to represent all constructions consistently. Let us first briefly
introduce the required tools for this.

Given two vectors ~x = (x0, . . . , xn−1) ∈ Znp and ~y = (y0, . . . , yn−1) ∈ Znp , the
tensor product ~x⊗~y is defined as (x0y0, x0y1, x0y2, . . . , xn−1yn−1). Any bilinear map
ẽ : Gn × Gn → GmT can be uniquely described by a matrix B ∈ Zn2×m

p such that
ẽ([~x], [~y]) = e([1], [1])(~x⊗~y) B = [(~x⊗ ~y) B]T .

We can now present the pairing ẽ of each construction in terms of the matrix B.

9The most efficient symmetric construction of Freeman ([45]), based on 2-Lin, matches the one of
Groth and Sahai and is thus not listed here.

107

5 New Composite-To-Prime-Order Transformations

1. Symmetric tensor product (original Groth Sahai construction):

B =



1 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0
0 0 1/2 0 0 0 0 1/2 0
0 1/2 0 1/2 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1/2 0 0 1/2
0 0 1/2 0 0 0 0 1/2 0
0 0 0 0 0 1/2 0 0 1/2
0 0 0 0 0 0 1 0 0


.

2. Seo’s construction:

B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


∈ Z9×6

p .

Seo’s construction can be also written as

ẽ([~x], [~y]) := [(x0y0, x0y1 + x1y0, x0y2 + x2y0, x1y1, x1y2 + x2y1, x2y2)]T .

Seo proves that his construction is projecting for the U2 Assumption. We note
that our construction for 2-Lin and U2 is exactly the same if we choose as a
basis for W the set {qiqj : 0 ≤ i ≤ j ≤ 2}, for the polynomials q defined in
Example 5.4.3 and Example 5.4.4, respectively.

3. Our construction for the SC2 assumption, choosing {1, X,X2, X3, X4} as a
basis for W :

B =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


∈ Z9×5

p .

Our construction can be also be written as

ẽ([~x], [~y]) := [(x0y0, x0y1 + x1y0, x0y2 + x2y0 + x1y1, x1y2 + x2y1, x2y2)]T .

108

5.9 A Unified View on Different Projecting Pairings From the Literature

4. Our construction for the SC2 assumption with an alternative choice for the
basis of W :

B =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


T ∈ Z9×5

p , where T :=


1 1 1 1 1
−2 −1 0 1 2
4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16

 .

This construction can be also be written as

ẽ([~x], [~y]) := [
4∑
t=0

∑
i+j=t

xiyj(−2)t,
4∑
t=0

∑
i+j=t

xiyj(−1)t,

x0y0,
4∑
t=0

∑
i+j=t

xiyj ,
4∑
t=1

∑
i+j=t

xiyj2t]T .

5.9.1 Efficiency Improvement for Seo’s Construction

Seo claims that his pairing (item (2) above) is optimal among all based on the
uniform subgroup decision assumption in terms of a) image size and b) number of
basic pairing operations. We restate the original theorem here.

Theorem 5.9.1. ([107]) Let G2,U` be any (symmetric) projecting (2,U`) bilinear map
generator with output (MG2,H,G, GmT , ẽ). Then (a) we have m ≥ (` + 1)(` + 2)/2,
and (b) the map ẽ cannot be evaluated with less than (` + 1)2 prime-order pairing
operations.

Regarding a), our results do not contradict Seo’s claim. Regarding b), Seo claims
that the number of basic pairing operations is at least the weight of the matrix B,
which is 9 for the U2 Assumption.

Seo’s implicit assumption behind this seems to be that if the pairing has the form
(~x ⊗ ~y)B for some matrix B, then the best way to compute it is also via such a
vector-matrix product: for each non-zero entry Bi,j of B, compute Bi,jxiyj and
then perform some additions in the exponent. This then corresponds to one pairing
operation (computing products of xi and yj in the exponent, Bi,j is a scalar) per non-
zero entry of B. We reduce this to the rank of B by applying linear transformations
to ~x, ~y prior to multiplication (more precisely, treating ~x and ~y as polynomials and
interpolating).

More formally, for any pairing ẽwith associated matrix B, to reduce the number of
basic pairing operations to m, it suffices to find matrices C ∈ Z(`+1)×m

p ,D ∈ Zm×mp

such that

ẽ([~x], [~y]) := [(~x⊗ ~y) B]T = [((~xC)⊗ (~yC))
(

Im
0(m2−m)×m

)
D]T .

Given these matrices, the pairing ẽ can be computed with only m evaluations of e,
regardless of the weight of B, as follows:

109

5 New Composite-To-Prime-Order Transformations

1. Compute [~u] = [~xC] ∈ Gm and [~y] := [~yC] ∈ Gm.

2. Compute [~w]T = (e([u1], [v1]), . . . , e([um], [vm])) = ([u1v1]T , . . . , [umvm]T) =

[(~u⊗ ~v)
(

Im
0m2−m

)
]T .

3. Compute the final [~z]T as [~z]T = [~wD]T .

Note that steps 1,3 require only group operations in G,GT .
In the specific case of Seo’s construction (item (2) in the list) — which matches

our construction for U2 for the basis {qiqj | 0 ≤ i ≤ j ≤ 2} of W —, m = 6 and the
matrices C ∈ Z3×6

p ,D ∈ Z6×6
p are defined as:

C :=

q0(~x1) . . . q0(~x6)
q1(~x1) . . . q1(~x6)
q2(~x1) . . . q2(~x6)

 , D :=



(q0 · q0)(~x1) . . . (q0 · q0)(~x6)
(q0 · q1)(~x1) . . . (q0 · q1)(~x6)
(q0 · q2)(~x1) . . . (q0 · q2)(~x6)
(q1 · q1)(~x1) . . . (q1 · q1)(~x6)
(q1 · q2)(~x1) . . . (q1 · q2)(~x6)
(q2 · q2)(~x1) . . . (q2 · q2)(~x6)



−1

,

where q0(~X) = X21X32 −X22X32, q1(~X) = X11X32 −X12X31, q2(~X) = X11X22 −
X12X21 and ~xi ∈ Z6

p are any interpolating set for the space spanned by {qiqj | 0 ≤
i ≤ j ≤ 2}, which guarantees that D is properly defined. This allows us to bring
down the number of basic pairing operations to only 6 instead of 9, which was the
number of operations which Seo claims to be necessary for compute ẽ.

Note that by changing the choice of basis for W we can also get an even more
efficient projecting pairing for the uniform assumption. In the language we just
introduced, this amounts to choose C as above but define D as the identity matrix.
This allows us to save all the exponentiations in GT .

5.10 Implementation with Multilinear Map Candidates

In this section, we investigate to what extent our constructions can be implemented
with the recent candidates [51, 3] of approximate multilinear maps or the graded
encoding scheme from Chapter 3. We stress that the candidate construction from
[51] is currently not believed to support any matrix assumption and thus can not be
used to implement our results. Nonetheless, we discuss it here as a representative
for any (future) constructions realizing the version of a GES as introduced in [51].

5.10.1 Using the Candidate Multilinear Maps from [51]

The work of Garg, Gentry and Halevi [51] only provides approximations of multi-
linear maps in the following sense. Namely, instead of group elements, [51] define
“noisy encodings.” Essentially, a noisy encoding is a group element with an addi-
tional noise term. This means that there is a whole set of encodings Enc (g) of a
group element P. Each operation on encodings increases the size of their noise
terms. (More specifically, the noise term of the result of an operation is larger than
the noise terms of the inputs.) In particular, each encoding can be used only for an

110

5.10 Implementation with Multilinear Map Candidates

a-priori limited number of operations. After that, its noise term becomes too large,
and errors in computations may occur.

This noisy encoding of group elements has a number of effects which are relevant
for our constructions:

Group membership hard to decide. It is not efficiently decidable whether a given
encoding actually encodes any group element (with a certain noise bound).

Non-trivial comparisons. To determine whether two given encodings encode the
same group element (i.e., lie in the same set Enc (g)), we require a special
comparison algorithm (which however can be made publicly available).

Non-unique computations. Even if two computations yield encodings of the same
group element, the actual encodings may differ. Specifically, an encoding may
leak (through its noise term) the sequence of operations used to construct it.
To hide the sequence of performed operations, there exists a re-randomization
algorithm that re-randomizes the noise term (essentially by adding a substan-
tially larger noise term).

Black-box exponents. It is possible to choose (almost) uniformly distributed expo-
nents, but these can only be used in a black-box way (using addition, subtrac-
tion, and multiplication), and without using their explicit integer representa-
tion.

Subgroup membership problems. The construction in [51] allows for a very generic
attack on subgroup membership assumptions in the (encoded) “source group”
of the multilinear map. In particular, matrix assumptions like SCasc or the
`-linear assumption do not appear to hold in the source group.

We now inspect our constructions for compatibility with approximate multilin-
ear maps as sketched above. Syntactically, our constructions (from Section 5.4.2
and Section 5.4.3) start from a given group G and a k-linear map e : Gk → GT ,
and construct another group G = Gn, along with GT = GmT and a k-linear map
ẽ : Gk → GT . In both cases, computations in G,GT , and the evaluation of ẽ can be
reduced to computations in G,GT , and evaluating e. Hence, at least syntactically,
our constructions can be implemented also with approximate multilinear maps as
above. But of course, this does not mean that our constructions also retain the
security properties we have proved when implemented in an approximate setting.
Hence, we now investigate the effect of the imperfections sketched above.

Group membership hard to decide. We have assumed that group membership in
our constructed group G is easy to decide. This of course no longer holds
if the underlying prime-order group cannot be efficiently decided in the first
place. We stress that this has no implications on our results, but of course
makes the constructed group G also less useful in applications.

Non-trivial comparisons. Since, in our constructions, we never explicitly use com-
parisons, we also never need to use a comparison algorithm. On the other
hand, a comparison in the groups G and GT we construct can be reduced to
comparing elements of G and GT .

111

5 New Composite-To-Prime-Order Transformations

Non-unique computations. In the (encoded) groups we construct, the noise of the
underlying G- or GT -elements also leaks information about the performed
computations. However, this noise can be re-randomized by re-randomizing
the noise of the underlying G- and GT -elements.

Black-box exponents. Both of our constructions use exponents only in a black-box
way. Specifically, exponents are only uniformly chosen, added, and multiplied
both during setup and operation of the scheme. (One subtlety here is the
computation of the “reduced polynomials” [hi] = [Xi mod h] in the projecting
and canceling construction from Section 5.4.3. Note that the coefficients of
these hi can be computed from the coefficients of h through linear operations
alone. Hence, the involved exponents do not have to be explicitly divided.)

5.10.2 Using the Approximate Multilinear Maps from [3] or the GES
from Chapter 3

The approximate multilinear maps from [3] and the GES from Chapter 3 do not use
growing noise in encodings. Still, encodings in these constructions are randomized
and efficient algorithms for, e.g., testing equality of encodings, are given in Chap-
ter 4 of [3] and Section 3.4, respectively. With these algorithms, the constructions
essentially realize the “dream version” of a multilinear map or GES, respectively,
with only one difference: there is no efficient algorithm for deciding whether an en-
coding is valid or not. Thus, group membership is not easy to decide. As mentioned
above, this can be limiting for applications but has no implications on our results.

112

Chapter 6
Concluding Remarks

Multilinear maps, graded encoding schemes (GES) and indistinguishability obfus-
cation (iO) are cryptographic primitives that have caused excitement among the
cryptographic community in the past few years. There seems to be a close relation
between all of them. This thesis, for example, shows that a GES can be constructed
from iO.

The cryptographic community agrees upon multilinear maps, GESs and iO being
powerful tools. They are eligible to answer long standing open questions of exis-
tence of cryptographic primitives in the affirmative, as also demonstrated in this
thesis.

However, all existing constructions of these primitives either rely on one another
or are in an uncertain state due to attacks. The bare existence of multilinear maps,
GESs and iO is thus still being questioned. And even if this question is answered in
the affirmative, the gap between theoretically efficient constructions and practically
efficient ones seems to be quite big and much work has to be done to narrow it. One
step towards this was made in this thesis.

Hopefully, the next years will reveal whether this exciting area of cryptography
has its justification.

113

Bibliography

[1] Michel Abdalla, Mariana Raykova, and Hoeteck Wee. Multi-input inner-
product functional encryption from pairings. Cryptology ePrint Archive, Re-
port 2016/425, 2016. http://eprint.iacr.org/2016/425.

[2] Martin R. Albrecht, Catalin Cocis, Fabien Laguillaumie, and Adeline Langlois.
Implementing candidate graded encoding schemes from ideal lattices. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume
9453 of LNCS, pages 752–775. Springer, Heidelberg, November / December
2015.

[3] Martin R. Albrecht, Pooya Farshim, Dennis Hofheinz, Enrique Larraia, and
Kenneth G. Paterson. Multilinear maps from obfuscation. In Kushilevitz and
Malkin [81], pages 446–473.

[4] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes,
and Francisco Rodríguez-Henríquez. Implementing pairings at the 192-bit
security level. In Michel Abdalla and Tanja Lange, editors, Pairing-Based
Cryptography - Pairing 2012 - 5th International Conference, Cologne, Germany,
May 16-18, 2012, Revised Selected Papers, volume 7708 of Lecture Notes in
Computer Science, pages 177–195. Springer, 2012.

[5] Christophe Arene, Tanja Lange, Michael Naehrig, and Christophe Ritzen-
thaler. Faster computation of the Tate pairing. Cryptology ePrint Archive,
Report 2009/155, 2009. http://eprint.iacr.org/2009/155.

[6] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sa-
hai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating pro-
grams. In Kilian [80], pages 1–18.

[7] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility
results for encryption and commitment secure under selective opening. In
Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35.
Springer, Heidelberg, April 2009.

[8] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security
for deterministic encryption, and efficient constructions without random or-
acles. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359. Springer, Heidelberg, August 2008.

[9] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based
encryption without random oracles. In Cachin and Camenisch [25], pages
223–238.

115

Bibliography

[10] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Cachin and Camenisch [25], pages 56–73.

[11] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based en-
cryption with constant size ciphertext. In Cramer [38], pages 440–456.

[12] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Kilian [80], pages 213–229.

[13] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
325–341. Springer, Heidelberg, February 2005.

[14] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and
Joe Zimmerman. Semantically secure order-revealing encryption: Multi-
input functional encryption without obfuscation. In Oswald and Fischlin
[98], pages 563–594.

[15] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
514–532. Springer, Heidelberg, December 2001.

[16] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptog-
raphy. Cryptology ePrint Archive, Report 2002/080, 2002. http://eprint.
iacr.org/2002/080.

[17] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryp-
tography. Contemporary Mathematics, 324:71–90, 2003.

[18] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and
revoke system. In Juels et al. [77], pages 211–220.

[19] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part
II, volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December
2013.

[20] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast en-
cryption from multilinear maps. In Garay and Gennaro [50], pages 206–223.

[21] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014.
http://eprint.iacr.org/2014/930.

[22] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Gal-
braith and Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of
LNCS, pages 39–56. Springer, Heidelberg, September 2008.

[23] Xavier Boyen and Brent Waters. Shrinking the keys of discrete-log-type lossy
trapdoor functions. In Jianying Zhou and Moti Yung, editors, ACNS 10, vol-
ume 6123 of LNCS, pages 35–52. Springer, Heidelberg, June 2010.

116

Bibliography

[24] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrède Lepoint, Amit Sahai,
and Mehdi Tibouchi. Cryptanalysis of the quadratic zero-testing of ggh. Cryp-
tology ePrint Archive, Report 2015/845, 2015. http://eprint.iacr.org/
2015/845.

[25] Christian Cachin and Jan Camenisch, editors. EUROCRYPT 2004, volume
3027 of LNCS. Springer, Heidelberg, May 2004.

[26] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part I, volume 8042
of LNCS. Springer, Heidelberg, August 2013.

[27] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part II, volume 8043
of LNCS. Springer, Heidelberg, August 2013.

[28] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfus-
cation of probabilistic circuits and applications. In Dodis and Nielsen [40],
pages 468–497.

[29] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and
Hansol Ryu. Cryptanalysis of the new clt multilinear map over the integers.
Cryptology ePrint Archive, Report 2016/135, 2016. http://eprint.iacr.
org/2016/135.

[30] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien
Stehlé. Cryptanalysis of the multilinear map over the integers. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 3–12. Springer, Heidelberg, April 2015.

[31] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru
problems and cryptanalysis of the ggh multilinear map without a low level
encoding of zero. Cryptology ePrint Archive, Report 2016/139, 2016. http:
//eprint.iacr.org/2016/139.

[32] Jean-Sebastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, He-
manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Ti-
bouchi. Zeroizing without low-level zeroes: New mmap attacks and their
limitations. Cryptology ePrint Archive, Report 2015/596, 2015. http:
//eprint.iacr.org/2015/596.

[33] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, He-
manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Ti-
bouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In Gennaro and Robshaw [56], pages 247–266.

[34] Jean-Sebastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi Ti-
bouchi. Cryptanalysis of ggh15 multilinear maps. Cryptology ePrint Archive,
Report 2015/1037, 2015. http://eprint.iacr.org/2015/1037.

[35] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical mul-
tilinear maps over the integers. In Canetti and Garay [26], pages 476–493.

117

Bibliography

[36] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis
of two candidate fixes of multilinear maps over the integers. Cryptology
ePrint Archive, Report 2014/975, 2014. http://eprint.iacr.org/2014/
975.

[37] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilin-
ear maps over the integers. In Gennaro and Robshaw [56], pages 267–286.

[38] Ronald Cramer, editor. EUROCRYPT 2005, volume 3494 of LNCS. Springer,
Heidelberg, May 2005.

[39] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Information Theory, 22(6):644–654, 1976.

[40] Yevgeniy Dodis and Jesper Buus Nielsen, editors. TCC 2015, Part II, volume
9015 of LNCS. Springer, Heidelberg, March 2015.

[41] Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 630–649. Springer,
Heidelberg, March 2014.

[42] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In Canetti and Garay
[27], pages 129–147.

[43] Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded
encoding schemes from obfuscation. Unpublished manuscript.

[44] Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors. PKC 2012,
volume 7293 of LNCS. Springer, Heidelberg, May 2012.

[45] David Mandell Freeman. Converting pairing-based cryptosystems from
composite-order groups to prime-order groups. In Henri Gilbert, editor, EU-
ROCRYPT 2010, volume 6110 of LNCS, pages 44–61. Springer, Heidelberg,
May 2010.

[46] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil
Segev. More constructions of lossy and correlation-secure trapdoor functions.
In Nguyen and Pointcheval [97], pages 279–295.

[47] Eduarda S. V. Freire, Julia Hesse, and Dennis Hofheinz. Universally compos-
able non-interactive key exchange. In Michel Abdalla and Roberto De Prisco,
editors, SCN 14, volume 8642 of LNCS, pages 1–20. Springer, Heidelberg,
September 2014.

[48] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph
Striecks. Programmable hash functions in the multilinear setting. In Canetti
and Garay [26], pages 513–530.

[49] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

118

Bibliography

[50] Juan A. Garay and Rosario Gennaro, editors. CRYPTO 2014, Part I, volume
8616 of LNCS. Springer, Heidelberg, August 2014.

[51] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, Heidelberg,
May 2013.

[52] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013.

[53] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters.
Attribute-based encryption for circuits from multilinear maps. In Canetti and
Garay [27], pages 479–499.

[54] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryp-
tion and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 467–476. ACM, 2013.

[55] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfusca-
tion without the vulnerabilities of multilinear maps. IACR Cryptology ePrint
Archive, 2016:390, 2016.

[56] Rosario Gennaro and Matthew J. B. Robshaw, editors. CRYPTO 2015, Part I,
volume 9215 of LNCS. Springer, Heidelberg, August 2015.

[57] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear
maps from lattices. In Dodis and Nielsen [40], pages 498–527.

[58] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam
Smith. Using fully homomorphic hybrid encryption to minimize non-
interative zero-knowledge proofs. Journal of Cryptology, pages 1–24, 2014.

[59] Craig Gentry, Shai Halevi, Hemanta K. Maji, and Amit Sahai. Zeroizing
without zeroes: Cryptanalyzing multilinear maps without encodings of zero.
Cryptology ePrint Archive, Report 2014/929, 2014. http://eprint.iacr.
org/2014/929.

[60] Kristian Gjøsteen. Symmetric subgroup membership problems. In Serge Vau-
denay, editor, PKC 2005, volume 3386 of LNCS, pages 104–119. Springer,
Heidelberg, January 2005.

[61] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input
functional encryption. In Nguyen and Oswald [96], pages 578–602.

[62] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Juels et al.
[77], pages 89–98. Available as Cryptology ePrint Archive Report 2006/309.

119

Bibliography

[63] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilin-
ear groups. In Smart [112], pages 415–432.

[64] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear
groups. SIAM J. Comput., 41(5):1193–1232, 2012.

[65] Aurore Guillevic, François Morain, and Emmanuel Thomé. Solving dis-
crete logarithms on a 170-bit MNT curve by pairing reduction. CoRR,
abs/1605.07746, 2016.

[66] Shai Halevi, editor. CRYPTO 2009, volume 5677 of LNCS. Springer, Heidel-
berg, August 2009.

[67] Brett Hemenway, Benoît Libert, Rafail Ostrovsky, and Damien Vergnaud.
Lossy encryption: Constructions from general assumptions and efficient
selective opening chosen ciphertext security. In Dong Hoon Lee and Xi-
aoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 70–88.
Springer, Heidelberg, December 2011.

[68] Brett Hemenway and Rafail Ostrovsky. Extended-DDH and lossy trapdoor
functions. In Fischlin et al. [44], pages 627–643.

[69] Brett Hemenway and Rafail Ostrovsky. On homomorphic encryption and
chosen-ciphertext security. In Fischlin et al. [44], pages 52–65.

[70] G. Herold, J. Hesse, D. Hofheinz, C. Ràfols, and A. Rupp. Polynomial spaces:
A new framework for composite-to-prime-order transformations. Cryptology
ePrint Archive, 2014. http://eprint.iacr.org/.

[71] Gottfried Herold, Julia Hesse, Dennis Hofheinz, Carla Ràfols, and Andy Rupp.
Polynomial spaces: A new framework for composite-to-prime-order transfor-
mations. In Garay and Gennaro [50], pages 261–279.

[72] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The eta pairing re-
visited. IEEE Trans. Information Theory, 52(10):4595–4602, 2006.

[73] Julia Hesse, Dennis Hofheinz, and Daniel Kraschewski. Lossy trapdoor func-
tions with compact keys from multilinear maps. Unpublished manuscript.

[74] Julia Hesse, Dennis Hofheinz, and Andy Rupp. Reconfigurable cryptography:
A flexible approach to long-term security. In Kushilevitz and Malkin [81],
pages 416–445.

[75] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash
from (leveled) multilinear maps and identity-based aggregate signatures. In
Canetti and Garay [26], pages 494–512.

[76] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of
Cryptology, 17(4):263–276, September 2004.

[77] Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors.
ACM CCS 06. ACM Press, October / November 2006.

120

Bibliography

[78] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by auto-
matic computers. In USSR Academy of Sciences, volume 145, pages 293–294,
1962.

[79] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption support-
ing disjunctions, polynomial equations, and inner products. In Smart [112],
pages 146–162.

[80] Joe Kilian, editor. CRYPTO 2001, volume 2139 of LNCS. Springer, Heidelberg,
August 2001.

[81] Eyal Kushilevitz and Tal Malkin, editors. TCC 2016-A, Part I, volume 9562 of
LNCS. Springer, Heidelberg, January 2016.

[82] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient
multilinear maps from ideal lattices. In Nguyen and Oswald [96], pages 239–
256.

[83] Hyang-Sook Lee. A self-pairing map and its applications to cryptography.
Applied Mathematics and Computation, 151(3):671–678, 2004.

[84] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer,
Daniel Wagner, David W. Archer, Dan Boneh, Jonathan Katz, and Mariana
Raykova. 5gen: A framework for prototyping applications using multilinear
maps and matrix branching programs. Cryptology ePrint Archive, Report
2016/619, 2016. http://eprint.iacr.org/2016/619.

[85] Allison B. Lewko. Tools for simulating features of composite order bilinear
groups in the prime order setting. In Pointcheval and Johansson [100], pages
318–335.

[86] Allison B. Lewko and Sarah Meiklejohn. A profitable sub-prime loan: Obtain-
ing the advantages of composite-order in prime-order bilinear groups. IACR
Cryptology ePrint Archive, 2013:300, 2013.

[87] Allison B. Lewko and Sarah Meiklejohn. A profitable sub-prime loan: Ob-
taining the advantages of composite order in prime-order bilinear groups.
In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 377–398.
Springer, Heidelberg, March / April 2015.

[88] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding The-
ory. Deep Space Network Progress Report, 44:114–116, January 1978.

[89] Sarah Meiklejohn, Hovav Shacham, and David Mandell Freeman. Limitations
on transformations from composite-order to prime-order groups: The case of
round-optimal blind signatures. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 519–538. Springer, Heidelberg, December 2010.

[90] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing elliptic
curve logarithms to logarithms in a finite field. In Cris Koutsougeras and
Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
80–89. ACM, 1991.

121

Bibliography

[91] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor
knapsacks. IEEE Trans. Inf. Theor., 24(5):525–530, September 2006.

[92] Ralph C. Merkle. Secure communications over insecure channels. Commun.
ACM, 21(4):294–299, 1978.

[93] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multi-
linear maps: Cryptanalysis of indistinguishability obfuscation over GGH13.
IACR Cryptology ePrint Archive, 2016:147, 2016.

[94] Petros Mol and Scott Yilek. Chosen-ciphertext security from slightly lossy
trapdoor functions. In Nguyen and Pointcheval [97], pages 296–311.

[95] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage.
In Halevi [66], pages 18–35.

[96] Phong Q. Nguyen and Elisabeth Oswald, editors. EUROCRYPT 2014, volume
8441 of LNCS. Springer, Heidelberg, May 2014.

[97] Phong Q. Nguyen and David Pointcheval, editors. PKC 2010, volume 6056 of
LNCS. Springer, Heidelberg, May 2010.

[98] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part II, vol-
ume 9057 of LNCS. Springer, Heidelberg, April 2015.

[99] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applica-
tions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC,
pages 187–196. ACM Press, May 2008.

[100] David Pointcheval and Thomas Johansson, editors. EUROCRYPT 2012, vol-
ume 7237 of LNCS. Springer, Heidelberg, April 2012.

[101] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[102] Julia Rohlfing. Paarungen auf elliptischen kurven und ihre anwendung in
der kryptografie. Diplomarbeit, Universität Karlsruhe (TH), Germany, April
2009.

[103] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 419–436.
Springer, Heidelberg, March 2009.

[104] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475–484. ACM Press, May / June 2014.

[105] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Cramer
[38], pages 457–473.

[106] Ryuichi Sakai and Masao Kasahara. ID based cryptosystems with pairing on
elliptic curve. IACR Cryptology ePrint Archive, 2003:54, 2003.

122

Bibliography

[107] Jae Hong Seo. On the (im)possibility of projecting property in prime-order
setting. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 61–79. Springer, Heidelberg, December 2012.

[108] Jae Hong Seo and Jung Hee Cheon. Beyond the limitation of prime-order
bilinear groups, and round optimal blind signatures. In Ronald Cramer, edi-
tor, TCC 2012, volume 7194 of LNCS, pages 133–150. Springer, Heidelberg,
March 2012.

[109] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer Sci-
ence, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 124–134.
IEEE Computer Society, 1994.

[110] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

[111] Joseph H. Silverman. The arithmetic of elliptic curves. Graduate texts in
mathematics. Springer, New York, Berlin, 1986.

[112] Nigel P. Smart, editor. EUROCRYPT 2008, volume 4965 of LNCS. Springer,
Heidelberg, April 2008.

[113] Frederik Vercauteren. Optimal pairings. IEEE Trans. Information Theory,
56(1):455–461, 2010.

[114] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE
under simple assumptions. In Halevi [66], pages 619–636.

[115] Hoeteck Wee. Dual projective hashing and its applications - lossy trapdoor
functions and more. In Pointcheval and Johansson [100], pages 246–262.

[116] André Weimerskirch and Christof Paar. Generalizations of the Karatsuba
algorithm for efficient implementations. Cryptology ePrint Archive, Report
2006/224, 2006. http://eprint.iacr.org/.

[117] Alberto Zanoni. Iterative Karatsuba method for multivariate polynomial mul-
tiplication. In Proceedings of the International Conference on Theory and
Applications of Mathematics and Informatics, ICTAMI 2009, pages 829–843,
September 2009.

[118] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signa-
ture scheme from bilinear pairings and its applications. In Feng Bao, Robert
Deng, and Jianying Zhou, editors, PKC 2004, volume 2947 of LNCS, pages
277–290. Springer, Heidelberg, March 2004.

[119] Joe Zimmerman. How to obfuscate programs directly. In Oswald and Fischlin
[98], pages 439–467.

123

List of Figures

2.1 The DDH, q-SDDH and k-LIN security games. 18
2.2 The MDDH and RANK security games 19
2.3 IND-CPA security of a (homomorphic) PKE scheme. 21

3.1 Security notions for obfuscation . 31
3.2 The AFHLP circuits for addition and multiplication 34
3.3 The addition circuit of our GES . 38
3.4 The multiplication circuit of our GES 40
3.5 Game formalizing the indistinguishability of encodings of our GES . 41
3.6 Outline of proof steps of Theorem 3.5.1 43
3.7 “Forgetful” variants of our addition and multiplication circuits 45
3.8 Outline of the proof of Lemma 3.5.2 47

4.1 Formal description of our LTDF based on DDH 64
4.2 A formal description of the LTDF based on d-LIN from [46]. 72
4.3 A formal description of the compressed LTDF based on the construc-

tion from [46]. 73

5.1 Intuition of the proof of Theorem 5.6.1 96
5.2 The projecting property . 97
5.3 Proof of Lemma 5.6.2 . 97

125

List of Tables

4.1 Efficiency characteristics of different LTDF constructions in the dis-
crete log setting . 60

5.1 Efficiency of different emulations of symmetric projecting k-linear maps 81
5.2 Implementation costs and ciphertext sizes of the k-BGN encryption

scheme using various transformations 107

127

