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1 Motivation and Goals

During the Large Hadron Collider (LHC) Run 1 at CERN, with a c.m. energy of√
s = 7 and 8 TeV, a Higgs boson with a mass of about 125 GeV was discovered by

the LHC experiments ATLAS [1] and CMS [2]. Its measured properties are consistent
with those of a Standard Model (SM) Higgs boson [3–6]. Now, we are sure that
Electroweak Symmetry Breaking (EWSB) is triggered by the vacuum expectation
value of a scalar field, which in its turn triggers the Higgs mechanism that generates
masses for theW± and Z gauge bosons. Despite the discovered Higgs boson behaving
very SM-like, there is still room for beyond the SM (BSM) interpretations. The
question then is: Have we discovered the SM Higgs boson, or just the SM-like Higgs
boson of a BSM extension?

BSM theories often incorporate multiple Higgs fields or other scalars [7–19]. The
global symmetries in these theories determine the phenomenological behavior of the
models. There exist numerous phenomenological investigations in the framework of
the Two-Higgs Doublet Model (2HDM) [7, 11, 12]. The Three-Higgs Doublet Mod-
els (3HDMs) [15–19] with a richer charged, scalar and pseudo-scalar sectors present
greater possibilities and may entail interesting phenomenological consequences. Un-
til now, no extensive study has been carried out that would compare 2HDMs to
3HDMs, since the latter class of models has not been studied to as great detail as
the former. This thesis provides an investigation of the 3HDM to gain first insights
into this model.

This brings us to the goals of the current thesis. These are as follows: The analytical
computation of the physical Higgs’ spectrum, i.e. of their masses and their couplings
to the SM particles; the investigation of the effects resulting from the respective
chosen potential on the symmetry of the Higgs masses and their couplings, and
on the possible existence of Dark Matter (DM) candidates; more generally, the
investigation of the symmetry-induced relations between the Higgs bosons.
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2 The 3HDM

One of the interesting properties of New Physics models that employ multiple Higgs
fields is that they induce discrete symmetry groups in the Higgs and flavour sectors.
At the global minimum of the Higgs potential, these discrete symmetry groups are
often broken completely, or partially down to a proper subgroup. This has a strong
impact on the phenomenology in the Higgs and flavour sectors, as well as interesting
astroparticle consequences.

In 3HDM, if we consider only unitary transformations, then there are only ten real-
izable finite symmetry groups [15]:

Z2, Z3, Z4, Z2 × Z2,

D3
∼= S3, D4, T ∼= A4, O ∼= S4,

(Z3 × Z3) o Z2
∼= ∆(54)/Z3, (Z3 × Z3) o Z4

∼= Σ(36),

(2.1)

where N oM is the semidirect product of a normal subgroup N and a subgroup M ,
and G ∼= H denotes that the group G is isomorphic (structurally identical) to the
group H.

If we try to impose any additional finite symmetry group of the Higgs-family trans-
formations different from the ten listed in (2.1), this results in a potential with a
continuous symmetry [15].

The current thesis deals with a 3HDM that is symmetric under the ∆(54) symmetry
group [15]. More details, specifically on the generators of this group, are given in
section 7.3 of [19]. Figure 2.1 visualizes the relations between the different symmetry
groups possible in a 3HDM.
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Figure 2.1: Relations between finite realizable groups of the 3HDM Higgs-family
transformations. Groups that are underlined lead to automatic explicit
CP -conservation. A→ B stands for A ⊂ B [15].

2.1 3HDM ∆(54) Potential

The scalar potential for the ∆(54) family of discrete symmetry groups is given
by [15]

V =−m2
[
Φ†1Φ1 + Φ†2Φ2 + Φ†3Φ3

]
+

+ λ0

[
Φ†1Φ1 + Φ†2Φ2 + Φ†3Φ3

]2

+

+ λ1

[
(Φ†1Φ1)2 + (Φ†2Φ2)2 + (Φ†3Φ3)2−

−(Φ†1Φ1)(Φ†2Φ2)− (Φ†2Φ2)(Φ†3Φ3)− (Φ†3Φ3)(Φ†1Φ1)
]

+

+ λ2

[
|Φ†1Φ2|2 + |Φ†2Φ3|2 + |Φ†3Φ1|2

]
+

+
{
λ3

[
(Φ†1Φ2)(Φ†1Φ3) + (Φ†2Φ3)(Φ†2Φ1) + (Φ†3Φ1)(Φ†3Φ2)

]
+ h.c.

}
(2.2)

with the parameters
m2, λ0, λ1, λ2 ∈ R, and λ3 ∈ C . (2.3)

The Φi for i ∈ {1, 2, 3} are the three Higgs doublets. These are parametrized differ-
ently in each of the four cases of the global minimum (see section 2.2).

In the following, we will consider only the CP -conserving model, i.e. λ3 ∈ R.
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2.2 Four Cases of the Global Minimum

There can only be four different types of the global minimum in this model. All
other minima of the potential are equivalent to these by a symmetry of the model.
The corresponding vacuum expectation value (vev) alignments (v1, v2, v3), with the
overall vev scale factored out in each case, are [15]:

A : (1, 0, 0) B : (1, 1, 1) C : (ω, 1, 1) D : (ω2, 1, 1) (2.4)

where
ω = exp(2πi/3) . (2.5)

In the following, these four cases will be studied. For each of them the scalar
potential will be diagonalized, and the Higgs masses and the Higgs couplings to
the gauge bosons will be presented. Possible DM candidates will be listed as well.
Additionally, for the scenarioB: (1, 1, 1), the ∆(54)/Z3 finite symmetry group will be
reduced to a Z2 symmetry group, the Higgs couplings to fermions will be calculated
and the decays of the Higgs bosons will then be analyzed in the form of the branching
ratios.
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3 Case A: (1,0,0)

The ground state is realized when the doublets adopt their vevs:

〈Φj〉 = 〈0|Φj|0〉 =

(
0

1√
2
vj

)
, j ∈ {1, 2, 3} . (3.1)

Expanding around the minima, the 3 doublets can thus be parametrized as

Φj =

(
w+
j

1√
2
(vj + hj + iaj)

)
, j ∈ {1, 2, 3} , (3.2)

with a complex field wj, and real fields hj and aj.

For this specific case that we will call (1, 0, 0), the vevs of the corresponding doublets
are

v1 = v , v2 = v3 = 0 . (3.3)

Here, the vev v is

v =
1√√
2GF

≈ 246 GeV , (3.4)

where GF denotes the Fermi constant [20]

GF = 1.166 378 7 · 10−5 GeV−2 . (3.5)

A more detailed description of this case, focusing on the implication of two inert
doublets on DM candidates, has been carried out in [21].

3.1 Minimum Conditions

The ground state is given by the minimum of the potential in eqn. (2.2). The
doublets in eqn. (3.2) are expressed through their corresponding vevs in the ground
state, and the following conditions hold:

∂V

∂Φ†i

∣∣∣∣∣
Φj=〈Φj〉

= 0 , i, j ∈ {1, 2, 3} . (3.6)

When differentiating with respect to Φ†1 this yields

m2 = v2 (λ0 + λ1). (3.7)
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When differentiating with respect to Φ†2 and Φ†3, the minimum conditions are trivially
satisfied because of v2 = v3 = 0.

3.2 Mass Matrices

The mass matrix of the charged Higgs bosons MC is given by

(MC)i,j =
∂2V

∂w−i ∂w
+
j

, i, j ∈ {1, 2, 3} . (3.8)

Choosing the (w+
1 , w

+
2 , w

+
3 ) ordering in the rows and (w−1 , w

−
2 , w

−
3 ) in the columns of

MC , respectively, i.e.

MC =


w+

1 w+
2 w+

3

w−1 · · · · · · · · ·
w−2 · · · · · · · · ·
w−3 · · · · · · · · ·

 , (3.9)

and using the minimum condition given in eqn. (3.7) one obtains:

MC =

0 0 0
0 −3

2
v2λ1 0

0 0 −3
2
v2λ1

 . (3.10)

The mass matrices of the scalar MS and of the pseudo-scalar MPS Higgs bosons
can be obtained by similar calculations:

(MS)i,j =
∂2V

∂hi∂hj
, i, j ∈ {1, 2, 3} (3.11)

and

(MPS)i,j =
∂2V

∂ai∂aj
, i, j ∈ {1, 2, 3} . (3.12)

Here, no mixing takes place between the scalar and the pseudo-scalar Higgs bosons.
This, however, will not be the case for the scenarios C andD, investigated in chapters
5 and 6, respectively.

Choosing the ordering of the matrix elements in rows and columns as (h1, h2, h3) and
(a1, a2, a3) for the scalar and for the pseudo-scalar Higgs mass matrices, respectively,
one obtains:

MS =

2v2(λ0 + λ1) 0 0
0 1

2
v2(−3λ1 + λ2) 1

2
v2λ3

0 1
2
v2λ3

1
2
v2(−3λ1 + λ2)

 (3.13)

and

MPS =

0 0 0
0 1

2
v2(−3λ1 + λ2) −1

2
v2λ3

0 −1
2
v2λ3

1
2
v2(−3λ1 + λ2)

 . (3.14)
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The zeros in the (0, 0) entries in eqns. (3.10) and (3.14) correspond to the massless
charged and neutral Goldstone bosons.

3.3 Diagonalization of the Mass Matrices

The charged Higgs mass matrix is already in a diagonal form, hence we can easily
read off the mass squares:

M2
H±2

= M2
H±3

= −2

3
v2λ1 . (3.15)

Here, H±i for i ∈ {1, 2, 3} denote the physical mass eigenstates. Note, that H±1
is identified with the massless charged Goldstone boson, which gives mass to the
charged W± boson through the Higgs mechanism.

The general expression for the rotation matrix that diagonalizes the scalar mass
matrix is

RH =

1 0 0
0 cos(αH) sin(αH)
0 − sin(αH) cos(αH)

 . (3.16)

With this rotation matrix we change from the non-physical fields into the mass basis
given by the physical fields Hi, i ∈ {1, 2, 3}:H1

H2

H3

 = RH

h1

h2

h3

 . (3.17)

Hence it holds:

MH = RHMSRT
H = diag (M2

H1
,M2

H2
,M2

H3
) . (3.18)

The large symmetry of the ∆(54) family of symmetry groups, however, allows for a
parameter independent diagonalization of the mass matrices.

Thus the following form of the rotation matrix,

RH =

1 0 0

0 1/
√

2 1/
√

2

0 −1/
√

2 1/
√

2

 (3.19)

diagonalizes the scalar mass matrix, and we obtain the diagonal mass matrix

MH =

2v2(λ0 + λ1) 0 0
0 1

2
v2(−3λ1 + λ2 + λ3) 0

0 0 1
2
v2(−3λ1 + λ2 − λ3)

 . (3.20)
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Similarly for the pseudo-scalar Higgs bosons, the rotation matrix is

RA =

1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2

 , (3.21)

defined by A1

A2

A3

 = RA

a1

a2

a3

 , (3.22)

where Ai, i ∈ {1, 2, 3}, represent the pseudo-scalar Higgs bosons in the mass basis.
RA diagonalizes the pseudo-scalar mass matrix, and we obtain

MA =

0 0 0
0 1

2
v2(−3λ1 + λ2 + λ3) 0

0 0 1
2
v2(−3λ1 + λ2 − λ3)

 . (3.23)

We identify the (0, 0) entry of theMA mass matrix with the one of the massless neu-
tral Goldstone boson. Hence, A1 corresponds to the neutral Goldstone boson G0 that
is absorbed to give mass to the massive Z boson through the Higgs mechanism.

It is interesting to note, that the masses of the scalar Higgs boson H2 and the pseudo-
scalar A2 are the same, as well as the masses of H3 and A3 are the same. The reason
for this is again the high symmetry of the ∆(54) family of symmetry groups.

3.4 Couplings to Gauge Bosons

In order to calculate the Higgs couplings to the gauge bosons, we first calculate the
kinetic part of the Higgs Lagrange density,

LHiggs =
3∑
i=1

(DµΦi)
† (DµΦi) . (3.24)

Here, Dµ is the covariant derivative:

Dµ = ∂µ +
ig

2
~σ ~Wµ +

ig′

2
Bµ , (3.25)

where ~σ is the Pauli vector defined by

~σ =

σ1

σ2

σ3

 (3.26)

with the Pauli matrices σi (i ∈ {1, 2, 3}), and ~Wµ is defined as

~Wµ =

W 1
µ

W 2
µ

W 3
µ

 . (3.27)
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Introducing the charged W± boson defined as

W± =
1√
2

(W 1 ∓ iW 2) , (3.28)

the covariant derivative can be simplified further to

Dµ =

(
∂µ + ig

2
W 3
µ + ig′

2
Bµ

ig√
2
W+

ig√
2
W− ∂µ − ig

2
W 3
µ + ig′

2
Bµ

)
, (3.29)

with the rotations into the photon Aµ and the neutral Z boson

Aµ = cos θWBµ + sin θWW
3
µ , (3.30)

Zµ = − sin θWBµ + cos θWW
3
µ , (3.31)

or, rearranging,

Bµ = cos θWAµ − sin θWZµ , (3.32)

W 3
µ = sin θWAµ + cos θWZµ , (3.33)

where θW is the Weinberg angle.

Considering the terms of LHiggs trilinear in the fields, assigning an additional factor i
to each term, carrying out the substitution ∂µX → −ikµXX for the partial derivative
acting on the field X, where kµX is the momentum of the corresponding particle X,
and multiplying with an extra symmetry factor of 2 for two identical particles, we
obtain the Feynman rules for the Higgs couplings to the gauge bosons [22].

These are listed in the appendix 8.1. The couplings are given with all momenta
taken as in-going.

H1 is the SM-like Higgs here, so it possesses the entire coupling to the gauge bosons,
while the couplings of H2 and H3 to the gauge bosons vanish in order to satisfy
the sum rule for the gauge boson couplings, which arises from the requirement that
unitarity has to be fulfilled [7],

3∑
i=1

g2
HiV V

= g2
HV V , (3.34)

where gHiV V denote the Higgs couplings to the massive gauge bosons V = Z,W±

and gHV V the SM coupling. This then forbids the Higgs bosons other than H1 to
couple to the gauge bosons. Furthermore, the SM-like Higgs H1 does not have any
non-SM-like couplings like, for example, ZA2,3H1 or W±H∓2,3H1.

Note, in particular, that there are also couplings between one gauge boson and two
different Higgs bosons (other than H1). This leads to interesting Higgs decays into
a pair consisting of a Higgs boson and a gauge boson, which is not possible in the
SM. Such decays can be exploited as alternative Higgs discovery channels, provided
the corresponding branching ratios are large enough.

Concerning the Higgs couplings to fermions, the following can be said: As only the
H1 has a non-zero vev, in order to give masses to the fermions through the Higgs
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mechanism, all fermions have to couple to H1. Additionally, we require them to
couple only to H1 in order to avoid Flavor Changing Neutral Currents (FCNCs) at
tree level [12]. Therefore, the couplings of H1 to fermions are exactly the couplings
of the SM-like Higgs to fermions, and there are no further Higgs to fermion couplings
in this specific case.

Here and in the following three chapters the trilinear and quartic Higgs self-couplings
were not calculated, as this goes beyond the scope of the current thesis. Such de-
cays are interesting, however, as they allow for the determination of the Higgs self-
couplings which can then be used to reconstruct the Higgs potential [23–25]. Fur-
thermore, Higgs-to-Higgs decays can be exploited as alternative discovery channels
for the heavier Higgs bosons. Such investigations are left for future work.

3.5 Dark Matter Candidates

The lightest neutral field from the second or third doublet, stabilized by the re-
maining Z3 symmetry, is a possible DM candidate [18]. This could be a scalar or a
pseudo-scalar Higgs, since the corresponding masses are the same, i.e.

M2
H2

= M2
A2

=
1

2
v2(−3λ1 + λ2 + λ3) , (3.35)

M2
H3

= M2
A3

=
1

2
v2(−3λ1 + λ2 − λ3) . (3.36)

Whether the DM candidate is from the second or the third doublet depends on the
actual mass value. It has to be the lighter of the two, as it then cannot decay into
a pair of lighter Higgs bosons.
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4 Case B: (1,1,1)

The parametrization of the doublets is the same as in case A and is given by eqn.
(3.2). However, for the vevs it now holds

v1 = v2 = v3 =: v′ =
1√
3
v . (4.1)

They satisfy the sum rule
3∑
i=1

v2
i = v2 , (4.2)

which is required by phenomenology.

4.1 Minimum Conditions

Similarly to case A, described in chapter 3, using eqn. (3.6), we obtain

m2 =
1

3
v2(3λ0 + λ2 + 2λ3) (4.3)

as the minimum condition, since differentiating with respect to Φ†1, Φ†2 or Φ†3 yields
the same equation, because of v1 = v2 = v3.

4.2 Mass Matrices

The mass matrices MC , MS and MPS, can again be derived by using eqns. (3.8),
(3.11) and (3.12). Thus one obtains for i, j ∈ {1, 2, 3}:

(MC)i,j = −1

3
v2(λ2 + 2λ3) , i = j , (4.4)

(MC)i,j =
1

6
v2(λ2 + 2λ3) , i 6= j ; (4.5)

(MS)i,j =
1

3
v2(2λ0 + 2λ1 − λ3) , i = j , (4.6)

(MS)i,j =
1

6
v2(4λ0 − 2λ1 + 2λ2 + 5λ3) , i 6= j ; (4.7)
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(MPS)i,j = −v2λ3 , i = j , (4.8)

(MPS)i,j =
1

2
v2λ3 , i 6= j . (4.9)

4.3 Diagonalization of the Mass Matrices

The rotation matrix for the charged Higgs sector is chosen as

RH± =

 c1c2 s1c2 s2

−c1s2s3 − s1c3 c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −c1s3 − s1s2c3 c2c3

 , (4.10)

with
si := sinαH

±

i , ci := cosαH
±

i , (4.11)

where
αH

±

i ∈
[
−π

2
,
π

2

]
, i ∈ {1, 2, 3} . (4.12)

Again, due to the large symmetry of the ∆(54) family of symmetry groups, a
parameter-free diagonalization is possible, and the rotation matrix for the charged
Higgs sector becomes

RH± =

 1/
√

3 1/
√

3 1/
√

3

−1/
√

6
√

2/3 −1/
√

6

−1/
√

2 0 1/
√

2

 . (4.13)

Hence we obtain

M2
H±2,3

= −1

2
v2(λ2 + 2λ3) . (4.14)

The scalar Higgs sector is diagonalized by the same rotation matrix as in the case
of the charged Higgs sector,

RH =

 1/
√

3 1/
√

3 1/
√

3

−1/
√

6
√

2/3 −1/
√

6

−1/
√

2 0 1/
√

2

 . (4.15)

We thus obtain

M2
H1

=
2

3
v2(3λ0 + λ2 + 2λ3) , (4.16)

M2
H2,3

=
1

6
v2(6λ1 − 2λ2 − 7λ3) . (4.17)

The pseudo-scalar Higgs sector is also diagonalized by the same rotation matrix,

RA =

 1/
√

3 1/
√

3 1/
√

3

−1/
√

6
√

2/3 −1/
√

6

−1/
√

2 0 1/
√

2

 (4.18)
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to obtain

M2
A2,3

= −3

2
v2λ3 . (4.19)

Note, that H±1 and A1 are identified with the massless Goldstone bosons G± and G0,
which are absorbed to give masses to the massive W± and Z bosons, respectively,
through the Higgs mechanism.

4.4 Couplings to Gauge Bosons

We have derived the couplings to the gauge bosons in the same way as described in
section 3.4. They are given in the appendix 8.2. The couplings are given with all
momenta taken as in-going.

Just as in case A, chapter 3.4, H1 is again the SM-like Higgs here, having the
entire coupling to the gauge bosons, while the couplings of H2 and H3 to the gauge
bosons must vanish. Again, the SM-like Higgs H1 does not have any non-SM-like
couplings like, for example, ZA2,3H1 or W±H∓2,3H1. Note, that, in contrast to the
Higgs couplings to the gauge bosons in case A, there are no couplings of the form
W±A2/3H

∓
3/2 or W±H2/3H

∓
3/2, which leads to a fewer number of possible decays for

the corresponding Higgs bosons.

4.5 Couplings to Fermions

So far there have been no investigations on the Higgs couplings to fermions for the
∆(54) symmetry group. This investigation is also beyond the scope of the current
thesis. Therefore, here we break the ∆(54) symmetry group down to a Z2 symmetry
group (c.f. fig. 2.1), and investigate only the types I, II, X and Y of the model.
These types are defined analogously to the 2HDM, to avoid FCNCs at tree level [12].
Here, types I and II are the corresponding types I and II in the 2HDM, respectively.
Types X and Y correspond to the Lepton Specific and Flipped types in the 2HDM,
respectively. The four independent types of Yukawa interactions are listed in table
4.1. Here, the doublets coupling to up-type quarks, down-type quarks and leptons
are given by Φu, Φd and Φl, respectively. Dependent on the type of the model these
become Φ1, Φ2 or Φ3. Note that here we consider a Z2 symmetry and the types I,
II, X and Y , whereas in [16], from where table 4.1 is quoted, a Z2 × Z2 symmetry
and types I, II, X, Y and Z are investigated. The coupling of the third doublet Φ3

to fermions appears in type Z in [16].

Doublets Φu Φd Φl

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Type X Φ2 Φ2 Φ1

Type Y Φ2 Φ1 Φ2

Table 4.1: Four independent types of Yukawa interactions [16].
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We follow here [16], where the Higgs couplings to fermions in the 3HDM for this
symmetry group are given. To this end, we define the Higgs basis (Φ,Ψ1,Ψ2) in the
3HDM, where one of the three doublets contains the vev v, and the charged and
pseudo-scalar Goldstone bosons. This can be done with an orthogonal 3× 3 matrix
R: Φ1

Φ2

Φ3

 = R

 Φ
Ψ1

Ψ2

 , (4.20)

so that we have

Φ =

(
G+

1√
2
(v + h̃+ iG0)

)
, Ψj =

(
H̃+
j

1√
2
(H̃j + iÃj)

)
, j ∈ {2, 3} , (4.21)

where G± and G0 are the charged and neutral Goldstone bosons, respectively.

Here, the rotation matrix R is expressed in terms of the vevs v1, v2, v3 in the following
way:

R =

v1
v
−v2v1
v13v

− v3
v13

v2
v

v13
v

0
v3
v
−v2v3
v13v

v1
v13

 =

cos β cos γ − sin β cos γ − sin γ
sin β cos β 0

cos β sin γ − sin β sin γ cos γ

 , (4.22)

where

v13 =
√
v2

1 + v2
3 , (4.23)

and v1,v2,v3 are the vevs in eqn. (4.1).

Expressing the vevs vi (i ∈ {1, 2, 3}) through v and the mixing angles β and γ,

v1 = v cos β cos γ , (4.24)

v2 = v sin β , (4.25)

v3 = v cos β sin γ , (4.26)

we can calculate the rotation angles β and γ using eqn. (4.1) and obtain

β = arccot
√

2 , (4.27)

γ = π/4 , (4.28)

if we restrict ourselves to β, γ ∈ [−π/2, π/2]. Here, again, because of the high
symmetry group, the Higgs basis can be defined independently of the parameters,
and the rotation angles β and γ adopt discrete values.

Hence R becomes:

R =

1/
√

3 −1/
√

6 −1/
√

2

1/
√

3
√

2/3 0

1/
√

3 −1/
√

6 1/
√

2

 . (4.29)

As it turns out, the two charged, the three CP -even and the two CP -odd states,
calculated in the Higgs basis, are already the mass eigenstates. Hence we have the
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following relations between our original mass basis and the Higgs basis:G±H̃±2
H̃±3

 =

G±H±2
H±3

 ,

 h̃

H̃2

H̃3

 =

H1

H2

H3

 ,

G0

Ã2

Ã3

 =

G0

A2

A3

 . (4.30)

The Feynman rule for the coupling of the scalar Higgs bosons Hi (i ∈ {1, 2, 3}) to
fermions (f = u, d, l) is given by

λHiff = −imf

v
gHiff , (4.31)

where mf denotes the mass of the fermion. The Feynman rule for the coupling of
pseudo-scalar Higgs bosons Ai (i ∈ {2, 3}) to fermions reads

λAiff = −mf

v
gAiffγ5 (4.32)

with the Dirac matrix γ5 given by

γ5 = iγ0γ1γ2γ3 . (4.33)

The Feynman rule for the coupling of charged Higgs bosons H±i (i ∈ {2, 3}) to a
lepton and a neutrino is given by

λH±i lν = i
1√
2v
mlgH±i ll (14 ± γ5) , (4.34)

and the Feynman rule for the coupling of the charged Higgs bosons to a pair con-
sisting of an up- and a down-type fermion is given by

λH±i ud = i
1√
2v

[(
mdgH±i dd +mugH±i uu

)
±
(
mdgH±i dd −mugH±i uu

)
γ5

]
. (4.35)

The coupling factors gHiff , gAiff and gH±i ff (i ∈ {2, 3}) are given in table 4.2.

Note, that H1, respectively, h̃, corresponds to the SM Higgs boson with the coupling
factors gH1ff = 1 for all fermions. The bosons H±1 and A1 are identified with the
charged and neutral Goldstone bosons.

Analogous to [16], the table of factors for the Yukawa interactions is the following.
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Factors for X2,3 H2, A2, H±2 H3, A3, H±3
Factors gX2uu gX2dd gX2ll gX3uu gX3dd gX3ll

Type I ±
√

2
√

2
√

2 0 0 0

Type II ±
√

2 −1/
√

2 −1/
√

2 0 −
√

3/2 −
√

3/2

Type X ±
√

2
√

2 −1/
√

2 0 0 −
√

3/2

Type Y ±
√

2 −1/
√

2
√

2 0 −
√

3/2 0

Table 4.2: The coupling factors for the different 3HDM types. The “+” in gX2uu

applies to the neutral Higgs couplings, the “−” applies to the charged
Higgs couplings.

4.6 Partial Decay Widths

4.6.1 Scalar and Pseudo-Scalar Higgs Decays into Gauge
Bosons and Fermions

The following partial widths were derived from [7].

Since only the scalar Higgs boson H1, which corresponds to the SM-like Higgs boson,
couples to the W± and Z gauge bosons (see appendix 8.2), the partial widths for
the decays of the scalar Higgs bosons into massive gauge bosons are given by

Γ(H1 → W+W−) =
GFm

3
H1

8π
√

2

(
1− 4m2

W

m2
H1

)1/2(
1− 4m2

W

m2
H1

+
12m4

W

m4
H1

)
, (4.36)

Γ(H1 → ZZ) =
GFm

3
H1

16π
√

2

(
1− 4m2

Z

m2
H1

)1/2(
1− 4m2

Z

m2
H1

+
12m4

Z

m4
H1

)
. (4.37)

Here GF = 1.166 378 7 · 10−5 GeV−2 denotes the Fermi constant [20], and mW and
mZ the gauge boson masses.

The partial widths for the decays of the charged Higgs boson into a pair consisting
of a W± gauge boson and a scalar or pseudo-scalar Higgs boson are given by

Γ(H±j → W±Hj) =
GF

8π
√

2
λ(mH±j

,mW ,mHj
)
m2
W

m3
H±j

×

×

m2
W − 2(m2

H±j
+m2

Hj
) +

(m2
H±j
−m2

Hj
)2

m2
W

 , j ∈ {2, 3} ,
(4.38)
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Γ(H±j → W±Aj) =
GF

8π
√

2
λ(mH±j

,mW ,mAj
)
m2
W

m3
H±j

×

×

m2
W − 2(m2

H±j
+m2

Aj
) +

(m2
H±j
−m2

Aj
)2

m2
W

 , j ∈ {2, 3} ,
(4.39)

where
λ(x, y, z) =

[
(x2 + y2 − z2)2 − 4x2y2

]1/2
. (4.40)

The partial widths for the decays of the pseudo-scalar Higgs boson into a Higgs
boson and the Z boson are given by

Γ(Aj → ZHj) =
GF

8π
√

2
λ(mAj

,mZ ,mHj
)
m2
Z

m3
Aj

×

×

(
m2
Z − 2(m2

Aj
+m2

Hj
) +

(m2
Aj
−m2

Hj
)2

m2
Z

)
, j ∈ {2, 3} .

(4.41)

Note that the pseudo-scalar Higgs bosons cannot decay into a pair of massive gauge
bosons.

For the partial decay widths of the scalar Higgs bosons Hi (i ∈ {1, 2, 3}) into a pair
of fermions, we have [7]

Γ(Hi → ff̄) =
NCGF

4π
√

2
mHi

m̄2
fK

2
i

(
1−

4(mpole
f )2

m2
Hi

)3/2

, (4.42)

where for i ∈ {2, 3} we have

Ki =


−gXiuu , up-type quarks

gXidd , down-type quarks

gXill , leptons

, (4.43)

with gXiuu, gXidd and gXill given in table 4.2. For the SM-like Higgs H1, as we have
normalized with respect to the SM coupling, we have instead

K1 = 1 . (4.44)

NC is the colour factor, given by

NC =

{
3 , quarks

1 , leptons
. (4.45)

In the above and in the following decay formulae for the Higgs decays into fermions,
we distinguish between the pole masses of the fermions mpole

f , and the running masses
of the fermions m̄f to account for the QCD corrections, but only for the quarks, since
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there are no QCD corrections for the leptons. The use of the running MS fermion
masses at the scale of 100 GeV in the Higgs couplings to the fermions allows to
take into account the bulk of the higher order QCD corrections, see e.g. [26]. The
running fermion masses at the scale of 100 GeV have been obtained with the help
of [27–30].

Analogously, the decays of the pseudo-scalar Higgs bosons Ai into a pair of fermions
can be cast into the form

Γ(Ai → ff̄) =
NCGF

4π
√

2
mAi

m̄2
fK

2
i

(
1−

4(mpole
f )2

m2
Ai

)1/2

, i ∈ {2, 3}. (4.46)

Note that, as stated above, we neglect Higgs decays into a pair of lighter Higgs
bosons, which is beyond the scope of this thesis.

4.6.2 Charged Higgs Boson Decays into Leptons and Quarks

The partial decay widths of the charged Higgs bosons H±j (j ∈ {2, 3}) into a lepton
and a neutrino or a pair of quarks are [7, 16]

Γ(H±j → `±ν) =
GF

4π
√

2
mH±j

m2
`±g

2
Xj ll

1−
m2
`±

m2
H±j

2

, (4.47)

Γ(H±j → ud) =
3GF

4π
√

2
|Vud|2 λ(mH±j

,mpole
u ,mpole

d )
1

mH±j

×

×
[
(m̄2

dg
2
Xjdd

+ m̄2
ug

2
Xjuu

)(1− xju − x
j
d) + 4m̄um̄d

√
xjux

j
dgXjddgXjuu

]
,

(4.48)

where Vud denotes the corresponding CKM matrix element [31], and

xju =

(
mpole
u

mH±j

)2

, xjd =

(
mpole
d

mH±j

)2

, (4.49)

and gXjuu, gXjdd, gXj ll are given in table 4.2.

Again, we distinguish between pole masses in the kinematics and the running fermion
masses in the Yukawa couplings to account for the bulk of the higher order QCD
corrections. The running masses are obtained from [27–30].
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4.7 Branching Ratios

The branching ratios for the decays of a Higgs Boson H into two particles X and Y
are given by

BR(H → XY ) =
Γ(H → XY )∑
AB Γ(H → AB)

. (4.50)

The sum
∑

AB extends over all possible Higgs decays into the final states A and
B. As we do not take into account the Higgs decays into a pair of lighter Higgs
bosons, we either have to choose in the following numerical analysis the scenarios
such that these decays are kinematically forbidden, or we assume, for simplicity,
that the involved trilinear Higgs self-couplings are very small, so that these decays
are suppressed.

4.8 Numerical Analysis

In the following we will present the branching ratios for our investigated 3HDM
scenario. To this end a Python code has been written where all formulae for the decay
widths of sub-sections 4.6.1 and 4.6.2 and of section 4.7 have been implemented. The
code takes the masses of the charged, scalar and pseudo-scalar Higgs bosons, and the
type (I, II, X, or Y ) of the model as input. From the implemented decay widths it
then computes the various branching ratios. These are represented as plots for the
corresponding decays of the Higgs bosons, which we will discuss in the following.

The SM-like Higgs boson mass was set according to [32] as

mH1 = 125.09 GeV . (4.51)

For the Higgs masses in the plots below, the chosen input values are

mH2 = mH3 = 300.0 GeV , (4.52)

mH±2
= mH±3

= 500.0 GeV , (4.53)

mA2 = mA3 = 350.0 GeV . (4.54)

Following [20, 33], the SM parameters that we use, are

mW = 80.385 GeV , (4.55)

mZ = 91.1876 GeV , (4.56)

me = 0.510 998 928 · 10−3 GeV , (4.57)

mµ = 0.105 658 371 5 GeV , (4.58)

mτ = 1.776 82 GeV , (4.59)

mc = 1.51 GeV , (4.60)

mb = 4.92 GeV , (4.61)

mt = 172.5 GeV . (4.62)
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The following running masses m̄ were obtained with HDECAY [27–30] at the scale
which, for convenience, we choose for all Higgs decays to be 100 GeV [16]:

m̄c = 0.6277 GeV , (4.63)

m̄b = 2.846 GeV , (4.64)

m̄t = 169.611 GeV . (4.65)

The CKM matrix elements that we need are [20]

|Vcb| = 41.1 · 10−3 , (4.66)

|Vtb| = 1.021 . (4.67)

The Fermi constant is [20]

GF = 1.166 378 7 · 10−5 GeV−2 (4.68)

with the relation to the SM vev given by

v =
1√√
2GF

. (4.69)

We will now investigate the dependence of the branching ratios on the chosen Higgs
boson and type of model. For this we will look at the branching ratios of the decays
as a function of the mass of the decaying Higgs boson, which is varied in the range
from 50 GeV to 1000 GeV, while all other masses are fixed.

4.8.1 Comparison Between Charged Higgs Bosons

Here we selected some representative plots for the comparison between the behavior
of the decays of the two charged Higgs bosons H±2 and H±3 in the same type of
the model (type II). In figs. 4.1 and 4.2 we show the branching ratios of H±2 and
H±3 , respectively, in the model type II as a function of the respective charged Higgs
boson mass. All other parameters are kept fixed at the values given at the beginning
of section 4.8.
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Figure 4.1: H±2 Type II plot.

Figure 4.2: H±3 Type II plot.

A clear difference between the decays of H±2 and H±3 can be observed: Firstly, H±2
decays into W±H2/A2 while H±3 decays into W±H3/A3. This is because there are
no couplings of the form W±A2/3H

∓
3/2 or W±H2/3H

∓
3/2. Secondly, the decay into

the pair consisting of a top quark and a bottom quark grows much more rapidly
and diminishes much more slowly in the case of H±2 , which is due to the particular
combination of the coupling factors gXiuu and gXidd, i ∈ {2, 3}, for the chosen type
of the model (type II) i.e.

gX2uu = −
√

2 , gX2dd = −1/
√

2 , (4.70)

gX3uu = 0 , gX3dd = −
√

3/2 . (4.71)
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These coupling factors appear in the partial decay width of the charged Higgs boson
in eqn. (4.48). Thirdly, once the charged Higgs decay into a W± and a scalar
or a pseudo-scalar Higgs becomes kinematically allowed, it strongly suppresses the
branching ratio of the decay into the top and bottom quarks in the case of the decay
of H±3 as it can achieve values close to one.

For the low mass range, i.e. below the threshold for the top-bottom channel, the
dominant decays are the decays into a tau lepton and a tau-neutrino. Once the
decay into a top and a bottom quark becomes kinematically allowed, this becomes
the prevalent decay. The H±2 → eν decay is not visible in the figure as its branching
ratio lies far below the other branching ratios due to the very small masses of the
involved fermions and hence the very small Yukawa couplings. For the decays into
fermions, the Higgs mechanism is responsible for the fact that the couplings to
heavier particles are larger and thus the corresponding decay is more important.

Once the decays H±i → W±Hi and H±i → W±Ai, i ∈ {2, 3}, become kinemati-
cally allowed, the branching ratios of these decays become larger, diminishing the
branching ratio of the decay into the top and a bottom quark. The decays with a
gauge boson and a Higgs boson in the final state can become large and so represent
interesting discovery channels.

Note, that the Higgs-to-Higgs decays are not possible here, since the decays of the
form H±i → HjH

±
k with i, k ∈ {2, 3}, i 6= k and j ∈ {1, 2, 3} are kinematically

forbidden in this case of the model (case B), because the masses of H±2 and H±3 are
equal (see eqn. (4.14)).

4.8.2 Comparison Between Different 3HDM Types

In figs. 4.3 and 4.4 the differences of the 3HDM for type I and type II are in-
vestigated for the example of the H±3 decays. Shown are the branching ratios as a
function of the mass mH±3

for type I (fig. 4.3) and type II (fig. 4.4). All other
parameter values are kept fixed at the values given at the beginning of section 4.8.
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Figure 4.3: H±3 Type I plot.

Figure 4.4: H±3 Type II plot.

The charged Higgs boson does not decay into quarks or leptons in the case of a type
I model, which is clear from the corresponding coupling factors represented in table
4.2. Here again, the H±3 → eν branching ratio in type II is strongly suppressed as
compared to the other branching ratios.

Again, the decays with a gauge boson and a Higgs boson in the final state are
interesting possible discovery channels. Furthermore, it is worthwhile noting that,
just as before, for the high mass range the decay of H±3 into a top quark and a
bottom quark is not the dominant channel, but precisely the decays H±3 → W±H3

and H±3 → W±A3 prevail. For the decays of H±3 , the difference in the branching
ratios of the H±3 → W±H3 and H±3 → W±A3 decays arises only from the difference

25



in the masses of H3 and A3, i.e., as set at the beginning of section 4.8,

mH3 = 300 GeV , (4.72)

mA3 = 350 GeV , (4.73)

since the respective couplings are of the same absolute value (see appendix 8.2).

4.8.3 Comparison Between Scalar Higgs Bosons

Here we compare the branching ratios of the scalar Higgs bosons for the 3HDM type
II. We show the branching ratios of H1 (fig. 4.5), H2 (fig. 4.6) and H3 (fig. 4.7) as
a function of their respective mass, while all other parameters are kept fixed at the
values given above.

Figure 4.5: H1 Type II plot.
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Figure 4.6: H2 Type II plot.

Figure 4.7: H3 Type II plot.

H2 and H3 do not decay into W± or Z bosons, since they do not couple to the
massive gauge bosons. This is obvious, as H1 is the SM-like Higgs boson which
couples with the SM coupling to the massive gauge bosons. The sum rule [7], which
arises from the requirement that unitarity has to be fulfilled, then forbids the other
Higgs bosons to couple to the gauge bosons. The sum rule has been given in eqn.
(3.34) and we repeat it here for convenience,

3∑
i=1

g2
HiV V

= g2
HV V . (4.74)
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Once the H1 decay into the W± or the Z boson pair becomes kinematically allowed,
these also become the dominant branching ratios. Below the respective thresholds
the dominant branching ratio of the decay is the one into a pair of bottom quarks,
since due to the Higgs mechanism the couplings to heavier particles are larger. For
H1 masses above the top quark threshold the H1 → tt also becomes an important
channel and can reach up to approximately 20% of the total decay width. The
decay into a top quark pair is also the dominant one for the H2 decays above the
corresponding kinematic threshold. The H3 does not decay into up-type quarks for
the type II model (and, in fact, for all types), which can be read off from table
4.2.

For large H1 masses, i.e. above approximately 350 GeV, the branching ratios of H1

are exactly those of the SM-like Higgs boson and should accord well with [34], not
taking into account higher order QCD and EW corrections, which are not included
here. Note, that we do not include off-shell decays.

For small H1 masses, however, we find differences because, again, we do not include
off-shell decays into WW and ZZ, which can be important. Also for small H1

masses the higher order QCD corrections have not been included. Note also that no
H1 → gg, H1 → γγ, H1 → Zγ or H1 → µµ decays were considered.

Note, that there is no decay into a lighter Higgs boson and a gauge boson, since this is
kinematically forbidden for the chosen mass values of the Higgs bosons. The Higgs-
to-Higgs decays would in principle be possible in this CP -conserving case of the
model (case B), i.e. Hi → HjHk (with i, j, k ∈ {1, 2, 3} and j, k 6= i in this particular
decay), and Hi → AjAk and Hi → H±j H

∓
k with i ∈ {1, 2, 3} and j, k ∈ {2, 3},

if kinematically allowed, and provided the couplings between the involved Higgs
bosons do not vanish because of the high symmetry of the potential. These decays
are, however, not taken into account here. Depending on the relative strength of
the decay, the branching ratios would change accordingly, as soon as the mass of the
decaying Higgs boson exceeds the respective kinematic threshold.

For low mass ranges, i.e. below the mass of W±, using eqns. (4.42) and (4.50), the
ratio of the two BRs for the decay of an Hi into two pairs of fermions f1f̄1 and f2f̄2

follows approximately the relation

Rf1,f2 =
K2
i,f1
m̄2
f1
NC,f1

K2
i,f2
m̄2
f2
NC,f2

, (4.75)

where m̄f is the running mass for quarks, and simply the pole mass for the leptons,
since there are no QCD corrections for the leptons. Calculating, for example, Rb,τ

for H1 yields approximately 8. Comparing this value with the ratio of these BRs es-
timated from fig. 4.5 supports the validity of the above relation. Similar calculations
can be done for the branching ratios involving other fermions.

4.8.4 Comparison Between Pseudo-Scalar Higgs Bosons

We now compare the decays of the pseudoscalar Higgs bosons exemplary for type II.
The branching ratios of A2 (fig. 4.8) and A3 (fig. 4.9) are shown as a function of the
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respective pseudo-scalar mass, while all parameters are kept fixed at the previously
defined values.

Figure 4.8: A2 Type II plot.

Figure 4.9: A3 Type II plot.

As is again evident from table 4.2, the pseudo-scalar Higgs Boson A3 does not decay
into up-type quarks. It is interesting to note, that in the decay of A2 the top pair
final state and the ZH2 channel play the dominant roles for the higher mass region,
whereas in the case of A3 the ZH3 channel makes up almost the entire branching
ratio, once the A3 mass is large enough for this decay. This is clear, as the A3 decay
into top quarks does not take place due to the vanishing couplings of A3 to up-type
quarks.
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Note that there are no decays into massive gauge bosons, as they are forbidden for
pseudo-scalar Higgs bosons.

The Higgs-to-Higgs decays, i.e. Ai → AjHk with i, j ∈ {2, 3}, i 6= j and k ∈ {1, 2, 3},
are kinematically not possible here since the masses of A2 and A3 are equal (see eqn.
(4.19)).

4.9 Dark Matter Candidates

Since for the current numerical analysis H3 was chosen lighter than A3, since it
cannot decay in massive gauge bosons because of the sum rule (see eqn. (4.74)), and
because it does not decay into quarks or fermions in the type I model (c.f. table
4.2), it is a Dark Matter candidate under the condition that the decays into other
Higgs bosons are kinematically forbidden or that its trilinear couplings with other
Higgs bosons are zero.

Note, that both H3 and A3 do not couple to fermions in the type I model. Further-
more, note that A3 cannot decay into A2Hi (i ∈ {1, 2, 3}) because A2 and A3 have
equal masses, as mentioned above. So, in principle, if one does not restrict the mass
values as chosen for the current numerical analysis, the lighter Higgs boson among
H3 and A3 is then a Dark Matter candidate in a type I model, but again only under
the condition mentioned above.
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5 Case C: (ω,1,1)

From here on, let <(x) and =(x) denote the real and complex parts of the variable
x, respectively.

The doublets are now parametrized in the following way, since one of the vevs is
now complex:

Φj =
1√
2

(
χj + iψj

<(vj) + hj + i [aj + =(vj)]

)
, j ∈ {1, 2, 3} . (5.1)

The vevs of the corresponding doublets are now

v1 = ωv′ , v2 = v3 = v′ , with ω = exp(2πi/3), v′ =
1√
3
v . (5.2)

5.1 Minimum Conditions

Similarly as before, we obtain from the minimum conditions

m2 = (3λ0 + λ2 − λ3)(v′)2 . (5.3)

5.2 Mass Matrices

The charged and the neutral mass matrices MC and MN can be obtained by cal-
culations analogous to previous chapters. Both theMC andMN mass matrices are
symmetric in the (χ1, ..., χ3, ψ1, ..., ψ3) and (h1, ..., h3, a1, ..., a3) bases, respectively,
and are given by

(MC)1,1 = (MC)2,2 = (MC)3,3 = (MC)4,4 =

= (MC)5,5 = (MC)6,6 =
1

3
v2(−λ2 + λ3)

(5.4)

(MC)1,2 = (MC)1,3 = (MC)4,5 = (MC)4,6 =
1

12
v2(−λ2 + λ3) (5.5)

(MC)1,4 = (MC)2,5 = (MC)2,6 = (MC)3,5 = (MC)3,6 = 0 (5.6)

(MC)1,5 = (MC)1,6 =
1

4
√

3
v2(−λ2 + λ3) (5.7)

(MC)2,3 = (MC)5,6 =
1

6
v2(λ2 − λ3) (5.8)

(MC)2,4 = (MC)3,4 =
1

4
√

3
v2(λ2 − λ3) (5.9)

31



and

(MN)1,1 =
1

6
v2(λ0 + λ1 + 4λ3) (5.10)

(MN)1,2 = (MN)1,3 =
1

6
v2(−2λ0 + λ1 − λ2 + 2λ3) (5.11)

(MN)1,4 = − 1

2
√

3
v2(λ0 + λ1) (5.12)

(MN)1,5 = (MN)1,6 = (MN)2,5 = (MN)3,6 =
1

2
√

3
v2λ3 (5.13)

(MN)2,2 = (MN)3,3 =
1

6
v2(4(λ0 + λ1) + λ3) (5.14)

(MN)2,3 =
1

12
v2(8λ0 − 4λ1 + 4λ2 − 5λ3) (5.15)

(MN)2,4 = (MN)3,4 =
1

2
√

3
v2(2λ0 − λ1 + λ2 − λ3) (5.16)

(MN)2,6 = (MN)3,5 = − 1

4
√

3
v2λ3 (5.17)

(MN)4,4 =
1

2
v2(λ0 + λ1) (5.18)

(MN)4,5 = (MN)4,6 = 0 (5.19)

(MN)5,5 = (MN)6,6 =
1

2
v2λ3 (5.20)

(MN)5,6 = −1

4
v2λ3 . (5.21)

5.3 Diagonalization of the Mass Matrices

The neutral 6× 6 rotation matrix RN is parametrized as

RN = R1R2R3 , (5.22)

where

R1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 a −b −c −d
0 0 b a −d c
0 0 c d a −b
0 0 d −c b a

 (5.23)

and

R2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 p −q −r −s
0 0 q p s −r
0 0 r −s p q
0 0 s r −q p

 (5.24)

with
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a2 + b2 + c2 + d2 = 1 (5.25)

p2 + q2 + r2 + s2 = 1 (5.26)

a, b, c, d, p, q, r, s ∈ R , (5.27)

and the matrix R3, which diagonalizes the upper-left 2×2 block of the neutral mass
matrix MN , given by

R3 =



−1
2

0 0 − 1
2
√

3
1√
3

1√
3

− 1
2
√

3
1√
3

1√
3

1
2

0 0

1
2
√

6
− 1√

6

√
2
3
− 1

2
√

2
0 0

1
2
√

26
− 3√

26
0 1

2

√
13
6

√
2
39

√
2
39√

3
26

1
2

√
3
26

0 0 2
√

2
13
− 5

2
√

26

1√
2

1
2
√

2
0 0 0 1

2

√
3
2


. (5.28)

Here, the neutral mass matrix cannot be diagonalized in a parameter-free way, in
contrast to cases A and B. Hence a, b, c, d, p, q, r, s are parameter-dependent.

The charged rotation matrix RC is parametrized in the following way:

RC =

(
UC 0
0 U∗C

)
UP , (5.29)

with

UP =
1√
2


1 0 0 i 0 0
0 1 0 0 i 0
0 0 1 0 0 i
1 0 0 −i 0 0
0 1 0 0 −i 0
0 0 1 0 0 −i

 , (5.30)

which rotates the fields from the interaction basis into the mass basis, and

UC =


1
6
(−3i−

√
3) 1√

3
1√
3

1+i
√

3
2
√

2
0 1√

2

1+i
√

3
2
√

6

√
2
3
− 1√

6

 , (5.31)

where UC diagonalizes the upper left 3 × 3 block of the charged mass matrix MC ,
and U∗C diagonalizes the lower right 3× 3 block of MC .

The charged Higgs masses are given by

M2
H±2,3

=
1

2
v2(−λ2 + λ3) . (5.32)

Note, that the charged Higgs boson H±1 is identified with the massless charged
Goldstone boson G±, which gives mass to the charged W± boson through the Higgs
mechanism.
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For the neutral Higgs boson masses we obtain,

M2
H̃

:= M2
H2

=
2

3
v2(3λ0 + λ2 − λ3) , (5.33)

M2
H3

= M2
H4

=
1

6
v2 (3λ1 − λ2 + 4λ3−

−
√

9λ2
1 + λ2

2 + λ2λ3 + 7λ2
3 − 3λ1(2λ2 + λ3) )

, (5.34)

M2
H5

= M2
H6

=
1

6
v2 (3λ1 − λ2 + 4λ3+

+
√

9λ2
1 + λ2

2 + λ2λ3 + 7λ2
3 − 3λ1(2λ2 + λ3) )

. (5.35)

Note, that the neutral Higgs boson H1 is identified with the massless neutral Gold-
stone boson G0, which is absorbed to give mass to the massive Z boson through the
Higgs mechanism. In the above expressions, H2 is denoted with H̃ to indicate the
fact that after rotating the neutral mass matrix MN with R3, which is parameter
independent, H2 does not mix with the other Higgs bosons.

5.4 Couplings to Gauge Bosons

We have derived the couplings to the gauge bosons in the same way as described in
section 3.4. They are given in the appendix 8.3. The couplings are given with all
momenta taken as in-going. The Higgs couplings to the fermions were not calculated
for this specific case of the model, as this goes beyond the scope of this thesis.

Here, it is not obvious, which of the neutral Higgs bosons is the SM-like one, since
the couplings depend on the rotation matrix elements RN and RC , and RN is
parameter dependent. Thus a different neutral Higgs boson could happen to be
identified as the SM-like Higgs for different combinations of the parameters appearing
in the potential. Thus some couplings from the list in appendix 8.3 will vanish
accordingly.
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6 Case D: (ω2,1,1)

The procedure in this case is identical to case C, described in chapter 5. Therefore,
only the results of the calculations are presented. The Higgs doublets are given by

Φj =
1√
2

(
χj + iψj

<(vj) + hj + i [aj + =(vj)]

)
, j ∈ {1, 2, 3} (6.1)

with the vevs

v1 = ω2v′ , v2 = v3 = v′ , with ω = exp(2πi/3), v′ =
1√
3
v . (6.2)

6.1 Minimum Conditions

The minimum conditions lead to

m2 = (3λ0 + λ2 − λ3)(v′)2 . (6.3)

6.2 Mass Matrices

The matrix elements of the symmetric 6×6 charged and neutral Higgs mass matrices
can be cast into the form

(MC)1,1 = (MC)2,2 = (MC)3,3 = (MC)4,4 =

= (MC)5,5 = (MC)6,6 =
1

3
v2(−λ2 + λ3)

(6.4)

(MC)1,2 = (MC)1,3 = (MC)4,5 = (MC)4,6 =
1

12
v2(−λ2 + λ3) (6.5)

(MC)1,4 = (MC)2,5 = (MC)2,6 = (MC)3,5 = (MC)3,6 = 0 (6.6)

(MC)1,5 = (MC)1,6 =
1

4
√

3
v2(λ2 − λ3) (6.7)

(MC)2,3 = (MC)5,6 =
1

6
v2(λ2 − λ3) (6.8)

(MC)2,4 = (MC)3,4 =
1

4
√

3
v2(−λ2 + λ3) , (6.9)

and
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(MN)1,1 =
1

6
v2(λ0 + λ1 + 4λ3) (6.10)

(MN)1,2 = (MN)1,3 =
1

6
v2(−2λ0 + λ1 − λ2 + 2λ3) (6.11)

(MN)1,4 =
1

2
√

3
v2(λ0 + λ1) (6.12)

(MN)1,5 = (MN)1,6 = (MN)2,5 = (MN)3,6 = − 1

2
√

3
v2λ3 (6.13)

(MN)2,2 = (MN)3,3 =
1

6
v2(4(λ0 + λ1) + λ3) (6.14)

(MN)2,3 =
1

12
v2(8λ0 − 4λ1 + 4λ2 − 5λ3) (6.15)

(MN)2,4 = (MN)3,4 = − 1

2
√

3
v2(2λ0 − λ1 + λ2 − λ3) (6.16)

(MN)2,6 = (MN)3,5 =
1

4
√

3
v2λ3 (6.17)

(MN)4,4 =
1

2
v2(λ0 + λ1) (6.18)

(MN)4,5 = (MN)4,6 = 0 (6.19)

(MN)5,5 = (MN)6,6 =
1

2
v2λ3 (6.20)

(MN)5,6 = −1

4
v2λ3 . (6.21)

6.3 Diagonalization of the Mass Matrices

The neutral 6× 6 rotation matrix RN is parametrized as

RN = R1R2R3 , (6.22)

where

R1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 a −b −c −d
0 0 b a −d c
0 0 c d a −b
0 0 d −c b a

 , (6.23)

and

R2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 p −q −r −s
0 0 q p s −r
0 0 r −s p q
0 0 s r −q p

 , (6.24)
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with

a2 + b2 + c2 + d2 = 1 (6.25)

p2 + q2 + r2 + s2 = 1 (6.26)

a, b, c, d, p, q, r, s ∈ R , (6.27)

and

R3 =



1
2

0 0 − 1
2
√

3
1√
3

1√
3

1
2
√

3
− 1√

3
− 1√

3
1
2

0 0

1
2
√

6
− 1√

6

√
2
3

1
2
√

2
0 0

− 1
2
√

26
3√
26

0 1
2

√
13
6

√
2
39

√
2
39

−
√

3
26
−1

2

√
3
26

0 0 2
√

2
13
− 5

2
√

26

− 1√
2

− 1
2
√

2
0 0 0 1

2

√
3
2


. (6.28)

The charged rotation matrix RC is parametrized as

RC =

(
U∗C 0
0 UC

)
UP (6.29)

with

UP =
1√
2


1 0 0 i 0 0
0 1 0 0 i 0
0 0 1 0 0 i
1 0 0 −i 0 0
0 1 0 0 −i 0
0 0 1 0 0 −i

 (6.30)

and

UC =


1
6
(−3i−

√
3) 1√

3
1√
3

1+i
√

3
2
√

2
0 1√

2

1+i
√

3
2
√

6

√
2
3
− 1√

6

 . (6.31)

The charged Higgs masses are given by

M2
H±2,3

=
1

2
v2(−λ2 + λ3) . (6.32)

Note, that, again, the charged Higgs boson H±1 is identified with the massless charged
Goldstone boson G±, which gives mass to the charged W± boson through the Higgs
mechanism.

The neutral Higgs masses are given by

M2
H̃

:= M2
H2

=
2

3
v2(3λ0 + λ2 − λ3) , (6.33)

M2
H3

= M2
H4

=
1

6
v2 (3λ1 − λ2 + 4λ3−

−
√

9λ2
1 + λ2

2 + λ2λ3 + 7λ2
3 − 3λ1(2λ2 + λ3) )

, (6.34)
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M2
H5

= M2
H6

=
1

6
v2 (3λ1 − λ2 + 4λ3+

+
√

9λ2
1 + λ2

2 + λ2λ3 + 7λ2
3 − 3λ1(2λ2 + λ3) )

. (6.35)

Note, that, just as in case C (see section 5.3 for the relevant part), the neutral
Higgs boson H1 is identified with the massless neutral Goldstone boson G0, which
is absorbed to give mass to the massive Z boson through the Higgs mechanism. H2

is again denoted with H̃ for the same reason as in section 5.3.

6.4 Couplings to Gauge Bosons

We have derived the couplings to the gauge bosons in the same way as described in
section 3.4. They are given in the appendix 8.4. The couplings are given with all
momenta taken as in-going. The Higgs couplings to the fermions were not calculated
for this specific case of the model, as this goes beyond the scope of this thesis.

Here, just as in the relevant section in case C (see section 5.4), it is not obvious, which
of the neutral Higgs bosons is the SM-like one, since the couplings depend on the
rotation matrix elements RN and RC , and RN is parameter dependent. Therefore,
again, a different neutral Higgs boson can happen to be identified as the SM-like
Higgs for different combinations of the parameters appearing in the potential, and
again some couplings from the list in appendix 8.4 will vanish accordingly.
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7 Conclusions and New Goals

In this thesis, the minimum conditions, the physical Higgs masses, the Higgs cou-
plings to gauge bosons and the effects induced on these by the symmetry of the
potential, i.e. parameter independent diagonalization of the mass matrices, equal
masses of different Higgs bosons (this also increases the chances of the considered
Higgs being a DM candidate) and the absence of certain couplings, were determined
for all four cases of global minima of the ∆(54) family of discrete symmetry groups
in the 3HDM. The possible Dark Matter candidates were found for two of these
cases. In one case (ch. 4), in addition to the above, the ∆(54)/Z3 symmetry was
reduced to a Z2 symmetry, and the couplings of the Higgs bosons to fermions were
calculated. A Python program was written, which computes the decays of the dif-
ferent Higgs bosons in the investigated special scenarios of case B of the 3HDM that
is symmetric under the Z2 symmetry. The decays of the Higgs bosons were then
analyzed by discussing and comparing their branching ratios.

Future possible goals are:

(1) the computation of the trilinear and quartic Higgs self-couplings

(2) the derivation of the Higgs couplings to fermions for the ∆(54) family of dis-
crete symmetry groups

(3) after performing items (1) and (2), calculating all possible branching ratios

(4) repeating the analysis for a CP -violating potential
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8 Appendix

8.1 Case A: (1,0,0) - Couplings to Gauge Bosons

All momenta are taken as in-going.

A2H3Z
1

2
g(kµA2

− kµH3
) sec(θW ) (8.1)

A2H
−
2 W

+ 1

2
√

2
g(kµA2
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) (8.2)

A2H
−
3 W

+ − 1

2
√
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8.2 Case B: (1,1,1) - Couplings to Gauge Bosons

All momenta are taken as in-going.
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8.3 Case C: (ω,1,1) - Couplings to Gauge Bosons

All momenta are taken as in-going. The rotation matrices RN and RC were defined
in eqns. (5.22) and (5.29), respectively.
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N)n,4 + (RT
N)n+3,4

) (
(R†C)n,5 − i(R†C)n+3,5

)]
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(8.64)

H5H
+
2 W

− g

2
√

2
(kµH5

− kµ
H+
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8.4 Case D: (ω2,1,1) - Couplings to Gauge Bosons

All momenta are taken as in-going. The rotation matrices RN and RC were defined
in eqns. (6.22) and (6.29), respectively.

γH−2 H
+
2 − ig(kµ

H+
2

− kµ
H−2

) sin(θW ) (8.85)
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3 − ig(kµ

H+
3
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3∑
j=1

[
(RT

N)j,6(RT
N)j+3,3 − (RT

N)j,3(RT
N)j+3,6

]
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