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Abstract 
The majority of platform chemicals are currently provided through crude oil pro- 
cesses. Nevertheless, the substitution of the crude oil with biomass should be the 
ecological aim. Lignin, an aromatic macromolecule, may play an important role in 
that exchange, as it is the only bio based source of aromatic compounds. For in-
stance, it could be a source of bifunctional aromatic molecules, like the monocyclic 
compounds catechol or guaiacol, or bifunctional oligomers. However, no process for 
the production of aromatics from lignin in technical scale has been established until 
now. Hence, the focus of this work is to clarify the chemical degradation mechanism 
under hydrothermal conditions, to liquefy lignin delivering high functional mole-
cules and to increase the yield and selectivity of the cleavage towards bifunctional 
molecules like catechol. The combination of fast hydrolysis, thermal degradation 
reactions and hydrogenation drives the hydrothermal liquefaction; this gives the pos-
sibility to narrow down the product spectrum in comparison to other “dry” cleavage 
methods, towards a higher yield of e.g. catechols. 
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1. Introduction 

Nowadays, platform chemicals are mostly provided through crude oil processes. The 
environmental influences accounted for by using crude oil are already visible. So, envi-
ronmentally friendly alternates should be used now and in the future. Furthermore, al-
ternatives should be investigated right now, when there is still time till crude oil sources 
dry out and as long as we can handle the situation. An environmental and carbon dio-
xide neutral carbon source for platform chemicals is wood based biomass. Wood based 
biomass contains mostly hemicellulose, cellulose and lignin. Lignin is one of the most 
common organic compounds in the world. It is the only bio based macro molecule 
which contains aromatic structures. Lignin is used in plants to build up solidifying 
structures and to resist environmental influences [1] [2]. On the one hand, this fact 
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makes lignin a challenge for its conversion to produce chemicals and special treatments 
are necessary and need to be understood well.  

On the other hand, lignin is a promising renewable resource available in large quan-
tities, which could be used chemically. Currently, most of the directly useable lignin ac-
crues at the paper industry as a byproduct in an amount of about fifty million tons per 
year. Most of this lignin is burned for energy production and hardly any of it is used as 
a raw material to produce chemicals like vanillin [3] [4]. Therefore, lignin provides a 
large potential source for the production of chemicals. 

Bark is also a byproduct of huge amounts in the pulping industry and mostly not 
used. Hardwood bark, like beech bark, contains around 30% of lignin [5]. Previous 
measurements also show a lignin content of about 32%1. For using lignin as a source for 
platform chemicals, different studies with the overall target to find a process which de-
livers platform chemicals out of every applied biomass that accrue as waste, like bark or 
Kraft lignin from pulping, need to be performed. Producing renewable energies always 
depends on environmental influences like weather. With such a process, there would 
not be any influences by the weather or anything in regard of the use of renewable 
sources for energy. However, the different behaviors of the biomass must be looked at 
to understand the reaction and to create a process like that. For the chemical use of lig-
nin to gain platform chemicals, a depolymerization step is necessary. Therefore, the 
hydrothermal liquefaction is considered to be a promising system, because the hydro-
thermal cleavage is showing auspicious results. The chemical degradation mechanism 
under hydrothermal conditions to liquefy lignin delivering high functional molecules is 
investigated in this work. It is also the aim to increase the selectivity and yield of the 
cleavage towards bifunctional molecules, e.g. catechol. Catechol has a high potential as 
a platform chemical because of two present hydroxy groups and can be used as a pre-
cursor to fine chemicals such as perfumes and pharmaceuticals or as a building block in 
the organic synthesis. 

2. Hydrothermal Cleavage 
2.1. Hydrothermal Treatment   

In the beginning of the research work on chemical lignin utilization, the main idea was 
to produce phenol out of the lignin. However, a process for the technical production of 
phenol is still not established until now, because the phenol yield stagnates at a certain 
point and so just the production of phenol is not profitable [6].  

To understand that bottleneck, and to solve the problems of this special biomass, 
various reaction pathways have to be understood, before lignin can be used industrially.  

Nevertheless, lignin could be a source for many monomeric and oligomeric com-
pounds with more than one functional group. The idea of using lignin should there-
fore, be to generate more than one target molecule instead of just phenol as a prod-
uct. The gained products depend on different depolymerization methods and used 
lignins [7]. 

By using hydrothermal liquefaction methods functional groups can be maintained, in 
contrast for example to the hydrotreating process [8]. Around 200˚C and the corres-
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ponding pressure of water, hydrothermal carbonization takes place, above 600˚C su-
percritical water gasification. For the production of platform chemicals, a temperature 
ranging from 150˚C to 400˚C with the corresponding equilibrium pressures, delivers 
the best results. The desired hydrothermal liquefaction takes place between 280˚C - 
380˚C (Figure 1) [8]. 

In water, the selectivity towards keeping the functional groups is higher, as for exam-
ple in ethanol [6]. Likewise, the biomass can be used without previous drying. 

The special properties of water under these near and supercritical conditions offer 
special opportunities for gaining bifunctional aromatics (Figure 2). These special 
properties will be used in all the reaction to degrade lignin. 

 

 
Figure 1. Hydrothermal treatment as a function of the pressure and 
temperature of water. Green area marks the conditions of the hydro-
thermal conversion to platform chemicals. The black circle marks the 
area of the hydrothermal carbonization, the dark red square the su-
percritical water gasification and the blue one the area of the hydro-
thermal liquefaction [8]. 

 

 
Figure 2. Properties of water as a function of temperature at the 
critical pressure 25 MPa (density ρ, ion product IP and relative static 
dielectric constant ε) [8]. 
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Under near or supercritical conditions water has a different density ρ, which leads to 
different solubilities for substances to be dissolved, different ion products IP, different 
relative static dielectric constant ε and hydrogen availability through the occurring wa-
ter gas shift reaction [8] [9]. 

2.2. Lignin Structure  

In lignin, the macromolecule structure of aromatic rings is linked via different chemical 
groups and bond types (Figure 3) and besides this until now no detailed knowledge 
about the size of these structures could be acquainted [10]. Some forestry scientists 
even proposed that some trees might share the same molecule [11].  

Lignin consists of three basic monomeric units of which the distribution depends on 
the type of plant which produced the lignin (Figure 4) [12]. So, every plant delivers 
different lignin and also the separation process has a big impact on the structure of the 
obtained lignin [7] [13]. 
 

 
Figure 3. Possible structure of a lignin molecule with binding energies [10]. 
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Sinapyl alcohol, p-cumaryl alcohol and coniferyl alcohol are the basic monomeric 
units of lignin. Sinapyl alcohol leads to syringol as a product, while coniferyl alcohol 
leads to guaiacol by hydrothermal treatment. The most common bond in the lignin 
molecule is the β-O-4, which has a relative low bond energy and is hence one of the 
first bonds which are cleaved during the liquefaction process (Figure 3) [12] [14]. 

The aromatic part of the lignin molecule is a precursor for phenolic monomers or 
oligomers. Methoxy groups lead to products like methane or methanol. Water soluble 
acids occur through alkene and alcohol side groups (Figure 5) [9] [13].  

Liquefaction products with two functional groups, like catechols, are promising mo-
lecules for the use as a platform chemical (Figure 6). They can be used as a monomer 
for the production of polymers or precursors to fine chemicals. 

3. Experiments 
3.1. Lignin-Indulin AT-Structure  

A Kraft lignin produced by the Kraft pulping process using sodium sulfide for lignin 
dissolution was applied in these studies. Indulin AT is a lignin which contains mostly 
β-O-4 linkages and basic units of coniferyl alcohol [12] [13]. 

The Indulin AT structure in this study contains mostly coniferyl alcohol, then p- 
cumaryl alcohol and no sinapyl alcohol units (Table 1). So, based on the structure  
of this lignin type, the cleavage is presumed to deliver mostly guaiacol. 

The units are linked mainly through β-O-4 bonds (59%), β-β bonds to 28% while the 
 

 
Figure 4. Monomeric building blocks of lignin: Sinapyl alcohol, p-Cumaryl alcohol and Con-
iferyl alcohol. 
 

 
Figure 5. Simplified illustration of the precursors for thermal degradation 
products of a lignin monomer unit. 
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Figure 6. Four of the favored monomeric products of lignin: Phenol, Catechol, Guaiacol and 
4-Methylcatechol. 

 
Table 1. Monomer units of Indulin AT*. 

Monomer basics 

Sinapyl alcohol 0% 

p-Cumaryl alcohol 2.5% 

Coniferyl alcohol 97.5% 

*With J. Schäfer, Department of Food Chemistry and Phytochemistry, KIT. 

 
rest is linked via β-5 and ends partly with cinnamyl alcohol groups (Figure 7).  

Experimental Procedure  
The aim of this work was to investigate the catechol yield at different temperatures 
(250˚C, 300˚C, 350˚C, 400˚C and 450˚C), the resulting pressures out of these tempera-
tures and reaction times (0.25 - 24 h) utilizing a homogenous catalyst (1 wt% potassium 
hydroxide KOH). The screening experiments were performed in batch micro reactors 
(10 - 25 ml). Lignin and the potassium hydroxide solution are put in the stainless steel 
(14,571) micro reactors under standard pressure. Figure 8 shows a scheme of the pro-
ceeding of the experiment. 

The micro reactors (10.0 ml, 24.5 ml & 25 ml volume) are filled with the lig-
nin-base-suspension and sealed. The oven used for the heating, is a GC oven with a 
heating rate of 40˚C/min. The reaction time starts after the target temperature is 
reached and an additional 15 min of heating have passed. After the reaction, the autoc-
laves are taken out of the oven and put under cold water to cool down and to stop the 
reaction. 

Gas chromatography was mainly used for analyzing the gas and monomeric compo-
nents in the product mixture. The gaseous samples are analyzed by an Agilent 7890 A 
GC-system with a 2 m Porapak Q column. An Agilent laboratory data system controls 
the measurement. For the detection of the compounds a flame ionization detector 
(FID) and a thermal conductivity detector (TCD) is applied. For the analysis of the liq-
uid products a Hewlett Packard 5890-II GC system with a Hewlett Packard 5890 auto 
sampler equipped with a FID-detector. It is controlled by an HPChem laboratory data 
system. As column, a nonpolar 30 m RestekRtx 1 MS cross bond dimethylpolysiloxane 
column is used. 
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Figure 7. Different bond types of Indulin AT, (X1cinnamyl al-
cohol ending group)2. 

 

 
Figure 8. Proceeding of the experiments. 

3.2. Lignin Degradation  

Likewise said, in other studies the phenol yield was found to stagnate at a certain level 
and for the investigated Kraft lignin the phenol amount was found to be limited to a 
maximum yield below 10 wt% [6] [15].   

Under the catalytical influence of Nickel, which was contained in the reactor materi-
al, the yield was found to be even lower. Figure 9 shows the phenol yields per g used 
lignin at 300˚C, at a KOH concentration of 1 wt% over different reaction times. After a 
certain time of 4 h the phenol yield remains at an amount below 3 wt%. This observa-
tion can be explained with the catalytic activity of Nickel, which amplifies the gasifica-
tion of biomass and is therefore often used as a catalyst for gasification reactions. 
However, with the gasification of biomass as a competing reaction, the amount of the 
targeted bifunctional products decreases rapidly. 

Besides this, higher temperatures, a longer reaction time and a higher amount of the 
catalysts shift the reaction towards the gasification (compare Figure 10 and Figure 11). 

 

 

2With J. Schäfer, Department of Food Chemistry and Phytochemistry, KIT. 



J. Schuler et al. 
 

103 

Over 350˚C water is in near or supercritical conditions, which has special conditions 
and enhances the reaction in direction to gasification. At 250˚C the cleavage reactions 
are slow, but also gasification reactions are much less occurring. Only after longer reac-
tion times liquefaction occurs.  

On contrary, at 450˚C almost the complete reaction is turned towards gasification 
while the yield of the desired products is found to be nearly zero. To sum up, while be-
low critical conditions (250˚C) the desired reactions are not happening, under super-
critical conditions (450˚C) mostly gasification is occurring. However, this was expected, 
as other studies support these observations; compare Figure 1 [8] [9] [15].  

 

 
Figure 9. Phenol yields in mg per g used lignin at 300˚C and the resulting pressure 
out of this temperature, a KOH concentration of 1 wt% was applied for different 
reaction times (0.25 - 24 h). The dark blue squares show the yield obtained without 
a Ni-catalyst, the light blue dots by addition a Ni-catalyst, resulting out of the reac-
tor material. 

 

 
Figure 10. Concentrations of the obtained amount of methane in vol% over the 
different reaction times (0.25 - 24 h) at different temperatures (250˚C - 450˚C), the 
resulting pressure out of these temperatures and a KOH concentration of 1 wt%, 
biomass used for this was beech bark. 
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Figure 11. Concentrations of the obtained product catechol in mg per g used 
lignin over the different reaction times (0.25 - 24 h) and examined temperatures 
(250˚C - 450˚C), the resulting pressure out of these temperatures and 1 wt% 
KOH. 

 
Based on guaiacol as an intermediate, the favored product catechol is expected to be 
formed [15] [16] [17]. Figure 12 shows the concentration profile of guaiacol and cate-
chol as a function of the reaction time at 300˚C and a KOH concentration of 1 wt%. 

However, this is just one of the reaction pathways towards catechol (also described in 
[17]). In general, the highest amount of catechol could be achieved at 300˚C and a reac-
tion time of 3 hours. 

3.3. Reactivity of Indulin AT Compared to Beech Bark  

As described before, not only lignin can be applied in this process, also bark can be di-
rectly used. Bark also contains cellulose, hemicelluloses and extracts besides the lignin 
[5]. So, the reactions are expected to be influenced by the different molecular compo-
nents present inside of the bark.  

Currently, different studies are performed to investigate the influence of glucose on 
the reaction, as the cellulose is cleaved directly to glucose under the liquefaction condi-
tions applied. Besides this a more detailed look on the influence of tannins present in-
side of the bark is intended. 

Therefore, in this study, beech bark was used having a lignin content of 32 wt%3 
based on own measurements and literature data [5]. Taking this into consideration, the 
observed catechol yield is comparable to the yield observed when using Indulin AT as a 
starting material, see Figure 13.  

The yields of the other observed products, namely syringol and guaiacol, lead to the 
assumption that the basic monomers of the bark have to be in a different composition 
than the one present in Indulin AT, because there is more syringol observed in the 
product mixture of the bark experiments than compared to the experiments with Indu-
lin AT (compare Figure 4) [5] [12] [13] [14]. 

 

 

3With M. Fleckenstein, University of Göttingen, Wood Biology & Wood Products. 
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Figure 12. Concentrations of the obtained products guaiacol (grey 
dots) and catechol (green triangles) in mg per g used lignin over the 
different reaction times (0.25 - 24 h) at 300˚C, the resulting pressure 
out of this temperature and a KOH concentration of 1 wt%. 

 

 
Figure 13. Concentrations of the obtained product catechol in mg per 
g used lignin (dark green dots) and lignin in the used bark (light green 
squares) over the different reaction times (0.25 - 24 h) at 300˚C, the 
resulting pressure out of this temperature and a KOH concentration 
of 1 wt%. 

4. Outlook 

Previous work indicated an influence on the liquefaction reaction results, if there is 
back mixing in the reactor. In a continuous reactor with back mixing the products can 
interact with the unreacted feed and intermediately formed products [16] [18]. Repo-
lymerization reactions may be hindered through the back mixing leading to a higher 
amount of bifunctional monomers. Furthermore, bifunctional oligomers may be avail-
able through a new process design which leads to the setup of a new reactor (Figure 14) 
set-up which is currently under construction.  

Through the use of a loop reactor, the reactions shall be driven towards bifunctional 
components. These new influencing variables, the variable back mixing and number of 
cycles shall give a better control of the reactions. With this continuous system, the 
identification of important key components and their kinetics are possible. 
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Figure 14. Scheme of the built loop reactor. 1 & 2: Feed; 3: Reactor (1 l); 
4: Gas products; 5: Liquid products; A & B: Pumps; C: Heating system; 
D: Heat exchanger; E: Phase separator. 

5. Conclusions 

Different lignin types need to be investigated separately, because they are found to 
generate a different product range. Furthermore, different types of biomass like bark 
need to be investigated more closely, because the different lignin composition leads to 
other reactions and thus, products.  

The product spectra themselves are highly various, so the downstream processes 
need to be investigated in the future to build a sustainable process. A suitable separa-
tion technique must be found that the different platform chemicals can be gained out of 
the process in high qualities for further applications and conversions. Besides this, the 
mixture could be investigated in different areas where already phenolic mixtures are 
used. Until now, the down streaming has been hardly investigated; hence, the liquefac-
tion process is not viable and ecological. Nevertheless, with the right down streaming 
processes and a suitable use of the products, it should be possible to develop an ecolog-
ical and economical feasible process. 

As a matter of fact, both feedstocks have a high potential as a source for platform 
chemicals. In regard to bio economy even more, as both are waste streams of the high 
volume pulping industry and which are used mostly not chemically by now. This work 
has a focus on the development of a whole new value chain, but the basic reactions need 
to be understood well before. Hydrothermal liquefaction appears as a reasonable con-
version technology because functional groups remain in the product molecules. In par-
ticular, the oligomeric compounds which aren’t investigated in detail until now are 
promising products for a chemical use. With different reaction times, temperatures and 
catalysts, the reaction towards bifunctional molecules can be influenced. This could 
lead to a higher earned value for the wood and paper sector. 
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