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1 Introduction

Form factors of heavy quarks are important in top quark physics, see e.g. [1–3]. While

the form factors are interesting at general momentum transfer, a particularly important

kinematical regime is the threshold expansion. One of the main technical obstacles in

studying this regime is the lack of higher-order analytic results for the threshold expansion

of Feynman integrals contributing to it.

The goal of the present paper is to evaluate master integrals (MI) for the planar three-

loop heavy-quark Feynman integrals with two legs on-shell, p21 = p22 = m2, in two situations:

at general q2 and at the two-particle threshold, q2 ≡ (p1 − p2)
2 = 4m2.

This is made possible by recent breakthroughs in the understanding of analytic prop-

erties of Feynman integrals. Three years ago, [4] proposed to solve differential equations

(DE) for Feynman integrals [5–11] using a transition to a uniformly transcendental basis.

It was also suggested that the latter can be found by choosing integrals having constant

leading singularities [12, 13]. Since then this strategy was successfully applied in [14–23]

and other papers.

Planar and non-planar integrals in the threshold kinematics were previously numeri-

cally evaluated in [30–32], in most cases using FIESTA [33–35].

We consider the following family of planar vertex Feynman integrals

Fa1,...,a12 =
1

(iπD/2)3

∫

dDk1 d
Dk2 d

Dk3
[−(k1 + p1)2 +m2]a1 [−(k2 + p1)2 +m2]a2 [−(k3 + p1)2 +m2]a3

× 1

[−(k3 + p2)2 +m2]a4 [−(k2 + p2)2 +m2]a5 [−(k1 + p2)2 +m2]a6 [−k21]
a7 [−(k1 − k2)2]a8

× 1

[−(k2 − k3)2]a9 [−(k1 − k3)2]a10 [−k22]
a11 [−k23]

a12
. (1.1)

Each index can be positive but the total number of positive indices cannot be more than 9.

This family of integrals can be represented as the union of eight subfamilies which are char-

acterized by the following subsets of non-positive indices: {10, 11, 12}, {6, 10, 12}, {3, 6, 10},
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Figure 1. Graphs for the planar 3-loop heavy quark form factor integrals. The solid lines represent

massive propagators, while the dashed lines represent massless ones.

{5, 6, 10}, {5, 11, 12}, {5, 6, 11}, {3, 4, 6}, {3, 6, 11}. The corresponding eight planar graphs

are shown in figure 1.

The parametrization of eq. (1.1) can be used to describe any planar Feynman integral

of this type. It is based on dual or region coordinates. When considering Feynman integrals

with less than 9 propagators, it typically happens that their graph can be represented as

a subdiagram of more than one of the families shown in figure 1. Different representations

can most easily seen to be equivalent by a permutation of the (dual) integration variables.

The integrals also have a flip symmetry, since the integrated result only depends on p1, p2
through q2. In this way, a given diagram can be represented in many equivalent ways. One

may also use computer programs such as [42] to find such equivalences.

The outline of the paper is as follows. In the next section, we explain how we evaluate

MI for integrals (1.1) at general q2 and, in section 3, we obtain analytical results for MI

for integrals (1.1) at q2 = 4m2 using these general results and matching at threshold. For

convenience, we provide the main results, as well as further key information, in terms of

ancillary files. Appendix A contains a pedagogical one-loop example of all steps of the

calculation that can be followed in detail.

2 Integrals at general q2: solving DE

To solve integration by parts (IBP) relations [38] using FIRE [39–41] combined with

LiteRed [42] we reveal 90 MI at general q2 while the family of threshold MI has 51 MI.

Suppose that we are evaluating MI for a given family of Feynman integrals. Let us

denote the kinematical variables by x = (x1, . . . , xn), the set of MI by f = (f1, . . . , fN ),
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and let us work in D = 4− 2ǫ dimensions. The general set of DE takes the form

∂if(x, ǫ) = Ai(x, ǫ)f(x, ǫ) , (2.1)

where ∂i =
∂
∂xi

, and each Ai is an N ×N matrix.

In [4], it was suggested to turn to a new basis of the master integrals having constant

leading singularities, for which the DE should take the following form

∂if(x, ǫ) = ǫAi(x)f(x, ǫ) . (2.2)

One essential difference with respect to (2.1) is that the matrix in this equation is just

proportional to ǫ.

In the differential form, we have

d f(x, ǫ) = ǫ (d Ã(x)) f(x, ǫ) . (2.3)

where

Ã =
∑

k

Ãαk
log(αk) . (2.4)

The matrices Ãαk
are constant matrices and the arguments of the logarithms αi (letters)

are functions of x.

Let us deal with the case of two scales, i.e. n = 1 so that x is just one variable. Then

the desirable form of the DE is

∂xf(x, ǫ) = ǫ
∑

k

ak
x− x(k)

f(x, ǫ) . (2.5)

where x(k) is a set of singular points of the DE, and the N×N matrices ak are independent

of x and ǫ.

For integrals (1.1) considered at general q2, let us introduce the variable

q2

m2
= −(1− x)2

x
(2.6)

Note the x ↔ 1/x symmetry of this definition. The values x = 0, x = −1 and x = 1

correspond to the high energy limit q2 = ∞ (or m2 = 0), the threshold limit q2 = 4m2,

and to the soft limit s = 0, respectively. Below, the latter limit is used as a boundary point

when solving differential equations.

To convert DE for this family of integrals into the form (2.3) we follow the strategy

of [4, 29]. The main point of the method is to choose integrals having constant leading

singularities. (Sometimes we also used small additional basis transformations to ‘integrate

out’ unwanted terms.)

In this way, we obtain

∂xf(x, ǫ) = ǫ ∂x
[

A1 log x+A2 log(1 + x) +A3 log(1− x) +A4 log(1− x+ x2)
]

f(x, ǫ) ,

(2.7)
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Figure 2. Feynman integral for f61. The dot on the left line means the second power of the

corresponding propagator.

where Ai, i = 1, 2, 3, 4 are constant (x- and ǫ-independent) matrices. Our basis choice f ,

as well as the corresponding differential equation matrix on the r.h.s. of eq. (2.7), is given

in an ancillary file, for convenience of the reader.

We see that eq. (2.7) takes the form of eq. (2.3), with the letters are x, 1+x, 1−x, 1−
x + x2. This is very interesting, since for analogous integrals up to two loops, only the

letters x, 1 + x, 1− x appeared [1, 27].

Those letters, and the corresponding singularities have a clear physical interpretation,

in terms of threshold, soft, and high-energy limits. The presence of the letter 1 − x + x2

is a new feature at three loops. In terms of the original variables, it corresponds to a

pseudo-threshold at q2 = m2. We stress that we did not have to guess the presence of this

letter, but rather found it systematically by setting up the differential equations. It would

be interesting to derive the presence of this (spurious) singularity from an analysis of the

Landau equations. See ref. [25] for recent work in this direction.

The differential equations are most straightforwardly solved directly from (2.7), in

terms of iterated integrals. This also gives the shortest and most flexible representation

of the answer. As an example, we present the first term in the ǫ expansion for one of the

basis integrals,

f61 = ǫ4(1− 2ǫ)
(1 + x)2

x
F0,2,0,1,0,1,0,1,1,1,0,0 . (2.8)

The graph is shown in figure 2. This is also one of the simplest examples where the new

letter 1− x+ x2 makes an appearance.

The most natural way of writing the answer is as Chen iterated integrals [24] with

boundary point x = 1. We use brackets to denote the latter, e.g.

[w1(x)] =

∫ x

1
d logw1(x1) (2.9)

[w1(x), . . . , wn(x)] =

∫

1≤x1≤...xn≤x
d logw1(x1)× . . .× d logwn(xn) . (2.10)

These integrals have many nice properties. See e.g. [26] for more examples and applications.

Using this notation, we have

f61/ǫ
4 = 8[x, x, x, x]−3[x, (1−x)2/x, x, (1−x+x2)/x]+[x, x, (1−x)2/x, (1−x+x2)/x]

− 6[x, (1 + x)2/x, x, (1− x+ x2)/x]− 2ζ(3)[(1− x+ x2)/x] +O(ǫ) . (2.11)

– 4 –
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To be more explicit, let us carry out the first three integrations. This gives

f61/ǫ
4 =

1

3
log4 x− 1

3

∫ x

1

[

−3 log(1− y) log2 y − 4 log3 y − 36 log yLi2(−y)

+24 log yLi2(y) + 72Li3(−y) + 42Li3(y)] d log

(

1− y + y2

y

)

+O(ǫ) . (2.12)

In order to make contact with more commonly used classed of functions, we also

give the solution in another form. In order to do this, we first rewrite the differential

equation (2.7) in the form (2.5), at the cost of introducing complex roots of the polynomial

1− x+ x2 = (x− r1)(x− r2), where r1,2 = 1/2(1±
√
3i). Interestingly, the latter are 6th

roots of unity.

In this form, the DE admits a natural solution in an ǫ expansion with coefficients

written in terms of Goncharov (multiple) polylogarithms (GPL) [37]. The latter are defined

recursively by

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) (2.13)

with ai, z ∈ C and G(z) = 1. In the special case where ai = 0 for all i one has by definition

G(0, . . . , 0;x) =
1

n!
lnn x . (2.14)

Given the alphabet, the ai can take the values 0,±1, r3,4.

We find

f61/ǫ
4 =

[

12G(0, 0,−1, 0;x) + 6G(0, 0, 1, 0;x)− 2G(0, 1, 0, 0;x)− 12G(r1, 0,−1, 0;x)

+ 8G(r1, 0, 0, 0;x)− 6G(r1, 0, 1, 0;x) + 2G(r1, 1, 0, 0;x)− 12G(r2, 0,−1, 0;x)

+ 8G(r2, 0, 0, 0;x)− 6G(r2, 0, 1, 0;x) + 2G(r2, 1, 0, 0;x)

+ 6ζ(3)(G(0;x)−G(r1;x)−G(r2;x))
]

+O(ǫ) , (2.15)

where

r1,2 =
1

2

(

1±
√
3 i
)

, r3,4 =
1

2

(

−1±
√
3 i
)

. (2.16)

The main differences to eq. (2.11) are the following: the letter 1 − x + x2 was factored

into linear pieces, the Goncharov polylogarithms have x = 0 as boundary point, and (by

convention), the indices are read in the opposite order, compared to the [. . .] notation.

We derived analytic results for all integrals up to transcendental weight six. This is

expected to be sufficient for three-loop computations. If needed, higher-order terms in the

ǫ expansion can be obtained by further expanding. Our analytical results are presented in

ancillary files.

3 Integrals at q
2 = 4m2: matching at threshold

In this section, we explain the results at general q2 can be used to extract the integrals

at threshold q2 = 4m2. A subtle point is that near threshold, different scaling regions

– 5 –
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contribute. Crucially, the exact knowledge of the differential equations near threshold

allows us to properly disentangle those contributions, as explained in this section.

Let us turn to the integrals considered at q2 = 4m2. We reveal a set of 51 master

integrals.

The idea is to obtain analytical results for the threshold MI using our results at general

q2, via the threshold expansion. For a given three-loop Feynman integral at general q2, the

latter has the form

F (a1, . . . , a12; q
2,m2) ∼

∞
∑

n=n0

3
∑

j=0

(4m2 − q2)n−jǫFn,j(a1, . . . , a12; q
2) , (3.1)

where the summation over n is over integer or half-integer numbers. According to the strat-

egy of expansion by regions [43, 44], the threshold expansion is given by a sum over so-called

regions where every loop momentum can be of the following four types: hard, potential,

soft and ultrasoft. At each loop, a potential and a soft loop momentum gives −ǫ to the

exponent of the expansion parameter in (3.1) and an ultrasoft loop momentum gives −2ǫ.

Our goal is to compute the MI of the family of the ‘naive’ (hard) values at threshold.

They correspond to the one-scale integrals F0,0(a1, . . . , a12; 4m
2) defined with q2 set to 4m2,

i.e. under integral sign, either in integrals over loop momenta or in Feynman parametric

integrals. Such integrals correspond to the contribution of the region where all the loop

momenta are hard.

Unfortunately, we cannot just set q2 = 4m2, i.e. x = −1 in our basis because some in-

tegrals enter with the coefficients 1/(x+1) and 1/(x+1)2. These are spurious singularities

which eventually cancel between different terms in the definition of the basis integrals. It

might be possible to solve this practical problem by choosing a basis without such spurious

singularities. Here, instead, we chose to ‘naively’ expand in x+1 some of the Feynman inte-

grals involved in the basis at least up to the second order. In order to do this, we have to deal

not only with threshold integrals but also with their (‘naive’) derivatives. We introduce one

more (13th) index for the order of this derivative in q2, i.e. we want to deal with the family

F ′(a1, . . . , a12, a13; q
2,m2) =

(

∂

∂q2

)−a13

F (a1, . . . , a12; q
2,m2)

∣

∣

∣

∣

∣

q2=4m2

(3.2)

where the derivative is understood in the naive sense.

Taking naive derivatives at threshold can be illustrated by the simple example of the

triangle diagram of figure 3, with p21 = p22 = m2 i.e. the one-loop prototype of our three-loop

diagrams. It is given by

∫

dDk

iπD/2

1

[−(k + p1)2 +m2][−(k + p2)2 +m2](−k2)
. (3.3)

The corresponding Feynman parametric integral is

Γ(1+ǫ)

∫ ∞

0

∫ ∞

0

∫ ∞

0
δ
(

∑

xi − 1
)

(x1+x2+x3)
2ǫ−1

[

(x1 + x2)
2m2 − x1x2q

2
]−1−ǫ

. (3.4)
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Figure 3. A triangle diagram.

Its naive derivative is obtained by differentiating in q2 and setting q2 = 4m2 under integral

sign. In this simple case, the general term of the corresponding naive series in q2 − 4m2

can be evaluated in terms of gamma functions at general ǫ, with the result

(

4

q2

)1+ǫ Γ(ǫ)

2(1 + 2ǫ)

∞
∑

n=0

Γ(1 + ǫ+ n)

Γ(1 + ǫ)

1 + 2ǫ

(1 + 2ǫ+ 2n)n!

(

q2 − 4m2

q2

)n

. (3.5)

Of course, the values of naive derivatives at threshold are not derivatives of the full integral.

In particular, the latter would include also the singularity (4m2 − q2)−1/2−ǫ corresponding

to the potential region.

Writing down IBP relations for integrals at general q and expanding all the terms

naively in q2 at q2 = 4m2 gives fifteen IBP relations for integrals (3.2) with thirteen

indices. Following [50] we introduce one more relation which is obtained from (3.1) by a

naive differentiation in s. As a result we obtain the possibility to express, by solving these

IBP relations, any F ′(a1, . . . , a12, a13) in terms of master integrals. To do this, we use FIRE

and observe that the corresponding master integrals are all with a13 = 0, i.e they directly

correspond to the 51 MI of the family of the threshold integrals which are the goal of our

calculation in this section.

To match our analytic results for the 90 MI at general q2 and arrive at analytic results

for the 51 threshold MI, we analyze our DE (2.5) at the singular point x = −1. Let us

change the variable x = y− 1 so that now we are interested in the behaviour of our DE at

y = 0. Near this point the DE (2.5) has the form

f ′(ǫ, y) = ǫ
Ã′(y)

y
f(ǫ, y) , (3.6)

where Ã′(y) = A0 + yA1 + y2A2 + . . .. It turns out that the language of DE provides

an alternative description of the threshold expansion (3.1): the eigenvalues of the matrix

A0 correspond to contributions of various regions within expansion by regions [43]. In

the language of DE, the naive part of the expansion near y = 0 corresponds to the zero

eigenvalues of the matrix A0, while eigenvalues of the form −kǫ with positive integer k

correspond to the other contributions.

Sometimes, we also need power suppressed terms in this expansion. For this, we use

a trick from the theory of DE (see, e.g., [36]). One is looking for a polynomial P =

1 +
∑

r=1 Pry
r such that the DE for the function g defined by f = Pg takes the form

– 7 –
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yg′(y) = ǫA0g(y) where A0 is independent of y. Then the solution of this equation is just

g = yǫA0g0 with a boundary value g0. The full solution is then given by

f(ǫ, y) =

(

1 +
∑

r=1

Pry
r

)

yǫA0g0 . (3.7)

We implemented the algorithm presented in [36] and easily obtained polynomials Pr at

least up to r = 10.

We perform matching at threshold in the following way: having determined both (3.7),

and the full solution f(ǫ, y), we compared the ǫ → 0 expansion of the former to the threshold

expansion of the latter. In this way, we identified g0. The knowledge of y
ǫA0g0 then allowed

us to match with F0,0(a1, . . . , a12;m
2) in eq. (3.1).

Solving these equations we obtain coefficients of the ǫ expansion of the MI up to some

order written in terms of GPL G(a1, . . . , an; 1) with a1 6= 1 and ai taken from the seven-

letters alphabet {0, r1, r3,−1, r4, r2, 1}.
The numbers G(a1, . . . , an; 1) form an important set of constants which appear in

many calculations. They were discussed, in particular, in [45], where a linear basis in this

set of constants up to weight 3 was explicitly described in terms of known transcendental

numbers. Constants present in results for Feynman integrals up to weight 5 were also

discussed in [46–48]. For example, one has

GI(r2) = −π

3
, GR(−1) = log(2) , GR(0, 0, 1) = −ζ(3) ,

GR(0, 0, 0, 1) = −π4

90
, GR(0, 0, 0, 0, 1) = −ζ(5) ,

GR(0, 0, 1, 1,−1) = −2Li5

(

1

2

)

− 2Li4

(

1

2

)

log(2)− π2ζ(3)

96
+

151ζ(5)

64

− log5(2)

15
+

1

18
π2 log3(2)− 1

96
π4 log(2) .

where

GR(a1, . . . , an) = ReG(a1, . . . , an; 1) ,

GI(a1, . . . , an) = ImG(a1, . . . , an; 1) , (3.8)

refer to real and imaginary parts of the Goncharov polylogarithms. These constants satisfy

various relations — see, e.g. [49]. We solved them in [51] up to weight six and presented

a table of results for all these constants in terms of elements of some bases. Using these

tables we obtained analytical results for the 51 MI presented in an ancillary file.

Let us give two examples of these results. For the leading order term of the naive

expansion at threshold of (2.8), we have

f th
61 = ǫ4(2ǫ− 1)(1 + x)2

[

4π4

45
+

1

2
π2GR(r2,−1)− 27

4
GR(0, 0, r4, 1)

+ǫ

(

8π4

45
+

371

648
π3GI(0, r2) +

117

4
GI(0, r2)GI(0, 1, r4) + 27GI(0, r2)GI(0, r2,−1)

– 8 –
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+
419

24
πGI(0, 0, 0, r2)−

751

320
π4GR(r4) +

81

4
GI(0, r2)

2GR(r4) + π2GR(r2,−1)

+π2GR(r4)GR(r2,−1)− 3

2
π2GR(r2, 1,−1) + π2GR(r2, 1, r3)

−81

2
GR(r4)GR(0, 0, r2,−1)− 27

2
GR(0, 0, r4, 1)−

459

8
GR(r4)GR(0, 0, r4, 1)

+27GR(0, 0, 1, 1, r4) +
135

2
GR(0, 0, 1, r2,−1) +

81

2
GR(0, 0, 1, r2, r3) +

39

2
GR(0, 0, 1, r2, r4)

+
99

2
GR(0, 0, r2, 1,−1) +

311

960
π4 log(2) +

45

4
GI(0, r2)

2 log(2)− 1

2
π2GR(r2,−1) log(2)

+
99

2
GR(0, 0, r2,−1) log(2)− 27

2
GR(0, 0, r4, 1) log(2)−

22

9
π2 log3(2) +

44

15
log5(2)

+88 log(2)Li4

(

1

2

)

+ 88Li5

(

1

2

)

+
28889

1728
π2ζ(3) + 18GR(r2,−1)ζ(3)

−117

2
GR(r4) log(2)ζ(3) +

77

2
log2(2)ζ(3)− 108727

3456
ζ(5)

)]

+O(ǫ6) +O((x+ 1)3) . (3.9)

The second example is the leading order term of the naive expansion at threshold of the

element f76,

f76 = ǫ6
1− x2

x
F0,1,1,1,0,1,1,1,1,0,0,0 , (3.10)

shown in figure 4. It is given by

f th
76 = −2ǫ6(1 + x)

(

40

27
π3GI(0, r2)− 2π2GR(r2, 1,−1)− 36GR(0, 0, r2, 1,−1)

+
45229ζ(5)

576
− 91

4
log2(2)ζ(3) +

923π2ζ(3)

288
− 58Li5

(

1

2

)

− 58 log(2)Li4

(

1

2

)

−29 log5(2)

15
+

61

36
π2 log3(2)− 117

4
GR(0, 0, r2,−1) log(2)

−351

16
GR(0, 0, r4, 1) log(2) +

961π4 log(2)

5760

)

+O(ǫ7) +O((x+ 1)2) , (3.11)

The results at threshold typically do not have uniform weight. This is related to the

fact that sometimes, we need to include power suppressed terms in order to identify the

information about master integrals at threshold. In principle, one could search for a new

integrals basis at threshold that has uniform weight.
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The results we provide for the threshold integrals are up to certain orders in the ǫ

expansion. Given that they originated from the information about integrals up to weight

six away from threshold, one would expect these expansions to be sufficient for three-loop

computations. At least, this was indeed the case in ref. [52]. In case further terms in the

expansions are required, they can be obtained with the methods of this paper.

4 Conclusion

We have presented two more applications of the strategy to solve DE for Feynman integrals

initiated in [4]. Historically, this project started from the evaluation of the threshold

integrals which are single scale integrals and for which one cannot immediately apply the

method of DE. However, as we explained in [16], one can introduce an extra scale, solve

DE for the corresponding integrals and them then to turn back to the single-scale integrals.

Of course, the integrals at general q2 are also interesting in themselves. An application of

them is described in the accompanying paper [52].

For convenience, our main results are available in terms of ancillary files.
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A Pedagogical example: one-loop case

Here we give a pedagogical example of all steps of the method, at one loop. This has the

advantage that all steps can be followed in detail.

We consider the family of one-loop integrals of the type shown in figure 3, namely

Fa1,a2,a3 =

∫

dDk

iπD/2

1

[−(k + p1)2 +m2]a1 [−(k + p2)2 +m2]a2(−k2)a3
. (A.1)

We recall that p2i = m2 and q2 = (p1 − p2)
2.

Integral reduction shows that there are two master integrals. We choose them to be

uniform weight integrals, following the procedure described in [4, 29]. Our choice of basis is

f1 = c 2m2 F3,0,0 , (A.2)

f2 = c ǫ
√

(−q2)(−q2 + 4m2)F2,1,0 . (A.3)

with c = (m2)ǫ/Γ(1 + ǫ). Of course, the tadpole integral can be trivially computed. With

our choice of normalization, it is given by f1 = 1. For future reference, we note that the

scalar triangle integral is related to the chosen basis via F2,1,0 = −ǫ F1,1,1.
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The next step is to derive differential equations for the master integrals in the kinematic

invariants m2 and q2. This is done via the chain rule. E.g., we can write

∂q2 = (αpµ1 + βpµ2 )∂p1µ , (A.4)

with α = (q2 − 2m2)/q2/(q2 − 4m2) and β = 2m2/q2/(q2 − 4m2).

We can write the differential equations in a compact way

d f = ǫ d





0 0

log

√
4m2/(−q2)+1+1√
4m2/(−q2)+1−1

log m2

4m2−q2



 f . (A.5)

Changing variables according to −q2/m2 = (1− x)2/x, this can be written more simply as

d f(x, ǫ) = ǫ d

(

0 0

− log x log x
(1+x)2

)

f(x, ǫ) , (A.6)

or, equivalently,

∂xf(x, ǫ) = ǫ

[(

0 0

−1 1

)

1

x
+

(

0 0

0 −2

)

1

1 + x

]

f(x, ǫ) , (A.7)

The differential equation has singularities at x = 0,−1,∞. (The latter singularity can

be seen by changing variables according to x → 1/x.) More generally, one finds that all

integrals of this type, up to two loops, have singularities only at x = 0, 1,−1,∞, see e.g. [27].

We can use the soft limit q2 = 0, i.e. x = 1, to obtain a simple boundary condition,

namely

f(1, ǫ) = {1, 0} . (A.8)

Equations like eq. (A.7) are easily solved in a series expansion in ǫ. The class of

functions required are iterated integrals, with certain integration kernels d logα. One calls

the set of allowed α letters (forming an alphabet specifying the class of functions). This

above singularities correspond to the letters {x, 1 + x, 1 − x} (with only x, 1 + x required

at one loop).

Solving eq. (A.7) with the boundary condition (A.8), we have, up to ǫ3,

f2 = −ǫH0(x)

+ ǫ2
[

1

6
π2 + 2H−1,0(x)−H0,0(x)

]

+ ǫ3
[

−1

3
π2H−1(x) +

1

6
π2H0(x)− 4H−1,−1,0(x)

+2H−1,0,0(x) + 2H0,−1,0(x)−H0,0,0(x) + 2ζ3]

+O(ǫ4) . (A.9)

where H refer to harmonic polylogarithms [28]. Note that, by construction, all terms in

the ǫ expansion have uniform weight.

– 11 –



J
H
E
P
1
2
(
2
0
1
6
)
1
4
4

The three-loop calculation is very similar, except that we find that for some integrals, a

new letter 1−x+x2 is required, corresponding to a term d log(1−x+x2) = dx (−1+2x)/(1−
x + x2) in the differential equations. As discussed above, this is related to sixth roots of

unity. While the other singularities have a clear physical interpretation, the appearance of

this new letter is somewhat surprising.

Since we chose x = 1 as boundary point, the above formula is valid near that point

and can be analytically continued to other regions. We can consider e.g. the non-physical

region for real x. There are several physical regions. Below threshold, x is complex and

lies on the unit circle. The threshold is at x = −1. Above threshold, x is real and negative,

and has a small positive imaginary part (originating from the Feynman i0 prescription).

Next, we consider the threshold limit. We parametrize x = ei(π−z). In this way, we can

analytically continue from our boundary point to the threshold. Taking the limit z → 0 of

eq. (A.9), we find

lim
z→0

lim
ǫ→0

f2 = −iǫ(π − z)− 1

36
iǫ2

(

72z + 3πz2 − 2z3 − 72π log z
)

+O(ǫ3, z4) . (A.10)

We now want to use this information to identify contributions from different scaling

regions to this limit. In order to do this, we analyze the z → 0 limit of the differential

equation (for fixed ǫ).

The equation takes the form

∂zf(z, ǫ) =
1

z
A(z, ǫ)f(z, ǫ) , (A.11)

with A(z) = A0 + zA1 + . . .. The solution near z = 0 can be represented as

f(z, ǫ) = (1 +
∑

k≥1

Pk(ǫ)z
k)zA0(ǫ)h(ǫ) , (A.12)

where h is the boundary information at threshold (to be determined). Here

zA0 =

(

1 0

0 z−2ǫ

)

(A.13)

and the matrices Pk are determined iteratively from the following equations [36]

(A0 − r)Pr − PrA0 = −
r−1
∑

s=0

Ar−sPs . (A.14)

For example, we have

1 + P1z + P2z
2 =

(

1 0
iǫz
1+2ǫ 1 + ǫz2

12

)

(A.15)

We can see that the only terms in eq. (A.12) for which the ǫ → 0 and the z → 0 limit

do not commute are contained in the matrix exponential zA0 . The z−2ǫ terms correspond

to a potential region. We are interested in the hard region, i.e. the limit without the z−2ǫ

terms. So, we only missing piece of information is the boundary vector h(ǫ). We determine
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the latter, perturbatively in ǫ, by matching the small ǫ expansion of eq. (A.12) to eq. (A.9).

In this way, we obtain, for the first few orders in ǫ,

h1 = 1 +O(ǫ4) , h2 = −iπǫ− iπ3

6
+O(ǫ4) . (A.16)

This information allows us to compute the threshold integral. Throwing away all

terms zjǫ with j 6= 0, and taking into account the factor relating f2 and F1,1,1, we readily

reproduce eq. (3.5), expanded in ǫ.

Open Access. This article is distributed under the terms of the Creative Commons
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