

1

Abstract— Automated production systems (aPS) are complex

systems with high reliability standards which can – besides

through traditional testing – be ensured by verification using

formal methods. In this paper we present a development

process for aPS software supported by efficient formal

techniques with easy-to-use specification formalisms to increase

applicability in the aPS engineering domain. Our approach is

tailored to the development of evolving aPS as existing behavior

of earlier revisions is reused as specification for the verification.

The approach covers three verification phases: regression

verification, verification of critical interlock invariants and

delta specification and verification. The approach is designed to

be comprehensible by aPS software engineers: Two practically

applicable specification means are presented.

Formal methods have not yet been widely adapted in

industrial aPS development since they lack (a) scalability, and

(b) concise and comprehensible specification means. This paper

shows concepts how to tackle both issues by referring to

existing behavior during evolution verification to advance

towards the goal of applicability in the aPS engineering

domain.

A laboratory case study demonstrates the feasibility and

performance of the approach and shows promising results.

I. INTRODUCTION

Automated production systems (aPS) [1], such as
industrial manufacturing plants, are commonly automated
with Programmable Logic Controllers (PLCs), which are
computing devices specially tailored to control automated
production systems in dependable or safety-critical real time
environments. As malfunctions may cause severe damage to
the system itself, the processed payload and interacting
persons, high quality requirements are imposed on an aPS
and on its software in particular. These requirements are
commonly ensured by software testing. While testing is a
common fault detection method, it often fails to detect rare
problematic events. A single test case describes only one
specific behavioral pattern, therefore testing can usually not
cover the complete system behavior and cannot prove
correctness. Complementary to testing, formal methods can
be used to mathematically and exhaustively prove the
compliance of a system to a specification, including all
possible corner cases and rare events.

*Research supported by the DFG (German Research Foundation) in

Priority Programme SPP1593: Design for Future – Managed Software

Evolution (VO 937/28-2, BE 2334/7-2 and UL 433/1-2).
S. Ulewicz, F. Wiebe and B. Vogel-Heuser are with the Technical

University of Munich, Institute of Automation and Information Systems,

85748 Garching near Munich, Germany (phone: +49-89-289-16400; e-mail:
{sebastian.ulewicz; franziska.wiebe; vogel-heuser}@tum.de).

M. Ulbrich, A. Weigl, M. Kirsten and B. Beckert are with the Karlsruhe

Institute of Technology, Institute of Theoretical Informatics (e-mail:
{ulbrich; weigl; kirsten; beckert}@kit.edu).

In factory automation engineering, quality assurance by
formal methods is not common yet. There are two main
reasons for that: (a) today’s formal verification tools fail at
verifying industrial sized problems (state space explosion)
and (b) the specifications required for formal verification are
extensive and not intuitive for the engineer. Applying a
formal method and interpreting its results require a deep
understanding of the underlying concepts and are unduly
labor-intensive.

Evolution verification addresses both issues by reusing
old software revisions as specification for the desired
behavior of the new revision. In its purest form, evolution
verification would require the new system to behave
identically to an old revision. Evidently, this requirement is
too strict for most use cases. We therefore enrich this form of
verification (called regression verification [2]) by means to
formulate which parts of the behavior remain the same,
which parts have changed and how they have changed. Thus,
evolution verification aims at formally proving that software
remains correct throughout its evolution, changes have the
desired effect, and no new bugs are introduced. The benefit is
twofold: It avoids the need to write full functional
specifications for the system, which is the main bottleneck
for routine practical use of formal verification. It is plausible
to assume that the specification of the change in behavior is
far more feasible than the full specification – both regarding
complexity and size. Moreover, the subsequent verification
effort mainly depends on the difference between the
programs and not on their overall size and complexity.

The main contribution of this paper is an approach for a
verification-supported development process for the evolution
of aPS software, integrating three different verification
phases that address different aspects of software correctness
in the face of evolution. The goal is to enhance formal
verification towards industrial applicability by reducing the
overall verification complexity, minimizing required
specification effort and supporting the application engineer in
their task: Regression verification for supposedly unchanged
behavior is complemented with verification of critical
invariants (rules never to be broken) and delta verification of
specific changed parts of the behavior. Furthermore, two
appropriate notations are presented which allow an intuitive
specification of intended new behavior. Formal verification
techniques are outlined which allow to verify the arising
verification obligations efficiently. In a case study, the
approach is evaluated for feasibility and performance using a
laboratory aPS example.

The paper is structured as follows: An overview over
related work in the adjacent fields to the developed approach
is given in Section II. The concept of our approach is

A Verification-Supported Evolution Approach to Assist Software

Application Engineers in Industrial Factory Automation*

Sebastian Ulewicz, Mattias Ulbrich, Alexander Weigl, Michael Kirsten, Franziska Wiebe,

Bernhard Beckert, and Birgit Vogel-Heuser, Senior Member, IEEE

presented in Section III, which is applied and discussed in a
case study in Section IV. In the last section, a conclusion and
an outlook are given.

II. RELATED WORK IN (MODEL-BASED) TESTING, VIRTUAL

COMMISSIONING AND FORMAL VERIFICATION

The aim of software quality assurance methods is to
support the developer in identifying software faults and to fix
them efficiently. (Model-based) Testing, virtual
commissioning, and formal verification are the prevalent
research directions in the field of factory automation.

Many advances are made in the area of model-based
testing [3]. Here, tests can be generated from formal models
based on UML specifications [4]–[6], which can be extended
by using virtual commissioning techniques [7], [8] to include
behavior regarding the controlled hardware and technical
process in the factory automation system. Recent approaches
based on regression testing [9] aim at increasing the
efficiency of these approaches during evolution by
supporting the selection of appropriate test cases. Testing
allows to validate the system behavior in a restricted time
frame, but possesses weaknesses regarding the detection of
rare events, as test cases relate to very specific scenarios of a
specification rather than proving correct behavior. However,
these rare events are potentially very critical. To counter this,
some approaches generate input sequences for test cases
directly from the code [10], [11] relying on coverage criteria.
Yet, these approaches lack conformance criteria (the test
oracle) and are constrained to simple programs, such as
single program organization units (POUs).

Complementary to testing and virtual commissioning
approaches, formal verification techniques can be applied to
close this gap. Instead of analyzing a specific application
scenario, formal techniques aim at analyzing state space
models exhaustively, i.e., covering all reachable states [12],
[13]. Automatic verification can also be beneficial compared
to simulation and testing, because it can – besides exploring
all reachable states – be applied earlier in the design phase
[14]. Several works focus on verifying PLC code using
model checkers [15]–[18]. Efficient translation methods from
Sequential Function Charts (or similar) to precisely
formalized (timed) automata are given by [16], [19], [20].
Yet, the state explosion problem is a struggle or even a
reason to fail for these approaches when applied to industrial
PLC software due to its complexity. In addition, most
approaches rely on precise functional specifications or
environment models, which oftentimes do not exist in the
domain of automation engineering.

Regression verification focuses on analyzing whether
regressions, e.g., software bugs or undesired behavior, are
introduced by changes to a system. It was first introduced by
[21], where the equivalence of C programs using a software
model checker is proved. Many approaches have been
developed for the verification of program equivalence in the
area of computer science since. In [22], automatic inference
of coupling predicates is used to prove the equivalence of C
programs. In recent work, these ideas are extended for use in
PLC software [23]. In many cases, the sole relation between
old and new behavior is not easily described to cover
evolution steps sufficiently, as verification of changed

behavior and its influence is not regarded. Extending prior
work, we widen our scope and embed regression verification
into a holistic approach, covering the full evolution process.

Formal specifications defining supposedly correct
behavior can also contain faults, just as the corresponding
software. Thus, a finding by [24] is of high importance. Here,
an experimental study of PLC programming analyzed
different kinds of faults when writing code using different
types of UML/SysML languages or IEC 61131-3 Function
Block Diagrams (FBD). In a lab-based study with students,
technicians and trainees, a detailed observation of error
causes was conducted. Results indicate that an insufficient
understanding of the notation’s syntax was the cause for most
of the faults in the code. Therefore, using unfamiliar and
complex notations within the industry does not seem
advisable, neither for specifying behavior nor for
programming. However, most related verification approaches
rely on manually formalized mathematical artefacts or
unfamiliar notations, e.g., petri nets [25]. For generating test
cases, notations such as timing diagrams [26] were
successfully used and evaluated in industrial scenarios with
experts in this domain. In [27], control code for avoiding
critical conditions (interlock code) is generated from CAEX
documents. In addition, a cause & effect matrix is generated
for documentation and further analyses of criticality. To gain
acceptance in industry, notations must be easily learnable and
close to notations already in use.

III. CONCEPT – THREE-PHASE FORMAL VERIFICATION OF

SOFTWARE EVOLUTION

As an aPS evolves, its software must often be adapted to
changed requirements or processes [28]. It is not unlikely that
software modifications and extensions have an unintended
impact on the system behavior, i.e., they deviate from the
given requirements specification. A modification may break
existing good behavior or introduce undesired new behavior
into the system. Figure 1 outlines the verification concept
schematically. The original behavior of the initial software
revision is denoted “old”. The software modification induces
a change in behavior (marked Δ) which overlays the original
behavior, modifying parts of it and leaving other parts
uninfluenced.

Figure 1. The three verification phases of our approach: (1) Verify old

behavior using regression verification, (2) verify critical invariants by
reusing existing specifications and (3) verify new behavior (delta).

Our approach proposes three analysis phases building on
top of each other to verify different aspects of the correctness
of aPS software evolution: First regression verification is
employed to show that defined parts of the old behavior are
inherited by the new software. Then, general critical interlock
invariants are checked for the newly introduced behavior.

Finally, the new behavior is verified against a formal delta
specification.

The three phases target at different aspects of the
observable software behavior, evoked by a sequence of
sensor values and characterized by a sequence of actuator
readings as output by the software over time (i.e., PLC scan
cycles). First, regression verification [2] is performed, which
analyses whether the new revision behaves equivalently to
the old version for all cases where no change in behavior is
intended. Secondly, the cases in which the behavior is
supposed to change are checked against existing critical
interlocking properties (avoiding situations possibly leading
to collisions or damages). Thirdly, the behavior which has
not been present in the old revision – the same that is checked
for critical properties in the second phase – is verified against
lightweight delta specifications (written for that occasion),
which outline the behavior of the newly introduced code.

The regression verification in the first step covers
unchanged behavior, which in this case is regarded as
intended behavior; interlock and approved behavior
guarantees are thus directly inherited from the old revision.
Formal verification in the latter two phases can thus be
limited to the new behavior not covered by regression
verification, i.e., those parts of the software which are
influenced by the change. This reduces the verification
complexity drastically and allows efficient verification.

In all three verification phases violations of the
implementation against the desired behavior are presented to
the user by counter examples in the form of input traces in
textual form.

A. Phase 1: Detecting Undesired Regression in Previously

Existing Intended Behavior using Regression Verification

Regression verification in its purest form verifies perfect
behavioral equivalence between two PLC software revisions.
That means, for all sequences of sensor readings the
produced sequence of actuator outputs is identical. Yet, in
practice, regression verification rarely means asserting
perfect equivalence between software revisions. Usually, the
intention is that specific parts of the behavior are related in
some way, e.g., behave identically. For formal verification,
the cases in which equivalence is expected need to be
described precisely. This description only specifies the input
sequences to be considered, while the intended behavior is
defined by the old revision, resulting in a very low
specification effort. For that reason, it seems reasonable to
conduct regression verification for a part of the behavior (the
old behavior) as the first step in the verification of an
evolution event to ensure that the newly introduced behavior
does not affect this intended behavior.

The only specification that is required for so called
conditional regression verification is a characterization of
considered behavior as a condition on the sequence of sensor
values. One possibility for such specification is structured
natural text constraining the possible input sequences. Simple
phrases like “Sensor 1 is always true”, “Sensor 2 is true while
Sensor 3 is false” or more complex descriptions like
“Whenever Sensor 4 is true, Sensor 4 remains true until
Sensor 5 is true” can be interpreted formally. The meaning of
such phrases is a formula in linear temporal logic (LTL). For

instance, “Sensor1 is always true” becomes G Sensor1 when
interpreted as temporal logic formula.

The verification is conducted using a symbolic model
checker which is fed with translations of the two software
revisions. The proof obligation to check is that the condition
on the input values implies equivalence on the actuator
output values in each PLC scan cycle. Both software
revisions are modelled as parallel input for the model
checker. To cover all possible behavior, every input signal is
modelled as a non-deterministic choice.

B. Phase 2: Ensuring Global Interlock Invariants

Most aPSs possess fundamental interlock rules which
must be maintained at all costs during evolution. Examples
for such properties are critical sensor / actuator combinations
that must not emerge since they may cause damage to the
hardware, e.g., a crane carrying a part must not be lowered
during horizontal movement to avoid collisions. These
conditions need to hold for all cases of the behavior of a
system, whether it is inherited from the old revision or newly
introduced. For the parts of the aPS behavior covered by
regression verification, the interlock conditions need not be
re-verified – based on the assumption that they have been
ensured at an earlier evolution stage. Thus, regression
verification and invariant verification complement each other
when performed in this sequence, which is why this order
was chosen. In addition, the interlock conditions considered
in this step are to be obeyed at all points in time and for any
software revision, and can therefore be specified as global
invariants that are not bound to a specific revision and can be
reused. As these global invariant conditions are readily
available after changing a system (from the last evolution
step), this verification step requires low to no effort regarding
the creation of a specification.

Even though the interlock conditions themselves can be
quite simple, the amount of cross connections between them
can become confusing over time for the involved user(s).
From our experience, many companies use simple tables to
specify interlock conditions, as they give a clearly arranged
overview and are easily comprehensible. As similar
specifications are already commonly used in industry, we
propose using a table to specify interlock invariants for this
verification phase.

Figure 2. The invariant table can be used to specify invariant rules relating

to actuator values

As shown in Figure 2, an invariant table defines
invariants for actuator values, e.g., “Actuator 1 may only be
true if Sensor 1 is false or if Sensor 1 is true and Actuator 3 is
false at the same time”. For this, an actuator variable is

monitored

actuators

Actuator

Sensor 1 Actuator 3

Actuator 1 True only if False o

True or True False

Actuator 2 True only if True False

True or False o

specified

value

sensors and

actuators
configuration

s

brought into relation with necessary conditions. The invariant
table can be extended and adapted in every evolution step.

For verification, invariant tables are interpreted as the
conjunction of the global invariants described by the entries
in the table. The first two lines in the table in Figure 2, e.g.,
are translated into the LTL property

G (Actuator1 → ¬Sensor1 ∨ (Sensor1 ∧ ¬Actuator3)) .

During model checking, the translation of the new version

of the PLC software is checked against these properties. To
reduce the search space, the negation of the condition may be
used in regression verification as additional premise since
those cases have already been considered. Therefore, we
employ the IC3 approach [29], which computes an over-
approximation of the set of reachable states. It iteratively
adds formulas supporting the interlock invariant. This
computation is repeated as an iterative refinement of the
approximation until there is no violation of the invariant.

C. Phase 3: Delta Verification Targeted at Changed

Behavior

In the third and final verification phase – after verifying
unchanged behavior (Section A) and global invariants
(Section B) –, the newly introduced behavior itself is
specified and verified. Here, the changed behavior (the delta)
is analyzed in detail. Hence, a general critical interlock
specification as in the last section is not sufficient to describe
the newly introduced behavior; the specification is likely to
become more complex than in Section B. However, formal
delta specification and verification can be restricted to the
parts of the behavior which are new.

For the visualization and specification of complex signal
sequences, timing diagrams have been established in factory
automation industry [26]. Existing know-how in industry can
be leveraged by using this specification method in this phase.
The structure of a Boolean timing diagram consists of the
considered actuators on the left side, and their correlated
signal sequences on the right side, which are both embedded
in a coordinate system with a timing axis and a Boolean
value axis (see Figure 3). For verification, the timing
sequence is interpreted as the sequence progression of
changing Boolean values (i.e., the sequence of falling and
rising edges). Using a model checker, the sequence of the
actuator values is verified for following the diagram pattern:
Edges which are vertically aligned in the diagram (connected
by a dashed line) are to happen synchronously. Whether the
duration of the signals in the diagram and the actual duration
in the behavior are the same, is not checked in our approach.
Only the chronological order of the signal values at the end
of scan cycles is compared.

Actuator 2
False

True

Actuator 1 False

True

sequence progression

sequence progression

Figure 3. Schematic of a Timing Diagram which is used as a specification
for signal sequences in the presented approach

Usually, behavioral changes affect only specific segments
and specific variables of the input/output traces, e.g., steps in
a process, which have been newly introduced or optimized.
Outside the scope of this specification, the behavior is
intended to be the same as in the previous revision – and thus
its correctness is covered by regression verification.

The two trigger points at which the specified behavior
starts and ends respectively need to be specified in order to
define the limits of the segments. Therefore, delta verification
goes hand in glove with the regression verification phase.
Together, the verification covers all complete input/output
traces and the two synchronization points (start and end of
the delta behavior) define which of the two verification
techniques covers the part of the behavior.

Ultimately, regression and delta verification can be
combined into one model checking task which requires no
more specification than the trigger points and the timing
diagram. Hereby, the old revision is wrapped into a new
reactive system: This system uses output values from the old
revision during regression verification. Within the segments
defined by the trigger points, values are defined by the
specification of new behavior, e.g., as a timing diagram.

D. Environment Models

Formal verification considers all possible sequences of
input signals (traces), and thus never misses observable
machine behavior. Yet, it may also look at traces that cannot
possibly occur in reality, which may cause false alarms. In
order to reduce the number of such alarms and to make the
verification more precise, models of the environment of the
software (i.e., the physics of the plant, the sensors, interaction
with work pieces, etc.) can be added to the verification
conditions. Environment models are temporal specifications
constraining the observable signal values, generally assumed
to be non-deterministic. An engineer can use, for instance,
schematic timing diagrams (such as in Section C), invariant
tables (e.g., the actuator specifications in Section B), or more
general mechanisms to define finite automata that describe
the possible input signals.

E. Feedback to the application engineer

Whenever the verification process succeeds, the
application engineer gets a confirmation that the system
under investigation is correct with respect to the specified
property (there are no false negatives). The verification may
fail either due to a wrong or insufficient specification or
because of an actual mistake in the implementation. In either
case, the model checker yields a counterexample trace
contradicting the specification.

Currently, this counterexample is presented to the
engineer in its raw textual form. In future research, more
descriptive notations, e.g., time sequence diagrams [26], will
be investigated to further enhance the applicability of this
approach in industry. Through displaying traces directly in
the specification instead of a textual form, the application
engineer is expected to gain a better understanding of the
reason why the model checking process failed and will be
provided a starting point for further investigation of the
cause, e.g. a fault in the software or a specification which is
too strict. Subsequently, the engineer can adjust either the

specification or the software, and reiterate the verification
process until a satisfactory outcome is reached.

IV. CASE STUDY – PICK AND PLACE UNIT

To demonstrate the feasibility and assess the performance
properties of the presented approach, the approach has been
applied to an evolution step of a laboratory plant. The plant,
its software implementation and the examined evolution
scenario are adapted from [30]. Additional software bugs
were introduced a posteriori into the scenario to demonstrate
the bug-finding capacities of the approach. The scenarios,
specifications and verification conditions are described and
discussed in the following.

A. Base Scenario

The laboratory sized automated production system “PPU”
(Pick and Place Unit) consists of four components (cf. Figure
4): A stack for storing work pieces (WP), a stamp for labeling
white WPs, a conveyor for sorting WPs and a crane for pick
and place operations between the modules. The function of
the PPU in the base scenario is to pick and place black and
white cylindrical WPs from a stack to a conveyor for further
processing. All white WPs are labeled by a stamp unit before
being placed on the conveyor; all black WPs are to be
directly placed on the conveyor. The WPs placed on the
conveyor are sorted onto different slides using pneumatic
pushers. Using an optical sensor, the color of the WPs pushed
out by the stack is determined (white or black). The crane can
move up and down to pick and place WPs by means of a
pneumatic suction unit and turn clockwise and
counterclockwise to move between the modules. Two binary
sensors detect the vertical position, one binary sensor detects
a suctioned WP and three binary sensor detect whether the
crane is at the respective station (stamp, stack and conveyor).
The conveyor module in the software detects a placed WP
using one binary sensor and signals the conveyor belt to
move.

Crane
StampStack

Sorting

Conveyor

Figure 4. Laboratory aPS “PPU” used in the Case Study (see [30])

In the original revision of the plant, only one WP is
processed at a time. To increase the throughput of the plant,
the plant is subjected to an evolution step in which the PLC
software is optimized while leaving the hardware unchanged.
The new, optimized revision changed its behavior at one
point: As soon as the crane places a white WP into the stamp
module, the crane is to transport black WPs (if available)

from the stack to the conveyor instead of waiting for the
stamping process to finish. After placing the black WP on the
conveyor, the stamped white WP is transported to the
conveyor. This new feature only directly affects the software
of the crane. A verification of the crane module alone is not
possible because of dependencies between modules [30]. The
new revision consists of four POUs, containing 117 Boolean
and 11 integer variables, resulting in a state space of
approximately 300 bits in the model checker.

To verify that the new feature is implemented correctly
while leaving the previously working behavior unaffected,
the three-phase approach presented in Section III is used. To
demonstrate the possibilities of the three verification steps,
we have implanted exemplary errors into the code which
were uncovered in the respective phase. Additional material
for the case study is assembled on a companion website [31].

B. Phase 1: Verifying supposedly unchanged behavior

Conditional regression verification is used in this first
phase to prove that specified parts of the behavior are
preserved despite the optimization of the software. The
specification of the condition under which equivalence is
expected, is provided in structured natural language. In this
case, if a sequence of exclusively white WPs or exclusively
black WPs is placed into the machine, the newly introduced
feature is not used and the behavior should therefore be
unaffected. Changes to this behavior are not intended and are
to be uncovered. In structured language, the specification
confining the regression verification to this behavior reads as
follows:

“If OpticalSensor is always true or OpticalSensor is always
false, then both revisions behave identically.”

The sensor “OpticalSensor” detects the brightness of the
WPs at the stack position. If it is true, the WP is white,
otherwise it is black. The value of “OpticalSensor” is fixed to
be constant (either true or false) to encode the condition of
regression verification, all remaining input signals are
modelled as non-deterministic choices. The implanted error
was found in the implementation by a divergence in the
signals for the crane movement after 22 PLC scan cycles,
beginning with a cold start of the hardware. This difference
occurs due to an incorrect transition guard in the new SFC
revision. For this and the following proofs, we use NUXMV
[32] as the model checker together with the invariant
generation engine IC3. The model checker returns a trace of
the counter example in 26 seconds and needs 22 minutes to
prove equivalence with a correct version of the new revision.1

C. Phase 2: Ensuring Invariants

To avoid dangerously critical situations, invariant tables
can be used to specify restrictions on actuator values w.r.t.
sensor value combinations. In this scenario, it is assumed that
the developers defined constraints for the crane to avoid
collisions at the conveyor: The crane should not move if it
carries a WP and there is a WP at the conveyor, as this would
result in a collision. Table I represents these invariants. The
sensor “WP suctioned” indicates a vacuum buildup in the

1 We measured all runtimes in this paper on an Intel Core i7 860 2.8

GHz. The given runtimes are the rounded values of the median of 5
samples.

suction cup of the handling device of the crane, which occurs
if a work piece is picked up. Thus, “WP suctioned = True”
indicates that the crane is transporting a work piece in which
case it is only allowed to move (Crane_CW or Crane_CCW
is true) if there is no work piece on the conveyor (Conveyor
occupied is false). If the crane does not carry any payload
(WP suctioned is false), it is allowed to turn, even if the
conveyor is occupied as there is no danger of collision.

TABLE 1: INVARIANT TABLE FOR VERIFYING “CRANE NOT MOVING WHILE

WP TRANSPORTATION AND ANOTHER WP ON CONVEYOR”

Actuator

WP suctioned Conveyor occupied

Crane_CW True only if False o

True or True False

Crane_CCW True only if True False

True or False o

“CW”: Clockwise, “CCW”: Counterclockwise, “o”: omitted

To reduce the possible sensor values in the verification
process, a simple environment model was created and used.
This environment model describes the possible “Conveyor
occupied” sensor values dependent on previous actuator and
signal occurrences. In this scenario, the environment model is
a simple state machine with two states which ensures that the
Conveyor can only become occupied if the crane has released
a WP at the conveyor.

The proof performed by the model checker checks that
the interlock properties are global invariants throughout all
PLC scan cycles. It took 5 seconds to prove that the old
revision satisfies the invariant, and 18 seconds to find a
counter example for the implanted fault in the new revision.
The counterexample trace can be used as a support to start
investigating the cause of the regression within the source
code.

D. Phase 3: Verifying changed behavior

To specifically verify the changed behavior in this case
study, the signal sequence of the new feature was modeled by
means of a timing diagram. The new feature is the changed
movement of the crane while a white WP is being labeled at
the stamp and a black WP is available at the stack and
subsequently placed on the conveyor. Figure 5 depicts a part
of the diagram, which was used to derive the sequence of
signals relevant for describing the newly introduced behavior.
The behavioral description of the new feature is partial in the
sense that it does not make statements about the course of
signals before and after the considered segment, nor does it
state anything about sensors/actuators not explicitly
mentioned in the model. These excluded parts of the behavior
are required to behave as in the previous revision of the
program, since a diversion would be unintended.

The actuator variable “CraneLower” is used for vertical
movement of the crane (“true” lowers the crane, “false”
invokes an upward motion), whereas the actuators
“Crane_CW” and “Crane_CCW” invoke the clockwise and
counterclockwise rotation of the crane. The depicted
sequence in Figure 5 shows the crane being moved upwards
(“CraneLower” is set to false). The crane is subsequently
turned clockwise (Figure 5, Position 1) until it reaches the
desired position (Figure 5, Position 2), after which it is
lowered (Figure 5, Position 3) to pick up a WP and moves

back up (Figure 5, Position 4). The specified segment of the
sequence continues, describing the new feature in detail.

Crane_CW

Crane_CCW

CraneLower
False

True

False

True

False

True

1 2 3edges:

sq

sq

sq
se = sequence progression

4...

Figure 5. Timing-diagram of new behavior in the evolution process

Besides the timing diagram, the specification includes
local conditions (trigger points) which determine the start and
the end of the behavioral segment described in the timing
diagram. Through this, every behavior was split into
unchanged segments (behavior before and after the specified
sequence which are subject to regression verification) and
segments corresponding to the new features (which are
subject to delta verification w.r.t. the timing diagram). Thus,
the entire behavior is covered by the combination of the two
verification techniques.

Our verification toolchain required 20 seconds to prove
that all segments limited by the trigger points are equal to the
behavior specified in the timing diagram. The regression
verification for the unchanged behavior segments took
29 minutes.

E. Discussion of Results

The presented approach propagates a tight integration of
formal verification into the development process during
software evolution. The threefold verification supports the
engineer in focusing on the changed behavior. The first step
is to differentiate what behavior is new and what is (supposed
to be) unchanged. The regression verification supports the
engineer and uncovers indirect or unintended changes in the
software and misconceptions in the engineer’s understanding
of the technical process within the aPS early on. The second
verification step serves as a sanity check which does not
require new specifications but is performed quickly as
available specifications are used and only the changed part of
the system needs to be covered. The third part is closer to
traditional specification and verification – but profits from
the evolution scenario. Through the reference to the old
revision, the specification becomes more comprehensible and
concise, and allows the verification to run considerably more
efficiently.

As preliminary results from this study, it was found that
the required runtimes depend on multiple factors: the
complexity of the trigger points within the delta specification,
the similarity of the software revisions and the quality of the
refinement process within the IC3 technique. In case of
simple trigger points, very similar software revisions and a
good formula choice for refinement in IC3, efficient runtimes
can be expected.

To gain further knowledge about the scalability of the
approach, additional studies are needed and are focus of
future work.

V. CONCLUSION AND OUTLOOK

In this paper, a verification-supported evolution approach
to assist software application engineers in industrial Factory
Automation was presented. By combining regression
verification techniques with invariant verification and
focused verification of changed behavior, the complexity of
the verification problem can be reduced and specification
efforts are minimized for evolution scenarios. In addition,
two intuitive and well-established specification notations are
proposed for use in the verification process. Thus, the main
problems currently hindering adoption of formal verification
in factory automation are approached. In a case study
applying the approach to a laboratory plant in an exemplary
evolution scenario, the feasibility is shown and the
performance was measured to allow a performance
assessment.

In future research, further convergence with industrial
requirements is aimed at by introducing a comprehensive
visualization of counter examples which are produced by the
model checker in case the verification process fails.
Moreover, the approach is to be extended by further
commonly used notations and a study within the industry to
fully evaluate the applicability within the domain of factory
automation. For this, an industrial case study will be
conducted including several companies in the domain of food
and pharmaceutical packaging. Investigations towards better
scalability of our approach through applications within
further case studies are another focus of future work.

REFERENCES

[1] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of

software in automated production systems: Challenges and research

directions,” J. Syst. Softw., vol. 110, pp. 54–84, 2015.

[2] B. Beckert, M. Ulbrich, B. Vogel-Heuser, and A. Weigl, “Regression

Verification for Programmable Logic Controller Software,” in Formal

Methods and Software Engineering, Springer International Publishing,
2015, pp. 234–251.

[3] S. Rösch, S. Ulewicz, J. Provost, and B. Vogel-Heuser, “Review of

Model-Based Testing Approaches in Production Automation and
Adjacent Domains—Current Challenges and Research Gaps,” J.

Softw. Eng. Appl., vol. 08, no. 09, pp. 499–519, 2015.
[4] B. Kormann, D. Tikhonov, and B. Vogel-Heuser, “Automated PLC

Software Testing using adapted UML Sequence Diagrams,” in IFAC

Symposium of Information Control Problems in Manufacturing, 2012,
pp. 1615–1621.

[5] D. Winkler, S. Biffl, and T. Östreicher, “Test-Driven Automation:

Adopting Test-First Development to Improve Automation Systems
Engineering Processes,” in EuroSPI, 2009, no. c, pp. 1–13.

[6] B. Kumar, B. Czybik, and J. Jasperneite, “Model based TTCN-3

testing of industrial automation systems - First results,” in IEEE
Conference on Emerging Technologies in Factory Automation, 2011.

[7] H. Carlsson, B. Svensson, F. Danielsson, and B. Lennartson,

“Methods for Reliable Simulation-Based PLC Code Verification,”
IEEE Trans. Ind. Informatics, vol. 8, no. 2, pp. 267–278, May 2012.

[8] S. Süß, A. Strahilov, and C. Diedrich, “Behaviour simulation for

Virtual Commissioning using co-simulation,” in IEEE Conference on
Emerging Technologies in Factory Automation, 2015.

[9] S. Ulewicz, D. Schütz, and B. Vogel-Heuser, “Software changes in

factory automation: Towards automatic change based regression
testing,” Annu. Conf. IEEE Ind. Electron. Soc., pp. 2617–2623, 2014.

[10] H. Simon, N. Friedrich, S. Biallas, S. Hauck-Stattelmann, B. Schlich,

and S. Kowalewski, “Automatic test case generation for PLC
programs using coverage metrics,” in IEEE Conference on Emerging

Technologies in Factory Automation, 2015.

[11] E. Jee, J. Yoo, S. Cha, and D. Bae, “A data flow-based structural
testing technique for FBD programs,” Inf. Softw. Technol., vol. 51, no.

7, pp. 1131–1139, 2009.

[12] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen, and P. McKenzie, Systems and Software Verification,

vol. 144. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[13] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[14] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, and K.

Heljanko, “Model checking of safety-critical software in the nuclear
engineering domain,” Reliab. Eng. Syst. Saf., vol. 105, pp. 104–113,

2012.

[15] R. Huuck, “Semantics and Analysis of Instruction List Programs,”
Electron. Notes Theor. Comput. Sci., vol. 115, no. SPEC. ISS., pp. 3–

18, 2005.

[16] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M.
Remelhe, and O. Stursberg, “Verification of PLC Programs Given as

Sequential Function Charts,” in Integration of Software Specification

Techniques for Applications in Engineering, 2004, pp. 517–540.
[17] A. N. I. Wardana, J. Folmer, and B. Vogel-Heuser, “Automatic

program verification of continuous function chart based on model

checking,” Annu. Conf. IEEE Ind. Electron. Soc., pp. 2422–2427,
Nov. 2009.

[18] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: A

Verification Platform for Programmable Logic Controllers,” in
Conference on Automated Software Engineering (CASE), 2012, pp.

338–341.

[19] M. P. Remelhe, S. Lohmann, O. Stursberg, S. Engell, and N. Bauer,
“Algorithmic verification of logic controllers given as sequential

function charts,” in IEEE International Conference on Robotics and
Automation, 2004, pp. 53–58.

[20] J. Provost, J.-M. Roussel, and J.-M. Faure, “Translating Grafcet

specifications into Mealy machines for conformance test purposes,”
Control Eng. Pract., vol. 19, no. 9, pp. 947–957, Sep. 2011.

[21] B. Godlin and O. Strichman, “Regression verification: proving the

equivalence of similar programs,” Softw. Testing, Verif. Reliab., vol.
23, no. 3, pp. 241–258, May 2013.

[22] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich,

“Automating regression verification,” Int. Conf. Autom. Softw. Eng.,
pp. 349–360, 2014.

[23] S. Ulewicz, B. Vogel-Heuser, M. Ulbrich, A. Weigl, and B. Beckert,

“Proving equivalence between control software variants for

Programmable Logic Controllers,” in IEEE Conference on Emerging

Technologies in Factory Automation, 2015.

[24] K. C. Duschl, D. Gramß, M. Obermeier, and B. Vogel-Heuser,
“Towards a taxonomy of errors in PLC programming,” Cogn.

Technol. Work, vol. 17, no. 3, pp. 417–430, 2015.

[25] T. Mertke and G. Frey, “Formal verification of PLC programs
generated from signal interpreted Petri nets,” 2001 IEEE Int. Conf.

Syst. Man Cybern. e-Systems e-Man Cybern. Cybersp., vol. 4, pp.

2700–2705, 2001.
[26] S. Roesch, D. Tikhonov, D. Schütz, and B. Vogel-Heuser, “Model-

Based Testing of PLC Software: Test of Plants’ Reliability by Using

Fault Injection on Component Level,” in IFAC World Congress, 2014,
vol. 19, pp. 3509–3515.

[27] R. Drath, A. Fay, and T. Schmidberger, “Computer-aided design and

implementation of interlock control code,” Conf. Comput. Aided
Control Syst. Des., pp. 2653–2658, 2007.

[28] B. Vogel-Heuser, S. Feldmann, J. Folmer, J. Ladiges, A. Fay, S. Lity,

M. Tichy, M. Kowal, I. Schaefer, C. Haubeck, W. Lamersdorf, T.
Kehrer, S. Getir, M. Ulbrich, V. Klebanov, and B. Beckert, “Selected

challenges of software evolution for automated production systems,”

in IEEE International Conference on Industrial Informatics, 2015, pp.
314–321.

[29] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in

Verification, Model Checking, and Abstract Interpretation, Springer
Berlin Heidelberg, 2011, pp. 70–87.

[30] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, “Researching

Evolution in Industrial Plant Automation: Scenarios and
Documentation of the Pick and Place Unit,” 2014.

[31] “Companion Web Site for this Paper.” [Online]. Available:

http://formal.iti.kit.edu/projects/improve-aps/case16/.
[32] “The nuXmv model checker.” [Online]. Available:

https://nuxmv.fbk.eu/.

