KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000065007

Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting

Baumstark, Simon; Faou, Erwan; Schratz, Katharina

We introduce efficient and robust exponential-type integrators for Klein-Gordon equations which resolve the solution in the relativistic regime as well as in the highly-oscillatory non-relativistic regime without any step-size restriction under the same regularity assumptions on the initial data required for the integration of the corresponding nonlinear Schrödinger limit system. In contrast to previous works we do not employ any asymptotic/multiscale expansion of the solution. This allows us to derive uniform convergent schemes under far weaker regularity assumptions on the exact solution. In addition, the newly derived first- and second-order exponential-type integrators converge to the classical Lie, respectively, Strang splitting in the nonlinear Schrödinger limit.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2017
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-650072
KITopen-ID: 1000065007
Verlag KIT, Karlsruhe
Umfang 30 S.
Serie CRC 1173 ; 2017/1
Schlagworte wave equations, non-relativistic limit, highly-osciallatory problems, uniformly accurate exponential type integrators
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page