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Abstract 

For efficient, effective and economical production operation management in a manufacturing unit of an organization, it is essential to integrate 
the production planning and control system into an enterprise resource planning. Today’s planning systems suffer from a low range in planning 
data which results in unrealistic delivery times. One of the root causes is that production is influenced by uncertainties such as machine 
breakdowns, quality issues and the scheduling principle. Hence, it is necessary to model and simulate production planning and controls (PPC) 
with information dynamics in order to analyze the risks that are caused by multiple uncertainties. In this context, a new approach to simulate 
PPC systems is exposed in this paper, which aims at visualizing the production process and comparing key performance indicators (KPIs) as 
well as optimizing PPC parameters under different uncertainties in order to deal with potential risk consuming time and effort. Firstly, a 
production system simulation is created to quickly obtain different KPIs (e.g. on time delivery rate, quality, cost, machine utilization, WIP) 
under different uncertainties, which can be flexibly set by users. Secondly, an optimization experiment is conducted to optimize the parameters 
of PPC with regard to the different KPIs. An industrial case study is used to demonstrate the applicability and the validity of the proposed 
approach. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the “9th International Conference on Digital Enterprise Technology - DET 
2016.  
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1. Introduction 

PPC addresses a fundamental function of productivity, 
management and resource utilization [1]. A survey among 
companies of machine and plant engineering illustrates that 
today’s planning systems suffer from low quality and low 
range in planning data, which results in unrealistic delivery 
times [2]. It leads to the dilemma of PPC, namely it is to 
achieve high process efficiency, low throughput times and 
good planning confidence in spite of a turbulent environment 
with uncertainties such as dynamic factory changes, 
constraints, short product lifecycles, an increasing variety and 
a growing individualization of demand [3].  

In most cases, production planning is addressed manually 
by practitioners, even in modern production with sophisticated 
automated systems. This manual process is time-consuming, 

sub-optimal (as only few alternatives are considered) and 
completely dependent on the planner's expertise [4]. 
Additionally, it is well known that in the make-to-order sector 
an order spends up to 90% of the total time in production 
waiting in front of or between work centers and only 10% in 
actual transformation work on the machines. [5]. 

All above discussed challenges require that the company is 
able to act in its flexible PPC which can response to 
unpredicted situations. It is necessary to model and simulate 
PPC with information dynamics in order to analyze the risks 
which are caused by multiple uncertainties. In this context, the 
produced approach focuses on a flexible simulation system of 
medium-term of PPC with integrated internal production 
systems and system variants (e.g. scheduling policies, machine 
breakdown, quality issues, processing time fluctuation) as well 
as external customer forecast orders. The main objective is to 
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build a flexible simulation system for medium-term PPC 
analysis based on the forecast and different uncertainties so 
that the companies can design a more feasible production plan 
in shorter time and update it flexibly to fulfil their production 
target. Furthermore, it provides the chance to make transparent 
design processes so that the production planning staff can 
reduce their workloads by using this simulation system. In 
chapter 2, the current state of the art in literature regarding this 
topic is presented. The developed method is elaborated in 
chapter 3. Finally, chapter 4 concludes with a summary.  

2. State of the art 

Regarding this topic, several approaches have been 
discussed in the research community. Alvandi presents a 
simulation-based approach to model energy and material flow 
and considers the hierarchical structure of energy and material 
consumers within the system. An evaluation of the 
improvement strategies on energy and material efficiency was 
investigated [6]. Stricker identifies and evaluates the 
appropriate enablers for robustness for specific production 
systems. Multi-objective decision support models are created 
to evaluate the best enablers for the levels of production 
network, plant and shop-floor [7]. Volling builds a framework 
comprising separate interlinked quantitative models for order 
promising and master production scheduling and evaluates 
their potential using simulation [8]. Lee illustrates how 
simulation-based shop-floor planning and control can be 
extended to enterprise-level activities (top floor). Nevertheless 
it only focuses on the transformation between shop floor and 
top floor [9]. Chakravorty finds the performance of Drum-
Buffer-Rope (DBR) to be very sensitive to changes in the 
levels of free goods (FG) released into the operation based on 
the simulation of a job shop operation. Contrary to the way FG 
have been treated in the past, schedulers using DBR need to be 
cognizant of how orders of these items are accepted and 
scheduled [10]. Duffie focuses on classical control theoretical 
modelling of transient behaviour and fundamental dynamics 
of production planning and control, which generally is 
considered to include scheduling, sequencing, loading and 
controlling [11]. Gyulai presents a planning and control 
methodology, which is based on adaptive calculations. 
Besides, historical data is used as direct input of discrete-event 
simulations to determine the proper control policies of human 
operator allocation for the different scenarios [12]. Auer 
describes an integrated planning solution for the 
harmonization of sales, purchasing, supply chain and 
production planning along the planning cascade. By 
harmonizing, cost savings and additional value potential is 
realized [13]. Georgiadis develops a system dynamics model 
to support the decision-making on time-buffer policies [14].  
Baldea defines several necessary directions for future 
development as well as a complement of promising 
application [15]. Leng proposes an optimal allocation 
mechanism based on the Theory of Constraints in face of 
meeting peak demand in a certain period for the whole system. 
A genetic algorithm has been selected for solving the 
optimization model [16]. Seitz clarifies the advantages of 
cyber-physical system (CPS) in view of production planning, 

controlling and monitoring. The order processing is improved 
through logistics models with CPS [17]. Chen inspects the 
effectiveness of three manufacturing rules (line balance, on-
time delivery, bottleneck utilization) in terms of three 
important performance metrics (effective WIP (work-in-
process), on-time delivery, bottleneck loading). Guidelines for 
manufacturing rule selection are provided [18]. Grundstein 
presents a quantitative, three-dimensional evaluation system. 
It allows for a complete quantitative evaluation of autonomous 
control in production systems. [19]. Suwa introduce new 
approaches to online scheduling based on a concept of 
cumulative delay. This approach can reduce frequent schedule 
revisions and avoid overreacting to disturbances and simplify 
the monitoring process of a schedule status [20]. 
Golmohammadi provides a number of simulation scenarios of 
a master production schedule and the drum-buffer rope (DBR) 
scheduling method. The optimization techniques are used to 
find optimal and/or satisfactory solutions for input variables in 
the simulation experiment [21]. Yan presents an algorithm 
whose complexity is unrelated to the batch size to obtain the 
starting time of a batch production. A heuristic method based 
on a genetic algorithm is constructed to solve the splitting and 
scheduling problems simultaneously [22]. 

Overall, existing approaches are providing PPC 
improvement through optimized algorithms in modelling and 
simulation. However, they take the production system 
framework and production process uncertainties into account 
insufficiently. Secondly, these approaches are not flexible 
enough and cannot be easily adapted to different segments of 
industries.  

3. Methodology 

The presented approach helps to overcome this gap mainly 
in two steps. In a first step, a PPC simulation system is created 
which integrates internal production systems and system 
uncertainties as well as external customer forecast orders. It 
can quickly obtain the KPIs (on time delivery rate, quality, 
cost, machine utilization, WIP) under the different 
uncertainties. In the first step, the hierarchy of the system, 
structure of the data base, the initiation of the concept module, 
and the flexible simulation system are developed. 

Secondly, the preliminary optimization experiment to find 
out the optimized PPC parameters in order to achieve better 
KPI results under the specific situation are produced.  

3.1. Hierarchy of the system 

According to the VDI-3633 procedure, the establishment of 
simulation system starts from preparation phase. The whole 
structure includes four elements, which are basic production 
system, customer order forecast, uncertainties, KPIs. 
Customer order forecast as one of the key inputs mainly 
consists of product name, order quantity, due date and 
customer code. Regarding the uncertainties, the machine break 
down indicator (MTTF, MTTR), scheduling policies (first in 
first service, earliest due date, shortest processing time), 
quality issues (rework rate, scrap rate) and customer issues 
(rush order) are included. The KPIs present the simulated 
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results, for instance, on-time delivery rate, quality rate, 
inventory, cost information.   

On the basis of the analysis above, the hierarchy of the 
system is integrated by three different levels which are defined  
 

 
Fig. 1. System views of modelling and simulation 

as system view, process view and unit process. In the first 
level, system view is initially created (cf.Figure 1). 

Customer demand forecast contains information about 
customer requirements of goods. It includes the order 
information, such as the product number, product name, the 
quantity and the due date for delivery. This information is the 
starting point and basis for the production plan and execution. 
The second part production planning and control provides the 
guideline how to execute the production in an efficient way, 
which integrates the consideration of different principles of 
scheduling, dispatch, inspection, quality management, and 
inventory management. The third part is about production, 
namely job shop and assembly. Besides production, the 
quality and logistics aspects should be also considered in this 
production system. Since this paper is mainly focusing on the 
internal production planning and control, the supplier aspect is 
not integrated into this system.  

The second level is process view which means machining, 
assembly, quality check etc. Every station is considered as one 
entity. For instance, if the first process is turning, all relevant 
information of this process such as processing time, quality 
rate are considered. In this paper the machining process is 
mainly focused.  

The third level is unit process view which includes more 
details of one process, namely it consists of start loading, 
production, unloading and finish. Later on, this differentiation 
is helpful for making time measurement analysis such as 
calculating value adding and non-value adding. 

3.2. Structure of the data base of the system 

A data flow diagram (DFD) is a graphical representation of 
the "flow" of data through an information system, modelling 
its process aspects. A DFD is often used as a preliminary step 
to create an overview of the system, which can later be 
elaborated. DFDs can also be used for the visualization of data 
processing. Figure 2 shows the information flow in the 
simulation system. The customer will create the demand 
forecast in the very beginning. During this period, the 
customer can still update the demand forecast once there are 
some information changes. The order is created accordingly. 
This information will be forwarded to the production planning 
and control module. After the scheduling principle is selected, 
all the information will be formed as demand information and 
transferred to the production basic system, which will start to 
produce by job machine, logistics, assembly and quality 

control. The production status information will be summarized 
and send back to the production planning and control, then it 
will be further forwarded to the customer in the end. 

To transfer the real working conditions into the simulation 
system, the data dictionary that refers to items such as data  

 
Fig. 2. Overview of data flow 

structure, data flow, data storage and processing logic is 
applied. Through data dictionary, the external entities are 
defined and described in the system that is necessary to 
improve the analysis.  

With the customer module, for example, the items of data, 
namely, customer ID, order number, product ID, quantity, due 
date are considered. All of them are set to integer types in this 
module. Afterwards the data structure which reflects the 
combination of the relationship between data items is carried 
out. Further on, a data structure in the system transmission 
path and data storage is worked out. Regarding data 
processing, all the data is transferred on the basis of process. 
For instance, the job shop starts production and provides 
feedbacks information once it receives the demand 
information. Therefore, the information input is demand 
information, and the corresponding output is feedback 
information.  

3.3. Initiation of the conceptual model  

The conceptual model is a simplified model of the real 
system.  In this paper, the conceptual model consists of agents 
and fixed parameters as well as variables. For instance, the 
transportation between processes in the reality is simplified to 
a “conveyor” agent with defined parameters or variables such 
as length, space between entities, speed in Figure 3. 

3.4. Creation of the simulation system 

Based on the conceptual model, the simulation program is 
further developed by considering the several factors such as 
input/output data, data transformation and uncertainties.  
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Fig. 3. Conceptual model of transportation 

 
The scheduling policies are taken as one example to illustrate 
how to model the uncertainties in the initiative phase. It is well 
known that scheduling is a decision process that is used on a 
regular basis in many manufacturing and services industries. It 
deals with the allocation of resources to tasks over given time 
periods and its goal is to optimize one or more objectives. For 
a production facility that is capable of manufacturing multiple 
products, production scheduling aims to identify the order 
(sequence) in which the products should be manufactured, the 
assignment of tasks to equipment and exact timing of the 
operations, which maximize profit while meeting the demand 
(quantity) of each product in a given time frame. Here, three 
princinples are considered as uncertainites, namely first come 
first service (FCFS), shortest processing time (SPT), earliest 
due date first (EDD). The notation is illustrated as followed, 

n  jobs have to be processed on m machines, each job can 
be worked on by at most one machine at a time and each 
machine can work on at most one job at a time. pij is 
processing time of job j on machine i (includes setup times of 
the machine and transportation times of the job), dj is time at 
which the processing of job j is due to be completed. wj 
describes the urgency or importance of job j. The scheduling 
principle and rush order are realized based on the value of wj 
in the system as formula (1) showed. 

 

 

The maximum wj is set to be value 21,000,000. According 
to FCFS, jobs are executed in the order of their arrival. wj is 
equal to one for all jobs j. The EDD schedules the jobs in 
increasing order of their due dates. This priority rule is carried 
out by using maximum wj minus completion due date. For 
instance, the due date is on March 15th, 2016, and then the 
priority wj is 21,000,000 minus 2,016,0315, namely 838,685. 
The SPT schedules the jobs in increasing order of their 
processing times. The priority rule is represented by using 
maximum wj minus processing time. For the rush order, the 
priority is set to be maximum value of wj. 

The scheduling policies are transferred into modelling by 
identifying wj of each part and the priority is further 
transparently transmitted in the whole system. Next to the 
priority, the other properties such as product ID, due date can 
also be tracked in the simulation system in Figure 4. 

According to the formal modelling, a production planning 
and control simulation system are built by four segments, 
respectively data input window, process execution window, 
KPIs results window and statistics of work in process (WIP). 

The data input window consists of customer forecast 
information such as lot number, product number, quantity, due 
date, part cost and processing time. The uncertainties can be 
easily set by users  (e.g. process time fluctuation, 
machine/resource breakdown, rework rate, scrap rate, batch 
size, scheduling policies, parts per arrival). Secondly, in the 
process execution window, the dynamics status can be 
observed by users and the production execution process is 
transparent and visualized. Furthermore, in the KPI window 
on-time delivery rate, quality, cost are analyzed at the same 
time. For all  

 
Fig. 4. Transparent information in system 

KPIs it is possible to make comparisons based on the different 
uncertainties. Since its cost is crucial in the production, the 
WIP information is recorded in the WIP window while 
implementing the simulation.  

Based on the simulation system, it is able to evaluate the 
impact of different uncertainties. Here the on-time delivery 
rate is set as the target and the scheduling polices as the 
uncertainty. The system is able to evaluate fast which 
scheduling policy is optimal in the specific situation.  

3.5. Optimization experiments of the simulation system. 

Through the simulation experiment it is realized to analyze 
fast the impact of uncertainties within a specific situation. 
However, in reality some input parameters are variable such as 
batch size and parts per arrival. The optimized values for these 
variables play a significant role for the planning staff of a 
company. Therefore the optimized experiment is created to 
solve this problem. The optimization process is built on top of 
the OptQuest Optimization Engine, which can automatically 
find the best parameters of a model, with respect to certain 
constraints.  

4. Case Study 

A case study at a Chinese medium size machining 
company, entitled Company W, is executed as pilot 
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experiment. The products are mainly aluminum products 
which are further delivered to customers. The abstract 
production flow chart in Figure 5 shows that the company 
prepares the raw materials parts according to the customer 
demand. The first step is turning and executes the quality 
check. The good parts will be further transported to the next 
process station based on two options. Product type one will be 
milled and tested, and then the product is finished. 
Accordingly the type two will execute cleaning and make 
further assembly. Then the finished product is accomplished 
after the quality test 

The basic situation is that the machining department 
receives the forecast information of three types of products. 
The due date, processing time and quality rate as well as 
machine breakdown indicators are given. Then the outputs of 
the simulation shows that scheduling policy SPT is better  

 
Fig. 5. Production process flow chart 

than the others in this specific situation. With support of 
simulation, the planning staff save fifty per cent of the time 
(one hour reduces to thirty minutes) in comparison with the 
previous manual planning process in Table 1. 

Table 1. Summary of on-time delivery performance 

 Product 1 Product 2 Product 3 

Schedule
principle 

Total 
1  

On-
Time 

Not
On-
Time 

Total 
2 

On-
Time 

Not
On-
Time 

Total 
3 

On-
Time 

Not
On-
Time 

FCFS 90 15 75 90 45 45 90 90 0 

EDD 90 40 50 90 90 0 100 30 70 

SPT 95 30 65 90 75 15 85 65 20 

To achieve the better performance of on-time delivery, the 
optimization experiment provides the further support to the 
planning staff of the company. One scenario is investigated 
regarding the indicator on time delivery (OTD) as followed.  

Objective function: Max. OTD (on-time delivery rate)  
s.t. 2 < batch size < 10; 2 <parts per arrival< 10     
Based on the optimization results, it is shown that the 

optimized value of the batch size and the parts per arrival are 
both equaling three. The scheduling principle is EDD. In this 
situation, the production process can achieve the best 
performance of on-time delivery.  

5. Summary 

The presented paper is dealing with the issue of simulation 
support for production planning and control in small and 
medium enterprises with information dynamics in order to 
analyze the risks which are caused by multiple uncertainties. 
A production planning and control simulation system is built 
to analyze and evaluate the production performance according 
to defined KPIs. Taking uncertainty into account companies 
can design more feasible production plans in shorter time and 
fulfil their production requirements more flexible. A 
simulation study is conducted to quantify the potential risk of 
PPC under different uncertainties. It brings benefit with 
respect to customer service, particularly in the field of on-time 
delivery satisfaction. Further research includes the 
improvements of optimization experiments and the application 
in other production areas. 
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