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Abstract 

Sustainable water resources and sustainable energy supply are two of the main 

challenges we face in today’s society. Shallow groundwater temperatures (GWT) play a 

crucial role in both of these areas, especially within densely populated regions. Still, there 

is a lack in understanding the influence modern humanity has on the thermal regime of 

the shallow subsurface.  

Human activity directly influences ambient air, surface and groundwater temperatures. 

The most prominent phenomenon is the urban heat island (UHI) effect, which has been 

investigated particularly in large and densely populated cities. Urban heat islands in the 

subsurface (SUHI) contain large quantities of energy in the form of elevated groundwater 

temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. One of the 

main heat sources are elevated ground surface temperatures - urban heat islands at surface 

and subsurface are coupled through conductive heat transport. However, the link between 

them is not yet sufficiently understood. 

The first part of this study discusses shallow GWTs unaltered by human influence. 

Due to the limited accessibility of aquifers, temperature measurements are scarce and 

GWTs are largely unknown. Hence, they are often approximated, most commonly by 

adding an offset to annual mean surface air temperatures. Yet, the value of this offset is 

not well defined, often arbitrarily set, and rarely validated. Here, the usage of satellite 

derived land surface temperatures (LST) is recommended instead. 2,548 measurement 

points in 29 countries are compiled, revealing characteristic trends in the offset between 

shallow groundwater temperatures and land surface temperatures. Evapotranspiration and 

snow govern this offset globally through latent heat flow and insulation, respectively. 

Considering these two processes only, global shallow groundwater temperatures can be 

estimated with a root mean square error (RMSE) of 1.4 K. 

The second part of this study explores the anthropogenic impact on temperatures on a 

country wide scale. At the example of three temperature datasets in Germany (measured 

surface air temperature, measured GWT, and satellite-derived LST) the so-called 

anthropogenic heat intensity (AHI) is introduced. Taking nighttime lights as an indicator 

of rural areas, it provides the difference between local temperatures and median rural 

background temperatures. This concept is analogous to the established urban heat island 

intensity, but applicable independent of land use and location. In Germany, groundwater 

temperature appears most vulnerable to human activity. While population density has 

only a minor effect, the anthropogenic heat intensity grows with increasing nighttime 

lights and declines with increasing vegetation. At the surface of Germany, the highest 

anthropogenic heat intensity of 4.5 K is found at an open-pit lignite mine near Jülich, 

followed by the cities Munich, Düsseldorf and Nuremberg with anthropogenic heat 

intensities of more than 4 K. Overall, surface anthropogenic heat intensities greater zero 

and thus urban heat islands are observed in communities down to a population of 5,000. 
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Third, subsurface urban heat islands (SUHI) are investigated more thoroughly. The 

objective of this part of the study is to quantify the anthropogenic heat fluxes into the 

subsurface (AHFS) and the heat flow they generate in two German cities, Karlsruhe and 

Cologne. Thus, statistical and spatial analytical heat flux models were developed for both 

cities. The models include the spatial representation of various sources of AHFS: (1) 

elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage 

leakage, (5) subway tunnels, and (6) district heating networks. The results show that the 

district heating networks induce the largest AHFS with values greater than 60 W/m² and 

one order of magnitude higher than fluxes from other sources. A covariance analysis 

indicates that the spatial distribution of the total flux depends mainly on the thermal 

gradient in the unsaturated zone. On a citywide scale, basements and elevated ground 

surface temperatures are the dominant sources of heat flow. Overall, 2.1 PJ/a and 1.0 PJ/a 

of heat are accumulated on average in Karlsruhe and the western part of Cologne, 

respectively. Extracting this anthropogenically originated energy could sustainably supply 

significant parts of the urban heating demand. Furthermore, using this heat could also 

keep groundwater temperatures from rising further. 

In the last part of this study, the spatial properties of SUHI and surface UHI are 

compared in four German cities and correlations of up to 80 % are found. The best 

correlation is found in older, mature cities such as Cologne and Berlin. However, in 95 % 

of the analyzed areas, groundwater temperatures are higher than land surface 

temperatures due to additional subsurface heat sources such as buildings and their 

basements. Local groundwater hot spots under city centers and under industrial areas are 

not revealed by satellite-derived land surface temperatures. Hence, an estimation method 

is proposed that relates groundwater temperatures to mean annual land-surface 

temperatures, building density, and elevated basement temperatures.   

Using this method, regional GWTs in Karlsruhe, Cologne and Berlin are accurately 

estimated with a root mean square error (RMSE) of 1.4 K. If the previously established 

influence of evapotranspiration and snow are also taken into account, this RMSE can 

further be reduced to 0.9 K. 
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Kurzfassung 

Nachhaltige Energiegewinnung sowie nachhaltige Wassernutzung sind zwei der 

bedeutendsten Aufgaben unserer Zeit. Oberflächennahe Temperaturen im Untergrund 

beeinflussen beide Themen stark, vor allem in dicht besiedelten urbanen Regionen. 

Trotzdem ist nur wenig über den Einfluss der modernen Zivilisation auf Grundwasser-

temperaturen bekannt.  

Menschliche Aktivitäten beeinflussen die Umgebungstemperaturen in  der Luft, an der 

Oberfläche und im Grundwasser. Am bekanntesten ist das Phänomen der urbanen 

Wärmeinsel, welches vielfach in großen und dicht besiedelten Städten untersucht wurde: 

Temperaturen innerhalb des urbanen Einflussgebiets sind gegenüber dem ländlichen 

Umland deutlich erhöht. Im Untergrund wird diese Temperaturanomalie durch 

anthropogenen Wärmefluss in den Grundwasserleiter verursacht. Eine der dominantesten 

Wärmequellen ist die erhöhte Oberflächentemperatur – urbane Wärmeinseln an der 

Oberfläche und im Untergrund sind durch konduktive Wärmetransportprozesse 

miteinander verbunden. Allerdings ist der genaue Zusammenhang bisher unzureichend 

erforscht.  

Im ersten Teil dieser Arbeit werden oberflächennahe Grundwassertemperaturen 

diskutiert, die nicht durch den Menschen beeinflusst werden. Auf Grund des limitierten 

Zugangs zum Grundwasserleiter können Temperaturen nur vereinzelt gemessen werden 

und sind daher größtenteils unbekannt. Sie werden daher oft abgeschätzt, meistens durch 

Addition eines konstanten Offsets zu Jahresmittelwerten der Lufttemperatur. Allerdings 

ist der genaue Wert dieses Offsets nicht klar definiert und wird daher oft frei gewählt und 

unzureichend geprüft. In dieser Arbeit wird nun die Verwendung von Landesoberflächen-

temperaturen statt Lufttemperaturen vorgeschlagen, da die von Satelliten erfassten 

Landesoberflächentemperaturen weltweit und flächendeckend verfügbar sind. Anhand 

von 2.548 Grundwassermessstellen in 29 Ländern wird das Offset zwischen LST und 

Grundwassertemperatur bestimmt und charakteristische Trends werden erforscht. 

Evapotranspiration und Schnee steuern dieses Offset global durch latenten Wärmefluss 

bzw. durch Wärmedämmung. Unter Beachtung dieser Prozesse können globale, 

oberflächennahe Grundwassertemperaturen mit einem Fehler (root mean square error) 

von 1.4 K abgeschätzt werden. 

Im zweiten Teil dieser Arbeit wird der anthropogene Einfluss auf Temperaturen 

erforscht. Anhand von drei Temperaturdatensätzen in Deutschland (gemessene 

Lufttemperaturen, gemessene Grundwassertemperaturen und satellitenerfasste Landes-

oberflächentemperaturen) wird die sogenannte anthropogene Wärmeintensität eingeführt. 

Es handelt sich dabei um die Differenz zwischen lokalen Temperaturen und gemittelten 

ländlichen Hintergrundtemperaturen. Satellitenerfasstes Nachtlicht dient dabei als 

Indikator für ländliche Gebiete. Das Konzept ist analog zur etablierten Intensität der 

urbanen Wärmeinseln, kann aber auf alle Temperaturmessungen unabhängig von 
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Landnutzung und Lage angewendet werden. Die Ergebnisse zeigen, dass  die gemessenen 

Grundwassertemperaturen am stärksten auf menschliche Aktivität reagieren. Während die 

Bevölkerungsdichte nur einen geringen Effekt auf die anthropogene Wärmeintensität hat, 

steigt diese mit zunehmendem Nachtlicht und sinkt mit zunehmender Vegetation. An der 

Oberfläche Deutschlands findet sich die höchste anthropogene Wärmeintensität (4,5 K) 

bei einem zur Förderung von Braunkohle betriebenen Tagebau bei Jülich. Intensitäten 

von mehr als 4 K werden außerdem in München, Düsseldorf und Nürnberg gefunden. 

Positive anthropogene Wärmeintensitäten finden sich auch in kleineren Gemeinden ab 

5.000 Einwohnern. 

Als Drittes werden urbane Wärmeinseln im Untergrund genauer untersucht. Das Ziel 

dieses Teils der Arbeit ist es, die anthropogene Wärmeflussdichte in den Untergrund 

sowie den gesamten daraus resultierenden Wärmestrom für Karlsruhe und Köln zu 

quantifizieren. Für beide Städte wurden hierfür räumlich aufgelöstes, statistisch 

analytisches Wärmetransportmodelle entwickelt, die folgende anthropogene 

Wärmequellen implementiert: (1) erhöhte Oberflächentemperaturen, (2) Gebäudekeller, 

(3) Abwassersysteme, (4) Abwasserleckagen, (5) U-Bahntunnel und (6) Fernwärmenetze. 

Die Ergebnisse zeigen, dass das Fernwärmenetz die höchste Wärmestromdichte mit 

Werten über 60 W/m² verursacht. Alle anderen untersuchten Wärmequellen verursachen 

Wärmestromdichten von etwa einem Zehntel dieser Größe. Eine Analyse der Kovarianz 

zeigt, dass die räumliche Verteilung der gesamten Wärmestromdichte aller Wärmequellen 

hauptsächlich auf den thermalen Gradienten der ungesättigten Zone beruht. Für das 

gesamte Untersuchungsgebiet sind Gebäudekeller und erhöhte Oberflächentemperaturen 

die dominantesten Wärmeflussquellen. Insgesamt werden durchschnittlich 2,1 PJ/a bzw. 

1,0 PJ/a Wärme aus anthropogenen Quellen in den urbanen Untergrund von Karlsruhe 

bzw. dem linksrheinischen Teil Kölns eingetragen. Diese Wärmemenge würde ausreichen, 

um einen signifikanten Teil des urbanen Heizwärmebedarfs zu decken. Gleichzeitig 

würde die Nutzung dieser Energie auch ein weiteres Erwärmen der urbanen 

Grundwassertemperaturen verhindern. 

Im letzten Teil dieser Arbeit werden die urbanen Wärmeinseln an der Oberfläche und 

im Untergrund anhand von vier deutschen Städten miteinander verglichen; Dabei werden 

räumlich Korrelationen von bis zu 80 % festgestellt. Die besten Korrelationen finden sich 

in alten etablierten Städten wie z.B. Köln und Berlin. In 95 % der analysierten Fläche sind  

die Grundwassertemperaturen wärmer als die Landesoberflächentemperaturen. Dieser 

Unterschied wird durch unterirdische Wärmequellen wie etwa Gebäudekeller 

hervorgerufen. Dementsprechend werden lokale Temperaturanomalien unter dem 

Stadtzentrum sowie unter Industriegebieten nicht von den satellitenerfassten 

Landesoberflächentemperaturen aufgezeigt. Um diese lokalen Wärmeinseln besser 

abschätzen zu können, wurde daher eine neue Abschätzungsmethode entwickelt, die 

Grundwassertemperaturen anhand von jahresmittleren Landesoberflächentemperaturen, 

Gebäudedichte und Kellertemperaturen bestimmt.   

Mit dieser Methode können regionale Grundwassertemperaturen in Karlsruhe, Köln und 
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Berlin mit einem Fehler (root mean square error) von 1,4 K abgeschätzt werden. Wird die 

im ersten Teil der Arbeit eingeführte Abschätzung durch Evapotranspiration und Schnee 

ebenfalls beachtet, kann die Genauigkeit weiter erhöht werden. Ein Fehler (root mean 

square error) von lediglich 0.9 K zwischen geschätzter und gemessener Grundwasser-

temperatur wird erreicht. 
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1. Introduction 

1.1. Scientific background 

Only meters below our feet, shallow aquifers are habitat (1), provide freshwater 

storage (2), and serve as sustainable energy source (3) all in one. They are elementary in 

geosciences and hydrology, and gain attention in ecology and climate science. Yet we 

know only little about their thermal conditions, their link to land surface temperatures. 

and the impact man-made climate change (4) has on them.  

1.1.1. The Thermal Regime of Shallow Aquifers 

Assuming local thermodynamic equilibrium between solid and fluid, groundwater 

temperatures (GWT) and subsurface temperatures are considered equal (5). They are 

governed by heat flow from the Earth’s interior and heat flow from temperature variations 

at the ground surface. The temperature 𝑇(𝑡, 𝑧) as a function of time and depth can best be 

described as a superposition of the mean surface temperature 𝑇0 , an increase in 

temperature Γ(𝑧) governed by geothermal heat flow, and a temperature variation Δ𝑇(𝑧, 𝑡) 

resulting from surface temperature variations (6). 

𝑇(𝑧, 𝑡) = 𝑇0 + Γ(𝑧) + Δ𝑇(𝑧, 𝑡) (1.1) 

Geothermal heat flux, which receives its energy from naturally occurring radioactive 

decay, has a global average of 86 mW/m² and a continental average of approximately 

65 mW/m² (7). Depending on the local geothermal heat flux and thermal conductivity this 

results in a temperature increase of 1 K per 20 to 40 m (8). Near the surface geothermal 

temperature increase lessens (lim𝑧→0 Γ(𝑧) = 0) and can thus be neglected. 

Heat from the ground surface is transported by two distinct processes: conductive heat 

transport by way of thermal diffusion and heat transport in form of infiltration or seepage. 

As advective heat transport processes in porous media occur mainly in horizontal 

direction (9), they can be disregarded when discussing subsurface temperature as a 

function of depth. Hence, shallow groundwater temperature (GWT) profiles are often 

described by a 1-D vertical diffusion equation with the following solution (9): 

𝑇(𝑧, 𝑡) =  𝑇0 + Δ𝑇(𝑧, 𝑡) 

= 𝑇0 + Δ𝑇0 ⋅ exp (−2𝜋
𝑧

𝛬
) ⋅ cos (2𝜋 (

𝑡

𝑡0
−
𝑧

Λ
)) 

(1.2) 

with 
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Λ = 2√𝜋𝛼𝑡0 (1.3) 

where Δ𝑇 is the amplitude of the temperature fluctuation at the ground surface, 𝑡0 is the 

period of the temperature fluctuation and 𝛼 is the thermal diffusivity of the subsurface. 

Figure 1.1. displays the temperature distribution for shallow depth determined vie 

equation 1.2. The two major components when describing shallow GWT as a function of 

time an depth are the time lag 𝜆 =
𝑧

Λ
 and the damping factor 𝛿 = exp (−2𝜋

𝑧

𝛬
) of the 

surface temperature signal, both of which increase with depth. Hence annual temperature 

variations are only observed down to approximately 20 m (10), depending on the thermal 

properties of the underground. Additionally annual mean temperatures of all depth can be 

considered constant and equal to annual mean ground surface temperatures (𝑧 = 0). 

 

Figure 1.1. Seasonal variation in shallow-depth groundwater temperatures. 

1.1.2. Land Surface Temperatures 

In recent years a new surface temperature measurement has been established: land 

surface temperature (LST), the radiative skin temperature of the ground as seen from 

above, gives a unique insight into Earth’s surface energy balance (11). 
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Depending on its skin temperature each body emits electromagnetic radiations. For a 

perfect black body – an object that absorbs all incident electromagnetic radiation – the 

spectral radiance at a given temperature T is provided by Placks’s law. Hence black body 

temperature can be obtained by measuring thermal radiation at a fixed wavelength. Real 

objects however do not absorb all incident electromagnetic radiation. Thus, due to the 

conservation of energy, they also have a lower thermal emission than a black body. Hence, 

the emissivity, the ratio between radiance of an object and of a black body at the same 

temperature, needs to be taken into account. If the emissivity is known or can be 

estimated, skin temperatures of any given object can be derived from its remotely sensed 

electromagnetic radiation, most commonly at infrared wavelengths (12).  

Land surface temperatures (LST) of Earth can thus be derived via satellite. Most used 

data are either LST retrieved from the LADSAT thermal channel (13) or LST received 

from Moderate Resolution Imaging Spectroradiometer (MODIS) data (14). MODIS is 

aboard the Terra and Aqua Satellites, both of which provide two observations daily, one 

at nighttime and one at daytime. LST is retrieved for all land pixels under clear sky 

conditions in a resolution of approximately 1 km × 1 km, using a generalized split-

window algorithm (15). MODIS LST has been validated by several studies: By 

comparing MODIS LST to in situ LST measurements Wan et al (2002) found an 

agreement of ± 1 K (16). By 2006 the algorithm (Version 5) had been improved and the 

root mean square error between MODIS and in situ LST time series measurements was 

found to be less than 0.7 K  (17).  

The difference in satellite derived LST and directly measured ground surface 

temperatures (GST, 3-5 cm below ground) has been analyzed for permafrost regions in 

Alaska and Canada by Hachem et al. (2012). They found a good correlation (Pearson 

correlation coefficient R = 0.90) for a yearlong time-series with LSTs being on average 

5.4 K colder than GSTs. However, for snow free periods LST was on average 2.2 K 

warmer than GST due to missing insulation from snow cover (18). A comparison of LST 

and near surface air temperatures (1 to 3 m above ground) at the same measurement 

locations found LST to be on average 1.8 K colder than air temperatures for the whole 

year comparison. Again, during snow free periods LST is 0.6 K warmer than air 

temperatures (18). A comparison of MODIS LST with air temperatures over the 

continental USA found a correlation of R² = 0.88 for data observed with the Terra 

satellite and R² = 0.93 for data observed with the Aqua satellite (19). When analyzing the 

different biomes (forest, grass, desert and mediterranean) of the US, Zhan et al (2014) 

found correlations R² > 0.80 for all biomes but the mediterranean one, primarily located 

in California (R² of approximately 0.3 to 0.8). When comparing average temperatures of 

seasonal air temperatures and MODIS LST, differences ranging from -7.5 K to +7.5 K 

were found (19).  
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1.1.3. Man-made Climate Change 

Climate and temperature are strongly affected by humans (4). Over the 20
th

 century 

Earth’s temperature has increased by 0.6 K with two main periods of warming from 1910 

to 1945 and from 1976 onwards (20). While this trend is most commonly observed at the 

surface (21,22) or air (23,24), it has also been linked to groundwater temperatures (25). 

Consequences for earth ecology are severe: on the basis of mid-range climate-warming 

scenarios it has been predicted that 15 – 37 % of species will be ‘committed to extinction’ 

by 2050 (26).  

The main cause of this global climate change is greenhouse gas emission that alters the 

Earth’s atmospheric composition (27). However, land use change has a profound impact 

on regional climate as well (27,28). Simulations show a significant increase in 

temperature and a significant decrease in evapotranspiration over the Amazon basin in 

response to deforestation (29).  

Urban Heat Islands 

The most drastic change in temperature caused by humans can be found within cities. 

Here temperatures are typically increased compared to their rural surrounding (30). This 

temperature anomaly is thus called urban heat island (UHI). It exists in all diverse layers 

of a city, from atmosphere (31-33) to surface (34,35) to groundwater (36), and is most 

often quantified by the so called urban heat island intensity (UHII), the difference in 

maximal urban temperatures and rural background temperatures (30). Above ground 

UHIs vary greatly throughout the year (37,38) and day (32,39). Maximal UHIIs are 

commonly observed during nighttime and in summer (40). However, depending on 

location, UHIs display major differences, especially during daytime (34). When 

comparing the properties of UHIs for different biomes within the USA, Imhoff et al. 

found that cities in desert and xeric shrublands commonly display urban cooling during 

summer days. At the same time cities in temperate broadleaf and mixed forest (northern 

group) had UHIIs of more than 9 K (41).  

Above ground UHIs have a tremendous impact on human life, energy consumption 

and the urban ecosystem (42). They increase vulnerability to heat-related morbidity and 

mortality (43,44): In France, for example, most consequences of the heat wave in August 

2003 occurred in Paris, where an increase of 130 % in expected mortality was observed 

(45). Furthermore, the cooling demand of buildings within a city center is approximately 

13 % higher than in similar buildings in rural areas (46). Watkins et al. (2002) determined 

a 22% reduction in heating load and a 25 % cooling load increase for central London (47). 

UHIs also change urban phenology: plants tend to develop up to a few weeks earlier in 

cities compared to their rural surrounding (48). In colder climates, UHIs are further linked 

to an increase in soft scale insect pests (49) and arthropods (50).  
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Subsurface urban heat islands (SUHI) have been observed in various cities worldwide 

such as Virginia Beach, USA (51), Winnipeg, Canada (52), London, UK (53), 

Oberhausen, Germany (54), Istanbul, Turkey (55), Jakarta, Indonesia (56), Osaka, Japan, 

and Bangkok, Thailand (57). While various unfavorable issues originate from the UHI in 

the atmosphere, the SUHIs provide economic and ecological advantages for the use of 

shallow geothermal energy systems (58). Arola and Korkka-Niemi (2014) showed that in 

southern Finland about 50 - 60 % more peak heating power could be utilized from urban 

areas in contrast to rural areas (59). Furthermore, the geothermal potential of SUHI 

exceeds the annual residential heating demand in many urban areas (60). Extracting this 

energy efficiently could reduce emission of CO2 and other greenhouse gases (61,62).  
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1.2. Objectives 

The first aim of this study is to contribute to a better understanding of global shallow 

groundwater temperatures (GWT) by establishing a link between satellite-derived land 

surface temperature (LST) and measured GWT. In addition the influence 

evapotranspiration and snow cover have on this link will be quantified and used to 

estimate shallow groundwater temperatures on a global scale.  

Further aims of this study are related to the human impact on local temperatures. One 

focus is to quantify said impact for larger, countrywide areas and to study the impact 

smaller settlements and industrial sites have on temperatures in air, surface and 

groundwater. Subsequent to the identification of non-urban anthropogenic heat anomalies, 

another aim is to better understand the spatial properties and sources of subsurface urban 

heat islands (SUHI). In addition, the question of SUHIs as a sustainable source of 

geothermal heating will be addressed. 

Finally, this study aims to answer the question whether above and below ground urban 

heat islands are linked and to develop a method to estimate urban GWT from satellite-

derived data utilizing the findings from the before mentioned aims.  
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1.3. Structure of the Thesis 

The presented work is a cumulative dissertation that consists of four individual studies 

enclosed in Chapters 2 - 5. In Chapter 6 the individual results of these studies will be 

connected followed by a summary and conclusion. All studies were submitted to ISI-

listed journals. Two of them are already published, one is in press, and one is currently 

under review.  

Chapter 2 contains the third study “Global Patterns of Shallow Groundwater 

Temperatures”. It is currently under review at Environmental Research Letters and 

discusses the offset between shallow groundwater temperatures and land surface 

temperatures on a global scale. On the basis of 2,584 groundwater temperature 

measurement points in 29 countries this offset is linked to evapotranspiration and snow 

cover through latent heat flow and insulation. Considering these two processes, a global 

map of estimated shallow groundwater temperatures is presented.  

In Chapter 3 the fourth study of this dissertation is given. It is entitled “Identifying 

anthropogenic anomalies in air, surface and groundwater temperatures in Germany” and 

has been accepted by Science of the Total Environment. This study explores the 

anthropogenic influence on the thermal regime of Germany for surface air temperature, 

land surface temperature and shallow groundwater temperatures alike. A novel parameter, 

the anthropogenic heat intensity, is introduced that quantifies the human impact on 

temperatures for each measurement point (for surface air temperature and shallow 

groundwater temperature) or pixel (for land surface temperature) individually, regardless 

of land cover and land use. Using this parameter the human impact on air, surface and 

groundwater is compared, and main instances of anthropogenic temperature anomalies 

are identified. Furthermore the impact of smaller settlements and industrial sites on 

temperature is studied. 

Chapter 4 gives the first study entitled “Spatial Resolution of Anthropogenic Heat 

Flux into Urban Aquifers”, published in Science of the Total Environment. It quantifies 

the main drivers and potential of subsurface urban heat islands for Karlsruhe and Cologne, 

Germany. A statistical analytical heat flux model is developed which determines the 

spatial variability of the anthropogenic heat flux into the subsurface for six dominant heat 

sources: elevated surface temperatures, buildings, sewage systems, sewage leakage, 

subway tunnels, and district heating networks. To account for the uncertainty of all input 

parameters a Monte Carlo approach is integrated into the model. Furthermore the 

determined annual anthropogenic heat flow into the urban underground is compared to 

the annual heating demand in order to find the sustainable geothermal potential of both 

cities. 

Chapter 5 is the second publication, “Linking Surface Urban Heat Islands with 

Groundwater Temperatures”. It was previously published in Environmental Science & 
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Technology. Using satellite-derived land surface temperatures and interpolated 

groundwater temperature measurements, the spatial properties of surface and subsurface 

urban heat islands are compared. Main differences are linked to the anthropogenic heat 

flux determined in Chapter 4. At the example of four German cities a novel estimation 

technique is introduced that relates urban groundwater temperatures to mean annual land 

surface temperatures, building density and elevated basement temperatures. Additionally 

the influence of groundwater flow on temperature is taken into account for Karlsruhe and 

Cologne. 

Finally, Chapter 6 combines findings from Chapter 2 and Chapter 5 and illustrates a 

method to estimated shallow urban groundwater temperatures that considers all relevant 

parameters mentioned above: land surface temperature, evapotranspiration, snow cover, 

building density, and elevated basement temperatures.  
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2. Global Patterns of Shallow Groundwater 

Temperatures 

Reproduced from: Benz, S. A.; Bayer, P.; Blum, P., Global patterns of shallow 

groundwater temperatures, Environmental Research Letters, under review. 

Graphical Abstract 
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Abstract 

Below our feet, shallow aquifers are habitat, provide drinking water, and serve as 

sustainable energy source, all of which are crucially impacted by the thermal regime of 

the subsurface. Due to the limited accessibility of aquifers however, temperature 

measurements are scarce. Most commonly, shallow groundwater temperatures are 

approximated by adding an offset to annual mean surface air temperatures. Yet, the value 

of this offset is not well defined, often arbitrarily set, and rarely validated. Here, we 

propose the usage of satellite-derived land surface temperatures instead of surface air 

temperatures. 2,548 measurement points in 29 countries are compiled, revealing 

characteristic trends in the offset between shallow groundwater temperatures and land 

surface temperatures. Here it is shown that evapotranspiration and snow govern this offset 

globally through latent heat flow and insulation. Considering these two processes only, 

global shallow groundwater temperatures are estimated in a resolution of approximately 1 

km  1 km. When comparing these estimated groundwater temperatures with measured 

ones a coefficient of determination of 0.95 and a root mean square error of 1.4 K is found. 
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2.1. Introduction 

Sustainable water resources and energy supply are two of the main challenges in 

today’s society (e.g. (63-67)). Shallow groundwater temperatures play a crucial role in 

both of these challenges. For example, they affect microbial activity in aquifers thus, 

giving a unique insight into oxygen depletion in huge quantities of the Earth’s water 

supply (68), and are the key factor to determining the usability and the potential of 

shallow geothermal energy (60,69,70). Additionally, the temperatures of the surface and 

subsurface are closely linked. The coupling between both is utilized to reconstruct ground 

surface temperature histories using both borehole temperature data (71,72) and noble gas 

temperatures (73), and to analyze the impact of climate change on the subsurface 

(25,74,75). There is growing interest in understanding the effect of the thermal and 

hydrogeological regime of the subsurface on climate (76). A main hurdle, however, is the 

uncertainty of shallow groundwater temperature (GWT) distribution. Since direct 

measurements are scarce and measurement points are limited, GWT is typically estimated 

by adding an offset to annual mean surface air temperatures. While the existence of this 

offset has long been discussed (77), its value has yet to be validated on a larger scale.  

In a closed system without latent heat, the surface energy balance predicts near surface 

temperatures and shallow subsurface temperatures to be in equilibrium. Accordingly, 

studies set in warm or moderate climate find the offset between both close to zero (78). 

On a global scale, however, it is highly variable. Latent heat caused by evapotranspiration 

(ET) plays a key role in the surface energy balance. Its effects on surface climate have 

been thoroughly discussed (79) and it has been determined that an increase in ET will 

decrease measured surface temperatures (80). Additionally, ET is closely linked to natural 

precipitation and recharge (81). This effect is most often discussed in regards to 

groundwater availability in changing climates (82,83); however recharge also affects 

shallow GWTs directly (8). Still, the effect of ET on the offset between land surface 

temperature (LST) and GWT is unknown. 

In higher and colder latitudes the offset is often dominated by snow. Here, with its low 

thermal conductivity, the snow cover functions as an insulator and prevents the 

conduction of cold surface temperatures into the subsurface layer (84). Studies set in 

northern regions found subsurface temperatures to be significantly warmer than surface 

temperatures (18,85). 

On a regional scale, shallow GWT is also influenced by a multitude of factors such as 

anthropogenic heat flux (86), geothermal hot spots, groundwater flow, and groundwater 

depth (87) since temperature typically increases with depth. 

Here, we focus on the global scale offset between the 10-year mean groundwater 

temperatures (GWT) and surface temperatures. Since annual mean surface air 

temperatures are only available in areas where long-term monitoring stations are installed, 
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we propose the use of satellite-derived land surface temperatures (LST) instead. By 

comparing a global dataset of measured GWT with decadal mean LST, we determine and 

analyze the offset ∆𝑇 = 𝐺𝑊𝑇 − 𝐿𝑆𝑇  and quantify the influence from ET and snow cover. 

Other more regional influences cannot be addressed globally. Finally, the offset and 

therefore GWTs are estimated on a global scale using only satellite-derived data. 
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2.2. Material and Methods 

2.2.1. Groundwater Temperatures 

Overall, 2,548 shallow measurement points in 29 countries and two overseas territories 

were compiled that provide (multi)-annual mean groundwater temperatures (GWT) 

without a seasonal bias (Table S2.1). The distribution of GWT data is uneven and has a 

bias towards the northern hemisphere, with only 14 % of all measurement points being 

located south of the equator. However, this is not considered crucial since the offset 

between GWT and land surface temperature (LST) in both hemispheres show similar 

behavior for equal latitudes (Fig. S2.1). Because all measurement points are south of 61° 

latitude, GWTs closer to the polar regions are not addressed. 

All measurements were performed in a depth of less than 60 m, including springs, 

since this is the minimum depth that a temperature signal penetrates in 10 years (9,88). 

However, the majority of the points correspond to measurements in a depth of no less 

than 30 m. At each measurement point, GWTs were read at least once in the time frame 

of 01/Jan/2005 to 31/Dec/2014. While temperatures measured in a depth of more than 20 

m generally do not indicate any seasonal influences (10), temperatures measured above 

this depth do (9). Hence, the temperatures have to be measured uniformly over the span 

of the various seasons to generate a bias-free mean. To estimate whether the mean 

temperature of a measurement location is biased by seasonal temperature variations, a 

variable called seasonal radius r is introduced. It determines whether measurements were 

taken uniformly over the span of the seasons (r = 0) or if all measurements were taken in 

the same month (r = 1). To determine r, every measurement of a time series is first 

converted to a vector with a length of 1.0 and a direction corresponding to the month of 

measurements. Next, the mean of all measurement-vectors of a single measurement point 

is determined. The length of the resulting mean vector is the seasonal radius. Figure S2.2a 

gives an example of a well that was measured twice, once in November and once in June. 

Figure S2.2b depicts the seasonal radii of all analyzed measurement points with a 

measurement depth of less than 20 m located in France and its overseas territories (Table 

S2.1). The influence of this seasonal radius on GWTs was analyzed (Fig. S2.3) and it was 

found that measurement points with a seasonal radius ≤ 0.25 can be considered bias free. 

Hence, the following rules for measurement point selection were determined: 

 The maximum measurement depth is 60 m.  

 If the measurement depth is ≤ 20 m, only points that have a seasonal radius of 

≤ 0.25 were considered. 

 If the measurement depth is not known, only points that have a well depth 

≤ 60 m and a seasonal radius ≤ 0.25 were considered.  
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 If neither measurement depth nor well depth are known but the raw data shows 

seasonal variations of more than 1 K, points with a seasonal radius ≤ 0.25 were 

considered. 

 If temperatures were taken after pumping, only points with a well depth 

between 20 m and 60 m were considered.  

2.2.2. Land Surface Temperatures 

To determine the 10-year arithmetic mean (01/2005 – 12/2014) of land surface 

temperatures (LST) we used MODIS daily products MOD11A1 and MYD11A1 (15,89), 

as obtained from NASA’s TERRA and AQUA satellites, courtesy of the NASA Land 

Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 

Observation and Science (EROS) Center, Sioux Falls, South Dakota, 

https://lpdaac.usgs.gov. Each satellite views the entire planet twice daily giving four LST 

measurements a day. MODIS-derived LSTs have been previously validated by several 

studies (16,90-92). Because LSTs are only retrieved for clear sky observations, they have 

a bias towards non cloudy days. To correct for this bias in regards to the seasonal 

variations of cloud cover, the 10-year mean was determined in three steps. First, the mean 

temperature of each month was determined for the years 2005 to 2014. Out of these, the 

10-year mean for each month was determined before combining this data to a single 10-

year mean map. This was performed using Google Earth Engine (93) and was exported in 

a resolution of approximately 1 km × 1 km (0.009° × 0.009°).  

Over the analyzed 10-year time period no significant change in global LST is observed 

(Fig. S2.4). Hence, climate change was not consider when comparing 10-year mean LSTs 

with GWTs that were often measured only towards the end of the late analyzed 10-year 

time period. 

2.2.3. Evapotranspiration 

Evapotranspiration data was gathered from the Noah 2.7.1 model in the Global Land 

Data Assimilation System (GLDAS) data products Version 1 (94) (spatial resolution: 

0.24°). These evapotranspiration data have previously been validated by several studies 

(95-98). In this study, the decadal mean (01/2005 – 12/2014) evapotranspiration (ET) was 

determined using the Google Earth Engine (93) and was exported in a resolution of 

approximately 1 km × 1 km. 

2.2.4. Snow Days 

Information on snow days was derived from MODIS Terra and Aqua Snow Cover 

Daily L3 Global 500 m Grid, Version 5 (99), products MOD10A1 and MYD10A1, 

courtesy of the National Snow and Ice Data Center (NSIDC). The data has previously 

https://lpdaac.usgs.gov/
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been validated by several studies (100-102). Using Google Earth Engine (93), the 

percentage of snow days in the 10 years from 01/2005 to 12/2014 was determined by 

dividing the number of days classified as “snow” by the sum of the days classified as 

either “no snow” or “snow”. The data was exported in a resolution of approximately 1 km 

× 1 km. 

2.2.5. Estimating Groundwater Temperatures 

In this study GWTs are estimated using satellite-derived data only. Two distinct effects 

on the offset between GWT and LST are quantified: snow cover insulates warm 

groundwater temperatures and latent heat flux, caused by evapotranspiration, factors into 

the surface energy balance, thus decreasing LSTs. The total offset, Δ𝑇𝑇𝑜𝑡𝑎𝑙 = Δ𝑇𝐸𝑇 +

Δ𝑇𝑆  can be described as the superposition of the offsets caused by evapotranspiration 

(∆𝑇𝐸𝑇) and the offsets caused by the duration of snow cover (∆𝑇𝑆). The latter is quantified 

as the percentage of snow days during the analyzed 10 years. Because both pairs (ET and 

latent heat, and snow days and insulation) are linearly dependent, a linear fit Δ𝑇𝑇𝑜𝑡𝑎𝑙 =

Δ𝑇𝐸𝑇 + Δ𝑇𝑆 = (𝑎 ∙ 𝐸𝑇) + (𝑏 ∙ 𝑠𝑛𝑜𝑤 𝑑𝑎𝑦𝑠) is used to estimate the global offset. Fitting 

was performed in MATLAB R2013a with the function “nlinfit” for nonlinear regression. 

The coefficients are estimated using iterative least squares estimation. Initial values are 

𝑎 = 104 K  
s ∙m2

kg
 and 𝑏 = 7 K . The 95 % prediction interval half-width for a new 

observation was determined using the function “nlpredci”. 
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2.3. Results and Discussion 

The compiled ten year mean land surface temperatures (LST) and (multi)-annual mean 

groundwater temperatures (GWT) are displayed in Figure 2.1. For 83 % of all 

measurement points, GWTs are warmer than LST. The average offset ∆𝑇 = 𝐺𝑊𝑇–𝐿𝑆𝑇 

is 1.2 ± 1.5 K (Fig. S2.6). The influence of GWT measurement depth on the offset was 

analyzed for all measurement points with a known measurement depth (Austria, France 

and its overseas territories, Table S2.1). It revealed an increase in temperature by only 

0.02 K/m (Fig. S2.5). Consequently, the impact of depth on mean groundwater 

temperature (GWT) was disregarded. 

 

Figure 2.1. Global map of land surface temperature (LST) and shallow groundwater temperature 

(GWT). LST is given as the 10-year mean (01/2005-12/2014) of daily MODIS products 

MOD11A1 and MYD11A1. The bias towards cloud free days was corrected in respect to seasonal 

cloud cover variations. (Multi)-annual mean GWTs were collected during the same time period in 

a depth of down to 60 m below ground. 

Overall the lowest offset is -6.1 K (LST: 16.5°C; GWT: 10.5 °C, daily measurements 

from 01/2013 to 05/2014) in a spring in the Black Rock Desert - High Rock Canyon 

Emigrant Trails National Conservation Area, Nevada, USA (Fig. S2.7b, Table S2.1). The 

highest offset of 11.0 K (LST: 2.0°C; GWT: 13 °C, one measurement in 06/2005 at a 

depth in between 21 and 40 m below ground) is measured in Erdenet, Mongolia 
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(Fig. S2.7c, Table S2.1). It is plausible that the high GWT is caused by the subsurface 

urban heat island phenomenon (36), where GWTs are raised by anthropogenically 

induced heat flow (86) from underground structures such as buildings or, in this specific 

case, the local copper-molybdenum mine (103). 

 

Figure 2.2. Relationship between a) groundwater temperature (GWT) and land surface 

temperature (LST) and b) estimated and measured GWT. The line of equality is given in dark 

grey. 

Despite these extreme examples, global GWT and LST values correlate well, with a 

Pearson correlation coefficient of 0.97, a coefficient of determination (R²) of 0.90 and a 

root mean square error (RMSE) of 1.9 K (Fig. 2.2a). As expected, the data indicates that 

GWTs are elevated compared to LSTs for the coldest and warmest temperatures. These 

differences are caused by the two distinct effects discussed previously: in areas with 

lower temperatures snow cover insulates warm groundwater temperatures during the 

winter month raising the annual mean; in warmer and more humid areas latent heat flux 

caused by evapotranspiration (ET) factors into the surface energy balance, thus 

decreasing LSTs. Several measurement points located in moderate climate regions are 

affected by both factors (Fig. S2.8). Hence, the offset between GWT and LST is 

discussed as a superposition of an offset caused by ET and an offset caused by snow 

cover (Δ𝑇𝑇𝑜𝑡𝑎𝑙 = Δ𝑇𝐸𝑇 + Δ𝑇𝑆). 

2.3.1. Estimating Groundwater Temperatures 

The influence of evapotranspiration (ET) on the offset is displayed in Fig. 2.3a. As 

expected, an increase in ET raises ∆𝑇𝐸𝑇. However, measurement points in arid regions 

such as Chile, the western USA, and the Arabian Peninsula with a low ET have a negative 

offset, indicating colder GWTs than LSTs (Fig. S2.8a). Since the surface energy balance 

predicts equilibrium between the surface and subsurface temperatures in the absence of 

latent heat, additional local causes such as irrigation must be at play here. However, 

additional local studies are required to fully understand the offset between GWT and LST 

in these arid regions. 
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Fig. 2.3c and Fig. S2.8b depict the influence of surface snow cover on the offset 

between GWT and LST. The data shows that the percentage of snow days increases 

annual mean GWTs and therefore raises the offset ∆𝑇𝑆. 

 

Figure 2.3. Evapotranspiration (ET) and snow influence the offset ∆T between groundwater 

temperature (GWT) and land surface temperature (LST). a) The influence of ET on ∆T. Color 

coding shows the percentage of snow days at each measurement point. The red line gives the 

fitted offset ∆TET. The 95% prediction interval (for 0 % snow days) is given in grey. b) Global 

map of ET. c) The influence of snow on ∆T. Color coding shows the corresponding ET. The red 

line gives the fitted offset ∆TS, in grey the 95% prediction interval (for 0 mg/m²/s ET). d) Global 

map of the percentage of snow days. 

The best fit is obtained by the following solution: 

∆𝑇𝑇𝑜𝑡𝑎𝑙 =  Δ𝑇𝐸𝑇 + Δ𝑇𝑆 

=  (𝑎 ∙  𝐸𝑇) +  (𝑏 ∙  𝑠𝑛𝑜𝑤 𝑑𝑎𝑦𝑠) 

= (3.5 ± 0.2) ⋅ 104  𝐾
𝑚2 ⋅ 𝑠

𝑘𝑔
  ⋅ 𝐸𝑇  

      =  + (6.6 ± 0.3)𝐾 ⋅ 𝑠𝑛𝑜𝑤 𝑑𝑎𝑦𝑠  

(1) 

The half width of the confidence interval is given as the uncertainty. The RMSE of the 

fit is 1.4 K. Figs. 2.3a and 2.3c display ∆𝑇𝐸𝑇 and ∆𝑇𝑆 separately, and a surface plot of 

Δ𝑇𝑇𝑜𝑡𝑎𝑙 is given in Fig. S2.9. This fit implies an increase in the offset of 0.035 ± 0.002 K 

per mg/m²/s of ET and an increase of 0.066 ±0.003 K for each percent in snow days. The 

determined ∆𝑇𝑇𝑜𝑡𝑎𝑙  is added to LST to estimate GWTs for all analyzed measurement 

points (Fig. 2.2b, Fig. S2.10). As expected, GWTs from urban areas such as the data from 

Mikkeli, Finland (Table S2.1, Fig S2.11e) are severely underestimated, on average by 

3.8 K, as heat flux from buildings has to be considered as well (104) for an accurate 

estimation. Additionally, measured GWTs in (semi-)arid regions with only minor ET, 
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such as the Lower Jordan Valley (Fig. S2.11b), are on average 2.3 K lower than estimated 

GWTs. Here irrigation is assumed to be the main source of recharge (105). In spite of 

these local discrepancies, estimated and measured GWT agree well. While they correlate 

the same as LST and GWT (Pearson correlation coefficient: 0.97), R² increases by 0.05 to 

0.95, and the RMSE (1.4 K) is improved by 0.5 K compared to the one between GWT 

and LST. 

 

Figure 2.4. a) Estimated offset between land surface temperatures (LST) and shallow 

groundwater temperatures (GWT). b) Estimated shallow GWTs. 

By applying this method to global datasets of decadal mean evapotranspiration and 

snow days (Figs. 2.3b and 2.3d), a global map of the expected offset was created (Fig. 

2.4a). It ranges from 0 K in the arid regions such as Northern Africa, the Arabian 

Peninsula and central Australia to more than 6 K in the polar regions. However, with no 

available measurement points in such high latitudes, further research is needed to validate 

these findings. The average half-width of the 95 % prediction interval is 2.76 ± 0.03 K 
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(Fig. S2.12). By adding the estimated offset to the measured LSTs, shallow global 

groundwater temperature is estimated (Fig. 2.4b).  
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2.4. Conclusion 

The main focus of this study was on the global scale offset between 10-year mean 

groundwater temperatures (GWT) and satellite-derived land surface temperatures (LST). 

A total of 2,548 shallow GWT measurement points in 29 countries and two overseas 

territories are utilized to analyze the offset ∆𝑇 = 𝐺𝑊𝑇 − 𝐿𝑆𝑇 . We find that GWTs are 

warmer than LST in 83 % of all measurement points. The average offset is 1.2 ± 1.5 K 

with highest differences between GWT and LST in both the warmest and coldest areas of 

Earth. These high offsets are linked to evapotranspiration, which alters the latent heat 

flow and therefore surface energy balance, and snow cover, which insulates warm GWTs 

during the winter. We are able to quantify the influence from ET and snow cover and to 

describe the global offset between GWT and LST as a superposition of both effects. 

Hence, global shallow groundwater temperatures can be estimated using only satellite-

derived data. However, it is important to note that groundwater flow is not yet considered. 

A previous study by Benz et al. (2016) found that, on a city scale, the Pearson correlation 

coefficient between GWT and LST can be increased by 6 % to 10 %, if groundwater flow 

is scrutinized (104). Additionally, GWT anomalies caused by other regional effects such 

as geothermal hotspots, fossil groundwater and subsurface urban heat islands cannot be 

resolved with the presented method. Still, the proposed estimation technique provides 

shallow global GWTs with a RMSE of only 1.4 K and a coefficient of determination R² 

of 0.95.  
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Supplementary Material 

 

Figure S2.1. Offset ∆T=GWT-LST between groundwater temperatures (GWT) and land surface 

temperatures (LST) depending on the latitude. 

 

Figure S2.2. Determination of the seasonal radius. a) Exemplarily determination of the seasonal 

radius (length of the red arrow) of a single measurement point measured once in June and once in 

November. In this case, the seasonal radius r = 0.26. b) Seasonal radius of all analyzed 

measurement points in France and its overseas territories (Table S2.1) with a depth of less than 20 

m. Only points within the grey circle (radius = 0.25) are considered to be bias-free regarding 

seasonal temperature fluctuations. 
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Figure S2.3. Influence of the seasonal radius r on the offset between groundwater temperature 

(GWT) and land surface temperature (LST). In black all measurement points in France and its 

overseas territories (Table S2.1) with a measurement depth < 20 m. The red line gives the moving 

average (0.05). At r = 0.25 the offset is 1.1 K. In the next step to r = 0.275 it jumps by more than 

half a Kelvin to an offset of 0.4 K. Thus, we considered all measurement points with r≤0.25 to be 

bias free regarding seasonal temperature fluctuations. 

 

Figure S2.4. Change ∆T of annual mean land surface temperature for all available MODIS pixels 

during the analyzed time period 2005 to 2014. Shown is in red the median temperature change 

(from the reference year 2005) of all analyzed pixels. The inner 90 percentiles are given in light 

grey. As 2005 was a particular warm year, no significant change in annual mean temperatures can 

be observed in this time period. 
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Figure S2.5. Influence of measurement depth on the offset between groundwater temperature 

(GWT) and land surface temperature (LST). All measurement points with a known measurement 

depth are shown. Measurement locations in France and its overseas territories are given in black, 

measurement locations in Austria in grey (Table S1). The red line gives the moving average (11 

m). The most shallow (corresponding to 0 m - 10 m) average offset is 0.9 K, the deepest 

(corresponding to 50 - 60 m) average offset is 1.9 K implying a minor geothermal gradient of 

approximately 0.02 K/m. 

 

Figure S2.6. Offset ∆T=GWT-LST between groundwater temperatures (GWT) and land surface 

temperatures (LST). 
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Figure S2.7. Relationship between land surface temperature (LST) and groundwater temperature 

(GWT) color coded according to the origin of the measurement points. 
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Figure S2.8. Relationship between land surface temperature (LST) and groundwater temperature 

(GWT) color coded according to a) evapotranspiration and b) snow days. 

 

Figure S2.9. The influence of evapotranspiration (ET) and snow on the offset ∆T between 

groundwater temperatures (GWT) and land surface temperatures (LST). The best fit ∆𝑇𝑡𝑜𝑡𝑎𝑙 =

∆𝑇𝐸𝑇 + ∆𝑇𝑆 is given as a surface. 
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Figure S2.10. Comparison of a) land surface temperature (LST) and groundwater temperature 

(GWT), b) LST + ∆TET and GWT, and c) LST + ∆TET+ ∆TS and GWT. 



Global Patterns of Shallow Groundwater Temperatures 
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Figure S2.11. Comparison of estimated and measured groundwater temperatures (GWT) color 

coded according to the origin of the measurement points. 
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Figure S2.12. Uncertainty of the estimated groundwater temperature (GWT). The uncertainty is 

given as the half-width of the 95 % prediction interval for new observations. 

 



 

 

Table S2.1. Groundwater data used in this study. 

  Measurement 

points 

Well depth Measurement 

depth 

Seasonal 

radius 

Year Source Comment 

Algeria 19 - - 0.0 2008 Touhari et al. (2014) (106) Raw data shows seasonal 

variation 

Australia 25 < 30 m - < 0.1 2008 - 

2015 

Department of Primary 

Industries, Parks, Water and 

Environment (DPIPWE) (107) 

Measuring interval: 15 min; 

measurement points in Tasmania 

35 < 30 m - < 0.25 2005 - 

2015 

Department of Environment, 

Land, Water & Planning 

(DELWP) (108) 

Measurement points in Victoria 

Austria 1063 - 0 - 30 m < 0.25 2005 - 

2013 

Abteilung Wasserhaushalt im 

BMLFUW (109) 

Monthly means  

Benin 1 - - 0.2 2005 - 

2009 

Isotope Hydrology Atlas of 

Africa, IAEA (110) 

Raw data shows seasonal 

variation 

Cambodia 5 < 42 m - 1.0 2005 Buschmann et al. (2007) (111) Water was pumped from well 

Cameroon 15 21 - 59 m - 1.0 2007 Isotope Hydrology Atlas of 

Africa, IAEA (110) 

- 

Canada, 

Quebec 

179 - - < 0.2 2005 - 

2015 

Ministre du Développement 

durable, de l’Environnement et 

de la Lutte contre les 

changements climatiques (112) 

Daily measurements; 

Temperature from top of the 

aquifer (0 - 45 m); 

Central 

African 

Republic 

2 - - 0.0 2011 - 

2012 

Isotope Hydrology Atlas of 

Africa, IAEA (110) 

Raw data shows seasonal 

variation 

Chile 25 - - 1.0 2014 Munoz et al. (2015) (113) Temperature from top of the 

aquifer (20 - 60 m); some water 

was pumped from well  

Costa Rica 10 - - 0.1 2008 - 

2009 

Isotope Hydrology Atlas of the 

Americas, IAEA(110)  

Raw data shows seasonal 

variation 



 

 

  Measurement 

points 

Well depth Measurement 

depth 

Seasonal 

radius 

Year Source Comment 

Denmark 45 < 60 m - - 2005 - 

2015 

GEUS (114)  Only median temperature given 

- minimum of 5 measurements 

Finland 14 20-60 m - < 1.0 2005 - 

2011 

Britschgi et al.(115) Measurement points in Mikkeli 

France 127 - 0 - 60 m < 1.0 2005 - 

2015 

BRGM (116) Measurement points in 

Metropolitan France 

9 - 4 - 60 m < 0.6 2005 - 

2015 

BRGM (116) Measurement points in 

Caribbean 

9 - 20 - 60 m 0.3 - 0.7 2005 - 

2015 

BRGM (116) Measurement points in French 

Guiana 

Germany 330 0 - 30 m 0-30 m < 0.25 2005 - 

2015 

LUBW (117) Includes springs; measurement 

points in Baden-Württemberg  

45 - 20 m 1.0 2012 Benz et al. (2015) (86) Measurement points in Cologne 

90 - 5 - 15 m 0.0 2011-

2012 

Benz et al. (2015) (86) Daily measurements; 

measurement points in 

Karlsruhe  

Guatemala 2 - - 0.25 2007 Isotope Hydrology Atlas of the 

Americas, IAEA (110) 

Raw data shows seasonal 

variation 

Honduras 13 - - < 0.2 2005 - 

2007 

Isotope Hydrology Atlas of the 

Americas, IAEA (110) 

Raw data shows seasonal 

variation 

Indonesia 11 - ca. 20 - 30 m 1.0 2006 Irawan et al (2015) (118) Depth only as difference to river 

water level given 

9 - 0 - 30 m < 1.0 2009-

2010 

Eiche (unpublished) Includes springs  

Iraq 7 - - 1.0 2010 Jassas et al. (2015) (119,120) Temperature from top of the 

aquifer (20 - 60 m) 



 

 

  Measurement 

points 

Well depth Measurement 

depth 

Seasonal 

radius 

Year Source Comment 

Jordan 1 - - 0.1 2007 - 

2009 

DAISY-Harvester (121) Raw data shows seasonal 

variation, measuring interval: 15 

min 

9 - - 0.0 2011 Zemann et al. (2014, 2015) 

(105,122) 

Raw data shows seasonal 

variations, includes springs 

Kenya 2 - - 0.2 2011 - 

2013 

Isotope Hydrology Atlas of 

Africa, IAEA (110) 

Raw data shows seasonal 

variation 

Malawi 21 < 60 m - 1.0 2013 Mapoma et al. (2016) (123) Water was pumped from well 

Mongolia 7 < 60 m - 1.0 2007 - 

2012 

Pfeiffer et al (2015) (124) Water was pumped from well 

5 22 - 47 m - 1.0 2005 - 

2006 

Isotope Hydrology Atlas of 

Asia, IAEA (110) 

- 

South Korea 4 31 - 60 m - 1.0 2005 Isotope Hydrology Atlas of 

Asia, IAEA (110) 

- 

Syria 4 - - < 0.2 2005 Isotope Hydrology Atlas of 

Asia, IAEA (110) 

Raw data shows seasonal 

variation 

Tanzania 5 - 0 m 0.0 2005-

2006 

Delalande (2008) (125) Springs 

Ukraine 17 - - 0.0 2014 Vystavna et al. (2015) (126); 

Yakovlev et al. (2015) (127) 

Raw data shows seasonal 

variation 

USA 95 < 30 m - <.25 2005 - 

2015 

USGS (128) Daily mean, includes springs 

Vietnam 287 < 60 m - 1.0 2005 & 

2007 

Winkel et al (2010) (129) Water was pumped from well 

Yemen 1 20 m - 1.0 2008 Alderwish et al (2011) (130) Water was pumped from well 

SUM/ 

AVERAGE 

2,548 32 ± 16 m 11 ± 9 m 0.2 ± 0.4 2005 - 

2015 

- - 
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3. Identifying Anthropogenic Anomalies in Air, Surface 

and Groundwater Temperatures in Germany 

Reproduced from: Benz, S. A., Bayer, P., Blum, P., Identifying anthropogenic 

anomalies in air, surface and groundwater temperatures in Germany. Sci. Total 

Environ., in press.  

Graphical Abstract 
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Abstract 

Human activity directly influences ambient air, surface and groundwater temperatures. 

The most prominent phenomenon is the urban heat island effect, which has been 

investigated particularly in large and densely populated cities. This study explores the 

anthropogenic impact on the thermal regime not only in selected urban areas, but on a 

countrywide scale for mean annual temperature datasets in Germany in three different 

compartments: measured surface air temperature, measured groundwater temperature, and 

satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural 

areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and 

provides the difference between measured local temperature and median rural background 

temperature. This concept is analogous to the well-established urban heat island intensity, 

but applicable to each measurement point or pixel of a large, even global, study area. For 

all three analyzed temperature datasets, anthropogenic heat intensity grows with 

increasing nighttime lights and declines with increasing vegetation, whereas population 

density has only minor effects. While surface anthropogenic heat intensity cannot be 

linked to specific land cover types in the studied resolution (1 km × 1 km) and 

classification system, both air and groundwater show increased heat intensities for 

artificial surfaces. Overall, groundwater temperature appears most vulnerable to human 

activity, albeit the different compartments are partially influenced through unrelated 

processes; unlike land surface temperature and surface air temperature, groundwater 

temperatures are elevated in cultivated areas as well. At the surface of Germany, the 

highest anthropogenic heat intensity with 4.5 K is found at an open-pit lignite mine near 

Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual 

mean anthropogenic heat intensities > 4 K. Overall, surface anthropogenic heat 

intensities > 0 K and therefore urban heat islands are observed in communities down to a 

population of 5,000. 
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3.1. Introduction 

Climate and temperature are strongly affected by humans (4). The main cause of 

global climate change is additional greenhouse gas emission that alters the Earth’s 

atmospheric composition (27). However, human activity also affects temperatures on a 

smaller, local scale. Alterations of surface cover and land use influence the ambient 

thermal regime (131-133), and, in most cases, cause spatial heat anomalies. These local 

temperature anomalies are primarily described within the bounds of large urban 

settlements, where urban temperatures are elevated compared to their rural surrounding 

and form so-called urban heat islands (UHI) (34,134). These UHIs have a tremendous 

impact on human life, energy consumption and the urban ecosystem (42). In France, for 

example, most consequences of the heat wave in August 2003 occurred in Paris, where an 

increase of 130% in expected mortality was observed (45). Furthermore, the cooling 

demand of buildings within a city center is approximately 13% higher than in similar 

buildings in rural areas (46). UHIs also change urban phenology: plants tend to develop 

up to a few weeks earlier in cities compared to their rural surrounding
 
(48). However, 

with the current research mainly focusing on large city clusters, only little is known about 

the impact smaller communities and industrial sites have on ambient temperatures 

(135,136) and thus on phenology, energy consumption, and human health. 

Urban heat islands can be detected in the atmosphere (37,137) (e.g. surface air 

temperature, SAT), at the surface (138) (land surface temperature, LST) and in the 

subsurface (36) (groundwater temperature, GWT). However, the interplay between these 

different layers is not yet fully understood. A comparison of surface and subsurface UHIs 

in four German cities showed that, while surface and subsurface temperatures correlate, 

GWTs are elevated compared to LSTs (104). This is due to multiple sources of 

anthropogenic heat flux into the subsurface, such as the thermal energy release from 

buildings and reinjection of thermal wastewater (86). UHIs in the surface and atmosphere 

were compared for the city of Leipzig, Germany by Schwarz et al. (2012) (139). They 

revealed that air temperature and LSTs are related, even so, the UHI in the air was less 

pronounced. 

Urban heat islands are often quantified using the urban heat island intensity (UHII), 

which is the difference between rural background temperatures and highest urban 

temperatures (30). A critical component is the rural background temperature, which is not 

well defined yet and hence differs among presented studies (140,141). Both the MODIS 

Land Cover Product (34) and the ASTER land use land cover data (142) are currently 

used to differentiate rural areas. Some studies include elevation as an additional 

parameter for deriving rural background temperatures (138). In a study by Weber et al. 

(2014) the distance to the city center was additionally considered (143). While all of these 

approaches generally result in an improved understanding of urban heat islands, the 

variabilities of these results also prevent the comparability. Furthermore, use of non-
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standard measuring equipment can significantly increase the observed urban heat island 

magnitudes (144) and assessing UHIs becomes rather ambiguous. 

The key drivers of urban heat island intensity (UHII) are comprehensively studied 

(35,145,146). However, the results of these studies do not always agree. Oke (1973), for 

example, found that a cities’ atmospheric UHII increases with its population, P. In Europe, 

this dependency is expressed with the following fit: 𝑈𝐻𝐼𝐼 = 2.10 𝐾 ⋅ log 𝑃 − 4.06 𝐾 (R² 

= 0.74) (30). In contrast, Peng et al. (2012) found no evidence of population density 

driven surface UHII (34). They also showed only a modest correlation (R² of 0.0 to 0.18) 

between surface UHII and nighttime lights. Only recently though, Zhang et al. (2014) 

published results indicating a correlation R² of 0.83 to 0.85 between summer daytime 

surface urban heat islands and nighttime light anomalies (147). Most studies however 

agree on the effects of vegetation on UHII: within a park or green area, the average 

temperature difference to the urban surrounding is -0.94 K at the ground level (31). 

In this study, the human impact on ambient temperatures is quantified for three 

different compartments in Germany: Air, surface and groundwater. Because above- and 

below-ground temperatures are influenced differently by seasonal temperature variations 

(148,149), we chose to analyze annual mean temperatures to ensure comparability. As a 

universal parameter to quantify anthropogenic heat anomalies, the anthropogenic heat 

intensity (AHI) is introduced. It is closely related to the UHII, but determined for each 

pixel (for satellite-derived LST) or measurement point (for SAT and GWT) individually, 

regardless of land use and location. Hence, it provides the unique and novel opportunity 

to a) compare the anthropogenic impact on temperatures in air, surface and subsurface, b) 

to find main instances of anthropogenic temperature anomalies in Germany, and c) to 

study the impact of smaller settlements or industrial sites on ambient temperatures. 
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3.2. Material and Methods 

3.2.1. Material  

Surface Air Temperature  

Annual mean (2015) surface air temperature (SAT), measured 2 m above ground, was 

determined in 464 measurement points by taking the arithmetic mean of monthly mean 

values provided by the German Weather Service (Deutscher Wetter Dienst, DWD) 

through their Climate data center (150) (Fig. 3.1a) . SAT is on average 0.26 K colder than 

land surface temperatures at the same location. The Pearson correlation coefficient 

between the two is 0.81 (Fig. S3.1). 

 

Figure 3.1. Mean a) surface air temperature (SAT), b) land surface temperature (LST), and c) 

shallow (depth ≤ 30 m) groundwater temperature (GWT) of Germany in 2015.  

Land Surface Temperature 

Annual mean (2015) land surface temperature (LST) was determined from level-5 

MODIS daily products MOD11A1 and MYD11A1 (15), as obtained from NASA’s 

TERRA and AQUA satellites, courtesy of the NASA Land Processes Distributed Active 

Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) 

Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov. LST can only be determined 

for cloud-free days. As Germany has significantly less cloud-cover in summer than in 

winter, there is more LST data available for this period of the year. Following the 

approach by Benz et al., the annual mean was determined from monthly mean 

temperatures to eliminate this seasonal bias (151). This calculation was performed in 

https://lpdaac.usgs.gov/
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Google Earth Engine (93). The results were then exported at a resolution of 

approximately 1 km × 1 km (0.009° × 0.009°) (Fig. 3.1b). 

Groundwater Temperature 

Groundwater temperature (GWT) data are only available for the province of Baden-

Württemberg in the southwest of Germany. We determined annual mean shallow (<30 m 

depth) GWT in 251 measurement points (MP) for the year 2015 using data provided by 

the LUBW annual catalogue (Fig. 3.1c and Fig. S3.2a) (117). To ensure reliable annual 

mean data for each measurement point, only measurement points with a so-called 

seasonal radius r < 0.25 were used: r is 1.0 if all measurements at the location were 

conducted in the same month and 0.0 if measurements were uniformly made throughout 

the year. A seasonal radius that is smaller than 0.25 indicates an unbiased annual mean 

(151). The determined GWTs are on average 0.22 K colder than LST at the same location 

and the Pearson correlation coefficient is 0.82 (Fig. S3.1). 

Nighttime Lights 

Nighttime lights were compiled from Version 4 of the DMSP-OLS Nighttime Lights 

Time Series, Image and Data processing by NOAA's National Geophysical Data Center, 

and DMSP data collection by the US Air Force Weather Agency. Data were only 

available up to January 2014, hence 10-year mean (01/2004 – 12/2013) nighttime lights 

were chosen. The results were again exported at a resolution of approximately 1 km × 1 

km (Fig. 3.2a) using Google Earth Engine (93). For Germany, the spatial median 

nighttime light is at DN 8 (on a scale from DN 0 to DN 63); a histogram of all data is 

displayed in Fig. S3.3. Fig. 3.2b shows the relationship between nighttime lights and 

temperatures. LST and nighttime lights correlate and show a Pearson correlation 

coefficient of 0.55. 

Elevation 

Fig. 3.2c is an elevation map of Germany. Elevation data were derived from the Global 

30 Arc-Second Elevation (GTOPO30) available from the U.S. Geological Survey and 

downloaded using Google Earth Engine (93) with a resolution of approximately 1 km × 

1km. Fig. 3.2d displays the relationship between elevation and temperatures; the moving 

(± 150 m) average LST is given as a black line. The Pearson correlation coefficient 

between moving average LST and the corresponding elevation is -0.96. 

Land Cover 

Land cover classification for entire Germany was extracted from the GlobCover (2009) 

Project (Fig. S3.4) (152). In this study only the three most frequent entries of the land 

cover classification system (LCCS) are considered: A11 - Cultivated terrestrial areas and 
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managed lands; A12 - Natural and semi-natural terrestrial vegetation; and B15 - Artificial 

surfaces. Together they cover more than 98% of the entire analyzed area. Figure S3.5 

shows the influence of land cover on temperatures. Only minor differences 

(approximately 0.1 K) in mean LST are observed for the different LCCS entries. 

 

Figure 3.2. Influence of anthropogenic nighttime lights and elevation on land surface temperature 

(LST), surface air temperature (SAT), and groundwater temperature (GWT). The moving average 

LST is depicted in black in b) and d). 

Enhanced Vegetation Index 

The enhanced vegetation index (EVI) is taken from MODIS product Version-5 

MYD13A1 by courtesy of the NASA Land Processes Distributed Active Archive Center 

(LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux 

Falls, South Dakota. The annual mean (2015) EVI was determined in Google Earth 

Engine (93) and exported with a resolution of approximately 1 km × 1 km (Fig. S3.6a). 

The Pearson correlation coefficient between LST and EVI is -0.22 (Fig. S3.6b). 
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Population Data 

Population data were provided by the Federal Statistical Office of Germany and 

represents numbers acquired via a census conducted in 2011. In this study, we used both 

the spatial distribution of population density provided as a 1 km × 1 km dataset by the 

census database (Statistisches Bundesamt, Zensusdatenbank) (153) (Fig. S3.6c), and the 

total population of local communities available through Germany’s Regional Database 

(Statistisches Bundesamt, Regionaldatenbank) (154). No correlation between population 

density and LST exists (Pearson correlation coefficient: 0.02, Fig. S3.6d). 

3.2.2. Method 

To analyze the anthropogenic influence on temperature, we introduce the 

anthropogenic heat intensity (AHI). It can be applied to a broad variety of different 

temperature measurements such as GWT, LST, and SAT. Following the commonly used 

definition of urban heat island intensity (UHII: max. urban temperature - rural 

background temperature) (30), AHI is determined by subtracting median rural 

background temperatures ( 𝑇𝑟)  from individual temperatures (T) recorded at each 

measurement point (GWT and SAT) or pixel (LST): 

𝐴𝐻𝐼 = 𝑇 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑇𝑟)  (1) 

While urban land cover and land use classifications are often used to analyze the 

spatial properties of city-scale urban heat islands (155,156), they are not commonly 

available for such large-scale studies such as this one. Hence, nighttime light was used as 

an indicator for rural areas, while elevation and distance to the analyzed pixel or 

measurement point were considered to find appropriate background measurement 

locations. 

Rural Background Temperature 

Nighttime lights have been intensively discussed as an indicator of urban activity 

(41,157,158). In general, the higher the recorded digital number (DN), the more urban 

activity is present. This dependency is also visible in the correlation between nighttime 

lights and temperature (Fig. 3.2b). To define the area used for the determination of 𝑇𝑟, an 

upper limit of ‘rural’ nighttime light has to be set. The method itself is not sensitive 

regarding the precise value of this upper limit (Fig. S3.7). The difference in median land 

surface AHI calculated with an upper limit at DN < 10 and DN < 20 is merely 0.04 K and 

can therefore be disregarded. Subsequently DN 15 was chosen as the upper limit of 

allowed nighttime light, because it is both the 75
th

 percentile for nighttime light (Fig. S3.3) 

and the first inflection point in the nighttime light – temperature plot (Fig. 3.2b). Hence, 

only areas with DN < 15 were considered rural and used to determine 𝑇𝑟. At this number, 
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average LST has increased by 0.8 K from the temperatures at DN 0. In comparison, the 

difference in average LST between minimal and maximal nighttime lights is 3.4 K. 

As temperature decreases significantly with elevation (Fig. 3.2d), this parameter has to 

be considered for delineating the background area. As LST increases by 0.8 K from rural 

nighttime light at DN 0 to DN 15, this value was also chosen as the endorsed change in 

temperature due to elevation change. Fig. 3.2d shows the moving (± 150 m) average LST. 

On average, it decreases by 0.004 K/m with a maximal decrease of 0.009 K/m at 1,800 m 

above sea level. Thus, a change in elevation of ±90 m will result in a temperature change 

of 0.8 K at most. Hence, we only consider data with an elevation ±90 m compared to the 

analyzed measurement point or pixel. 

 

Figure 3.3. (Semi-)Variogram of all analyzed temperatures. Sill and range are displayed in Table 

S1. MPs: measurement points. 

Variograms of SAT, GWT and LST were set up to determine an appropriate distance 

between background temperature and analyzed location (Fig. 3.3). Fitting of the 

theoretical variograms was performed in MATLAB R2016a using a least square fit with 

the spherical model, without a nugget. Resulting values for sill and range are shown in 

Table S3.1. Since two variograms for LST data (one created from LST at GWT 

measurement locations and one created from LST at SAT measurement locations) are 

analyzed, it becomes apparent that sill values depend on the measurement point location. 

The fitted range, however, is not influenced by measurement point location. It is lowest 

for GWTs with 47 km. Hence, we chose 47 km as the maximal distance between the 

analyzed location and the background temperature measurements. 

In summary, for the determination of the median rural background temperature 𝑇𝑟  of a 

specific location, only temperature measurements are considered, which a) are within 47 
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km of the analyzed location, b) have a nighttime light lower than DN 15, and c) are 

elevated ±90 m compared to the analyzed location. To ensure a statistically meaningful 

median 𝑇𝑟 , AHI was only determined for measurements with five or more rural 

background measurement points for SAT and GWT, or 50 or more valid rural background 

pixels for satellite-derived LST. 

The introduced method can be applied to any available temperature datasets, from city-

scale to global-scale, regardless of the studied compartment (e.g. air, surface or 

groundwater). To determine whether measurement point location influences the AHI 

results, we compared surface AHI derived from all pixels with those derived using only 

data at the GWT and SAT measurement locations (Fig. S3.8). For both, GWT and SAT 

measurement points, the RMSE between pixel based and measurement point based AHI 

is 0.3 K and neglected within this study. Thus, AHIs in different compartments are 

compared without considering any sampling bias.  
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3.3. Results and Discussion 

Figure 3.4 shows the anthropogenic heat intensity (AHI) of Germany in air and surface 

and the AHI of the province of Baden-Württemberg in groundwater. Results are also 

made available in the supplementary material. In the following, we briefly discuss the 

AHI values in air and groundwater and compare them to surface AHI results. As there is 

much more LST data (~440,000 Pixels) examined than SAT (195 analyzed measurement 

points) and GWT (186 analyzed measurement points) data, only surface AHI is discussed 

in detail. 

 

Figure 3.4. Anthropogenic heat intensities (AHI) of Germany in (a) air, (b) surface and (c) 

groundwater.  

3.3.1. Air Anthropogenic Heat Intensity 

The air AHI ranges from -0.7 K next to a forest in a low mountain range (Swabian Jura) 

to more than 1.1 K in three weather stations near Berlin, near Munich, and near the Ruhr 

city cluster (Fig. 3.4a, histogram in Fig. S3.9a). The Pearson correlation coefficient 

between air and surface AHI is 0.63. The RMSE is 0.5 K and therefore only slightly 

larger than the expected sampling-location bias of 0.3 K (Fig. 3.5). Still, the comparison 

indicates that air temperature shows less anthropogenic warming than surface temperature 

and therefore confirms the results by Schwarz et al. (2012) (139). However, no definite 

conclusion can be made with the limited number of measurement points. The influence of 

land cover on the AHI in the air is displayed in Fig. 3.6. As expected measurement points 

in areas classified as ‘Artificial surfaces’ show the highest heat anomaly with a mean air 

AHI of 0.5 ± 0.5 K (uncertainties are given in form of the standard deviation). 
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Figure 3.5. Comparison of the anthropogenic heat intensities (AHI) of GWT and LST and of 

SAT and LST. 

3.3.2. Groundwater Anthropogenic Heat Intensity 

Groundwater AHIs are displayed in Fig. 3.4c and Fig. S3.2b, a histogram is given in 

Fig. S3.9c. As expected from the high sill and low range in the (semi-)variogram 

(Fig. 3.3), AHI in the groundwater has a much broader range than at the surface (Fig. 3.5). 

While the RMSE between surface and subsurface AHI is 0.8 K, differences between these 

two range from -3 to 4 K and both parameters do not correlate (Pearson correlation 

coefficient: 0.27). Because temperatures themselves correlate well (Fig. S3.1), this 

indicates that humans impact groundwater and surface partially through unrelated 

processes. GWT, for example, is significantly altered by the use of shallow geothermal 

energy systems such as groundwater heat pumps (69) as well as reinjection of thermal 

waste water and subsurface infrastructure such as basements, district heating networks, 

sewage systems and buried cable systems (36,86,159)).  

Fig. 3.6 shows the influence of land cover on GWT anomalies. Groundwater under 

artificial surfaces displays the highest anthropogenic heat intensity with a mean value of 

2.0 ± 0.7 K. Again, the human impact on temperatures appears to be more prominent in 

GWT than in LST, verifying previous observations for UHIs (104,160). In contrast to 

SAT and LST, GWTs under cultivated terrestrial areas and managed lands appear to be 

slightly elevated, on average by 0.2 ± 0.8 K. While the main cause of these anomalies has 

to be validated yet, they are possibly linked to irrigation with warmer surface water 

causing advective heat transport into the aquifer. 
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3.3.3. Surface Anthropogenic Heat Intensity 

Surface AHI is shown in Fig. 3.4b. Mean AHI is 0.1 ± 0.5 K; minimum AHI is – 4.3 K 

found in a mountain range of the Northern Limestone Alps within the Berchtesgaden 

National Park. A histogram is provided in Figure S3.9b. The locations of the top 50 

maximum surface AHI of Germany are displayed in Table S3.2. The pixel with the 

highest annual mean surface AHI (4.5 K) is not found in a city, but over an open-pit 

lignite mine near Jülich. This extreme temperature anomaly is possibly caused by the 

immense land cover changes resulting in an open-pit with a depth of approximately 

370 m and without vegetation. However, further research is necessary to fully understand 

temperature anomalies at open pit mines. Pixels with the next highest surface AHIs are 

located in large cities, namely Munich, Düsseldorf, and Nuremberg, with AHIs of more 

than 4 K. The UHI of Munich was studied in 1982, when Brundl and Hoppe (1984) (161) 

determined a 17% higher consumption of heating energy for the outskirts of the city 

compared to the city center. The surface UHI was quantified by Pongracz et al. (2010) 

(138). They found an annual mean nighttime UHII of approximately 1.7 K, while daytime 

UHII spanned from 0 K in December to 5 K in June. These comparably low values are 

due to the chosen background temperature: A large part of the background area used by 

Pongracz et al. (2010) is classified as non-rural in our analysis and therefore not used here  

 

Figure 3.6. Influence of land cover on the anthropogenic heat intensity (AHI) in air, surface and 

groundwater. The dots in the boxplot indicate median values, the bars correspond to the inner 

quartile range (IQR) ranging from the 25
th
 percentile (𝑝25) to the 75

th
 percentile (𝑝75). Whiskers 

span from the lowest value higher than 𝑝25 − 1.5 ⋅ 𝐼𝑄𝑅 to the highest value lower than 𝑝75 + 1.5 ⋅

𝐼𝑄𝑅. 

The top 15 surface AHI locations also include pixels in smaller cities (e.g. Wolfsburg: 

surface AHI of 3.7 K, 120,000 residents; Saarlouis: surface AHI of 3.4 K, 40,000 

residents) known for their industrial sites. This indicates that not only urban heat islands 

exist, but also industrial heat islands. Furthermore, as our method is applied to all areas 

including rural ones, we find naturally occurring heat islands as well: there are four 
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locations in the alpine mountains among the top 50 surface AHI locations. Here, the south 

facing slopes of the high altitude mountain ranges receive more solar radiation and are 

considerably warmer (> 2 K) than the north-facing slopes. 

Unlike AHI in groundwater and air, surface AHI cannot solely be linked to artificial 

surfaces (Fig. 3.6) using the analyzed classification system (GlobCover, 2009) (152) and 

resolution (approximately 1 km  1 km). However, a more detailed case study of the 

surface UHI of Shanghai revealed differences in temperature of up to 1.6 K between 

different urban land use and land cover categories (162).  

 

Figure 3.7. Influence of nighttime lights, elevation, enhanced vegetation index (EVI), and 

population density on the anthropogenic heat intensity (AHI) in air, surface and groundwater.  

Main Drivers of Surface AHI 

To determine the main drivers of surface AHI, nighttime lights, elevation, vegetation 

(enhanced vegetation index, EVI), and population density were analyzed (Fig. 3.7). 

Following the trend observed in temperatures (Fig. 3.2b), AHI rises with increasing 

nighttime lights (Fig. 3.7a). The Pearson correlation coefficient ρ between surface AHI 

and nighttime lights is 0.71. Fig. 3.7b displays the correlation between elevation and 

surface AHI (ρ = -0.12). Because our method considers elevation for the determination of 
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the median rural background temperatures, no clear trend is visible in contrast to the 

temperature/elevation plot (Fig. 3.2d). However, highest AHI are still observed in lower 

altitudes, where cities are commonly located. For higher altitudes, AHI variance increases; 

this is mainly due to the difference in solar radiation on opposite facing slopes of a single 

mountain range. 

In Fig. 3.7c the enhanced vegetation index (EVI) and surface AHI are compared. 

While no clear linear correlation is observed (Pearson correlation coefficient: -0.36, 

Fig. 3.7c), our results indicate that vegetation decreases the upper limit of surface AHI. 

This further validates the observations made by several studies on the cooling effect of 

vegetation on urban temperatures (163-165). 

Pearson correlation coefficient of 0.06 illustrates that the population density per pixel 

is no indication for AHI (Fig. 3.7d). While pixels in large cities such as Berlin (3.3 

million residents), Hamburg (1.7 million residents), and Munich (1.3 million residents) 

show increased AHI, highest heat intensities are not necessarily found in areas with a 

high population density. Thus, the established correlation between city population and 

urban heat island intensity by Oke (1973) (30) cannot be transferred to a pixel-based 

analysis. However, the maximum AHI (AHImax) within a city can be linked to its urban 

heat island intensity (UHII) and is thus expected to depend on the total population of each 

city.  

 

Figure 3.8. Influence of population on the maximum surface AHI of a settlement. 

To test this hypothesis, the AHImax of all German cities with a population of more than 

100,000, as well as 100 randomly chosen smaller communities (> 5,000 residents), were 

compared to the population of the corresponding municipality (Fig. 3.8). Since Oke (1973) 
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(30) analyzed single summer temperature measurements during the day, when UHII is 

warmest (40), our annual mean temperatures result in lower heat intensities. For the three 

cities analyzed in both studies, this difference is on average 4.4 K (Berlin: summer day 

UHII of 10.0 K, annual mean surface AHI 3.7 K; Munich: summer day UHII of 7.0 K, 

annual mean surface AHI 4.3 K; Karlsruhe: summer day UHII of 7.0 K, annual mean 

surface AHI 2.9 K).  

Still, our results confirm that AHImax similar to UHII can be related to population (P) 

and follows the model predicted by Oke even for smaller city sizes with a RMSE of 0.4 K: 

𝐴𝐻𝐼𝑚𝑎𝑥 = 1.53 𝐾 ⋅ log(𝑃) − 5.32 𝐾  (2) 

By extrapolating the fit, we can further assume that AHImax remains positive for 

communities with a population of more than 3,000. The smallest studied community, 

Amoeneburg located in the region of Middle Hesse, has a population of 5,010 and an 

observed AHImax of 0.74 K. 
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3.4. Summary and Conclusion 

This study analyzes the anthropogenic impact on recorded annual mean temperatures 

of three different compartments: surface air temperatures (SAT), land surface 

temperatures (LST), and groundwater temperatures (GWT). The anthropogenic heat 

intensity (AHI) is introduced as a universal parameter that represents the difference 

between local temperature 𝑇  and median rural background temperature 𝑇𝑟  for each 

analyzed measurement location (GWT and SAT) or pixel (LST), on a large, in this case 

countrywide, scale.  

Comparing AHIs in air, surface and subsurface for the case of Germany, we found that 

GWTs are impacted the most by human activity. Although no measurements within cities 

were analyzed, determined groundwater AHI ranges from -4 K to +4 K. At the same 

locations, surface AHI ranges from -1 K to +1 K. However, further research is necessary 

to fully understand the main causes of elevated GWTs under non-urban, cultivated lands. 

At the surface, main instances of anthropogenic temperature anomalies were identified. 

While most of the top 50 pixels with the highest AHIs in Germany are located within 

cities, maximum surface AHI is found over an open-pit lignite mine. Additionally, many 

of these top 50 pixels are located in smaller cities known for their industrial sites, hinting 

to the industrial sector as a significant driver of urban heat islands. Accordingly no 

correlation between population density and AHI could be found. 

The impact of smaller settlements on temperatures was analyzed at the example of 100 

randomly chosen communities (5,000 to 100,000 residents). Our results indicate AHI of 

approximately 0.3 K for the smallest analyzed communities. However, further studies 

using different timescales and spatial resolutions are necessary to scrutinize the impact 

that smaller settlements have on ambient air, ground and groundwater temperatures. 

Finally, AHIs of other regions or countries must be compared to determine spatial 

consistency and to reveal large scale trends. As LST is available for the whole planet, 

future work should also analyze a global dataset. Studying the differences in daytime and 

nighttime surface AHI as well as its annual variation will help to classify surface urban 

heat islands and thus contribute to the development of appropriate mitigation strategies. 
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Supplementary Material 

 

Figure S3.1. Relationship of land surface temperature (LST) and both surface air temperature 

(SAT) and groundwater temperature (GWT).  

 

Figure S3.2. (a) Annual mean groundwater temperature and (b) annual mean groundwater 

anthropogenic heat intensity (AHI) of Baden-Württemberg, Germany, 2015. 
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Figure S3.3. Histogram of nighttime lights in Germany. All areas with a nighttime light of less 

than DN15 were considered rural. 

 

Figure S3.4. Land cover map of Germany. The shown data is extracted from the GlobCover 2009 

global land cover map processed by ESA and the Université Catholique de Louvain. All data is 

made available at at http://due.esrin.esa.int/page_globcover.php.  
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Figure S3.5. Influence of land cover on land surface temperature (LST), surface air temperature 

(SAT), and groundwater temperature (GWT). 
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Figure S3.6. Influence of vegetation (in form of the enhanced vegetation index EVI) and 

population on land surface temperature (LST), surface air temperature (SAT), and groundwater 

temperature (GWT). 
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Figure S3.7. Influence of the upper limit of nighttime light (NLmax) used to define the area 

analyzed for the determination of the rural background temperature Tr  (meaning: allowed 

nighttime light of DN<NLmax). Shown is ΔAHI for LST, the difference between AHI with a limit 

of NLmax and AHI with a limit of DN 15. The spatial median for ∆AHI is given as a red line. The 

inner 90 percentiles are colored in grey.  

 

Figure S3.8. Influence of measurement point (MP) location on the determined AHI. Comparison 

of Surface AHI determined using all available pixels vs. determined using only data at MPs of 

SAT or rather GWT. 
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Figure S3.9. Histogram of all determined AHIs in Germany for a) air, b) surface and c) 

groundwater.  

Table S3.1. Determined sill and range of the (Semi-)Variogram displayed in Fig. 3.2.  

 SAT LST at SAT MPs GWT LST at GWT MPs 

Sill [K] 1.43 1.77 3.13 2.56 

Range [km] 102 111 47 120 

MP: Measurement point 

 

Table S3.2. Location of the 50 highest surface anthropogenic heat intensities (AHI) in Germany. 

Only the maximum pixel per heat island is counted.  

 Lon Lat 
Surface  

AHI [K] 
Location 

1 6.54 50.91 4.5 Open-pit lignite mine, Jülich 

2 11.57 48.14 4.3 Munich 

3 6.79 51.21 4.0 Düsseldorf 

4 11.09 49.44 4.0 Nuremberg 

5 7.00 50.93 3.8 Cologne, Deutz 

6 10.90 48.37 3.8 Augsburg 

7 10.78 52.43 3.7 Wolfsburg 

8 13.31 52.50 3.7 Berlin, Wilmersdorf 

9 8.48 49.48 3.7 Mannheim 

10 6.73 51.48 3.6 Duisburg, Beeckerwert 

11 12.85 47.75 3.6 Hochstaufen (Mountain) 

12 13.41 52.49 3.5 Berlin, Kreuzberg 

13 8.70 50.12 3.5 Frankfurt (Main) 

14 10.03 53.54 3.4 Hamburg 

15 6.76 49.35 3.4 Saarlouis 

16 7.02 51.44 3.3 Essen 

17 8.69 53.13 3.3 Bremen 

18 6.69 51.20 3.3 Neuss 

19 9.20 48.78 3.3 Stuttgart 

20 6.87 51.46 3.3 Oberhausen 
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 Lon Lat 
Surface  

AHI [K] 
Location 

21 10.41 52.15 3.3 Salzgitter 

22 9.74 52.37 3.3 Hannover 

23 7.48 51.52 3.3 Dortmund 

24 7.14 50.74 3.2 Bonn 

25 7.80 48.57 3.2 Kehl 

26 8.56 50.04 3.2 Frankfurt Airport 

27 10.02 48.39 3.2 Ulm 

28 9.54 51.30 3.2 Kassel 

29 6.58 51.32 3.2 Krefeld 

30 9.23 49.14 3.1 Heilbronn 

31 13.51 52.51 3.1 Berlin, Friedrichsfelde 

32 13.75 51.06 3.1 Dresden 

33 6.90 50.95 3.1 Cologne, Ehrenfeld 

34 10.37 47.40 3.1 Schochen (Mountain) 

35 7.59 50.37 3.1 Koblenz 

36 7.47 50.42 3.1 Neuwied 

37 7.02 50.82 3.1 Niederkassel 

38 10.47 47.46 3.0 Älpelekopf (Mountain) 

39 10.91 49.90 3.0 Bamberg 

40 14.63 52.16 3.0 Eisenhüttenstadt 

41 12.84 47.61 3.0 Edelweißlahnerkopf(Mountain) 

42 12.13 47.85 3.0 Rosenheim 

43 8.65 49.87 3.0 Darmstadt 

44 7.23 51.28 3.0 Wuppertal 

45 9.93 53.56 3.0 Hamburg, Altona 

46 12.41 51.34 3.0 Leipzig 

47 12.00 51.47 3.0 Halle (Saale) 

48 7.19 51.47 3.0 Bochum 

49 8.76 51.71 3.0 Paderborn 

50 11.59 49.94 3.0 Bayreuth 
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4. Spatial Resolution of Anthropogenic Heat Fluxes into 

Urban Aquifers 

Reproduced from: Benz, S. A.; Bayer, P.; Menberg, K.; Jung, S.; Blum, P. Spatial 

resolution of anthropogenic heat fluxes into urban aquifers. Sci. Total Environ. 

2015, 524−525, 427−39. 

Graphical Abstract 
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Abstract 

Urban heat islands in the subsurface contain large quantities of energy in the form of 

elevated groundwater temperatures caused by anthropogenic heat fluxes into the 

subsurface (AHFS). The objective of this study is to quantify these AHFS and the heat 

flow they generate in two German cities, Karlsruhe and Cologne. Thus, statistical and 

spatial analytical heat flux models were developed for both cities. The models include the 

spatial representation of various sources of AHFS: (1) elevated ground surface 

temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, 

and (6) district heating networks. The results show that the district heating networks 

induce the largest AHFS with values greater than 60 W/m² and one order of magnitude 

higher than fluxes from other sources. A covariance analysis indicates that the spatial 

distribution of the total flux depends mainly on the thermal gradient in the unsaturated 

zone. On a citywide scale, basements and elevated ground surface temperatures are the 

dominant sources of heat flow. Overall, 2.1 PJ/a and 1.0 PJ/a of heat are accumulated on 

average in Karlsruhe and Cologne, respectively. Extracting this anthropogenically 

originated energy could sustainably supply significant parts of the urban heating demand. 

Furthermore, using this heat could also keep groundwater temperatures from rising 

further.  
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4.1. Introduction 

A warming of urban areas can be observed worldwide (30). The Urban Heat Island 

(UHI) phenomenon, as it is called, exists in all diverse layers of a city: from atmosphere 

(31-33) to surface (34,166) to groundwater (36,145,167,168). While various unfavorable 

issues such as increased mortality rates during heat waves (169) and regional atmospheric 

pollution (170) originate from the UHI in the atmosphere, the urban heat island in the 

subsurface (SUHI) can be beneficial. The increased groundwater and subsurface 

temperatures provide economic and ecological advantages for the use of shallow 

geothermal energy systems located in SUHI (58). Arola and Korkka-Niemi (2014) 

showed that in southern Finland about 50-60% more peak heating power could be utilized 

from urban areas in contrast to rural areas (59). Furthermore, the geothermal potential of 

SUHI exceeds the annual residential heating demand in many urban areas (60). Extracting 

this energy efficiently could save or even reduce CO2 emissions and other greenhouse 

gases (61,62). Hähnlein et al. (2013) concludes that a shallow geothermal system is only 

sustainable, if the generated energy is mainly renewable energy (3). Hence, energy 

sources of the SUHI should be evaluated and anthropogenic heat fluxes into the 

subsurface (AHFS) of urban areas should be quantified. 

Anthropogenic heat has long been discussed regarding the above ground UHI, where it 

describes the waste heat of human activities such as intense energy use, power generation 

and vehicular traffic (171). The anthropogenic heat flux in the atmosphere, for example, 

was simulated from global to city scale by Allen et al. (2011) (172). Its impact on Tokyo 

was modeled by Ichinose et al. (1999) (173), who found a 1 K temperature increase. For 

Chicago, San Francisco, Los Angeles, and Philadelphia, Sailor and Lu (2004) showed that 

the anthropogenic heat flux in the atmosphere on a citywide scale is between 10 and 80 

W/m² (174). 

Urban heat islands in the subsurface (SUHI) have been observed in various cities 

worldwide such as Virginia Beach, USA (51), Winnipeg, Canada (52), London, UK (53), 

Oberhausen, Germany (54), Istanbul, Turkey (55), Jakarta, Indonesia (56), Osaka, Japan, 

and Bangkok, Thailand (57). Some studies focus on the influence of rain and hydrological 

transport of heat on these thermal anomalies (175,176). In Cologne, Zhu et al. (2015) 

used a numerical flow and heat transport model to generate various groundwater 

temperature depth-profiles and compared them with measured profiles (177). It shows 

mechanisms such as vertical conductive heat input, horizontal advection and transverse 

dispersion to be the main thermal transport mechanisms. Overall, the consensus view is 

that anthropogenic heat is the dominant source of the SUHI.  

Menberg et al. (2013) define the anthropogenic heat flux into the subsurface (AHFS) as 

the heat input into shallow urban aquifers caused by various anthropogenic heat sources 

(145). Previously they identified the following main anthropogenic heat sources: 

increased ground surface temperature (GST), buildings and basements, road tunnels, 
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sewage networks, sewage leakages, district heating systems, subway systems, reinjections 

of thermal waste water and other geothermal energy systems such as ground source heat 

pump and groundwater heat pump systems (36). 

In contrast, Hötzl and Makurat (1981) developed a first approach to quantify the heat 

flow balance of the SUHI in Karlsruhe (178). They identified solar irradiation, the 

geothermal heat flow, sewage and district heating networks, reinjection of thermal 

wastewater, and basements as possible heat sources. Furthermore, they estimated the 

amount of heat transported into the entire urban subsurface for each of these sources, 

identifying solar insolation and the sewage system to be the dominant heat sources. The 

revised model by Menberg et al. (2013) includes elevated GST, buildings, reinjection of 

thermal wastewater, sewage network, sewage leakage, and district heating network as a 

source of anthropogenic heat (145). A regionalized anthropogenic heat flux model was 

introduced to account for the uncertainty of all parameters needed for an analytical 

solution. They performed one Monte Carlo simulation over the entire study area in which 

groundwater temperatures (GWT), groundwater depth, building density, and basement 

depth were linked to their spatial distribution. Thus, they were able to estimate the city-

scale mean of all individual heat fluxes and the total amount of energy entering the 

aquifer. For both studied years, 1977 and 2011, elevated ground surface temperatures 

(GST) were the dominant heat source. Furthermore, a spatial analysis of heat fluxes from 

buildings was introduced, exhibiting a considerable range between -0.1 and >10 W/m². In 

Basel, Switzerland, Epting et al. (2013) used a numerical heat transport model to compare 

the cumulative heat fluxes in 2010 from natural and anthropogenic boundaries (179). 

They defined these anthropogenic boundaries as reinjection of thermal wastewater as well 

as small, large, and deep buildings. The absolute heat flux from these different types of 

buildings was determined to be 1.8 × 10
-1

 W/m², 3.0 × 10
-11

 W/m² and 16 W/m² 

respectively.  

Although several previous studies analyzed various AHFS, currently, there is no 

method available that gives a complete and detailed picture of the spatial distribution of 

AHFS. However, in combination with aquifer scale models (e.g. central London, (180)), 

the detailed spatial distribution of AHFS is a crucial requirement for the development of a 

sustainable thermal energy management tool. The objective of the present study is 

therefore to introduce a method that quantifies the vertical AHFs from various heat 

sources through the unsaturated zone into the groundwater and displays their spatial 

distribution. This two-dimensional approach builds up on the model framework 

developed by Menberg et al. (2013)(145), however it separates spatial variability and 

uncertainty of the input parameters. Hence, a more accurate determination of heat fluxes 

is obtained. In addition, the heat flux model is applied in two German cities, Karlsruhe 

and Cologne, providing a comparison of the determined AHFS. Finally, we investigate the 

possible implications of the AHFs on thermal groundwater use by comparing the annual 

thermal recharge of AHFs with the residential space heating demand to evaluate the 

potential of the SUHI as a sustainable source of thermal energy.  
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4.2. Material and Methods 

4.2.1. Study Sites 

The chosen study areas cover major parts of two German cities: Karlsruhe, located in 

the south-west of Germany close to the Rhine, and Cologne, located in the west of 

Germany next to the Rhine (Figure 4.1). Both study sites are limited to areas dominated 

by urban land-use, i.e. mostly built-up areas, within the city districts. Large green spaces, 

such as woodlands and agricultural areas, at the borders of the city districts are not 

included in the investigations. In the following, the geology, hydrogeology, groundwater 

temperatures (GWT), and urban infrastructures of these cities are described. An overview 

and general statistics of both study areas can be found in Table 4.1. 

Table 4.1. General statistical information on both study areas.  

Study site Karlsruhe Cologne 

Year of measurements 2011 2009 

Area [km²] 61.9 81.3 

Building density [%] 21.0 21.6 

Population  286,000
a
 485,000

b
 

Mean air temperature [°C] 11.5
c
 11.4c 

Mean ground surface temperature [°C] 14.4
d
 14.7

d
 

Number of groundwater wells 82 73 

Mean groundwater temperature [°C] 13.2 12.7 

Mean groundwater depth [m] 5.4 10.2 

Groundwater measurement depth 

[m below groundwater] 
2-3 1 

a 
Office for urban development, Karlsruhe (Stadt Karlsruhe, Amt für Stadt-

entwicklung) (181); 
b
 Office for urban develpoment and statistics, Cologne (Stadt 

Köln, Amt für Stadtentwicklung und Statistik) (182); 
c
 German Weather Service 

(Deutscher Wetterdienst, DWD) (183);
 d
 own calculations (see section 4.2.2). 

Karlsruhe 

Karlsruhe is in the state of Baden-Württemberg at 49°00’ N and 8°24’ E, 115 m above 

sea level and is the smaller of the two cities in respect to size and population (Table 4.1).  
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Figure 4.1. Location of the study areas with annual mean groundwater level maps and annual 

mean groundwater temperature maps. Groundwater temperature in Karlsruhe was measured daily 

at about 9 m below the surface in 2011. The groundwater temperature in Cologne was measured 

at about 11 m below surface in 2009. Specific well locations are shown in Figures S1 and S2 

(supplementary material).  

Geology, Hydrogeology, and Groundwater Temperatures 

Karlsruhe is located in the Upper Rhine Graben, a Cenozoic continental rift valley 

filled by Quaternary and Tertiary sediments. The Quaternary sediments with a varying 

thickness of around 150 m are dominated by sands and gravels showing minor contents of 

silts, clays and stones. The unsaturated zone of the study site consists mostly of sands and 

gravels (184). 

The upper aquifer has a thickness of up to 20 m, and the general groundwater flow 

direction is northwest towards the Rhine. In total, 82 groundwater monitoring wells in the 

study area are equipped with Ackermann WPS05 data loggers. These wells are 

continuously monitored by the Public Works Service Karlsruhe. Measurements of 

groundwater temperatures (GWT) and hydraulic heads are daily recorded (accuracy: 

0.1°C) at 7 AM at 2 to 3 m below the water surface. Well locations, weather station, and 

seasonal variability of GWT for three selected wells are exemplary shown in Figure S4.1 

(supporting information). To disregard the inter-annual variations in GWT and 

groundwater depth, the mean annual GWT and groundwater levels of the annual cycle 

between March 2011 and 2012 are used in this study. Both GWT and groundwater level 

were interpolated by Menberg et al. (2013) (36,145) using kriging in GIS (ESRI
®

 

ArcInfo
TM 

10.0) and are shown in Figure 4.1 with a resolution of 15 m × 15 m. The 

arithmetic mean of the GWT is 13.2 ± 1.3°C. Its maximum is located northwest of the 
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city center, where it reaches more than 16°C. A second minor hot spot is located directly 

under the city center, where temperatures up to 15°C were measured. The inner quantile 

range urban heat island intensity (UHII90-10) that cuts the lowest and highest 10% of the 

temperatures before calculating the urban heat island intensity is 1.9 K (36).  

The average groundwater depth is 5.4 ± 2.1 m below the surface. At its deepest points 

in the western part, the water table reaches 10.4 m below the surface, while the eastern 

area exhibits shallow groundwater at around 3 m below the surface. 

Urban Infrastructures 

According to the GMES Urban Atlas, 83% of the study area in Karlsruhe is shaped by 

urban land use and consists of residential, commercial, and industrial units, roads and rail 

networks, etc. The overall building density is 21.0%, with the highest densities in the city 

center (Figure 4.2).  

 

Figure 4.2. Building density of Karlsruhe and Cologne.  

Figure 4.3 shows the sewage system and the district-heating network of Karlsruhe. The 

sewage system is a combined (rainwater and sanitary) system in the city center and a 

separate sewage system in the suburbs. The district heating network has been used since 

the early 19th century. Today, it is about 90 km long and connected to 23,500 households 

with an available power output of 25PJ/a. In 2001, a survey performed by the newspaper 

for local economy (Zeitung für kommunale Wirtschaft, Zfk) showed that the heat loss is 

about 10%.  
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Geothermal applications, such as reinjection wells for industrial thermal wastewater, 

are also operating in Karlsruhe (Figure 4.3). The current maximum licensed reinjection 

temperature is 20°C (185). In Karlsruhe about 4.5 Million m3 of thermal wastewater are 

reinjected each year in 29 wells, altogether transporting slightly less than 0.1 PJ into the 

groundwater (145). 

 

Figure 4.3. Location of sewage-, district heating-, and subway systems in the study area as well 

as the location of industrial reinjection wells of thermal wastewater and other geothermal energy 

systems such as ground source heat pump and groundwater heat pump systems. As of 2011 

Karlsruhe does not have a subway system. The location of the district heating network in Cologne 

was not available. 

Cologne 

Cologne is located in the state of North Rhine-Westphalia about 300 km further 

downstream along the Rhine. The city lies at 50°56’ N and 6°57’ E at 53 m above sea 

level. Due to the large number of observation wells needed for the spatial assessment of 

groundwater characteristics in this study, the study area is limited to the urban area on the 

western bank of the Rhine. It thus covers only about a quarter of the total city area.  

Geology, Hydrogeology, and Groundwater Temperatures 

Cologne is located in the south of the Lower Rhine Basin. Above the Paleozoic 

bedrock are Tertiary and Quaternary layers. The shallow subsurface is composed of 15 to 

25 m thick Pleistocene terrace deposits that, like in Karlsruhe, predominantly consist of 

gravels and sands (186). 
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The uppermost aquifer has a thickness of about 30 m and the general flow direction is 

northeast towards the receiving stream, the Rhine. GWT and groundwater levels 

(accuracy of 0.01 m) were measured in 73 groundwater wells between September and 

October 2009 using SEBA KLL-T logging equipment. GWTs were measured at 1 m 

below the water table (approximately 11 m under the surface). At this depth the annual 

temperature variations are insignificant compared to the accuracy of 0.1°C in most wells 

(187). The mean GWT is 12.7 ± 1.3°C and the average observed groundwater level is 

10.2 ± 6.1 m below the surface. GWT and depth were interpolated by Jung (2013) and 

Menberg et al. (2013) using kriging (Table 4.1; Figure 4.1)(36,187). GWT in Cologne 

reaches a maximum of 16.2°C in the city center under the main railway station. The 

UHII10-90 is 2.1 K (36). The groundwater level in the northeast, close to the Rhine, is 

reaching up to 2 m below the surface, whereas it is 20 m below surface in the southwest 

of the city. 

Urban Infrastructures 

In Cologne, 97 % of the study area is shaped by urban land use (188). Using the estate 

map of Cologne, the building density is estimated with 21.6 % (Table 4.1). Again, the 

highest densities are found primarily in the city center, but also in industrial areas (Figure 

4.2). A subway system exists with about 19 km of underground rail inside the study area 

(Figure 4.3). Although Cologne has a district heating network, no utility plan was 

accessible. However, its power output inside the study area (western bank) is 0.8 PJ/a 

with a heat loss of around 6 % (189).  

While both reinjections of thermal wastewater and other geothermal energy systems, 

such as ground source heat pump and groundwater heat pump systems, exist in Cologne, 

the latter are more frequent. Overall 33 TJ/a are extracted for heating inside the study area, 

while the cooling load only accounts for 6 TJ/a (Figure 4.3). 

4.2.2. Ground Surface Temperatures 

Ground surface temperatures (GST) in both cities are determined according to the 

different surface materials within the urban environment and the characteristic deviation 

of the GST of these individual surfaces types from the ambient air temperature. Dědeček 

et al. (2012) measured the difference Δ𝑇 between ambient air temperature and GST for 

several surface types, such as grass surfaces (0.2 - 0.8 °C), sand and bare soil (1.5 -

 2.0 °C), and asphalt (4.0 - 5.0 °C) (190). We estimate the GST by adding these 

temperature differences to the air temperature according to the land use types within each 

city. The share of the different surface types in each individual land use type is adopted 

from the land use categorization of the Global Monitoring for Environment and Security 

(GMES) 



 

 

Table 4.2. Assumed ground surface temperatures for different land uses. 

Landuse description 
Surface types

a
 [%] ΔT

b
 [K] Area covered [%] 

sand and 

bare soil grass asphalt min median max Karlsruhe Cologne 

Forests 0 100 0 0.20 0.50 0.80 9.2 0.5 

Green urban areas 0 100 0 0.20 0.50 0.80 7.9 7.6 

Discontinuous very low density urban fabric (S.L. < 10%) 10 85 5 0.52 0.83 1.13 5.3 - 

Agricultural + semi-natural areas + wetlands 50 50 0 0.85 1.13 1.40 0.0 3.2 

Discontinuous low density urban fabric (S.L.: 10% - 30%) 10 70 20 1.09 1.43 1.76 0.2 0.2 

Construction sites 100 0 0 1.50 1.75 2.00 7.6 4.8 

Mineral extraction and dump sites 100 0 0 1.50 1.75 2.00 0.9 0.7 

Water bodies 100 0 0 1.50 1.75 2.00 0.9 0.4 

Land without current use 100 0 0 1.50 1.75 2.00 0.1 0.0 

Sports and leisure facilities 25 50 25 1.48 1.81 2.15 1.5 0.9 

Railways and associated land 90 0 10 1.75 2.03 2.30 2.9 2.8 

Discontinuous medium density urban fabric (S.L.: 30% - 

50%) 
10 50 40 1.85 2.23 2.60 5.8 2.4 

Discontinuous dense urban fabric (S.L.: 50% - 80%) 10 25 65 2.80 3.23 3.65 15.6 18.8 

Port areas 25 0 75 3.38 3.81 4.25 2.2 7.3 

Continuous urban fabric (S.L. > 80%) 5 10 85 3.50 3.96 4.43 10.4 19.8 

Industrial, commercial, public, military and private units 5 0 95 3.88 4.36 4.85 19.9 20.1 

Isolated structures 0 0 100 4.00 4.50 5.00 1.5 0.3 

Fast transit roads and associated land 0 0 100 4.00 4.50 5.00 0.1 - 

Other roads and associated land 0 0 100 4.00 4.50 5.00 7.9 10.4 
a 
GMES Urban Atlas(188), 

b
Dědeček et al. (2012) (190); S.L.: sealing layer. 
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Urban Atlas (Table 4.2). Annual mean air temperatures are measured by the German 

Weather Service (183). In both cities the meteorological stations are located at nearby 

airports (Figure S4.1 and S4.2, supplementary material). The average air temperature was 

11.5°C in Karlsruhe and 11.4°C in Cologne. Unfortunately the spatial distribution of the 

air temperatures was not available and thus air temperature differences within the study 

areas had to be neglected. However, we believe them to be insignificant compared to the 

range of Δ𝑇 (Table 4.2). 

 

Figure 4.4. Overview of the different studied heat fluxes: (1) heat flux from elevated ground 

surface temperatures (GST), (2) heat flux from buildings (i.e. basements), (3) heat flux from 

sewage systems, (4) heat flux from sewage leakage, (5) heat flux from subway tunnels, and (6) 

heat flux from district heating networks. The sum of the heat fluxes (1)-(6) represent the total 

anthropogenic heat flux into the subsurface (qtot) determined in this study (Eq. 4.8). 

4.2.3. Mathematical Modeling of the Anthropogenic Heat Flux 

into the Subsurface 

Local Anthropogenic Heat Flux Model 

Our heat flux model focuses on the unsaturated zone quantifying mean annual heat 

fluxes from the heat sources to the top and therefore into the aquifer. In the unsaturated 

zone, temperature gradients and heat fluxes in the vertical direction are dominant(9). 

Hence, only vertical anthropogenic heat fluxes through the unsaturated zone are 

quantified. Fluxes from geothermal energy systems that interact directly and horizontally 

with the groundwater are not considered, yielding six heat sources for AHFS: (1) elevated 
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ground surface temperatures (GST), (2) basements (i.e. buildings), (3) sewage systems, (4) 

sewage leakage, (5) subway tunnels, and (6) district heating networks (see Figure 4.4).  

In this study, the regional anthropogenic heat flux model (145) was further developed. 

While still using a statistical and analytical approach, we introduce a local anthropogenic 

heat flux model, which analyzes all dominant heat fluxes spatially by determining them 

for each pixel ij of the study area (resolution: 15 m × 15 m) individually. Thus, a spatially 

resolved heat flux map is obtained.  

To account not only for the spatial variability, but also for uncertainties and the natural 

ranges of parameters, such as thermal conductivity and basement depth, a Monte Carlo 

approach with 800 iterations is employed to determine the fluxes in each pixel. The 

assumed parameter ranges used in the Monte Carlo simulation are shown in Table 4.3. In 

all cases, a triangular distribution is chosen, defined by a minimum, a maximum and 

mode value stating the value with the highest probability. Where applicable, the 

parameter ranges previously applied by Menberg et al. (2013) are also used here (145). In 

contrast to the previous work, we thus separate spatial variability (e.g. different 

groundwater temperatures in different pixels), from plain uncertainty (e.g. measurement 

accuracy), allowing a more accurate determination of heat fluxes and heat flow. In the 

following, both spatial variability and uncertainty will be expressed in form of a standard 

deviation. 

The model comprises three steps. First, the heat flux of all individual AHFS sources in 

each pixel ij is determined using a Monte Carlo simulation. Second the anthropogenic 

heat flux per pixel ij is determined, which describes the average heat flux of the pixel. 

Third, the anthropogenic heat fluxes of all pixels are summed up to determine the heat 

flow, i.e. the energy amount transported into the aquifer over the whole study area in the 

span of one year. 

 



 

 

Table 4.3. Assumed parameter range distribution for the Monte Carlo simulation. Triangular distribution was used as a standard. 

Heat flux 

process 
Parameter Name Unit 

Karlsruhe Cologne 

Minimum Mode Maximum Minimum Mode Maximum 

Increased GST 

λ Thermal conductivity 
a 

W/mK 0.3 1 1.8 0.3 1 1.8 

TGS
ij

 Ground surface temperature °C see Table 4.2 and Figure 4.5 see Table 4.2 and Figure 4.5 

TGW
ij

 Groundwater temperature °C see Figure 4.1 see Figure 4.1 

δTGW Accuracy groundwater temperature °C -0.1 0 0.1 -0.1 0 0.1 

dGW
ij

 Groundwater depth m see Figure 4.1 see Figure 4.1 

δdGW Accuracy groundwater depth m -0.01 0 0.01 -0.01 0 0.01 

bf ij Building density % see Figure 4.2 see Figure 4.2 

δbf Uncertainty of building density % -5 0 5 -5 0 5 

Buildings 
TB Temperature of basement / ground floor 

b 
°C 15 17.5 20 15 17.5 20 

𝑑𝐵 Basement depth m 0 2.5 6 0 2.5 6 

Sewage system 

𝑇𝑆𝑆 Sewage temperature 
c, d 

°C 12 18.5 25 10.33 17.59 26.8 

𝑑𝑆𝑆 Depth of sewage drains 
e, d 

m 1 2 5 1 2 5 

𝐷𝑆𝑆 Diameter of sewage drains 
f, d 

m 0.1 0.4 2 0.08 0.3 4.6 

lSS Length of sewage network 
c, e, d 

m 770,000 880,000 990,000 907,051.5 1,007,835 1,108,618.5 

Sewage leakage 

𝑐𝑝𝑆𝑆 Heat capacity of wastewater 
c 

J/kgK 3708 4120 4532 3708 4120 4532 

𝜌𝑆𝑆 Density of wastewater 
c 

kg/m³ 990 1100 1210 990 1100 1210 

VSS Annual wastewater volume 
c, d 

m³/a 33,997,000 35,707,500 37,418,000 48,873,592 49,000,000 50,873,592 

𝑟𝐿  Leakage rate 
f 

% 5 15 25 5 15 25 

District heating 

PDH Heat loss from district heating pipes
 c, g 

MW 7.99 9.13 10.27 1.25 1.39 1.53 

𝑟𝑑 Percentage heat flux directed downwards % 25 37.5 50 25 37.5 50 

𝐷𝐷𝐻 Diameter of district heating pipes 
f 

m 0.1 0.4 2 - - - 

𝑙𝐷𝐻 Length of district heating network  m 85,500 90,000 94,500 - - - 



 

 

Heat flux 

process 
Parameter Name Unit 

Karlsruhe Cologne 

Minimum Mode Maximum Minimum Mode Maximum 

Subway system 

𝑇𝑆𝑊 Subway system temperature 
h 

°C - - - 10 18.6 25.5 

lSW Length of subway system
 h 

m - - - 19,000 20,000 21,000 

𝐷𝑆𝑊 Diameter of subway system 
h 

m - - - 6.9 7 7.3 

tSW Thickness of subway tunnel walls 
h 

m - - - - 1.1 - 
a 
Menberg et al. (2013) (145), VDI 4640 (2010) (191); 

b 
DIN EN ISO 13370 (2008) (192); 

c
 Makurat (1980) (193); 

d
 municipal drainage operator of Cologne 

(Köln, Stadtentwässerungsbetriebe) (194); 
e
 civil engineering department Karlsruhe (Stadt Karlsruhe, Tiefbauamt) (195); 

f 
Eiswirth et al. (2002) (196), Klinger 

(2007) (197); 
g
 Rheinenergie AG, 2012 (198); 

h
 Public transport company, Cologne (Kölner Verkehrsbetriebe, KVB) (199).
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Anthropogenic Heat Flux from Individual Sources 

The anthropogenic heat flux from individual sources represents the energy per square 

meter and second that each AHFS source transports into the groundwater. Most of the 

energy is transferred by conductive heat transport processes and can be determined using 

Fourier’s law |𝑞| = 𝜆 ⋅ ∇𝑇 = 𝜆 ⋅ Δ𝑇 Δ𝑑⁄ . Here λ is the thermal conductivity and ∇𝑇 the 

thermal gradient that can be derived by dividing the difference in temperature ΔT by the 

distance Δd between two points. For the anthropogenic heat fluxes from elevated ground 

surface temperatures (𝑞𝐺𝑆𝑇) the temperature gradient depends on the difference between 

GST (TGS) and GWT (TGW) as well as on the depth dGW of the water table (see Figure 4.4). 

It can be calculated as follows:  

 
qGST
ij

= λ ∙
TGS − (TGW

ij
+ δTGW)

dGW
ij

+ δdGW
 (4.1) 

Here 𝛿𝑇𝐺𝑊  and 𝛿𝑑𝐺𝑊  are the uncertainties of the measured value. The index ij 

indicates different values for different pixels ij. The assumed ranges can be found in 

Table 4.3. 𝑞𝐺𝑆𝑇 is determined for every pixel with a building density of less than 100%. 

Anthropogenic heat fluxes from buildings (see Figure 4.4) are calculated for each pixel 

ij with a building density of more than 0%. Here, the difference between the temperatures 

inside buildings/basements (TB) and GWT, as well as the vertical distance between 

building depth (dB) and groundwater depth, determine the thermal gradient, leading to the 

following equation: 

 
qBld
ij

= λ ∙
TB − (TGW

ij
+ δTGW)

(dGW
ij

+ δdGW) − dB
 (4.2) 

Thermal insulation of buildings is not considered here, because in Germany, ground 

slab isolation was not implemented into construction regulations until the late 1990s (200), 

leaving most buildings without insulation. Buildings that reach into the aquifer are still 

separated from the groundwater by the concrete slab of the basement. Thus, a minimal 

distance between heat source and groundwater of 30 cm was assumed. Heat flux from 

basement walls was not considered. 

Anthropogenic heat flux from the sewage system (see Figure 4.4) is determined for 

every pixel, in which sewage drains are present. It comes in two ways: first, there is the 

conductive heat transfer (𝑞𝑆𝑆), represented again based on Fourier’s law: 
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qSS
ij
= λ ∙

TSS − (TGW
ij
+ δTGW)

(dGW
ij

+ δdGW) − dSS
 (4.3) 

Sewage Pipes that reach into the aquifer are still separated from the groundwater by 

their mantle. Thus, a minimal distance between heat source and groundwater of 10 cm 

was assumed. 

Second, there is an advective heat transfer representing sewage leakage (𝑞𝑆𝐿 ). To 

quantify the heat flux from sewage leakage, the energy content of the leaked water is 

estimated and divided by the area covered by the sewage system within the pixel: 

 
qSL
ij
= cpSSρSSrL ∙ [TSS − (TGW

ij
+ δTGW)] ⋅

VSS
lSSDSS

 (4.4) 

Here, 𝑐𝑝𝑆𝑆 is the heat capacity of waste water, 𝜌𝑆𝑆  the density, 𝑟𝐿 the leakage rate, 𝑉𝑆𝑆 

the volume of wastewater, 𝑙𝑆𝑆 the length of the sewage system, and 𝐷𝑆𝑆 the diameter of 

the sewage system. 

Anthropogenic heat fluxes originating from the subway system (see Figure 4.4) are 

determined for all relevant pixels using Fourier’s law. However, the subway tunnels in 

Cologne run under the groundwater level at around 19 m below surface (199). Hence, 

groundwater and heat source are merely separated by the tunnel walls with a thickness 

𝑡𝑆𝑊 of 1.1 m: 

 
qSW
ij

= λ ∙
TSW − (TGW

ij
+ δTGW)

tSW
 (4.5) 

Anthropogenic heat flux from the district heating network (see Figure 4.4) is 

determined for all relevant pixels. The downwards directed percentage 𝑟𝑑 of the systems 

heat loss 𝑃𝐷𝐻 is taken and divided by the area covered by the district heating network 

leading to the following equation: 

 
qDH
ij
= PDH ∙ rDH ⋅

1

lDH ⋅ DDH
 (4.6) 

Due to the chosen approach the heat flux from the district heating networks shows no 

spatial variability. 
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Anthropogenic Heat Flux per Pixel 

The anthropogenic heat flux  �̅�
𝑖𝑗

 per pixel is determined by scaling the anthropogenic 

heat fluxes of the individual sources to the reference area, i.e. the pixel size, of 15 m × 15 

m. This is done for each heat source independently before the individual heat fluxes per 

pixel are added up to give the total heat flux of all anthropogenic heat sources for each 

pixel ij:  

 

q̅tot
ij
= qGST

ij
⋅ [1 − (bf ij + δbf)]

⏞              

q̅GST
ij

+ qBld
ij
⋅ (bf ij + δbf)

⏞          

q̅Bld
ij

+ qSS
ij
⋅
lSSDSS
APixelNSS

⏞        

q̅SS
ij

 

+qSL
ij
⋅
lSSDSS
APixelNSS⏟        

q̅SL
ij

+ qSW
ij
⋅
lSWDSW
APixelNSW⏟          

q̅SW
ij

+ qDH
ij
⋅
lDHDDH
APixelNDH⏟          

q̅DH
ij

 

(4.7) 

To transfer the reference area to the pixel size, the building density (bf) is used for heat 

fluxes from increased GST and from buildings. For all other AHFS sources, the heat 

fluxes per pixel are calculated by multiplying the anthropogenic heat fluxes with the 

fraction of the total area covered by the heat source (i.e. length l × diameter D), and the 

total area of the relevant pixels (area APixel of one pixel × number N of relevant pixels).  

Heat Flow 

The total anthropogenic heat flow into the subsurface Itot is the energy input per year of 

the entire study area and is obtained by adding up the anthropogenic heat flux of every 

pixel as follows: 

 Itot = APixel ∙∑ q̅𝑡𝑜𝑡
ij

ij

 (4.8) 

In addition, the heat flow generated by each individual AHFS source is determined 

accordingly. 

4.2.4. Geothermal Potential  

The analysis of the geothermal potential 𝑄 𝑃ℎ⁄  offers a comparison of the potential 

heat content of the aquifer Q to the annual residential space heating demand 𝑃ℎ . The 

potential heat content of the aquifer is the geothermal heat content of the urban aquifer for 

a given temperature reduction  𝛥𝑇 . It can be estimated using the following equation 

(60,201): 
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Q = Q𝑊 + 𝑄𝑆 = 𝐴 ⋅ 𝑑 ⋅ 𝑛 ⋅ 𝑐𝑝,𝑊 ⋅ Δ𝑇 + 𝐴 ⋅ 𝑑 ⋅ (1 − 𝑛) ⋅ 𝑐𝑝,𝑠 ⋅ Δ𝑇 (4.9) 

Here 𝑄𝑊 and 𝑄𝑆 are the potential heat contents of groundwater and solid respectively, 

A is the urban area, d is the aquifer thickness, n is the porosity of the aquifer, and 𝑐𝑝,𝑊 

and 𝑐𝑝,𝑠 are the volumetric heat capacities of water and solid. 

The annual residential space heating demand 𝑃ℎ is estimated as follows: 

Ph = ALS ⋅ 𝑝 ⋅ 𝑞ℎ𝑑 (4.10) 

where 𝐴𝐿𝑆 is the average living space per person, p is the population and 𝑞ℎ𝑑 is the 

average annual unit heating demand (60). The parameter values for both study sites are 

listed in Table 4.4. 

In this study, we further introduce the sustainable geothermal potential 𝐼𝑡𝑜𝑡 𝑃ℎ⁄  that 

compares the annual anthropogenic heat input into the aquifer (i.e. the heat flow Itot from 

above) to the annual residential space heating demand and hence, describes the capacity 

of sustainable energy usage.  

Table 4.4. Assumed Parameters for the estimation of the potential heat content of the aquifer and 

residential space heating demand. 

Parameter Name Unit Karlsruhe Cologne 

A Urban area 
a
 km² 61.9 81.3 

D Aquifer thickness
 m 30 ± 20 20 ± 10 

N Porosity of the aquifer % 20 ± 5 20 ± 5 

𝑐𝑝,𝑊 
Volumetric heat capacity of 

water
 b
 

kJ/m³K 4,150 4,150 

𝑐𝑝,𝑆 
Volumetric heat capacity of 

solid 
b kJ/m³K 2,400 ± 200 2,150 ± 50 

Δ𝑇 Temperature reduction 
c K 4 4 

Q 
Potential heat content of the 

aquifer
 PJ 20 ± 1 17 ± 9 

ALS 
Average living space per 

person 
d
 

m² 43 42.3 

p Population
 s - 286,000  ±500 485,000 ±500 

𝑞ℎ𝑑 
Average annual heating 

demand 
e
 

kJ/m² 525,600  ± 180,000 

Ph 
Annual space heating 

demand
 PJ 7 ± 2 11 ± 4 

 Capacity for space heating Years
-1

 3.1 ± 2.4 1.5± 1.0 
a 
see Table 4.1; 

b 
VDI 4640 (2010) (191); 

c
 Zhu et al. (2010)  (60);

d 
Timm (2008) (202); 

e  
Nitsch 

(2002) (203). 
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4.3. Results and Discussion 

4.3.1. Ground Surface Temperatures 

The results of the estimated GST are shown in Figure 4.5 and Table 4.2. The mean 

GST in Karlsruhe is 14.4°C and in Cologne 14.7°C. This difference can be explained 

by a higher percentage of sealed areas in Cologne (Table 4.2). 

 

Figure 4.5. Estimated mean ground surface temperatures (GST) in Karlsruhe and Cologne. 

4.3.2. Anthropogenic Heat Flux into the Subsurface 

Anthropogenic Heat Flux from Individual Sources 

The results for the anthropogenic heat fluxes of all evaluated individual AHFS sources 

are shown in Figure 4.6 (and Table S4.1). The most dominant source of AHFS is the 

district heating network in Karlsruhe with an average AHFS of 62.8 W/m² and an 

uncertainty (in form of standard deviation) of ±42.9 W/m², which is one order of 

magnitude more than fluxes from any other AHFS source.  

Increased GST is the least dominant source of anthropogenic heat flux with values of 

0.24 ± 0.11 W/m² in Karlsruhe and 0.21 ± 0.06 W/m² in Cologne. Fluxes from increased 

GST correspond to the storage or ground heat fluxes (see Figure 4.4) that are commonly 

used in literature to describe the energy balance of the surface. Storage heat fluxes in 

Basel, Switzerland, were measured hourly over the span of three days (8
th

, 25
th

 and 26
th

 

June 2002) by Rigo and Parlow (2007) (204). They found fluxes ranging from about -90 
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at night to 240 W/m² at daytime. Similarily Liebethal and Foke (2007) measured rural 

storage fluxes near Lindenberg in Germany on 10
th

 June 2003 finding fluxes ranging from 

-50 at night to 150 W/m² around noon (205). While the here presented AHFS from 

elevated GST fall within range of both of these studies, it is important to note that both 

studies analyzed only a short time frame in the summer month June and are therefore 

expected to be elevated compared to the annual mean. A time series of 37 years of 

monthly measurements of storage heat flux in a rural site in Eastern Minnesota was 

presented by Baker and Baker (2002) (206). Here the storage heat flux ranges between -6 

and 6 W/m² at 1.6 m depth and is better comparable to our findings of annual flux from 

elevated GST through the entire unsaturated zone. Furthermore, in 2013 the 

Intergovernmental Panel on Climate Change (4,207) analyzed a time frame of two 

decades. On a global scale, they estimated storage heat fluxes as the residual from the 

energy balance of the surface from 0.2 to 1.0 W/m², with the higher values representing 

fluxes into the ocean. This agrees well with our results for AHFs from increased GST. In 

contrast, Beltrami et al. (2006) discussed the absorbed ground surface heat flux in the 

continental Northern Hemisphere using borehole temperature profiles of up to 400 m 

depth (208). They determined absorbed fluxes ranging from 0.025 to 0.075 W/m² in 

central Europe for the time period from 1930 to 1980. 

 

Figure 4.6. Anthropogenic heat fluxes in Karlsruhe (blue) and Cologne (black) for all individual 

anthropogenic heat flux processes. Spatial variabilities are shown as boxplots, whereas the 

interquartile ranges of uncertainty are indicated by fully colored boxes. Mean values are indicated 

with a cross. 

The results for anthropogenic fluxes from buildings into the groundwater 

(3.61 ± 3.37 W/m² in Karlsruhe; 0.57 ± 0.47 W/m² in Cologne) are on the lower end of 
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the fluxes through the ground floor slabs of a building, which range between 0 and 

20 W/m² (209,210). However, they agree well with the estimation of ~2 W/m² heat loss 

directly beneath a building (211). In Karlsruhe, fluxes from buildings as well as 

conductive fluxes from the sewage system (4.73 ± 6.72 W/m² in Karlsruhe; 

0.94 ± 0.77 W/m² in Cologne) are significantly higher than in Cologne. This is also 

reflected in the long-tailed distribution of fluxes in Karlsruhe (Figure 4.6), where 4% of 

all buildings and 15% of the sewage system generate fluxes above 10 W/m². In contrast in 

Cologne less than 0.01% of all fluxes from buildings and 1% of all conductive fluxes 

from sewage systems are above 10 W/m². The obvious explanation is that due to the 

higher groundwater levels in Karlsruhe 40% of all buildings and 1% of all sewage pipes 

are only 2 meter above the groundwater level. Furthermore, 2 % of all buildings reach 

into the groundwater, leaving the concrete slab of the basement (thickness: 30 cm) to 

separate groundwater and anthropogenic heat source. These marginal distances between 

groundwater and heat source lead to a high thermal gradient and therefore to a high 

anthropogenic heat flux. These findings corroborate the results for Basel, Switzerland, 

which show a dominant heat flux of 16 W/m² for buildings reaching into the groundwater, 

while other buildings generate fluxes of less than 1 W/m² (179). Furthermore, our models 

show that the anthropogenic heat flux from buildings in Karlsruhe can be decreased by 45% 

to 2.0 ± 0.8 W/m² (with a spatial variability of 1.8 W/m²), if the assumed basement depth 

is reduced by only 0.4 m, following the model of Menberg et al. (2013) (145). 

Anthropogenic Heat Flux per Pixel 

The anthropogenic heat flux of the average pixel is 1.10 W/m² for Karlsruhe and 

0.39 W/m² for Cologne, respectively (Figure 4.7 and Table S4.2). In contrast, the 

geothermal heat flux (see Figure 4.4) in Karlsruhe is only about 0.08 W/m² (212) and in 

Cologne 0.06 W/m² (201), indicating that AHFS dominate the heat flux into the urban 

aquifer.  

Karlsruhe once again shows significantly higher fluxes and a wider distribution 

compared to Cologne. This is also reflected in the values of the standard deviation of both 

the spatial variability (1.49 W/m² in Karlsruhe; 0.38 W/m² in Cologne), as well as the 

uncertainty (0.73 W/m² in Karlsruhe; 0.12 W/m² in Cologne) of the results. The reason is 

the comparatively high groundwater level in Karlsruhe and the assigned uncertainty in the 

basement depth (0-6 m), which, in combination, result in a large and strongly variable 

thermal gradient, especially under buildings.  
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Figure 4.7. Anthropogenic heat flux per pixel of Karlsruhe (blue) and Cologne (black). The 

spatial variability is shown as the cumulative plot, whereas the interquartile range of the 

uncertainty is colored. Median as well as 25
th
 and 75

th
 percentiles are further highlighted, the 

particular mean for each city is indicated with a cross.  

 

Figure 4.8. Total anthropogenic heat flux per pixel into the groundwater of both study areas, 

Karlsruhe and Cologne. Negative fluxes indicate fluxes from groundwater to the surface. The 

spatial resolution is 15 m × 15 m. 
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The spatial variability of the anthropogenic heat flux per pixel is depicted in Figure 4.8. 

Cologne shows a comparatively homogeneous distribution with the highest fluxes along 

the subway line and next to the sewage network near the Rhine - in the area with the 

highest groundwater level. The northeast of Cologne reveals generally higher fluxes than 

the southwest, originating from a low groundwater temperature combined with elevated 

GST and again comparatively high groundwater levels. In this area, the largest 

groundwater heat pump system is installed with a heating load of 13.8 TJ/a. In this 

particular location, the heating efficiency of the geothermal installation is reduced by the 

low GWT, but at the same time, the sustainability of the system is increased through the 

high local AHFs.  

The highest fluxes in Karlsruhe are found to the east of the city center, where 

groundwater levels are highest. In the western part, it is mostly the district-heating 

network that leads to particularly high heat fluxes. Negative AHFS, i.e. fluxes from the 

groundwater to the surface, occur mainly in park areas, where the estimated ground 

surface temperature is lower than the groundwater temperature. Such green spaces are 

more common in Karlsruhe than in Cologne.  

Heat Flow 

The sum of these upward directed fluxes accumulates to a median heat flow of -

0.07 PJ/a in Karlsruhe and to only -0.01 PJ/a in Cologne. However, they are insignificant 

compared to the downward directed fluxes that accumulate to a median of 1.67 PJ/a in 

Karlsruhe and 0.95 PJ/a in Cologne. The overall energy balance is shown in Figure 4.9 

and Table S4.3. The mean of the total anthropogenic heat flow of Karlsruhe yields 

2.1 ± 1.4 PJ/a, more than double that of Cologne (1.0 ± 0.3 PJ/a). The most dominant 

contributors of heat in Karlsruhe are buildings/basements with 1.5 ± 1.4 PJ/a. In Cologne, 

buildings generally do not reach into the groundwater and therefore only account for 

0.3 ± 0.1 PJ/a. Nonetheless, they are the second most dominant AHFS source. Although 

insignificant regarding the anthropogenic heat flux of all individual sources, increased 

ground surface temperatures (GST) are the most dominant contributor of anthropogenic 

heat flow in Cologne, with values of 0.4 ± 0.1 PJ/a due to the spatial extent of the affected 

areas. In Karlsruhe, fluxes from increased GST generate a heat flow of 0.3 ± 0.1 PJ/a, 

which represents the second largest source of anthropogenic heat flow in the groundwater. 

In contrast, fluxes caused by industrial reinjection of thermal waste water and other 

geothermal systems account for only 0.08 PJ/a in Karlsruhe and -0.03 PJ/a in Cologne 

(145,187). 

Although being dominant regarding anthropogenic fluxes from individual sources, the 

district heating networks of each study area only account for a minor heat flow of 

0.11 ± 0.02 PJ/a in Karlsruhe and 0.02 ± 0.01 PJ/a in Cologne, respectively (Table S4.3). 

For Karlsruhe, Menberg (2013) determined similar values with minor differences for the 

heat flow from buildings and from increased GST (213). This can easily be explained by 
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the different estimations for basement depths and GST in both studies. Overall, the 

separation of spatial variability and uncertainty introduced in this study reduces the 

standard deviation of the total flow by 87% in comparison to the previous approach by 

Menberg et al. (2013)(213).  

 

Figure 4.9. Boxplot of the heat flow of Karlsruhe (blue) and Cologne (black). Mean values are 

indicated with a cross.  

Covariance Analysis 

To analyze the model sensitivity in relation to the uncertainty of the Monte Carlo 

simulation, Spearman’s rank correlation coefficients between the total heat flow and the 

parameter range distributions are determined (Figure 4.9, Table 4.3). The results are 

illustrated in Figure 4.10a); a detailed list of all parameters and their statistical 

significance p is given in Tables S4.4 (supporting information). As expected, the 

uncertainty of basement depth shows the highest correlation to the heat flow in Karlsruhe, 

whereas it has only a minor influence on fluxes in Cologne, where buildings rarely reach 

into the groundwater. 

Sewage temperature and the percentage of downwards directed heat flux show slightly 

elevated correlations in Cologne, confirming that the advective fluxes are more important 

in a city with a low thermal gradient. As expected, the heat flow of both cities is highly 

affected by the thermal conductivity, a parameter that is not expected to show a 

significant spatial variability in our study areas, due to the geological settings. However, 
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since no measured values from within the study site were available, a broad range of 0.3 

to 1.8 W/mK (Table 4.3) was chosen to account for all eventualities. 

 

Figure 4.10. Spearman’s rank correlation coefficients between the heat flow and the individual 

parameters as an analysis of uncertainty and between the heat flux per pixel and the individual 

parameters as an analysis of spatial variability. The thermal gradient ∇𝑇  was determined 

through: ∇𝑇 = (𝑇𝐺𝑆 − 𝑇𝐺𝑊) 𝑑𝐺𝑊⁄ . Only parameters with a correlation coefficient of > 0.1 are 

shown. The statistical variance p can be found in the supporting information (Table S4.4 and 

S4.5). 

To analyze the model sensitivity in relation to the spatial variability of its input 

parameters, Spearman’s rank correlation coefficients between the spatial variability of the 

total heat flux and the input parameters are determined (Figures 4.1, 4.2, 4.4 and 4.8). The 

results are illustrated in Figure 4.10b). A detailed list of all parameters and their statistical 

significance p is given in Tables S4.5 (supporting information). The spatial variability of 

the thermal gradient ∇𝑇 = (𝑇𝐺𝑆 − 𝑇𝐺𝑊) 𝑑𝐺𝑊⁄  is most influential regarding the spatial 

variability of the anthropogenic heat flux per pixel. However, nearly all uncertainties of 

the thermal gradient stem from the GST, which itself shows a high influence on the 

spatial variability of the anthropogenic heat flux per pixel. For further improvement of 

this method, it is therefore recommended to focus on spatial measurements of GST data 

in urban areas. Besides the thermal gradient and its linked parameters, building density is 

the most significant parameter. 

4.3.3. Implications 

Figure 4.11 shows the potential heat content of the aquifer for a temperature reduction 

of 4 K, annual residential space heating demand and the annual anthropogenic heat flow 



Chapter 4   

  

86 

determined for both study sites. The mean values and the uncertainties of the potential 

heat input as well as the annual heating demand are also given in Table 4.4. The heat 

content of the aquifer in Karlsruhe could provide enough heat to cover the space heating 

demand for 3.1 ± 2.4 years, while Colognes’ aquifer only yields heat for 1.5 ± 1 years.  

 

Figure 4.11. Comparison of the determined anthropogenic heat flow with the annual 

residential space heating demand and the potential heat content of the aquifer for a 

temperature reduction of 4 K. Uncertainties are given in form of standard deviations. 

These differences in the geothermal potential stem from a thinner aquifer in Cologne 

in combination with a higher population and therefore higher space heating demand 

inside the study area. An earlier study of the entire municipal Cologne showed a capacity 

for space heating in between 2.5 and 10.7 years for a temperature reduction of 2 to 6 K 

and assuming a rather optimistic average annual heating demand of 180,000 kJ/m² (60). 

Furthermore, in Westminster, a large proportion of buildings could support their own 

heating demand using ground source heat pumps without losing control of the ground 

thermal capacity (214). In Finland, 25% to 40% of annually constructed residential 

buildings could be heated utilizing groundwater (215). However, using the heat content of 

the aquifer for space heating will cool the urban aquifer by several degrees. In order to 

sustainably utilize the geothermal potential, the energy budget of all geothermal energy 

systems combined - heating and cooling - should not exceed the annual anthropogenic 

heat input into the aquifer. Nevertheless, assuming a steady-state system, this energy 

could sustainably supply 32% of the annual residential space heating demand in 

Karlsruhe and 9% in Cologne. This would be even more if additional cooling systems 

were to be installed. However, currently, a total of only about 0.03 PJ of heat are 
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extracted in in Cologne each year. This is merely 5% of the annual heat flow generated by 

AHFS. In Karlsruhe, there are currently no significant industrial geothermal heating 

systems in place. On the contrary, 0.1 PJ of energy are transported into the groundwater 

each year mainly due to reinjection of thermal wastewater. 
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4.4. Conclusions 

The development of a sustainable geothermal energy concept should be the goal of 

cities that want to use renewable energies such as shallow geothermal energy or thermally 

manage their groundwater resources. Hence, a 2D statistical analytical heat flux model 

was developed and successfully applied to the cities of Karlsruhe and Cologne, Germany. 

The heat flux model gives a spatial representation of the vertical subsurface 

anthropogenic heat fluxes into urban aquifers. Hence, a sustainable thermal energy 

management tool could be developed for both cities.  

We found that district heating pipes are the dominant source of anthropogenic heat 

fluxes with average values of more than 60 W/m², more than one order of magnitude 

higher than all other heat sources. Only sewage pipes and basements reaching into the 

groundwater are the cause of equally extraordinary heat sources with maximal fluxes of 

40 W/m² and 14 W/m², respectively. These can be found in Karlsruhe, where the 

groundwater level is on average only 5.4 m below the subsurface. In Cologne, with a 

mean groundwater depth of 10.2 m, buildings and the sewage system do not reach into 

the groundwater. Thus, their fluxes show only minor spatial variability. Furthermore, in 

Cologne, the total AHFS is lower (0.39 ± 0.12 W/m²) and has a lower spatial variability 

(± 0.38 W/m²) than the total AHFS in Karlsruhe (1.10 ± 0.73 W/m²; spatial variability of 

± 1.49 W/m²). 

While dominating the local anthropogenic fluxes, the district heating network is 

insignificant for the citywide AHFS budget in both cities. Heat from buildings (1.51 ± 

1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a 

in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors of the anthropogenic 

heat flow into the urban aquifer. In Karlsruhe, buildings are the source of 70% (in 

Cologne 30%) of the annual heat transported into the groundwater, which is mainly 

caused by buildings reaching into or close to the groundwater. A covariance analysis 

confirmed these findings. Hence, basement depth is the most influential factor to citywide 

heat flow in cities with a high groundwater level.  

The spatial distribution of fluxes, however, is mostly influenced by the thermal 

gradient of the unsaturated zone. A cold GWT combined with a high GST, as well as a 

high groundwater level, results in elevated fluxes like in the east of Karlsruhe. Overall, 

2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of thermal energy are annually transported into the 

groundwater of Karlsruhe and Cologne due to AHFS. This is sufficient to sustainably 

cover 32% and 9% of the annual residential space heating demand of Karlsruhe and 

Cologne, respectively. 
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Supplementary Material 

 

Figure S4.1. Well location in Karlsruhe and plots of groundwater temperature (red) as well as 

groundwater depth (blue) for selected wells (marked blue, pink, and green on the map). 

 

Figure S4.2. Groundwater well location and weather station of Cologne 
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Table S4.1. Results for the anthropogenic heat flux from individual heat sources of both cities. 

Uncertainty and spatial variability are given as the standard deviation. 

Anthropogenic 

heat flux from 

Increased 

GST 
Buildings 

Sewage 

system 

Sewage 

leakage 

Subway 

system 

District 

heating 

[W/m²] Karlsruhe 

Mean 0.24 3.61 4.73 7.15 - 62.80 

Uncertainty 0.11 3.37 6.72 6.95 - 41.87 

Spatial variability 0.35 3.04 6.16 1.41 - - 

[W/m²]  Cologne 

Mean 0.21 0.57 0.94 5.87 3.53 - 

Uncertainty 0.06 0.25 0.77 8.52 3.13 - 

Spatial variability 0.17 0.47 2.19 1.28 0.91 - 

 

Table S4.2. Results for the total anthropogenic heat flux per pixel of both cities. Uncertainty and 

spatial variability are given as the standard deviation.  

Mean total heat flux per pixel 

[W/m²] 
Karlsruhe Cologne 

Mean   1.10 0.39 

Uncertainty 0.73 0.12 

Spatial variability 1.49 0.38 

 

Table S4.3. Results for the heat flow of both cities. 

Heat flow Total 
Increased 

GST 
Buildings 

Sewage 

system 

Sewage 

leakage 

Subway 

system 

District 

heating 

[PJ/a] Karlsruhe 

Mean 2.15 0.34 1.51 0.10 0.10 - 0.11 

Standard 

deviation 
1.42 0.10 1.36 0.16 0.06 - 0.02 

[PJ/a] Cologne 

Mean 0.99 0.42 0.31 0.05 0.18 0.02 0.02 

Standard 

deviation 
0.32 0.13 0.14 0.06 0.13 0.00 0.01 
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Table S4.4. Results and statistical significance of the Spearman’s rank correlation coefficients ρ 

for the uncertainty analysis. 

Parameter 
Karlsruhe Cologne 

ρ p-value ρ p-value 

λ 0.49 0.00 0.81 0.00 

δTGW 0.04 0.26 -0.08 0.03 

δdGW -0.01 0.86 -0.02 0.53 

δbf 0.04 0.24 0.07 0.03 

TBld 0.31 0.00 0.27 0.00 

𝑑𝐵𝑙𝑑 0.79 0.00 0.03 0.38 

𝑇𝑆𝑆 0.14 0.00 0.46 0.00 

𝑑𝑆𝑆 0.08 0.03 0.06 0.09 

𝐷𝑆𝑆 0.09 0.01 0.03 0.42 

lSS 0.00 0.99 -0.05 0.16 

𝑐𝑝𝑆𝑆 0.01 0.87 0.05 0.19 

VSS -0.03 0.38 0.04 0.12 

𝑟𝐿 0.03 0.37 0.17 0.00 

PDH 0.03 0.34 -0.05 0.14 

𝑟𝑑 0.05 0.14 0.06 0.09 

𝑇𝑆𝑊 - - 0.07 0.05 

lSW - - 0.02 0.62 

𝐷𝑆𝑊 - - 0.05 0.18 

𝐷𝐷𝐻 0.01 0.84 - - 

𝑙𝐷𝐻 0.07 0.05 - - 

 

Table S4.5. Results and statistical significance of the Spearman’s rank correlation coefficients ρ 

for the spatial variability analysis.  

Parameter 
Karlsruhe Cologne 

ρ p-value ρ p-value 

TGS 0.68 0.00 0.57 0.00 

TGW -0.28 0.00 -0.25 0.00 

dGW -0.27 0.00 -0.25 0.00 

bf  0.66 0.00 0.34 0.00 

∇𝑇 0.86 0.00 0.80 0.00 
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5. Linking Surface Urban Heat Islands with 

Groundwater Temperatures 

Reprinted with permission from ‘Benz, S. A., Bayer, P., Goettsche, F. M., Olesen, F. 

S. & Blum, P. Linking Surface Urban Heat Islands with Groundwater Temperatures. 

Environmental Science and Technology 50, 70-78, 2016’. Copyright 2016 

American Chemical Society.  

Graphical Abstract 
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Abstract 

Urban temperatures are typically, but not necessarily, elevated compared to their rural 

surroundings. This phenomenon of urban heat islands (UHI) exists both above and below 

the ground. These zones are coupled through conductive heat transport. However, so far, 

the precise process is not sufficiently understood. Using satellite derived land surface 

temperature and interpolated groundwater temperature measurements, we compare the 

spatial properties of both kinds of heat islands in four German cities and find correlations 

of up to 80%. The best correlation is found in older, mature cities such as Cologne and 

Berlin. However, in 95% of the analyzed areas, groundwater temperatures are higher than 

land-surface temperatures due to additional subsurface heat sources such as buildings and 

their basements. Especially since local groundwater hot spots under city centers and 

under industrial areas are not revealed by satellite derived land-surface temperatures. 

Hence, we propose an estimation method that relates groundwater temperatures to mean 

annual land-surface temperatures, building density, and elevated basement temperatures. 

Using this method, we are able to accurately estimate regional groundwater temperatures 

with a mean absolute error of 0.9 K. 
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5.1. Introduction 

In urban settlements, temperatures are typically, but not necessarily, elevated (30). 

This so-called urban heat island (UHI) phenomenon exists in all layers of modern cities 

such as atmosphere, surface and subsurface (SUHI). Various unfavorable issues are 

related to this phenomenon. The UHI on the surface is in part responsible for increased 

mortality rates during heat waves (169) and regional atmospheric pollution (170). In 

contrast, the investigation of SUHI indicated some favorable qualities such as economic 

and ecological advantages for the use of shallow geothermal energy (58). However, the 

increased groundwater temperatures also put stress on the underground ecosystems (68). 

Until now, all layers are typically investigated individually and information on the 

relationship between temperatures below and above ground is scarce. 

The annual mean air temperature is closely related to the annual mean groundwater 

temperature due to conductive heat transport processes (9,148,149,216). The timely 

correlation of subsurface temperatures and air temperatures has previously been shown by 

Cheon et al. (217) for four urban settlements in South Korea between 1960 and 2010. In 

addition, results from a study by Menberg et al. (25) demonstrated that the surface air 

temperature has a considerable impact on subsurface and groundwater temperatures 

(GWT). However, the coupling process between air and ground temperatures is not yet 

fully understood (10,190).  

In recent years, satellite derived land surface temperatures (LST) has evolved as a new 

technique for above ground temperature measurements. Its relationships to air 

temperature and ground surface temperatures imply a correlation, but are not yet precisely 

determined (18,92,139,218). However, satellite derived LST enables easy access to the 

spatial and temporal conditions of UHIs, and it is therefore frequently applied in cities in 

India (219), North America (220), central Europe (138), and worldwide (34). In contrast, 

the spatial description of SUHIs relies on the interpolation of GWT measurements in 

existing groundwater monitoring wells and boreholes (52,56,57), which is expensive and 

time-consuming. Especially in urban areas, groundwater wells are scarce and often too 

shallow (< 15 m below ground) for characterizing SUHIs. 

Thus, many studies try to estimate GWT from above ground measurements such as 

surface air temperature (2 m temperature) and/or LST (221). Simulations of borehole 

temperatures from long term measurements of surface air temperature or vice versa 

indicate promising results (222-224). For example, Beltrami et al. were able to reproduce 

98% of the variance in the borehole temperature using 70 years of surface air temperature 

in a rural area of Quebec (167). However, Huang et al. showed that measured urban 

borehole temperatures were significantly elevated compared to those predicted from 

meteorological time series in Osaka, Japan (225). These deviations are caused by 

anthropogenic heat sources such as buildings and their basements, sewage systems, 
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sewage leakage, subway tunnels, district heating networks, reinjection of thermal 

wastewater and geothermal energy systems (36,52). 

Zhan et al. developed a one-dimensional (1-D) vertical heat transport model of 

Beijing’s underground and reconstructed the subsurface thermal field at depths of 0.05 m, 

0.40 m and 3.20 m from satellite derived LST data (226). The results were validated with 

soil temperatures measured at seven ground-based sites for which the overall average 

mean absolute error for one year of daily temperatures was 1.5 K. However, due to the 

time delay between above- and below-ground temperatures and the lack of satellite data, 

modeling of deeper GWT was impossible. Furthermore, Zhan et al. neglected below-

ground anthropogenic heat fluxes into the subsurface (226), although recent studies 

showed that buildings and basements as well as elevated ground surface temperatures 

thermally dominate alterations of the urban underground (86,179). In cities with a shallow 

groundwater table, heat flow from buildings can be more than double the heat flow from 

elevated ground surface temperatures (86). Hence, for an improved estimation of urban 

GWT, the effects of buildings and urban infrastructure need to be considered. 

Furthermore, Zhu et al. demonstrated that advection from horizontal groundwater flow is 

a crucial heat transport mechanism in the subsurface of Cologne (177). It thus has to be 

considered when reconstructing the thermal environment of the urban underground. 

The main objective of this study is to develop a method to estimate urban groundwater 

temperatures (GWT) from satellite-derived data. First, we compare urban heat islands 

(UHI) and subsurface urban heat islands (SUHI) in four German cities and analyze their 

dissimilarities in order to understand the interaction between the urban surface and 

subsurface. Spatial correlation and absolute differences between land surface 

temperatures (LST) and GWTs are carefully evaluated and the key drivers for the 

correlations are identified in an effort to analyze the interplay of UHI and SUHI. Second, 

we estimate annual mean urban GWT from annual mean satellite derived LST and 

building densities of the studied cities. For two cities this estimation method is then 

extended to include horizontal groundwater flow. These estimations allow for a first 

assessment of the SUHI and consequently the geothermal potential and groundwater 

ecological conditions, without the need for groundwater temperature measurements and 

data interpolation  
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5.2. Materials and Methods 

Four German cities are chosen as study areas: Berlin, Munich, Cologne, and Karlsruhe 

(Table 5.1). From these, Karlsruhe stands out as being both the significantly smallest and 

youngest city. While Berlin, Munich and Cologne have more than 1 million inhabitants, 

Karlsruhe only has slightly more than 300,000. A single year of data for the three German 

megacities is analyzed; for Karlsruhe, two consecutive years (2011 and 2012) are 

analyzed, which also allows for the investigation of potential time-dependent changes. In 

the following, a brief overview of the hydrogeological properties and the GWT 

measurements of the studied cities is provided.  

Table 5.1. General information on the four studied cities and years.  

City Berlin Munich Cologne Karlsruhe Karlsruhe 

Year studied 2010 2009 2009 2011 2012 

Year founded 1237 1158 38 B.C. 1715 1715 

Area [km²] 891.7
a
 310.7

b
 405.2

c
 173.5

d
 173.5

d
 

Population
 

3,460,700
a
 1,364,200

b
 1,020,000

c
 303,000

d
 307,000

d
 

Population density [km
-
²] 3881 4391 2517 1746 1769 

Analyzed area [Pixel] 928 437 147 89 88 

Groundwater flow 

velocity 
e
 [m/d] 

0.03–1.4 10-15 ca. 1.0 0.5 – 3.5 0.5 – 3.5 

Groundwater depth [m] 1-10 0-22 3-22 2-10 2-10 

Measurement depth [m] 15 1-23 20 5-14 5-14 

Air temperature 
f
 [°C] 8.9 9.1 10.7 11.8 11.2 

a
 Office for statistics, Berlin-Brandenburg (Amt für Statistik Berlin-Brandenburg); 

b
 Office for statistics, 

Munich (Statistisches Amt München); 
c 
Office for urban develpoment and statistics, Cologne (Stadt Köln, 

Amt für Stadtentwicklung und Statistik); 
d 
Office for urban development, Karlsruhe (Stadt Karlsruhe, Amt 

für Stadtentwicklung); 
e
 Menberg et al. (2013)(36); 

f 
German Weather Service (Deutscher Wetterdienst, 

DWD). 

 

5.2.1. Hydrogeology and Groundwater Temperature  

In general, the seasonal temperature fluctuations get damped and show a certain time 

lag in the unsaturated zone, which depends on the effective thermal diffusivity (9). The 

penetration depth of this seasonal temperature fluctuation is also a function of the 

effective thermal diffusivity and typically ranges between 10-15 m (9). In the present 

study the focus is merely on annual mean temperatures that can be considered constant 

over certain depth. With increasing depth, however the groundwater temperature is 

governed by the geothermal gradient at the site. Consequently, annual mean temperatures 
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can be determined by either repeated measurements at shallow depths or a single 

measurement in a depth below the penetration depth of seasonal temperature fluctuation. 

Berlin is located in the flat river Spree valley surrounded by two minor high points in 

the south and north. Both consist mainly of marly till and they are separated by the sandy 

glacial Spree valley. In this valley, the groundwater hydraulic head is between 1 and 10 m 

below the surface, while the groundwater table goes down to 40 m below surface under 

the two hills (227). In 2010, GWT was manually measured in 123 wells by the 

Department for Urban Development and the Environment at depths of 15 m below 

ground (145).  

The subsurface of Munich consists mainly of gravel and cobble, and an unconfined 

aquifer (36,228). The groundwater level reaches up to 1 m below the surface in the north 

and close to the Isar River. Only in the far south of the city is the groundwater level at 18 

m below the surface. In October 2009, groundwater temperatures (GWT) were measured 

in 492 wells by the Environmental Department of Munich, but only one meter below the 

groundwater surface. Hence, these measurements are most probably influenced by 

seasonal temperature oscillations since they were elevated for this month compared to the 

annual mean values. To emphasize this bias, the data for Munich is marked with an 

asterisk (2009*) in the present study and is not considered in the derivation of the 

estimation method.  

In Cologne, the shallow subsurface also consists mainly of gravels and sands (186), 

with the groundwater level at approximately 10 m below ground surface. GWTs were 

measured between September and October 2009 in 52 wells at 20 m below the surface 

using SEBA KLL-T logging equipment. The SUHI of Cologne was previously described 

comprehensively by Zhu et al.(177), Menberg et al. (36), and Benz et al. (86).  

The shallow subsurface of Karlsruhe is also dominated by gravels and sands (184). 

However, here the average groundwater level is only at 5 m below ground. GWT were 

measured 2-3 meters below the groundwater surface in 82 wells by the Public Works 

Service of Karlsruhe. The wells are equipped with an Ackerman WPS05 data logger that 

records daily temperatures at 7 am. From these measurements, annual means for 2011 and 

2012 were determined. The SUHI and the spatially variable subsurface anthropogenic 

heat fluxes of Karlsruhe have previously been described by Menberg et al. (145) and 

Benz et al. (86). 

In the four studied cities, GWTs were interpolated with the same resolution as the 

available LST data (~1 km) using kriging in GIS (ESRI
®
 ArcInfo™, Version 10.1). Mean 

temperatures and their standard deviations and measurement years are compiled in 

Table 5.2. 
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5.2.2. Land Surface Temperature 

Eight-day mean land surface temperatures (LST) were taken from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) level-3 products, MOD11A2 and 

MYD11A2 (15,89), as obtained from NASA’s TERRA and AQUA satellites, courtesy of 

the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth 

Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, 

https://lpdaac.usgs.gov (14). They are composed of the daily 1-kilometer product of both 

satellites. TERRA passes the study areas daily at approximately 10:30 am and pm, and 

AQUA at approximately 01:30 am and pm. LST is retrieved only for clear sky 

observations. Out of these, the annual arithmetic mean was determined for all cities and 

years. MODIS-derived LSTs have been previously validated by several studies (16,90-92) 

on the basis of ground-based and heritage satellite measurements. The annual mean 

MODIS LSTs are also given in Table 5.2.  

The UHI of Berlin was discussed by Dugord et al.(229). They found a UHI magnitude 

[max LST – mean LST] (142) of 8.7 K at 10 am and 3.2 K at 10 pm on August 14
th

, 2000. 

In contrast, the annual mean UHI magnitude of Berlin determined for the year 2010 is 

only 2.8 K. This low value is expected due to the weak surface UHI in winter (40) that 

lowers the annual UHI magnitude compared to the summer. 

5.2.3. Estimation Method 

In rural areas, annual mean GWTs are often estimated using surface air temperatures, 

ground temperatures or recently LSTs. However, in urban settlements, GWTs are also 

influenced by buildings (86) and other heat sources. Thus, it is impossible to estimate 

annual mean GWT using solely above-ground temperature. Hence, we combine annual 

mean LSTs and basement temperatures (BT) according to the building density (bd) to 

estimate annual mean groundwater temperatures (eGWT). Basements are typically not 

cooled (i.e. air conditioned), and thus LST was taken as the lower limit of eGWT leading 

to the following equation: 

 
𝑒𝐺𝑊𝑇 = 𝑀𝑎𝑥 {

𝐿𝑆𝑇
𝐿𝑆𝑇 ⋅ (1 − 𝑏𝑑) + 𝐵𝑇 ⋅ 𝑏𝑑

 (5.1) 

Building densities were determined at the resolution of LST using building locations 

provided by OpenStreetMap (230) (Figure 5.4). In Germany, ground slab isolation was 

not implemented into construction regulation until the late 1990s (200), thus additional 

thermal insulation of buildings is not considered here. Basement temperatures were 

estimated as 17.5 ± 2.5 °C following guidelines by the German Institute for 

Standardization (192). Additionally, building density and LST were assumed to be free of 

error. 

https://lpdaac.usgs.gov/data_access/data_pool.%22
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To account for advective heat transport due to horizontal groundwater flow, the 

estimated groundwater temperature (eGWT) from satellite derived land surface 

temperature (LST) and building density is shifted according to the velocity and direction 

of the temperature signal in Cologne and Karlsruhe. At these locations, the flow can be 

considered constant over the entire study area. A detailed description of the calculation 

method can be found in the supplementary information. 

Table 5.2. Summary of the main outcomes. Shown are annual mean values of groundwater 

temperatures (GWT), land surface temperatures (LST), and estimated groundwater temperatures 

without (eGWT) and with (eGWTFLOW), correlation and corresponding standard deviation 

(obtained via bootstrap method) and the accuracy of the estimated eGWT and eGWTFLOW. 

City 

(Studied year) 

Berlin 

(2010) 

Munich 

(2009) 

Cologne 

(2009) 

Karlsruhe 

(2011) 

Karlsruhe 

(2012) 

Annual 

mean 

temperature 

and 

standard 

deviation 

[°C] 

GWT 9.9 ± 0.8 11.9 ± 1.7 12.4 ± 1.0 13.0 ± 1.0 13.1 ± 1.0 

LST 8.7 ± 1.1 8.8 ± 0.8 11.7 ± 0.6 12.4 ± 0.8 11.1 ± 0.8 

eGWT 9.8 ± 1.6 10.2 ± 1.3 12.5 ± 1.0 13.6 ± 0.8 12.3 ± 0.9 

eGWTFLOW - - 12.6 ± 1.0 13.7 ± 0.7 12.5 ± 0.8 

Correlation 

and 

standard 

deviation 

GWT/LST 0.77 ± 0.01 0.74 ± 0.03 0.83 ± 0.03 0.48 ± 0.08 0.62 ± 0.07 

GWT/eGWT 0.74 ± 0.02 0.74 ± 0.03 0.81 ± 0.04 0.49 ± 0.08 0.56 ± 0.08 

GWT/eGWTFLOW - - 0.87 ± 0.02 0.57 ± 0.09 0.66 ± 0.07 

RMSE [K] 

GWT/eGWT 1.1 2.1 0.7 1.0 1.2 

GWT/eGWTFLOW - - 0.6 1.0 1.2 

MAE [K] 

GWT/eGWT 0.9 1.8 0.6 0.8 1.0 

GWT/eGWTFLOW - - 0.5 0.8 0.9 
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Figure 5.1. Geographical location, land surface temperature (LST), groundwater temperature 

(GWT), difference in temperatures (ΔT), and Spearman correlation (ρ) for all analyzed cities 
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5.3. Results 

5.3.1. Comparison of Groundwater Temperature (GWT) and 

Land Surface Temperature (LST)  

Table 5.2 summarizes the main outcomes of this study, including mean values for 

GWTs and LSTs. Of the four analyzed cities, Berlin is the coldest (GWT: 10 °C; LST: 

9 °C) and Karlsruhe, 2011, the warmest (GWT: 13 °C; LST: 12°C). A map of GWTs, 

LSTs, and the difference ΔT of both temperatures and the Spearman correlation 

coefficient between GWT and LST are shown in Figure 5.1. The correlation coefficient 

for all cities and years ranges from 0.5 ± 0.1 for Karlsruhe, 2011, to 0.8 ± 0.0 for Cologne, 

2012. All p-values are below 0.01, indicating statistical significance. In the four studied 

cities, GWTs indicate local hotspots which are not observed in the satellite-derived LST 

data. In Berlin, Cologne and Karlsruhe, these hotspots are especially distinct and occur 

mainly under the city center where building densities are the highest. Moreover, in 

Cologne the hotspot can be directly linked to specific groundwater wells located next to 

the subway system and areas of local high sewage leakages (86,231). These 

anthropogenic heat sources affect GWT, but have no or only minor effects on above-

ground temperatures. Similarly, the rise in GWT in the northwest of Karlsruhe is due to 

several existing reinjection wells of thermal wastewater (145). This anthropogenically 

caused hotspot is particularly noticeable in 2011, when the LST was significantly higher 

than its long-term average (Table 5.2). The mean annual GWTs do not respond to such 

short term changes in temperature, and therefore do not significantly deviate from their 

long-term mean. Still, the GWT close to the reinjection wells is about 3 K warmer than 

the LST over the entire area.  

In Munich, the largest negative difference in temperature (ΔT) is due to the GWT 

measurements itself, which were taken in October only 1 m below the groundwater 

surface, resulting in significant seasonal bias. Hence, Munich is not considered much 

further in detail here. Still, it is an important case to demonstrate the large influence of 

shallow sampling depth and time.  

For 95 % of the analyzed pixels of the four cities, GWT was higher than LST 

(Figure 5.2). Disregarding Karlsruhe, 2011, where LSTs were considerably higher than 

the long-term average, this number increases to 97.4 %. This confirms that the mean 

annual GWT is influenced by subsurface anthropogenic heat sources and therefore cannot 

solely be estimated from LST. However, in the four studied cities, long-term LSTs 

provide minimum temperatures for estimating annual mean urban GWTs (Eq. 5.1). On 

average, the measured GWTs are 1.5 ± 1.1 K warmer than the satellite-derived LSTs.  
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Figure 5.2. Comparison of groundwater temperature (GWT) and land surface temperature (LST) 

for all four analyzed cities. In 95% of the analyzed 1689 pixels, the GWT is higher than the LST. 

5.3.2. Influences on the Correlation of UHI and SUHI  

Figures 5.3 a) to c) show the influence of city- and year-specific parameters on the 

correlation coefficient ρ between groundwater temperature (GWT) and land surface 

temperature (LST) (see Figure 5.1). Only parameters that correlate to ρ with more than 

85 % and which have a p-value of < 0.1 are shown. A list of all analyzed parameters is 

provided in Table S5.1 (Supplementary information). The largest correlation of 100 % 

was found for the measurement depth in the groundwater (Table S5.1). This agrees with 

the fact that the influence of short-term anthropogenic heat sources such as road works or 

newly constructed buildings, and the seasonal oscillations of the LST decreases with 

depth (9).  

However, it is important to note that with increasing depth, groundwater temperatures 

are dominated by the natural heat flow, i.e. according to the geothermal gradient. Thus, 

the correlation between GWT and LST generally decreases with increasing measurement 

depth, depending on the vertical extension of the subsurface urban heat island (SUHI). 

The latter depends mainly on conductive heat transport and therefore on the age of the 

anthropogenic heat sources in the city. Accordingly, LST and GWT are better correlated 

for older and more mature urban settlements (Figure 5.3a). The size of the city also 

influences the observed relation between GWT and LST due to the fact that pristine 

groundwater laterally enters the urban aquifer and influences the observed groundwater 

temperatures at the city border. With increasing size of the city, a smaller percentage of 
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the area becomes affected and thus the influence on the overall correlation becomes 

minor (Figure 5.3b). However, due to the small sample size of four cities, major 

conclusions cannot be drawn and further research, including numerical simulations, 

should be performed to verify this interpretation. 

 

Figure 5.3. Spearman correlation coefficients (ρ) of groundwater temperature (GWT) and land 

surface temperature (LST), as well as of GWT and estimated groundwater temperature (eGWT), 

are plotted against several city-specific parameters. Mean groundwater measurement depth and 

the age of the city influence the correlation of GWT and LST the most, while RMSE and spatial 

correlation of GWT and LST seem independent of each other. 

5.3.3. Estimation of Groundwater Temperature 

The estimated groundwater temperature (eGWT) was determined from land surface 

temperature (LST) and building density according to equation 5.1 (Table 5.2). In 

Figure 5.4, the building density, the groundwater temperature (GWT), the eGWT, and the 

difference between estimated and measured GWT (ΔT) are shown for three analyzed 

cities. Because of its seasonally influenced GWT measurements, Munich is excluded 

from the detailed discussion. In short, the results for Munich show a mean annual eGWT 

of 10.2°C, which is 1.7 K lower than the GWT measured in October 2009. 

The correlation between GWT and eGWT shows no significant differences in the 

correlation between GWT and LST. Again, Karlsruhe – the smallest and youngest city – 

shows the lowest correlation, while Cologne – the oldest city with a study area roughly 

the size of Karlsruhe – has the largest correlation ( = 0.8). The estimated eGWT map 

displays the hotspots in the city center of the three investigated cities (Figure 5.4). 
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However, as expected, the hotspot in the northwest of Karlsruhe, which is caused by local 

reinjections of thermal wastewater, cannot be determined using our proposed estimation 

method (Eq. 5.1). Similarly, the elevated GWT in the western part of Berlin cannot be 

identified either. Here, the building density is less than 2% and heat is most likely 

transported from the more densely populated city on top of the Tellow-Plateau into this 

western portion which is located in a valley (232). It is also possible that other 

unidentified heat sources cause this local hotspot. 

 

Figure 5.4. Building density, groundwater temperature (GWT), estimated groundwater 

temperature (eGWT), difference in temperatures (ΔT), and Spearman correlation (ρ) for all 

analyzed cities and years. Well locations are shown with GWTs. A high (red) ΔT represents a 

higher measured GWT and a lower (yellow) ΔT represents a higher estimated eGWT. Building 

densities were derived from building locations as given by OpenStreetMap (230). 

Overall, the deviation between measured and estimated GWT is minor and results in 

an average RMSE of 1.1 K (Figure 5.5). The error bars in Figure 5.5 represent the range 
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of estimated eGWT and stem from the assumed range of basement temperatures. Taking 

into account that the average range spans over 0.3 ± 0.2 K, the estimated eGWT range 

deviates on average by 0.6 ± 0.6 K from the measured temperatures.  

 

Figure 5.5. Comparison between measured groundwater temperatures (GWT) and estimated 

groundwater temperatures (eGWT). Error bars represent the assumed range due to uncertain 

basement temperatures. The overall mean absolute error is 0.9 K. 

It is important to note that a good RMSE does not necessarily mean that GWT and 

LST correlate spatially (Figure 5.3d). Berlin, for example, has a significantly higher 

correlation than Karlsruhe. However, when comparing the absolute values of eGWT, 

estimations for Karlsruhe agree slightly better with measured GWTs. The relatively low 

correlation of GWT and LST in Karlsruhe can be explained by the anthropogenic hotspot 

in the northwest which is disproportionally weakening the correlation due to the small 

size of the city and the high velocity of the groundwater flow (see Table 5.1). 

Hence, the GWT-LST correlation for Karlsruhe increases by up to 0.1 if the 

groundwater flow is taken into account. Figure 5.6 shows maps of the estimated 

groundwater temperature with flow (eGWTFLOW), as well as the temperature difference 

ΔT=GWT-eGWTFLOW. For both analyzed cities the correlation is improved by 6 to 10 % 

(see Table 5.2). In contrast, the RMSE between GWT and eGWTFLOW is only slightly 

improved by less than 0.1 K compared to the estimation without groundwater flow (see 

Table 5.2 and Figure S5.1). 

The mean absolute error (MAE) in this study is 0.9 K and therefore 0.7 K lower than 

in the study by Zhan et al., who utilized satellite-derived LST to reconstruct the 

subsurface thermal field of Beijing (226). However, they did not consider anthropogenic 
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heat sources such as buildings and only estimated ground temperatures within a 

maximum depth of 3.20 m. We assume the remaining deviations between estimated and 

measured GWT stem from other anthropogenic sources rather than elevated surface 

temperatures and buildings. Benz et al. found that 27% of the subsurface anthropogenic 

heat flow to the top of the groundwater surface in Cologne stems from sewage systems, 

sewage leakage, district heating networks, and the subway system, a considerable fraction 

that is not represented in our approach (86). For the year 2009, however, these heat 

sources alone could increase the groundwater temperature by approximately 0.1 K. 

Furthermore, this study considers only basements without insulation, which would result 

in an overestimation of GWT. 

 

Figure 5.6. Groundwater flow, groundwater temperature (GWT), estimated groundwater 

temperature with groundwater flow (eGWTFLOW), the difference in temperatures (ΔT), and 

Spearman correlation (ρ) for all analyzed cities. 

Our proposed estimation method combines land surface temperatures (LST) with 

basement temperatures to estimate groundwater temperatures (GWT) and improves the 

mean absolute error to a value of 0.9 K. In comparison, estimating GWT from LST alone 

results in an underestimation of 1.5 K. Hence, we conclude that mean annual urban GWT 
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can be well approximated by combining satellite-derived LST data and building density 

data. The method allows investigations of subsurface urban heat islands (SUHI) and 

related issues such as geothermal potential (60) and groundwater quality where intensive 

GWT monitoring is not feasible. However, because the vertical extension of the SUHI 

appears to influence the correlation between above and below ground temperatures 

(Figure 5.3), we recommend applying the proposed estimation method to young mega-

cities that are typically found in developing and BRIC (Brazil, Russia, India and China) 

countries. In principle, since LST and building density data are available from remote 

sensing, our method has the potential for large scale and even global estimations of urban 

GWTs.  
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Supplementary Material 

Influences on the Correlation of UHI and SUHI  

Table S5.1. Correlation coefficient and p-value between several year and city specific 

parameters, and the correlation coefficient of groundwater temperature (GWT) and land surface 

temperature (LST).  

Parameter 
Correlation 

coefficient 
p-value 

Age 0.9 0.08 

Mean GWT -0.6 0.35 

Mean LST -0.4 0.52 

RMSE -0.3 0.68 

Area 0.9 0.10 

Measurement depth 1.0 0.01 

Population density 0.6 0.35 

 

Estimation of Groundwater Temperature   

with Groundwater Flow 

To account for advective heat transport due to horizontal groundwater flow, the 

estimated groundwater temperature (eGWT) from satellite derived land surface 

temperature (LST) and building density is shifted according to the temperature flow 

velocity and direction. This is done for Cologne and Karlsruhe, where groundwater flow 

is roughly considered constant over the entire study area. 

Heat advection is retarded in comparison to the groundwater flow velocity vW. The 

velocity vT of a temperature signal can be determined from the groundwater flow velocity 

vW as follows (5): 

 𝑣𝑇 =
𝑣𝑊

1 + 𝑅𝑇
 (S5.1) 

With the thermal retardation factor 𝑅𝑇 defined as 

 
𝑅𝑇 =

(1 − 𝑛) ⋅ 𝑐𝑉,𝑆 

𝑛 ⋅ 𝑐𝑉,𝑊
 (S5.2) 
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Here, n is the porosity of the aquifer, while cV,S  and cV,W  are the volumetric heat 

capacities of solid and water, respectively. The parameter values assumed for the 

estimation of vT in Cologne and Karlsruhe can be found in Table S5.2. 

Table S5.2. Assumed parameter values for the estimation of the advective heat transport velocity 

𝑣𝑇 = (
𝑣𝑇,𝑥
𝑣𝑇,𝑦

) characteristic for Cologne and Karlsruhe. 

Parameter Name Unit 
Cologne Karlsruhe 

Mean Uncertainty Mean Uncertainty 

𝑣𝑊 

Groundwater 

flow velocity 
m/a (360,0) - (-500,500) - 

𝑛 Porosity % 20 5 20 5 

𝑐𝑉,𝑊 
Volumetric heat 

capacity of 

water 

kJ/m
3
K 4150 - 4150 - 

𝑐𝑉,𝑆 
Volumetric heat 

capacity of solid 
kJ/m

3
K 2150 50 2400 200 

𝐷𝑇 

Thermal 

retardation 

factor 

- 2.1 0.5 2.3 0.6 

𝑣𝑇 

Velocity of 

advective heat 

transport 

m/a (120,0) (20,0) (-150,150) (30,30) 

 

To estimate groundwater temperature (eGWTFLOW) influenced by horizontal advection, 

the estimated eGWT is shifted according to the distance dT = (
dT,x
dT,y

) that the temperature 

signal traveled in one year. In the discretized map, this results in a new eGWTFLOW of a 

pixel ij computed from the original temperature eGWT of certain pixel ij and the pixels 

surrounding it, according to the percentage of area covered by the shifted eGWT. For a 

resolution of 1 km × 1 km this can be expressed as 

 𝑒𝐺𝑊𝑇𝐹𝐿𝑂𝑊(𝑖, 𝑗) = (1 − |𝛿𝑇,𝑥|)(1 − |𝛿𝑇,𝑦|) ⋅ 𝑒𝐺𝑊𝑇(𝑖, 𝑗) 

+|𝛿𝑇,𝑥|(1 − |𝛿𝑇,𝑦|) ⋅ 𝑒𝐺𝑊𝑇 (𝑖 −
𝛿𝑇,𝑥

|𝛿𝑇,𝑥|
, 𝑗) 

+(1 − |𝛿𝑇,𝑥|)|𝛿𝑇,𝑦| ⋅ 𝑒𝐺𝑊𝑇 (𝑖, 𝑗 −
𝛿𝑇,𝑦

|𝛿𝑇,𝑦|
) 

+|𝛿𝑇,𝑥||𝛿𝑇,𝑦| ⋅ 𝑒𝐺𝑊𝑇 (𝑖 −
𝛿𝑇,𝑥

|𝛿𝑇,𝑥|
, 𝑗 −

𝛿𝑇,𝑦

|𝛿𝑇,𝑦|
) 

(S5.3) 

using the dimensionless distance 𝛿𝑇 = (
𝛿𝑇,𝑥
𝛿𝑇,𝑦

) =
𝑑𝑇

1 𝑘𝑚
. 
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In Cologne the groundwater flow was estimated with 360 m per year (Table 5.1 and 

S5.2) eastwards to the Rhine River (177). By means of equations S5.1 and S5.2, the 

horizontal velocity of a thermal signal was determined to be (
120 ± 20

0
) m/a. Hence, the 

new estimated groundwater temperature of a pixel (i,j) with horizontal flow (eGWTFLOW) 

is a mixed temperature composed of 88% ± 2% of the eGWT of the analyzed pixel (i,j) 

and 12% ± 2% of the eGWT of the pixel to its west (i-1,j) (see Eq. S5.3): 

 𝑒𝐺𝑊𝑇𝐹𝐿𝑂𝑊(𝑖, 𝑗) = (0.88 ± 0.02) ⋅ 𝑒𝐺𝑊𝑇(𝑖, 𝑗) 

+(0.12 ± 0.02) ⋅ 𝑒𝐺𝑊𝑇(𝑖 − 1, 𝑗) 
(S5.4) 

In Karlsruhe a groundwater flow of approximately 710 ≈ (
−500
500

) m/a (Table 5.1 and 

S5.2) in a northwest direction was assumed, leading to a thermal flow velocity of 

(
−150 ± 30
150 ± 30

)  m/a. Thus, the new estimated groundwater temperature with flow 

(eGWTFLOW) of a pixel (i,j) is composed of the eGWT of the original pixel (i,j), the 

eGWT of the pixel to the east (i+1,j), the eGWT of the pixel to the south (i,j-1),  and the 

eGWT of the pixel to the southeast (i+1,j-1) in the following way (see Eq. S5.3): 

 𝑒𝐺𝑊𝑇𝐹𝐿𝑂𝑊(𝑖, 𝑗) = (0.85 ± 0.03)
2 ⋅ 𝑒𝐺𝑊𝑇(𝑖, 𝑗) 

+(0.15 ± 0.03)(0.85 ± 0.03) ⋅ 𝑒𝐺𝑊𝑇(i + 1, 𝑗) 

+(0.85 ± 0.03)(0.15 ± 0.03) ⋅ 𝑒𝐺𝑊𝑇(𝑖, 𝑗 − 1) 

+(0.15 ± 0.03)2 ⋅ 𝑒𝐺𝑊𝑇(𝑖 + 1, 𝑗 − 1) 

(S5.5) 
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Figure S5.1. Comparison between measured groundwater temperatures (GWT) and estimated 

groundwater temperatures including horizontal groundwater flow (eGWTFLOW). Error bars 

represent the assumed range due to uncertain basement temperatures and temperature flow 

velocities. 
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6. Synthesis 

6.1. Estimating Urban Groundwater Temperatures 

In this thesis two estimation techniques for shallow groundwater temperatures (GWT) 

were introduced:  

 In Chapter 2 the global offset between GWT and satellite derived land surface 

temperature (LST) has been analyzed and linked to evapotranspiration and 

snow cover. Considering these two factors only, global shallow groundwater 

temperatures were estimated. From this point forward GWT estimated with this 

method will be referred to as 𝑒𝐺𝑊𝑇𝑟𝑢𝑟𝑎𝑙. 

 In Chapter 5 the spatial properties of surface and subsurface urban heat islands 

were compared in four German cities. Under the assumption that LST and 

GWT are equal in rural, undisturbed areas, differences could be linked to 

building density. Hence, an estimation method that relates urban groundwater 

temperatures to mean annual LST, building density, and elevated basement 

temperatures was proposed. From this point forward GWT estimated with this 

method will be referred to as 𝑒𝐺𝑊𝑇𝑢𝑟𝑏𝑎𝑛. 

As the study in Chapter 5 (study 2) was published before the study in Chapter 2 (study 

3), the influence of snow and evapotranspiration on urban GWTs has not yet been 

discussed. Thus, the following Chapter will compare both methods at the example of 

three German cities. Furthermore it will illustrate an additional estimation technique of 

urban GWTs based on LST, snow, evapotranspiration, building density, and elevated 

basement temperatures. From this point forward GWT estimated with this method will be 

referred to as 𝑒𝐺𝑊𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑. 

6.1.1. Materials and Methods 

All three estimation techniques are applied to Berlin, Cologne and Karlsruhe. For 

Berlin and Cologne the single year GWT datasets introduced in Chapter 5 were used and 

annual mean data of the same year is used for all estimations. In Karlsruhe the multi-year 

mean GWT (Chapter 2, Table S2.1) is estimated using 10 year mean (01/2005 – 12/2014) 

data. 

Data 

To determine mean land surface temperatures (LST), MODIS daily products 

MOD11A1 and MYD11A1 (15,89) were used. They are obtained from NASA’s TERRA 



Chapter 6   

  

116 

and AQUA satellites, courtesy of the NASA Land Processes Distributed Active Archive 

Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, 

Sioux Falls, South Dakota, https://lpdaac.usgs.gov (14). Each satellite observes the entire 

planet twice daily, giving four LST measurements a day. Because LSTs are only retrieved 

for clear sky observations, they have a bias towards non cloudy days. To correct for this 

bias in regards to the seasonal variations of cloud cover, the appropriate (multi-)annual 

mean was determined from monthly mean temperatures for each analyzed city. This was 

performed using Google Earth Engine (93) and was exported in a resolution of 

approximately 1 km × 1 km (0.009° × 0.009°) (Fig. 6.1). 

 

Figure 6.1. Land surface temperature (LST), evapotranspiration, percentage of snow days and 

building density of Berlin, Cologne and Karlsruhe. 

Evapotranspiration (ET) data was gathered from the Noah 2.7.1 model in the Global 

Land Data Assimilation System (GLDAS) data products Version 1 (94) (spatial 

resolution: 0.24°). Mean ET for the analyzed timeframe of each city was determined 

using Google Earth Engine (93) and was exported in a resolution of approximately 1 km 

× 1 km resolution (Fig. 6.1). 

Information on snow days was derived from MODIS Terra and Aqua Snow Cover 

Daily L3 Global 500 m Grid, Version 5 (99), products MOD10A1 and MYD10A1, 

courtesy of the National Snow and Ice Data Center (NSIDC). Using Google Earth Engine 

https://lpdaac.usgs.gov/
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(93), the percentage of snow days in the analyzed timeframe was determined by dividing 

the number of days classified as “snow” by the sum of the days classified as either “no 

snow” or “snow”. For each city data was exported in a ~ 1 km × 1 km resolution (Fig. 

6.1). 

Building densities were determined at the resolution of LST using building locations 

provided by OpenStreetMap (230) (Fig. 6.1). Basement temperatures were estimated as 

17.5 ± 2.5 °C following guidelines by the German Institute for Standardization (192). 

Estimation Techniques 

All GWT estimations were performed in GIS (ArcMap 10.1) and compared using 

Matlab R2016a. 

The rural estimation method has been established in Chapter 2. It relates global 

shallow GWTs to satellite derived LST, evapotranspiration (ET) and snow cover, in form 

of percentage of snow days. The estimation is performed via the following fit: 

𝑒𝐺𝑊𝑇𝑟𝑢𝑟𝑎𝑙 =  𝐿𝑆𝑇 

= + (3.5 ± 0.2) ⋅ 104  𝐾
𝑚2 ⋅ 𝑠

𝑘𝑔
  ⋅ 𝐸𝑇  

      =  + (6.6 ± 0.3)𝐾 ⋅ 𝑠𝑛𝑜𝑤 𝑑𝑎𝑦𝑠  

(6.1) 

In Chapter 5 an urban estimation technique is introduced. It relates urban GWTs to 

LST, building density (bd) and basement temperatures (BT): 

 
𝑒𝐺𝑊𝑇𝑢𝑟𝑏𝑎𝑛 = 𝑀𝑎𝑥 {

𝐿𝑆𝑇
𝐿𝑆𝑇 ⋅ (1 − 𝑏𝑑) + 𝐵𝑇 ⋅ 𝑏𝑑

 (6.2) 

One of the main assumptions of this urban estimation technique is that annual mean 

LST and GWT are equal for rural, undisturbed areas. In reality however, snow cover and 

evapotranspiration offset GWT and LST. Rural GWT is generally elevated compared to 

LST and has been estimated in equation 6.1. Here both methods are combined and urban 

GTWs are estimated from estimated rural groundwater temperatures ( 𝑒𝐺𝑊𝑇𝑟𝑢𝑟𝑎𝑙 ), 

building density (bd) and basement temperatures (BT). 

 
𝑒𝐺𝑊𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑀𝑎𝑥 {

𝑒𝐺𝑊𝑇𝑟𝑢𝑟𝑎𝑙
𝑒𝐺𝑊𝑇𝑟𝑢𝑟𝑎𝑙 ⋅ (1 − 𝑏𝑑) + 𝐵𝑇 ⋅ 𝑏𝑑

 (6.3) 
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6.1.2. Results and Discussion 

Maps of all estimated as well as measured and interpolated GWTs are displayed in 

Figure 6.2. The comparison of absolute temperatures for all analyzed cities and methods 

is given in Figure 6.3. While GWTs Karlsruhe and Cologne are estimated most precise 

using the rural approach (Table 6.1; RMSE of 0.45 K or rather 0.50 K); mean 

temperatures in Berlin are reflected best by the combined method (RMSE: 0.96 K). Only 

methods that consider building location are able to accurately predict the location of 

urban hot spots. However, the combined method tends to overestimate temperatures 

within the city center where building density is highest by approximately 0.8 K. This is 

most likely due to insulation, which has not been taken into account. As the urban method 

neglects to consider the natural offset between GWT and LST, both errors (natural offset 

and insulation) balance each other out for the analyzed cities. For all cities combined, the 

rural technique estimates GWTs with an RMSE of 1.03 K, the urban method with an 

RMSE of 1.37 K and the combined method with an RMSE of only 0.93 K. Additional 

research on the influence of insulation and the implementation of groundwater flow (see 

Chapter 5) is necessary to further improve this method.  

 

Figure 6.2. Groundwater temperature (GWT), estimated GWT using the method for undisturbed, 

rural areas (eGWT – rural; Chapter 2), estimated GWT using the method for disturbed, urban 

areas (eGWT – urban; Chapter 2), and estimated GWT using a combination of both methods 

(eGWT– combined; Chapter 6) for all analyzed cities. 
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Figure 6.3. Comparison of a) groundwater temperature (GWT) and land surface temperature 

(LST), b) GWT and estimated GWT for undisturbed, rural areas (eGWT – rural; Chapter 2), c) 

GWT and estimated GWT for disturbed, urban areas (eGWT – urban; Chapter 5), and d) GWT 

and estimated GWT using a combination of both methods (eGWT – combined; Chapter 6). 

Table 6.1. Summary of the main outcomes. Given are the Pearson correlation coefficient, the 

root mean square error (RMSE) and the mean absolute error (MAE) in comparison to interpolated 

GWT measurements for all analyzed cities and estimation techniques. 

City 

(Studied year) 

Berlin 

(2010) 

Cologne 

(2009) 

Karlsruhe 

(2005-2015) 

RMSE [K] 

GWT/LST 2.10 0.88 1.01 

GWT/𝑒𝐺𝑊𝑇𝑟𝑢𝑟𝑎𝑙l  1.14 0.45 0.50 

GWT/ 𝑒𝐺𝑊𝑇𝑢𝑟𝑏𝑎𝑛 1.51 0.73 0.73 

GWT/ 𝑒𝐺𝑊𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 0.96 0.86 0.82 

MAE [K] 

GWT/LST 2.01 0.80 0.88 

GWT/𝑒𝐺𝑊𝑇𝑟𝑢𝑟𝑎𝑙l  1.00 0.37 0.41 

GWT/ 𝑒𝐺𝑊𝑇𝑢𝑟𝑏𝑎𝑛 1.21 0.61 0.60 

GWT/ 𝑒𝐺𝑊𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 0.77 0.70 0.65 
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6.2. Summary and Conclusion 

The thermal regime of the shallow underground plays a crucial role in various fields of 

modern sciences. They are habitat, provide drinking water, and serve as sustainable 

energy source all in one. Yet we know only little about their thermal conditions and the 

influence modern humanity has on them. 

Thus, the first aim of this study is to contribute to a better understanding of global 

shallow groundwater temperatures (GWT) in undisturbed, rural areas. 2,548 measurement 

points in 29 countries are compiled and reveal characteristic trends in the offset between 

shallow groundwater temperatures and satellite derived land surface temperatures (LST). 

For 83 % of all measurement points, GWTs are warmer than LST; the average offset 

∆𝑇 = 𝐺𝑊𝑇– 𝐿𝑆𝑇 is 1.2 ± 1.5 K. The data indicates that GWTs are elevated compared to 

LSTs for coldest and warmest temperatures. These differences are caused by two distinct 

effects: in areas with lower temperatures, snow cover insulates warm groundwater 

temperatures during the winter months; in warmer and more humid areas, latent heat flux 

caused by evapotranspiration factors into the surface energy balance, thus decreasing 

LSTs. Considering these two processes only, global shallow groundwater temperatures 

were estimated with a root mean square error of 1.4 K. However, GWT anomalies caused 

by other effects such as geothermal hotspots, fossil groundwater and last but not least 

subsurface urban heat islands were not resolved with the presented method. 

Further aims of this study are related to the human impact on local temperatures. One 

focus is to quantify said impact for different compartments (air, surface and groundwater) 

over a large, country wide area, in this case Germany. A universal parameter, the 

anthropogenic heat intensity (AHI), is introduced. It can be applied to a broad variety of 

different temperature measurements such as groundwater temperatures (GWT), land 

surface temperatures (LST), and surface air temperatures (SAT). Following the 

commonly used urban heat island intensity (max. urban temperature - rural background 

temperature) it is determined by subtracting median rural background temperatures 𝑇𝑟 

from individual temperatures T, recorded at each measurement point (GWT and SAT) or 

pixel (LST), regardless of land cover and land use. Here nighttime light was used as an 

indicator for rural areas, while elevation and distance to the analyzed pixel or 

measurement point are considered to find appropriate background measurement locations.  

The main drivers of AHI are analyzed and it becomes apparent that while population 

density has only a minor effect, AHI grows with increasing nighttime lights and decreases 

with increasing vegetation. At the surface of Germany, the highest annual mean AHI of 

4.5 K is found at an open-pit lignite mine near Jülich, followed by the cities Munich, 

Düsseldorf and Nuremberg with anthropogenic heat intensities of more than 4 K. The top 

15 surface AHI locations also include pixels in smaller cities (e.g. Wolfsburg: surface 

AHI of 3.7 K, 120,000 residents; Saarlouis: surface AHI of 3.4 K, 40,000 residents) 

known for their industrial sites. This indicates that not only urban heat islands exist, but 

industrial heat islands as well. Overall surface AHI greater than zero and thus urban heat 
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islands are observed in communities with a population of 5,000 residents and can be 

predicted for communities down to 3,000 residents.  

Furthermore, when comparing the different compartments (air, surface and groundwater) 

SAT appears least vulnerable to human activity while GWT is most vulnerable. 

Subsequent to the identification of non-urban anthropogenic heat anomalies, another 

aim is to better understand the spatial properties and sources of subsurface urban heat 

islands (SUHI). Thus, a 2D statistical analytical heat flux model is developed and 

successfully applied to the cities of Karlsruhe and Cologne, Germany. The heat flux 

model gives a spatial representation of the vertical subsurface anthropogenic heat fluxes 

into urban aquifers. Results show that district heating pipes are the dominant source of 

anthropogenic heat fluxes into the subsurface (AHFS) with average values of more than 

60 W/m
2
, more than one order of magnitude higher than all other heat sources. Only 

sewage pipes and basements reaching into the groundwater are the cause of equally 

extraordinary heat fluxes with maximal values of 40 W/m
2
 and 14 W/m

2
, respectively. 

These can be found in Karlsruhe, where the groundwater level is on average only 5.4 m 

below the subsurface. In the studied western part of Cologne, with a mean groundwater 

depth of 10.2 m, buildings and the sewage system do not reach into the groundwater. 

Thus, their fluxes show only minor spatial variability. Furthermore, in Cologne, the 

average total AHFS is lower (0.39 ± 0.12 W/m
2
) and has a lower spatial variability (±0.38 

W/m
2
) than the average total AHFS in Karlsruhe (1.10 ± 0.73 W/m

2
; spatial variability of 

±1.49 W/m
2
). While dominating the local anthropogenic fluxes, the district heating 

network is insignificant for the citywide AHFS budget in both cities. Heat from buildings 

(1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in western Cologne) and elevated GST 

(0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in western Cologne) are dominant 

contributors of the anthropogenic heat flow into the urban aquifer. In Karlsruhe, buildings 

are the source of 70 % (in Cologne 30 %) of the annual heat transported into the 

groundwater, which is mainly caused by buildings reaching into or close to the 

groundwater. A covariance analysis confirmed these findings. Hence, basement depth is 

the most influential factor to citywide heat flow in cities with a high groundwater level. 

The spatial distribution of fluxes, however, is mostly influenced by the thermal gradient 

of the unsaturated zone. A cold GWT combined with a high surface temperature, as well 

as a high groundwater level, results in elevated fluxes like in the east of Karlsruhe. 

Overall, 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of thermal energy are annually transported into 

the groundwater of Karlsruhe and western Cologne due to AHFS. This is sufficient to 

sustainably cover 32 % and 9 % of the annual residential space heating demand of 

Karlsruhe and western Cologne, respectively 

Finally, this study aims to answer the question whether above and below ground urban 

heat islands are linked and to develop a method to estimate urban GWT from satellite-

derived data. This estimation allows for a first assessment of the subsurface urban heat 

island (SUHI) and consequently the geothermal potential and groundwater ecological 

conditions, without the need for groundwater temperature measurements and data 
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interpolation. Previous findings within this thesis demonstrate that rural undisturbed 

GWTs can be linked to satellite derived land surface temperatures (LST) via 

evapotranspiration and snow cover. However, in urban settlements, GWTs are also 

influenced by heated buildings and other sources of AHFS. Here, surface urban heat 

islands (UHI) and subsurface urban heat islands (SUHI) are first compared in four 

German cities. Their dissimilarities are analyzed in order to understand the interaction 

between the urban surface and subsurface. The correlation coefficient for all cities and 

years ranges from 0.5 ± 0.1 for Karlsruhe, 2011, to 0.8 ± 0.0 for Cologne, 2012 and can 

be improved if groundwater flow is taken into account.   

In the four studied cities, GWTs indicate local hotspots which are not observed in the 

satellite-derived LST data. In Berlin, Cologne and Karlsruhe, these hotspots are especially 

distinct and occur mainly under the city center where building densities are the highest. 

Moreover, in Cologne the hotspot can be directly linked to specific groundwater wells 

located next to the subway system and areas of local high sewage leakages. Similarly, the 

rise in GWT in the northwest of Karlsruhe is due to several existing reinjection wells of 

thermal wastewater. These anthropogenic heat sources affect GWT, but have no or only 

minor effects on above-ground temperatures.   

Annual mean urban GWT are then estimated from annual mean satellite derived LST, 

evapotranspiration, and snow days as well as building densities. The proposed method is 

tested for Berlin, Cologne and Karlsruhe estimates GWT with a root mean square error of 

0.9 K. In comparison, when matching GWTs directly with LSTs the RMSE is 1.9 K.  

6.3. Perspective 

Within this study it was shown that mean annual groundwater temperatures (GWT) 

can be well approximated by combining land surface temperatures (LST) with other 

satellite-derived data such as evapotranspiration, snow cover and building density. The 

novel method allows investigations of subsurface urban heat islands (SUHI) and related 

issues such as geothermal potential and water quality where intensive GWT monitoring is 

not feasible. However, as the urban estimation technique has so far only been applied to 

central European cities, it must be applied to cities in different climate zones before 

definite conclusions can be drawn. Especially its usefulness in young mega-cities that are 

typically found in developing and BRIC (Brazil, Russia, India and China) countries needs 

further validation. In principle, as all used data are available from remote sensing, the 

proposed method has the potential for large scale and even global estimations of GWTs in 

both urban and undisturbed regions. However, for an improved estimation the heat impact 

of urban structures has to be analyzed in more detail (233). Additional, once the temporal 

aspects of LST and GWT are linked, GWT, and thus river temperature (149) forecast 

becomes also plausible.  

In Chapter 3 of this thesis the annual mean anthropogenic heat intensity (AHI) is 

introduced, which quantifies the human impact on temperatures for a large scale 

temperature datasets such as LST. Future work should also analyze global datasets. 
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Analyzing the differences in daytime and nighttime surface AHI as well as its annual 

variation will help to classify surface urban heat islands and thus help to develop 

appropriate mitigation strategies for different types of urban heat islands. Additionally, 

AHIs give the opportunity for detailed, 3-D analysis of anthropogenic heat islands, both 

urban and industrial, for large scale studies and also case specific studies. 

Furthermore, the spatial heat flux model presented in Chapter 4 enables development 

of a sustainable thermal energy management tool. By combining the introduced 

sustainable geothermal potential with heating demand (234) and the capacities of 

borehole heat exchangers, a GIS-based sustainable geothermal energy concept becomes 

possible. Additional insight can be gained by quantifying the temporal variation of all 

anthropogenic heat fluxes into the subsurface. However, several economic, technical, 

behavioral, and political challenges need to be overcome before the goal of urban 

sustainability can truly be reached (67).  
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