
 

 Karlsruhe Reports in Informatics 2017,2 
Edited by Karlsruhe Institute of Technology,  
Faculty of Informatics   

 ISSN 2190-4782 
 
 
 
 
 

CoCoME with Security 
 

Simon Greiner, Mihai Herda 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 2017 
 
 

KIT –  University of the State of Baden-Wuerttemberg and National 
Research Center of the Helmholtz Association  



 

  
   

  
 
 
 
 
 
 
 
 
 

Please note: 
This Report has been published on the Internet under the following 
Creative Commons License: 
http://creativecommons.org/licenses/by-nc-nd/3.0/de. 



CoCoME with Security

Simon Greiner
Simon.Greiner@kit.edu

Mihai Herda
Mihai.Herda@kit.edu

Abstract

In this technical report we provide the documentation of the functional
requirements of a component-based system representing the IT infrastruc-
ture supermarket along with the description of confidentiality properties
in the form of information flow requirements for the system. From an
architectural point of view, we describe for each interface all services on a
functional level. We identify a number of possible attackers and assign for
each attacker what inputs to the system she may gain knowledge about
and which outputs she may be able to observe. The architecture and
security properties of the system are modeled using an extension of the
Palladio Component Model

1 Introduction
Computer systems are getting more complex and are increasingly deployed
in security critical areas. The rising complexity of these systems increases
the probability of developers introducing bugs and thus of an attacker
finding an exploit. Increased deployment of systems in scenarios where
security plays a very important role increases the potential damage that
can be done by an attacker.

Component based systems engineering is a method used to deal with
complexity and maintainability of systems. A component based system is
made of components, each providing part of the functionality while gaining
the full functionality by composing single components. The components
are independent of each other in the sense that they do not share a state
and comminucate via provided and required interfaces which specify the
services that actually implement the functionality.

In this technical report we model the IT infrastructure of a supermarket
using a specification language designed for model based systems engineering.
We additionally model security requirements for the system in the form of
information flow properties. In the context of information flow security
the inputs and outputs of the system are assigned to security domains high
(confidential) and low (public). A system is noninterferent if information
provided as high input does not interfere with information provided as
low output of the system. The formal definition of noninterference for
component based systems that we use in this case study are taken from
[GG16].

The system we model is based on the Common Component Modeling
Example (CoCoME) [HKW+08], a system definition frequently used for

1



illustration of component-based specification techniques. We use the Pal-
ladio Component Model (PCM) approach to model components. While
Palladio has been developed to primarily model quality aspects of compo-
nents, an extension to include confidentiality properties is in development.
This approach has the advantage that security properties are modeled
early in the development process, thus allowing the early identification of
security issues.

The reminder of the document is structured as follows: in Section 2 we
present the definition of noninterference for components as we use it in this
report. In Section 3 we describe the system to be modeled, the components
that make it up, the interfaces, and services for each component. We show
how the system is modeled using PCM in Section 3.5. In Section 4 we
provide the specification of the information flow properties for the system
and show how we specified them in the PCM. Finally, we conclude in
Section 5.

2 Noninterference for Components
In this section we provide a short overview of the definition of noninter-
ference and compositionality for components as used inb this report. For
a full account of the noninterference property, the interested reader may
refere to [GG16].

Noninterference, in general, requires that a system does not publish any
secret information on public channels. The inputs and outputs of a system
are partitioned in high (secret) and low (public) inputs and outputs and the
noninterference property requires the low outputs to be independent of the
high inputs. This means that if the low inputs to the system are equivalent
for two runs, the low outputs must also be equivalent. We consider an
equivalence relation ∼ that determines whether two inputs or two outputs
are low equivalent. The equivalence relation ∼ is subject to specification.
In the remainder of this section we will describe a noninterference property
that is adequate for component based systems. We also show how the
characteristics of component based system influenced the choice of the
definition of noninterference for components and why the definition by
[GG16] is an appropriate one.

Components are software parts that implement a certain functionality.
Components provide and require interfaces. The interfaces contain service
signatures that declare the parameters and return types of each service. The
environment can call the services of the provided interfaces of a component
and thus access the functionality implemented in the component. A
component may need to call services provided by the environment in order
fullfill its functionality. To specify the services a component may depend
on, a component may have required interfaces. For convenience, and
without loss of generality, in the rest of this section we will consider that
services are provided and required directly by components, and instead of
interfaces as is done in [GG16].

Two components, by definition, do not share a state, and the only
way a component can communicate with other components is through the
required services. Thus, components communicate only through message

2



passing and not through memory sharing. However, the components
themselves do have a state and all services provided by the component
have access to that state. This means, for a component, that two service
calls with the same input parameters may return different results depending
on previous calls of services of that component. In this context a service
call event itself can be information that is published by the system. Service
calls that may not influence the future outputs of the system are called
invisible.

Thus, an appropriate noninterference property must be a property of
sequences of service calls, and not of one service in isolation. The sequences
of service calls are defined as traces of inputs and outputs to the system.
Two traces t1 and t2 are low equivalent t1 ∼ t2 if the inputs and outputs
in t1 and t2 are element-wise low equivalent, after removing the inputs
and outputs of invisible service calls from the two traces.

The noninterference property defined by [GG16] considers an environ-
ment that can send inputs to a system (by calling services and choosing
their input parameters) and reading the outputs of the system (by reading
the return value of a service call). The environment chooses its next
input based on the observation of the previous inputs and outputs of the
system. The environment is formally modeled using a strategy function,
ω : T 7→ P(I) which maps a trace (i.e. an observation) to a set of possible
inputs. Given two low equivalent observations, a strategy is required to
return two low equivalent sets of inputs. Two strategies are low equivalent
if given the same observation they generate low equivalent inputs.

A component is non-interferent, if for all low equivalent strategies ω1

and ω2 and for every trace t1 that can be generated by the component
under ω1, the component can produce a trace t2 under strategy ω2 such
that t1 ∼ t2.

Two components C1 and C2 where C2 provides some of the services
required by C1 can be combined in a composition. Using this mechanism,
multiple components can be used to assemble a system. Since one of the
main advantages of component based systems is the re-usability of compo-
nents it is important for the noninterference property for components to
allow the reuse of the analysis of a component. Thus we require that the
noninterference property to be compositional, i.e. if the components of a
composition are noninterferent, the composition itself is also noninterfer-
ent. The noninterference property shown in this section is compositional
provided the environment fulfills the following three conditions:

1. Every service required by a composition is provided by the environ-
ment.

2. Every service called by a component terminates

3. The environment does not leak whether an invisible service was called
or not.

The proof for the compositionality can be found in [GG16].

3



3 Description of the System
The system we consider for this case study is the IT infrastructure of a
super market containing one cash desk and the necessary store management
infrastructure comprised of a store server and a store client, as shown in
Figure 1. The model of our system is based on the CoCoME model which
represents a component based model of a super market network.

Cash Desk Store Server Store Client

Figure 1: High level view of the system

The store server stores the data relevant to the store and also allows
the store client and cash desk to make certain queries. It is comprised of
three components: the application component and the data component
and the persistence. The application component provides the necessary
interfaces which are used by the clients (the cash desk and the store client)
for accessing the server. The data component provides the interface that
offers services for querying the database. The persistence provides the
connection to the database. The store client is used by the store manager
to manage the inventory, for example to view the currently available items
on stock, to change the price of an item or to order new items.

Cash Desk PC Light Display

Bar Code
Scanner

Card Reader

Cash Box Printer

Figure 2: The cash desk

The cash desk is composed of a cash desk PC which is connected to
one of each of the following devices(see Figure 2):

• LightDisplay - for displaying the scanned items and the amount to
be paid

• BarCodeScanner - for reading the barcode of an item

• CardReader - for paying with a credit card

• CashBox - for managing cash payments

• Printer - for printing the receipt and the purchased items

The cash desk is also connected to a bank in order to support payment
with credit card.

4



The system allows for a customer to purchase items at the cash desk
and pay for them. The cashier uses the barcode scanner to scan the
items of the customer and the scanned items along with other information
relevant to the transaction are shown on the light display and printed on
the receipt by the printer. The customer can pay either by cash or by
credit card. The cash desk has a cash box for managing cash transactions
and a credit card reader for credit card transactions. The store is managed
by the store manager who uses the store client to view the inventory of
the store, change the prices of the items and order new products with the
store client.

Unlike the original CoCoME model our model represents a single
supermarket with a single cash desk (as opposed to multiple super markets
connected to an enterprise server).

3.1 Actors
We consider different classes of actors that model involved people in the
physical world. It is sufficient to consider only one instance of each class
symbolically. (A by-stander can be a customer in another transaction, and
vice versa.)

We consider the actors from the use cases described in [HKW+08],
namely the Customer, Cashier, StoreManager and Bank and the Other-
Store. We introduce the additional actors ByStander and OtherStore which
are not considered in the functional requirements but must be considered
as potential attackers. The ByStander represents a person in the checkout
queue next to the Customer. The OtherStore represents a store from which
products are ordered for our store.

3.2 Interfaces for Interaction with the Environ-
ment

BankTransactionIf

CardReaderOutIf BarcodeScannerOutIf

LightDisplayOutIf

PrinterOutIf

StoreOutIfIf

CashBoxOutIf

ProductDispatcherIf

Figure 3: External interfaces of the system

This section describes the external interfaces of the system, also shown
in Figure 3. The interfaces PrinterOutIf, LightDisplayOutIf, CardReader-
OutIf, BarcodeScannerOutIf, and CashBoxOutIf are provided by the

5



devices present in a cash desk, namely the printer, the light display, the
card reader, the barcode scanner, and the cash box respectively. The
StoreOutIf is provided by the store client. The interfaces PrinterOutIf,
LightDisplayOutIf, CardReaderOutIf, BarcodeScannerOutIf, and Cash-
BoxOutIf and StoreOutIf are not part of the original CoCoME model. We
use them to model the interaction of the system with the environment.

In order to support credit card transactions the required interface
BankTransactionIf provides the necessary functionality for communication
with the bank.

In the following, we describe the external interfaces of the system.

3.2.1 LightDisplayOutIf

The interface LightDisplayOutIf is required by the system and models the
interaction of the light display with the environment. Its services output
the displayed contents to the environment and can be read by anyone who
is near the cash desk, including the customer, the cashier and any other
by stander.

The interface offers the following services:

• String displayShopItem(int id, int price)

• String displayTotal(int grossTotal)

• String displayPaymentCash(int amountPayed, int change)

The service displayShopItem outputs the item id (id) and the price
(price) of each scanned item. The service displayTotal outputs the total
amount (grossTotal) that needs to be paid by the customer. The service
displayPaymentCash outputs the amount paid (amountPaid) and the
change (change) received by the customer in case of a cash payment.

3.2.2 CardReaderOutIf

The interface CardReaderOutIf is provided by the system and models
the interaction of the customer with the card reader. Its services are
reading the credit card number and pin both of which are provided by the
customer.

The interface offers the following services:

• void readCardNumber(int number)

• void readPIN(int pin)

The service readCardNumber reads the credit card number (number)
of the customer’s credit card. The service readPIN reads the pin (pin) of
the customer’s credit card.

3.2.3 CashBoxOutIf

The interface CashBoxOutIf is provided by the system and models the
interaction of the cash box with the cashier.

The interface offers the following services:

• void startNewSale()

6



• void completeItemRegistration()

• boolean acknowladgeCashPayment(int amountPayed)

The service startNewSale registers the start of a new sale in the system.
The service completeItemRegistration marks the end of an item scanning
process when called. The service acknowladgeCashPayment is called by
the cashier in order to acknowledge that he received a certain amount
(amount) of cash from the customer.

3.2.4 BarCodeScannerOutIf

The interface BarCodeScannerOutIf is provided by the system and models
the interaction of the barcode scanner with the cashier.

The interface offers the following service:

• void readBarcode(int barcode)

The service readBarcode reads the barcode (barcode) from an item.

3.2.5 PrinterOutIf

The interface PrinterOutIf is required by the system and models the
interaction of the printer with the environment. Its services output the
printed contents to the enviornment and can be read by customer and the
cashier.

The interface offers the following services:

• String printShopItem(int id, String name, int price, int
vat)

• String printTotal(int netTotal, int grossTotal)

• String printPaymentCard(int cardNumber)

• String printPaymentCash(int amountPayed)

The service printShopItem outputs the item id and the price of each
scanned item. The service printTotal outputs the total amount (grossTotal)
that needs to be paid by the customer. The service printPaymentCard
outputs the last four digits of the customer’s credit card number (card-
Number) in case of a credit card payment. The service printPaymentCash
outputs the amount paid (amountPaid) and the change (change) received
by the customer in case of a cash payment.

3.2.6 BankTransactionIf

The interface BankTransactionIf is required by the system and provided
by the bank. It models the interaction of the cash desk with the bank.

The interface offers the following services:

• Acknowledgement requestTransaction(int cardnumber,
Account account, int amount)

The service requestTransaction requests the transfer of an amount
(amount) from the customer’s credit card (cardnumber) to the store’s
account (account).

7



3.2.7 StoreOutIf

The interface StoreOutIf is provided by the system and models the inter-
action of the store manager with the store client.

The interface offers the following services:

• StoreWithEnterpriseTO getStore()

• List<ProductWithStockItemTO> getProductsWithLowStock()

• List<ProductWithSupplierTO> getAllProducts()

• List<ProductWithSupplierAndStockItemTO>
getAllProductsWithOptionalStockItem()

• List<ComplexOrderTO> orderProducts(ComplexOrderTO
complexOrder)

• ComplexOrderTO getOrder(int orderId)

• void rollInReceivedOrder(ComplexOrderTO complexOrderTO)

• ProductWithStockItemTO changePrice(StockItemTO
stockItemTO)

• void markProductsUnavailableInStock(ProductMovementTO
requiredProductsAndAmount)

The service StoreWithEnterpriseTO returns the data regarding the
store. The returned StoreWithEnterpriseTO contains the id, name and
location of the store. The service getProductsWithLowStock returns a list
of stock items which are currently in low stock. Each ProductWithStock-
ItemTO contains a stock item and its appropriate product description.
The service getAllProducts returns a list of all products in the data base
with the suppliers from which the products can be ordered. The service
getAllProductsWithOptionalStockItem returns a list of all products in the
data base with the suppliers from which the products can be ordered and
the items of that product which are on stock. The service orderProducts
allows the store manager to issue an order(complexOrder) for certain prod-
ucts. The service getOrder returns the ComplexOrderTO object with the
id (orderid) given by the store manager. The service rollInReceivedOrder
allows the store manager to mark an order (complexOrderTO) as received
and add the ordered items to the inventory. The service changePrice allows
the store manager to change the price of a stock item (stockItemTO). The
service markProductsUnavailableInStock allows the store manager to mark
some given products(requiredProductsAndAmount) as unavailable in stock.

3.2.8 ProductDispatcherIf

The interface ProductDispatcherIf is requried by the system and provides
a service for ordering products at another store.

The interface offers the following service:

• ProductAmountTO[] orderProductsAvailableAtOtherStores(
EnterpriseTO enterpriseTO, StoreTO callingStore,
Collection<ProductAmountTO> productAmounts)

8



The service orderProductsAvailableAtOtherStores allows is used to
order a collection of products (productAmounts) from a trading enterprise
(enterpriseTO) to the store (callingStore). The serivce returns an array of
the product amounts as a confirmation.

3.3 Interfaces of the Internal Components
This section provides a description of the internal components of the
system. The devices found at the cash desk (light display, card reader,
cash box, barcode scanner, and printer) as well as the store client provide
very similar interfaces to the ones described in Section 3.2. Additional
internal interfaces are provided by the cash desk, application, data and
persistence components of the store server. The interfaces described in
this section are part of the original CoCoME case study [HKW+08]. The
internal view of the system is also described in Figure 7.

3.3.1 LightDisplayIf

The LightDisplayIf interface is provided by the light display and required
by the cash desk. Its services tell the light display what to display to the
environment.

The interface offers the following services:

• void displayShopItem(int id, int price)

• void displayTotal(int grossTotal)

• void displayPaymentCard(int cardNumber)

• void displayPaymentCash(int amountPayed, int change)

The service displayShopItem outputs the item the item id and the
price of each scanned item. The service displayTotal outputs the total
amount (grossTotal) that needs to be paid by the customer. The service
displayPaymentCard outputs the last four digits of the customer’s credit
card number (cardNumber) in case of a credit card payment. The service
displayPaymentCash outputs the amount paid (amountPaid) and the
change (change) received by the customer in case of a cash payment.

3.3.2 CardReaderIf

The interface CardReaderIf is required by the card reader and provided
by the cash desk. Its services notify the system that the card reader has
read the card number and pin of the customer’s credit card.

The interface offers the following services:

• void readCardNumber(int number)

• void readPIN(int pin)

The service readCardNumber reads the credit card number (number)
of the customer’s credit card. The service readPIN reads the pin (pin) of
the customer’s credit card.

9



3.3.3 CashBoxIf

The interface CashBoxIf is required by the cash box and provided by
the cash desk. Its services allow for the registration of a purchase by the
customer and for payment by cash.

The interface offers the following services:

• void startNewSale()

• void completeItemRegistration()

• boolean acknowladgeCashPayment(int amountPayed)

The service startNewSale registers when called the start of a new sale
in the system. The service completeItemRegistration marks the end of an
item scanning process when called. The service acknowladgeCashPayment
is called by the cashier in order to acknowledge that he received a certain
amount (amount) of cash from the customer.

3.3.4 ScannerIf

The interface ScannerIf is required by the barcode scanner and provided
by the cash desk. It offers a service for scanning the bar code of a product.

The interface offers the following service:

• void readBarcode(int barcode)

The service readBarcode reads the barcode (barcode) from an item.

3.3.5 PrinterIf

The PrinterIf interface is provided by the printer and required by the cash
desk. Its services produce a printed receipt for the environment.

The interface offers the following services:

• void printShopItem(int id, String name, int price, int
vat)

• void printTotal(int netTotal, int grossTotal)

• void printPaymentCard(int cardNumber)

• void printPaymentCash(int amountPayed)

The service printShopItem outputs the item the item id and the price
of each scanned item. The service printTotal outputs the total amount
(grossTotal) that needs to be paid by the customer. The service printPay-
mentCard outputs the last four digits of the customer’s credit card number
(cardNumber) in case of a credit card payment. The service printPayment-
Cash outputs the amount paid (amountPaid) and the change (change)
received by the customer in case of a cash payment.

10



3.3.6 StoreIf

The StoreIf interface is provided by the application component of the store
server and required by the store client.

The interface offers the following services:

• StoreWithEnterpriseTO getStore()

• List<ProductWithStockItemTO> getProductsWithLowStock()

• List<ProductWithSupplierTO> getAllProducts()

• List<ProductWithSupplierAndStockItemTO>
getAllProductsWithOptionalStockItem()

• List<ComplexOrderTO> orderProducts(ComplexOrderTO
complexOrder)

• ComplexOrderTO getOrder(int orderId)

• void rollInReceivedOrder(ComplexOrderTO complexOrderTO)

• ProductWithStockItemTO changePrice(StockItemTO
stockItemTO)

• void markProductsUnavailableInStock(ProductMovementTO
requiredProductsAndAmount)

The service StoreWithEnterpriseTO returns the data regarding the
store. The returned StoreWithEnterpriseTO contains the id, name and
location of the store. The service getProductsWithLowStock returns a list
of stock items which are currently in low stock. Each ProductWithStock-
ItemTO contains a stock item and its appropriate product description. The
service getAllProducts returns a list of all products in the data base with
the suppliers from which the products can be ordered. The service getAll-
ProductsWithOptionalStockItem returns returns a list of all products in the
data base with the suppliers from which the products can be ordered and
the items of that product which are on stock. The service orderProducts
allows the store manager to issue an order(complexOrder) for certain prod-
ucts. The service getOrder returns the ComplexOrderTO object with the
id (orderid) given by the store manager. The service rollInReceivedOrder
allows the store manager to mark an order (complexOrderTO) as received
and add the ordered items to the inventory. The service changePrice allows
the store manager to change the price of a stock item (stockItemTO). The
service markProductsUnavailableInStock allows the store manager to mark
some given products(requiredProductsAndAmount) as unavailable in stock.

3.3.7 CashDeskConnectorIf

The interface CashDeskConnectorIf is provided by the application compo-
nent of the store server and required by the cash desk. Its services allow
for the registration of a new sale and for getting relevant product data for
a given barcode.

The interface offers the following services:

• void bookSale(saleTO sale)

11



• ProductWithStockItemTO getProductWithStockItem(int
productBarcode)

The service bookSale hands the data of a completed sale (saleTO) to the
application server. The service getProductWithStockItem returns the data
of a product (ProductWithStockItemTO) from a barcode (productBarcode).

3.3.8 PersistenceIf

The interface PersistenceIf is provided by the persistence server and re-
quired by the application component of the store server.

The interface offers the following service:

• PersistenceContext getPersistenceContext()

The service getPersistenceContext returns the PersistenceContext that
can then be used by the store server when accessing inventory data.

3.3.9 StoreQueryIf

The interface StoreQueryIf is provided by the data component of the
store server and required by the application component of the store server.
The services it offers can be used to query the persistence server for data
relevant to the operation of the store. The PersistenceContext object used
by the services of this interface represents the connection to the database.

The interface offers the following services:

• Store queryStoreById (int storeId, PersistenceContext
pctx)

• Collection<Product> queryProducts (int storeId,
PersistenceContext pctx)

• Collection<StockItem> queryLowStockItems (int storeId,
PersistenceContext pctx)

• Collection<StockItem> queryLowStockItemsWithRespectToIncomingProducts
(int storeId, PersistenceContext pctx)

• Collection<StockItem> queryAllStockItems (int storeId,
PersistenceContext pctx)

• StockItem queryStockItem (int stockId, PersistenceContext
pctx)

• StockItem queryStockItemById (int stockId,
PersistenceContext pctx)

• ProductOrder queryOrderById (int orderId,
PersistenceContext pctx)

• Product queryProductById (int productId,
PersistenceContext pctx)

• Collection<StockItem> getStockItems (int storeId, int
productId, PersistenceContext pctx)

12



The service queryStoreById returns a store (Store) for a given store
id (storeIf ) and PersistenceContext (pctx). The service queryProducts
returns a collection of products (Collection<Product>) which are available
for a given store id (storeId) and PersistenceContext (pctx). The service
queryLowStockItems returns a collection of items with low stock (Collec-
tion<StockItem>)for a given store id (storeId) and PersistenceContext
(pctx). The service queryLowStockItemsWithRespectToIncomingProducts
returns a collection of items (Collection<StockItem>) with low stock even
when accounting for the already ordered products for a given store id
(storeId) and PersistenceContext (pctx). The service queryAllStockItems
returns a collection containing all stock items (Collection<StockItem>)
for a given store id (storeId) and PersistenceContext (pctx). The ser-
vice queryStockItem returns a stock item (StockItem) for a given stock
id (stockId) and PersistenceContext (pctx). The service queryStockItem-
ById returns a stock item (StockItem) for a given stock id (stockId) and
PersistenceContext (pctx ). The service queryOrderById returns an order
(ProductOrder) for a order id (orderId) and PersistenceContext (pctx ). The
service queryProductById returns a product (Product) for a given product
id (productId) and PersistenceContext (pctx). The service getStockItems
returns a collection of stock items (Collection<StockItem>) for a given
store id (storeId), product id (productId) and PersistenceContext (pctx ).

3.4 Data Types
Besides primitive data types like int, the system also uses the following
transfer objects (TOs) for the purpose of transferring the required data
between the application layer and the GUI, but not any reference to an
object.

• EnterpriseTO represents a trading enterprise with an id and a name.

• StoreTO represents a store with an id, name and a location.

• StoreWithEnterpriseTO represents a store of an enterprise, and
contains the combined data of a StoreTO and an EnterpriseTO.

• ProductWithStockItemTO represents a stock item and it’s appro-
priate product. The product has an id, barcode, a purchase price
and a name. The stock item has an id, a sales price, an amount, a
minimum stock and a maximum stock.

• ProductWithSupplierTO represents a product and it’s appropriate
supplier. The product has an id, barcode, a purchase price and a
name. The supplier has an id and a name.

• ProductWithSupplierAndStockItemTO represents a stock item and
it’s appropriate product and supplier. The product has an id, barcode,
a purchase price and a name. The stock item has an id, a sales price,
an amount, a minimum stock and a maximum stock. The supplier
has an id and a name.

• ComplexOrderTO represents an order. It has an id, a delivery date
and an order date. It can also contain any number of ComplexOrder-
EntryTO which contain an amount and a ProductWithSupplierTO.

13



Product
-id: int
-barcode: int
-purchasePrice: int
-name: String

StockItem
-id: int
-salesPrice: int
-amount: int
-minStock: int
-maxStock: int

isStockedAs

1

0..*

OrderEntry
-id: int
-amount: int

refers to

0

1

ProductSupplier
-id: int
-name: String

offers 10..*

ProductOrder
-id: int
-deliveryDate: Date
-orderingDate: Date

has

1

0..*

Store
-id: int
-name: String
-location: String

places

1

0..*

owns1 0..*

Figure 4: The data model of the system

• StockItemTO represents a stock item. It has an id, a sales price, an
amount, a minimum stock and a maximum stock.

• ProductAmountTO and ProductMovementTO represent the quantity
of a product that is to be ordered.

The system uses an object relationship mapping framework (Hibernate)
to store objects in the database while hiding the communication with the
database from the developer. (also see Figure 4):

• Store represents a store and has an id, name and a location.

• Product represents a type of items that can be stocked at the store. It
has an id, a barcode number, a purchase price a name and a supplier.

• StockItem represents an item that can be sold at the store. It has
an id, a price, an amount, and a maximum and minimum amount.

• ProductOrder represents an order of one or many products. It has
an id, a delivery date and an order date. It can also contain one or
more OrderEntry objects which contain an amount and a Product.

Other types that do not fit the two previous categories are the following:

• PersistenceContext represents a persistence context used by the
Hibernate object-relational mapping framework. It is a cache that
keeps a set of objects in the main memory and also manages a
connection with the database.

• Acknowledgement represents the response given by the bank to a
transaction request. It has a boolean flag that determines whether
the transaction was successful.

• Account represents an account to/from which money can be trans-
ferred. It has an account number and an owner’s name.

3.5 Modeling with the Palladio Component
Model
The Palladio Component Model (PCM) [KBHR08] is a special language
that allows the design and specification of component based software.

14



Functional and non-functional (e.g. performance or security) properties
can be specified and simulations can be conducted at an early development
stage of the software. The advantage of this approach is that shortcomings
of the component based software will be identified early and thus save the
costs of re-implementation that are usually incurred by defects found at
a late development stage. The Palladio approach defines four roles that
come into play during the development of the system and provides each
of these roles with the possibility of specifying artifacts. The four roles
supported by the PCM are

• The component developer, which can specify and implement compo-
nents. Components are reusable parts of software systems that do
not share a state. The functionality which they provide or require
is specified using interfaces, which in turn offer services. Interfaces
are associated with components using roles. The specification and
implementation of the components, interfaces and roles are put inside
a specification repository. Additionally these repositories can also
contain additional data types.

• The software architect uses the contents of the repositories created
by the component developers and compose an assembly model of
a system. In the system composed this way, the components are
instantiated in assemblies such that a component can be used multiple
times in a system. The software architect also defines the interfaces
that are provided and required by the system (the system roles). All
artifacts created by the software architect are put inside an assembly
model.

• The system deployer models the hardware architecture on which the
system modeled by the software architect will run. This hardware
model can then be used to simulate the performance of the system
at an early design stage.

• The domain expert models the interaction of the user with the system.
This model can be used in order to determine which parts of the
system need to be tested in order to ensure a high reliability of the
system.

In addition to these four roles an extension that is currently in de-
velopment allows for the specification of information flow properties for
services.

For this case study we take an existing repository of the CoCoME
system and add interfaces that are to be used for the interaction of the
system with the environment. We use the components, interfaces and types
from this repository in order to create the assembly model of a system
representing a supermarket. With the PCM confidentiality extension we
specify the information flow constrains for all services.

3.6 Creating the Component Repository
In the first step of the PCM development approach, the components, inter-
faces, roles and data types are specified and deposited in a repository. We
use an existing repository which already containes most of the components,

15



interfaces and data types presented in Section 3. As part of the current
case study we added several new interfaces (see Section 3.2. ) that model
the interaction of the system with the environment. Figures 5 and 6
show the repository diagram on which the system is based. Note, that the
repository contains components for enterprise functionality described in
the CoCoME technical report that are not necessary for the current case
study. The repository diagram is a visual representation of the component
repository and shows what components and interfaces are available to a
software architect in order to assemble a system.

3.7 Creating the Assembly Model
Following the second step of the PCM approach we use the components
defined in the repository and composed them into an assembly model
(which is shown in Figure 7). The assembly model is the system composed
of the instantiated components, also called assemblies, from the repository.

The system roles associate the provided and required interfaces de-
scribed in Section 3.2 with the system. The system provides the interfaces
used to interact with the cash desk devices (printer, light display, barcode
scanner, card reader and cash box) and with the store client. The only
required interface by the system is the interface for communicating with
the bank.

The components are taken from the component repository described
in the previous section and instantiated as assemblies inside the assembly
model. The system contains an assembly CashDesk_CashDesk_1 rep-
resenting the cash desk. The assemblies Assembly_CashDesk.Cashbox,
Assembly_CashDesk.BarCodeScanner, Assembly_CashDesk.Printer, As-
sembly_CashDesk.CardReader , and Assembly_CashDesk.LightDisplay rep-
resent the cash desk devices and are part of the system. They interact
with the cash desk through the interfaces described in Section 4.4.

The store server is composed of three assemblies: Applica-
tion.Store_Store_1_Server representing the application component,
Data.Store_Store_1_Server representing the data component, and
Data.Persistence_Store_1_Server representing the persistence component.
The application component is connected to the cash desk and communi-
cates through the CashDeskConnectorIf interface. The data component of
the store server provides the StoreQueryIf interface which offers function-
ality for querying the database of the store. The persistence component
provides the connection to the database that can then be used by the other
store server components. It is connected to the application component
through the interface PersistenceIf.

The store client is represented by the GUI.Store_Store_1_Client
assembly which is connected to the data component of the store server
through the interface StoreIf.

4 Security Requirements
In this section we show the information flow security requirements for the
system. We define the attackers based on the actors described in Section 3

16



Figure 5: The repository diagram of cash desk components and interfaces

17



Figure 6: The repository diagram of store client and server components18



Figure 7: The system diagram of the model

19



and assign exactly one security domain for each attacker. For each service
we assign security domains to its input parameters, return value, call event
or expressions thereof. The meaning of these assignments is that only the
attackers of the assigned security domains are allowed to have knowledge
of the values of the contents of the security domains.

4.1 Attackers
We consider the actors described in Section 4.1 as possible attackers. For
each attacker we define a security domain which holds the data to which the
actor is allowed to know. Thus, we define the following security domains:

• Customer

• Cashier

• Bank

• ByStander

• StoreManager

• OtherStore

4.2 Provided Interfaces of the System
In this section we specify the security requirements for the provided
interfaces of the system. The parameters of the services are inputs of the
system while the return values of the services are outputs of the system.
The attacker/domain from which an input originates is written in bold,
while the other attackers that are also allowed to know that input. In
addition to the service parameters found in the service signature, we use
the \call and \result parameters representing the call event of a service
and the return value of a service respectively.

4.2.1 Interface BarcodeScannerOutIf

This interface provides only one service for reading the bar code of an
item. The input is made by the Cashier, this data may also be known
by the Customer, ByStander and StoreManager since it is displayed on
the LightDisplay, printed on the Printer and can also be found in the
StoreServer from where it can be read by the StoreManager.

The following table provides the specification of the parameters of the
services of the interface BarcodeScannerOutIf (see Section 3.2.4 for the
functional description):

Service Parameter Domains

readBarcode barcode Cashier,
Customer,
ByStander,
StoreManager

20



4.2.2 Interface CardReaderOutIf

The CardReaderOutIf interface provides two services for reading the credit
card number and the pin of a credit card. The input is made in both cases
by the Customer and other than him, only the Bank is allowed to know
this data.

The following table provides the specification of the parameters of
the services of the interface CardReaderOutIf (see Section 3.2.2 for the
functional description):

Service Parameter Domains

readCardNumber number Customer, Bank
readCardNumber number (last four dig-

its)
Customer,
Bank, Cashier,
ByStander, Store-
Manager

readPin pin Customer, Bank

4.2.3 Interface CashBoxOutIf

This interface provides two services, startNewSale and completeItemReg-
istration which mark the start of a new sale, thus the beginning of the
registration of the Customer’s items and the completion of the item regis-
tration respectively. Since these two services don not have any parameters
or return value the only information we consider is the call event of the
services. The services are called by the cashier, but it can also be observed
by ByStander and Customer who are physically at the cash desk. A
third service provided by this interface is acknowladgeCashPayment which
is called by the Cashier in order to input the the amount paid by the
customer by cash. This amount may be also known by the ByStander and
Customer.

The following table provides the specification of the parameters of the
services of the interface CashBoxOutIf (see Section 3.2.3 for the functional
description):

Service Parameter Domains

startNewSale \call Cashier,
ByStander,
Customer, Store-
Manager

completeItem-
Registration

\call Cashier,
ByStander,
Customer, Store-
Manager

acknowladge-
CashPayment

amountPayed Cashier,
ByStander,
Customer, Store-
Manager

21



4.2.4 Interface StoreOutIf

The interface StoreOutIf provides the services orderProducts, getOrder,
rollInReceivedOrder, changePrice, and markProductsUnavailableInStock
which allow the StoreManager to perform changes on the items in the
inventory. All the inputs for these services are done by the StoreManager
and he is the only one who may know this data. The services of StoreOutIf
provide data regarding the current state of the store inventory. This data
can only be read by the StoreManager on the StoreClient.

The following table provides the specification of the parameters of the
services of the interface StoreOutIf (see Section 3.2.7 for the functional
description):

Service Parameter Domains

orderProducts complexOrder StoreManager
getOrder orderId StoreManager
rollInReceivedOrder complexOrderTO StoreManager
changePrice stockItemTO StoreManager,

Customer,
Cashier,
ByStander

markProducts-
UnavailableInStock

requiredProducts-
AndAmount

StoreManager

orderProducts \result StoreManager
getOrder \result StoreManager
rollInReceivedOrder \result StoreManager
changePrice \result StoreManager
markProducts-
UnavailableInStock

\result StoreManager

getStore \result StoreManager
getProductsWithLow-
Stock

\result StoreManager

getAllProducts \result StoreManager
getAllProductsWith-
OptionalStockItem

\result StoreManager

4.3 Required Interfaces of the System
4.3.1 Interface BankTransactionIf

The BankTransactionIf interface is required by the system and contains the
service requestTransaction for requesting the transaction of the amount to
be paid from the customer’s account to the store account. The customer’s
account can be known only by the Customer and the Bank, the store’s
account can be known only by the Cashier, Bank, and StoreManager. The
amount to be paid can be known by Cashier, ByStander, StoreManager,
Customer, and Bank. Whether the transaction request was approved can
be seen by the Customer, Cashier, ByStander and Bank.

The following table provides the specification of the parameters of
the services of the interface BankTransactionIf (see Section 3.2.6 for the
functional description):

22



Service Parameter Domains

requestTransaction \result Bank, Customer,
Cashier,
ByStander,
StoreManager

requestTransaction cardnumber Cashier,
Customer, Store-
Manager, Bank

requestTransaction amount Cashier,
Customer, Store-
Manager, Bank,
ByStander

requestTransaction account Customer, Bank

4.3.2 Interface PrinterOutIf

The PrinterOutIf interface provides four services for printing each shop
item, the total amount to be paid, the amount paid by cash and the last
four digits of the credit card number if a credit card was used. This data
can be read by the Customer and the Cashier.

The following table provides the specification of the parameters of the
services of the interface PrinterOutIf (see Section 3.2.5 for the functional
description):

Service Parameter Domains

printShopItem \result, id, name,
price, vat

Customer,
Cashier,
ByStander

printTotal \result, netTotal,
grossTotal

Customer,
Cashier,
ByStander

printPaymentCash \result, amount-
Payed, change

Customer,
Cashier,
ByStander

printPaymentCard \result, cardnumber
(last four digits)

Customer,
Cashier,
ByStander

4.3.3 Interface LightDisplayOutIf

The LightDisplayOutIf interface provides four services for printing each
shop item, the total amount to be paid, the amount paid by cash and the
last four digits of the credit card number if a credit card was used. This
data can be read by the Customer, Cashier and ByStander.

The following table provides the specification of the parameters of
the services of the interface LightDisplayOutIf (see Section 3.2.1 for the
functional description):

23



Service Parameter Domains

displayShopItem \result, id, price Customer,
Cashier,
ByStander

displayTotal \result, grossTotal Customer,
Cashier,
ByStander

4.3.4 Interface ProductDispatcherIf

The ProductDispatcherIf offers a service for ordering products at another
store.

The following table provides the specification of the parameters of
the services of the interface LightDisplayOutIf (see Section 3.2.8 for the
functional description):

Service Parameter Domains

orderProductsAvailable-
AtOtherStores

enterpriseTO,
callingStore,
productAmounts,
\result

StoreManager,
OtherStore

4.4 Interfaces of the Internal Components
For the internal interfaces of the system we assign domains (with each
domain belonging to exactly one attacker) to the service parameters and
expressions of service parameters. An expression may be known by an
attacker if it is in the domain of that attacker. The internal interfaces
are required and provided by the components of the system, we will
describe their security requriements from the provided perspective, i.e. the
parameters of the services are considered inputs and the return values of
the services are treated as outputs.

4.4.1 Interface LightDisplayIf

The following table provides the specification of the parameters of the
services of the interface LightDisplayIf (see Section 3.3.1 for the functional
description):

Service Parameter Domains

displayShopItem id, price Customer,
Cashier,
ByStander,
StoreManager

displayTotal grossTotal Customer,
Cashier,
ByStander,
StoreManager

24



4.4.2 Interface PrinterIf

The following table provides the specification of the parameters of the
services of the interface PrinterIf (see Section 3.3.5 for the functional
description):

Service Parameter Domains

printShopItem id, price, name, vat Customer,
Cashier,
ByStander,
StoreManager

printTotal netTotal, grossTotal Customer,
Cashier,
ByStander,
StoreManager

printPaymentCash amountPaid, change Customer,
Cashier,
ByStander,
StoreManager

printPaymentCard cardNumber (last
four digits)

Customer,
Cashier,
ByStander,
StoreManager

4.4.3 Interface ScannerIf

The following table provides the specification of the parameters of the
services of the interface ScannerIf (see Section 3.3.4 for the functional
description):

Service Parameter Domains

readBarcode barcode Cashier,
Customer,
ByStander,
StoreManager

4.4.4 Interface CardReaderIf

The following table provides the specification of the parameters of the
services of the interface CardReaderIf (see Section 3.3.2 for the functional
description):

Service Parameter Domains

readCardNumber number Customer, Bank
readCardNumber number (last four dig-

its)
Customer,
Bank, Cashier,
ByStander, Store-
Manager

readPin pin Customer, Bank

25



4.4.5 Interface CashBoxIf

The following table provides the specification of the parameters of the
services of the interface CashBoxIf (see Section 3.3.3 for the functional
description):

Service Parameter Domains

startNewSale \call Cashier,
ByStander,
Customer, Store-
Manager

completeItem-
Registration

\call Cashier,
ByStander,
Customer, Store-
Manager

acknowladge-
CashPayment

amountPayed Cashier,
ByStander,
Customer, Store-
Manager

4.4.6 Interface CashDeskConnectorIf

The following table provides the specification of the parameters of the
services of the interface CashDeskConnectorIf (see Section 3.3.7 for the
functional description):

Service Parameter Domains

bookSale saleTO Cashier,
ByStander,
Customer, Store-
Manager

getProductWith-
StockItem

barcode Cashier,
ByStander,
Customer, Store-
Manager

4.4.7 Interface StoreIf

The following table provides the specification of the parameters of the
services of the interface StoreIf (see Section 3.3.6 for the functional de-
scription):

26



Service Parameter Domains

orderProducts complexOrder,
\result

StoreManager

getOrder orderID, \result StoreManager
rollInReceivedOrder complexOrderTO,

\result
StoreManager

changePrice stockItemTO, \result StoreManager,
Customer,
Cashier,
ByStander

markProducts-
UnavailableInStock

requiredProducts-
AndAmount, \result

StoreManager

getStore \result StoreManager
getProductsWith-
LowStock

\result StoreManager

getAllProducts \result StoreManager
getAllProducts-
WithOptionalStockItem

\result StoreManager

4.4.8 Interface PersistenceIf

The following table provides the specification of the parameters of the
services of the interface PersistenceIf (see Section 3.3.8 for the functional
description):

Service Parameter Domains

getPersistenceContext \result StoreManager

4.4.9 Interface StoreQueryIf

The following table provides the specification of the parameters of the
services of the interface StoreQueryIf (see Section 3.3.9 for the functional
description):

27



Service Parameter Domains

queryStoreById \result, storeId, pctx StoreManager
queryProducts \result, storeId, pctx StoreManager,

Cashier,
Customer,
ByStander

queryLowStockItems \result, storeId, pctx StoreManager
queryLowStock-
ItemsWRIP

\result, storeId, pctx StoreManager

queryAllStockItems \result, storeId, pctx StoreManager
queryStockItem \result, stockId, pctx StoreManager
queryStockItemById \result, stockId, pctx StoreManager
queryOrderById \result, orderId, pctx StoreManager
queryProductById \result, productId,

pctx
StoreManager,
Cashier,
Customer,
ByStander

getStockItems \result, storeId, pro-
ductId, pctx

StoreManager

4.5 Specifying the Information Flow Properties
in Palladio
The Palladio confidentiality extension allows the software architect to
specify information flow properties. The process that needs to be followed
in order to specify information flow properties is the following:

1. Definition of attackers

2. Definition of data sets

3. Assignment of parameters (or expressions thereof) of services to data
sets

4. Application of the parameter - data set associations to the services

In the first step we use the extension of the PCM-Bench to define the
possible attackers. Depending on the context each actor can be considered
an attacker, thus the attackers correspond to the actors presented in
Section 4.1.

The second step of the specification process requires the definition of
data sets. These data sets abstractly represent data belonging to the same
security domain. We defined exactly one data set for each attacker.

In the third step we assign service parameters, return and call events
and expressions thereof to data sets using the ParametersAndDataSets
construct. In the current case study we use the method parameter name
to represent the parameters, \result for the return value of a service and
\call for the call event of a service. The only instance in which we used
an expression was number % 10000 signifying the last four digits of the
parameter number. The PCM bench extension for specifying information
flow properties does not require any syntax for the expressions that are

28



assigned to domains. For this case study we use side-effect free Java expres-
sions. For each method we created one or more ParametersAndDataSets.
In order to keep the specification as simple as possible we minimized
the number of ParametersAndDataSets, thus only services where two or
more parameters must be in different data sets did have more than one
ParametersAndDataSets.

In the final step we assign one or more ParametersAndDataSets con-
structs to each service.

As a result of the specification of information flow properties we assign
one or more domains to each parameter and return values of the services
of all interfaces. Additionally for some services we assign domains for call
events and for expressions of parameters. By construction the defined
domains have exactly one corresponding attacker (or actor). The assign-
ments of domains to parameters, return values, call events or expressions
of parameters correspond to the descriptions of the security requirements
of services that can be found in Sections 4.2, 4.3 and 4.4.

In order for the system to fulfill the specified information flow properties,
each attacker that knows only the data belonging to his own domain before
the execution will not be able to infer anything about the data not belonging
to the security domain of the attacker. Thus a tool that analyzes the
specified system must perform an analysis for each service and for each
attacker. The expressions that are contained in the security domain of
the analyzed attacker must be considered low, while all other expressions
will have to be considered high. Of course, the noninterference property
analyzed by the tool will have to be compositional, i.e. if the property
holds for all services of a component it must hold for any sequence of
service calls of that component. The computational model and definitions
of components, services and noninterference property described in [GG16]
can, with a minor adjustment be used as a semantics for the specification
described in this document. The minor adjustment that needs to be
addressed is the fact that in [GG16] all services need to have at least one
parameter, while in our model there are such services without parameters.
The reason the semantics can be used anyway is that services without
parameters from our model can be translated as services with a dummy
parameter in the semantics.

The modeled system can be downloaded here: http://formal.iti.
kit.edu/~herda/pub/cocome.zip

5 Conclusion
In this technical report we describe the modeling of a component-based
system that represents the It infrastructure of a supermarket. The system
is composed of a cash desk that has a printer, light display, barcode scanner,
card reader and a cash box. The cash desk is connected to a store server
which is also connected to a store client. The system model is based on
CoCoME, a component based example system. We describe the functional
requirements of the services of the components’ interfaces.

The goal is to specify security requirements that can be then analyzed by
various tools. We consider several existing actors from the use cases of the

29

http://formal.iti.kit.edu/~herda/pub/cocome.zip
http://formal.iti.kit.edu/~herda/pub/cocome.zip


system (as described in [HKW+08]) and define two new actors, ByStander
and OtherStore, which can be considered as attackers in different scenarios.
We specify security domains for these actors and then specify the data
belonging to the security domain of each actor.

We used Palladio Bench, a software modeling tool that supports the
modeling and simulation of component-based software in order to model
the system. We use an extension of the Palladio Bench that supports the
specification of information flow property to specify the security require-
ments.

Our future goal is to analyze the system described in this document
and to check whether the specified information flow properties hold in a
proof-of-concept implementation of the system.

References
[GG16] Simon Greiner and Daniel Grahl. Non-interference with what-

declassification in component-based systems. In Proceedings of
the Computer Security Foundations Symposium (CSF 2016),
June 2016.

[HKW+08] Sebastian Herold, Holger Klus, Yannick Welsch, Constanze
Deiters, Andreas Rausch, Ralf Reussner, Klaus Krogmann,
Heiko Koziolek, Raffaela Mirandola, Benjamin Hummel,
Michael Meisinger, and Christian Pfaller. The Common Com-
ponent Modeling Example. In Andreas Rausch, Ralf H. Reuss-
ner, Raffaela Mirandola, and Frantisek Plasil, editors, The
Common Component Modeling Example: Comparing Software
Component Models, volume 5153 of Lecture Notes in Computer
Science, chapter CoCoME – The Common Component Model-
ing Example, pages 16–53. Springer-Verlag Berlin Heidelberg,
2008.

[KBHR08] Heiko Koziolek, Steffen Becker, Jens Happe, and Ralf Reussner.
Evaluating performance of software architecture models with
the palladio component model. In Jörg Rech and Christian
Bunse, editors, Model-Driven Software Development: Inte-
grating Quality Assurance, pages 95–118. IDEA Group Inc.,
December 2008.

30


	Introduction
	Noninterference for Components
	Description of the System
	Actors
	Interfaces for Interaction with the Environment
	LightDisplayOutIf
	CardReaderOutIf
	CashBoxOutIf
	BarCodeScannerOutIf
	PrinterOutIf
	BankTransactionIf
	StoreOutIf
	ProductDispatcherIf

	Interfaces of the Internal Components
	LightDisplayIf
	CardReaderIf
	CashBoxIf
	ScannerIf
	PrinterIf
	StoreIf
	CashDeskConnectorIf
	PersistenceIf
	StoreQueryIf

	Data Types
	Modeling with the Palladio Component Model
	Creating the Component Repository
	Creating the Assembly Model

	Security Requirements
	Attackers
	Provided Interfaces of the System
	Interface BarcodeScannerOutIf
	Interface CardReaderOutIf
	Interface CashBoxOutIf
	Interface StoreOutIf

	Required Interfaces of the System
	Interface BankTransactionIf
	Interface PrinterOutIf
	Interface LightDisplayOutIf
	Interface ProductDispatcherIf

	Interfaces of the Internal Components
	Interface LightDisplayIf
	Interface PrinterIf
	Interface ScannerIf
	Interface CardReaderIf
	Interface CashBoxIf
	Interface CashDeskConnectorIf
	Interface StoreIf
	Interface PersistenceIf
	Interface StoreQueryIf

	Specifying the Information Flow Properties in Palladio

	Conclusion



