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Abstract
Within this thesis, different concepts for on-the-fly visualization of workspace
boundaries for 7-DoF manipulators have been investigated. It is explored,
which possibilities parallelization and the utilization of modern graphics
cards can bring to workspace visualization through on-line computation of
positioning limits for the current situation. The higher goal is to employ intu-
itive visualization as a substitute for the natural human feeling for reachability
that humans possess for their own arms.

The workspace is considered to be the set of poses that can be accessed by the
TCP, taking into account robot joint limits, link lengths and singularities. The
novel distinction between the directly and the generally accessible workspace
is made: The directly accessible workspace contains all points that are reach-
able for the tool center point from the current position in a linear motion
or a rotation about a constant axis without reconfiguration. The generally
accessible workspace contains all reachable poses, even if a reconfiguration is
necessary to reach them.

The generally accessible workspace is obtained using rasterization of the
Cartesian space and assessing the reachability of every node by analytical in-
verse kinematics computation. The directly accessible workspace is obtained
via simultaneous virtual robot motion in all directions.

In order to reduce the complexity of this six-dimensional problem, it is split
into the consideration of translation limits while keeping the orientation
constant and rotation limits while keeping the TCP position constant.

Different visualization concepts are devised, based on the considerations
above. The motion boundaries for the current robot pose are displayed as
semi transparent barriers within a virtual environment.

All investigated concepts are exemplarily implemented for the DLR/KUKA
LBR IV manipulator and consider its redundant kinematic structure using a
novel cost function concept. The usability and perspicuity of the devised visu-
alization concepts have been assessed in a user study. While the translational
components received good to excellent ratings, the rotational components
scored average but still proved to be effective in the tested scenario.

Possible applications for the proposed concepts are visual support for the
manual operation of manipulators, fast workspace analyses in time-critical
scenarios, assistance for robot or target placement and repositioning, interac-
tive workspace exploration for design and comparison of robots and tools
and determination of the motion tolerance around a trajectory.
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Zusammenfassung

Die vorliegende Arbeit stellt verschiedene Konzepte zur Visualisierung des
Arbeitsraumes von Roboterarmen mit sieben Freiheitsgraden zur Laufzeit
vor.

Motivation

Wird ein Roboterarm manuell verfahren (im Gelenkraum, im Kartesischen
Raum, durch Handkontakt oder Teleoperation), gelangt man häufig in Ge-
lenkanschläge, Singularitäten oder anderweitig ungünstige Konfigurationen.
Dies ist selbst für erfahrene Benutzer schwer zu erkennen, beziehungsweise
zu vermeiden.

Im Rahmen dieser Arbeit wird untersucht, welche Möglichkeiten sich durch
Parallelisierung und Verwendung moderner Grafikkarten für die Arbeitsrau-
manalyse eröffnen. Es werden Verfahren entwickelt, welche es ermöglichen,
situationsspezifische Arbeitsraumanalysen zur Laufzeit durchzuführen.

Das höhere Ziel ist, durch visuelles Feedback das natürliche Gefühl über die
Positionierfähigkeiten zu substituieren, das ein Mensch für den eigenen Arm
hat.

Methoden

Alle Analysen können auf beliebige kinematische Strukturen angewendet
werden und wurden im Rahmen dieser Arbeit am Beispiel des KUKA/DLR
Leichtbauroboters IV realisiert. Die betrachtete Struktur weist sieben rotatori-
sche Gelenke auf und ist somit kinematisch redundant, wodurch eine höhere
Flexibilität erreicht wird.

Grundsätzlich wird der Arbeitsraum als Menge aller Posen betrachtet, die
durch den Werkzeugmittelpunkt (auch TCP) unter Berücksichtigung der
Werkzeugorientierung erreichbar sind. Hierbei werden Gelenkanschläge,
Singularitäten und die Länge des Roboters berücksichtigt.
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Zunächst wird die Unterscheidung zwischen prinzipiell erreichbarem und
direkt erreichbarem Arbeitsraum eingeführt. Beim prinzipiell erreichbaren
Arbeitsraum handelt es sich um die Menge aller Posen, die ein Manipulator
mit dem TCP erreichen kann, auch wenn hierzu eine Rekonfiguration nötig
ist. Der direkt erreichbare Arbeitsraum beschreibt hingegen die Menge aller
Posen, die in einer direkten Bewegung (lineare Translation oder Rotation um
eine feste Achse durch den TCP) aus der aktuellen Pose heraus erreichbar
sind.

Zusätzlich wird zwischen translatorischem Arbeitsraum bei fester TCP-Ori-
entierung und rotatorischem Arbeitsraum bei fester TCP-Position unterschie-
den, da die Visualisierung einer Grenzfläche im sechsdimensionalen Raum
nur durch Dimensionsreduktion erreicht werden kann.

Für jede der vier resultierenden Kategorien – prinzipiell/direkt erreichbar
bzw. rotatorische/translatorische Bewegungsgrenze – werden Visualisie-
rungskonzepte entwickelt und vorgestellt. Zusätzlich wird ein Konzept für
die Darstellung des prinzipiell erreichbaren Arbeitsraums für Translation vor-
gestellt, wobei jeder Punkt innerhalb des Arbeitsraumes in jeder Orientierung
einer zuvor festgelegten Menge an Orientierungen erreichbar ist.

Die Berechnung der Arbeitsraumgrenzen erfolgt durch Lösung der inver-
sen Kinematik parallelisiert auf der Grafikkarte. Im Falle der prinzipiell
erreichbaren Arbeitsräume wird der Kartesische Raum in einem Gitter ge-
rastert. An jedem Knoten wird die Erreichbarkeit analytisch geprüft, wobei
die Redundanz des Roboters berücksichtigt wird. Anschließend wird mittels
des Marching Cubes Algorithmus’ die Hülle um alle erreichbaren Punkte
gelegt.

Zur Berechnung des direkt erreichbaren Arbeitsraumes verfährt der Roboter
im Falle der Translation den TCP virtuell in eine gerasterte Untermenge aller
Raumrichtungen bis ein Gelenk anschlägt oder eine Singularität erreicht wird.
Dort wird die Grenze gerendert. Im Falle der Rotation wird um eine Menge
an Achsen gekippt, die senkrecht zur dominanten Werkzeugachse stehen
und die Grenze wird auf eine Kugel um den TCP gezeichnet. Während der
virtuellen Fahrten wird der Nullraumparameter des Roboters lokal optimiert,
wofür ein neues Konzept zur Kombination verschiedener Kostenfunktionen
entwickelt wurde.

Sämtliche im Rahmen dieser Arbeit entwickelten Konzepte wurden in C++
und OpenCL implementiert. Die Anbindung an den Roboter, an die Visuali-
sierung und an die Eingabegeräte ist über das verbreitete Robot Operating
System (ROS) umgesetzt. Dies ermöglicht die einfache Integration der ent-
wickelten Visualisierungen in eine Vielzahl von Forschungsplattfomen, die
ebenfalls auf ROS basieren. Die Darstellung selbst erfolgt über RViz, einem
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Visualisierungsprogramm für die ROS-Umgebung. Zur Nutzereingabe sind
ein Gamepad und eine 6D-Maus angebunden.

Ergebnisse

Alle Konzepte wurden für die Darstellung zur Laufzeit realisiert und erreich-
ten in Tests bei angemessener Auflösung mindestens eine Bildfrequenz von
8 Hz.

Als Anwendungsszenarien für die entwickelten Visualisierungen dienen
unter anderem die schnelle Positionierung des Roboters für verschiedene An-
wendungen, die Evaluation der translatorischen bzw. rotatorischen Toleranz
um eine geplante Trajektorie und die Untersuchung der Arbeitsraumform
bei Variation verschiedener Konstruktionsparameter.

In einer Nutzerstudie wurden Unterstützung, Verständlichkeit und Benutz-
barkeit der verschiedenen Konzepte evaluiert, wobei die Konzepte zur Vi-
sualisierung der translatorischen Erreichbarkeit durchweg gut bis exzellent
bewertet wurden. Die Visualisierung zur direkten Erreichbarkeit für Rotation
wurde mit großer Streuung im Mittel durchschnittlich bewertet, erwies sich
jedoch trotzdem als effizient für die gegebene Aufgabe.

Diskussion, Fazit und Ausblick

Einen Mittelweg zwischen einer großen Menge an erreichbaren Orientierun-
gen und einem großen erreichbaren Raum zu finden, den Zusammenhang
zwischen Werkzeugform und -orientierung und dem resultierenden Arbeits-
raum zu verstehen und letztendlich ein Gefühl für die Erreichbarkeit eines
Manipulators zu entwickeln sind die Hauptanwendungen für die vorliegende
Arbeit. Die Positionierfähigkeiten eines Manipulators werden durch visuelle
Exploration greifbar gemacht. Der Zweck der Visualisierung liegt hierbei in
weniger spezifischen bzw. planbaren Szenarien, die vorgestellten Visualisie-
rungswerkzeuge wurden nicht entwickelt, um Optimierungsaufgaben wie
Roboter- und Werkzeugkonstruktion, Positionierung und Pfadplanung durch
Visualisierung an den Nutzer auszulagern.

Mögliche zukünftige Schritte umfassen die Generalisierung des Ansatzes
durch Einbindung weiterer kinematischer Strukturen, das Einblenden von
Arbeitsraumgrenzen in Kamerabildern oder auf Virtual Reality Brillen sowie
die Berücksichtigung von Kollisionen bei der Erreichbarkeitsanalyse.
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1 Introduction

Humans possess a natural feeling for the capabilities of their arms. Based
on experience, they have an intuitive understanding for whether a point in
space can be reached and if so, from which angles it can be accessed. They
can also predict if the posture that the arm needs to be in, in order to reach a
particular target, is comfortable or not.

If a person does not control their own arm but a robotic manipulator, this
feeling is lost. Robots often have a joint configuration different from that of
a human arm or just different joint limits. For instance, most robot “elbows”
(if a joint can be identified acting as an elbow) can deflect in both directions
from a straight position. As a consequence, it is hard to assess the reacha-
bility of target poses, and to determine a trajectory that leads there can be
cumbersome.

In order to provide a substitute for the lack of a natural understanding for
the capabilities of a robotic arm, different workspace visualization techniques
and measures for dexterity were developed over several decades. However,
determining a robot’s workspace is generally a very complex and compu-
tationally expensive problem, which is so far tackled via simplification and
reduction of dimensionality.

1.1 Motivation

Often, demanding problems can be solved by providing enough computation
time. In many areas however, it is only due to the performance increase of
hardware that paradigm-shifting possibilities were introduced: World-wide
live video conferences are common, computer tomography can be used intra-
operatively, virtual reality headsets do no longer induce motion sickness.
Being able to explore, interact and play with a virtual object or scene in real-
time conveys a much more vivid and graspable experience than rendered
still images.

Since the advent of General Purpose Computation on Graphics Processing
Units (GPGPU), many parallelizable problems can be computed much faster
so that a solution is obtained without mentionable latency, even on standard
home computers.

The primary aim of this thesis is to investigate and explore the possibili-
ties that this technology can bring to workspace visualization techniques.

1



1 Introduction

This will be attempted through the concept of massively parallel virtual ex-
ploration and visualization. Potential applications are visual support for
tele-operation, robot and tool design and analysis, robot placement and
groundwork for further optimization algorithms. The higher goal will be to
allow the user to develop a feeling for the reaching capabilities of a robotic
manipulator.

The idea is that the development of an intuitive understanding leads to more
dexterous and intelligent handling in difficult situations as well as the ability
to foresee and avoid them. Being able to grasp a scenario increases confidence
and security. Furthermore, the comprehension of complex relations is a key
concern in research and development.

1.2 Outline

Chapter 2 will first provide the reader with background knowledge necessary
for understanding the concepts presented within this thesis. The robotic
structure that serves as example as well as kinematic considerations is then
introduced. Afterwards, existing workspace analysis approaches as well as
dexterity measures are presented. The contribution of this thesis to the state
of the art is then pointed out.

In chapter 3, methods for solving the inverse kinematics problem are pre-
sented, which form the basis for this work. Afterwards, the main concepts
that were developed within the scope of this thesis are put forward. The
distinction between generally and directly accessible workspace as well as vi-
sualization techniques for translatory and rotatory motion barriers is made. In
the end, an approach for dealing with the robot’s redundancy is presented.

Chapter 4 discusses the implementation of the visualization concepts. The sys-
tem architecture as well as the utilized software and hardware are introduced
and implementation details of the developed algorithms for computing the
different workspace limits are given. The user interface is then put forward.

Potential application scenarios of the devised concepts are demonstrated in
chapter 5.

Within chapter 6, the results of this thesis are presented. Different factors
that influence the system performance are introduced. In a user study, it is
investigated how intuitively the visualization concepts can be understood.

Chapter 7 discusses the presented visualization tools in a broader perspective
and the results of the user study are interpreted. A few learned lessons are
addressed. The presented work is compared to the closest works of other
research groups and the differences are pointed out.

Lastly, in chapter 8, a conclusion is drawn and further research directions
based on the proposed system are given.
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2 Fundamentals &

State of the Art

The concept of workspace analysis for robotic manipulators is as old as
robotic manipulators themselves. In this chapter, a fundamental background
is laid out and previous and related works are analyzed and discussed. In the
first section, the kinematic structure that this thesis focuses on is presented.
Afterwards, different concepts of workspace and reachability analysis and
measures of manipulability and dexterity are put forward. Finally, the aim of
this work and its contrast to related works are pointed out.

2.1 Redundant Robotic Manipulators

In order to freely position and orient an object in three-dimensional space,
a robotic manipulator needs to have at least six degrees of freedom (DoF)
in the form of joints. One of the most common structures for serial robotic
manipulators is the anthropomorphic arm with six rotatory joints. Among
those robots, most are wrist-partitioned, i.e. their last three joint axes intersect
in a single point. This property is very helpful from a control point of view:
Position and orientation can be regarded as decoupled, which facilitates many
simplifications both for the inverse kinematics problem as well as for many
workspace analysis methods.

Many newer robotic arms feature a seventh joint. The inverse kinematics
problem becomes under-determined and the manipulators are kinematically
redundant, which enables them to perform a self-motion while the end-
effector does not change its pose. This facilitates a better avoidance of joint
limits, singularities and obstacles and enhances the dexterity in general [30,
40]. In 1985, Hollerbach investigated several joint configurations for robotic
arms in terms of singularity elimination, workspace optimization, kinematic
simplicity and mechanical constructability [40]. The conclusion was, that a
manipulator with a kinematic structure as depicted in Figure 2.1 best satisfies
the criteria on balance. Figure 2.1 also shows the joint labeling that is used
throughout this thesis.

3



2 Fundamentals & State of the Art

Base joint

Shoulder joint

Upper arm joint

Elbow joint

Lower arm joint

Wrist joint

Flange joint

Figure 2.1: Optimal joint configuration of a 7-DoF robotic manipulator ac-
cording to [40]. The cylinders represent rotatory joints. The joint
nomenclature used in this thesis is shown.

Although most of the concepts presented in this thesis can be extended to
arbitrary kinematic designs, the focus is laid on the mentioned structure,
which is implemented in current robots such as the KUKA/DLR LBR IV [83],
the Schunk LWA 4D [85] and the KUKA LBR iiwa [84] (see Figure 2.2). The
KUKA/DLR LBR IV will serve as an example in this thesis.

Redundant robots are more flexible (as will be shown in section 5.4), but they
are also more complicated to control. Some specific concepts will be covered
in the following.

Having one more joint than necessary means that the desired end-effector or
TCP (Tool Center Point) pose does not unambiguously define all joint angles.
Two more parameters need to be specified: the null-space parameter and the
configuration index.
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2.1 Redundant Robotic Manipulators

[32] [44] [32]

Figure 2.2: From left to right: KUKA/DLR LBR IV, Schunk LWA 4D, KUKA
LBR iiwa

2.1.1 Null-Space Parameter

When fixing the end-effector pose, a robot with the given kinematic structure
can still rotate its elbow around the connecting line between shoulder and
wrist, similar to the human arm.

In order to illustrate this self-motion, the robot structure can be simplified.
Since both the first three and the last three joint axes intersect in one point,
they can be substituted by spherical joints, as depicted in Figure 2.3. Note
that this simplification does not allow to represent the original joint limits.

This additional null-space parameter will be specified by the angle η as shown
in Figure 2.3. The reference elbow position (i.e. η = 0) is upwards.

2.1.2 Configuration Index

Even with the null-space parameter specified, the inverse kinematics problem
still does not have a unique solution. The hinge joints (shoulder, elbow and
wrist) can deflect in two directions and each of the 23 resulting configurations
allows for a mathematical solution. This distinction will henceforth be re-
ferred to as configuration index. Figure 2.4 shows an LBR IV in eight different
configurations for the same TCP pose and the same null-space parameter.

A change of configuration during operation is usually not performed since it
requires driving through a singularity, which is an undesirable situation, as
will be explained in section 2.1.3. Within this thesis, the configuration can be
changed only in joint space by moving joints individually. Cartesian motion
will not change the configuration index and all analysis is done for the current
configuration only. An extension to check the other configurations as well
would be trivial to add if required.
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2 Fundamentals & State of the Art

η

Figure 2.3: Simplification of the robot structure. The three first and the three
last joints are replaced by spherical joints. The self-motion capabil-
ity can be seen: The elbow (cylindrical joint) can rotate on a circle
about an axis from shoulder to wrist. This motion is characterized
by the null-space parameter η (red angle).

Figure 2.4: LBR IV in eight different configurations, colored for easier distinc-
tion. Flange pose and null-space parameter are identical for all
postures.
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2.1 Redundant Robotic Manipulators

2.1.3 The Jacobian Matrix and Singularities

The Cartesian pose of the TCP can be specified by a six-dimensional vector
~ptcp = (x, y, z, α, β, γ)T , where x, y and z are Cartesian coordinates defining
the position and α, β and γ are angles (in an arbitrary convention) that de-
scribe the orientation of the TCP pose. The vector ~ptcp can be written as a

function of the joint angles ~θ = (θ1..j)
T (where j is the number of joints) and

the Jacobian matrix describes the derivative of ~ptcp with respect to ~θ:

~ptcp = f(~θ) (2.1)

d~ptcp = J(~θ)d~θ (2.2)

Singularities are situations where at least one direction of end-effector move-
ment is blocked due to an unfavorable manipulator posture. This can occur
when two joint axes align and the corresponding joint movements have the
same effect on the TCP pose, so – very simplified – their flexibility is missing
in another direction. In a singularity, the Jacobian becomes rank-deficient.

For the standard 6-DoF manipulator structure, which is similar to the one
that is used in this thesis but with no upper arm joint, the pose is singular
whenever two joint axes are coaxial. This happens when at least one of the
hinge joints is stretched out or if the robot is in an overhead position so that
the first and the last joint axes become coaxial.

For the considered 7-DoF robot structure, the situation is less trivial. A
singularity in the mentioned sense is only reached, when the elbow joint is
stretched or if more than two joint axes align.

However, if the null-space parameter is included as part of the Cartesian
pose vector, which increases the Jacobian to a 7×7 matrix, the aforementioned
cases can be considered singular, too. They render the null-space parameter
fix or undefined. Figure 2.5 shows an overview of all possible singularities.
The topmost posture constitutes a singularity in the classical sense (TCP
movement restricted), the three lower postures only block the null-space
movement.

When possible, the proximity to all types of singularities will be actively
avoided within this thesis. Apart from that, they will not be taken account of
since singularity treatment is not the focus.

7
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Figure 2.5: All possible singularities for the regarded structure, aligning joint
axes colored in red. Only in the posture depicted at the top, the
motion of the TCP is restricted.
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2.1.4 Forward and Inverse Kinematics

Forward and inverse kinematics describe the mapping between joint angles
and the end-effector pose. A certain joint configuration is also referred to as
a position or vector in n-dimensional joint space, where n is the number of
joints. The pose of the end-effector, described by position and orientation, is
also called a pose in Cartesian space or configuration space.

Forward kinematics is the determination of the end-effector pose, given the
joint angles. For serial manipulators of the given structure, this mapping is
unique and straightforward to compute using consecutive matrix multiplica-
tions.

Inverse kinematics is the determination of joint angles for a given end-effector
pose. In order to make this mapping unique, the configuration index and
all null-space parameters (just one for the robots considered in this thesis)
have to be specified. In a singular configuration, additional parameters are
needed.

There are several approaches to solving the inverse kinematics problem. The
most general one is a numerical gradient descent, invoking only forward
kinematics computations and the determination of the Jacobian. An introduc-
tion is given by Buss [16]. This approach works with any type of serial robot.
However, it comes with all the disadvantages of a numerical gradient descent,
including the possibility of getting stuck in a local minimum, no guarantee
that a solution will be found and possibly high computational cost.

For many robot structures, including the one used in this thesis, analytical
solutions exist. Although devising such a solution is far more complex and
restricted to a specific robot structure, it results in an algorithm that is exact,
fast and it can be guaranteed that a solution will be found if one exists. In
this thesis, this is the means of choice.

Although an additional joint increases the flexibility of the robot, it also
complicates the inverse kinematics problem and creates a necessity for opti-
mization. Finding a suitable value for the null-space parameter can be quite
challenging. The elbow can not continuously rotate because its movement is
restricted by the joint limits as can be seen in Figure 2.6. Figure 2.7 illustrates
how the different joints can block different intervals on the elbow circle while
the TCP moves on a straight line.

If the robot motion is determined by a predefined trajectory, the elbow po-
sition can be optimized globally. However, for the sake of generality, this
cannot be assumed. Alternatively, it would be desirable to find a surjective
mapping from TCP pose to null-space parameter, so that the whole inverse
kinematics problem becomes unique. Shimizu et al. [68, 69] propose such

9
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Figure 2.6: Joint limits of the LBR IV, projected onto the null-space parameter:
The green regions are accessible, the red regions are blocked, since
one or more joints would exceed their limits within these intervals.
The innermost line in the ring corresponds to the base joint, the
outermost line corresponds to the flange joint.

an approach. They present an optimization criterion, which can be solved
analytically and which depends only on the current TCP pose. However, the
optimal position can be within a blocked interval, in which case the closest
possible elbow position satisfies the criterion best. In general, such an ap-
proach can lead to a jumping elbow behavior when the robot moves, which
is not possible on an actual robot. Hence, this algorithm can only be applied
for single, static poses.

Generally, a pre-determined elbow position for a given TCP pose would
either introduce this jumping problem or restrict the flexibility too much.
Also, a suitable elbow position for a specific end-effector pose depends on the
trajectory to the pose. To give an example, Figure 2.8 illustrates how the LBR
IV can place the TCP inside an area that would be unaccessible if there was
no upper arm joint, since this slice lies outside the limits of the base joint. A
suitable elbow position depends on the previous pose of the robot, whether
the base joint was close to its positive or its negative limit.

Since both global null-space optimization as well as a surjective mapping
from TCP pose to elbow position are unfeasible, the best option is a local
optimization as described by Chan and Dubey [23], referred to as gradient
projection method. A performance criterion or cost function is defined de-
pending on the robot position and its gradient is projected on the null-space
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Figure 2.7: Blocked elbow intervals per joint for a straight movement: The
colored areas show how the intervals change position, size, appear
and disappear over the motion along the line. In the depicted case,
no feasible trajectory for the elbow can be found.
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Figure 2.8: Demonstration of the flexibility that is introduced by a seventh
joint: The red area is blocked for the upper arm by the base joint.
Without the upper arm joint, the TCP could not be positioned
there.

parameter. The parameter is then varied accordingly. Using such a strategy,
it may occur that the elbow moves into a position which is unfavorable for a
particular motion. However, if the motion trajectory is not known beforehand,
this is unavoidable in general.

In this thesis, a local null-space optimization is the strategy of choice. The cost
function that was developed within this work will be presented in section
3.4.

2.2 Workspace Analysis and Reachability

The first workspace considerations were published by Roth in 1976 [65]. Basic
conventions and concepts (such as types of joints, decoupling of position and
orientation, number of solutions) are discussed and sketches of workspaces
(or “working spaces”) are presented for different manipulator types, based
on geometric considerations.

Within the following 40 years, numerous concepts and approaches have
been devised, which will be introduced below. First, a basic workspace
classification is presented. Afterwards, different concepts for workspace
analysis are introduced and the most relevant works are discussed.

12
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2.2.1 Basic Considerations

In [35, 36], Gupta summarizes and discusses basic concepts and insights about
robot workspaces in general. The influence of the hand size on reachable
and dexterous workspace (definition in the following section) is shown,
the humanoid robot arm is characterized, approach angle and lengths are
explained. Voids and holes are revised, a method for obtaining the number
of inverse kinematics solutions is introduced and the influence of joint limits
is shown.

Rastegar and Deravi [61] discuss the effect of joint limits on the workspace
and on the sub-workspaces (the different configurations). Without joint limits,
the workspace of all the different configurations would look identical.

2.2.2 Workspace Categories

In general, there are two different perspectives on workspace analysis. In
terms of safety, it is relevant which parts of the surrounding space can be
reached by any point on the robot or its tool. From the application point of
view, it matters which areas can be reached with the tool. This thesis focuses
on the latter.

Among the application-related workspaces, there are different sub categories
[19]:

1. The reachable (or primary) workspace contains all points that the robot
TCP can reach in at least one orientation.

2. The constant orientation (or functional) workspace contains all points
that the robot TCP can reach in a specified orientation.

3. The total orientation workspace contains all points that the robot TCP
can reach in all orientations from a predefined set.

4. The dexterous (or secondary) workspace contains all points that the
robot TCP can reach in all orientations.

5. The orientation workspace contains all orientations that the robot TCP
can reach at one specified location.

Figures 2.9, 2.10 and 2.11 illustrate the different types of application-related
workspaces. A planar 3-DoF robot, where the shoulder and the elbow joint
can move between 0◦ and 90◦ and the wrist joint can rotate freely, serves as
an example.

There are different concepts to obtain the shape of the various types of
workspace. They can be classified into the following five basic categories.
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Figure 2.9: Reachable (green) and dexterous (blue) workspace for an exem-
plary planar manipulator with joint limits in its first and second
joint.

Figure 2.10: Constant orientation workspace for two different orientations
(blue and green) and total orientation workspace (violet) for those
two orientations.
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Figure 2.11: Orientation workspace for one particular end-effector position:
The TCP can sweep along the depicted green angle without
hitting joint limits.

2.2.2.1 Volume Sweeping or Convolution

The idea is to start at the last joint and analyze its movement. If it is a
rotational joint, it is able to position the TCP on a circle. In case it is a
prismatic joint, it can position the TCP on a line. Then the second to last
joint can extrude this one-dimensional accessible region around (or along) its
own axis, making it two-dimensional and so forth. Each joint can sweep the
volume that all successive joints can cover around or along its own axis, as
illustrated in Figure 2.12. Volume sweeping can only compute the accessible
workspace. A discussion on the theory in general can be found in [2].

Figure 2.12: Illustration of volume sweeping for workspace determination:
Each joint sweeps the workspace of all following joints about its
own joint axis.

Hansen et al. [37] use this concept and reduce the sampling point count by
using polar coordinate systems. Furthermore, the concept of approach angles
and approach lengths is discussed: For a given point, the directions and
lengths from which it can be approached are evaluated.

Ceccarelli [22] analytically describes the boundary surface of hyper-rings,
which result from sweeping rings (or hyper-rings) along other rings. This
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concept is used to describe the workspace of general n-DoF open-chain
manipulators with revolute joints.

Chirikjian and Ebert-Uphoff [24, 25] compute the workspace based on con-
volution in Euclidean space. The workspace of each robot segment is ap-
proximated by a density function and the workspaces of all segments are
then convoluted. This reduces the complexity of workspace computation
for a robot with n joints and K discretized states per joint from O(Kn) to
O(log n).

Anderson-Sprecher and Simmons [6] use a convolution-based algorithm to
compute a voxel grid, containing the minimum time it takes for any part of
the robot to reach this grid cell from its current position. The approach can
also be used for only the TCP.

2.2.2.2 Forward Kinematics

The basic idea is to sample all joint angles either equidistantly or randomly
(Monte Carlo method) and compute the forward kinematics for each joint
combination. The result is a three or six-dimensional point cloud (depending
on orientation handling), where each sample lies within the reachable space
of the robot. Now, either a hull around all points is created for visualization,
or the samples are fitted into a voxel grid for further computations, e.g.
much faster but less accurate reachability checks. Figure 2.13 illustrates the
method.

Figure 2.13: Illustration of the workspace determination by forward kine-
matics: The joint space is sampled, the forward kinematics is
computed for each sample and a hull is generated around the
resulting poses.
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Yang and Lee [88] sample the joints and compute forward kinematic solutions
for a slice of the workspace. The slice is then discretized and the outline
pixels are found. From this, the volume of a revolving slice is computed.
The ratio of the workspace volume over the total link lengths is introduced
as a performance index. Cwiakala and Lee [28] improved this approach by
significantly reducing the number of scanned samples.

Rastegar and Fardanesh [63] use Monte Carlo to determine the volume of
a robot workspace, the accessibility and the effect of changes in the robot’s
parameters.

Alciatore and Ng [5] apply the approach to two-dimensional cases. Subse-
quently, line and arc segments are fitted around the found areas and form the
boundaries of the workspace.

Guan and Yokoi [33] perform a reachable space analysis for the humanoid
robot HRP-2 under kinematic constraints. They propose a Monte Carlo
method by randomly sampling applicable joint angles, computing forward
kinematics and storing the results in a voxel database.

Castelli et al. [19] also split the space into voxels. Then they sample each joint
in regular intervals, compute the forward kinematics for each configuration
and count how often each grid cell is reached. Also, the surrounding surface
is computed by applying a filter.

Wang et al. [81] sample the workspace using the Monte Carlo method as well.
They take inequality and equality constraints into consideration.

Cao et al. [17, 18] also take the Monte Carlo approach, the boundary of the
point cloud is then rendered in a commercial CAD software. The main focus
of this approach is simplicity.

Gudla [34] determines the constant orientation workspace of a 6R robot (six
rotatory joints) by sampling the first three axes and determining the last three
axes in order to keep the orientation constant.

The most closely related work to this thesis is done by Zacharias et al. at
DLR [95, 96]. The workspace around the robot is sampled in a cubic grid.
The set of orientations is also discretized. The forward kinematics is then
computed for random joint positions and each result is associated with its
closest match from the sampling. It is then counted for each position, from
how many approaching directions it was reached. The result determines the
color of a sphere that is drawn at that location (called reachability sphere).
The resulting visualization is called reachability sphere map or capability
map and is intended to depict the robot workspace in an intuitive manner. In
order to encapsulate even more information, different shapes were used, e.g.
a cone with the cap rotated into the direction from which the most solutions
were accessible. In [97, 98, 100], the capability map is used for grasp planning
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and positioning of mobile robots. In [99], it is used in order to evaluate how
well a haptic interface covers the reachable workspace of human arms.

2.2.2.3 Inverse Kinematics

Here, it is not the configuration space but the Cartesian space that is sampled,
as illustrated in Figure 2.14. In most works, it is divided into a voxel grid
and each cell is tested for the existence of solutions to the inverse kinematics
problem. An advantage compared to the forward kinematics method is that
the result is a well-structured grid with uniform density. It can easily be
rendered using the Marching Cubes algorithm for instance. Furthermore,
the orientation can be considered for obtaining the functional workspace.
However, it is considerably slower, since the inverse kinematics usually takes
longer to compute.

Figure 2.14: Illustration of the workspace determination by inverse kinemat-
ics: The configuration space is sampled and each pose is tested
for solvable inverse kinematics.

Cavusoglu et al. [20] compare different robotic manipulators for the medical
application of a teleoperated suturing task. Predefined trajectories are run
through the inverse kinematics of all manipulators and it is checked if the
desired motions can be achieved. They also account for the (often neglected)
problem of continuity. If all poses on a trajectory are reachable, it is still
possible that the robot needs to reconfigure between two consecutive poses.

Bonev and Ryu [11] investigate the orientation workspace of a parallel robot.
The result is displayed as a boundary surface of Euler angles in a cylindrical
coordinate system.
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Petitt and Miller [58] map orientations into RGB color space via Euler angles
in order to visualize the workspace including orientation information. The
dexterity at a point is measured by the number of reachable orientations at
that point. This idea was later also introduced by Zacharias.

Attamimi et al. [7] split the workspace into voxels and test if an inverse
kinematics solution exists for each voxel. Afterwards, they compute a distance
map (distance of each voxel to an edge voxel) and classify the reachability of
a point based on this value. The map is used in connection with other maps,
including object-specific maps in order to optimize manipulation.

Lohmann et al. [52] compute the workspace borders within a human body
for minimally invasive robotic surgery. Here, the trocar reduces the dimen-
sionality of the problem. The workspace is split into slices and each slice is
sampled along its boundary. The algorithm is very fast and can visualize the
workspace for a certain trocar within a fraction of a second. It is intended to
assess the suitability of a trocar position.

This work was further pursued by Hutzl et al. [42]. Here, the trocar point
position is autonomously optimized based on tracked and annotated oper-
ations. Grid points within a volume that has to be reachable are tested for
reachability by checking if the inverse kinematics problem has a solution. The
minimization criterion for the trocar point is the ratio of unreachable points
to all points within the test volume.

Borchard et al. [12] also perform a workspace analysis for laparoscopic in-
struments. Tracked poses of surgical trajectories are tested for feasibility by
computing the inverse kinematics solution for each recorded pose. The ratio
of reachable to all poses is taken as a quality criterion. Collisions between the
two instruments are also considered.

Porges et al. [59] speed up the generation of the capability map filling the
voxel grid by sampling random forward kinematics until the probability to
land in a voxel that was already covered becomes so high that it is faster to
test the remaining voxels using inverse kinematics.

Vahrenkamp et al. [79] voxelize the workspace in six dimensions and assign
a manipulability index. This reachability map is then inverted in order to
generate an object-centered map that describes how well the robot can reach
the object from different positions.

2.2.2.4 Analytical and Geometrical Boundary Determination

Here, slightly different approaches are summarized as one category, since
they cannot be separated clearly in most cases. As explained in section 2.2,
the workspace is bounded by surfaces at which either a joint limit is hit or the
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robot is in a singular configuration. Geometrical, numerical and analytical
methods have been devised in order to trace and visualize these surfaces. It
is hard to make general statements, since the specific approaches vary largely
from a conceptual point of view.

Kumar and Waldron [48] as well as Selfridge [67] determine the outer hull of
the workspace of a robot with rotatory joints using different algorithms. Both
use the fact that, in order to maximize the extension into a certain direction,
all joint axes have to intersect one line in this direction.

Tsai and Soni [77] compute an arbitrary slice of the workspace of an n-DoF
robot with revolute joints. A boundary point is searched from which the
rim is traced using a linear optimization technique and incremental displace-
ments.

Spanos and Kohli [45, 71] propose equations for describing the workspace
of wrist-partitioned robots and present a method for workspace generation
based on polynomial displacement equations and their discriminants. Ana-
lytical expressions for the boundary surfaces are obtained.

Borrel and Liegeois [13] show that the joint space can be decomposed into so-
called aspects. The aspect is equivalent to what is called configuration index in
this thesis. The inverse kinematics solution (for fixed null-space parameters)
is unique within each aspect and the aspects are separated by hyper surfaces
in which all m-order minors of the Jacobian are non-zero, where m is the
dimensionality of the workspace. It is shown that the workspace boundaries
are part of the aspect boundaries (where in this work the workspace boundary
is understood as furthest reachable point in each direction). Aspects are
visualized in a graph. The workspace is rendered by transforming the aspect
boundaries from joint space into Cartesian space.

Wu and Valencia [86] assess the feasibility of trajectories within the workspace
of a wrist-partitioned, 6R manipulator. First, the space for all possible wrist
positions is obtained geometrically and it is tested whether the wrist trajectory
lies within this space. It is then checked whether the last three joints can reach
all desired orientations along the trajectory.

Tsai [76] geometrically traces the workspace borders using screw theory. The
constant orientation workspace is also considered.

Cimino and Pennock [27] as well as Lia and Menq [51] compute analyti-
cal borders of the dexterous workspace of simple, wrist-partitioned robot
manipulators.

Rastegar and Deravi [62] consider a robotic arm with a fixed end-effector
pose as a closed kinematic chain and determine the number of possible
configurations by finding the roots of a polynomial displacement equation.
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Oblak and Kohli [56] investigate the surfaces in a workspace where the
Jacobian matrix is singular or where joints reach their limits. They distinguish
between inner and outer surfaces and check whether a surface is crossable or
non-crossable. They apply the theory on simple three-jointed robots.

Yang et al. [89] mathematically separate a 6R wrist-separated robot arm at
its wrist, analyze regional structure and wrist separately and reassemble
the results via vector field analysis. Thus, the boundaries of the reachable
workspace can be drawn analytically.

Kwon and Youm [49] devise an algorithm that allows drawing the outline for
the workspace of a robot with an arbitrary number of links. However, it only
works in a plane and assumes that the base can rotate that plane.

Lück and Lee [53, 54, 55] investigate the topology of self motion manifolds
for redundant robots. Based on this, a discretization method for workspace
analysis is proposed. They introduce the concept of a joint limit as a semi-
singularity because it restricts motion along an axis in only one direction.

Abdel-Malek et al. [3] use the sweeping approach. Furthermore, joint limits
are considered and a rank deficiency condition is imposed to determine
singular sets. In [1], they compare a numerical continuation method and an
analytical boundary parameterization, both based on rank deficiency, and
use insights gained from one on the other.

Rauchfuss et al. [64] present methods for computing the accessible orienta-
tions around a point (service sphere or service angle) analytically for a 6-DoF
arm.

Snyman et al. [70] search for a point inside the workspace and radiate out-
wards into multiple directions on a plane until the limit is hit (which is
implemented as an optimization problem).

Wang and Chirikjian [82] describe workspace generation of hyper redundant
robots as a diffusion process, which can be solved as a partial differential
equation on the motion group SE(N). Furthermore, a workspace density
approach to the inverse kinematic problem is proposed.

Cebula and Zsombor-Murray [21] formulate the workspace equation for
arbitrary wrist-partitioned robots by using Study Kinematic Mapping.

Bohigas et al. [10] use a linear relaxation method in order to find all boundary
points where a specially formulated Jacobian becomes rank-deficient. Joint
limits can be handled and the type of singularity is classified (outer boundary
barriers, interior barriers or traversable singularities). Depending on the for-
mulation of the problem, constant orientation workspace as well as accessible
and reachable workspaces can be computed.
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Urbanic and Gulda [78] compute the constant orientation workspace of a 6R
robot geometrically. However, they determine only one slice of the workspace
and revolve the 2D boundary around the first joint. This entails that the
checked orientation is not globally constant but it also rotates with the first
joint. They use boolean operations to compute the workspaces for multiple
orientations and for finding common workspaces of multiple robots.

2.2.2.5 Learning-based Approaches

Two publications have been found in which the authors pursue a learning-
based approach. Advantageous are here the general applicability of the
concepts. However, the price is a somewhat inaccurate solution.

Stulp et al. [72] combine analytic models, imitation and learning in order to
obtain a model of the reachability for mobile manipulation tasks. This results
in good heuristics with few data.

Jamone et al. [43] use a bio-inspired learning approach. The humanoid robot
iCub serves as use case and its head and eyes are considered part of the
kinematic chain to the hand. Motor babbling lets the robot learn a model
of its forward kinematics. The model is inversed and a large set of inverse
kinematics queries is computed and serves as Reachable Space Map. It can
then be predicted whether a point within the robot’s gaze is reachable and if
so, how well.

2.3 Manipulability and Dexterity

So far, the primary concern was to determine the borders of the reachable
space. However, it is furthermore of interest to assess the quality of a reach-
able pose, which is referred to as manipulability or dexterity measure. This
measure evaluates how flexible a robot is at or around a given pose. Many
works compute that index from the Jacobian which describes the connec-
tion between the configuration space and the Cartesian space. The idea is
that if the robot needs to perform large joint motions in order to move the
end-effector by a small distance, the pose is rather inflexible. Furthermore,
the Jacobian becomes singular near the workspace borders which makes it
well-suited as a basis for measuring manipulability. From a mechanical point
of view however, large joint motion for small end-effector motion entails that
a large force on the end-effector only requires small joint torque, which can
be desired as well. Different scenarios require different measures. The most
popular ones are introduced within this section.
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Yoshikawa [92, 93] proposes w =
√

det(J(θ)JT (θ)) as a measure of manipu-
lability, where J(θ) is the Jacobian matrix at a specific point θ in joint space.
It corresponds to the volume of an ellipsoid that is formed by a sphere in
joint space, projected into Cartesian space. If the robot is in a singular po-
sition, w becomes zero. It is called the manipulability ellipsoid. In [94],
the measure is split into translational and rotational manipulability. In [91],
a dynamic manipulability measure is introduced, which is computed by

wd =
√

det(J(MTM)JT ), where M represents the mass matrix.

Yang and Lai [87] introduce the concept of service angle and service region.
A point within the workspace of a robot is considered. Around that point,
a sphere is constructed with the radius of the robot’s hand size. For every
angle from which the robot can place the TCP at the sphere center, a point is
drawn where the wrist is located on the sphere. The sphere is called service
sphere, such a point is called a service point and a connected set of points is
called a service region. A similar concept is used within this thesis.

Togai [73] propose to use M = σmax/σmin, where σmax and σmin are maximum
and minimum absolute singular values of the Jacobian.

Tsai [76] formulates the manipulability depending on the distance to the joint
limits.

Park and Brockett [57] introduce a coordinate-invariant dexterity measure
that is based on the mapping from joint space to SE(3).

Konietschke et al. [46] propose the reciprocal of the maximum joint velocity
as a measure for manipulability. Furthermore, a positioning accuracy index
is introduced, accounting for joint encoder steps.

Abdel-Malek et al. [4] place a trajectory within a robot’s workspace so that
every point can be reached with maximum dexterity, i.e. in a maximum
number of orientations. The distance to the workspace boundary can also be
specified. They furthermore extend the Jacobian matrix to account for joint
limits.

Trivino and Martin [75] introduce a fuzzy measure in order to assess the
manipulability. In contrast to the classical Jacobian approach, joint limits are
taken into account.

Choi and Ryu [26] suggest a power manipulability index. It describes how
much power can be generated along an arbitrary direction.

Vahrenkamp et al. [80] propose an extended manipulability measure which
includes joint limits, obstacles and an augmented Jacobian measure.

Tondu and Bertrand [74] propose to use a zonotope-based manipulability
index. It results from transforming a hyperrectangle in joint space, limited

23



2 Fundamentals & State of the Art

by the joint speed limits, into Cartesian space using the Jacobian. From this,
the maximum possible TCP velocity in each direction can be inferred. The
volume of the zonotope can also be used as manipulability measure.

2.4 Contributions of this Thesis

Several weaknesses within state of the art workspace exploration techniques
and dexterity measures have been identified. These will be pointed out in the
following and the concepts of how they are addressed within this thesis will
be introduced.

2.4.1 Intuitive Workspace Visualization

A major problem of workspaces per se is the fact that they are from a mathe-
matical point of view boundaries of six-dimensional hypervolumes, which
is impossible to visualize for a human eye in an intuitive manner. Many or
even most works bypass this problem by only regarding the reachable or
dexterous workspace of the robot (at least one or all orientations reachable)
and disregard the influence of a specific target orientation. Within this thesis,
a means will be presented by which all six dimensions are accounted for,
while keeping the cognitive load on the operator within acceptable limits.

2.4.2 On-the-Fly Generation and Rendering of Workspace

Boundaries

To the author’s knowledge, all other works about workspace computation
for robotic manipulators work offline, which means that the resulting visu-
alization is a static map. The presented method is the first to be intended
and suited for online computation. Today’s hardware is powerful enough
to tackle many problems on-the-fly, i.e. without precomputation and fast
enough so that there is virtually no waiting time for a human user. Situation-
specific workspace limits can be visualized while someone operates the robot.
Tool changes can be accounted for without the need of having to precompute
the whole reachability database for every new tool. As hardware becomes
more and more powerful, the resolution, the frame rate and the number of
considered influences can be increased.
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2.4.3 Handling of Self-Overlaps

Self-intersections or self-overlaps of a robot’s workspace pose a problem that
is very rarely considered. The issue is depicted in Figure 2.15. A planar serial
manipulator with two joints and joint limits can be seen. The blue-rimmed
area around the robot contains all reachable points. The striped region can be
accessed both from the red and from the green zone. However, it can only be
left into the zone from where the robot came (here the green zone).

Figure 2.15: Illustration of workspace self-overlaps on an exemplary two-
joint robot with joint limits: The striped region can be accessed
from either the red or the green side but it cannot be traversed.
Nobody canna crass it. Is only oo can understan it crass it.

The problem is that the boundaries of a region lie within another section of
the region itself. Whether a certain boundary limits the movement of the
robot or not depends on the current robot position. Hence, it is not obvious
whether a wall is currently relevant. For the depicted, two-dimensional
case, the situation may be easily graspable. With a six (let alone seven) axis
manipulator, it becomes much more complicated.

Handling this problem in a static map of the workspace seems impossible
since the boundaries in question can either be shown or not (see Figure 2.16).
It cannot be seen whether a wall is relevant for the current robot position.

This problem will be tackled within the scope of this thesis. The permanently
updating live view allows to draw boundaries depending on the current
pose.
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Figure 2.16: Possibilities of dealing with self-overlaps in a static workspace
map: Inner boundaries can be drawn or not but whether they are
relevant for the current pose cannot be determined.

2.4.4 Margin as Dexterity Measure

Several different dexterity measures have been proposed, most of them assign
a scalar value to a robot pose, providing a quality criterion that can serve as a
benchmark for comparing or optimizing positions within the workspace.

Within the thesis at hand, the actual margin of motion around the current pose
is proposed to be interpreted as a measure of dexterity and manipulability.
It can be much more meaningful than a metric that is purely based on the
local Jacobian, since the Jacobian constitutes the differential at a single point
and therefore linearizes the problem. Furthermore, if the robot has no unique
solution to the inverse kinematics problem (as is the case for redundant
manipulators), the Jacobian is not uniquely defined for a given pose, since
it depends on the according joint angles. Many workspace determination
techniques that rely on the Jacobian can also not be applied for this reason.
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Visualization Concepts

In this chapter, the main ideas and concepts of this thesis are discussed in
detail. First, closer insight into the computation of the inverse kinematics
solution is given. Afterwards, the distinction between generally and directly
accessible workspace is made. The different visualization techniques that
form the core of this thesis are then presented. Finally, the handling of the
null-space parameter is discussed.

3.1 Inverse Kinematics Computation

As stated in section 2.1.4, the inverse kinematics problem means that a pose
in Cartesian space is given and it is required to find according joint angles.
Within the scope of this thesis, we will distinguish between a particular and
the general solution to this problem. A particular solution means that a pose,
the configuration index and a feasible null-space parameter are given. The
general solution means that only pose and configuration index are given and
we are interested in finding the set of all null-space parameters that result in
feasible joint angles for the robot.

In the following, a concise and graspable overview of the underlying algo-
rithms for both particular and general solution of the inverse kinematics
problem is presented, as all proposed visualization concepts base upon them.
Particularly the connection between joint limits and blocked intervals of the
null-space parameter is illustrated.

3.1.1 Particular Solution

A particular solution is comparatively simple to compute. The computation is
done within the robot’s base coordinate system. In the following, the term lxy
will denote the distance between two points ~px and ~py. The indices stand for
b – base, s – shoulder, e – elbow, w – wrist, f – flange, c – center of the elbow
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~pb

~ps

~pe

~pw

Rf

~pc

~vcos

~vsin
η

~pf

Figure 3.1: Sketch for computing a particular inverse kinematics solution:
Shoulder, elbow and wrist form a triangle. As the triangle rotates
on a connecting line lsw from shoulder to wrist, the elbow travels
on a circle (dashed line) with radius lce. This circle is centered
at ~pc and spanned by ~vcos and ~vsin, which can be obtained from
shoulder and wrist position. The null-space parameter η describes
the desired elbow position on the circle.
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3.1 Inverse Kinematics Computation

circle. Note that lbs, lse, lew and lwf are determined by the robot construction.
Figure 3.1 illustrates the geometric considerations.

At first, position ~pf and orientation Rf of the flange have to be obtained from
a given TCP position and orientation (~ptcp and Rtcp), based on the transfor-
mation of the tool (~vtool for translation and Rtool for orientation) that can be
obtained from its CAD data for instance:

Rf = RT
toolRtcp (3.1)

~pf = ~ptcp −Rf~ptool . (3.2)

Now the wrist position can be obtained by

~pw = ~pf +Rf





0
0

−lwf



 , (3.3)

while the shoulder position is simply given by

~ps =





0
0
lbs



 . (3.4)

The distance between the shoulder ~ps and the center ~pc of the circle on which
the elbow can rotate as well as the radius lce of this circle can be computed
by

lsc =
l2se
lsw

(3.5)

lce =
√

l2se − l2sc , (3.6)

so that

~pc = ~ps +
~pw − ~ps
lsw

lsc . (3.7)

The vectors that span the elbow circle can be obtained by

~vsin = lce
~ez × (~pw − ~ps)

‖~ez × (~pw − ~ps)‖
(3.8)

~vcos = lce
(~pw − ~ps)× ~vsin
‖(~pw − ~ps)× ~vsin‖

. (3.9)

The actual position of the elbow is then determined by the null-space param-
eter:

~pe = ~pc + cos(η)~vcos + sin(η)~vsin . (3.10)
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Once the positions of all joints are known, we can directly compute the hinge
joint angles q2, q4 and q6 (shoulder, elbow, wrist) as angles between the vectors
along the neighboring links, as illustrated in Figure 3.2. This is exemplarily
done for the elbow joint:

q4 = cos−1 (~pe − ~ps) · (~pw − ~pe)

lselew
. (3.11)

For the axial joints q1, q3, q5 and q7 (base, upper arm, lower arm, flange), we
need the rotation axes (~a) of the neighboring hinge joints and the axes which
are perpendicular to that and to the connecting link (~a′). We will exemplarily
compute the angle q3 of the upper arm joint (see Figure 3.2) as follows:

~as =
(~pe − ~ps)× (~pb − ~ps)

‖(~pe − ~ps)× (~pb − ~ps)‖
(3.12)

~a′s = ~as ×
~pe − ~ps
lse

(3.13)

q3 = atan2(~ae · ~a
′

s,~ae · ~as) . (3.14)

~as

~a′s

~ae

~ae

q3

q4

Figure 3.2: Sketch for the computation of q3 and q4

Note that with this algorithm, all hinge joints will have positive values. That
corresponds to the first out of eight configuration indices. To obtain a different
configuration, any hinge joint can be flipped to its negative value and the
neighboring axial joints need to be rotated by 180◦. The end-effector will then
assume the identical pose.
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3.1 Inverse Kinematics Computation

3.1.2 General Solution

The general solution is much more complex and cannot be presented in full
detail but the basic idea will be covered. In order to determine, which joint
blocks which intervals on the null-space parameter, we first investigate the
first three joints (base, shoulder and upper arm).

For the values of these joints, only the target position for the wrist ~pw is
relevant. This can easily be computed from the target TCP position and
orientation (see equation (3.3)). In order to highlight the influence of each of
the joints, they are colored in red, yellow and green throughout this section.

A sphere is constructed around the shoulder of the robot ~ps as seen in Figure
3.3. Elbow ~pe and wrist ~pw are then projected onto this sphere (~p ◦

e and ~p ◦

w ). If
the joints had no limits, ~pe and ~p ◦

e could travel on a circle as the null-space
parameter varies while ~pw stays in position. The path of ~p ◦

e on its circle on
the surface of the sphere is shown as a dashed line.

The following restrictions are imposed by the respective joints (see Figure
3.4):

• The base joint renders a spherical lune Q1 inaccessible for the projected
elbow, as depicted in Figure 3.4. If ~p ◦

e lies within the slice, the base joint
is outside of its limits. For the LBR IV, it is within an azimuth above
+170◦ or below -170◦.

• Equally, the shoulder joint blocks a spherical sector around the base
Q2. The LBR IV cannot exceed a polar angle of 120◦ with its upper arm,
hence the projected elbow cannot lie within the yellow region.

• The upper arm joint is a bit more intricate. It restricts the angle Q3

between an arc from the north pole of the sphere ~z ◦

+ to the projected
elbow ~p ◦

e and an arc from the projected elbow to the projected wrist ~p ◦

w

(blue arcs in 3.4). For the LBR IV, this angle needs to be above 10◦.

Depending on the configuration index, Q1 can be located on the opposite side
of the sphere and Q3 may have to be constructed using the south instead of
the north pole (so the adjacent angle of the one depicted in Figure 3.4 has to
be above 10◦).

Figure 3.5 shows how these restrictions form inaccessible sectors on the circle
of projected elbow positions (and hence on the circle of elbow positions).
For base and shoulder joint, these sectors lie within the intersections of the
projected elbow and the inaccessible regions Q1 and Q2. Within the green
sector, Q3 is below 10◦.
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~pw

~pe

~ps

~p ◦

w

~p ◦

e

Figure 3.3: Sketch for computing the general inverse kinematics solution:
Blocked null-space parameter intervals for the first three joints (red
– base, yellow – shoulder and green – upper arm) are obtained with
the help of spherical geometry on a sphere around the shoulder
(blue).
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Q1

Q3

Q2

~z ◦

+

Figure 3.4: Sketch for computing the general inverse kinematics solution:
Blocked areas due to different joints are depicted. The upper arm
cannot move into the red spherical lune Q1 because of the base
joint or into the yellow cap Q2 because of the shoulder joint. The
green angle Q3 has a lower limit due to the upper arm joint.
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Figure 3.5: Sketch for computing the general inverse kinematics solution: The
restrictions shown in Figure 3.4 block different intervals for the
elbow movement on its circle. The blocked intervals are depicted
by the colored circle sectors and red dotted lines on the circle.
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As can be inferred, the base joint can block zero, one or two sectors on the
elbow circle. If north or south pole lie within the circle, exactly one sector
is blocked (“within” meaning the side of the circle that contains ~p ◦

w ). The
shoulder joint can block zero or one sector. The upper arm joint blocks zero,
one or two sectors of the elbow circle. If the south pole lies within the circle,
Q3 is always above 90◦ and no sector is blocked by the upper arm joint. If
neither south nor north pole are within the circle, one sector is blocked. If the
north pole is within, two sectors are blocked. Depending on the configuration,
it may be the other way around (north and south pole swap roles). Note that
there is always at least one sector of the circle blocked and the elbow can
never rotate freely.

So far, only the first three joints were taken into account. The considerations
for the last three joints (lower arm, wrist and flange) are mathematically
identical, since the robot’s kinematic structure is symmetrical with respect
to the elbow joint. The value of the elbow joint itself does not depend on
the null-space parameter, only on the distance between shoulder and wrist,
which is constant if the target pose is fix. Hence, the elbow joint can render the
target pose completely unreachable, independent of the null-space parameter,
if the target is too close. Otherwise, the elbow joint does not block any interval
on the elbow circle.

3.2 Generally and Directly Accessible

Workspace

In order to tackle the problem of self-overlaps that was introduced in sec-
tion 2.4.3 and other potential internal barriers (e.g. if singularities are to be
avoided), we will distinguish between two workspace types:

• The generally accessible workspace, which contains all poses that the
TCP can assume in general

• The directly accessible workspace, which contains only poses that can be
reached from the current pose in a straight motion (i.e. pure translation
along one line or pure rotation about one axis).

Figure 3.6 illustrates the difference between the two workspaces. A two-joint
parallel robot with joint limits serves as example.

35



3 Proposed Workspace Visualization Concepts

Figure 3.6: Comparison of the generally accessible workspace (left) and the
directly accessible workspace (right) of an exemplary two-joint
robot with joint limits: A target (blue X) can seem very close in the
first visualization but it requires a large reconfiguration, which is
only indicated by the second visualization.

For an operator, the directly accessible workspace can be much more relevant,
since a large reconfiguration movement may be required in order to reach
certain areas, which may not always be possible. For instance, the robot in
Figure 3.6 would have to perform an overhead motion of the whole arm in
order to reach the blue target.

However, sometimes it needs to be known whether a pose can be accessed at
all, regardless what type of motion is required to get there. Since both pieces
of information may be important, both concepts are pursued in this thesis.

3.3 Visualization

It is the aim to visualize the boundary surfaces around the reachable poses of
a manipulator, which is a six-dimensional set. However, such a boundary is
five-dimensional and (to the author’s best knowledge) impossible to display
in an intuitive way. This is why the problem is split into two parts: the display
of translation boundaries and the display of rotation boundaries where the
TCP acts as pivot point. For the visualization of the limits in one of the two
domains, the current parameters in the other domain are kept constant.
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3.3 Visualization

3.3.1 Translation Boundaries

In general, the display of translatory motion limits in three-dimensional
space is comparatively easy, it is simply a two-dimensional hull that can be
rendered for instance as a triangle mesh.

For the visualization of the translation boundaries, it is reasonable to dis-
tinguish between generally and directly accessible workspace, since either
concept can be applicable, depending on the situation.

The generally accessible translatory workspace is conceptually the same as
the constant orientation workspace for the current orientation. A conceptual
rendering can be seen in Figure 3.7. A rendering for the directly accessible
translatory workspace is depicted in Figure 3.8.

Figure 3.7: Translation boundaries of the generally accessible workspace of
the LBR IV for the given orientation (cut open for visibility).

One concern that has to be taken care of is the fact that the view of the task
at hand must not be obstructed by the rendered surface. This will be done
by working with transparency and clipping. Further details are covered in
chapter 4.
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Figure 3.8: Translation boundaries of the directly accessible workspace of the
LBR IV for the given orientation, up to a distance of 1 m around
the flange center.

3.3.2 Rotation Boundaries

The limits of the directly accessible orientation workspace are more difficult
to display. Several approaches were considered within the scope of this thesis,
they will be presented in the following.

3.3.2.1 Boundary Surfaces in Orientation Domains

This concept displays the generally accessible orientation workspace for a
fixed TCP position. The set of all orientations in three-dimensional space is
itself three-dimensional, so it can be mapped to a three-dimensional chart.
A boundary surface between all accessible and inaccessible orientations can
be rendered within this chart. Four different orientation representations are
considered. All use the LBR IV structure for the exemplary flange position
(30 cm, 15 cm, 10 cm) in base coordinates.

The first representation is based on the classical yaw (Ψ)/pitch (Θ)/roll (Φ)
convention, which is taken as one representative of the twelve Euler conven-
tions. Figure 3.12 shows the resulting surface. Although the display contains
all relevant information, it is very hard to interpret: Doing the mapping from
yaw/pitch/roll to the corresponding orientation in the head for only one
instance takes some seconds and often the help of three fingers. A complete
chart is presumably ungraspable, especially if it is intended to be assisting
instead of requiring full focus.
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Figure 3.9: Exemplary orientation boundary surfaces in Euler angles. The red
side is blocked, the blue side is reachable.

Using a spherical coordinate system instead of a Cartesian one and mapping
azimuth, altitude and radius to yaw, pitch and roll (see Figure 3.10) could
prove to be a little more intuitive since azimuth and yaw as well as altitude
and pitch are similar. Only the mapping between axis length and roll angle
has to be done in the head. This representation might be comprehensible with
focus and practice but it is still not considered to be intuitively understandable
by the author.

The next representation uses the rotation axis and angle convention, where
the rotation angle is encoded linearly in the axis length. A length of 1 is
mapped to a 180◦ rotation about the axis. The point (0, 0, 0) in the chart
corresponds to no rotation, (0.5, 0, 0) corresponds to 90◦ rotation about the
x-axis and so on. The result can be seen in Figure 3.11.

In the last representation, the three axes represent three components qx, qy, qz
of quaternions that correspond to tool orientations. The fourth component
can be inferred by qw =

√

1− q2x − q2y − q2z since orientation quaternions must
have length 1. Figure 3.9 shows the resulting chart.
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Figure 3.10: Exemplary orientation boundary surface in Euler angles, shown
in a spherical coordinate system where azimuth corresponds to
yaw, altitude to pitch and radius to roll.

Figure 3.11: Exemplary orientation boundary surface in rotation axis angle
convention.
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Figure 3.12: Exemplary orientation boundary surface where orientations are
represented by three quaternion components. The fourth compo-
nent can be inferred.

Axis angle representation and three quaternion components look very similar.
This is due to the fact that the vector (qx, qy, qz) of a quaternion already points
along the rotation axis, only its length is not proportional to the rotation angle
θ but to sin(θ/2). Both concepts are considered to be equally hard graspable
as the spherical Euler angles map above.

Although these kinds of chart may be the only way of visualizing the gen-
erally accessible orientation workspace, the idea of a bounding surface in
an orientation domain was not pursued further due to its incomprehensive-
ness.

3.3.2.2 Sphere of Colored Rotation Axis Tips

Visualizing only the directly accessible orientation workspace requires less
information to be shown, which can help to improve the perspicuity. The
devised concept employs a sphere of colored rotation axis tips. Consider
a sphere with radius r, centered at the TCP. Each point ~s on the sphere
represents a rotation axis through the TCP and ~s. The color of the point will
be determined by the angle that the robot is capable of rotating the TCP
about this axis. An exemplary result of this procedure can be seen in Figure
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3.13. However, the resulting image was still hard to understand and it was
simplified further.

Figure 3.13: Exemplary sphere of colored rotation axis tips: In its current
position, the robot flange could rotate 80◦ about the drawn axis
(black arrow), which determines the tip color. The whole sphere
comprises of colored rotation axis tips.

3.3.2.3 Tilt Sphere

For general tool shapes (or load shapes) with no dominant axes, the sphere of
colored rotation axis tips might be the best option.

However, most tools do have a dominant axis. For the tilt sphere, the orienta-
tion is split into roll component (about the dominant axis) and tilt component
(about all axes that are perpendicular to the roll axis). The first piece of in-
formation – how far can the tool be rolled clockwise and counterclockwise
– simply consists of two scalars, which are easy to display, for instance by a
little gauge. For the second part, we create another sphere around the TCP.
Now we tilt the tool as far as kinematically possible about an axis through
the TCP, which has to be perpendicular to the dominant tool axis. Where the
dominant tool axis intersects the sphere after tilting, we draw a point. If we
do this for all axes that are perpendicular to the dominant tool axis, we end
up with a line on the sphere, that borders the orientational workspace in an
understandable way, as illustrated in Figure 3.14.

The downside is that a lot of data is lost again. The information that is left,
corresponds to the information that would be shown within one colored
great circle and two dots on the sphere of colored orientation axis tips, since
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Figure 3.14: Tilt sphere for the depicted LBR IV posture with a 15 cm long
tool (black line): The thick purple line shows the limit of tilting
movements around the TCP in all directions, while both the TCP
position and the tool roll angle are kept constant.

only rotation limits about axes that are perpendicular to the dominant tool
axis and the two roll limits are considered. However, the brain does a great
job at reconstructing the big picture from multiple slices of it and since the
sphere updates instantly when the tool translates and rotates, the viewer can
gradually form the complete image.

3.3.3 Total Orientation Workspace

The total orientation workspace can be seen as a generally accessible workspace
that forms a hybrid between translation and orientation workspace. It is based
on multiple constant orientation workspaces that have to be generated for
several representative tool orientations for a specific task. Afterwards, the
intersection of all results is computed and the outcome will be the boundary
around the set of points that is reachable in all desired orientations, see Figure
3.15.
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Figure 3.15: Generally accessible workspace of the LBR IV for 24 different
orientations. Each point within the depicted volume is reachable
in all orientations.

3.4 Redundancy Handling

As explained in section 2.2.2.3, the approach for optimizing the elbow position
within the scope of this thesis is the gradient projection method. A local
gradient descent on a cost function is chosen because the global path (i.e. the
future trajectory) is assumed to be unknown to the system.

3.4.1 Cost Function Combining

A novel cost function that is based on the current pose and elbow position
is designed to avoid joint limits and singularities. The gradient of this cost
function is projected onto the null-space parameter and the parameter is
varied accordingly until a local minimum is reached.

In most cases, the domain of a cost function includes admissible and inad-
missible regions. In our case, the joint values within the limits are admissible
and values beyond the limits are not admissible. A common approach to
cost function design is to make its value reach infinity before the admissible
region is left. The partial cost functions for all criteria are added and as
a parameter reaches the limit of the admissible region, the combined cost
function approaches infinity.
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Based on these considerations, Zghal et al. [101] propose the following per-
formance criterion

HJ =
7

∑

i=1

(θMax,i − θMin,i)

(θMax,i − θi)(θi − θMin,i)
, (3.15)

where θi is the angle of the ith joint which has to be between θMin,i and θMax,i.
An exemplary plot for θMin,i = −120◦ and θMax,i = 120◦ can be seen in Figure
3.16.
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Figure 3.16: Exemplary cost function for one joint according to Zghal et al.
[101]

However, this approach has a major drawback: Once the infinite barriers are
crossed (which can happen numerically), the cost function becomes undefined
or returns impractical values, which can entail an unstable behavior near the
barriers.

Within this work, this limitation is overcome by modifying the cost function
properties as follows: Each partial cost function ci is designed to be negative
in admissible regions and positive in inadmissible regions. The combined
cost C is then not computed by the sum of the partial functions but by

C =



















1
∑

i

1

ci

, if ci < 0 ∀ i

√

∑

i:ci>0

c2i , otherwise.
(3.16)

The function is plotted for C(c1, c2) in Figure 3.17. If all partial costs ci are
negative, the merged cost C is the reciprocal of the sum over all ci’s reciprocals.
Otherwise, it is the Pythagorean sum of all positive partial costs. This way,
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the combined cost function is positive (inadmissible) if at least one partial cost
function is positive and negative (admissible) if all partial costs are negative.
It is also steady and monotonically increasing with respect to each partial
value (apart from being discontinuously differentiable where all ci = 0). The
partial cost functions are designed in a way so that they cross zero when a
joint reaches its limit or approaches a singularity.

Figure 3.17: Merged cost function from two partial costs. If either c1 or c2
become inadmissible (> 0), C crosses 0 as well.

The benefit of this approach to cost function design is the fact that the transi-
tion from admissible to inadmissible regions is numerically much easier to
find when it is a zero crossing, as opposed to a point where the cost reaches
infinity and is undefined or meaningless outside of that limit. This is for
instance used to obtain smooth surfaces using the marching cubes algorithm,
as described in section 4.2.

3.4.2 Partial Cost Functions

As stated in section 2.1.3, a singularity is reached if two joint axes become
coaxial, which is the case when the hinge joints are stretched. The alignment
of the first and the last axis does not depend on the value of the null-space
parameter, so it does not have to be included in the cost function.

The chosen formulae for the partial cost functions are of the form

c(q) = k0 cos

(

k1
|q|+ k2

+ k3

)

. (3.17)
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The parameters are chosen so that, for joint limit functions, c(0) = −1,
c′(0) = 0, c(±180◦) = 1, c′(±180◦) = 0 and c(±170◦) = 0 for axial joints and
c(±120◦) = 0 for hinge joints. For the singularity avoidance, the boundary
conditions are c(0) = 1, c′(0) = 0, c(±180◦) = −1, c′(±5◦) = 0.

The resulting values are

caxial, limit : k0 = 1, k1 = −0.6554, k2 = −3.3379, k3 = −0.1963

chinge, limit : k0 = 1, k1 = −19.7392, k2 = −6.2832, k3 = −3.1416

chinge, sing. : k0 = −1, k1 = −0.2988, k2 = 0.0924, k3 = 3.2340

The cost functions are plotted in Figures 3.18, 3.19 and 3.20.

−170◦ 0◦ 170◦
−1

−0.5

0

0.5

1

qaxial, limit

c a
x

ia
l,

li
m

it

Figure 3.18: Partial cost function to avoid the limits of the axial joints (±170◦

for the LBR IV).

−120◦ 0◦ 120◦
−1

−0.5

0

0.5

1

qhinge, limit

c h
in

g
e,

li
m

it

Figure 3.19: Partial cost function to avoid the limits of the hinge joints (±120◦

for the LBR IV)
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Figure 3.20: Partial cost function to avoid singularities, applied to hinge joints,
set to ±5◦

In order to prevent large reconfiguration motions, an additional cost was
added for each joint:

cnorecfg = − cos

(

q − qold

2

)

, (3.18)

where qold is the previous joint position and q the current one. This partial
cost makes a joint movement of over 180◦ in one step unfeasible.

More partial cost functions can easily be added. For instance, the elbow can
be kept upwards by trend by including

celbow = cos(η)− 2 (3.19)

into the combined cost function. Keeping the elbow upwards during op-
eration causes the robot to be less obstructive and both sides can easier be
accessed by personnel, which can be desirable for instance in a surgical
scenario.

Another possibility is to include the distance between the elbow and the
closest obstacle to it. An external camera system and a computer system to
find the distance to the closest object are required. This was implemented in
the OP:Sense research system for robotic surgery [9].

cobstacle = −‖~pe − ~pobstacle‖ . (3.20)
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4 Implementation

Within this chapter, the utilized hard- and software and their interplay are
pointed out. Afterwards, implementation details for the devised workspace
visualization techniques are presented. In the end, the user interface, consist-
ing of visualization and input, is introduced.

4.1 System Setup

The software is implemented in C++ and runs on an Intel R© CoreTM i3-2100
Processor (Dual-Core, 3.10 GHz) with 4 GB RAM, running Ubuntu 14.04. The
parts that are implemented for GPU are written in OpenCL (using simple-
opencl [41] as framework) and are executed on an NVIDIA GeForce GT 440
(96 Cores, 1 GB VRAM) graphics card.

For online visualization, a dedicated PC communicates with a KUKA LBR
IV[83] robot via Fast Research Interface (FRI) [66] and streams its joint an-
gles into a ROS (Indigo) network [47, 60]. The visualization client (the PC
described in the last paragraph) reads the angles, generates the workspace
boundary surfaces and publishes them as visualization markers into the ROS
network, from where they are finally visualized in RViz [38], running on the
same PC.

For user input, two different modalities are used: a Microsoft Xbox 360
Controller as main input device and a 3Dconnexion SpaceNavigator was also
integrated as an alternative.

The whole system architecture is depicted in Figure 4.1. The KRC box is the
KUKA Robot Controller that provides an FRI via UDP, the RC is the dedicated
PC that serves as interface between ROS and FRI, the WX computer runs the
Workspace Exploration.
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Figure 4.1: System setup: Robot controller, RViz visualization and input de-
vices are connected to the workspace exploration computer.

4.2 Generally Accessible Workspace

Computation

The generally accessible constant orientation workspace is computed using
an inverse kinematics approach. First, the workspace is rasterized using a
cubic grid. Then, the general inverse kinematics problem is solved for each
grid node. This step can be parallelized and is executed on the GPU for speed
up. If there is a solution for an interval of null-space parameters, the node
is accessible, otherwise it is not. Afterwards, the hull around all accessible
nodes is computed using the marching cubes algorithm (implemented by
Borke [14]).

4.2.1 Inverse Kinematics

Both the general as well as the particular inverse kinematics solution have
been implemented to run on graphics cards that run OpenCL, which includes
Nvidia and ATI products. The algorithms are realized in accordance to section
3.1.

The general inverse kinematics computation is very complex and prone to
implementation errors. It involves spherical geometry, many conditional
branches and the resulting intervals are transformed, sorted and merged.
In order to verify the implementation, millions of random poses have been
checked. The general inverse kinematics solution was computed and asserted
by computing the particular inverse kinematics solution for null-space pa-
rameters around the borders of intervals and checking whether joint limits
were exceeded as predicted. In many cases, the borders were found to be
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slightly but notably incorrect if single precision was used. Whether high
accuracy is required or not has to be considered in further steps, since double
precision computation runs significantly slower on many graphics cards.

4.2.2 Bounding Box Determination

In order to determine the limits for the space that needs to be sampled, the
bounding box of the workspace has to be found. The constant orientation
workspace of the TCP is equal to the constant orientation workspace of the
wrist center, just shifted by an offset, as illustrated in Figure 4.2.

Figure 4.2: The constant orientation workspace and its bounding box are
identical for wrist center and TCP, just shifted by an offset.

The offset ~o depends on the robot hand size, the tool matrix and the tool
orientation and can be computed by

bTw = bTtcp ·
fT−1

tcp · wT−1

f (4.1)

~o = bTtcp 1..3, 4 −
bTw 1..3, 4 , (4.2)

where yTx is a homogeneous 4×4 matrix describing position and orientation
of the coordinate system x within the reference coordinate system y. The
upper left 3×3 matrix of bTtcp describes the target orientation of the tool. The
upper right 3×1 vector usually contains the position, but is canceled out by
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(4.2) and can therefore be set to zero. fTtcp contains the transformation of the
tool and wTf contains the robot’s flange frame with respect to its wrist frame.
The reference index b stands for the robot base.

Now all that is left is to determine the bounding box of the wrist center
workspace of the robot, which – for the LBR IV – is independent of the flange
orientation. It can be seen in Figure 4.3. Along ±x and ±y direction, the
robot can extend its wrist by 79 cm. It can reach -28 cm in -z and 110 cm in +z
direction.

79 cm79 cm

11
0

cm
28

cm

Figure 4.3: Bounding box of the workspace for the wrist center of the LBR IV.

4.2.3 Smoothing the Boundary Surface

Rendering a marching cubes surface on a grid with binary node values results
in a discrete-looking, stepped surface, which can be difficult to interpret since
the alias effect can conceal the underlying surface structure. To improve the
mesh quality, the nodes can have a scalar value associated to them. The mesh
vertices are then shifted along the grid edges in order to better approximate
the zero crossing of the surface. The difference is illustrated in Figure 4.4.
Depending on the gradient of the scalar values and the mesh resolution, the
result can still contain ripples, however the overall quality is much better.
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Figure 4.4: Comparison of marching cubes algorithm: With binary node
values (left), the surface is stepped. Using scalar node values
smoothens the surface.

Two different functions are used in order to determine the scalar field. The
first function s1 decides whether a target node is within arm range (≤ rarm, max)
but not too close for the elbow joint (≥ rarm, min). It depends on the distance
rarm, target between the shoulder position and the target wrist position. It is
computed as follows:

rarm, target = ‖~pw, target − ~ps‖ (4.3)

rarm, max = lse + lew (4.4)

rarm, min =
√

l2se + l2ew − 2lselew cos(π − q4, max) (4.5)

s1 =

{

rarm, max − rarm, target if rarm, target >
rarm, max + rarm, min

2

rarm, target − rarm, max otherwise
. (4.6)

The cost is zero at the boundary spheres, increases outside the outer sphere
and inside the inner sphere and decreases in between down to a minimum
halfway between the two shells.
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For the second scalar function s2, the computed free elbow circle intervals
from a vertex’ complete inverse kinematics solution are added up and a
threshold is subtracted:

s2 =

∫ 2π

0

ηfree dη − ηthreshold . (4.7)

This way, only node points where the elbow has a certain leeway are included
into the rendered boundary surface. This is necessary in order to obtain
a smooth mesh since the scalar value has to cross 0 (it may not stay at 0).
However the minimum value of the integral in equation (4.7) is 0 (if there is
no valid elbow posture), so it has to be shifted slightly.

The larger ηthreshold is chosen, the more leeway the elbow has at each included
pose and the smoother the surface becomes.

The final scalar value s at each node is the minimum of s1 and s2.

4.2.4 Total Orientation Workspace Determination

The total orientation workspace is the intersection of the constant orientation
workspaces for all orientations in a predefined set. These will be called
sub-workspaces in this section. The computation is similar to the one of a
constant orientation workspace, only few additional steps are required. At
first, the bounding box has to be determined. It is the intersection of the
bounding boxes of all sub-workspaces. Therefore, the limit in +x direction is
the minimum of the +x limits of all bounding boxes of the sub-workspaces
and the limit in -x direction is the maximum of the -x limits. The same holds
true for ±y and ±z.

The remaining bounding box (which may be an empty set) is sampled and
each node has to be tested for reachability from all orientations that were
defined. The resulting node value is the conjunction of all results at that point.
If a smooth surface is generated, the maximum over the scalar cost values
for all orientations at that point is used for the node value. Afterwards, the
marching cubes algorithm can be applied.

54



4.3 Directly Accessible Workspace Computation

4.3 Directly Accessible Workspace Computation

In order to generate the translatory directly accessible workspace, virtual
motion has to be performed in all directions and the end points have to be
visualized.

4.3.1 Probing Rays in All Directions

For sampling all directions in three-dimensional Euclidean space, an icosahe-
dral sphere grid is generated (see Figure 4.5) using the sphere grid library by
Burkardt [15].

Figure 4.5: Icosahedral sphere grid for probing directions.

The number of probing directions is adjustable. Splitting the icosahedron
edges into n segments and filling the faces with vertices accordingly yields
10n2 + 2 vertices, one vertex corresponding to one probing direction.

Each direction is sampled along its ray. The step width increases with the
distance from the TCP in order to cover both a large range and a high accuracy
close to the TCP. If a joint limit is hit or the position is too far to be reached by
the robot, the workspace boundary will be drawn through the last feasible
point. The process is illustrated in Figure 4.6.
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Figure 4.6: Two-dimensional visualization of the sampling process: The green
lines represent probing rays along which the test points are drawn.
The resulting area (bright green) will be contained within the
directly reachable workspace (light green) and show alias effects
around the edge.
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4.3.2 Null-Space Optimization

At each step along the ray, the null-space parameter of the robot is locally
optimized using a gradient descent method on the presented cost function:
The parameter is incrementally increased or decreased, depending on the
initial slope. At each optimization step, the local cost is computed and
compared to the value from the last optimization step. If a cost minimum
was passed or a certain limit is reached, the null-space parameter from the
last optimization step is fixed and the propagation along the probing ray is
continued.

The whole process is summarized in the following pseudo code.

vector probeRays[] = createIcoSphere(splitFactor) // unit vectors

vector currentTCP = getCurrentTCP() // current tool center point

vector currentNSP = getCurrentNSP() // current null-space parameter

// explore all probe rays:

parallel for i = 0 to numProbeRays-1 // running on GPU

// explore along one probe ray:

vector probeTCP = currentTCP

for q = 0 to 1 step 1/numSteps // control variable

d = qˆ2 * scanRange // step distance from TCP

vector probeTCPBefore = probeTCP

probeTCP = currentTCP + d * probeRays[i]

// explore null-space at one point on probe ray:

scalar cost0 = cost(probeTCP, currentNSP - epsilon)

scalar cost1 = cost(probeTCP, currentNSP + epsilon)

int gradFallDirection = -signum(cost1 - cost0)

probeNSP = currentNSP

costNSP = cost0

do

costNSPBefore = costNSP

probeNSP = probeNSP + gradFallDirection * deltaNSP

costNSP = cost(probeTCP, probeNSP)

while probeNSP - currentNSP < deltaNSPmax // still within range

&& costProbe < costBefore // cost still falling

if costNSPBefore > 0 // no solution, probe ray ends one step before

displayHullVertex(probeTCPbefore)

end if

next

next

Figure 4.7 shows an exemplary progression of one virtual probing ray. The
horizontal axis represents the progress along the ray while the vertical axis
represents the null-space parameter. The background color indicates the
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cost at this point. Green indicates negative cost (admissible), red indicates
positive cost (inadmissible); the brighter the color, the higher the absolute
value. The white line displays the optimized path. The white funnels display
the maximum null-space variation for one step (±30◦), the maximum slope
decreases as the step width increases.

Figure 4.7: Progress of null-space optimization: The cost value is shown as
a function of the progress along an exemplary linear motion and
the null-space parameter. Red areas are blocked (the brighter, the
higher the cost), green areas are accessible (the brighter, the lower
the cost). The white path is found by the local optimization, the
funnels indicate the scanning range per step.

4.3.3 Computation of the Tilt Sphere

The computation of the tilt sphere is similar to the computation of the directly
accessible workspace for translation with the only difference that the TCP
is not translated along rays in all spatial directions, but its pose is rotated
around a set of axes that are perpendicular to the dominant tool axis, as
described in section 3.3.2.3.

Note that the tilt sphere is computationally far less expensive, since only
a one-dimensional manifold of tilt axes has to be discretized (plus the two
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roll limits, which are computationally insignificant), while the translatory
directly accessible workspace requires sampling a two-dimensional manifold
of spatial directions.

4.4 User Interface

The user interface consists of the graphical output in order to display the com-
puted workspace limits and an input device (gamepad or SpaceNavigator)
for interacting with the system. Both elements are discussed below.

4.4.1 Workspace Visualization

Because of the broad acceptance of ROS as robotics framework, its visual-
ization interface RViz has been chosen to display the workspace boundaries.
Due to ROS’ popularity and modularity, the workspace visualization can
easily be integrated into the many existing virtual environments that use it.
Figure 4.8 gives an overview of the basic RViz GUI layout.

Figure 4.8: GUI layout containing the selection list for displayed elements
(left), and the virtual environment (right).
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The interface that RViz offers accepts different types of markers [39] which
have to be sent via ROS messages. Within the scope of this thesis, the used
markers are: predefined mesh files, triangle lists, line strips, spheres, text
labels and coordinate frames.

The robot is constructed from predefined Collada meshes, the link relations
are defined in RViz’ URDF file format. A dedicated node accepts ROS joint
messages, and sends the poses of the robot links to RViz. The node was
developed within [8]. Tool and workpiece can also be visualized using
predefined meshes. The TCP is shown as a coordinate system using the tf
mechanism [31]. Half way between robot joint positions and camera position
(so they stay in the foreground), the current joint values are displayed as text
labels. This way, it is easily visible, which joint is approaching its limit. The
described elements are depicted in Figure 4.9

Figure 4.9: Visualization of the robot with current joint angles (in degrees),
an exemplary workpiece, an according gripper and the TCP coor-
dinate system.

The triangle mesh for visualizing the constant orientation workspace and also
the total orientation workspace (see Figure 4.10) is transmitted as triangle
list marker. The triangles are semi-transparent so all parts of the workspace
are visible. Since triangle markers are currently not shaded in RViz, the
triangles are colored depending on their surface normals in the common
(r, g, b) = 1

2
((nx, ny, nz) + (1, 1, 1)) scheme so the structure is visible.

The orientations that are considered within the total orientation workspace are
visualized using half arrows (see Figure 4.11). They represent the dominant
tool axis and are better understandable than coordinate axes when many of
them are depicted around a single point. Half (in contrast to complete) arrows
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Figure 4.10: Visualization of the constant orientation workspace for the cur-
rent tool offset and TCP orientation.

also make the roll angle of the tool unambiguous. Each half arrow is colored
depending on its orientation, the whole cluster of arrows is transmitted as
one triangle list marker.

The directly-accessible workspace for translation (see Figure 4.12) is also
transmitted via triangle markers. The triangles connect the found end points
of virtual motion in a way, so that if all of them were equally far away from
the TCP, the triangle mesh would form the convex hull. The color of the
triangles is determined via Gouraud shading (interpolation of neighboring
vertex colors) and the vertices are shaded depending on their distance to the
TCP. If the vertex is as far away as the maximum probing range, the vertex is
completely transparent. Hence, distant borders do not obstruct the vision to
the closer, more relevant motion limits. Very close to the TCP, the limit surface
becomes slightly transparent white in order to emphasize the proximity. In
between, the surface is colored in a stylish semi-transparent blue.

The directly-accessible workspace for orientation (the tilt sphere, see Figure
4.13) uses a sphere marker and line segments for visualization. A translucent
white sphere is drawn around the TCP. As described in section 3.3.2.3, to
obtain the tilt sphere, the tool is virtually tilted about (a representative subset
of) all axes that are perpendicular to its dominant axis. Where the dominant
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Figure 4.11: Visualization of the orientations that are considered in the to-
tal orientation workspace. The white big arrow represents the
current workpiece orientation.

Figure 4.12: Visualization of directly accessible workspace for translation
around the current TCP pose. As the TCP is very close to the
boundary, it turns white. Far away from the TCP, the boundary
is rendered transparent.
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axis intersects the sphere at the end point of its probing motion, a point is
drawn. All neighboring points are then connected via line strip and represent
the motion limit. Again, the further a limit is away, the more transparent
it becomes. In order to visualize the limits of the roll motion around the
dominant tool axis, two lines are drawn that represent the range angle before
the limit is reached.

Figure 4.13: Visualization of the directly accessible workspace for orientation
around the current TCP pose (tilt sphere). The yellow annota-
tions show how the representation is to be interpreted, they are
not actually displayed in the visualization. The long yellow ar-
rows show possible tilt motions up to the boundary. The shortest
yellow arrow indicates the roll limit: The purple line is the trans-
lated x-axis of the tool, which is about 30◦ away from the limit
(pink line). The roll limit in the opposite direction is further than
90◦ and therefore not drawn.
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4.4.2 Gamepad Control

Since the control method of the robot is not in the focus of this thesis, a simple
gamepad control scheme was implemented. It is only representative and can
easily be replaced by any other means of human-operated robot movement.

Figure 4.14: Sketch of the button mapping for robot control using the Mi-
crosoft Xbox 360 gamepad

Figure 4.14 illustrates the implemented control scheme.

• Left joystick: Translation of the controlled frame (initially within the
screen plane), pressing the stick snaps the position to a predefined grid

• Right joystick: Rotation of the controlled frame (initially about arbi-
trary axes that lie within the screen plane), pressing the stick snaps the
position to the closest in a set of predefined orientations

• Directional pad: Tilt and initially pan of the camera

• Shoulder triggers: Rotate about tool axis

• Right shoulder button: Tilt the control plane by 90◦ so it becomes hor-
izontal → Left joystick up/down motion now moves away from and
closer to the camera plane, right joystick left/right motion rotates about
the line of sight, d-pad up/down press moves camera away from and
closer to the object

• Left shoulder button: Align motion axes to world coordinate system
(out of the 24 possibilities, the one that is closest to the current camera
orientation is chosen)
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• Start button: add current TCP orientation to the list of relevant orienta-
tions for the total orientation workspace

• Back button: remove last orientation from the list of relevant orienta-
tions for the total orientation workspace

• Right thumb buttons: Switch object that is moved → (X) workpiece,
(B) robot TCP, (Y) rotate all orientations for total orientation workspace
computation

• Central (X) button: compute and display total orientation workspace

As mentioned in section 4.1, a space mouse (3Dconnexion SpaceNavigator)
was included as an alternative control modality. However, it only allows to
move the currently controlled object, the gamepad is still required for input.
On button 1 next to the control knob, three different control modes can be
chosen:

1. Move all six dimensions according to space mouse input

2. Only perform translation or rotation, depending on which of the two
has the higher absolute input value

3. Only move according to the one most dominant input out of all six
values
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The presented tools can be employed in a wide range of scenarios. This
chapter presents a selection of exemplary applications which were imple-
mented and evaluated within this thesis. The LBR IV serves as exemplary
manipulator.

5.1 Robot Placement for Palletizing

Pick and place problems form a very basic subtask in many manipulation
scenarios. From a reachability aspect, they can also be seen as being repre-
sentative for tool changes or for clearing an area from obstructions. The first
example is a palletizing task. The robot has to be positioned so it can place
nine boxes on a pallet in a predefined orientation (see Figure 5.1).

To successfully fulfill the palletizing task, two conditions have to be met:
(1) All target positions need to be reachable and (2) there should be no self-
overlapping region of the workspace that enforces reconfiguration between
any of the target positions.

To aid with the initial positioning, the constant orientation workspace for the
current TCP orientation can be displayed. All TCP target positions for the
palletizing task have to be placed within the visualized boundaries. The TCP
orientation can also be varied. Although the box orientation for the palletizing
task is fixed, the pose of the robot base is variable, which is mathematically
identical. Hence, the pallet may also be turned upright or upside down.
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Figure 5.1: Palletizing task: The pallet has to be placed so that the robot can
reach all nine box positions (TCP targets are marked on the pallet
with crosses).

Figure 5.2: Visualization of the constant orientation workspace for the current
tool orientation in order to assist during the initial pallet posi-
tioning: All nine target locations have to lie within the shown
boundary. (In the virtual environment with movable camera, the
situation is more graspable than in a static picture.)
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Once a suitable pose is found so that all target positions are well-covered
(and provided the sampling grid is fine enough), one can be sure that all
places can be reached in principle. However, it is possible that the pallet is
split by self-overlapping region boundaries of the workspace (as illustrated
in Figure 5.3) and a large motion is required to move from one target location
to another, which can be unnecessary or unfavorable. In order to test this, the
whole pick and place procedure can be carried out in simulation while the
directly accessible workspace is displayed and updated on-the-fly. For the
palleting task, the radar-like translatory workspace representation is more
suitable than the tilt sphere, since the orientation is identical for all target
poses on the pallet. The described situation is visible in Figure 5.1. In case an
overlap separates the pallet, it has to be repositioned or reoriented until the
result of the simulation is satisfactory.

Figure 5.3: The self-overlapping problem, which can not be seen in the con-
stant orientation workspace (top left), becomes visible when the
directly-accessible workspace is rendered (top right). On the bot-
tom, the overlay of both workspaces is shown. The straight lines
can be understood as a shadow that is thrown by the inner inac-
cessible sphere.
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5.2 Robot Placement for Machining a Cube

The second task can be seen as representative for drilling holes, milling the
surface, welding, coating or basically any type of machining on an object: A
cubic workpiece has to be accessed from all six sides and the tool has to be
positioned along the respective surface normal (see Figure 5.4). Accessing all
sides of a cubic shape is particularly difficult, since the dexterous workspace
of the LBR IV is empty even when the attached tool has length zero and the
six required orientations form a well-distributed subset of all orientations.

Figure 5.4: A cube has to be accessed from all six sides.

In order to make the task less abstract for the subsequent user study, the
workpiece is visualized as a Rubik’s Cube and the objective is to twist each
side once using an appropriate-looking tool. Each side of the cube could be
approached in four possible ways but since the roll axis of the tool aligns
with the last joint axis of the robot and it can rotate between -170◦ and +170◦,
finding one suitable orientation for each cube face is sufficient. The TCP is
positioned so that it lies in the center of the cube when the cube is held.

Similar to the palletizing task (section 5.1), it has to be ensured that (1) all
TCP target poses for the cube are reachable (while this time they differ in
orientation, not in position) and (2) the poses can be accessed consecutively
without reconfiguration.

The first step is to define all desired orientations for displaying the total
orientation workspace. It is done by rotating the workpiece (cube) and
adding the selected orientations to a list. All added orientations are displayed
as half arrows above the robot to visualize the current orientation set (see
Figure 5.5).
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Figure 5.5: List of orientations to be considered for the total orientation
workspace, visualized as half arrows.

While the TCP is rotated, the current constant orientation workspace can
be displayed on-the-fly. When finished, the total orientation workspace can
be displayed as intersection of the constant orientation workspaces of all
selected orientations. The computation time is proportional to the number
of selected orientations. The Rubik’s Cube can then be placed with its center
inside the displayed volume. Figure 5.6 shows that the cube can even be
placed completely within the total orientation workspace. This means, that
each point within the cube is reachable in all considered orientations for the
TCP.

As with the first task, one can now be sure that the robot can reach all cube
faces in principle. A simulation has to be carried out in order to be certain
that no self-overlaps require large reconfiguration motions during operation.
In the present scenario, the tilt sphere is more helpful than the radar-like
translation limit display.
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Figure 5.6: Cube inside the total orientation workspace. The cube edges are
highlighted in yellow for better visibility.
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Figure 5.7: Tilt sphere for a difficult position: The robot can tilt the tool about
20◦ to the upper left before the jagged pink line is hit by the
dominant axis of the tool (which passes through the sphere where
the purple and the pink pointers meet) and a limit is reached. The
tool can also be rolled about 15◦ clockwise about its dominant axis
before hitting a joint limit.
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5.3 Range of Motion for a Tool

The previously presented scenarios of robot placement for palletizing and
cube machining are supposed to demonstrate the basic usage in an under-
standable manner. However, they could also be solved purely algorithmically
without visual support. The actual strength of the visualization lies in less spe-
cific and less predictable tasks. Finding a trade-off between a large amount of
coverable orientations and a large accessible region, understanding and inter-
nalizing the connection between tool shape, tool orientation and workspace
shape and ultimately getting a feeling for the reachability around the robot
are the main objectives of this work. It is a new means of illustrating the
positioning capabilities of a robot by visual exploration. This scenario is
intended to illustrate this abstract purpose by demonstration. A long tool is
connected to the robot and a region with large motion range is to be found. A
direct application is robot-assisted laparoscopic surgery.

Three sets of target orientations are defined, containing a reference position
and eight different orientations around it where the tool is tilted by an angle
α. At each of the nine orientations, the tool is further rolled by −α, 0◦ and +α,
so that 27 different orientations are checked per set. For the three different
sets, α is now set to 20◦, 40◦ and 60◦. Figure 5.8 shows the different orientation
sets as displayed within RViz (with added black contour for visibility).

Figure 5.8: Tested sets of orientations with 20◦, 40◦ and 60◦ tilt/roll angle
between orientations

Furthermore, three different tool lengths were tested: 20 cm, 35 cm and 50 cm.
Figure 5.9 displays the resulting total orientation workspaces. The depicted
tool pose is the central orientation within the respective set.
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Figure 5.9: Total orientation workspaces for different approach angle sets (20◦,
40◦ and 60◦ tilt from top to bottom) and tool lengths (20 cm, 35 cm
and 50 cm from left to right).
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As expected, the longer the tool and the larger the spread of covered orienta-
tions, the smaller the set of points that can be reached from all angles. For the
three tool length/orientation spread combinations in the upper left of Figure
5.9 (20 cm/20◦, 20 cm/40◦ and 35 cm/20◦), the workspace is one connected
set. As tool length or orientation spread increases, it begins to split into two
sets, one in front of the robot and one around its shoulder. For the two longer
tools with α = 60◦, the region in front of the robot has disappeared and only
the area around the shoulder remains. Whether this region is convenient or
not is an entirely different subject since the robot would block the access for
other potential operators.

In addition to the length of the tool and the orientation spread, there are
multiple other parameters that influence the total orientation workspace,
which can be investigated as well:

• the start orientation of the tool (3 parameters),

• the transformation matrix between flange and TCP (6 parameters),

• in case of the chosen robotic structure the configuration of the robot (1
discrete parameter with 8 possible values),

• the parameters of the robot such as link lengths (only 2 additional
parameters, base length can be compensated with the base position and
hand length can be compensated by the tool matrix), the joint limits (14
additional parameters)

• and ultimately the set of tested orientations (3n parameters where n is
the number orientations in addition to the start orientation).

It is virtually impossible to compile a comprehensive in-depth analysis that
discusses all parameter combinations and influences properly. The presented
tools provide a tangible means of gaining insight into the positioning capabili-
ties of a robotic system by displaying variations of all parameters on-the-fly.

5.4 The Benefit of Seven Joints

The visualizations presented in this thesis can be employed to investigate to
what degree a seventh joint enhances the reachability of a robotic manipulator.
If the upper arm joint of the LBR IV is set fix to 0◦, it has the same kinematic
structure as many 6-DoF anthropomorphic arms. This corresponds to a null-
space parameter of either 0◦ or 180◦, depending on the configuration index.
In order compare the workspaces with or without redundant structure, the
constant and the total orientation workspace are depicted in Figures 5.10
and 5.11 for exemplary tool orientations. For the redundant structure, the
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workspaces are obtained as described in section 4.2. In order to obtain the
workspaces for the non-redundant structure, the computation of the general
inverse kinematics solution for each grid node is replaced by solving the
particular inverse kinematics problem with the null-space parameter set to
0◦.

Figure 5.10: Comparison of the constant orientation workspace for the de-
picted tool orientation: On the left side, the null-space parameter
(and therefore the upper arm joint) is set fix to 0◦. On the right
side, elbow movement is permitted and the upper arm joint can
rotate within a range of ±170◦.

Figure 5.10 clearly shows the effect that was explained in Figure 2.8. Two
sections of the workspace are cut out due to the limits of the base joint and
the flange joint for the depicted tool orientation. Furthermore, an area around
the “north pole” of the workspace is not as accessible if the elbow cannot
rotate downwards so that the lower arm can reach upwards. The situation
around the “south pole” is similar.

The difference becomes much more considerable if the total orientation
workspace is regarded, as visible in Figure 5.11. Here, the workspace for the
depicted tool orientation and 26 more orientations around it with a spread
angle of α = 30◦ (as explained in section 5.3) is compared. A tool with 20 cm
length is attached to the robot. With only six movable joints, the workspace
has the basic shape of a comparatively small spherical cap. With enabled
redundancy, the workspace encloses more than half of the robot.
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Figure 5.11: Comparison of the total orientation workspace for the depicted
tool orientation and an orientation spread (as described in section
5.3) of α = 30◦: On the left side, the null-space parameter (and
therefore the upper arm joint) is set fix to 0◦. On the right side,
elbow movement is permitted and the upper arm joint can rotate
within a range of ±170◦.

As was the case in section 5.3, this example is not supposed to constitute a
complete analysis of the usefulness of including a seventh joint into the robot
structure, since there are equally many influencing parameters as before. The
purpose is to illustrate the function of the devised visualization tools for
kinematic analysis.
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Within this chapter, objective criteria of the overall system performance, such
as resolution, precision and frame rate, are evaluated and the influencing
factors are discussed. Subjective attributes, such as support capabilities, the
usability and the perspicuity of the different visualizations, are then assessed
in a user study.

6.1 System Performance & Influencing Factors

The system performance depends on several factors that influence each other
and a trade-off between them has to be found. The parameters that were
chosen for the scope of this thesis will be presented in the following. Ways of
increasing the performance will also be discussed.

6.1.1 Frame Rate

The frame rate of the different visualizations depends on the situation that
the robot is currently in, since longer simulated motions (in a situation where
boundaries are further away) require more computation. The average timing
can be seen in Table 6.1.

Table 6.1: Computation time for different workspace visualizations on the
used hardware; memory transfer times are included into the total
times

const. ori. workspace dir. acc. workspace

single prec. 70 .. 80 ms (4 .. 8 ms mem.) 12 .. 20 ms (2 ms mem.)
double prec. 110 .. 120 ms (6 .. 12 ms mem.) 60 .. 90 ms (3 ms mem.)

The constant orientation workspace requires the general inverse kinematics
solution to be computed at each point. The interval handling requires many
loops and conditional statements for which GPU processors are not well-
suited. This explains the less significant difference between single and double
precision.
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The computation of the directly accessible workspace contains both the trans-
latory as well as the rotatory component. In the current resolution, the former
takes up 88% of the workload, the latter 12%.

In the present parameter configuration, a frame rate of 8 Hz could always be
achieved. This does not produce a fluent impression but it was considered
to be sufficient to provide an intuitive visualization without perceived lag.
If a higher frame rate is needed, more powerful hardware is required or a
different trade-off with other factors, which will be discussed in the following,
has to be found.

6.1.2 Hardware

As most of the calculation is running on the GPU, the computational power
of the graphics card forms the performance bottle neck. The NVIDIA GeForce
GT 440, which was utilized for this work, was released in February 2011.
Its specifications are listed in Table 6.2. The specifications of the currently
fastest available graphics card, the NVIDIA GeForce GTX Titan Z, are listed
for comparison.

Table 6.2: Comparison between the utilized NVIDIA GeForce GT 440 graphics
adapter and the NVIDIA GeForce GTX Titan Z, the currently fastest
available graphics adapter.

GeForce GT 440 GeForce GTX Titan Z

Cores 96 5760

GPU clock 810 MHz 705 MHz
876 MHz with boost

Shader clock 1 620 MHz 1 620 MHz

Computation speed
single precision 311 GFlops 8 121.6 GFlops
double precision 25.9 GFlops 2 707.2 GFlops

Memory 1 GB (DDR3) 12 GB (DDR3)

Memory bandwidth 28.8 GB/s 672 GB/s

It is difficult to estimate the actual performance boost purely from these
specifications, since the code running does not consist out of floating point
operations only, many conditional statements, loops, comparisons etc. are in-
volved. Judging from the number of cores (at the same clock speed), the GTX
Titan Z should achieve 60 times higher performance. However, a comparison
of the single precision computation speed indicates a factor of only about
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26 while the factor for double precision is about 104. The memory transfer
rate can be sped up by a factor of about 23. Based on these estimates, we
can vaguely assume that a performance increase of a factor 20 is feasible in
theory.

6.1.3 Resolution

In general, increasing the resolution results in higher accuracy and a more
detailed boundary surface, sharper edges and less artifacts.

Constant Orientation Workspace

For computing the constant orientation workspace, a cubic grid of 54×54×47
vertices with an edge length of 3 cm was chosen. If shifted properly (as
described in section 4.2.2), that volume can always enclose all reachable
points for the TCP of the LBR IV. This results in 137 052 vertices. Note that
the number of grid points and therefore the influence on the computational
cost is proportional to the third power of the resolution.

Depending on the structure of the robot, a certain speed-up could be achieved
by using a more suitable grid design. For the LBR IV, the maximum arm
length restricts the reachable volume to a sphere with radius 79 cm. Further-
more, the distance between wrist and shoulder has a lower limit (see equation
(4.5)). This blocks a sphere of radius 39.5 cm for the LBR IV. The remaining
spherical shell only occupies 46% of its bounding cube, so sampling only this
shell can decrease both GPU load and memory transfer. However, points
outside this shell are excluded by the GPU via simple range check much faster
than the time it takes to compute the general inverse kinematics solution for
points inside the shell, so the speed-up would be much less significant than a
factor two.

Another possibility would be to check the grid in multiple passes, refining it
only in the proximity of boundary points found during previous passes.

However, for the sake of simplicity and generality, only the basic cubic grid
was implemented.

Total Orientation Workspace

As described in section 4.2.4, the bounding box of the total orientation
workspace is the intersection of the constant orientation workspaces for
all considered orientations and each orientation is tested at every grid knot.
Within this thesis, the grid of 54×54×47 is scaled to fit the size of the resulting
intersection. Hence, the computation time is not influenced by the intersec-
tion volume but the resolution can be higher. However, the computational
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load is proportional to the number of checked orientations at each vertex,
which depends on the number of orientations that the user wants to test.

The considerations for speed-up that have been discussed for the constant
orientation workspace computation (better matching or refined grid) apply
here as well.

Directly Accessible Workspace for Translation

As mentioned in section 4.3, an icosahedral grid is used to sample the set of all
possible directions (i.e. unit vectors in R

3). The subdivision used in this thesis
is 10, which results in 1 002 vertices, distributed as equally as possible over
the sphere. The maximum angle between any given direction and the closest
direction within the set is about 5.7◦. Along each direction, a maximum of
25 steps up to a distance of 0.7 m is tested for a feasible inverse kinematics
solution. This parameter influences the strength of aliasing artifacts (as shown
in Figure 4.6). At each step, the null-space parameter is varied up to 30◦ in a
maximum of 8 steps, visible in Figure 4.7.

While the subdivision count of the grid (and therefore the reciprocal of the
maximum distance to the closest direction) has quadratic influence on the
overall computation cost, the two other parameters (maximum number of
steps along each direction and maximum number of null-space parameter
tests at each step) have linear influence.

Directly Accessible Workspace for Rotation

The set of tilt axes that are perpendicular to the dominant tool axis is one-
dimensional. Hence, sampling it is fairly straightforward and the number of
samples only has linear influence on the computational load. Currently, 128
tilt directions are checked (+2 for ± roll about the dominant tool axis). Choice
and influence of further parameters (number of steps for each direction and
number of tests for the elbow) are equal to the translational computation.

6.1.4 Precision

While double precision requires significantly more computation, the accuracy
loss when using single precision was visible since artifacts occurred, especially
near singular poses. For specific applications, it has to be decided whether
the possible gain in accuracy is important or not.
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6.2 User Study

In order to evaluate how intuitive and graspable the visualization concepts
are, a user study with 15 participants (10 of which have controlled a robot
before) was conducted. For each participant, three virtual reality trials were
carried out and after each trial, a User Experience Questionnaire (UEQ, [50])
had to be filled in.

The UEQ is a standardized test for evaluating the user experience of an in-
teractive product, which also allows the comparison against a benchmark. It
contains 26 items (e.g. “boring” vs. “exciting” or “obstructive” vs. “support-
ive”) which have to be rated on a scale between -3 and +3. The items are then
aggregated into six scales (taken from the UEQ handbook):

• Attractiveness: Overall impression of the product. Do users like or
dislike the product?

• Perspicuity: Is it easy to get familiar with the product? Is it easy to learn
how to use the product?

• Efficiency: Can users solve their tasks without unnecessary effort?

• Dependability: Does the user feel in control of the interaction?

• Stimulation: Is it exciting and motivating to use the product?

• Novelty: Is the product innovative and creative? Does the product catch
the interest of users?

The trials are designed based on the scenarios presented in chapter 5. To
allow for repeatability and to keep the duration acceptable for the participants,
predefined positions were evaluated instead of asking the users to position
(and potentially reposition) objects themselves. The aim of this user study is
to assess its usability and perspicuity. A discussion about the value and the
significance of these trials follows in chapter 7.

6.2.1 Introduction to the Study

All participants were given a short standardized introduction. It was stated
that the aim of this research is to visualize the workspace boundaries of a
robotic arm on-the-fly in an intuitive manner in order to give the user a sense
of reachability of the arm.

All participants were allowed and encouraged to ask questions in general or
if anything is unclear.
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The users were then introduced to the concept and application of the UEQ: It
is a standardized test in order to allow comparison against other products,
so some aspects of the evaluation might not fit very well to the concept that
is assessed. The UEQ has to be filled in shortly after the respective trial in a
spontaneous manner.

The limits of the individual joints were stated and the current position of each
joint was displayed throughout the trials.

They were then introduced to the gamepad control, the SpaceNavigator was
offered as an alternative input device (it was used by three participants). For
practice, a little box had to be put on a pallet in a defined orientation. As it
is not the purpose of this study to evaluate the robot control modality, the
users were offered to leave the control to the conductor of the study (i.e. the
author), which was the case in one instance.

6.2.2 Reachability Evaluation

In the first trial, users were asked to assess the placement of objects. Three
pallets were placed around the robot with nine target positions each, as can
be seen in Figure 6.1. For each pallet, the user was asked to decide which
of the nine target positions were reachable with a box attached to the robot.
First, only camera control was permitted and the assessment had to be done
visually. Afterwards, robot control was permitted and each position could be
checked for reachability by trying to move the TCP to the target.

Figure 6.1: Placement evaluation for pallet positions (left) and cube positions
(right).
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A similar experiment was conducted with cubes instead of pallets. This time,
all six sides of the cubes had to be accessed with a tool (see Figure 6.1). The
users were asked for each cube whether all sides are reachable or not. Again,
they were only allowed camera control at first and then robot control.

Afterwards, the users were introduced to the visualizations of the constant
orientation workspace and the total orientation workspace (see Figure 6.2).
For checking the reachability of pallet positions, the TCP with the box had to
be orientated correctly and it had to be checked whether the nine target TCP
positions were within the displayed workspace hull. For the cube positions,
the total orientation workspace for six target orientations (one for each cube
side) was displayed. The users had to check whether the cube centers are
within the rendered surface or not.

Figure 6.2: Placement evaluation for pallet positions (left) and cube positions
(right) with workspace visualization support.

Subsequently, the users were asked to fill in the first UEQ. Specifically, the
visualization concepts of the constant orientation workspace and the total
orientation workspace (and not the control modality) had to be assessed.

The results of the palletizing trial are given in Figure 6.3. Each target position
is represented by a pie chart, showing whether the participant’s estimate was
incorrect (red) or correct (green if the pose is reachable or blue if the pose is
not reachable). As can be expected, pure visual and instinctive assessment
is not very accurate. However, a majority vote for each pose assesses the
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reachability incorrectly in only 4 out of 27 cases. Trial and error via robot
control resulted in much higher accuracy but it still did not yield perfect
results. In some cases, the users did not test a position accurately enough.
One user correctly tested two poses but confused them before marking them.
The large error for the top right pose on the yellow pallet was due to the fact
that the last joint reached its limit of 170◦ shortly before reaching the pose
(which was not intended during trial design). For some users, the elbow
reconfigured advantageously while testing the other points of the pallet so
that the pose was reachable in the end. One user rotated the box by 360◦

around the flange axis and was then able to reach the pose. The results of
the boundary visualization were overall better. The problem with the top
center position of the green pallet was that it was inside the inner unreachable
sphere and it was hard to assess whether it was behind the boundary or not,
due to a transparency problem that will be discussed in section 7.3.

The results of the cube experiment are depicted in Figure 6.4. The visual in-
stinctive assessment was correct in about two out of three cases. Impressively,
for the orange cube, it was better than trying to reach each face with the robot.
The situation was labeled a “seven-dimensional labyrinth” by one participant
due to the fact that the movement often ran into joint limits. Reaching a cube
from all six sides can be done in numerous ways and the posture of the robot
depends on the chosen path, as was discussed in section 2.1.4, so the limits
were different for every user. Some users tried to access cube faces from other
directions if they failed the first time. The green cube was unreachable on
its top but only by a few degrees, so many users falsely identified it as being
reachable. With the visualization of the total orientation workspace, all cubes
were correctly assessed by all 15 participants.

Figure 6.5 shows the outcome of the User Experience Questionnaire. The
constant and total orientation workspace visualization concepts are perceived
very well in the overall impression, which is indicated by the “Attractive-
ness”. Whether the concepts are intuitively understandable or not (which is
the prime concern of the assessment) is probably best reflected by “Perspicu-
ity”, which ranges from “Above Average” to “Excellent”. “Efficiency” and
“Stimulation” were rated “Excellent” by the majority of users, which indicates
that the visualization is fast enough to be pleasant to use and not tedious.
The high “Dependability” shows that there was no unexpected or strange
behavior of the visualization. Although the “Novelty” is rated high, it cannot
be expected that the users are familiar with other concepts of the field, so this
value cannot be taken literally.
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visual assessment test via robot motion boundary visualization

Figure 6.3: Results of the palletizing trial. Green: correctly identified as reach-
able, blue: correctly identified as unreachable, red: incorrectly
identified.
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visual
assessment

test via robot
motion

boundary
visualization

Figure 6.4: Results of the cube machining trial. Green: correctly identified
as reachable, blue: correctly identified as unreachable, red: incor-
rectly identified.
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Figure 6.5: Results of the User Experience Questionnaire and compari-
son against benchmark for the generally accessible workspace
visualizations
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6.2.3 Position Tolerance Assessment

In the second trial, users had to evaluate the positioning tolerance of prede-
fined trajectories. Two identical trajectories that resemble the outline of a car
door at different poses were displayed (see Figure 6.6) along which the user
was able to move the robot. The TCP stayed on the trajectory and could only
be moved back and forth, the elbow angle was preplanned. First, the posi-
tioning tolerance had to be estimated based on displayed joint positions and
overall impression. Users had to mark critical regions along the trajectories
on a piece of paper. They were asked, which trajectory they would favor and
how certain they are about their decision (in percent).

Figure 6.6: Translatory tolerance estimation for predefined trajectories with-
out visualization support. The trajectories resemble the contour of
car doors.

Afterwards, the concept of the directly accessible workspace for translation
was introduced and the boundary was displayed. With the help of this visual
support (as seen in Figure 6.7), users were asked to reevaluate the positioning
tolerance, decide again between the two poses and state their certainty again.
In the end of the second trial, a second UEQ had to be filled in.

The results are shown in Figure 6.8. An overlay of all user sketches shows
where critical points were seen. For the green trajectory, the purely visual
tolerance assessment based on joint angle values and overall impression
was quite accurate and critical points were identified well. On the blue
trajectory, users were much more accurate using the visual assistance of the
translatory motion boundary. The decision about which trajectory has the
higher tolerance was much clearer when the visual assistance was used, as
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Figure 6.7: Translatory tolerance estimation for predefined trajectories with
visual support by the directly accessible workspace rendering.

can be seen in the histograms. However, it has to be mentioned that some
users completely ignored the most critical point on the blue trajectory (only
2 cm away from the boundary). It might be due to the fact that this point was
close to the inner unreachable sphere, not to the outer one. If the scene is
viewed from an unfavorable angle, the blue color of the uncritical outer hull
tints the critical white color of the inner hull.

The UEQ’s results can be seen in Figure 6.9. They resemble the results of the
UEQ for the generally accessible workspace visualization very closely, only
“Perspicuity” and perceived “Novelty” are slightly higher.
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Figure 6.8: Results of the translatory tolerance experiment: Reddish areas are
overlays of all user marks, the histograms show how certain the
users picked a trajectory.
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Figure 6.9: Results of the User Experience Questionnaire for the directly ac-
cessible workspace visualization for translation.
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6.2.4 Orientation Tolerance Assessment

The third trial is again an evaluation of tolerance around predefined trajec-
tories. This time, the angular clearance has to be assessed. The trajectories
can be seen as green and blue meander-shaped lines in Figure 6.10, the white
arrows around the green trajectory indicate the five different tool orienta-
tions that the tool sweeps through. The scenario was a milling motion on
a femur for knee arthroplasty. Similar to the trial before, users had to do a
visual estimation, mark critical regions, decide for a trajectory and state their
certainty.

Figure 6.10: Rotatory tolerance estimation for predefined trajectories. The
white arrows indicate the five different tool directions.

The tilt sphere was then introduced as support for this task (see Figure 6.11)
and the users were asked to do the assessment again and fill in a third UEQ
afterwards.

Figure 6.12 shows the outcome of the third trial. The trajectories are unfolded
for better visualization. The red areas indicate how many users marked this
milling plane as critical. At the bottom, the actual tolerance is displayed as
a circle segment for each of the five planes. A 40◦ angle at the segment tip
means that the tool can rotate by a minimum of 20◦ in all directions. Note
that the purely visual assessment of orientational tolerance around a point is
extremely difficult at best. The difference in rotational clearance between both
trajectories was quite large. It was between 7◦ and 23◦ for the green trajectory
and between 40◦ and 80◦ for the blue trajectory. The majority of users correctly
chose the blue trajectory without visual support, but the certainty was very
low, as visible in the upper histogram. Marking the critical areas only based
on visual estimate did not resemble the ground truth very well for the green
trajectory, which is due to the fact that one joint approached its limit at the end
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Figure 6.11: Rotatory tolerance estimation for predefined trajectories with
visual support by the tilt sphere. The current position allows
about 15◦ of tilt motion to the right, 20◦ of tilt motion to the lower
left and 40◦ of roll motion clockwise.

of the trajectory, which did not influence the rotational clearance much. Using
the tilt sphere, the critical areas were identified much more accurately and the
decision was much clearer. However, many users ignored the depicted roll
limits (indicated by pink pointers around a violet pointer, visible in Figure
6.11) and responded that they forgot to pay attention to this when asked
about that afterwards. These limits have to be emphasized more or displayed
in a different way.

Compared to the visualization of the directly accessible workspace for trans-
lation, the UEQ yielded lower results in all criteria. “Perspicuity” – the most
important aspect – received an average rating with a large variance from
“Bad” to “Good”, the same holds true for “Dependability”. The participants
reported that the visualization is not as easily understandable. Furthermore,
a pivoting motion of the tool always entails a certain roll movement, which
causes the visualized boundary lines to shift more than expected. However,
despite the lower scores on the user experience, the experimental results that
were achieved with the help of the tilt sphere were quite accurate. The fact
that the objective results are sound but the subjective impression could be
better means that the display of the tilt sphere should be improved but the
underlying concept is valid and understandable.
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Figure 6.12: Results of the orientational tolerance experiment: The reddish
areas are overlays of all user marks, the histograms show how
certain the users picked a trajectory.
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Figure 6.13: Results of the User Experience Questionnaire for the directly
accessible workspace visualization for orientation.
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Within this chapter, the presented visualization tools will be discussed in a
broader perspective. The results of the user study will be interpreted and a
few “Lessons Learned” are addressed. A comparison with other works is
made.

7.1 Reception

The overall reception of the visualization for the generally accessible work-
spaces (both constant orientation workspace and total orientation workspace)
was very good. The concept was understood immediately, the visualization
was deemed meaningful and supportive.

Compared to trial and error by robot control, the reachability was assessed as
being much faster and more reliable. Simply solving the complete inverse
kinematics for all target poses on the pallets (or all cube faces, respectively)
and displaying a red or green label would most likely yield even better
results. However, in a positioning scenario, the concept at hand assists in
finding a solution if not all poses are reachable. The user can easily see
and understand why this is the case and how to resolve the situation, if the
workspace boundaries are shown.

The directly accessible workspace for translation was also received very
well. The difference from the generally accessible workspace was easily
understood. The users were able to solve the given task of evaluating the
translatory tolerance around the trajectories. One user pointed out that this
tolerance could simply be encoded as a color along the trajectory, which
would allow for faster assessment and remove the need of visualizing the
workspace and moving along the trajectory. Although this is a valid remark,
forcing the user onto a predefined trajectory served the purpose of obtaining
repeatable and comparable results from the study. The wider purpose of this
visualization is to convey a detailed representation of the dexterity around the
current pose, which is intended to be used in manually operated scenarios.

95



7 Discussion

However, the fact that many users ignored the most critical point on the blue
trajectory necessitates countermeasures. For specific scenarios, a distance
threshold between TCP and workspace boundary could be defined and when
the TCP is closer to the boundary, a warning could be issued. Furthermore,
the surface could be rendered in red in areas where the distance falls below
the threshold.

One user further commented that, if one is “trapped” in a small volume
surrounded by walls of joint limits, the visualizations do not show a Carte-
sian way out of the situation. This reflects on the fact that path finding is
not the purpose of this work. Numerous algorithms are available for path
finding, which can work hand in hand with the visualization. Figuratively,
the visualization is not intended to work as a navigation system but as a radar
for this multi-dimensional maze which can be combined with the navigation
system, if desired.

The directly accessible workspace for rotation (tilt sphere) received less pos-
itive reviews. This may be due to the fact that three-dimensional rotation
and orientation is generally less intuitively graspable compared to transla-
tion and position. Of all the concepts that were investigated in section 3.3.2,
the tilt sphere was already chosen to be the simplest. It can be a problem
that the users had very little time to become familiar with the visualization.
The root locus plot is also far from being intuitively graspable, yet it is a
well-established visualization technique in control theory. As stated before,
although the users were subjectively not as comfortable using the tilt sphere,
objectively it served its purpose and the rotational clearance was assessed
accurately.

7.2 Remarks on the User Study

Some aspects concerning the circumstances under which the user study was
conducted are addressed and discussed in this section. Meaning and value of
the study are pointed out.

Time Constraint

To ensure that the results are comparable and that users have to be briefed
only once about the control and the idea of the UEQ, the evaluations of all
concepts were conducted in a single session for every user.

Thoroughly evaluating three different concepts within an acceptable duration
for each user and for the complete study is ambitious at best, especially since
the visualizations are supposed to convey a natural feeling for the workspace
of a manipulator over time. The study required 60 to 90 minutes per user.
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Explanation and discussion, getting familiar with the gamepad control and
completion of three UEQ forms already filled a large chunk of that time
frame.

In order to unfold their full potential, the tools would have to be tested over
a longer period of time. In a realistic scenario, a user has more patience
both with and without visualization and an intrinsic motivation to solve the
problem.

Control Conditions

Displaying the current joint angles directly at each joint within the scene
can be considered a large support during the control experiments without
boundary visualization. However, in a realistic scenario, a user can display
the current joint positions one way or another, so they were included.

User Experience

The concept of the null-space and the robot configuration index was not
introduced to the users since the visualization is supposed to be helpful also
for unexperienced users or new robotic structures. Explaining these concepts
and providing some further basic insights about the situation (e.g. turning
the TCP by 360◦ or approaching the target from another angle might help
when stuck) might have resulted in a better performance in the control exper-
iments without visualization. However, some users already had experience
in controlling the LBR IV and did not perform significantly better.

Value of the Study

The study showed that new users were quickly able to understand and use
the developed tools the way they were intended to be used. All visualiza-
tions were assisting rather than obstructive and all concepts apart from the
tilt sphere (which received average rating on the UEQ benchmark) were
perceived as being helpful and pleasant to work with.

7.3 Lessons Learned

This section discusses additional points that surfaced during the work for
this thesis and have to be addressed.

Three Dimensions on a Screen

Overall, it was noticeable that a lot of camera movement is required in order
to fully grasp the depicted scene. Some users were complaining about that
fact. This is an inherent problem of visualizing three-dimensional data on a
two-dimensional screen. A solution may be to use more sophisticated display

97



7 Discussion

hardware like head mounted displays, where three-dimensional perception
and camera movement are more intuitive.

Influence of the Redundancy

Although the robot redundancy increases the workspace, the dexterity and
the flexibility of the manipulator, it causes unwanted effects in the visualiza-
tion of the directly accessible workspace, both for translation and rotation.
During motion, workspace boundaries can suddenly appear or disappear.
This effect can be explained using Figure 4.7. A blocked null-space parame-
ter interval can occur during motion. The red inaccessible peninsula at 0.1
progress and 0◦ null-space parameter shows such a phenomenon. It splits the
optimization path into two possibilities and the chosen path depends on the
initial elbow position. While the elbow is optimized during motion, the path
can suddenly swap. The path can also swap for only some of the probing
rays, which results in corona-like spikes in the visualization, as can be seen in
Figure 7.1.

Figure 7.1: Some probe rays take a different optimization path for the elbow,
which results in spike artifacts.

Although this issue does not occur very often, it can be confusing, especially
if a wall appears where the robot just came from. This is an inherent problem
of using a gradient descent method for elbow position optimization and can
be solved in two ways: Either the elbow trajectory along each probing ray
is explored using a much more sophisticated path finding algorithm (which
would result in massive performance loss) or the initial elbow position is
varied manually.
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Problems with Layered Transparency

Most triangle-based rendering frameworks (such as RViz) cannot display
intersecting transparent objects correctly. This is due to the fact that complete
meshes are rendered consecutively, usually sorted by distance between their
origin and the camera. This problem can be seen in Figure 7.2: The green
pallet is either drawn completely before or completely behind the workspace.
One of its target positions is inside the inner inaccessible sphere, which is
very hard to see even when the camera is rotated.

Figure 7.2: Effects of layered transparency: The pallet is either shown as being
completely before or completely behind the workspace bound-
aries, depending on the camera position. No intersection is visible.

Figure 7.3: View from inside the opaque workspace: Intersections are dis-
played correctly and the reachability of the target positions can be
assessed.
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Using more advanced rendering software can solve this problem. If depth
peeling is supported, objects are cut into successive depth layers, depending
on the current camera view point. They can then be rendered in the cor-
rect order and intersections can be resolved. Ray tracing is another option,
each pixel on the screen emits an individual viewing ray into the scene and
each surface that is hit or crossed influences the resulting pixel color in the
correct order. However, ray tracing comes with massive computation cost
and is rarely used in interactive visualizations. Furthermore, using a visu-
alization framework other than RViz – which is established as a standard
in many robotic development projects – would have drastically reduced the
compatibility with other works. RViz is under constant development and
may support depth peeling in the future. The workaround that was used for
the user study within this thesis was the option to turn the transparency off
and move the camera into the region of interest (see Figure 7.3).

7.4 Comparison to Other Works

In this section, the differentiation from the closest work of other research
groups will be made.

As pointed out in chapter 2, most other approaches generate or work with
static maps. In some instances, such as in the work presented by Petitt and
Miller [58] or Zacharias et al. [95, 96], the workspaces are precomputed in a
database which can be accessed during runtime.

An advantage of their work with respect to the work at hand is, that only
forward kinematics computations are used, which can easily be generated for
arbitrary serial kinematic structures.

The disadvantages of precomputation are however, that the computation
has to be restarted for parameter changes of the robot or the tool while the
visualizations presented in this thesis update instantly. Furthermore, all off-
line sampling-based approaches can only generate a map of the generally
accessible workspace. Internal boundaries due to workspace overlaps are
neglected. The achievable resolution is also depending on the available
memory.

Zacharias further presents a way of visualizing the complete workspace of a
manipulator using colored spheres (capability map) or shapes representing
from how many directions a point can be reached. This conveys an intuitively
graspable overview of a robot’s workspace in general within one single
map.
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The visualizations presented in this thesis are situation-specific and intended
to be interacted with. In contrast to the capability map, it can be seen, which
positions are reachable from a certain orientation.

The learning-based approaches presented by Stulp et al. [72] and by Jamone
et al. [43] are also suitable for runtime employment. However, the obtained
workspace representations are abstract, inaccurate and mainly usable by the
robot itself. Aim of the thesis at hand is to make the reachability information
visible and understandable to a human operator.
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8 Conclusion & Outlook

This chapter provides a concluding summary over major scientific contribu-
tions to the state of the art and possible applications and an outlook with
suggestions for further improvement.

8.1 Conclusion

As pointed out in the introduction, the major scientific questions that are
addressed within the scope of this thesis are:

• How can workspace visualization benefit from on-the-fly computation
on the GPU?

• Can it be used to substitute a natural sense of reachability for a robotic
manipulator?

Different concepts were explored and devised within this context. A dis-
tinction was made between generally and directly accessible workspace and
for both domains, visualization techniques for displaying translational and
rotational boundaries have been investigated.

Four tools emerged, that were implemented and tested:

• An on-line visualization of the constant orientation workspace for
the current TCP orientation allows to display the generally accessible
workspace for translation.

• A fast visualization of the total orientation workspace for a given set
of orientations serves as a hybrid for depicting the generally accessible
workspace for position and orientation.

• An on-line visualization of the directly accessible workspace for transla-
tion from the current position in the current orientation offers a radar-
like view of the motion limits.

• An on-line visualization of the directly accessible workspace for rotation
from the current orientation at the current TCP position displays tilting
and rolling limits for a tool.
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Use cases for those tools are presented in chapter 5 and have been extended
for evaluation in a user study in chapter 6. Some of the scenarios could also be
solved without the need of any visualization or user interaction: Trajectories
or objects can be positioned using optimization techniques. This applies to the
parameters of a robotic structure and the shape of a tool as well. However, the
strength of the presented approaches lies in their flexibility and in providing
a visual understanding.

Human-operated robot control and human-robot interaction are becoming
more and more popular. Robotic manipulators are used in a broader spectrum
for many tasks, especially in research scenarios or in the context of the maker
culture. Devising a dedicated optimization algorithm for every single task
can require a lot of time and effort and having a useful multipurpose tool
at hand is often sufficient. Furthermore, optimization might not provide a
solution.

If the shape of the workspace is shown, one can often easily see if the shape of
the trajectory will fit into it or not and how the trajectory has to be modified
in order to fit. Also, optimization and visualization can be combined as was
done in the trajectory trials in the user study.

Whether the presented concepts can serve as such a multipurpose tools is
difficult to evaluate since it remains to be seen if they find acceptance in
realistic scenarios. Two requests for making the visualization tools available
to the ROS community and for further projects have already been made.

8.2 Contributions

Within the scope of the thesis at hand, the potential of on-the-fly workspace
analyses has been explored. The following scientific contributions were
made:

On-the-fly Visualization of Motion Boundaries

The live visualization of motion boundaries allows to display situation-
relevant data only, which is especially beneficial for breaking down the five-
dimensional workspace barrier into translation and orientation information
for the current TCP pose.

Distinction Between Generally and Directly Accessible Workspace

By distinguishing between poses that are accessible in general and poses
that are accessible in a straight motion, inner barriers that are the result of
workspace self overlaps can be visualized.
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Workspace Exploration by Parallel Simulated Motion

Probing the workspace by virtually moving in all directions constitutes a brute
force strategy that can run in parallel on GPUs and can easily be extended to
cope with other robotic manipulator structures.

Actual Freedom of Motion as Dexterity Measure

Displaying the effectively reachable volume around the current TCP position
serves as a dexterity measure that can be more meaningful than measures
based on the Jacobian matrix, which can only provide an estimate about the
proximity to singularities and about direction-dependent speed or force/
torque limits.

Novel Cost Function Merging Concept

A concept for aggregating joint-specific and general cost values into one
combined cost scalar has been presented. It correctly propagates limits be-
tween inadmissible and admissible intervals for each partial cost into the final
value without the need of infinite potential walls. This facilitates numeric
algorithms to converge from inadmissible intervals into admissible ones and
accurately detect the transition point.

8.3 Applications

All concepts have been implemented within the ROS environment and are
ready to use. The only additional dependency is OpenCL.

Possible applications of the presented concepts include:

Visual Support for Manual Operation of Manipulators

For scenarios with tele-operated or hands-on control situations like surgery,
installation or repair in human-unaccessible areas like space or under water
or exploration of hazardous areas, visualization can help to navigate within
the workspace.

Fast Workspace Analysis for Time-Critical Scenarios

If a robotic operation has to be performed quickly in an unknown environ-
ment, as can be the case in surgery or emergency management, being able to
quickly assess the current or general reachability of the robot can be a crucial
assistance for quicker and/or better performance.

Assistance for Robot or Target Placement and Repositioning

Displaying the scenario-specific workspace for a given tool and target orien-
tation scope helps to easily determine a suitable robot pose in relation to the
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target area (or vice versa), which can be particularly useful for mobile robots
that have to be repositioned frequently.

Interactive Workspace Exploration for Design and Comparison of Robots and

Tools

Being able to interactively determine the influence of parameters concerning
the structure of the robot or the shape of a tool can assist during the design
phase of new manipulators or tools.

Determination of Tolerance Around a Trajectory

Not only can critical areas be identified, the cause of the problem and a
possible solution can be determined much more quickly compared to pure
placement optimization results.

Flexible Tool for Robotics in Research Environments

Being able to see current motion boundaries can facilitate a quick setup of
experiments and avoid time-consuming optimization or planning.

Fundament for Further On-the-Fly Analyses or Optimizations

The determined workspace boundaries can be used as input for further
algorithms. The actual workspace volume around a position can serve as a
quality criterion, trajectories can be planned and optimized using collision
avoidance algorithms within the hull.

Creating a Feeling for a Robot‘s Positioning Capabilities

The results of the conducted user study are a strong indication that the
visualization helps to convey an understanding of the reachability. Time will
tell whether the concepts find broad acceptance in the robotics community.

8.4 Outlook

Some further research directions based on the proposed visualization con-
cepts will be suggested in the following.

Generalization for Other Kinematic Structures

So far, the presented approach has been implemented for one robot architec-
ture only. In order to extend it so it captures further structures, the inverse
kinematics solution has to be implemented to run in OpenCL. Dealing with
the very common 6-DoF anthropomorphic arm would actually simplify the
situation a lot, it can be treated as a the regarded 7-DoF structure with fixed
null-space parameter.
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The visualization of the directly accessible workspace is applicable to robots
with higher degrees of redundancy as well. The virtual motion for the prob-
ing rays can be implemented using numerical inverse kinematics solutions
based on the pseudo inverse of the Jacobian, which works with any num-
ber of joints. For the generally accessible workspace however, being able
to obtain a guaranteed solution for a given position is desirable, which fa-
vors a robotic structure that facilitates an analytical solution to the inverse
kinematics problem.

Extended Workpiece Specification

With the methods presented in this thesis, it is possible to render the generally
accessible workspace for one target TCP orientation as well as the intersection
of the workspaces for different target TCP orientations. It may be desirable
to access one point of the workpiece in one orientation and another point
in one out of several orientations if the tool is symmetrical. In principle,
this requires shifting of workspaces and further boolean operations which
bears little implementation effort and no further computational load (one
workspace computation per orientation).

Using Upcoming Display Technology

When the operator does not see the actual robot but only a camera image (as
it is done in surgical scenarios or when the robot is operated from a distance),
the workspace limits can be displayed within the image.

Head-mounted displays allow to comfortably navigate in three-dimensional
space without the need to deliberately control the camera, from which the
presented concepts could benefit a great deal, since the necessary camera
motion was perceived as cumbersome by some test users.

If a form of augmented reality display is used, the workspace limits can even
be displayed around the actual robot. This would facilitate using the system
in hands-on operation.

Collision Avoidance

Basically, collision avoidance and its effect on the workspace shape can also
be considered. However, this requires capturing the three-dimensional scene
around the robot and collision checking can be computationally very expen-
sive, depending on the detail of the models. Whether today’s hardware is
powerful enough to sample enough probe rays in sufficient resolution has to
be evaluated.
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Kenngott, Beat Peter Müller, and Heinz Wörn. Knowledge-based
workspace optimization of a redundant robot for minimally invasive
robotic surgery (mirs). In Conference on Robotics and Biomimetics, 2015.

[43] Lorenzo Jamone, Lorenzo Natale, Kenji Hashimoto, Giulio Sandini, and
Atsuo Takanishi. Learning the reachable space of a humanoid robot:
A bio-inspired approach. In Biomedical Robotics and Biomechatronics
(BioRob), 2012 4th IEEE RAS & EMBS International Conference on, pages
1148–1154. IEEE, 2012.

[44] SCHUNK GmbH & Co. KG.

[45] D Kohli and J Spanos. Workspace analysis of mechanical manipulators
using polynomial discriminants. Journal of Mechanical Design, 107(2):209–
215, 1985.

118

http://wiki.ros.org/rviz
http://wiki.ros.org/rviz/DisplayTypes/Marker
https://code.google.com/archive/p/simple-opencl/


Bibliography

[46] Rainer Konietschke, Tobias Ortmaier, Holger Weiss, Gerd Hirzinger,
and Robert Engelke. Manipulability and accuracy measures for a
medical robot in minimally invasive surgery. In On Advances in Robot
Kinematics, pages 191–198. Springer, 2004.

[47] Anis Koubaa. Robot Operating System (ROS): The Complete Reference,
volume 1. Springer, 2016.

[48] A Kumar and KJ Waldron. The workspaces of a mechanical manipula-
tor. Journal of Mechanical Design, 103(3):665–672, 1981.

[49] Sang-Joo Kwon and Youngil Youm. General algorithm for automatic
generation of the workspace for n-link redundant manipulators. In
Advanced Robotics, 1991. ’Robots in Unstructured Environments’, 91 ICAR.,
Fifth International Conference on, pages 1722–1725 vol.2, June 1991.

[50] Bettina Laugwitz, Theo Held, and Martin Schrepp. Construction and
evaluation of a user experience questionnaire. Springer, 2008.

[51] Z.-C. Lia and C.-H. Menq. The dexterous workspace of simple ma-
nipulators. Robotics and Automation, IEEE Journal of, 4(1):99–103, Feb
1988.

[52] M Lohmann, R Konietschke, A Hellings, C Borst, and G Hirzinger.
A workspace analysis method to support intraoperative trocar place-
ment in minimally invasive robotic surgery (mirs). In Computer- und
Roboterassistierte Chirurgie, 2012.

[53] Carlos L Luck. Robot cartography: a topology-driven discretization for
redundant manipulators. In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 2, pages 1446–1451. IEEE,
1996.

[54] C.L. Lück and Sukhan Lee. Redundant manipulator self-motion topol-
ogy under joint limits with an 8-dof case study. In Intelligent Robots
and Systems ’93, IROS ’93. Proceedings of the 1993 IEEE/RSJ International
Conference on, volume 2, pages 848–855 vol.2, Jul 1993.

[55] C.L. Lück and Sukhan Lee. Topology-based analysis for redundant
manipulators under kinematic constraints. In Decision and Control, 1995.,
Proceedings of the 34th IEEE Conference on, volume 2, pages 1603–1608
vol.2, Dec 1995.

[56] D Oblak and D Kohli. Boundary surfaces, limit surfaces, crossable
and noncrossable surfaces in workspace of mechanical manipulators.
Journal of Mechanical Design, 110(4):389–396, 1988.

119



Bibliography

[57] Frank C Park and Roger W Brockett. Kinematic dexterity of robotic
mechanisms. The International Journal of Robotics Research, 13(1):1–15,
1994.

[58] Joshua D Petitt and Karol Miller. Six-dimensional visualisation of end-
effector pose using colour spaces. In Proc. 2002 Australasian Conference
on Robotics and Automation, volume 27, page 29, 2002.

[59] Oliver Porges, Theodoros Stouraitis, Christoph Borst, and Maximo A
Roa. Reachability and capability analysis for manipulation tasks. In
ROBOT2013: First Iberian Robotics Conference, pages 703–718. Springer,
2014.

[60] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software, vol-
ume 3, page 5, 2009.

[61] J Rastegar and P Deravi. The effect of joint motion constraints on the
workspace and number of configurations of manipulators. Mechanism
and Machine Theory, 22(5):401–409, 1987.

[62] J Rastegar and P Deravi. Methods to determine workspace, its sub-
spaces with different numbers of configurations and all the possible con-
figurations of a manipulator. Mechanism and Machine Theory, 22(4):343–
350, 1987.

[63] J Rastegar and B Fardanesh. Manipulation workspace analysis using
the monte carlo method. Mechanism and Machine Theory, 25(2):233–239,
1990.

[64] Jason W Rauchfuss and Daniel CH Yang. A geometric approach for
determining exact point accessibility of robotic manipulations. Journal
of Mechanical Design, 122(3):287–293, 2000.

[65] Bernard Roth. Performance evaluation of manipulators from a kine-
matic viewpoint. NBS Special Publication, 459:39–62, 1976.

[66] Günter Schreiber, Andreas Stemmer, and Rainer Bischoff. The fast
research interface for the kuka lightweight robot. In IEEE Workshop
on Innovative Robot Control Architectures for Demanding (Research) Appli-
cations How to Modify and Enhance Commercial Controllers (ICRA 2010),
pages 15–21. Citeseer, 2010.

[67] RG Selfridge. The reachable workarea of a manipulator. Mechanism and
Machine Theory, 18(2):131–137, 1983.

120



Bibliography

[68] Masayuki Shimizu, Hiromu Kakuya, Woo-Keun Yoon, Kosei Kitagaki,
and Kazuhiro Kosuge. Analytical inverse kinematic computation for
7-dof redundant manipulators with joint limits and its application to
redundancy resolution. Robotics, IEEE Transactions on, 24(5):1131–1142,
2008.

[69] Masayuki Shimizu, Woo-Keun Yoon, and Kosei Kitagaki. A practical
redundancy resolution for 7 dof redundant manipulators with joint
limits. In Robotics and Automation, 2007 IEEE International Conference on,
pages 4510–4516. IEEE, 2007.

[70] JA Snyman, LJ Du Plessis, and Joseph Duffy. An optimization approach
to the determination of the boundaries of manipulator workspaces.
Journal of Mechanical Design, 122(4):447–456, 2000.

[71] J Spanos and D Kohli. Workspace analysis of regional structures of
manipulators. Journal of Mechanisms, Transmissions, and Automation in
Design, 107(2):216–222, 1985.

[72] Freek Stulp, Andreas Fedrizzi, Franziska Zacharias, Moritz Tenorth,
Jan Bandouch, and Michael Beetz. Combining analysis, imitation, and
experience-based learning to acquire a concept of reachability in robot
mobile manipulation. In Humanoid Robots, 2009. Humanoids 2009. 9th
IEEE-RAS International Conference on, pages 161–167. IEEE, 2009.

[73] Masaki Togai. An application of the singular value decomposition to
manipulability and sensitivity of industrial robots. SIAM Journal on
Algebraic Discrete Methods, 7(2):315–320, 1986.

[74] Bertrand Tondu. A zonotope-based approach for manipulability study
of redundant robot limbs. International Journal of Humanoid Robotics,
10(03):1350023, 2013.

[75] Gracian Trivino and Jose San Martin. A fuzzy logic approach to the
concept of manipulability in mechanics. In Fuzzy Systems Conference,
2007. FUZZ-IEEE 2007. IEEE International, pages 1–5. IEEE, 2007.

[76] Ming-June Tsai. Workspace geometric characterization and manipulability
of industrial robots. PhD thesis, The Ohio State University, 1986.

[77] YC Tsai and AH Soni. An algorithm for the workspace of a general nr
robot. Journal of Mechanical Design, 105(1):52–57, 1983.

[78] RJ Urbanic and A Gudla. Functional work space estimation of a robot
using forward kinematics, dh parameters, and shape analyses. In
ASME 2012 11th Biennial Conference on Engineering Systems Design and
Analysis, pages 381–391. American Society of Mechanical Engineers,
2012.

121



Bibliography

[79] Nikolaus Vahrenkamp, Tamim Asfour, and Rudiger Dillmann. Robot
placement based on reachability inversion. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 1970–1975. IEEE,
2013.

[80] Nikolaus Vahrenkamp, Tamim Asfour, Giorgio Metta, Giulio Sandini,
and Rudiger Dillmann. Manipulability analysis. In Humanoid Robots
(Humanoids), 2012 12th IEEE-RAS International Conference on, pages 568–
573. IEEE, 2012.

[81] Liquan Wang, Jianrong Wu, and Dedong Tang. Research on workspace
of manipulator with complicated constraints. In Intelligent Control and
Automation, 2008. WCICA 2008. 7th World Congress on, pages 995–999.
IEEE, 2008.

[82] Yunfeng Wang and Gregory S Chirikjian. Workspace generation of
hyper-redundant manipulators as a diffusion process on se (n). Robotics
and Automation, IEEE Transactions on, 20(3):399–408, 2004.

[83] KUKA Website.
http://www.kuka-robotics.com/en/pressevents/news/
NN 060515 Automatica 02.htm (visited 10.12.2015).

[84] KUKA Website.
http://www.kuka-robotics.com/germany/en/products/
industrial robots/sensitiv/ (visited 10.12.2015).

[85] Schunk Website.
http://mobile.schunk-microsite.com/en/produkte/products/
dextrous-lightweight-arm-lwa-4d.html (visited 10.12.2015).

[86] Chi-Haur Wu and Hernando Valencia. Trajectory feasibility based on
cartesian workspace for robot manipulators. In Robotics and Automation.
Proceedings. 1986 IEEE International Conference on, volume 3, pages 1865–
1870. IEEE, 1986.

[87] DCH Yang and ZC Lai. On the dexterity of robotic manipula-
tors—service angle. Journal of Mechanisms, Transmissions, and Automation
in Design, 107(2):262–270, 1985.

[88] DCH Yang and TW Lee. On the evaluation of manipulator workspace.
Journal of Mechanism, Transmission, Automation in Design, 105:70–77,
1983.

[89] DCH Yang, EY Lin, and SY Cheng. Primary workspace of indus-
trial robots with roll-pitch-yaw wrists. Journal of Mechanical Design,
112(3):347–353, 1990.

122

http://www.kuka-robotics.com/en/pressevents/news/NN_060515_Automatica_02.htm
http://www.kuka-robotics.com/en/pressevents/news/NN_060515_Automatica_02.htm
http://www.kuka-robotics.com/germany/en/products/industrial_robots/sensitiv/
http://www.kuka-robotics.com/germany/en/products/industrial_robots/sensitiv/
http://mobile.schunk-microsite.com/en/produkte/products/dextrous-lightweight-arm-lwa-4d.html
http://mobile.schunk-microsite.com/en/produkte/products/dextrous-lightweight-arm-lwa-4d.html


Bibliography

[90] Anna Yershova, Swati Jain, Steven M Lavalle, and Julie C Mitchell.
Generating uniform incremental grids on so (3) using the hopf fibration.
The International journal of robotics research, 2009.

[91] T. Yoshikawa. Dynamic manipulability of robot manipulators. In
Robotics and Automation. Proceedings. 1985 IEEE International Conference
on, volume 2, pages 1033–1038, Mar 1985.

[92] Tsuneo Yoshikawa. Analysis and control of robot manipulators with
redundancy. In Robotics research: the first international symposium, pages
735–747. Mit Press Cambridge, MA, 1984.

[93] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The interna-
tional journal of Robotics Research, 4(2):3–9, 1985.

[94] Tsuneo Yoshikawa. Translational and rotational manipulability of
robotic manipulators. In Industrial Electronics, Control and Instrumen-
tation, 1991. Proceedings. IECON’91., 1991 International Conference on,
pages 1170–1175. IEEE, 1991.

[95] Franziska Zacharias. Knowledge representations for planning manipulation
tasks, volume 16. Springer Science & Business Media, 2012.

[96] Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. Capturing
robot workspace structure: representing robot capabilities. In Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, pages 3229–3236. Ieee, 2007.

[97] Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. Object-
specific grasp maps for use in planning manipulation actions. In Ad-
vances in Robotics Research, pages 203–213. Springer, 2009.

[98] Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. Online
generation of reachable grasps for dexterous manipulation using a
representation of the reachable workspace. In Advanced Robotics, 2009.
ICAR 2009. International Conference on, pages 1–8. IEEE, 2009.

[99] Franziska Zacharias, Ian S Howard, Thomas Hulin, and Gerd Hirzinger.
Workspace comparisons of setup configurations for human-robot inter-
action. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 3117–3122. IEEE, 2010.

[100] Franziska Zacharias, Wolfgang Sepp, Christoph Borst, and Gerd
Hirzinger. Using a model of the reachable workspace to position mobile
manipulators for 3-d trajectories. In Humanoid Robots, 2009. Humanoids
2009. 9th IEEE-RAS International Conference on, pages 55–61. IEEE, 2009.

123



Bibliography

[101] H. Zghal, R. V. Dubey, and J. A. Euler. Efficient gradient projection
optimization for manipulators with multiple degrees of redundancy.
In Robotics and Automation, 1990. Proceedings., 1990 IEEE International
Conference on, pages 1006–1011 vol.2, May 1990.

124


	Introduction
	Motivation
	Outline

	Fundamentals & State of the Art
	Redundant Robotic Manipulators
	Null-Space Parameter
	Configuration Index
	The Jacobian Matrix and Singularities
	Forward and Inverse Kinematics

	Workspace Analysis and Reachability
	Basic Considerations
	Workspace Categories
	Volume Sweeping or Convolution
	Forward Kinematics
	Inverse Kinematics
	Analytical and Geometrical Boundary Determination
	Learning-based Approaches


	Manipulability and Dexterity
	Contributions of this Thesis
	Intuitive Workspace Visualization
	On-the-Fly Generation and Rendering of Workspace Boundaries
	Handling of Self-Overlaps
	Margin as Dexterity Measure


	Proposed Workspace Visualization Concepts
	Inverse Kinematics Computation
	Particular Solution
	General Solution

	Generally and Directly Accessible Workspace
	Visualization
	Translation Boundaries
	Rotation Boundaries
	Boundary Surfaces in Orientation Domains
	Sphere of Colored Rotation Axis Tips
	Tilt Sphere

	Total Orientation Workspace

	Redundancy Handling
	Cost Function Combining
	Partial Cost Functions


	Implementation
	System Setup
	Generally Accessible Workspace Computation
	Inverse Kinematics
	Bounding Box Determination
	Smoothing the Boundary Surface
	Total Orientation Workspace Determination

	Directly Accessible Workspace Computation
	Probing Rays in All Directions
	Null-Space Optimization
	Computation of the Tilt Sphere

	User Interface
	Workspace Visualization
	Gamepad Control


	Applications & Use Cases
	Robot Placement for Palletizing
	Robot Placement for Machining a Cube
	Range of Motion for a Tool
	The Benefit of Seven Joints

	Results
	System Performance & Influencing Factors
	Frame Rate
	Hardware
	Resolution
	Precision

	User Study
	Introduction to the Study
	Reachability Evaluation
	Position Tolerance Assessment
	Orientation Tolerance Assessment


	Discussion
	Reception
	Remarks on the User Study
	Lessons Learned
	Comparison to Other Works

	Conclusion & Outlook
	Conclusion
	Contributions
	Applications
	Outlook


