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ABSTRACT The focus of this paper was on finding wrist sensor-derived features for detecting highly
acute fall risk from the sit-to-stand transitions performed in a non-ambulatory environment. Furthermore, the
influence of the dominant and non-dominant hand on these features was investigated. A cohort of 174 older
subjects was monitored for seven consecutive days in their home setting by using inertial sensors attached
at the wrist. Based on the reported falls during a one-month follow-up phase, two groups were defined.
Twenty-one time and frequency domain features were implemented for the quantitative assessment of
extracted sit-to-stand transitions. The statistical analysis yielded two features that could convincingly dis-
tinguish fallers from non-fallers for the dominant hand, and six for the non-dominant hand. A novel feature,
energy of the applied support during standing up, showed statistically good performance independently of
on which hand the sensor node was worn, as well as for the dominant and non-dominant hand (p < 0.014,
p < 0.027, and p < 0.020, respectively). This paper overcomes limitations of clinical tests and shows
a reliable application of wrist-worn bands in terms of assessment of highly acute fall risk. In addition,
it reveals the sit-to-stand transition as a potential assessment source for the wrist-worn devices in the elderly
population. Early assessment of the risk of falling in a widely accepted and non-stigmatized manner has the
ability to bring crucial changes in fall prevention strategies, reducing the number of falls and the fall rate.

INDEX TERMS Elderly population, fall risk assessment, inertial sensors, transitions in daily activities.

I. INTRODUCTION
One third of the population aged over 65 experience one or
more falls each year. Falls are a major cause of middle to
severe injuries placing an enormous burden on the healthcare
system. This is reflected in over $34 billion fall-related costs
per year in the USA alone [1]. Falls can lead to depression and
social isolation [2]. The number of falls can be significantly
reduced by using different fall prevention strategies such as
balance and strength training, avoiding home hazards and
shoe modifications, as well as drug related modifications and
interventions [3].

The main prerequisite for fall prevention strategies is an
objective and reliable fall risk assessment (FRA) to tar-
get the intervention. FRA in the clinical setting is still
considered to be the gold standard. It is often assessed
either via series of different tools (e.g. Psychological Pro-
file Approach [4]) or via simple gait and balance tests

(e.g. Timed-Up-And-Go test [5]). These tests have numerous
limitations such as the lack of cost-effectiveness, high time
consumption for both, patients and professionals, or focus
on singular aspects (e.g. time) of highly complex activities.
Therefore, recent studies have tried to perform FRA in a
home environment by using unobtrusive systems contain-
ing inertial sensors [6]–[9]. Moreover, the results of FRA
were further improved by combining sensor-based assess-
ment with questionnaires [8], [9]. Sensor nodes in latter men-
tioned studies mostly target different aspects of gait analysis.
The focus on gait is justifiable, since gait parameters have
been shown to be meaningful fall predictors (such as gait
speed [10], step rate variability [6] etc.). However, it also has
been shown that 41% of all falls in the frail elderly popula-
tion are caused by inappropriate sit-to-stand transfers [11],
strongly indicating that more studies should address this
outcome.
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Although general consensus on the definition of a
sit-to-stand transition is lacking, particularly in the unsu-
pervised non-laboratory environment, clinically every sit-
to-stand transition can be split into four main phases [12]:
flexion (leaning forward), momentum-transfer (seat-off),
extension (returning to upright position) and stabilization
phase. The transitions described by this definition are rather
inorganic in a home environment, mainly because they are
often followed by awalking phase. As suggested in [13], most
common transitions in normal daily routine are sit-to-walk
transitions, where walking continues directly after the exten-
sion phase, skipping the stabilization phase. In these cases
the initiation of the first step takes place at the same time as
when the center of mass reaches the highest vertical point in
the transition during extension. This movement requires very
good coupling of both, upper and lower limbs. Weaker inter-
limb coordination is characteristic of the elderly population at
high risk of falling [14], highlighting the need to investigate
sit-to-walk transitions in terms of FRA.

In previous studies sensor nodes were usually attached
close to the center of mass, at the thigh or on the chest with
an objective to detect activities of daily living [6]–[9], [15].
At present, wrist-worn bands, as the most unobtrusive and
widely accepted devices for activity monitoring, have not yet
been validated in terms of FRA from activities of daily living.
Inertial sensors at the wrist are far away from the center of
mass, and additionally are affected by movements performed
during upper limb activities when the center of mass is in an
approximately motionless position (e.g. standing, sitting, and
lying). Although this challenging position has shown low per-
formance for activity classification [16], [17], analysis of the
data acquired with a wrist-worn band may reveal important
information about different transfer techniques [18].

The aim of our study was the development of sensor-
derived features describing the sit-to-stand transition via wrist
band to discriminate between fallers and non-fallers in a
cohort of elderly population. In order to gain better validation
and understanding of the features independently of the side
on which the sensor node was worn, the analysis of the
implemented features was performed both, for the dominant
and non-dominant hand.

II. METHODS
A. DATA ACQUISITION
An exploratory cross-sectional FRA study including a con-
venient sample of 174 adults aged between 65 and 85 years
with a one month follow-up documenting fall events was
performed. This study was part of a larger ongoing study
conducted to develop fall risk assessment models based on
the sensor-derived data from daily life activities. Partici-
pants were recruited from a geriatric rehabilitation clinic
and a health insurance company in Germany. The study was
approved by the Ethical Committee of the Medical Faculty
at the University Hospital of Tuebingen, Germany. All par-
ticipants gave their written informed consent in accordance

with the Declaration of Helsinki. The exclusion criteria for
participation in the study were impaired cognition
(>10 points on the Short-Orientation-Memory-Concentra-
tion (SOMC) test [19]), inability to walk or terminal diseases.
During the study, 13 participants revoked their participation,
while 25 participants had to be excluded due to the sensor
malfunction, resulting in the inclusion of 136 subjects on
which the data analysis was conducted.

Sensor-derived data of physical activities from each partic-
ipant were recorded for one week (seven consecutive days) in
the participant’s daily life routine. Oneweek of data recording
was chosen, since it reflects the person’s behavior during
working hours (in case the participant is still employed) as
well as during leisure time (weekends), which significantly
influences the frequency of the transitions as shown in [20].
On the first day of measurement the participants arbitrarily
chose on the side (dominant or non-dominant hand) they
wanted the sensor node to be attached to and were asked
to continue wearing it there until the end of measurement.
The sensor node was attached in the morning and it was
worn during normal daily routine, while the batteries were
charged overnight. The sensor’s housing was not waterproof
so the participants were instructed not to wear it when they
had to come in contact with water. Data corresponding to
measurements over one day were stored in one file to ease
offline processing.

On the first day of a measurement week the participants’
characteristics were collected by a trained supervisor in
the participants’ home environment. Descriptive parameters
included age, height, body mass, SOMC test, habitual gait
speed, number of chair rises during 30 seconds [21], and side
of the dominant hand. The habitual gait speed was measured
with static start on a pathway no shorter than 3.5 meters.
The walking pathway was variable due to various conditions
in the participant’s home environment (e.g. obstacles, small
apartments).

Additionally, the participants answered a fall risk assess-
ment questionnaire (FRAQ), investigating 18 of the most rel-
evant factors for risk of falling identified in [22]. Risk factors
were assessed with yes-no questions, except history of falls
in the last 12 months and number of prescribed medications.
History of falls was graded with 0 for no reported falls, with
1 for one to two reported falls and with 2 for more than two
reported falls. For more than two prescribed medications the
answer was graded with 1, otherwise with 0. Other factors
depending on their presence were graded either with 0 or 1.
Total score of the FRAQ was defined as the sum score of the
answers. Furthermore, anthropometric measures and FRAQ
were used to determine the FRAT-up (Fall Risk Assess-
ment Tool) score, a score for the FRA previously developed
and validated in [23] and [24]. Both measures, FRAQ and
FRAT-up score, were used for further comparison with the
results of the study.

From the first day of the measurement week onwards, all
participants filled out a fall diary for onemonth. Each daywas
marked either with 1 (in case of fall) or 0 (in case of no fall).

2700211 VOLUME 4, 2016



Pozaic et al.: Sit-to-Stand Transition Reveals Acute Fall Risk in Activities of Daily Living

The fall was defined as a non-intentional unexpected event
in which one’s body comes to rest on the ground, floor or
lower level including the events occurred by tripping over an
obstacle or slipping due to various environmental conditions
(indoor, as well as outdoor) [25]. Since no reasonable defini-
tion in the literature nor general consensus about the relevant
falls in terms of the FRA in a non-ambulatory environment
could be found, all reported falls (including also ones during
the fall-prone activities) were treated equally. These reports
were used as the reference method for splitting the partici-
pants into two groups: fallers (participants reporting one or
more falls) and non-fallers (participants reporting no falls).
Characteristics of the participants are shown in Table 1.

TABLE 1. Participants characteristics.

B. SENSOR SYSTEM
Participants wore one sensor node attached at the wrist
(Figure 1). The sensor node consisted of a three-axial

FIGURE 1. Sensor node equipped with the 3-axes accelerometer,
gyroscope and magnetometer attached at the wrist together with the
data acquisition device (smart phone).

accelerometer BMA280, gyroscope BMG160 and magne-
tometer BMC055 (all three Bosch Sensortec GmbH, Reutlin-
gen, Germany). Physical dimensions of the sensor node were
56 mm width, 46 mm length and 15 mm height. Measure-
ment ranges were set to ±8 g, ±1000 ◦/s, and ±1000 µT
for the accelerometer, gyroscope and magnetometer, respec-
tively. Resolution of the accelerometer sensors was set to
14 bit, while gyroscope and magnetometer sensors had a
16 bit resolution. The data were sampled with 100 Hz, as this
is a sampling frequency that by Nyquist-Shannon theorem
should be able to cover 99% frequency components of the
human daily movement [26]. Sampled data were transmitted
wirelessly over a Bluetooth Low Energy (BLE) connection
to an Android phone (LG G2 mini, LG Electronics, Seoul,
South Korea) attached to a belt around the waist. Arrival
time of each BLE packet was noted. Moreover, every minute
the phone was sending a packet to the sensor and it was
waiting for its response. The round trip of that packet between
the phone and sensor was used later for synchronization
purposes. The sensor node was supplied with a rechargeable
lithium battery (170 mAh) which lasted for approximately
eight hours of continuous data acquisition.

C. TRANSITION DEFINITION
The conventional descriptions of sit-to-stand transitions are
predominantly related either to the participant’s center of
mass (located around the fifth vertebrae in the lumbar spine)
or to the upper part of the body. Our focus was on detection
of the transitions with the wrist-attached sensor node by
means of the acceleration-based dominant trigger conditions
(e.g. dormancy phase or rotation in the wrist) in order to
increase the algorithm’s precision for detection of these non-
recurrent movements in activities of daily living. Since the
end of the first dormancy phase followed by the rotation in
the wrist was depicted as the transition’s start, the partial
or in extreme cases complete loss of the flexion phase was
unwillingly introduced as a trade-off. This further means that
in the event of a total loss of the flexion phase, the seat-off
moment, as the most noticeable and easily detectable part of
the transition, became the starting point of the corresponding
transition. With respect to the hand, more precisely with
respect to the end phase, three possible end conditions were
defined: motionless position at least for two seconds after the
extension phase, first highest point in the arm swing depicting
the start of a walking phase and various hand movements
(e.g. reaching for the hair, fitting the clothes, swinging the
hands) that were not distinguished from each other but rather
depicted with energy in the acceleration signal above prede-
fined threshold.

III. DATA ANALYSIS
A. PREPROCESSING
Acquired data from the FRA study were processed offline
using MATLAB R2013b software package. Wrist signals
were partially affected by data loss due to artifacts in the BLE
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connection (e.g. various obstacles and distances between
wrist sensor and phone). Data loss was detectedwhen the time
difference between two consecutive BLE packages ti and ti+1
satisfied a relation ti+1−ti > 1.5∗TS, where TS is the defined
sampling period. Data loss was detected on a monotonously
increasing time vector built from the mapping of the phone
and sensor times. More specifically, the sensor time was a
22-bit counter mapped on the packet arrival time noted by
the phone. This method allowed us to overcome the problem
with counter overflow (due to limited variable size), as well
as data loss over longer periods of time where whole counter
cycles might have been lost (for example due to the BLE
connection loss).

Before further processing, missing data packets were inter-
polated linearly. In order to use only meaningful (valid) parts
of the interpolated signals, a valid flag was introduced. The
valid flag denoted valid parts in the signal defined by three
crucial conditions:

• An interval between two consecutively acquired BLE
packets was shorter than 250 milliseconds;

• An interval defined with a window size of one second
had less than 30% data loss in total;

• An interval satisfying the two conditions above was
longer than 10 seconds.

Invalid signal points, as well as the days with total data
loss higher than 80% were excluded from further processing.
Validated interpolated acceleration sensor data were used as
an input to the sit-to-stand transition detection algorithm.

B. SIT-TO-STAND TRANSITION DETECTION
While many previous studies have focused on the detec-
tion and assessment of the particular phases in order to
reliably assess the performed transitions [27]–[29], our pro-
posed method focused on detection of particular trigger
events (such as rotation of the wrist above a predefined
threshold), as well as periodical or motionless situations
after these events. Various reasons justify application of this
approach. Movements of the hand prior to the transition can
be mathematically described as chaotic movement contrary
to the body’s center of mass which is prevalently motionless
during sitting or standing [30], [31]. The focus on domi-
nant trigger events places emphasis on the algorithm’s pre-
cision reducing possible false positive movements. Figure 2
shows an acceleration signal during eight hours of record-
ing on the wrist and waist (data taken from a pilot study).
This example illustrates the need for more robust algorithms
(e.g. via trigger events) for the wrist sensor since sitting,
standing and lying movements are overlapped with signifi-
cantly more chaotically signals (i.e. higher signal variability)
compared against the acceleration signals acquired with the
waist-worn devices in previous studies [6]–[9]. Moreover,
the end of the transition is mainly affected by additional
chaotic movements. Thus, focus on the periodical movements
(i.e. walking) or dormancy phase (i.e. motionless situa-
tion) can result in higher algorithm precision. Starting the

FIGURE 2. Typical movement patterns recorded with acceleration sensor
attached at the wrist and waist. Significantly higher signal variability
(Spearman’s r = 0.05, p < 0.0001) is clearly visible for the wrist sensor
(2.9 g versus 1.5 g). Positive X axis of the local coordination system of the
sensor points in the inferior-superior (VT) direction, positive Y axis points
in the medial-lateral (ML) direction from the body, while Z axis points the
anterior-posterior (AP) backwards direction.

transition with the trigger event as a trade-off introduces
loss of the flexion phase which we overcame by assessing
different features on the acceleration signal parts detected as
transitions instead of the total transition time.

Interpolated valid parts of the acceleration signal were
filtered with a low-pass Butterworth filter 50th order with a
cut-off frequency at 20 Hz. This filtration eliminated high
frequency components that could have been misinterpreted
as trigger events in the next steps of the algorithm. More
precisely, the Butterworth filter has a maximally flat fre-
quency response in the pass band, filtering the high frequency
component but allowing the rest of the signal go throughwith-
out attenuation (i.e. preserving the realistic recorded human
movement). On the filtered acceleration signal, a detector for
dormancy phases was applied, which was followed by the
trigger detector based on the measurement of the rotation of
the wrist either around X or Z local sensor axis (Figure 2).
In case when the trigger detector reached a defined threshold
(i.e. total rotation in the wrist after the dormancy phase was
above empirically defined value) the second prerequisite for
a transition was fulfilled. End of the dormancy phase was
defined as the transition start.

In order to analyze only the meaningful parts of the signal,
the next step of our algorithm defined the end of the detected
transition. If a dormancy phase was detected at the transition
end, the end of the corresponding transition was defined with
the start of the dormancy phase. In case when a walking
phase was detected at the transitions end, the highest point
in the signal vector magnitude of the acceleration signal in
the first detected arm swing within the walking phase was
defined as the transition end. Walking as a periodical move-
ment [32] from the macro perspective of the acceleration
signal can be easily detected also on thewrist. An acceleration
based arm swing detector was used for the detection of the
walking phase. It was previously developed in Microsoft
Visual Studio 2008 and used as a binary mex-file for offline
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FIGURE 3. Implication of different implemented detectors for trigger conditions on the acceleration signal of one sit-to-stand transition recorded with the
wrist-attached sensor.

processing of the acceleration data in MATLAB 2013b. The
arm swing detector algorithm was based on an adaptive
threshold approach with a sliding window. A walking phase
was defined as the time between the start and end of walking.
Start of walking was identified with three or more consec-
utively detected arm swings, while the end of walking was
determined when no arm swings for a defined maximum
swing duration time (three seconds) were detected. If both
conditions for the transition’s end remained unfulfilled, its
end was by default defined as a four second time period
following the first trigger condition (i.e. end of the first
dormancy phase). Visualization of the implemented approach
together with corresponding signal analysis is shown in
the Figure 3.

C. FEATURE EXTRACTION
All parts of the acceleration signal that were classified as
sit-to-stand transitions were used in the feature extraction
process. An optimized feature extraction process allows
significant dimensionality reduction (i.e. transformation of
the existing signals into a lower dimensional space) [33]
and easier interpretation of the results for both, clinicians
and engineers. The most significant sit-to-stand feature for
distinguishing between fallers and non-fallers is its dura-
tion [34], [35], but as previously described, this cannot be
implemented for a wrist sensor due to the loss of the flexion
phase. Moreover, to the best of our knowledge there are
no features that could reliably assess the transitions on the
wrist in terms of FRA. This fact is important because the
wrist is far from the center of mass, meaning that a different
behavior is recorded during the transitions when compared to
a sensor attached at the lower back or sternum. Therefore, we
introduced 10 time domain and 11 frequency domain features
that were extracted from the wrist data set.

Time domain features were: peak value, jerk, median
value, time to first arm swing (TTFS), amplitude of the first

arm swing (AFS), and the amount of oscillation. All time
domain features, except for the amount of oscillation, were
derived from the validated filtered signals. The amount of
oscillation was derived from the unfiltered signal since the
oscillation spectrum was depicted with frequency compo-
nents higher than the cut-off frequency of the applied filter.
The peak value was calculated for all three axis of the accel-
eration signal as the maximum value during the transition.
It is commonly present at the seat-off moment and reflects
the energy that a participant invests for pushing himself from
the chair. In addition to that, the peak value at the lower back
has been shown to be very well correlated with the sit-to-
stand transition time [28], supporting the implementation of
this feature also in our study. The jerk and median features
were calculated on the signal vector magnitude (SVM) of the
acceleration signal. The jerk was defined as the mean value
of the first derivation of the SVM, while the median feature
is defined as the median of the SVM of the corresponding
transition. TTFS corresponds to the feature time to walk
introduced in [36]. Namely, it has been shown that fallers
due to hesitation in the gait initiation need more time to
perform the first step after the transition than non-fallers, so
with this feature we could investigate whether the same could
be claimed for the wrist-worn devices (i.e. first arm swing
of the gait phase following the transition). Besides that, we
introduced a new feature that investigated the amplitude of
this first arm swing (i.e. AFS feature). The AFS and TTFS
features were analyzed only for transitions where the walking
phase was detected at the end of the transition (within four
seconds from the trigger event). Lastly, the amount of oscil-
lation during the transition was calculated as the variance of
the first derivation independently for each acceleration axis.

Frequency domain features were: entropy, energy, funda-
mental frequency (FF), index of harmonicity (IH), and energy
of the applied support in the oscillation spectrum. All features
except for the latter one were calculated on the filtered signal
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(either on the SVM or particular sensor axis). The entropy of
the signal was calculated for all three axes and is a measure of
complexity of the analyzed signal (i.e. transition). The energy
in the frequency spectrum was calculated as the squared
sum of the harmonics lower or equal to a cut-off frequency
of 20 Hz. Unlike the dominant frequency that is often used
for quantifying the periodicalmovements likewalking, the FF
was used to assess the sit-to-stand transitions. FF was defined
as the smallest frequency in the power spectrum having a
peak [37]. IH was calculated as the ratio between the funda-
mental harmonic and following five (oscillating) harmonics.
It quantifies the contribution of the fundamental frequency
of the transition pattern to the signal power relatively to the
higher harmonics [37].

A novel feature energy of the applied support (AS) for
the assessment of the transition performance was introduced.
Elderly people often use their hands for support while stand-
ing up [38], which motivated us to calculate the energy in
the frequency spectrum (7-40 Hz) of the human physiological
tremor (oscillation spectrum). Despite the debate regarding
the right bandwidth of the oscillation spectrum, we used the
definition in [39], because of its cover of the high frequency
components in the movement.We hypothesized that people at
higher risk of falling would have less energy in the oscillation
spectrum since, due to the lower and upper limb weakness,
they apply less force for support during standing up activities.
Moreover, weakness in the upper and lower limbs has been
shown as a good fall risk predictor [40]. Assessing it via
this feature can also show significant differences between the
groups.

D. STATISTICAL ANALYSIS
Statistical analysis of the extracted features was performed
by using MATLAB R2013b Statistics and Machine Learn-
ing toolbox. For each participant all parts of the acquired
signal identified as transitions were submitted to the feature
extraction algorithm and a median value as well as 95% con-
fidence interval (95% CI) were calculated for each feature.
The median was used due to its better resistibility to extreme
values that might have occurred by false detection of the
transitions.

The one sample Kolmogorov-Smirnov test was used to test
the distribution of the values for each extracted feature. Due
to the non-parametric distribution of the features, aWilcoxon-
Mann-Whitney test was applied to analyze the differences
between the two defined groups – acute fallers and non-
fallers. The likelihood of the statistical type I error was
addressed by the use of the Benjamini-Hochberg correction
for multiple comparison. Test-retest reliability of extracted
features throughout the monitored week was assessed by
intraclass correlation coefficient (ICC). Namely, different cir-
cumstances in activities of daily living may introduce ran-
dom fluctuations in performed transitions (such as different
chairs, obstacles, dual tasking) which strongly suggests test-
ing the correlation of median feature values for each day of
measurement.

As a novel approach we tested the extracted features sepa-
rately for the participants that wore sensors on their dominant
or non-dominant hand. The algorithm applied to the signal
acquired at the dominant hand can be influenced by different
activities of daily living (e.g. writing, eating, and carrying dif-
ferent things), differing from the signal at the non-dominant
hand. This analysis tested the side-dependence of the fall risk
assessment at the wrist, as well as the sole performance of the
proposed algorithm.

IV. RESULTS
A. PARTICIPANTS CHARACTERISTICS
Thirteen participants (9.6%) reported one or more falls in
the first month of the follow-up phase (in total 21 falls or
1.6 falls per faller), while 123 participants (90.4%) reported
no falls. Only four participants (2.9%) reported more than
one fall in the first month after the measurement (in litera-
ture described as recurrent fallers), while only one reported
fall occurred during the fall-prone activities (sport). In con-
trast, both groups reported similar number (p = 0.15) of
retrospective falls in the last 12 months (0.5 ± 0.5 and
0.2 ± 0.4 for fallers and non-fallers, respectively). There
was no significant difference between non-fallers and fallers
in any of the anthropometric characteristics, including the
clinical tests that were performed (p = 0.97, p = 0.33,
and p = 0.15 for habitual gait speed, 30 seconds chair rise
test and SOMC, respectively). Participants in both groups
were wearing the sensors in similar ratio on both sides of the
body. The FRAQ and FRAT-up scores showed no significant
difference between the groups (p = 0.37 and p = 0.47,
respectively) although these two measures indicated moder-
ate to good correlation (Spearman’s r = 0.63, p < 0.001).

B. SIT-TO-STAND DETECTION ALGORITHM
PERFORMANCE
The proposed algorithm was developed and validated in a
pilot study with 28 adults aged between 65 and 90 years, who
performed eight different types of the sit-to-stand transitions
in a controlled environment (i.e. camera-supervised labora-
tory setting) as part of the protocol that simulated activities
of daily living. The algorithm showed 71.4% precision for
the non-dominant hand and 67.9% precision for the dominant
hand. The sole focus of the study was to investigate the
feature extraction process since the details of the algorithm
for detection of transitions were issued as a patent applica-
tion (official file number 102016203325.5) and thus are not
further addressed here.

C. QUANTITATIVE ANALYSIS
As a next step, the data from this study were used for the
feature analysis. Only validated data that satisfied the defined
exclusion criteria (explained in III.A) were used for this
purpose. In our study the fallers created 397 hours of validated
recording in total or 30.5 hours per participant in average.
With respect to that, non-fallers created 4098 hours of
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TABLE 2. Statistical analysis of the transition features.

validated recording or 33.3 hours per participant. The
algorithm detected 372 transitions in total for fallers
(28.6 transitions per participant per week). At the same
time, the algorithm detected 4903 transitions for non-fallers
(39.8 transitions per participant per week).

The Benjamini-Hochberg correction led to the following
critical p-values: p < 0.014 for the features from the
dominant hand and p < 0.021 for the features from the
non-dominant hand. Analysis of the extracted features for
the dominant and non-dominant hand separately revealed
several features for each case that can distinguish these
defined groups. After correction for multiple comparison,
a non-parametric Wilcoxon-Mann-Whitney test yielded two
features that can clearly distinguish between the groups
based on the data from the dominant hand (Table 2),
while six features showed statistically significant differences
between the groups based on the data from the non-dominant
hand (Table 3). For the dominant hand, peak amplitude in the
AP direction was considerably higher for fallers (p < 0.001)
and demonstrated high reliability (ICC = 0.81), whereas
the jerk showed dominance in the amplitude for the non-
fallers (p < 0.001) but with moderate test-retest reliability
(ICC = 0.63). IH_VTwas representedwith indistinguishable
results for fallers and non-fallers after the correction for the
multiple comparison but still with the trend of slightly higher
values in the favor of non-fallers (µ = 25.8, 95% CI = 24.6
– 26.9 versus µ = 22.5, 95% CI = 18.1 – 26.8, p = 0.096).
Although the presented values for the novel AS feature were
comparable for the defined groups, the results correspond

well with the hypothesis set in III.C (p = 0.027) and 95%
CI showed a clear separation between the groups (Figure 4).

FIGURE 4. Comparison of the amount of the applied support feature for
all detected transitions, and separately for the dominant and
non-dominant wrist. Results show significant difference between fallers
and non-fallers for all three cases as well as between means for
dominant and non-dominant wrist.

On the contrary to the features extracted from the sensors at
the dominant hand, features for the non-dominant hand were
found to be more distinctive for the defined use case, par-
ticularly due to the narrower confidence intervals. Namely,
one time domain feature (oscillation in the ML direction)
and five frequency domain features (AS, IH_VT, entropy
in the VT direction, energy in the VT and ML direction)
could notably distinguish between the groups. The trend of
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TABLE 3. Statistical analysis of the transition features.

features with higher values complements the results from the
dominant hand. While energy in the VT direction was con-
siderably higher for non-fallers, energy in the ML direction
showed predominantly higher values for the group of fall-
ers. Furthermore, despite the convincing results in the signal
energy for the robust discernment between the groups, com-
plexity of the movement as assessed throughout the entropy
feature confirmed this inequality only in the VT direction.
Promising findings for the IH feature in the VT direction for
the dominant hand were confirmed with significant dissim-
ilarities between defined groups for the non-dominant hand
(p = 0.005). Importantly to note, none of the proposed
conventional features demonstrated consistently significant
differences for both hands. Hence, indicative features for
the non-dominant hand demonstrated high test-retest relia-
bility within the monitored period (ICC > 0.80), yielding
a robust tool for assessment of one’s performance in terms of
acute FRA.

Our newly proposed feature was higher in the non-fallers
group, independently of which side the sensor had been worn
on (Figure 4). The feature showed substantially less applied
support (p < 0.001) at the non-dominant hand (µ = 0.0078,
95% CI = 0.0070 – 0.085) than at the dominant hand
(µ = 0.0095, 95%CI = 0.0086 – 0.0104) for the non-fallers.
However, the AS feature was not found to significantly dif-
ferentiate between amount of applied support by hands for
the fallers (p = 0.122). The remarkable performance of the
AS feature was found at the dominant hand, where in extreme
cases the amount of support applied was more than twice as
large between particular participants.

V. DISCUSSION
A number of features both, time and frequency domain based,
indicated the significant differences between fallers and non-
fallers independently of the side of the body (dominant or
non-dominant) where the sensor system was worn. There
was a high test-retest reliability of these features within the
monitored period as well. Despite the poor performance of
the clinical tools that are currently used in assessment of
the fall risk (habitual gait speed [10], 30 seconds chair rise
test [21], [41], and history of falls) our proposed method
based on the assessment of wrist performance during sit-to-
stand transitions overcame this highly complex multifactorial
challenge. The reason for that lies in the analysis of not only
numerical perspective of the sit-to-stand events but rather
on its detailed quantitative assessment enabled throughout
different features. Our results for the assessment of highly
acute fall risk showed consistent feature performance for the
defined groups in line with studies assessing fall risk either
based upon detailed quantitative evaluation of the clinical
characteristics (stride variability [42]) or features derived
from waist-worn devices (local dynamic stability [43]).

Our novel feature AS indicated that the energy of
the applied support is highly beneficial for distinguishing
between fallers and non-fallers, especially from the perspec-
tive of the non-dominant hand. Further analysis should focus
on the upper-limb role in the well-established 5-times-sit-
to-stand test, where the arms are folded across chest [44].
The findings further supplement our knowledge of transfer
strategies in elderly, showing that non-fallers who have more
available upper and lower limb strength [40] will apply more
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energy for support during standing up, while being a faller
does not automatically imply more applied support.
Moreover, considerably more signal energy in the AP direc-
tion suggests that our findings could also be applied to detect-
ing the fall-prone population in elderly with dementia (more
movement and pushing through the armrest while stand-
ing up) [18] by objectively analyzing transfer techniques.

From the wrist perspective, the AS feature revealed note-
worthy variability in the amount of applied support between
the hands only for non-fallers suggesting a more uniform dis-
tribution of both hand support for standing up in the severely
fall-prone subjects (i.e. in people with upper and lower limb
weaknesses). This is also an important factor for the fall pre-
vention implications since some of the strategies have been
shown to affect only those parts receiving interventions [45].
Furthermore, wearing the sensor at the non-dominant hand
provided more distinguishing features in terms of the FRA
which suggests possible combinations of our method within
a watch (or similar wrist-worn device) in future applications
for a highly non-stigmatized medical use.

Defining the groups in our study based only on fall events
during the first month of the follow-up phase, allowed us to
assess highly acute fall risk. This enables faster interventions
in prevention strategies crucially important for one’s personal
safety, as well as for the cost optimizations. Nevertheless, the
predictive value of our identified features and their effects on
the clinical standard 12 months of the follow-up phase should
be confirmed by another prospective study.

Non-fallers performed more transitions than fallers, possi-
bly due to a predominantly sedentary behavior characteristic
for the individuals at high risk of falling [46]. The definition
of three different transition types by different end conditions
and their fused analysis were justified by having a negligible
amount (1.4%) of motionless positions detected, and the fact
that random handmovements at the end of transitionmay also
depict start of thewalking phase since initial steps are prone to
different artefacts and as such are hardly recognizable. Hence,
analysis of different types of transitions, their occurrence
as well as their influence on the proposed features should
be addressed in future work in combination with additional
sensor nodes since it can further extend the knowledge about
group-characteristic transfer techniques.

Our method focused on the precision (i.e. correct detec-
tion of the performed transitions) rather than the sensitivity
(i.e. hit rate). Thus, although we do not get all performed tran-
sitions, findings in [20] still enable us to detect enough transi-
tions for further analysis even with low algorithm sensitivity.
Dormancy and step detectors have made this high precision
possible, but the influence of the false positive transitions
in the final analysis should not be disregarded. This effect
is particularly visible in the comparison of the results for
the dominant and non-dominant hand from the perspective
of the number of features that showed significant difference
between the groups. Lower precision for the dominant hand,
caused by more chaotically movement, that in acceleration
signal look like sit-to-stand transitions (e.g. during writing,

cooking, cleaning etc.), has consequently caused lower per-
formance of the extracted features. Another limitation of
this approach is being unable to detected the exact extreme
points of the transfer (as defined in the clinical practice), but
an approach with various features overcame this problem.
Nevertheless, further objective qualitative assessment of
whole transitions should be addressed in a controlled setting
to confirm our findings in the daily life environment.

Most falls in community-dwelling older adults, especially
for those above 80 years, occur indoors [47]. As a limitation
of our study, some adults reported falls related to sports activ-
ities which are in its basic already sport-prone (e.g. skiing).
These cases, despite the possible minor influence on the final
results, were not separately analyzed in our study. Participants
excluded from our study by the defined exclusion criteria
should also be addressed either separately or as amore diverse
group in further analysis, since these groups are at high risk of
falling [3]. Although our assessment was based on the whole
week of monitoring of the activities of daily living, covering
both, leisure and business hours (when applicable), our study
did not include late afternoon hours due to limited battery
life time. Furthermore, some of the transitions performed by
the study participants were completely or partially lost due
to the data loss characteristic for wireless transmission [48].
This challenge was addressed by validating all the signals as
described with three exclusion criteria, but this also strongly
suggests alternative data acquisition protocols in future stud-
ies (e.g. SD card) and by using two or more batteries. The
data loss might have affected the quantitative feature analysis,
but its influence was negligible since all significant features
showed high reliability throughout the monitored period of
time.

VI. CONCLUSION
Analysis of the features derived from the sit-to-stand transi-
tions shows good performance for assessment of acute fall
risk. Our approach enables a reliable application of non-
stigmatized wrist-worn devices also for clinically significant
purposes, such as fall risk assessment. The findings also con-
tribute to the better understanding and definition of the role of
the upper limb in the elderly population, as well as improve
disreputableness of the wrist-worn devices. Furthermore, the
results open a broad spectrum of new additional options that
could be investigated in further studies (e.g. different transfer
strategies, correlation with other sensor positions, possible
applications in neurodegenerative diseases that affect motor
performance).

The study may be especially worthwhile for clinicians,
as it provides tools for better adjustment of fall prevention
strategies as well as for tracking their progress on a regu-
lar/monthly basis. Cost-effective multifactorial interventions
that reduce the rate of falls, as well as the number of fallers
in hospital settings [49], [50] could benefit from our method
(more precisely from the AS feature analysis) since they
are orientated to individually-designed prevention programs
based on the previous assessments.
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