KIT | KIT-Bibliothek | Impressum | Datenschutz

Road Condition Measurement and Assessment: A Crowd Based Sensing Approach

Laubis, Kevin; Simko, Viliam; Schuller, Alexander


The widespread adoption of smart devices and vehicle sensors has
the potential for an unprecedented real time assessment of road conditions.
The international roughness index (IRI) is an important road profile quality
indicator well suited for a crowd based sensing approach. One of the
challenges, however, is the heterogeneous nature of sensor measurements from
multiple cars that need to be integrated. In this paper, we propose a
self-calibration approach that utilizes multiple statistical models trained
individually for each car, which in turn get integrated into an overall view
of the road segment’s IRI. We evaluate our approach on a dataset collected
from seven drives with a total distance of 32 km, with a smartphone equipped
car. The dataset contains GPS, accelerometer and gyroscope measurements. Our
results show that this approach can reach a mean R² of 0.68 for single car
predictions and a R² of 0.75 for combined predictions.

Zugehörige Institution(en) am KIT Universität Karlsruhe (TH) – Einrichtungen in Verbindung mit der Universität (Einrichtungen in Verbindung mit der Universität)
Forschungszentrum Informatik, Karlsruhe (FZI)
Fakultät für Wirtschaftswissenschaften – Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2016
Sprache Englisch
Identifikator KITopen-ID: 1000065206
Erschienen in Proceedings of the 2016 International Conference on Information Systems (ICIS 2016), Dublin, Ireland, December 11-14, 2016
Verlag Association for Information Systems (AIS)
Externe Relationen Abstract/Volltext
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page