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Neuronal sFlt1 and Vegfaa determine venous
sprouting and spinal cord vascularization
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Formation of organ-specific vasculatures requires cross-talk between developing tissue and

specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons

coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1

restricting Vegfaa-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific

loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural

tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes

sprout invasion into the neural tube. On loss of neuronal flt1, ectopic sprouts emanate from

veins involving special angiogenic cell behaviours including nuclear positioning and a mole-

cular signature distinct from primary arterial or secondary venous sprouting. Manipulation of

arteriovenous identity or Notch signalling established that ectopic sprouting in flt1 mutants

requires venous endothelium. Conceptually, our data suggest that spinal cord vascularization

proceeds from veins involving two-tiered regulation of neuronal sFlt1 and Vegfaa via a novel

sprouting mode.
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T
he vascular network closely associates with the neuronal
network throughout embryonic development, in adulthood
and during tissue regeneration1–3. Close association of

vessels and nerves allows reciprocal cross-talk involving
diffusible molecules, which is important for physiological
functions in both domains4,5. Arteries secrete factors that
attract sympathetic axons, and adrenergic innervation of
arteries allows the autonomic nervous system to control arterial
tone and tissue perfusion5. The nervous system, on the other
hand, requires a specialized network of blood vessels for its
development and survival. Metabolically active nerves rely on
blood vessels to provide oxygen necessary for sustaining neuronal
activity6, and disturbances herein result in neuronal
dysfunction1,7.

How nerves attract blood vessels is debated, but several
studies addressing vascularization of the mouse and
chicken embryonic nervous system suggest that the angiogenic
cytokine VEGF-A is involved8–10. In the mouse peripheral
nervous system axons of sensory nerves innervating the
embryonic skin trigger arteriogenesis involving VEGF-A–
Neuropilin-1 (NRP1) dependent signalling11,12. While these
studies provide evidence for the physical proximity and coopera-
tive patterning of the developing nerves and vasculature, relatively
little is known about mechanisms controlling VEGF-A dosage at
the neurovascular interface. This is of great importance
considering that blood vessels are very sensitive to changes in
VEGF-A protein dosage and even moderate deviations from its
exquisitely controlled physiological levels result in dramatic
perturbations of vascular development13,14. VEGF-A levels must
therefore be well titrated, and several strategies have evolved to
achieve this.

Mouse retinal neurons for example can reduce extracellular
VEGF-A protein via selective endocytosis of VEGF-A–VEGF
receptor-2 (KDR/FLK) complexes. Inactivation of this uptake
causes non-productive angiogenesis15. In the vascular system,
spatio-temporal control of VEGF-A protein dosage is thought to
be achieved by soluble VEGF receptor-1 (sFLT1), an alternatively
spliced, secreted isoform of the cell-surface receptor membrane-
bound FLT1 (mFLT1)16,17. Soluble FLT1 binds VEGF-A
with substantially higher affinity than KDR, thereby reducing
VEGF-A bioavailability and attenuating KDR signalling17. While
originally discovered as a vascular-specific receptor, evidence is
emerging showing neuronal FLT1 expression18. To what extent
endogenous neuronal Flt1 has a physiological role in titrating
neuronal VEGF levels controlling angiogenesis at the neuro-
vascular interface independent of vascular Flt1 remains to be
determined.

Angiogenesis involves complex and dynamic changes in
endothelial cell behaviour19. In the zebrafish embryo these
events can be studied in detail at the single cell level in vivo
through the use of vascular-specific reporter lines20,21. The
stereotyped patterning of arteries and veins in the trunk of the
zebrafish embryo prior to 48 hpf is mediated by cues derived
from developing somites and the hypochord, controlling
angiogenic sprout differentiation and guidance22,23. Sprouting
of intersegmental arterioles (aISV) requires Vegfaa-Kdrl
signalling, as loss of either kdrl or vegfaa completely abolishes
ISV sprouting from the dorsal aorta (DA)24. Primary sprouting
also involves a component regulated by Notch, as loss of
Notch increases the endothelial propensity to occupy the tip
cell position in this vessel, whereas gain of Notch restricts
aISV development25. Secondary vein sprouting requires
Vegfc-Flt4 signalling, as loss of either ligand or receptor blocks
venous growth26,27. Developing somites are regarded as the
main source for Vegfaa, while the hypochord provides Vegfc
during early development22,23.

In this study we show that developing spinal cord
neurons located in the trunk of the zebrafish embryo produce
Vegfaa and sFlt1 affecting the angiogenic behaviour of interseg-
mental vessels at the neurovascular interface. We find that during
early development neuronal sFlt1 restricts angiogenesis around
the spinal cord. We demonstrate that on genetic ablation
of neuronal sFlt1 this brake is relieved resulting in the formation
of a vascular network supplying the spinal cord in a Vegfaa-Kdrl
dependent manner. Using inducible neuron-specific vegfaa
gain-of-function approaches and analysis of several mutants with
vegfaa gain-of-function scenarios, we furthermore show that the
neuronal Vegfaa dosage determines the extent of the neovascu-
lature supplying the spinal cord, as well as sprout invasion
into the spinal cord. Interestingly, loss of flt1 or augmenting
neuronal vegfaa promotes sprouting from intersegmental
veins involving distinctive angiogenic cell behaviours including
nuclear positioning and a molecular signature not observed in
primary arterial or secondary venous sprouting. Cell transplanta-
tion experiments confirm the role of neuronal flt1 in venous
sprouting and furthermore show that vascular flt1 is dispensable
herein. Taken together, our data suggest that spinal
cord vascularization proceeds from veins and is coordinated by
two-tiered regulation of neuronal sFlt1 and Vegfaa determining
the onset and the extent of the vascular network that supplies the
spinal cord via a novel sprouting mode.

Results
Spinal cord neurons express sflt1, mflt1 and vegf ligands.
Analysis of TgBAC(flt1:YFP)hu4624;Tg(kdrl:hsa.HRAS-mCherry)s916

transgenic embryos showed flt1 expression in the aorta, arterial
intersegmental vessels (aISVs), dorsal part of venous intersegmental
vessels (vISVs) and spinal cord neurons located in the neural tube
(Fig. 1a,b,d–g)18. Spinal cord neurons were in close proximity
to blood vessels (Fig. 1c–e) and 3D-rendering of confocal
z-stacks obtained from Tg(kdrl:EGFP)s843;Tg(Xla.Tubb:DsRed)zf148

double transgenic embryos showed the dorsal aspect of
ISVs ‘indenting’ the neural tube indicative of close contact
(Fig. 1c; Supplementary Movie 1). Optical sections confirmed
close contact between the outer neuronal layers of the neural tube
and the dorsal part of ISVs, as well as the dorsal longitudinal
anastomotic vessel (DLAV) (Fig. 1d–g). Such anatomical
juxtapositioning of trunk vessels and neurons may provide a
template for molecular cross-talk (Fig. 1d,e; pink box).

TaqMan analysis using FAC-sorted neuronal cells from two
different neuronal reporter lines (Supplementary Fig. 1a–k)
showed expression of mflt1, sflt1, kdrl, kdr, flt4 and the ligands
vegfaa, vegfab, and plgf (Supplementary Fig. 1b,e)24. Flt1 was
expressed in a comparable range as neuronal guidance molecules
(Supplementary Fig. 1c,f). Real-time qPCR analysis for vegfaa and
vegfab in the trunk of developing zebrafish embryos confirmed
expression of both isoforms (Supplementary Fig. 1l,m).

Loss of flt1 induces ectopic vascular networks. In zebrafish
flt1 consists of 34 exons encoding membrane-bound mflt1 and
soluble sflt1, which is formed by alternative splicing at the exon
10—intron 10 boundary (Supplementary Fig. 2a)18. To obtain
loss of both mflt1 and sflt1 (flt1 full mutants) we targeted
flt1-exon 3 using a CRISPR/Cas approach (Supplementary
Fig. 2a–d) and analysed in detail the vascular phenotypes of
three mutant alleles, flt1ka601 (� 1 nt), flt1ka602 (� 5 nt) and
flt1ka603(þ 5 nt) (Fig. 2a–f; Supplementary Fig. 2a–d). To obtain
mflt1-specific mutants we targeted exon 11b, the alternative exon
essential for mflt1 transcription (Fig. 2g; Supplementary
Fig. 2a,e)18. Both the flt1ka601 and flt1ka605 mutant showed no
signs of non-sense mediated decay (Supplementary Fig. 3a,b).
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Zebrafish homozygous for the flt1 -1 nt allele (flt1ka601) displayed
severe hyper-branching of the trunk vasculature at 3–4 dpf
(Fig. 2a,b). Supernumerous amounts of branches developed in
the dorsal aspect of the trunk at the level of the neural
tube (Fig. 2b,c). Comparable observations were made in
embryos homozygous for the flt1 � 5 nt allele (flt1ka602) and
the flt1 þ 5 nt allele (flt1ka603) (Fig. 2d,e,f). Analysis of four
mflt1 mutant alleles (flt1ka605-608, Supplementary Fig. 2e) did not
reveal any obvious vascular malformations or alterations in
vascular branching morphogenesis (Fig. 2g). These observations
are compatible with absence of angiogenic defects in mouse
Flt1TK� /� embryos lacking mFlt1 signalling28,29. The vascular
phenotype observed in the flt1ka601 mutants thus most likely
involved soluble Flt1.

Since the vascular phenotypes of the flt1ka601, flt1ka602

and flt1ka603 mutant alleles (flt1 full mutants) were indistinguish-
able, we focused on analysing flt1ka601 embryos (Fig. 2p–s).
Flt1ka601 mutants showed normal arterial-venous remodelling
(Fig. 2b,p–s) and adequate perfusion of both aISVs and vISVs.

No significant changes in heart frequency were noted
(Supplementary Fig. 4a). The vascular phenotype of flt1ka601

mutants emerged around day 2.5 (Fig. 2q,r) with sprouts
emanating exclusively from the dorsal aspect of the venous
ISVs at the level of the neural tube (Supplementary Movie 2);
ectopic arterial ISV sprouting was not observed (Fig. 2r). In
flt1ka601/þheterozygotes (Fig. 2l–o) ectopic sprouting was rarely
observed (Fig. 2n,o; Supplementary Movie 3). In wild-type (WT)
embryos such endothelial cell behaviours were not observed
(Fig. 2h–k, Supplementary Movie 4).

We furthermore examined whether flt1 targeting morpholino
could recapitulate the flt1ka601 mutant phenotype (Supplementary
Fig. 4b–h). We evaluated two dosages of a published flt1
ATG targeting morpholino (MO) and found that 1 ng flt1
MO induced hyper-branching in WT at levels comparable to
flt1ka601 (Supplementary Fig. 4g,h)18,30. Injection of 1 ng MO into
flt1ka601 mutant background did not induce additional sprouting
defects (Supplementary Fig. 4d), suggesting that the 1ng dosage
targets flt1 specifically. In contrast, 3 ng MO introduced
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Figure 1 | Expression of Vegf receptors and ligands at the neurovascular interface. (a,b) Double transgenic embryos TgBAC(flt1:YFP)hu4624;

Tg(kdrl:hsa.HRAS-mcherry)916 at 30 hpf and 3 dpf shows flt1 expression (green) in dorsal aorta, arterial ISV and dorsal aspect of venous ISV (3 dpf) and

neurons (arrowheads). (c) 3D-rendered view of vessels (green) and nerves (purple) in Tg(kdrl:EGFP)s843;Tg(XIa.Tubb:DsRed)zf148 embryos highlighting

dorsal aspect of ISVs (arrowheads) in close contact to the neural tube (NT). (d) Transverse section of the trunk of TgBAC(flt1:YFP)hu4624;

Tg(XIa.Tubb:DsRed)zf148 embryos shows that ISVs (green, arrowhead) and neural tube (NT, red) are in close contact. Dorsal is up. (e) Magnified view of

purple-boxed area in (d), showing direct contact of vessels with nerves at the neurovascular interface (blue arrowheads) and flt1 expressing neurons

with long axonal extensions in the neural tube (white arrowheads). (f) Magnified view of blue-boxed area in (d) showing flt1 expressing neurons

(arrowheads) and their axons inside neural tube (red). (g) Lateral view of TgBAC(flt1:YFP)hu4624; Tg(Xla.Tubb:DsRed)zf148 at the level of the neural tube

showing flt1 expressing neurons (arrowheads) in neural tube. DA, dorsal aorta; dpf, days post fertilization; DLAV, dorsal longitudinal anastomotic

vessel; hpf, hours post fertilization; ISV, intersegmental vessel; NC, notochord; NT, neural tube; PCV, posterior cardinal vein. Scale bar, 30 mm in

a–d,g; 10mm in e,f.
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additional branches at 2 dpf that were not observed in the
flt1ka601 mutant at this stage (Supplementary Fig. 4e). Since we
did not observe maternal contribution of flt1 these observations
suggest that 3 ng MO introduced non-specific effects31.

Sprouts in flt1ka601 display distinctive cell behaviours.
Compatible with ectopic sprouting we identified hyperactive

endothelial cells extending filopodia in the dorsal aspect of
vISVs of flt1ka601 mutants (Fig. 3a; Supplementary Movie 2).
About 55% of hyperactive endothelial cells investigated generated
a patent sprout (Fig. 3a); in the remaining 45%, filopodia
and sprouts retracted (Fig. 3b). From the population of patent
ectopic venous sprouts 95% formed an anastomosis with an
aISV, whereas only 5% made a connection with a vISV (Fig. 3c).
The preference for arterial anastomosis may be physiologically
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Figure 2 | Flt1 mutants develop hyper-branched vascular networks at the level of the neural tube. (a) Trunk vasculature in 4 dpf WT sibling, (b) trunk
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(f) Quantification of hyper-branching for indicated mutant alleles. Mean±s.e.m., n¼ 10 per group, ANOVA. (g) Membrane-bound flt1 mutant (flt1ka605)

without vascular phenotype (compare dotted box in g, with control in a). (h–k) Trunk vascular network in WT embryos at indicated time points. (l–o) Trunk

vasculature in flt1ka601 /þ embryos at indicated time points. (p–s) Trunk vasculature in flt1ka601 embryos at indicated time points. Arrowheads indicate

ectopic branches. DA, dorsal aorta; PCV, posterior cardinal vein; DLAV, dorsal longitudinal anastomotic vessel; NT, neural tube; hpf, hours post fertilization;
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sprouts arise in close proximity to the position of the nucleus. Arrowheads indicate sprouts; nuclei at indicated time points (sprout initiation with actively

migrating nucleus towards SIP I, II, III, IV and nucleus already located at SIP 1,2,3,4). (k) Schematic representation of nuclear position with respect to SIP. (l,m)
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relevant as it creates a pressure gradient promoting blood
flow perfusion. Sprout filopodia length ranged from 1 to 20mm,
and filopodia projected at an angle between 90 and 120� with
respect to the vISV compatible with arterial anastomosis forma-
tion (Fig. 3d–f). Current models posit that Flt1 produced in
angiogenic sprouts mainly prevents back-branching of nascent
sprouts32. We find that in the absence of Flt1 sprouts retain their
directionality and migrate away from the parent vessel. Within
ISVs endothelial nuclei migrated at velocities of up to
1 mm min� 1 (Fig. 3g–j,l). Careful analysis of nuclear
positioning within endothelial cells revealed an association
between nuclear position and sprout initiation (Fig. 3k–m,
Supplementary Movie 2). Nuclei migrated actively into the
direction of future sprout initiation points (SIP), and in more
than 80% of the studied sprout initiations nuclear positioning was
directly linked with sprout initiation (linkage was defined as
nucleus-SIP distance of o5 mm at spout initiation) (Fig. 3l,m).
This nuclear migration behaviour is in contrast to rearward
nuclear positioning in migrating angiogenic endothelial cells
in vitro33 and is not described in vivo for primary artery or
secondary venous sprouting events in zebrafish. Analysis of
endothelial cell numbers at 4 dpf showed increased endothelial
cell numbers in aISVs, vISVs, DLAV, DA and PCV of flt1ka601

compared with WT (Fig. 3n–q); DLAV size was not statistically
different (Fig. 3r). At earlier stages (17 hpf) we found no
differences in endothelial cell numbers between flt1ka601 and
WT (Supplementary Fig. 4i–l).

flt1ka601 display upregulation of angiogenic sprout markers.
We next performed RNA sequencing of flt1ka601mutants and
analysed genes implicated in sprouting angiogenesis
(Supplementary Fig. 5a–c). Expression of the classical tip-stalk
cell markers including notch1a, notch1b, dll4, nrarpa, nrapb, hey1,
hey2, her6 and flt4 were not altered34 (Supplementary Fig. 5b).
This result may not be surprising since ectopic venous sprouts
emanated from venous ISVs, and Dll4-Notch signalling is absent
in this domain35. Instead we found upregulated expression
of other genes implied in sprouting cell behaviour. RNA-seq
and qPCR of flt1 mutants showed significantly increased levels
of apelin receptor-a (aplnra), angiopoietin-2a (angpt2a),
and endothelial cell specific molecule-1 (esm1) (Supplementary
Fig. 5b,c), genes previously shown to be enriched in angiogenic
vessels36,37. In addition, we observed a significant upregulation of
plgf, which encodes the Flt1-specific pro-angiogenic ligand Plgf,
and lyve1, a gene expressed in veins and implied in
lymphangiogenesis, in line with the venous expansion
phenotype in flt1ka601 mutants (Supplementary Fig. 5c)38.

Origin of endothelial cells in ectopic venous sprouts.
It is established that artery-derived ECs, on arteriovenous
(AV) remodelling, contribute to the dorsal aspect of vISVs
(ref. 39). Besides these remodelled artery-derived cells, another
source may be PCV-derived venous endothelial cells as they
can migrate over long distances40. However, a specific
contribution of these venous ECs in populating the dorsal
aspect of vISVs has not been shown thus far. To determine
whether PCV-derived venous cells can colonize the dorsal aspect
of vISVs, we performed cell tracking experiments using
the Tg(kdrl:nlskikGR)hsc7 transgenic line (Fig. 4a–i). A small
part of the PCV was photo-converted at 30 hpf and individual
venous endothelial cells were tracked in the period 30–60 hpf
by time-lapse imaging (Fig. 4a–f, Supplementary Movie 5). We
observed three scenarios (Fig. 4i). In scenario (I): PCV-derived
venous endothelial cells migrated into the vISV and reached
the most dorsal aspect of the vISV (Fig. 4c–e). In the dorsal aspect

of vISVs, PCV-derived endothelial cells were observed together
with the remodelled artery-derived endothelial cells (Fig. 4f,g;
artery-derived cells in green). Scenario (I), which we refer to
as ‘mixed’ (both artery and vein-derived EC), accounted for
43.2% of cases (Fig. 4h,i). Of the mixed population 67.9% of
endothelial cells were of venous origin and 32.1% of arterial
origin (Fig. 4h, right panel). In scenario (II), the dorsal part of
vISV only contained PCV-derived venous endothelial
cells; artery-derived endothelial cells were absent. Scenario
(II) accounted for 48.6% of cases (Fig. 4h,i). In scenario (III)
we find that the dorsal part of vISV only contained artery-derived
ECs; in this scenario the dorsal aspect of vISVs was not colonized
by migrating PCV-derived venous endothelial cells (Fig. 4h,i).
This scenario was observed in 8.2% of cases.

The flt1enh promoter marks ISV-ECs of arterial origin39. Loss
of flt1 in Tg(flt1enh:Tdtomato; flt4:mCitrine) showed ectopic
venous sprouts containing flt1enh-expressing ECs (Fig. 4k,l,n–p).
In the same embryo, we furthermore noted ectopic venous
sprouts devoid of flt1enh expressing ECs (Fig. 4j,m,p), suggesting
that these sprouts were only made of vein-derived ECs (Fig. 4m).
To confirm a contribution of PCV-derived venous endothelium
we performed cell tracking experiments in Tg(kdrl:nlskikGR)hsc7

on loss of flt1 and indeed we found that PCV-derived venous
ECs were capable of contributing to ectopic sprouting (Supple-
mentary Fig. 6a). Interestingly, besides sprouts exclusively
containing artery-derived, or venous-derived endothelium
(Fig. 4m,o), we observed composite sprouts with artery and
venous-derived endothelial cells juxtapositioned (Fig. 4k,n).

Vegfaa gain-of-function promotes venous sprouting. Before
48 hpf trunk arterial sprouting is driven by Vegfaa and venous
sprouting by Vegfc (refs 24,26,27). Since loss of flt1 mimics vegfaa
gain-of-function, we expected changes in arterial branching in
flt1ka601. Rather surprisingly, we observed ectopic venous
sprouting after 2.5 dpf (Fig. 3a,b; Fig. 5a,b,e). Primary artery
development was not affected in flt1 mutants (Supplementary
Fig. 6b,c,f,g), although primary arterial sprouts developed in close
proximity to the neural tube (Supplementary Fig.6h–k).

Ectopic venous sprouting was conserved in several other
vegfaa gain-of-function scenarios, including vhlhu2114 mutants
and ptena� /� ;ptenb� /� double mutants (Fig. 5c–e).
Von Hippel-Lindau protein (pVHL) is essential for the
proteolytic degradation of Hif-1a, an evolutionary conserved
transcription factor important for regulating vegfaa transcrip-
tion41,42. Loss of vhl prevents Hif-1a degradation and augments
vegfaa expression41,42. Accordingly, vhlhu2114 mutants developed
ectopic sprouts emanating from vISVs but not from aISVs
(Fig. 5c,e). Changes in primary aISV sprouting were not observed
(Supplementary Fig. 6d,f,g).

PTEN is a tumour suppressor gene acting as a PI3K/Akt
signalling attenuator and linked to the progression of many
tumours involving VEGF-A (refs 43,44). In zebrafish, two
orthologues of pten exist, and ptena� /� ;ptenb� /� double
mutant zebrafish show increased vegfaa levels44. Detailed
analysis of ptena� /� ;ptenb� /� double mutants identified
pronounced ectopic venous sprouting at the level of the
neural tube (Fig. 5d,e). In pten double mutants ectopic venous
sprout numbers were higher when compared with flt1ka601 single
mutant or vhlhu2114 single mutant (Fig. 5e). In addition, in a small
percentage of ISVs, ptena� /� ;ptenb� /� double mutants
displayed very few ectopic arterial sprouts (Fig. 5e).

Mechanistically, loss of vhl and flt1 augments Vegfaa function
at different levels, through increased vegfaa transcription
and higher Vegfaa protein bioavailability, respectively. We
reasoned that combining both mutants should increase Vegfaa
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and activate downstream Kdrl signalling even further.
Indeed, flt1ka601;vhlhu2114 double mutants showed more severe
hyper-branching of the trunk vasculature when compared
with single mutants (Fig. 5e,h). Accordingly, flt1ka601;vhlhu2114

double mutants developed more ectopic venous sprouts when
compared with either single flt1ka601 or single vhlhu2114 mutants
(Fig. 5e). The flt1ka601;vhlhu2114 double mutants also developed
a small number of ectopic arterial sprouts after 2.5 dpf (Fig. 5e).

However, venous sprout numbers were three times
higher (Po0.001) than arterial sprout numbers at this stage
(Fig. 5e). Changes in primary aISV (24 hpf) sprouting were
not observed (Supplementary Fig. 6e,f,g). Endoxifen-induced
neuronal-specific overexpression of vegfaa165 at 52 hpf in
WT embryos also promoted ectopic venous sprouting (Fig. 5e;
Supplementary Fig. 8e,f). In addition, a smaller number of
ectopic arterial sprouts was noted, similar to flt1ka601;vhlhu2114
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double mutants (Fig. 5e). Taken together, ectopic venous
sprouting was conserved in five vegfaa gain-of-function scenarios.

Ectopic sprouting in flt1ka601 mutants requires veins. To prove
that in flt1ka601 mutant sprouts indeed emanated from veins, we
interfered with early arterial-venous remodelling by blocking
flt4 (ref. 26) (Fig. 5f,g; Supplementary Fig. 6l). Loss of flt4 in
flt1ka601 mutants interfered with arterial-venous remodelling;
as a consequence almost all trunk ISVs remained arterial26

(Supplementary Fig. 6l). In line with the requirement for veins,
the flt1ka601 hyper-branching phenotype was rescued (Fig. 5f,g).
Furthermore, flt4 loss-of-function in the flt1ka601;vhlhu2114 double
mutants (denoted as double in Fig. 5h,i) also significantly reduced
branching complexity (Fig. 5h-j; method quantification of branch
points in Supplementary Fig. 1n). As ectopic sprouting requires
venous endothelium, we next reasoned that promoting
vISV formation in flt1ka601 mutants should augment branching.
Vessel identity and Notch signalling are linked. In zebrafish, it is
established that loss of the Notch ligand Dll4 promotes venous
cell fate and dll4 loss-of-function embryos display a trunk
vasculature consisting almost exclusively of vISVs45. Accordingly,
loss of dll4 in flt1ka601 mutants significantly augmented ectopic
branching when compared with control flt1ka601 mutants
(Fig. 5k,l).

Notch, pericytes and ectopic venous sprouting in flt1ka601.
One explanation for the low arterial responsiveness in
vegfaa gain-of-function scenarios may involve high arterial
Notch activity since Notch acts as a repressor of sprouting in
arteries, downstream of Vegfaa signalling25,35,46. To inhibit
endothelial Notch signalling in arterial ISVs of flt1ka601

mutants, we expressed a dominant negative form of the Notch
co-activator MAML (DN-MAML-EGFP) in an endoxifen
inducible manner (Fig. 6a,b)47. We used the flt1enh promoter
construct which is mainly active in aISVs (ref. 39) to drive
gal4-ERT2;UAS:DN-MAML-eGFP (notchiDEC) in flt1ka601

mutants. Transgene expression was initiated at 52 hpf by
adding endoxifen. Endothelial-specific DN-MAML gain-of-
function in flt1ka601 mutants induced ectopic aISV sprouting
at the level of the neural tube (Fig. 6a,b,f). Even more pronounced
ectopic arterial sprouting was observed with the g-secretase
inhibitor LY-411575 that blocks Notch activation; adding
LY-411575 at 2 dpf activated ectopic arterial sprouting in
flt1ka601 mutants (Fig. 6c–f). Venous sprout numbers were not
significantly changed upon DN-MAML (16.1±3.45 versus
17.1±2.88) or LY-411575 treatment (15.9±2.89 versus
14.2±1.69). Addition of LY-411575 to WT at 2 dpf had no
effect. To explain differential AV responsiveness, we also
considered differences in pericyte cell coverage (Fig. 6g–j).
Overall, pericytes were scarce with 88% of all ISVs investigated
not being covered by pericytes. In the remaining 12% of cases,
pericytes were found in both aISVs (9.94%) and vISVs (1.91%)
along the ISV ventral-dorsal axis. In the most dorsal aspect of
aISV and vISV, the region where ectopic sprouting occurs in
flt1ka601, pericytes were comparable between aISV and
vISV (2.48% and 1.91% respectively, Fig. 6k).

Vegf and Flt1 determine extent of spinal cord vascularization.
Neurons expressed vegfaa (Supplementary Fig. 1), and neuronal
cells of both 3 dpf WT and vhl loss-of-function embryos
had significantly higher vegfaa levels than non-neuronal
cells (Fig. 7a,b; FACS settings in Supplementary Fig. 7a–d).
Furthermore, neuronal vegfaa expression was significantly
increased in vhl loss-of-function when compared with
WT (Fig. 7a,b). Thus, at this stage of development neurons are

the major source of vegfaa, and not other tissues like developing
muscle48. We next examined whether neurons can direct sprouts
into the neural tube (Fig. 7c–i). We compared the
flt1ka601;vhlhu2114 double mutant (Fig. 7c,d) with flt1ka601

mutant and WT and found striking changes in optical sections
of the neurovascular interface (Fig. 7e–h). In flt1ka601, sprouts
occasionally projected into the neural tube (Fig. 7g), whereas in
flt1ka601;vhlhu2114 double mutants many branches invaded the
neural tube (Fig. 7h,i).

In the mutants with vegfaa gain-of-function, the spinal
cord becomes vascularized relatively early, between 3 and 4 dpf.
In WT, the spinal cord is vascularized much later in development
starting in the period between 12 and 14 dpf (Fig. 7j–l). In
those older WT embryos, sprouts preferentially emanated from
venous ISVs, displayed nuclear positioning as described for the
flt1 mutant (Supplementary Fig. 7e,f) and the onset of
vascularization of the WT spinal cord coincides with decreased
sflt1 expression during this stage of development (Supplementary
Fig. 7g).

Neuronal sFlt1 and Vegfaa regulate sprouting from veins. We
next generated tissue-specific and inducible flt1 and vegfaa gain-
of-function models. Loss of neuronal sFlt1 in flt1ka601 mutants
may augment neuron-derived Vegfaa availability and promote
ISV sprouting. Hence, restoring neuronal sFlt1 in flt1ka601

mutants should provide a rescue, whereas neuronal-specific flt1
loss-of-function should induce hypersprouting. To test the first
scenario we expressed -3.2elavl3:gal4-ERT2;UAS:GFP-p2A-sflt1
(sflt1iNC) in flt1ka601 mutants (Fig. 8a–d, branch quantification
method in Supplementary Fig. 1n). This construct allows precise
time-controlled expression of sflt1 specifically in neurons. We
found that transgene activation in neurons at 52 hpf, just before
the emergence of the ectopic sprouts in flt1ka601 mutants, rescued
the vascular hyper-branching phenotype (Fig. 8b–d).

We next explored whether neuron-specific loss of
flt1 is sufficient to induce ISV hyper-branching (Fig. 8e–i).
To accomplish neuron-specific loss of flt1 we expressed
the flt1 targeting sgRNAflt1E3 (U6:sgRNAflt1E3, the same
sgRNA as used to generate flt1ka601 mutants; expressed in
all cells) together with the Cas9 construct employing the Gal4-
UAS system under the control of the pan-neuronal promoter
Xla.Tubb (-3.8Xla.Tubb:gal4-VP16/UAS:Cas9-t2A-eGFP (flt1DNC);
(Fig. 8e))49. To optimize the biallelic knockout efficacy,
we injected the construct into embryos heterozygous for the
flt1 � 1 nt allele (flt1ka601/þ ). GFP signal was detected in spinal
cord neurons indicating efficient Xla.Tubb-driven neuron-specific
expression of Cas9 (Fig. 8h). Neuronal loss of flt1 significantly
induced ectopic venous sprout formation when compared
with WT and flt1ka601/þheterozygous mutants (Fig. 8f–i). In
contrast, sprouting was not observed when Cas9 was expressed
under a vascular promoter (Supplementary Fig. 8a) or in embryos
only carrying the sgRNA without Cas9.

To substantiate the contribution of neuronal sflt1 we next
employed multiplexed custom designed miRNAs directed against
sflt1 30UTR arranged with a common miR-155 backbone50

(Supplementary Fig. 8b). The constructs were expressed under
control of vascular (flt1enh) and neuronal (Xla.Tubb) specific
promoters. Targeting neuronal sflt1 resulted in ectopic sprouting
(Supplementary Fig. 8c), but targeting vascular sflt1 failed to
induce sprouts (Supplementary Fig. 8d).

Next we performed cell transplantation experiments, which
demonstrated that neuronal flt1 and not vascular flt1 is
the physiologically relevant mediator of sprouting at the level
of the neural tube (Fig. 8j–l). Transplantation of flt1 mutant
neurons into WT hosts induced ectopic sprouting (Fig. 8k).
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In contrast, transplantation of flt1 mutant endothelial cells into
WT hosts failed to induce sprouting (Fig. 8l).

To prove that neuron-derived Vegfaa promotes hyper-branch-
ing, we generated neuronal tissue-specific and inducible
vegfaa165 gain-of-function zebrafish (Supplementary Fig. 8e,f;
quantification in Fig. 5e). Transgenic expression was initiated by
adding endoxifen after completion of AV remodelling at 52 hpf.
In this scenario hyper-branched neovascular networks formed at
the level of the neural tube, similar to flt1ka601 mutants
(Supplementary Fig. 8e,f). Neuronal vegfaa121 was also capable
of inducing sprouting (Supplementary Fig. 8g). In contrast,
neuron-specific and inducible vegfc gain-of-function, induced at
54 hpf, did not induce ectopic sprouts (Supplementary Fig. 8h).
Timing of transgene expression was relevant as inducible neuron-
specific vegfaa165 overexpression prior to completion of
AV remodelling resulted in thickened abnormal vascular
structures (Supplementary Fig. 8i,j). In the same line, neuron-
specific constitutive overexpression of sflt1 completely annihilated
ISV formation (Supplementary Fig. 8k).

To confirm that the flt1ka601 phenotype involved
gain of Vegfaa, we titrated vegfaa levels using a low dose
vegfaa targeting morpholino51. Reducing vegfaa in flt1ka601

mutants rescued the hyper-branching phenotype (Fig. 8m–o).
Vegfaa signals via Kdrl and application of ki8751, an established
Kdrl tyrosine kinase inhibitor in zebrafish52 to flt1ka601

mutants at 2.5 dpf annihilated the formation of the ectopic
neovascular networks (Supplementary Fig. 8l,m,o). In contrast,
the Flt4-specific tyrosine kinase inhibitor MAZ51 (ref. 52)
did not rescue hyper-branching in flt1ka601 (Supplementary
Fig. 8l,n,o). Vegfaa-driven primary artery sprouting can
occur in the absence of blood flow perfusion. To test if Vegfaa-
driven ectopic venous sprouting in flt1ka601 mutants is affected
by blood flow, we modulated cardiac activity and flow with
BDM or tricaine. We found that loss of flow completely rescued
ectopic hyper-sprouting in flt1ka601 mutants (Supplementary
Fig. 9a-e). Inhibition of PI3 kinase with wortmannin
also significantly reduced ectopic sprouting (Supplementary
Fig. 9f).
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Mean±s.e.m., n¼ 3 separate experiments in triplicate (two-way ANOVA). (c) Schematic representation: loss of vhl augments vegfaa transcription, loss of

flt1 augments Vegfaa bioavailability; combining both mutants augments Vegfaa bioavailability above single mutant level. (d) Trunk vasculature in

flt1ka601;vhlhu2114 double mutants at 4 dpf. Note the severe hyper-branching at the level of the neural tube, red-dotted box. (e) Schematic representation of

optical section (shown in f–h) through the neural tube and associated trunk vasculature. (f–h) Dorsal view on optical section through WT (f), flt1ka601

(g) and flt1ka601;vhlhu2114 double mutants (h). Note invasion of sprouts into the neural tube in double mutants (arrowheads in h). Red circle indicates

position of ISVs, dotted line neural tube boundary. (i) Transverse 3D-rendered view of vasculature (green) through the trunk in WT (left panel) and

flt1ka601;vhlhu2114 double mutants (right panel); note vessels penetrating the neural tube in mutant (compare vessel in dotted circle right panel, arrowhead;

such vessels are absent in WT left panel; representative image from 3 separate experiments). (j) Representative image of spinal cord vascular network in

Tg(xIa.Tubb:DsRed)zf148; Tg(kdrl:EGFP)s843 double transgenic at 13 dpf. (k,l) Comparison of trunk vasculature in WT at 4 dpf (k) and at 13 dpf (l); note the

emergence of ectopic branches (pink arrowheads) at level of the spinal cord. DA, dorsal aorta; f.c. fold change; KD, knockdown; NT, neural tube; NC,

neuronal cell; PCV, posterior cardinal vein. Mutants are in Tg(kdrl:EGFP)s843 background. Scale bar, 50mm in d; 25 mm in f–l.
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Discussion
Intimate cross-talk between vessels and the nervous system
is important for tissue homeostasis. During embryonic develop-
ment, neuronal stem cells differentiate into mature neurons, a
process that associates with a change in cellular metabolism53.
Concomitantly with developmental neurogenesis, changes occur
in the vascular network feeding the spinal cord. We show in

the zebrafish embryo that neurons in the developing spinal
cord express the pro-angiogenic ligand Vegfaa and anti-
angiogenic soluble Vegf receptor-1, sFlt1, which acts as a
Vegfaa scavenger (Fig. 9). Spinal cord neurons are in close
contact to the developing trunk vasculature, and we show that
these vessels are responsive to changes in neuronal sFlt1
and Vegfaa. Using a combination of global and tissue-specific
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Figure 8 | Neuronal Flt1 regulates vascular branching by titrating neuronal Vegfaa. (a) Schematic representation of endoxifen inducible gain-of-function

approach in zebrafish. In the present situation Gal4 is under the control of neuron-specific promoters elavl or XIa.Tubb. Expression can be observed within

1.5 h upon endoxifen application. (b) Hyper-branching in flt1ka601 mutants (dotted box). (c) Endoxifen inducible neuron-specific sflt1 gain-of-function

rescues hyper-branching in flt1ka601 mutants; compare dotted box in c and b. Purple arrowheads indicate vISVs; endoxifen was applied at 52 hpf.

(d) Quantification of rescue in (b,c), mean±s.e.m, n¼ 15-19 embryos per group. (e) Approach for generating a neuron-specific flt1 mutant. Cas9 was

expressed under control of neuronal promoter Xla.Tubb; sgRNA was expressed ubiquitously, resulting in Cas9 activity in neuronal cells only (domain

marked by orange border). Heterzygous flt1ka601/þ were used to facilitate biallelic knockout. (f–h) Neuron-specific loss of flt1 (flt1DNC) induces ectopic

sprouting (h), sprouts in yellow dotted ellipse, arrowheads indicate neuronal cells with Cas9 expression. (i) Quantification of ectopic sprouting for indicated

genotypes. Note that neuron-specific loss of flt1 significantly augments ectopic sprouting (green bar) mean±s.e.m, n¼ 16 embryos per group, t-test.

(j–l) Transplantation of flt1 mutant neuronal cells (k) and endothelial cells (l) into WT. Note: transplantation of flt1 mutant neuronal cells induced sprouting

(k, arrowheads); 9 out of 12 neuronal cell transplantations resulted in sprout formation. In all 10 endothelial cell transplantations, sprouts were absent

(l). (m,n) Low dose morpholino-mediated reduction of vegfaa expression in flt1ka601 mutants rescues sprouting defects; compare dotted box in

(m,n). (o) Quantification of rescue in (m,n), mean±s.e.m., n45 per group, t-test. DA, dorsal aorta; PCV, posterior cardinal vein; DLAV, dorsal longitudinal

anastomotic vessel; NT, neural tube. GOI, gene of interest; POI, protein of interest; iNC, inducible, neuronal cell specific gain-of-function; DNC, neuron-

specific loss of flt1; MO, morpholino. Scale bar, 50mm in b–h,m,n; 25mm in k,l.
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loss of flt1 mutants, and further substantiated by vegfaa
loss- and gain-of-function experiments as well as cell
transplantations, we demonstrate that neuronal sFlt1 restricts
neuronal Vegfaa and vessel branching morphogenesis at
the neurovascular interface. Differential regulation of vegfaa
and sflt1 allows orchestration of the onset and extent of
spinal cord vascularization (Fig. 9). We propose that neurons
may use sFlt1-Vegfaa to adjust vascularization according to their
developmental needs.

Flt1ka601 mutants develop ectopic sprouts emanating
from venous ISVs around embryonic day 2.5. Neuron-specific
targeting of flt1 or sflt1 using CRISPR/Cas9- and miRNA-based
approaches respectively, result in flt1ka601 comparable pheno-
types. Transplantation of flt1 mutant neurons into WT
hosts induces ectopic sprouting which is not observed after
transplantation of flt1 mutant endothelial cells, suggesting that
neuronal flt1 is the physiologically relevant mediator in
our mutant. Neuronal-specific gain of sflt1, reducing vegfaa
levels, or inhibition of Kdrl signalling provide a rescue suggesting
that ectopic venous sprouting is mediated by the Vegfaa-
Kdrl signalling axis. Accordingly, ectopic venous sprouting
from the dorsal aspect of vISVs is conserved in five independent
vegfaa gain-of-function scenarios.

Previous studies have shown that during AV remodelling,
aISV-derived endothelial cells remain integrated in the
dorsal aspect of vISVs (ref. 39). We confirm that remodelled
artery-derived endothelial cells indeed contribute to this
domain although they are not the sole or most important
endothelial source. Using in vivo cell tracking we find posterior
cardinal vein-derived endothelial cells migrating against the
direction of blood flow to populate venous ISVs including the
dorsal aspect where sprouts are formed. Here, venous-derived
endothelium can co-exist with the artery-derived endothelium.
With respect to the endothelial cells populating the dorsal part
of vISVs, our data now reveal three different scenarios. The
dorsal aspect can contain a mix of both artery and venous-derived
endothelium (43%), only vein-derived endothelium (48%) or
only artery-derived endothelium (8%). On loss of flt1, both
artery- and vein-derived endothelium give rise to ectopic
vISV sprouts. This prompts toward the concept that integration
into the local venous ISV environment constitutes a permissive
factor for sprouting, regardless of the endothelial origin.

Flt1ka601 mutants display ectopic sprouting in vISVs but
not in aISVs, indicating that AV vessel identity or compartment-
specific cues may be involved in the novel sprouting
type described here. Notch is tightly linked to both AV vessel
specification and sprouting, as Notch programs arterial identity
and Notch signalling represses sprouting of arteries25,45. Lack of
Notch associates with venous identity and Notch signalling
is absent in venous ISVs (ref. 35). Interference with
AV remodelling or Notch indeed affects sprouting numbers in
flt1ka601. Inhibiting the remodelling of arterial ISVs into venous
ISVs in flt1ka601, and thus creating a trunk vasculature that almost
exclusively consists of aISVs, rescues ectopic hypersprouting.
Conversely, promoting venous cell fate and creating a trunk that
consists of vISVs by knock-down of dll4 augments vascular
branching in flt1ka601. Inhibiting Notch by endothelial expression
of DN-MAML or pharmacological treatment with LY-411575
stimulate ectopic arterial sprouting in flt1ka601, without affecting
venous sprout numbers. Thus active Notch signalling in arteries
most likely accounts for the observed AV sprouting differences.
We propose that the artery-derived endothelial cells that become
incorporated in vISVs on AV remodelling are relieved from
Notch and adopt a venous fate, enabling them to respond to
changes in local Vegfaa.

Our data show that vISVs contribute to the vascularization of
the spinal cord with Vegfaa-Kdrl signalling mediating vISV
branching events. Interestingly, in other domains of the zebrafish
trunk venous vasculature, endothelial cells are responsive to
alternative signals. The Vegfc-Flt4 signalling pathway drives
secondary venous sprouting from the PCV contributing to the
formation of the lymphatic vasculature. BMP-Smad signalling has
been shown to promote venous sprouting in the caudal vein
plexus54. Furthermore, PCV-derived endothelial cells contribute
to the formation of the gut vasculature55. Regeneration of the tail
fin vasculature upon injury also starts from the venous side56.
The concept emerging from these observations is that initiation
of organ vascularization is initiated or proceeds from the
venous vasculature. The mouse embryo coronary vasculature is
vein-derived, and coronary arteries form by developmental
reprogramming of venous endothelium57. Context-dependent
heterogeneity in signalling mechanisms establishing venous
branching, may allow versatile control of tissue vascularization
in a spatio-temporal manner.
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Figure 9 | Schematic representation of neurovascular communication involving neuronal sFlt1-Vegfaa and sprouting from intersegmental veins.

(a) Spinal cord neurons produce both sFlt1 and Vegfaa in close proximity to the dorsal aspect of intersegmental arteries and veins. (b) Schematic

representation of vascularization around the neural tube in WT (top left), flt1ka601 single mutant or vhlhu2114 single mutant (top right), and flt1ka601;vhlhu2114

double mutant (bottom). Loss of flt1 or vhl induces the formation of a peri-neural tube network, and combining both mutants in addition promotes sprouting

into the neural tube. NT, neural tube; ISV, intersegmental vessel (a-arterial, v-venous); DA, dorsal aorta; PCV, posterior cardinal vein; DLAV, dorsal

longitudinal anastomotic vessel; hpf, hours post fertilization.
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Using sFlt1 as a rheostat to control Vegfaa bioavailability,
constitutes a means to regulate Vegfaa independent of
vegfaa promoter activity, vegfaa mRNA or protein stability. We
propose that this enables neurons to dynamically fine-tune the
extent and onset of peri-neural vascular network formation and
sprouting into the spinal cord. While the peri-neural network
may serve to sustain growth of the developing nervous system,
vessel sprouting into the spinal cord and relief of hypoxia
has been associated with changes in neuronal stem cell
metabolism, triggering differentiation events53. Therefore,
untimely or excessive vascularization of the spinal cord is
potentially harmful as it may promote premature stem cell
differentiation and disrupt the carefully orchestrated neuronal
specification process. We propose a two-tiered checkpoint
mechanism involving sFlt1 and Vegfaa, requiring two decisions
to guide vascularization, namely Vegfaa up- and sFlt1
downregulation, to protect neurons from harmful angiogenesis
and oxygen variations during early stages on the one hand, and
on the other hand to enable more mature neurons to attract
sufficient vessels into the spinal cord after stem cell differentiation
has been completed.

Methods
Ethics statement. Zebrafish husbandry and experimental procedures were
performed in accordance with the German animal protection standards and were
approved by the government of Baden-Württemberg, Regierungspräsidium
Karlsruhe, Germany (Akz.: 35-9185.81/G-93/15).

Transgenic lines. Tg(fli1a:EGFP)y1, Tg(kdrl:hsa.-HRAS-mcherry)s916, TgBAC
(flt1:YFP)hu4624, Tg(fli1a:nGFP)y7, Tg(Xla.Tubb:DsRed)zf148, Tg(kdrl:EGFP)s843,
Tg(HuC:EGFP)as8, Tg(mnx1:GFP)ml2, Tg(flt1enh:tdTomato)hu5333, Tg(flt4:
mCitrine)hu7135, Tg(kdrl:nlskikGR)hsc7, Tg(fli1a:myr-mcherry), TgBAC(pdgfrb:EGFP)
as well as vhlhu2114 and ptena� /� ;ptenb� /þ mutants were used as
published39,44,58–61.

Morpholino injections. Morpholino antisense oligomers (MOs; Gene Tools) were
prepared at a stock concentration of 1 mM according to the manufacturer.
MOs were injected into the yolk of one-cell stage embryos. We used the flt4
ATG MO, 50-CTCTTCATTTCCAGGTTTCAAGTCC-30 (4 ng), the flt1
ATG MO, 50-ATATCGAACATTCTCTTGGTCTTGC-30 (1 ng or 3 ng), the
vhl e1i1 splice MO 50-GCATAATTTCACGAACCCACAAAAG-30 (6 ng), the
vegfaa ATG MO 50-GTATCAAATAAACAACCAAGTTCAT-30 (0.3 ng), the
dll4 MO 50-TAGGGTTTAGTCTTACCTTGGTCAC-30 (6 ng), and a control
MO 50-CTCTTACCTCAGTTACAATTTATA-30 (10 ng) (refs 18,26,45,51,62).

mRNA injection and generation of transgenic and mutant lines. For the
generation of mutants 1 nl of a mixture containing 600 ng ml� 1 capped and
polyadenylated Cas9-nls mRNA and 50 ng ml� 1 sgRNA was injected into one-cell
stage embryos63. Cas9 mRNA was produced by in vitro transcription from the
MLM3613 plasmid using the mMessage mMachine T7 Ultra Kit (Ambion). The
MLM3613 plasmid was a gift from Keith Joung (Addgene plasmid #42251). For the
generation of transgenic lines 1 nl of a mixture of 12.5 ng ml� 1 transposase mRNA
and 25 ng ml� 1 plasmid DNA was injected into one-cell stage embryos.

Cell transplantations. Cell transplantations were performed using 3.5 hpf donor
and host blastula-stage embryos. Approximately 50–100 cells were taken from
the donor’s animal pole and transferred close to the host’s lateral marginal zone
(for ECs) or slightly above for neuronal cells. Donors and hosts carried distinct
neuronal and endothelial-specific reporters to identify the source of ECs and
neurons within chimeras.

Generating flt1 mutants. The zebrafish flt1 gene consists of 34 exons encoding
membrane-bound flt1 (mflt1) and a shorter soluble flt1 (sflt1) form. Soluble flt1 is
generated through alternative splicing of flt1 mRNA at the exon 10 - Intron
10 boundary (Supplementary Fig. 2a). To annihilate the production of both
mflt1 and sflt1 and obtain flt1 mutants, we targeted exon 3, using a CRISPR/Cas
approach. We designed five sgRNAs targeting exon 3, encoding the extracellular
Ig1 domain relevant for Vegfaa binding. Oligonucleotides containing the
GG-N18 targeting sequence and overhangs were purchased from Eurofins
(Ebersberg, Germany). The annealed oligos were ligated into DR274 which was a
gift from Keith Joung (Addgene plasmid # 42250)63. The corresponding
genomic region (surrounding exon 3) was amplified by PCR using primer pair
Flt1_E3_gDNA_r and Flt1_E3_gDNA_f and indels were quantified with

T7EI assay or direct Sanger sequencing of the PCR product as described
(for primer sequences see Supplementary Table 6)63. The T7EI cleavage
products of 211 and 249 bp were quantified using ImageJ. The sgRNAflt1E3

(Supplementary Table 4) with the highest cleavage rate (B70%) was used to
generate the flt1 mutants. WT embryos were coinjected with sgRNAflt1E3

plus capped and polyadenylated Cas9 mRNA. Four independent lines
with frame shift mutations were investigated in more detail. The flt1ka601

(exon 3 -1 nt allele), flt1ka602(exon 3 -5 nt allele), flt1ka603(exon 3 þ 5 nt allele)
and flt1ka604(exon 3 -14 nt allele) have a premature termination codon (PTC)
resulting in a truncated protein devoid of a functional extracellular Vegfaa
binding domain. Embryos carrying the mutation were raised and outcrossed to
vascular and neuronal reporter lines (Tg(kdrl:eGFP)s843, Tg(fli1a:eGFP)y1,
Tg(fli1a:nGFP)y7, Tg(kdrl:hsa.HRAS-mcherry)s916, and Tg(Xla.Tubb:DsRed)zf148).

Generation of mflt1-specific mutants. To generate mflt1 mutants we used a
CRISPR/Cas approach and designed an sgRNA targeting E11b, the first specific
mflt1 exon18. In this scenario splicing of intron 10 and exon 11a relevant for
generating sflt1 mRNA remains unaffected. Oligos Flt1E11_O1_A_15 and
Flt1E11_O2_A_15 were annealed and cloned into DR274 as described for flt1
mutants. Founders were identified by PCR and subsequent Sanger sequencing,
using primers Flt1E11A2386576F and Flt1E11A2386151R. We identified four
frame shift mutants harbouring a PTC in exon 11b. Flt1ka605(exon 11b þ 28 nt),
flt1ka606(exon 11b þ 20 nt), flt1ka607(exon 11b � 1 nt) and flt1ka608 (exon 11b
� 1 nt and one mutation) mflt1 mutants were outcrossed to Tg(kdrl:EGFP)s843 and
Tg(Xla.Tubb:DsRed)zf148. All four mflt1 mutants were phenotypically comparable
and in this manuscript only the mflt1 mutant flt1ka605 is shown. All sgRNA
sequences and oligos used for annealed oligo cloning into DR274 are listed in
Supplementary Table 4,5.

Generation of p5E entry clones. The NBT_tauGFP plasmid was a kind gift by
Enrique Amaya. The 3.8 kb regulatory element derived from neural specific beta
tubulin was removed from the NBT_tauGFP using SalI and HindIII and subcloned
into SalI and HindIII digested and dephosphorylated p5E_MCS (ref. 64). The 1 kb
flt1 enhancer/promoter fragment from the pMiniTol2_flt1_ECR5a_pro_181_YFP
(ref. 39) construct was subcloned into p5E_MCS using KpnI and HindIII. The
resulting plasmids were named p5E_ Xla.Tubb-3.8 and p5E_flt1enh.

Generation of a universal p2A-GFP middle entry clone. To easily detect
transgenic cells the pME_eGFP (#455) from the Tol2kit (ref. 64) was modified by
site-directed mutagenesis PCR. The p2A sequence was added before the stop codon
of GFP using pME_eGFP specific primer with 50end extension coding for the
p2A peptide and a SmaI restriction site just downstream of p2A for convenient
subcloning (pME_eGFP_p2A_fw and pME_eGFP_p2A_rev primer).

pME entry clones used for gain-of-function experiments. pME_eGFP-
p2A_SmaI was digested with SmaI and XhoI. The inserts vegfaa165, vegfC and sflt1
were amplified from zebrafish cDNA using primers vegfaa_p2A_fw/rev, vegfc_-
p2A_fw/rev and sflt1_p2A_fw/rev. The PCR products were digested with XhoI and
gel purified. Vector and inserts were ligated following the manufactures instruc-
tions (NEB T4 DNA Ligase). The resulting plasmids were named pME_eGFP-
p2A_vegfaa165, pME_eGFP-p2A_vegfc and pME_eGFP-p2A_sflt1.

gal4ERt2 middle entry clone generation. To spatially and temporally regulate
transgene expression an inducible gal4-ERT2 fusion protein was constructed.
The Gal4 DNA binding domain was fused at its C-terminus with a mutant oes-
trogen ligand-binding domain ERT2 that carries a VP16-derived non-deleterious
transactivation domain TA4 (ta4, 39 aa) at its C-terminus65. Among all possible
sequential orders of domains, this arrangement was inferred to have a low
background with a high induction rate66. A middle entry clone pENTR/D-creERT2
was modified by replacing Cre recombinase domain (1,053 bp, flanked by NotI and
XhoI sites at its 50 and 30 termini, respectively) with a PCR product encoding Gal4
DNA binding domain (1–146 aa) with Kozak sequence in the 50 vicinity of the start
codon. To replace the stop codon at the 30 terminus of ERT2 domain with TA4
domain, a C-terminal half of a ERT2 domain (115–316 aa, flanked by in-frame
NcoI at its 50 terminus) was replaced with a PCR product encoding the C-terminal
half of the ERT2 domain without a stop codon (115–315 aa) with in-frame AgeI
site at its 30 terminus. The AgeI site, and 30 downstream EcoRI site were utilized to
insert two synthetic double-stranded oligonucleotides encoding the TA4 domain
and the stop codon.

Generation of gateway expression clones. pME_DN-MAML-eGFP was
kindly provided by Caroline Burns47. p5E_flt1enh, pME_DN-MAML-eGFP and
p3E_polyA were recombined into pDestTol2CG2 according to the
manufacturer’s instructions (Thermo Fisher, LR Clonase II plus). The
resulting plasmid was named pCG2_flt1_ DN-MAML-eGFP. p5E_Xla.Tubb-3.8,
pME_eGFP-p2A_sflt1 and p3E_polyA were recombined into pDestTol2CG2
(pCG2_Xla.Tubb-3.8_eGFP-p2A-sflt1). p5E_Xla.Tubb-3.8, pME_eGFP-p2A_sflt1
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and p3E_polyA were recombined into pDestTol2CG2 (pCG2_Xla.Tubb-3.8_eGFP-
p2A-sflt1). p5E_elavl-3.2 (R.W., unpublished observations), pME_gal4ERT2 and
p3E_polyA were recombined into pDestTol2CG2 (pCG2_elavl-3.2_gal4-ERT2).
p5E_flt1enh, pME_gal4ERT2 and p3E_polyA were recombined into pDestTol2CG2
(pCG2_ flt1enh_gal4-ERT2).

Generation of tissue-specific KO constructs. pME-Cas9-T2A-GFP and
pDestTol2pA2-U6:gRNA were a gift from Leonard Zon (Addgene plasmid
# 63156 and # 63155)49. pDestTol2pA2-U6:gRNAflt1E3 was generated by annealed
oligo cloning. Oligos U6_flt1E3_1 and U6_flt1E3_2 were cloned into
pDestTol2pA2-U6:gRNA following BseRI restriction digest. To drive Cas9
expression specifically in neurons, the Gal4 driver construct pCG2_Xla:Tubb-
3.8_gal4ERT2 was generated by recombining p5E_Xla.Tubb-3.8, pME_gal4ERT2,
p3E_polyA and pDestTol2CG2. To drive Cas9 expression specifically in endothelial
cells, the Gal4 driver construct pCG2_flt1enh_gal4ERT2 was generated by
recombining p5E_ flt1enh, pME_gal4ERT2, p3E_polyA and pDestTol2CG2. For the
Gal4 effector construct, p5E_UAS, pME_cas9-t2a-eGFP and p3E_polyA were
recombined into pDestTol2pA2-U6:sgRNAflt1E3 (pCG2_UAS_Cas9-t2A-
eGFP_U6_gRNAflt1E3).

Tissue-specific miR155-flt1-1-2-3 knockdown constructs. sflt1 30UTR-specific
miRNAs were designed using the BLOCK-IT RNAi Designer website
(https://rnaidesigner.thermofisher.com/rnaiexpress/). To enhance miRNA
effectiveness three sflt1 30UTR-specific target sites with miRNA155 backbone were
cloned in series. A fragment containing the three multiplexed miRNAs were
synthesized by Eurofins Genomics and cloned into 641-pMER-GFP-miR155empty
and 641-pMER-DsRED-miR155empty using restriction enzymes BamHI and
XhoI50. The target sites are listed in Supplementary Table 7. The expression
construct with Xla.Tubb or flt1enh promoter was cloned using gateway cloning.
p5E_Xla.Tubb-3.8, 641-pMER-GFP-miR155-sflt1-1-2-3 and p3E_polyA were
recombined into pDestTol2CG2 (pCG2_Xla.Tubb_ GFP-miR155-sflt1-1-2-3).
p5E_flt1enh,641-pMER-DsRed-miR155-sflt1-1-2-3 and p3E_polyA were recombined
into pDestTol2CG2 (pCG2_flt1enh_DsRed-miR155-sflt1-1-2-3).

FACS. Approximately 500 embryos Tg(mnx1:GFP)ml2, Tg(HuC:EGFP)as8,
Tg(Xla.Tubb:DsRed)zf148 or vhl MO injected Tg(Xla.Tubb:DsRed)zf148 embryos
were dechorionated at 24 hpf using pronase (0.5 mg/ml). Cells were dissociated
using FACSMax as recommended by the manufacturer. Tg(mnx1:GFP)ml2,
Tg(HuC:EGFP)as8 embryos were dissociated and sorted at 24 hpf, control and
vhl MO injected Tg(Xla.Tubb:DsRed)zf148 embryos were dissociated and sorted at
3 dpf. Dissociated cells were FACS sorted using BD-FACS-Aria I and Aria II. The
sorted cells (B0.5� 106 cells per experiment) were spun down at 310 g for
5 min and resuspended in lysis buffer contained in the RNeasy mini kit (Qiagen).
RNA was extracted as described in the manual. Because of limited amounts of
RNA the QuantiTect Whole Transcriptome Kit (Qiagen) was used to preamplify
and reverse transcribe the RNA to make cDNA. cDNA was diluted 1:250 for
real-time qPCR.

Gene expression analysis by real-time qPCR and TaqMan. Total RNA of
zebrafish embryos was isolated with TRIzol, purified with RNeasy mini kit
(Qiagen) and quantity and quality were measured using an Agilent 2,100 Bioa-
nalyzer (Agilent Technologies) according to the manufacturer’s instructions. We
performed DNase on-column digestion using RNase-free DNase Set (Qiagen)
according to the manufacturer, followed by cDNA synthesis using the Thermo-
script First-Strand Synthesis System (Thermo Fisher Scientific). Primer probe
sets (FAM and TAMRA labels) were obtained from Thermo Fisher Scientific.
Amplification was carried out using an ABI Prism 7,000 thermocycler
(Applied Biosystems). qPCR was conducted with SYBR Green PCR Master
Mix (Thermo Scientific) in a StepOnePlus real-time qPCR system
(Applied Biosystems). Primers for real-time qPCR were ordered from Eurofins
Genomics. Gene expression data were normalized against zebrafish elongation
factor 1-alpha. Primers and probes are listed in Supplementary Table 1–3.

RNA-seq library preparation and sequencing. Zebrafish RNA was isolated and
purified from 4 dpf zebrafish larvae using TRIzol and RNeasy mini kit (Qiagen) as
recommended by the manufacturers. A cDNA library was generated using the
TruSeq Ilumina RNA sample prepv2 kit according to the manufacturer’s protocol.
The cDNA library was sequenced on a HiSeq2000 according to the manufacturer’s
protocols (Illumina).

Identification of differentially expressed genes. Raw sequencing reads were
mapped to the transcriptome and the zebrafish reference genome (GRCz10
danRer10) using Bowtie2.0 and TopHat 2.0 (ref. 67). On average 44,490,573 reads
(81,6% of total reads) were assigned to genes with Cufflinks and HTSeq software
package. Differentially expressed genes (control vs. mutant) were identified using
DESeq and Cuffdiff67,68. Genes were defined as differentially expressed if Z2 fold

significantly regulated (Po0.05) with two independent methods (DEseq and
Cuffdiff).

Zebrafish histological sectioning. Dechorionated larvae were fixed in 4%PFA for
2 h and subsequently transferred to 20% DMSO/ 80% Methanol and incubated
overnight at � 20 �C. Larvae were then washed in 100 mM NaCl, 100mMTris-HCl,
pH7.4 for 30 min at room temperature. Washed larvae were embedded in gelatin
from cold water fish skin/sucrose (Sigma). Larvae were sectioned (20 mm) in a
cryomicrotome.

Inhibitor treatments. All stock solutions were prepared in DMSO. Embryos were
dechorionated at 24 hpf using Pronase (Roche, Basel, Switzerland). For Notch
signalling inhibition embryos were incubated from 2 dpf with 10 mM of LY-411575
(Sigma, St Louis, MO, USA) and imaged at 3 dpf. For VEGFR2 and VEGFR3
inhibition embryos were treated with 25 mM MAZ51 (Merck Millipore,
Billerica, Massachusetts, USA) from 2.5 dpf or from 3 dpf with 0.125mM ki8751
(Sigma, St Louis, MO, USA) and imaged at 4 dpf. To inhibit PI3K/Akt signalling
embryos were incubated with 1.25 mM wortmannin from 3 dpf and imaged at
analysed at 4 dpf. Heartbeat was blocked using 15 mM 2,3-Butanedione
2-monoxime (BDM) dissolved in E3 media. Control embryos were mock treated
with DMSO (Sigma, St Louis, MO, USA). Embryos were randomly assigned to
experimental groups. Investigators were blinded to inhibitor treatment.

Photoconversion of kikGR and migration tracking. Dechorionated embryos
were embedded in 0.7% low-melting agarose at 30 hpf and a small part of the
posterior cardinal vein of Tg(kdrl:nlskikGR)hsc7 transgenics was converted for
several seconds using UV-light with the smallest available field diaphragm of the
Leica Sp8 confocal microscope. Subsequently embryos removed from the agarose
and allowed to develop in E3 medium until imaging or were immediately used for
time-lapse imaging.

Gal4ERT2 endoxifen activation. Endoxifen (Sigma) was solved in DMSO.
Zebrafish embryos expressing Gal4ERT2 were incubated from 52 hpf onwards in
0.5 mM endoxifen in E3 medium in the dark. GFP positive cells could be observed
approximately 1.5 h after induction.

Vascular network analysis. To assess sprout number and length, we developed a
semi-automated analysis of the DLAV-ISV vessel network using ImageJ
(Supplementary Fig. 1n). Image-stacks of ISVs were acquired using the Leica
SP8 confocal microscope. Stack projections of one side of the trunk were generated.
Dorsal region of the ISVs was used for analysis. Using ImageJ a Gaussian blur filter
was applied followed by a black/white threshold and subsequent skeletonization to
generate a skeleton of the vasculature. Segment number, branch point number and
total branch length were calculated using the ‘analyse skeleton’ plugin. The
semi-automated pipeline was applied for analysis of 4 dpf vascular networks,
while sprout numbers in 2–3 dpf zebrafish embryos were counted manually.

Imaging. Zebrafish larvae were embedded in 0.7% low-melting agarose with
0.112 mg ml� 1 Tricaine (E10521, Sigma) and 0.003% PTU (P7629, Sigma) in glass
bottom dishes (MatTek, P35G-0.170-14-C). Images presented in this study were
acquired using a Leica SP8 confocal microscope with � 20 multi-immersion and
� 40 water immersion objectives and LAS X software. Images were processed
using ImageJ. Vascular branching was quantified using a semi-automated
ImageJ pipeline (Supplementary Fig. 1n). Animal numbers used are indicated in
figure legends. For zebrafish mutants more than 100 embryos per genotype were
analysed. In morpholino experiments morphologically malformed embryos were
excluded from analysis.

Statistical analysis. Statistical analysis was performed using GraphPad
Prism 6. Each dataset was tested for normal distribution (D’Agostino and Pearson
test). Parametric method (unpaired Students t-test) was only applied if the data
were normally distributed. For non-normal distributed data sets, a non-parametric
test (Mann Whitney U test) was applied. When appropriate in case of multiple
comparisons, ANOVA plus Bonferroni correction was applied. P values
o0.05 were considered significant. Data are represented as mean±s.e.m.,
unless otherwise indicated. *Po0.05, **Po0.01 and ***Po0.001.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author on reasonable request. The RNA-seq data gener-
ated in this study has been deposited into the Gene Expression Omnibus database
with the accession code http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE89350.
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