

 Karlsruhe Reports in Informatics 2017,3
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

On the Various Semantics of
Similarity in Word Embedding

Models

Ábel Elekes, Martin Schäler, Klemens Böhm

 2017

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

On the Various Semantics of Similarity

in Word Embedding Models
Ábel Elekes

Karlsruhe Institute of Technology
Karlsruhe, Germany

abel.elekes@kit.edu

Martin Schäler
Karlsruhe Institute of Technology

Karlsruhe, Germany

martin.schaeler@kit.edu

Klemens Böhm
Karlsruhe Institute of Technology

Karlsruhe, Germany

klemens.boehm@kit.edu

ABSTRACT

Finding similar words with the help of word embedding models

has yielded meaningful results in many cases. However, the no-

tion of similarity has remained ambiguous. In this paper, we

examine when exactly similarity values in word embedding mod-

els are meaningful. To do so, we analyze the statistical distribu-

tion of similarity values systematically, in two series of experi-

ments. The first one examines how the distribution of similarity

values depends on the different embedding-model algorithms and

parameters. The second one starts by showing that intuitive simi-

larity thresholds do not exist. We then propose a method stating

which similarity values actually are meaningful for a given em-

bedding model. In more abstract terms, our insights should give

way to a better understanding of the notion of similarity in em-

bedding models and to more reliable evaluations of such models.

Keywords

Word embedding models; similarity values; semantic similarity.

1. INTRODUCTION
Motivation. One important objective of so-called distributional

models [1] [2] is to capture the semantic similarity of words,

based on their context in large corpora. If one is able to quantify

their similarity, there will be a good understanding of the actual

meaning of a word, by knowing which words are similar. Adopt-

ing the taxonomy of Baroni et al. [3], one can discern between

count-based distributional models [4] [5] and training-based,

predictive models, also called embedding models [6] [7] [8] [9]

[10] [11] [12]. Embedding models use vectors to represent words

in a low-dimensional space to quantify semantic similarities

between words. All these models have in common that two words

are semantically similar if the vectors representing them are close

according to some distance function.

Embedding models have received renewed popularity after

Mikolov et al. presented new neural network based models [11]

[12]. In comparison to count-based models, the training of such

models scales very well even to huge corpora, while learning

high-quality word vector representations. With that, embedding

models have become key tools in Natural Language Processing

(NLP), showing impressive results in various semantic tasks such

as similarity detection or analogical reasoning [3]. Despite the

limited linguistic information distributional models contain,

embedding models have proven to be successful not only in

elementary tasks, but also in complex ones such as part-of-speech

(POS) tagging [7], named entity recognition (NER) [13],

dependency parsing [14], social media sentiment analysis [15],

image annotation [16], and machine translation [17] [18] [19].

It currently is an open question whether embedding models are

superior to traditional count-based models. Some research sug-

gests that they indeed are, in various similarity and analogy detec-

tion tasks [3] [12]. But others have argued that this superiority is

only a result of better parameter settings [20] [21] [22] [23].

However, these papers are only using the similarity attribute of

the models, while the following questions remain open: What do

similarity values from those models actually mean? For instance,

are low values of similarity comparable to each other? To illus-

trate, if Word A is 0.2-similar to Word B and 0.1-similar to Word

C on a [-1, 1] scale, should we say that A is more similar to B than

to C, or does it not make any difference at these low levels of

similarities? Are there ‘natural’ thresholds for similarity, such that

values above (beneath) it represent a definite similarity

(dissimilarity) of two words? For example, if A is more than 0.5-

similar to B, then are A and B always semantically similar? How

about the same questions with similarity lists, i.e., lists of words

most similar to a certain words, sorted by similarity? For instance,

can we say that the 100 words most similar to an arbitrary word

are always similar to this one, or words not in the top 500 are

always dissimilar? When exactly is it meaningful to stick to the

natural idea of taking the top N most similar words for a certain

word and deem them similar? In this paper we study and answer

all these questions. These questions are not just academic in

nature; any paper relying on comparisons of similarity values

might lack validity if these questions remain open.

Challenges. Several issues arise when studying similarity in

computer science: How does an evaluation dataset look like, what

does it contain? How to create good baseline datasets, how do

they measure similarity, and how to evaluate a model on them?

As for the first question there is a generally accepted simple

structure how the similarity datasets should look like, and any

widely used dataset such as WordSim353 [24] or MEN [25] is

formatted like this. These datasets contain a set of word pairs and

similarity scores for every pair, set by human annotators. To show

the difficulty of how to create good such datasets, think of the

following linguistic challenge pointed out by Hill et al. [26] in this

context: What is the definition of similarity? Are cup and coffee

similar words or only associated, i.e., dissimilar? In general, does

relatedness or associatedness imply similarity or not? – They

argue that word pairs which are only associated should not have

high similarity scores, in contrast to datasets such as WordSim353

or MEN, where this is the case, i.e., associated pairs do have high

similarity scores. Batchkarov et al. [27] also address the problem

of creating good baseline datasets. They show that it is challeng-

ing even for human annotators to assign similarity scores to cer-

tain word pairs. For example, they show that the similarity scores

for the tiger-cat pair range from 5 to 9 on a scale of ten in the

WordSim353 dataset. They also provide example word pairs

where the similarity scores differ significantly when the pairs are

contained in different data sets. They argue that this is the result

of the different notions of similarity these datasets use.

Next, Avraham et al. [28] identify problems regarding the evalu-

ation of the models. They argue that the use of the same rating

scale for different types of relations and for unassociated pairs of

words makes the evaluation biased. For example, they say that it

is meaningless to compare the similarity value of cat-pet to win-

ter-season, because they are unassociated, and models which rank

the wrong word pair higher should not be punished. If cat-pet has

a similarity score of 0.7, and winter-season has one of 0.8 in a si-

milarity dataset, an evaluation should not punish a model which

ranks cat-pet higher. They also find it problematic how the con-

ventional evaluation method measures the quality of a model. It

calculates the Spearman correlation of the annotators ranking and

the model ranking, without considering the similarity values

further. To illustrate, such an evaluation penalizes a model that

misranks two low-similarity, unassociated pairs (e.g.: cat-door,

smart-tree) just as much as one that misranks two objectively

distinguishable pairs (e.g.: singer-performer, singer-person).

Having said this, the concept of similarity remains ambiguous,

and understanding similarity values remains difficult as well,

affecting several NLP tasks, especially when it comes to evaluate

embedding models on these tasks.

Contributions. To understand what similarity values in embed-

ding models mean, we evaluate how different parameter settings

(e.g.: size of the corpus they are trained on, vocabulary size)

influence the similarity values of the models. We do so by sys-

tematically training various models with different settings and

comparing the similarity value distributions. One intention behind

these experiments also is to confirm that the meaning of similarity

values of two terms is not sufficiently clear, and to reveal that this

also holds for the relationship between model parameters and

similarity values. We show that indeed it is not always meaningful

to compare two word pairs by their similarity values.

A core contribution of ours then is the discovery that meaningful

similarity threshold values do indeed exist, and we show that they

can be found. We do so by calculating similarity value and simila-

rity list aggregates based on WordNet [29] similarity as the base-

line and evaluate the resulting similarity distributions of the mod-

els with statistical tests. It turns out that these thresholds are not

general and should be calculated for every individual model using

the method we present in this paper. At this point, our evaluation

connects with the parameter evaluation of the models just men-

tioned: The evaluation shows that altering the parameters does not

change our method; all similarity value distributions of the models

are fundamentally similar. This is an important step both regard-

ing the design of future word embedding models as well as the

improvement of existing evaluation methods.

2. Fundamentals and Notation
In the following, we first define embedding models and their

parameters in general. We then introduce two relevant models

which we rely on in the paper.

 Background on Word Embedding Models 2.1
Word embedding models “embed” words into a low-dimensional

space, representing them as dense vectors of real numbers. Vec-

tors close to each other according to a distance function, often the

cosine distance, represent words that are semantically related.

Formally, a word embedding model is a function F which takes a

corpus C as input, such as a dump of the Wikipedia, generates a

dictionary D based on the corpus and associates any word in the

dictionary 𝑤 ∈ 𝐷 with a d-dimensional vector 𝒗 ∈ ℝ𝑑. The di-

mension size parameter (d) sets the dimensionality of the vectors.

It usually ranges between 50 and 1000 with embedding models.

The training, i.e., iteratively associating vectors with words in the

dictionary, is based on word-context pairs 𝑤 × 𝑐 ∈ 𝐷 × 𝐷2×𝑤𝑖𝑛

extracted from the corpus. win is the window size parameter,

which determines the context of a word. For example, a window

size of 5 means that the context of a word is any other word in its

sentence, and their distance is at most 5 words. However, there are

further parameters that affect the generation of the dictionary. One

is the minimum count parameter (min_cnt). When creating the

dictionary from the corpus, the model adds only words into the

dictionary which appear at least min_cnt times in the corpus. An

alternative is to set the dictionary size directly as a parameter

(dict_size). This means that the model adds only those words to

the dictionary which are in the dict_size most frequent words of

the corpus. In this paper we rely on the dict_size parameter, be-

cause we find it easier to handle in our experiments. With this

variant, the corpus does not influence the size of the dictionary.

Having said this, we define word embedding models as:

𝐹(𝐶, 𝑑, 𝑤𝑖𝑛, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒) ∈ ℝ|𝐷|×𝑑.

dict_size is not necessarily equal to the size of the dictionary |𝐷|.
For example, it is unequal when the number of distinct words in

the corpus is smaller than dict_size. F is not deterministic, as it

may use random values when initializing the word vectors.

 Word Embedding Model Realizations 2.2
In this paper, we work with two well researched embedding mod-

els, Mikolov et al.’s Word2Vec model [12] and Pennington et

al.’s Glove model [10]. These models learn the vector representa-

tions differently. Word2Vec models use a neural-network based

learning algorithm. It learns by maximizing the probability of

predicting either the word given the context (Continuous Bag of

Words model, CBOW), or the context given the current word

(Skip-Gram model, SG) [11] [12]. Glove trains the word vectors

by explicitly factorizing the log-count matrix of the underlying

corpus, wrt. word-context pairs [10]. Levy et al. [30] have shown

that the SG model is implicitly factorizing a word-context

pointwise mutual information matrix. This means that the objec-

tives of the two models and sources of information they use are

not overly different, and, more important here, is that they share

the same parameter space. See [31] for a further comparison.

When building models ourselves, we use the gensim software

package [32] for the Word2Vec models and the Glove toolkit1 for

the Glove models. More specifically, we use the gensim toolkit in

Python. It allows querying any word in the model dictionary for

its similarity with any other word. This means that for any word

there is an indexed list containing every other word in the diction-

ary, sorted by similarity. In this paper we use the terms list index

and position in the list as synonyms. The similarity values are

floating point numbers between -1 and 1, with 1 being the highest

similarity. We will differentiate between the similarity values of

models and similarity lists. In the first case we are only concerned

with the similarity value of a word pair and not its position in

those lists. In the second case our interest is the reverse.

3. Embedding Model Parameter Investigation
In this section, we investigate how the different parameters affect

the similarity values of the models. We are particularly interested

in identifying parameters that change the stochastic distribution of

the similarity values significantly. These insights are generally

relevant to understand word embedding models. We also require

such insights in the next section for our threshold evaluation.

1 http://nlp.stanford.edu/projects/glove/

 Investigation Objectives 3.1
A core contribution of this paper is to find meaningful thresholds

both for similarity values and for similarity lists for a given

model. To this end, we evaluate how different models and their

parameters affect the similarities. We will show that similarities in

embedding models when trained with different parameters can

differ significantly. So our first hypothesis is as follows:

Hypothesis 1. It is not possible to find general value and list

thresholds that are reasonable for all embedding models, only for

specific ones.

We plan to confirm this hypothesis by showing that the similarity

value distributions have such statistical characteristics such as

different mean values of different highest similarity values which

makes uniform threshold values meaningless. We present two

examples of such models in the following.

Example 1. Think of two models, Model A with an average simi-

larity between two words of 0.0, and Model B with an average of

0.1. This means that the similarity value is negative for roughly

half of the pairs in Model A and for roughly 1% of the pairs in

Model B. If one now assumed that a negative similarity value

implied dissimilarity between the words of the pair, this assump-

tion would have a highly different meaning for the two models.

Example 2. Again think of two models. The highest similarity

score of a word pair is 0.9 in Model A and 0.6 in B. Saying that a

pair with a similarity above 0.7 is definitively similar could be

meaningful in Model A, but makes less sense in B. This is because

there is no word pair with this similarity value in this model.

Although the similarity value distributions of the models can

significantly differ in certain characteristics, we hypothesize that

they are all similar in shape, with only their means and standard

deviations depending on the parameters.

Hypothesis 2. While the learning algorithms and parameters

influence the similarity value distributions of the models, these

distributions are very similar in shape.

We plan to confirm this hypothesis as follows. First we normalize

all distributions, so that they have 0 mean and 1 standard devia-

tion. We then randomly draw 1000 values from all distributions

and pairwise compare the samples by means of the two-sample

Kolmogorov-Smirnov (K-S) test [33] with 99% confidence. This

test checks if two samples are drawn from the same distribution.

For the overall understanding of the similarity values and lists, it

is important to know how the model selection and the parameters

affect the similarities. Our main contribution in this section is that

we do the evaluation systematically for all the parameters and

models already introduced. This means that we evaluate how the

model selection (F), the corpus (C), the dimensionality (d), the

window size (win) and the models dictionary size (dict_size)

interact with the similarity values and lists.

 Experiment Setup 3.2
In this paper, we work with Chelba et al.’s 1 Billion word dataset

[34] as training corpus. It has shown to be a good benchmark

dataset for language modelling, with its great size, large voca-

bulary and topical diversity. [34] The dataset is around 4 Gb in

size as a text file and contains almost 1 billion words in approxi-

mately 30 million English sentences. The sentences are shuffled,

and the data is split into 100 disjoint partitions. This means that

one such partition is 1% of the overall data. We train all our

models using this dataset as training corpus.

In the following, for every parameter, we present our results in the

same way. In particular, we graph results in two figures. First

there are similarity value distributions of the models. For these

plots, we randomly select 10,000 words from the model dictionary

and calculate the similarity values of every other word to them.

Then we group the values in 0.01 intervals and count the number

of values in each group. Thus, the x-axis represents the similarity

values from [-1,1], the y-axis the share of the values per group.

The second figures contain the results from the similarity lists

experiments. In these experiments, we randomly select 10,000

words (𝑤1, 𝑤2, … , 𝑤10000) from the dictionary of the model. For

each of these words, we compute the most similar thousand words

𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,1000 for 𝑖 ∈ {1, … ,10000}, together with their

respective similarity values, 𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,1000, i.e., 𝑡𝑖,𝑗 is the

similarity value between words 𝑤𝑖 and 𝑤𝑖,𝑗 .

𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,1000 is sorted by the similarity values. Because of

this sorting for every 𝑖, it holds that 𝑡𝑖,𝑗1
≥ 𝑡𝑖,𝑗2

, for any 𝑗1 < 𝑗2.

We then calculate the average similarity value for every list index

𝑎𝑣𝑔_𝑠𝑖𝑚(𝑗) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡∙,𝑗). Finally we plot the results with the

x-axis being the list indices (𝑗) and the y-axis the average similari-

ties (𝑎𝑣𝑔_𝑠𝑖𝑚(𝑗)). Although the 𝑎𝑣𝑔_𝑠𝑖𝑚() function is only

defined for arguments that are natural numbers, the plots connect

the points to arrive at a smooth curve, for better visibility.

At this point we are not trying to answer why different parameters

affect the similarity values as they do; we are investigating how

they affect the values. This means that we are not making qualita-

tive statements, i.e., we are not concerned how parameters affect

the quality of the models on different semantic tasks. We are not

making any statement that any model is better or worse than the

other, but only how and to which extent they are different. In

other words, we focus on the hypotheses from Section 3.1.

 Model Selection 3.3
The first parameter whose effect we investigate is the model itself.

We consider the three already introduced models, Word2Vec SG,

Word2Vec CBOW and Glove. We build all three models on the

full 1 billion words dataset with the same parameter settings. As

we have noted in Subsection 2.2, these models share the same

parameter space. This means that we can use the exact same

parameter setting for the models. The parameters we use are

𝑑 = 100, 𝑤𝑖𝑛 = 5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000, the default settings

for the Word2Vec models. These values have shown to be a good

baseline setting for different semantic tasks [35] [26].

Figure 1 Learning algorithms similarity value distributions

Figure 2 Learning algorithms similarity values by list indices

Similarity Values. Figure 1 shows the approaches to differ much

in similarity values. The CBOW and Glove models are almost

identical, although Glove has slightly higher values. But the SG

algorithm generally produces higher similarity values than the

other two, and only few pairs of words have negative similarities.

This implies that, while words in the CBOW and Glove model fill

almost the entire space, the SG model learns word vectors posi-

tioned at a high density area of the space, leaving the remainder of

the space sparse. We test Hypothesis 2. by comparing the nor-

malized distributions pairwise, cf. Section 3.1:

𝐾_𝑆_𝑝_𝑣𝑎𝑙𝑢𝑒(𝑠𝑖𝑚_𝑑𝑖𝑠𝑡𝑖 , 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡𝑗) > 0.01 for every 𝑖, 𝑗 ∈

{𝑐𝑏𝑜𝑤, 𝑠𝑔, 𝑔𝑙𝑜𝑣𝑒}

We conclude that the models are similar in their distributions.

Regarding Figure 2, although the Glove model generally produces

higher similarity values than CBOW, the values by list position

are smaller than with both Word2Vec models. At the end of the

top 1000 list, the values with the SG model are the highest ones.

Result interpretation. Both results indicate that our hypotheses

hold, i.e., the distributions of the similarity values are indeed very

similar, although at the same time visibly different in certain

characteristics. This is important: It indicates a certain robustness

of embedding models and generalizability of empirical results.

The differences also show that we cannot set general thresholds

which apply to every model.

 Corpus 3.4
Now we investigate how the size of the corpus affects similarity

values and lists. We compare five different models, which are

trained on differently sized parts of the 1 billion word benchmark

dataset. Sampling is performed by retaining different percentages

of the 1 billion words data used for the training. The models have

every other parameter identical. We train them with the

Word2Vec CBOW model, with 𝑑 = 100, 𝑤𝑖𝑛 = 5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 =
100,000.

Figure 3 Corpus size similarity value distributions

Similarity Values. According to Figure 3, the bigger the corpus

size, the narrower the distribution is. We can see that using 25%

of the corpus is almost identical to using 50%, and very close to

using the entire corpus for training. We test the normalized simi-

larity distributions pairwise with the K-S test. Again every p-value

is above 0.01. This means that the models are very similar.

Figure 4 shows that at the top 10 similar words there is almost no

difference between the models. For higher indices, models trained

on smaller corpora generally have higher similarity values, but the

three models trained on bigger corpora are almost identical.

Figure 4 Corpus size similarity values by list indices

Result interpretation. We conclude that models trained on more

than 1 Gb of text data or approximately 250 million words have

almost identical similarity value distributions. All distributions are

similar, but visibly different at the same time, especially for

smaller corpus sizes. This confirms our hypotheses.

 Dimensionality 3.5
When measuring similarity with the cosine distance, the dimen-

sionality of the embedding model is a parameter that strongly

affects its similarity values. In this section we train every model

with the Word2Vec CBOW model with different dimensionalities

on the full corpus, with 𝑤𝑖𝑛 = 5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000.

Figure 5 Dimension size similarity value distributions

Similarity Values. Figure 5 shows that the higher the dimension-

ality the model is built with, the narrower the similarity distribu-

tions are. We have expected this, as vector spaces with lower di-

mensionality are denser when filled with 100,000 words than ones

with higher dimensionality. This leads to closer words and higher

similarity values. In contrast to the visibly different distributions,

we again see that the distributions are similar, as the K-S test did

not distinguish the normalized distributions, with 99% confidence.

Figure 6 Dimension size similarity values by list indices

Figure 6 is even more straightforward – the higher the dimen-

sionality, the lower the similarity values in the similarity lists are.

Result interpretation. The dimensionality parameter confirms our

hypotheses in a manner that we deem clearer than the previous

experiments. Namely, the models are fundamentally very similar

and at the same time different. We cannot set any general thresh-

old values, because average and highest similarity values are very

different. But the distributions only differ in their standard

deviations, which means they are fundamentally very similar.

 Window Size 3.6
In this section we train every model with the Word2Vec CBOW

model on the full 1 billion word corpus, with 𝑑 = 100,
𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000 and five different window size settings.

Similarity Values. Figure 7 shows that there is only a slight differ-

ence of similarity values between models trained with different

window sizes. It is noteworthy that, when the window size is 1,

the distribution has a higher mean. This implies that the model has

an area of higher density in the word vector space. The distribu-

tions are very similar without even normalizing them. The pair-

wise K-S test confirms this, as again every p-value is above 0.01.

So the normalized distributions are almost identical.

The similarities corresponding to different positions in the simi-

larity lists on Figure 8 tell us that the differences between the

models are very small. Still we can see that the smaller the win-

dow size, the higher the similarity values are.

Result interpretation. These results are very similar to the ones for

dimensionality, with both figures consistently changing with the

parameters, only on a smaller scale in this current case. Only the

smallest window size parameter, i.e., 𝑤𝑖𝑛 = 1, interferes with the

similarity distribution in an inconsistent manner, but it also

changes the mean of the distribution.

Figure 7 Window size similarity value distributions

Figure 8 Window size similarity values by list indices

 Dictionary Size 3.7
In this section we evaluate how the dictionary size of the models

affects their similarity values and lists. We train five models with

different dictionary sizes with the Word2Vec CBOW model on

the full corpus, with 𝑑 = 100, 𝑤𝑖𝑛 = 5.

Similarity Values. Figures 9 show that the dictionary size does not

affect the similarity value distribution of the models up to a

certain size. With very large dictionaries however, the numerous

noise words (typos, unmeaningful words, contraction, etc.) have a

very strong effect on the distribution. The same effect is visible in

the dimensionality experiment, i.e., when considering many words

in the dictionary, the 100 dimensional space is not large enough

for the models to distribute them sufficiently. This leads to wider

similarity value distributions and even to an asymmetric

distribution with the largest dictionary.

Figure 9 Dictionary size similarity value distributions

Figure 10 Dictionary size similarity values by list indices

The K-S test confirms the similarity distribution of the 2 million

word dictionary model to significantly differ from the others, as

𝐾_𝑆_𝑝_𝑣𝑎𝑙𝑢𝑒(𝑠𝑖𝑚_𝑑𝑖𝑠𝑡2𝑀, 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡𝑖) < 0.01 for every 𝑖 ∈
{5𝑘, 25𝑘, 100𝑘, 500𝑘}.

Let us now look at the similarities of items with the same position

in the different similarity lists in Figure 10. We find it interesting

that the big dictionary models are almost identical to the baseline

100,000 words dictionary model. The smaller dictionary models

naturally have lower similarity values. This is because there are

fewer words which are close to each other.

Result interpretation. This is the only evaluation where one

distribution does not have the bell shape observable in all other

experiments. This is a consequence of an unreasonably large

dictionary. Apart from this, even in a 500 thousand word diction-

ary the hypotheses stand, as the distributions are similar.

 Summarizing Parameter Effects 3.8
Our evaluations in this section have confirmed the two hypo-

theses. We have shown that different algorithms and parameter

settings indeed affect the value distributions of embedding models

significantly, but at the same time they have the same abstract

shape. All value distributions of the models are Gaussian-like,

except for one unrealistic setup. This remarkable robustness

implies that one can now work with one specific model and adjust

the thresholds calculated to other models later if necessary.

To our knowledge, such systematic experiments have not been

done before for embedding models. For systematic evaluations of

the effect of parameters on the quality of word embedding models

see Hill et al. [22], Altszyler et al. [36], Chiu et al. [35] and Lin et

al. [37]. These studies evaluate how the corpus size, window size

and dimensionality affect the results of the models on similarity

and analogy tasks. We will show in the next section that all these

evaluations suffer from one thread of validity: They do not take

the cardinality of the similarity values into further consideration

when comparing the similarity of two word pairs.

4. Finding Meaningful Similarity Values
In this section, we contribute to the question when exactly simi-

larity values are meaningful in word embedding models. First, we

show that intuitive similarity thresholds do not exist. Then we

propose a general method to find meaningful similarity value

thresholds for a given model and baseline (e.g., WordNet) and

examine the validity of this method with various models.

 Investigation Objectives 4.1
Reviewing various approaches [24] [25] has revealed that their

evaluations compare similarity values and list indices without

taking their size into account. This means that they deem, say, two

word pairs with similarity values 0.8 and 0.7 just as different as

ones with values -0.2 and -0.1. But there is no examination of the

distribution of the similarity values of word vectors indicating that

this is reasonable. In fact, it might turn out that a more differenti-

ated perspective is required. From Section 3, we already know

characteristics of the distributions of the similarity values of the

word vectors, for example their average and highest similarities.

But we do not yet know how vector similarity corresponds to

word similarity, such as similarity measures in WordNet.

 Intuitive Similarity Thresholds 4.2
We now examine experimentally whether meaningful intuitive

thresholds for similarity values exist. Many approaches using

similarity values or lists implicitly presume this, as they for ex-

ample only work with the top k most similar words. Our results

indicate that respective results may be misleading.

4.2.1 Experiment setting
Our procedure is similar to the one in Section 3.2. The main

difference is that we compare the results to a baseline, WordNet in

this case. We conduct two series of experiments, one for similarity

values and one for lists. In both cases, we calculate word pair

similarity aggregates, one grouped by values, the other one

grouped by list indices, based on WordNet similarity scores. We

do so in order to understand at which extent similarity values are

meaningful in embedding models. We use the Leacock and Cho-

dorow (LCH) [38] similarity measure in WordNet for the eva-

luation. We have chosen this measure because it is knowledge-

based. This means that it does not use any external resource or

corpus, but only the WordNet ontology itself. It also is a popular,

highly researched measure and has proven to be a useful baseline

for semantic similarity [39] [40] [41]. We have implemented our

experiments with WordNet using the NLTK python toolkit [42].

For more information on similarity measures in WordNet see

Meng et al. [43]. In all our experiments in this section, the base-

line similarity measure (LCH) is replaceable. This means that one

simply can rerun any experiment with a more specific, say, corpus

based similarity measure, as well as with another model.

The model we use in this section is trained with the CBOW algo-

rithm on the full 1 billion word corpus, with 𝑑 = 100, 𝑤𝑖𝑛 =
5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000 , the default model and parameter set-

tings in the gensim Word2Vec toolkit.

4.2.2 Similarity value and list experiments
For the first experiment, we compute the similarity values of

every word to any other word in the dictionary: 𝑤𝑝𝑖,𝑗 is a word

pair containing words 𝑤𝑖 and 𝑤𝑗 for 𝑖, 𝑗 ∈ {1, … ,100000}, 𝑡𝑖,𝑗 is

their similarity. We now group these word pairs by their similarity

value in 0.01 intervals: 𝐺−1.0, 𝐺−0.99, … , 𝐺0.0, 𝐺0.01, … , 𝐺1.0 are

these groups. To illustrate, 𝐺0.05 contains all 𝑤𝑝𝑖,𝑗 word pairs

where 0.04 < 𝑡𝑖,𝑗 ≤ 0.05 holds. Then we calculate the average

similarity with the LCH measure in each group:

𝑎𝑣𝑔_𝑠𝑖𝑚(𝐺𝑘) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝐶𝐻_𝑑𝑖𝑠𝑡(𝑤𝑝𝑖,𝑗)), where 𝑤𝑝𝑖,𝑗 ∈ 𝐺𝑘.

In the second experiment, we create the full similarity lists for

every word in the dictionary, 𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,100000, i.e., for

every 𝑖 ∈ {1, … , 100000}. We create groups of word pairs

(𝐺1, … , 𝐺100000). 𝐺𝑘 contains the pair (𝑤𝑖 , 𝑤𝑖,𝑘) for every

𝑖 ∈ {1, … , 100000}. We then calculate the average similarity for

every group with the LCH measure:

𝑎𝑣𝑔_𝑠𝑖𝑚(𝐺𝑘) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝐶𝐻_𝑑𝑖𝑠𝑡(𝑤𝑝𝑖,𝑗)), where 𝑤𝑝𝑖,𝑗 ∈ 𝐺𝑘.

For both experiments, if a word is not in the WordNet dictionary,

we remove all word pairs including it from the groups, in order to

make the aggregation unbiased. We observe that the standard

deviations are relatively high in the groups: In the similarity value

groups, it is between 0.25 and 0.55, in the similarity list groups

between 0.25 and 0.6. We will return to this observation when

discussing the outcomes of the experiments.

Figure 11-12 LCH scores aggregates by similarity values

In the similarity value distribution experiments, we evaluate the

results only for values between -0.4 and 0.8. This is because the

small number of word pairs with similarity values outside of this

interval makes the data in these ranges noisy. This is in line with

our parameter evaluation results, as we can see from the graphs in

Section 3 that the vast majority of word pairs have similarity

values in this range for the model used in this section.

Figure 13-14 LCH score aggregates by list indices

To find meaningful threshold values, we check the plots of the

averages of the similarity value distributions for patterns that

could imply meaningful values. We do so in two steps. Our first

step is an intuitive inspection of the figures; the second step is a

statistical analysis of the graphs. We now discuss these steps.

 On the Existence of Intuitive Similarity 4.3

Thresholds
When analyzing the results visually, we hope to find horizontal

segments in the result graph or other phenomena such as breaks,

i.e., flat segments of the graph followed by a steep incline or

decline, which might stand for certain properties of the models. A

horizontal segment, for example, would mean that there is no

difference in similarity between the values forming this line. To

illustrate further, if Figure 14 was horizontal between list indices

800 and 1000, we could interpret this as follows: There is no

general difference in similarity between a word being the 800th or

the 1000th most similar word to a given word. Thus, it is mean-

ingless to differentiate between words at these similarities. The

same would follow for the similarity value distribution if there

was a horizontal segment there. Other phenomena such as a break

in the figure would imply a general change in similarity. For

example, if there was a break, we could interpret it as a threshold

between relevant and irrelevant similarity values at first sight.

However, as observable in Figures 11-14, such an intuitive ap-

proach does not yield any useful result in our case. This is because

there are no obvious horizontal segments or breaks in the graphs.

 Towards Meaningful Threshold Values 4.4

Based on Unequal Mean Values
The previous step has not identified any patterns pointing to

intuitive threshold values for similarity. Hence, we now aim for a

statistically sound derivation of meaningful threshold values, in

contrast to a mere visual inspection.

4.4.1 Confidence-based threshold identification
The general idea is examining the results of our experiments with

statistical tests. We test the hypothesis that two populations have

equal means, without assuming that they have equal variance.

Here, these populations are the LCH scores of two groups of word

pairs. Formally, such a group (𝐿𝐶𝐻_𝐺𝑘) is as follows: 𝐿𝐶𝐻_𝐺𝑘 =

{𝐿𝐶𝐻_𝑑𝑖𝑠𝑡(𝑤𝑝𝑖,𝑗) ∶ 𝑤𝑝𝑖,𝑗 ∈ 𝐺𝑘}, where 𝐺𝑘 is either a similarity

value or a similarity list group, as introduced in Section 4.2.2. We

use Welch’s unequal variances t-test [44] for our experiments, a

widely used two-sample statistical test for this problem. So the

answers to the research questions from the introduction are statis-

tical in nature, i.e., we will give answers with a certain confidence

such as 99%, based on Welch tests.

Our tests are as follows: We compare two groups (𝐿𝐶𝐻_𝐺𝑘,

𝐿𝐶𝐻_𝐺𝑙), as introduced above, with the Welch test. The groups

are obtained by similarity values (Experiment 1) or by similarity

list indices (Experiment 2). The null hypothesis in a Welch test is

that the two groups have equal means. One either rejects the null

hypothesis at a confidence level chosen apriori (99% in our case),

or there is not enough evidence to do so. In case of a rejection, we

conclude that there is a significant difference between the two

groups in terms of similarity. I.e., the group with the higher LCH

mean contains significantly more similar word pairs.

4.4.2 Experimental results for similarity values
For the similarity value group evaluation, we first test the exem-

plary questions asked in the introduction. We then investigate

generally at which extent similarity value groups are different.

Q1. Are low values of similarity comparable to each other?

Q2. If Words A and B have a higher similarity value than A and C

(say 0.2 and 0.1), is A more similar to B than to C?

For Q2, we test the following null hypothesis: The aggregated

LCH scores have the same mean values for the word pairs with a

0.10 and with a 0.20 similarity value. – The number computed on

our corpus is as follows:

𝑤𝑒𝑙𝑐ℎ_𝑡𝑒𝑠𝑡_𝑝_𝑣𝑎𝑙𝑢𝑒(𝐿𝐶𝐻_𝐺0.10, 𝐿𝐶𝐻_𝐺0.20) = 5.19𝑒−9 < 0.01

So we conclude with 99% confidence that the hypothesis is false.

We infer that the word pairs with 0.20 similarity values in general

are more similar to each other than the pairs with 0.10 similarity

values. In other words, to answer Q1, even at these low levels of

similarity, differences in value have a meaning.

We now turn to the systematic experiment. For every group, we

search the next group with higher index which significantly dif-

fers in LCH scores with 99% confidence. See Figure 15. The

values can be understood as follows: For the -0.30 similarity value

group (X axis), to give an example, the next successive group

which significantly differs in similarity is the -0.17 similarity

value group (Y axis). Starting from the -0.18 (X axis) group every

successive group has a significantly higher LCH score mean than

the previous one. On the other hand, there is a bend in the figure

at -0.18. It means that at low values of similarity, i.e., below -0.18,

there is no significant evidence that the higher similarity value

group implies higher LCH similarity scores. We conclude that

below the -0.18 similarity value there is no significant difference

between the groups.

Figure 15 Groups with significant differences in LCH mean

scores by similarity values

Another way to understand these values is as follows: Somewhat

naturally, we assume that the -0.40 similarity value group contains

dissimilar word pairs. This is because it is the group with the pairs

with the smallest similarity values. For this group we calculate the

next group with significantly higher LCH mean score, the -0.18

similarity value group. This means that between -0.40 and -0.18

there is no significant difference in LCH scores between the

groups. Based on our assumption that the -0.40 group contains

dissimilar word pairs, we conclude that the word pairs with simi-

larity values between -0.40 and -0.18 are dissimilar.

Because of the relatively high standard deviation in the groups,

we cannot conclude that all word pairs in these groups are dissim-

ilar, but we can say that the groups do not differ significantly. For

higher similarity values, i.e., above -0.18, every group is signifi-

cantly different, as we have seen. This means that any increase in

similarity, even if it is only 0.01, implies a higher similarity of the

word pairs. Again, we cannot say this for every specific word

pairs, because of the high deviation, but only in general terms, for

the groups as a whole.

Overall, we conclude that the similarity value groups are signifi-

cantly different from each other above -0.18 and not different

below this value. This also can be seen visually, as there is a

characteristic bend in Figure 15 at -0.18 on the x-axis.

4.4.3 Experimental results for similarity lists
We now investigate the same exemplary questions asked in the

introduction with similarity lists.

Q3. Can we say that being in the top 100 list of most similar

words always implies similarity, or not being in the top 500 list

always implies dissimilarity?

Q4. What are meaningful cutoff values, and how to find them?

We answer these questions with the following experiments. Our

experiments with similarity lists actually are the same as just

before, but with the word pairs being grouped by list indices.

Figure 13 shows that there is a long almost horizontal noisy stripe

of LCH averages. We are making the same tests for the index

groups (𝐺𝑘 , 𝑘 ∈ {1, … ,100000}) as we have with the similarity

value groups, again with 99% confidence.

Figure 16 a, b, c Groups with significant differences in LCH

mean scores by similarity indices

For every index group, we search the next group with higher

index with a significantly different LCH similarity mean using

that test. The figure shows the following: At the smallest indices

even small differences in the indices imply significantly different

mean score. But as the indices increase, the bigger the differences

have to be between groups to yield a significant difference in the

mean.

Figures 16a-c show that there are certain indices which generally

identify the significant differences. These indices correspond to

groups with particularly high LCH mean scores, and because of

that, they are significantly different from many lower index

groups. The horizontal lines in Figure 16a identify them.

Figure 17 Meaningful list indices

Just as we have done with the similarity values, we assume that

the last group of word pairs, i.e., pairs consisting of a word and its

least similar word, are dissimilar. We test two items:

 What is the last group with an LCH similarity score signifi-

cantly different from the last group overall? Formally, what

is the highest index (𝑖) so that, for every 𝑗 > 𝑖,
𝑤𝑒𝑙𝑐ℎ_𝑡𝑒𝑠𝑡_𝑝_𝑣𝑎𝑙𝑢𝑒(𝐿𝐶𝐻_𝐺100000 , 𝐿𝐶𝐻_𝐺𝑗) > 0.01 holds?

 What is the first group that is not significantly different from

the last group? Formally, what is the lowest index (𝑖) so that

𝑤𝑒𝑙𝑐ℎ_𝑡𝑒𝑠𝑡_𝑝_𝑣𝑎𝑙𝑢𝑒(𝐿𝐶𝐻_𝐺100000 , 𝐿𝐶𝐻_𝐺𝑗) < 0.01 holds,

for every 𝑗 < 𝑖?

The answers to these questions are the 31584th group and the

6094th group, respectively. Namely, the horizontal line in Fig-

ure 17 is the one separating the groups whose LCH mean scores

are significantly higher than the one of the last group from the

rest. We conclude that indices higher than 31584 are statistically

not different from the last group. Based on our assumption, our

interpretation is that they contain dissimilar word pairs. On the

other side, all groups with indices below 6094 have a higher LCH

mean than the last group. This means that they all contain signifi-

cantly more similar word pairs. Again this does not mean that all

the word pairs in these groups are dissimilar or similar, respec-

tively, but that the groups differ significantly.

Figure 18 contains our experiments in pseudo-code.

4.4.4 Implications and external validity
The experimental results indicate that a confidence-based compa-

rison based on statistical tests identifies large ranges of steady si-

milarity values as well as large ranges of list positions where the

similarity of word pairs is meaningful. However, the results so far

are exemplary to the model and text corpus used. In the next

section we generalize our insights with further models trained on

different corpora to find meaningful similarity values.

Figure 18 Experiment procedure

 Generalization with Additional Corpora 4.5
The results from the prior subsection indicate that our approach to

identify meaningful similarity values with a statistical test is

promising. The results in Section 4.4.2 and 4.4.3 are already

interesting for practitioners, as the corpus, embedding model (with

these parameters), and the baseline are widely used. We now

show that our approach yields meaningful results with other

corpora as well.

4.5.1 Rationale behind the experiments
With the model algorithm (e.g., SG or Glove model) and the

parameters changing, the similarity values and lists change as

well, cf. Section 3. This means that one must adjust the specific

numbers that identify ranges where similarity is meaningful for

any other model. To show that the procedure we propose is gener-

ally relevant we train two other models with different underlying

corpora, but with the same model and parameter setting. To make

the results of the experiments comparable we use corpora of the

same size as before. If the results from this section (i.e., the plots)

will be highly similar to those from Section 4.4, we will claim that

our method to find meaningful similarity thresholds or list sizes is

valid in general.

4.5.2 Experimental results
The first dataset we train a model on is a Wikipedia dump with

the articles shuffled and trimmed to contain approximately

1 billion words2. The second one is a 5-gram corpus extracted

from the Google Books n-gram dataset [45]. We have extracted

the 5-grams, shuffled them, and trimmed the data to have the

same size as our original 1 billion word dataset. We note that

working with 5-grams as the underlying corpus is slightly

different from working with full text corpora. This is because of

the limited size of the 5-grams, i.e., all the sentences considered

by the learning algorithm only have a length of 5. We conduct the

same experiments with the models trained on these corpora as in

Section 4.4.

2 Available at http://download.wikimedia.org/enwiki/

Figure 19 Significantly different groups by similarity value

 Figure 19 shows that the results are almost identical to the ones in

Section 4.4. The structure of the figures and even the values are

very similar. For all three models, the similarity values which are

not meaningful are between -0.4 and approximately -0.2.

Figure 20 a, b Significantly different groups by list indices for

the models trained on 5-grams (Fig. 20a), Wikipedia (Fig. 20b)

As for the similarity lists, we again see that the figures are very

similar, but they naturally differ in the actual values. We also test

the two models regarding the same questions we have asked

earlier, namely: What is the last group which is significantly

different in LCH similarity score from the last group overall?

What is the first group that is not significantly different from the

last group? The results are 28570 and 5889, respectively, for the

model trained on the Wikipedia corpus and 35402 and 6408,

respectively, for the model trained on the 5-grams. These numbers

also are very much like the ones calculated before.

All this shows that our approach to derive those threshold values

is fairly independent of the underlying corpus. The approach is

applicable on any kind of corpus, and only the model selection

and their parameters influence the resulting numbers.

 Robustness of Evaluations Methods 4.6
The results of Section 4 so far indicate that meaningful ranges of

similarity values exist. More specifically, for these values it is

meaningful to compare two word pairs with different similarity

values and to conclude that higher values imply greater semantic

similarity. In contrast, the values outside of these regions are

either very noisy, because of the lack of word pairs with the re-

spective values, or indistinguishable in terms of similarity.

As the introduction has pointed out, evaluation methods compare

word pair similarities on the full scale of similarity values and

lists. Based on our results so far, we propose that the comparison

should only be done at certain ranges of similarities. One can

determine these ranges using the method proposed in Section 4.4.

In particular, we propose that only those values should be com-

pared which significantly differ in mean similarity scores,

cf. Figure 15. For example, when evaluating the model in this

section one should only compare word pair similarity values when

the values are above -0.20. It is also noteworthy that every 0.01

difference in this range implies a significantly different similarity.

For the list indices, similar conclusions are feasible. For example,

with the model of this section we recommend to compare only

indices below approximately 31500.

With other models, these values and indices could be different,

but the method how to calculate them and the implications are the

same. This means that for any embedding model we propose to

calculate these values first, to improve any evaluation.

5. Conclusions
Word embedding models allow to quantify similarities of words.

However, the notion of similarity and the meaning of similarity

values has remained ambiguous. In this paper we have studied

when exactly such values are meaningful in word embedding

models. To this end, we have designed and conducted two series

of experiments. With the first experiments we have shown how

the distribution of similarity values change when changing the

embedding-model algorithms or their parameters. As a result, we

see that similarity values highly depend on the algorithms and

parameters, i.e., the same value can represent different grades of

similarity in different models. The second set of experiments has

resulted in an evaluation method based on statistical tests, in order

to find meaningful similarity values in embedding models. An

important insight is that meaningful intervals of similarity values

do exist, and one can actually find them for a specific embedding

model. We have shown that these results are corpus-independent;

they only depend on the learning algorithms and parameters

already evaluated. Finally, we have proposed amendments to any

evaluation method of word embedding models.

6. REFERENCES

[1] K. Erk, "Vector space models of word meaning and phrase

meaning: A survey," Language and Linguistics Compass,

vol. 6, pp. 635-653, 2012.

[2] S. Clark, "Vector space models of lexical meaning,"

Handbook of Contemporary Semantic Theory, The, pp.

493-522, 2013.

[3] M. Baroni, G. Dinu and G. Kruszewski, "Don't count,

predict! A systematic comparison of context-counting vs.

context-predicting semantic vectors.," in ACL (1), 2014.

[4] S. Deerwester et al., "Indexing by latent semantic

analysis," Journal of the American society for information

science, vol. 41, p. 391, 1990.

[5] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent dirichlet

allocation," Journal of machine Learning research, vol. 3,

pp. 993-1022, 2003.

[6] Y. Bengioet al., "A neural probabilistic language model,"

journal of machine learning research, vol. 3, pp. 1137-

1155, 2003.

[7] R. Collobertet al., "Natural language processing (almost)

from scratch," Journal of Machine Learning Research,

vol. 12, pp. 2493-2537, 2011.

[8] R. Collobert and J. Weston, "A unified architecture for

natural language processing: Deep neural networks with

multitask learning," in Proceedings of the 25th

international conference on Machine learning, 2008.

[9] E. H. Huanget al., "Improving word representations via

global context and multiple word prototypes," in

Proceedings of the 50th Annual Meeting of the Association

for Computational Linguistics: Long Papers-Volume 1,

2012.

[10] J. Pennington, R. Socher and C. D. Manning, "Glove:

Global Vectors for Word Representation.," in EMNLP,

2014.

[11] T. Mikolov et al., "Efficient estimation of word

representations in vector space," arXiv preprint

arXiv:1301.3781, 2013.

[12] T. Mikolov et al., "Distributed representations of words

and phrases and their compositionality," in Advances in

neural information processing systems, 2013.

[13] A. Passos, V. Kumar and A. McCallum, "Lexicon infused

phrase embeddings for named entity resolution," arXiv

preprint arXiv:1404.5367, 2014.

[14] H. Komatsu, R. Tian, N. Okazaki and K. Inui, "Reducing

Lexical Features in Parsing by Word Embeddings," 2015.

[15] W. Y. Wang and D. Yang, "That’s so annoying!!!: A

lexical and frame-semantic embedding based data

augmentation approach to automatic categorization of

annoying behaviors using petpeeve tweets," in EMNLP

2015, 2015.

[16] B. Klein et al., "Fisher vectors derived from hybrid

Gaussian-Laplacian mixture models for image annotation,"

arXiv preprint arXiv:1411.7399, 2014.

[17] J. Devlin et al., "Fast and Robust Neural Network Joint

Models for Statistical Machine Translation.," in ACL (1),

2014.

[18] I. Sutskever, O. Vinyals and Q. V. Le, "Sequence to

sequence learning with neural networks," in Advances in

neural information processing systems, 2014.

[19] S. Liu et al., "A Recursive Recurrent Neural Network for

Statistical Machine Translation.," in ACL (1), 2014.

[20] O. Levy, Y. Goldberg and I. Dagan, "Improving

distributional similarity with lessons learned from word

embeddings," Transactions of the Association for

Computational Linguistics, vol. 3, pp. 211-225, 2015.

[21] R. Lebret and R. Collobert, "Rehabilitation of count-based

models for word vector representations," in International

Conference on Intelligent Text Processing and

Computational Linguistics, 2015.

[22] F. Hill et al., "Not all neural embeddings are born equal,"

arXiv preprint arXiv:1410.0718, 2014.

[23] T. Schnabel et al., "Evaluation methods for unsupervised

word embeddings," in Proc. of EMNLP, 2015.

[24] L. Finkelstein et al., "Placing search in context: The

concept revisited," in Proceedings of the 10th

international conference on World Wide Web, 2001.

[25] E. Bruni et al., "Distributional semantics in technicolor," in

Proceedings of the 50th Annual Meeting of the Association

for Computational Linguistics: Long Papers-Volume 1,

2012.

[26] F. Hill, R. Reichart and A. Korhonen, "Simlex-999:

Evaluating semantic models with (genuine) similarity

estimation," Computational Linguistics, 2016.

[27] M. Batchkarov et al., "A critique of word similarity as a

method for evaluating distributional semantic models,"

2016.

[28] O. Avraham and Y. Goldberg, "Improving Reliability of

Word Similarity Evaluation by Redesigning Annotation

Task and Performance Measure," arXiv preprint

arXiv:1611.03641, 2016.

[29] G. A. Miller, "WordNet: a lexical database for English,"

Communications of the ACM, vol. 38, pp. 39-41, 1995.

[30] O. Levy and Y. Goldberg, "Neural word embedding as

implicit matrix factorization," in Advances in neural

information processing systems, 2014.

[31] T. Shi and Z. Liu, "Linking GloVe with word2vec," arXiv

preprint arXiv:1411.5595, 2014.

[32] R. Rehurek and P. Sojka, "Software framework for topic

modelling with large corpora," in In Proceedings of the

LREC 2010 Workshop on New Challenges for NLP

Frameworks, 2010.

[33] Massey Jr, J. Frank, "The Kolmogorov-Smirnov test for

goodness of fit," Journal of the American statistical

Association, vol. 46, pp. 68-78, 1951.

[34] C. Chelba et al., "One billion word benchmark for

measuring progress in statistical language modeling,"

arXiv preprint arXiv:1312.3005, 2013.

[35] B. Chiu, A. Korhonen and S. Pyysalo, "Intrinsic evaluation

of word vectors fails to predict extrinsic performance,"

ACL 2016, p. 1, 2016.

[36] E. Altszyler, M. Sigman and D. F. Slezak, "Comparative

study of LSA vs Word2vec embeddings in small corpora:

a case study in dreams database," arXiv preprint

arXiv:1610.01520, 2016.

[37] C.-C. Lin et al., "Unsupervised POS induction with word

embeddings," arXiv preprint arXiv:1503.06760, 2015.

[38] C. Leacock and M. Chodorow, "Combining local context

and WordNet similarity for word sense identification,"

WordNet: An electronic lexical database, vol. 49, pp. 265-

283, 1998.

[39] A. Budanitsky and G. Hirst, "Evaluating wordnet-based

measures of lexical semantic relatedness," Computational

Linguistics, vol. 32, pp. 13-47, 2006.

[40] R. Mihalcea, C. Corley and C. Strapparava, "Corpus-based

and knowledge-based measures of text semantic

similarity," in AAAI, 2006.

[41] A. Budanitsky and G. Hirst, "Semantic distance in

WordNet: An experimental, application-oriented

evaluation of five measures," in Workshop on WordNet

and Other Lexical Resources, 2001.

[42] S. Bird, "NLTK: the natural language toolkit," in

Proceedings of the COLING/ACL on Interactive

presentation sessions, 2006.

[43] L. Meng, R. Huang and J. Gu, "A review of semantic

similarity measures in wordnet," International Journal of

Hybrid Information Technology, vol. 6, pp. 1-12, 2013.

[44] B. L. Welch, "The generalization ofstudent's' problem

when several different population variances are involved,"

Biometrika, vol. 34, pp. 28-35, 1947.

[45] J.-B. Michel et al., "Quantitative analysis of culture using

millions of digitized books," science, vol. 331, pp. 176-

182, 2011.

	2017,3_Titelblatt.pdf
	abel_elekes_similarity_long-1.pdf

