
EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium           1 

EVS29 Symposium 

Montréal, Québec, Canada, June 19-22, 2016 

Influencing factors on specific energy consumption of EV 

in extensive operations  

Maximilian Schücking1,*, Patrick Jochem1, Wolf Fichtner1, Olaf Wollersheim2, Kevin Stella2  

1(*corresponding author) Chair of Energy Economics, Institute for Industrial Production (IIP), Karlsruhe Institute of 

Technology (KIT), Building 06.33, Hertzstraße 16, D-76187 Karlsruhe, Germany  

Tel.: +49 721 608 44559, E-Mail: maximilian.schuecking@kit.edu 

2Project Competence E, Karlsruhe Institute of Technology (KIT), Building 276, Hermann-von-Helmholtz-Platz 1, 

D-76344 Eggenstein-Leopoldshafen, Germany 

Abstract 

The sensitivities of electric vehicle (EV) energy consumption become significant when operating at long 

distances. This study analyzes these sensitivities based on empirical data of seven EV over 2.75 years with 

individual monthly mileages above 3,000 km and a specifically adopted energy consumption model. The 

results underline the influence of average speed, the distribution of speed and the auxiliaries as well as their 

opposing effects. It is demonstrated that the point of lowest specific energy consumption is not necessarily 

identical to the point where EV are most competitive compared to conventional internal combustion engine 

vehicles. 
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1 Introduction 

The economic break-even for electric vehicles (EV) in comparison to internal combustion engine vehicles 

(ICEV) can be reached in most countries through a high mileage based on their lower energy costs. Due to 

the limited charging speeds and battery capacity for most currently available EV this requires operating them 

at their upper technical boundary. In this context assessing and forecasting their actual energy consumption 

is key. Empirical studies have shown that empirical energy consumption is usually higher than proclaimed 

by the manufacturers based on standardized driving cycles for EV [1–6] and for ICEV. This depends on 

various factors, e.g. driving profiles, driver behavior, battery technology, and the auxiliaries, which leads to 

specific energy consumption minima between 30 and 40 km/h depending on EV type and other conditions 

[7–9]. However, the possibility of energy recuperation changes the sensitivities of EV energy consumption 

in comparison to ICEV.  

In this line of research we present the results of a long-term demonstration project, where seven EV were 

deployed with the goal to reach an economic break-even. The EV were provided to commuting shift workers 

and for business trips between two sites in France and Germany. The route profiles can therefore be 

characterized as mostly inter-urban with a significant share of motorways, which does not represent the usual 

deployment field of EV. However, both applications offer the potential to reach high mileages. In fact the 

monthly average mileage per EV in this field-test was above 3,000 km and required the regular use of DC 

fast charging.  
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2 Method & Data  

In order to identify influencing factors and investigate the energy consumption sensitivity three steps were 

taken. Firstly, the long-term empirically measured energy consumption was evaluated. The changes in state 

of charge (SOC) values between the start and end of one trip proved unreliable by showing high sensitivities 

to factors such as temperature and load profiles. Therefore, to calculate the energy consumption for each trip 

(𝐸𝑇𝑟𝑖𝑝, eq. 1) the recorded sum of the average values of battery current (𝐼𝐵𝑎𝑡) and voltage between (𝑈𝐵𝑎𝑡) 

two data points multiplied by the time difference (∆𝑡𝑖,𝑖−1) was taken. In the next step the specific energy 

consumption for each trip (𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐, eq. 2) was calculated by dividing the total energy consumption by the 

distance covered (𝐷𝑇𝑟𝑖𝑝). 
 

𝐸𝑇𝑟𝑖𝑝,𝑡𝑜𝑡𝑎𝑙 = ∑
(𝐼𝐵𝑎𝑡,𝑖−𝐼𝐵𝑎𝑡,𝑖−1)

2
×

(𝑈𝐵𝑎𝑡,𝑖−𝑈𝐵𝑎𝑡,𝑖−1)

2

𝐸𝑛𝑑
𝑖=𝑆𝑡𝑎𝑟𝑡+1 × ∆𝑡𝑖,𝑖−1        (1) 

𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐 =
𝐸𝑇𝑟𝑖𝑝

𝐷𝑇𝑟𝑖𝑝
                (2) 

 

In the following analysis average monthly values were taken. This was done due to the observed high 

variance of energy consumption for the individual trips on identical routes, most likely depending on factors 

such as time of day, direction of travel, or current driver, etc., which are not investigated in this study. 

Secondly, to analyze the observed effects average driving profiles for both EV types were created based on 

recorded data (e-Wolf Delta 2 Route 1 and Nissan Leaf Route 7). Identical to the data loggers as the constant 

equidistant time difference between two data points for the e-Wolf Delta 2 20 s and for the Nissan Leaf 1 s 

was taken. These artificial diving profiles were put into an individual adjusted theoretical energy 

consumption model considering the specific efficiency values of the powertrain components (Fig. 2), which 

were provided by the manufacturers and validated by putting the EV on the dynamometer (Fig. 1) and 

comparing to values from the literature [10], as well as the individual recuperation algorithms. 

 

 
Figure 1: Range of efficiency for Delta 2 powertrain (measured in 11 km/h and 70 Nm intervals) 

 

Figure 2: EV powertrain with average measured component efficiency at recorded speed values 
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The developed energy consumption simulation model distinguishes two driving states at different points of 

time during the trip (index 𝑘): taking electric energy from the battery for propelling the EV forward (𝑃𝑘,𝑒𝑙.𝑠𝑢𝑝, 

eq. 4) and recuperating electric energy back into the battery (𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐, eq. 5.1 – 5.3). For both driving states 

an individual powertrain efficiency (𝜂𝑝𝑡,𝑠𝑢𝑝, 𝜂𝑝𝑡,𝑟𝑒𝑐) is considered dependent on speed (𝑣), torque (𝜏), and 

Temperature (𝑇). The required power at the wheels (𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠, eq. 3) is the sum of the power for acceleration 

(𝑃𝑘,𝑎𝑐𝑐.), the power necessary to climb an ascending slope (𝑃𝑘,𝑐𝑙𝑖𝑚𝑏) as well as the power to overcome the 

rolling resistance (𝑃𝑘,𝑟𝑜𝑙𝑙.𝑟𝑒𝑠) and drag (𝑃𝑘,𝑑𝑟𝑎𝑔). It is calculated based on the current speed (𝑣), the change 

in speed (𝑣̇), the additional load (𝑚), and the road gradient (𝛼). The energy required for acceleration as well 

as to climb an ascending slope can potentially be recuperated, while the one used to overcome rolling 

resistance and drag is lost. The equations for the recuperation below exemplary show the calculation for the 

e-Wolf Delta 2 based the specific design of the algorithm: only recuperating energy above the speed of 

20 km/h (eq. 5.1) and only up to a maximum of 22 kW battery charging power (eq. 5.3). The power demand 

or supply for each point in time of the driving cycle was added to the power demand of the auxiliaries (𝑃𝑘,𝑎𝑢𝑥), 

which was then multiplied by the equidistant time difference (∆𝑡𝑘,𝑘−1 ), added up, and divided by the 

temperature dependent battery efficiency (𝜂𝑏𝑎𝑡) to calculate the total energy consumption for a single trip 

(𝐸𝑇𝑟𝑖𝑝, eq. 6). To get the specific energy consumption (𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐, eq. 7) the total energy consumption was 

again divided by the covered distance (𝐷𝑇𝑟𝑖𝑝). To validate the model the results of the total energy 

consumption as well as the progression for different individual trips were subsequently compared to the 

energy consumption empirically measured confirming the accuracy of the developed model for the analyzed 

EV types.  
 

𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 = 𝑃𝑘,𝑎𝑐𝑐.(𝑣, 𝑣̇, 𝑚) + 𝑃𝑘,𝑐𝑙𝑖𝑚𝑏(𝑣, 𝛼) + 𝑃𝑘,𝑟𝑜𝑙𝑙.𝑟𝑒𝑠(𝑚, 𝑣, 𝛼) +  𝑃𝑘,𝑑𝑟𝑎𝑔(𝑣)         (3) 

𝑃𝑘,𝑒𝑙.𝑠𝑢𝑝 = 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 
1

𝜂𝑝𝑡,𝑠𝑢𝑝(𝑣,𝜏,𝑇)
           (4) 

𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐 = 0     𝑖𝑓  
∑ 𝑣𝑘

𝑘+1
𝑖=𝑘−1

3
< 20 𝑘𝑚/ℎ        (5.1) 

𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐 = 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 𝜂𝑝𝑡,𝑟𝑒𝑐(𝑣, 𝜏, 𝑇)     𝑖𝑓 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 𝜂𝑝𝑡,𝑟𝑒𝑐(𝑣, 𝜏, 𝑇)  ≤ 22 𝑘𝑊    (5.2) 

 

𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐 = 22 𝑘𝑊     𝑖𝑓 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 𝜂𝑝𝑡,𝑟𝑒𝑐(𝑣, 𝜏, 𝑇)  > 22 𝑘𝑊     (5.3) 

    (6) 

𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐 =
𝐸𝑇𝑟𝑖𝑝

𝐷𝑇𝑟𝑖𝑝
                (7) 

 

In this study the developed simulation model was mainly used to investigate the effects of auxiliaries and 

drag in relation to travelling speed. Since the EV were deployed on constant routes and the individual driver 

was unknown, influence factors such as driving style, or drivers experience were excluded in this study. Also 

the vehicle load influencing the power to overcome the rolling resistance as well as the power required for 

acceleration was only estimated with the average number of passengers. It was the only way, because for 

privacy reasons for the individual trips there was no data available at which points on the route the workers 

where embarking or disembarking the EV or how many workers were using the EV for a business trip. To 

specifically examine the sensitivities to drag and the use of the auxiliaries of the energy consumption in 

relation to the average driving speed for both EV types the speed values of the created average driving profiles 

were put into the model and varied proportionally. 

Thirdly, to not only study the relation to average speed, but also to investigate the effects of a greater 

distribution of speed values the recorded data of the Nissan Leaf was analyzed, by comparing the standard 

deviation of the speed values to the specific energy consumption and the average speed. The Nissan Leaf 

was taken since the data logger had a higher measurement resolution and therefore allowing a more precise 

calculation of the statistical distribution. The empirical and simulated values for the total and specific energy 

consumption are based on a tank-to-wheel (TTW) system boundary. 

𝐸𝑇𝑟𝑖𝑝 =
1

𝜂𝑏𝑎𝑡(𝑇)
[ ∑ (∆𝑡𝑘,𝑘−1 × (𝑃𝑘,𝑒𝑙.𝑠𝑢𝑝

𝐸𝑛𝑑

𝑘=𝑆𝑡𝑎𝑟𝑡+1

+ 𝑃𝑘,𝑎𝑢𝑥)) + ∑ (∆𝑡𝑘,𝑘−1 × (𝑃𝑘,𝑟𝑒𝑐

𝐸𝑛𝑑

𝑘=𝑆𝑡𝑎𝑟𝑡+1

+ 𝑃𝑎𝑢𝑥))] 
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Both EV types in the project were chosen based on the technical and user specific requirements of the two 

applications. The main technological selection criteria were the possibility of DC fast charging, sufficient 

battery capacity to ensure a one-way trip even under restrictive conditions, and cycle stability under the 

intensive and frequent use of DC fast charging. In addition to the technological requirements the EV needed 

to fit the demands of the travelers concerning size and comfort. According to these criteria only two EV 

models were available at that time: the e-Wolf Delta 2 (and the updated EVO-version) for the commuters 

and the Nissan Leaf for the business trips. The technical specifications can be found in Table 1. 

 

Table 1: Technical specification of the deployed EV (Source: Technical datasheet provided by manufacturers) 
 e-Wolf Delta 2 e-Wolf Delta 2 (EVO) Nissan Leaf 

Number of EVs deployed 3 3 1 

Specific energy consumption (NEDC) [Wh/km] 187 200 173 

Max. motor power output [kW] 90 90 80 

Cabin heating Biodiesel Biodiesel Battery 

Nominal battery capacity [kWh] 24.20 32.00 24.00 

Real battery capacity [kWh] 22.26 29.44 20.85 

Battery chemistry Li-ion NMC Li-ion NMC Li-ion G/LMO-NCA 

Drag coefficient  0.31 0.31 0.285 

Frontal area [m2] 3.32 3.32 2.6 

Vehicle mass [kg] 1,660 1,650 1,525 

 

All EV were equipped with data loggers connected to the CAN bus recording powertrain and GPS data. For 

the e-Wolf Delta 2 EV amongst others the following powertrain and GPS data was recorded: date and time, 

parameters of the high-voltage-battery, such as voltage, battery current, medium cell temperature, and SOC, 

speed and odometer based on axis turning, GPS height, GPS odometer, GPS speed, GPS position latitude 

and longitude. For the Nissan Leaf a data logger directly connected via Bluetooth to the on-board diagnostic 

system (OBD) was installed. This allowed detailed access to a wide range of powertrain data, e.g. battery 

currents, voltages, temperatures, SOC, charging status as well as GPS data. Over the duration of 2.75 years 

for the seven EV over 450,000 km were logged. Additionally the EV were set on a dynamometer to assess 

their energy consumption and power train efficiency under controlled conditions. 

 

3 Results 

In order to investigate the effect of the influence factors on the specific energy consumption the results 

presented in the following are the recorded energy consumption values, the simulated effects of drag and 

auxiliaries in relation to average speed, and the consequence of a higher speed variance in the driving profile.  

 

3.1 Long-term specific energy consumption 

As first step of identifying influence factors the values for the long-term energy consumption are analyzed. 

Even though all EV were deployed on constant routes, for the two applied EV types significant differences 

in the energy consumption over the time of use can be observed (Fig. 3). For the specific energy consumption 

of the e-Wolf Delta 2 vehicles differences between the routes and time of year can be detected. As one reason 

for the variations between the routes the different shares of inter-urban and motorway route parts can be 

stated. Route 4 is mostly motorway and shows the highest average speed of all commuter routes with 60 km/h 

also leading to the highest specific energy consumption. Concerning the fluctuations a clear identification of 

causing factors is more difficult. Sometimes one worker being on holiday changes the route of the commuting 

group and therefore the specific energy consumption varies. Some fluctuations however can be explained by 

the changes in outside temperature. Especially between November 2014 and March 2015 an increase in 

specific energy consumption for almost all e-Wolf Delta 2 of around 20 Wh/km can be observed. Since the 

heating for the e-Wolf Delta 2 is done with Biodiesel the increase cannot be directly explained with an 

increase in auxiliary demand. Further analysis indicated that in the cold months the increase can be explained 

by a combination of battery chemistry and battery management design: Lower outside temperatures also cool 

down the battery temperature leading to a higher battery’s inner resistance which decreases battery efficiency. 

Additionally the battery management system reduces the recuperation power depending on the current cell 

temperature to avoid potentially harming effects on the cell chemistry by charging with higher currents. The 
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energy instead is lost through mechanical breaking, leading to a higher specific energy consumption. Other 

potential factors can be a more frequent use of specific auxiliaries such as headlights, wipers, and cabin fan. 

Secluding it should be noticed that on average the specific energy consumption lies around 235 Wh/km, 

which is significantly higher than the NEDC value stated by the manufacturer (Table 1).  

The Nissan Leaf, due to the lower weight and better aerodynamics in comparison shows lower specific energy 

consumption, with the lowest point at 150 Wh/km (Fig. 3), which even lies below the NEDC value stated by 

the manufacturer (Table 1). On the other hand it shows a much higher variance between winter and summer. 

Even though different reasons for this increase in months of lower average temperatures can be adduced, the 

data shows that the cabin heating, that takes energy from the battery instead of an additional heating device, 

has the biggest influence. A maximum value of close to 4 kW was recorded for cabin heating power taken 

from the battery. This indicates the significant influence of the cabin heating on the specific energy 

consumption even at the relatively high average speed: At the measured average speed of around 70 km/h 

for the business trips the full heating power of 4 kW leads to an additional specific energy consumption of 

57 Wh/km, which is an increase of 33% to the NEDC. Under these circumstances short term test 

measurements on urban routes showed specific energy consumption values up to 280 Wh/km.  

 

 

Figure 3: Measured monthly average specific energy consumption of the RheinMobil EV 

 

3.2 Effect of drag and auxiliaries on specific energy consumption 

The results of the specifically for both EV types developed energy consumption simulation model for the 

averaged recorded empirical driving profiles with proportionally varied speed values clearly underline the 

reverse effects of the auxiliaries and drag in relation to average speed on the specific energy consumption. 

Figure 4 shows the total specific energy consumption taken from the battery depending on the average speed 

for both EV types and two levels of auxiliary demand. The auxiliaries’ power demand levels of 1.1 kW as 

average and 4 kW as maximum were chosen according to the recorded values. At the same level of 

auxiliaries’ power demand the energy consumption at low average speeds for both EV types is very similar. 

With an increase in average speed the difference between the two curves increases. At higher average speeds 

the discrepancy between the different auxiliary demand levels diminishes. The progression of the curves 

illustrates the relatively changing influence of auxiliaries and drag at different speed levels. At a constant use 

of 1.1 kW auxiliaries under these driving conditions the minimum specific energy consumption lies at 22 for 

the Delta 2 and 28 km/h for the Leaf. The maximum auxiliaries’ power demand of 4 kW leads to a minimum 

of specific energy consumption at 38 or 42 km/h respectively.  
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Figure 4: Energy consumption model e-Wolf Delta 2 and Nissan Leaf based on average empiric driving profiles  

 

3.3 Effect of speed variance on energy consumption 

Furthermore the empirical results suggest that even at high average speed values the distribution has an effect 

on the specific energy consumption that should not be neglected. Figure 5 shows the relation of specific 

energy consumption and recuperation to the standard deviation of the speed values for one trip as well as its 

relation to average speed. Even for the limited range of average speed values from 56 to 73 km/h, due to the 

constant mostly inter-urban and motorway driving profile the, clear correlations can be detected. The specific 

energy consumption as well as the specific recuperation increases with a higher standard deviation of speed 

values. The increase in recuperation does not fully compensate the increase, which is understandable due to 

efficiency rates, imperfect driving, and the quadratic with speed increasing losses due to drag. Therefore the 

specific net energy consumption increases with a higher speed variance. The data also shows that with a 

higher average speed the standard deviation of speed values for one trip decreases. This has to be interpreted 

carefully since the EV was deployed on a fixed route and therefore cannot be accounted to changes in the 

route profile, but might be the effect of traffic density or driving style.  

 

 

Figure 5: Measured effects of speed volatility on specific energy consumption and recuperation Nissan Leaf 

 

4 Discussion & Outlook 

The empirical results and the adapted theoretical model underline the importance of a careful EV energy 

consumption assessment and forecast. They specifically demonstrate the opposing effects of auxiliaries and 

drag at different average speed levels on the specific energy consumption. Furthermore, they substantiate 

that not only the average speed, but also the volatility of speed and therefore the amount and amplitude of 
acceleration and deceleration processes has a significant impact. The ramifications of these influencing 

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

S
p

ec
if

ic
 n

et
 e

n
er

g
y

 

co
n

su
m

p
ti

o
n

 [
k

W
h

/k
m

]

Average speed [km/h]

e-Wolf Delta 2 (auxiliaries 1.1 kW)

e-Wolf Delta 2 (auxiliaries 4 kW)

Nissan Leaf (auxiliaries 1.1 kW)

Nissan Leaf (auxiliaries 4 kW)

-25

0

25

50

75

100

125

-50

0

50

100

150

200

250

20 25 30 35 40 45

A
v
er

a
g

e 
sp

ee
d

 [
k

m
/h

]

S
p

ec
if

ic
 e

n
er

g
y

 c
o

n
su

m
p

ti
o

n
 

[W
h

/k
m

]

Standard deviation of speed profile [km/h]

Specific net energy consumption per trip
Specific energy recuperation per trip
Average speed per trip



EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium           7 

factors become particularly relevant when operating EV on fixed routes at their upper technical boundary, 

with the goal of reaching an economic break-even.  

Considering the presented influence factors in the context of economic deployment from a technological 

point of view the maximum specific energy consumption even under the most challenging circumstances 

must be low enough to allow a full one way tour on a single battery charge. As the empirical results (cf. 

Fig. 3) and the simulation results (cf. Fig. 4) show a changing use of auxiliaries plays a significant role when 

it comes to variations in energy consumption on constant routes – even more so at lower average speeds. 

They can lead to a high variance between specific energy consumption in winter (represented by a high 

auxiliary energy demand) and milder temperatures. Therefore, the worst case assumption, the constant 

maximum energy demand of the auxiliaries, has to be taken as restriction limiting the maximum distance. In 

this context the TTW energy consumption is relevant variable, since the EV battery capacity sets the limit. 

The empirical and simulation results further suggest that the presented influencing factors have a direct effect 

on the point where EV deployment is most economical in comparison to ICEV. An intuitive approach would 

be to identify the point of the comparable highest relative energy efficiency. The values in Table 2 show 

energy consumption values measured by ADAC for identical vehicles with different means of propulsion. 

They indicate that the point of most comparable energy efficiency between EV and ICEV is not necessarily 

identical to the EV specific consumption minimum. It rather lies at low speeds on inner-city routes 

characterized by frequent starts and stops. The values in Table 2 however do not consider a variation in 

auxiliary energy demand. As the results of this field-test show, to provide a more comprehensive analysis, 

the variance in energy consumption based on the auxiliary demand must be taken into consideration. This is 

especially true for the effects of an additional energy demand for passenger cabin heating. For ICEV the 

required energy can be taken from the excess heat of the combustion process and is not increasing the total 

energy consumption. Therefore, from an economic point of view the realistic long-term average energy 

consumption including all relevant influencing factors has to be taken for EV ICEV comparison. Regarding 

the system boundary in this context the ICEV fuel consumption needs to be compared to the EV grid-to-

wheel (GTW) energy consumption, since this way also losses occurring in the charging process, which are 

hence payed for when charging the EV, are included. 

When considering the worst-case energy consumption as technological limitation for the one way distance 

and the realistic long-term average energy consumption as basis for economic valuation it can be deduced 

that the point of the highest comparable energy efficiency just based on the energy required for propulsion 

might not be the best for EV deployment when aiming for the fastest economic break-even. On the contrary 

the results indicate that deploying EV on constant routes profiles with higher average speeds accrues 

Table 2: Empiric TTW consumption EV & ICEV (Source: ADAC EcoTest Data base, last accessed 01.03.2016) 

 NEDC ADAC EcoTest    

  Average Average Inner-city Inter-urban Motorway   

Smart fortwo electric drive (55 kW) 15,1 19,0 13,2 17,1 26,8 [kWh/100km] 

Smart fortwo (gas, 52 kW) 4,1 5,1 5,5 4,5 6,3 [l/100km] 

Energy saving EV vs. ICEV1 57% 56% 72% 55% 50%  

VW e-up! (60 kW) 11,7 13,7 10,4 11,6 18,6 [kWh/100km] 

VW up! (gas, 55 kW) 4,7 5,5 5,9 4,1 6,4 [l/100km] 

Energy saving EV vs. ICEV1 71% 71% 79% 67% 66%  

VW e-Golf (85 kW) 12,7 18,2 12,7 16,3 25,1 [kWh/100km] 

VW Golf (diesel, 77 kW) 3,8 4,5 5,1 3,9 5,3 [l/100km] 

Energy saving EV vs. ICEV1 66% 59% 75% 57% 52%  

Nissan e-NV200 (80 kW) 16,5 21,8 11,5 21,8 32,4 [kWh/100km] 

Nissan NV200 (diesel, 81 kW) 5,5 6,2 6,3 5,0 8,0 [l/100km] 

Energy saving EV vs. ICEV1 69% 64% 81% 56% 59%   

1 neglecting the losses occurring during EV charging, which should be considered for an economic comparison 
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advantages that can redeem the lower comparable energy efficiency. The lower maximum specific energy 

consumption at full use of auxiliaries means that the EV can be deployed constantly on routes with longer 

one way distances. This increases the possible maximum annual mileage and hence the multiplier for 

reaching the economic break-even. As the values in Table 2 show the loss in relative efficiency between 

inner-city and inter-urban or even motorway route profiles is not high and the relative efficiency still lies 

above 50%. Therefore, increasing the annual mileage through longer one-way distances has the potential to 

more than compensate the losses in relative efficiency. When operating on a system with flexible EV 

deployment under predictable conditions the maximum energy consumption has only be considered under 

the current conditions and therefore the utilization of the economic potential could be increased further.  

Considering the research method, setting, and focus of this field-test, transferring the findings and 

conclusions into a broader context must be done cautiously. Several limitations can be identified that could 

be addressed in future research. The empirical results are limited to the two analyzed EV types and are 

restricted for deployment on constant routes with average speed ranges between 55 and 75 km/h. This 

especially limits the validity for the influence of speed variance, which should be investigated in detail for 

urban profiles. Also under these conditions with more frequent starts and stops and a potentially higher share 

of energy recuperation the driving style can also play a more significant role. Furthermore, the volatility of 

auxiliary use is based on the changes in German climate conditions throughout the year. In other climate 

zones these effects might be stronger or less relevant. Lastly, the results of this case study can only indicate 

a potentially different way of thinking about economic EV deployment when considering the current state of 

technology. No direct empirical comparison of ICEV and EV deployment under identical conditions over a 

longer time frame is presented. To verify the presented suggestions this should be done while varying the 

route profiles between inner-city and motorway and carefully considering the right energy measurement 

system boundaries.  
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