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1 Introduction

Understanding the observed pattern of neutrino mixing and establishing the status of

leptonic CP violation are among the “big” open questions in particle physics. Considerable

efforts have been made in the past years trying to answer these fundamental questions. In

particular, the approach based on a discrete non-Abelian family symmetry in the lepton

sector, assumed to be existing at some high-energy scale, has been widely studied in the

literature (for reviews on the subject see [1–4]). In this approach the family symmetry has

necessarily to be broken at low energies to some residual symmetries of the charged lepton

and neutrino mass matrices. These residual symmetries constrain the form of the matrices

which diagonalise the charged lepton and neutrino mass matrices, and hence the form of

the Pontecorvo, Maki, Nakagawa, Sakata (PMNS) neutrino mixing matrix.

In the three neutrino mixing case (see, e.g., [5]) the 3 × 3 unitary PMNS matrix can

be parametrised in terms of three mixing angles, θ12, θ13, θ23, one Dirac phase δ and,

if the massive neutrinos are Majorana particles, two Majorana phases [6]. The Dirac

and Majorana phases are responsible for CP violation in the lepton sector. The neutrino

mixing parameters sin2 θ12, sin2 θ13 and sin2 θ23 have been determined with a relatively

high precision in the recent global analyses [7–9]. These analyses provided only a hint so

far that δ ≈ 3π/2. In table 1 we summarise the best fit values, 1σ and 3σ allowed ranges

of the mixing parameters and the mass squared differences ∆m2
21 and ∆m2

31 (∆m2
23), with

∆m2
ij ≡ m2

i −m2
j , m1,2,3 being the neutrino masses, found in ref. [7] for the neutrino mass
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Parameter Best fit 1σ range 3σ range

sin2 θ12/10−1 2.97 2.81→ 3.14 2.50→ 3.54

sin2 θ13/10−2 (NO) 2.14 2.05→ 2.25 1.85→ 2.46

sin2 θ13/10−2 (IO) 2.18 2.06→ 2.27 1.86→ 2.48

sin2 θ23/10−1 (NO) 4.37 4.17→ 4.70 3.79→ 6.16

sin2 θ23/10−1 (IO) 5.69 4.28→ 4.91⊕ 5.18→ 5.97 3.83→ 6.37

δ/π (NO) 1.35 1.13→ 1.64 0→ 2

δ/π (IO) 1.32 1.07→ 1.67 0→ 2

∆m2
21/10−5 eV2 7.37 7.21→ 7.54 6.93→ 7.97

∆m2
31/10−3 eV2 (NO) 2.54 2.50→ 2.58 2.40→ 2.67

∆m2
23/10−3 eV2 (IO) 2.50 2.46→ 2.55 2.36→ 2.64

Table 1. The best fit values, 1σ and 3σ ranges of the neutrino oscillation parameters taken from [7].

spectrum with normal (inverted) ordering (denoted further as the NO (IO) spectrum). We

will use the results given in table 1 in our numerical analyses.

In the discrete symmetry approach specific correlations between the mixing angles

and the CP-violating (CPV) phases occur. These correlations are usually referred to as

neutrino mixing sum rules (see, e.g., [3, 4, 10–19]).1 Since mixing sum rules are concrete

relations between different observables, i.e., the neutrino mixing angles and the Dirac phase,

they can be tested experimentally. Thus, via sum rules, one can examine the current

phenomenologically viable flavour models based on different discrete symmetries.

In [14, 17] different mixing sum rules have been derived and in [15–17] the phenomeno-

logical consequences of these sum rules have been studied. In [18] sum rules and predictions

for cos δ have been obtained from different types of residual symmetries in the charged lep-

ton and neutrino sectors. In these studies it was assumed that the sum rule is exactly

realised at low energy. However, as every quantity in quantum field theory, the mixing

parameters get affected by renormalisation group (RG) running. Similar to the study of

renormalisation group corrections to neutrino mass sum rules in [23], we investigate in the

present article the impact of corrections from the renormalisation group equations (RGEs)

on the mixing sum rule predictions for the Dirac phase δ. The main question we want to

address is how stable the predictions for δ are under RG corrections which under certain

conditions can be expected to be quite sizeable [24].

In the literature RG corrections to certain type of mixing sum rules have been studied

before. The first attempt to study RG corrections to mixing angle sum rules, to our knowl-

1In flavour models there exists another type of correlations which hold between the neutrino masses and

the Majorana phases. These correlations are called neutrino mass sum rules (for recent extensive studies,

see, e.g., [20–23]).
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edge, has been made in [25] for the quark-lepton complementarity relations, θ12 +θC ∼= π/4

and θ23 + arcsin Vcb ∼= π/4, θC and Vcb being the Cabibbo angle and an element of the

Cabibbo, Kobayashi, Maskawa (CKM) quark mixing matrix. In [26] the RG corrections for

the sum rule relating the element Uτe of the PMNS matrix to the element V TBM
τe = − 1/

√
6

of the tri-bimaximal mixing matrix, |Uτe| = 1/
√

6, and for the leading order in θ13 ver-

sions of this sum rule, have been investigated. In refs. [25] and [26] the bimaximal (BM)

mixing [27–30] scheme and the tri-bimaximal (TBM) mixing scheme [31–34] (see also [35]),

respectively, were analysed. In [36] the study of RG perturbations was done for an approxi-

mate (leading order) mixing sum rule and for normal hierarchical neutrino mass spectrum,

m1 � m2 < m3, neglecting terms of order O(m1/m2) and O(m1/m3). The authors

of [36] extended their analysis to incorporate canonical normalisation effects besides RG

corrections. Both type of corrections were assumed to be dominated by the third family

effects. The authors of [37] estimated the size of RG corrections to the sum rules we will

be considering in the present study by taking into account only the RG correction to θ12.

In the present article we go beyond these previous works i) by considering the exact

form of the general mixing sum rules derived in [14], ii) by taking into account the RG

corrections not only to the angle θ12, but to all three neutrino mixing angles θ12, θ23, θ13

and the CPV phases, iii) discussing not only the cases of BM or TBM mixing schemes, but

also the cases of golden ratio type A (GRA) [38, 39], golden ratio type B (GRB) [40, 41] and

hexagonal (HG) [42, 43] mixing schemes, and iv) by considering both the cases of NO and

IO neutrino mass spectra. We perform the analysis assuming that the neutrino Majorana

mass matrix is generated by the Weinberg (dimension 5) operator. The RG corrections to

the sum rules of interest are calculated in the Standard Model as well as in the minimal

supersymmetric extension of the Standard Model (MSSM).

Our study goes also beyond [44] where only the GRA, BM and TBM mixing schemes

were analysed. We discuss different forms of the charged lepton mixing matrix and present

a significantly larger number of results. In particular, we derive values of the neutrino

mass scale and tan β for which the various mixing schemes are still viable. We make a

thorough numerical analysis from which we derive likelihood functions for the value of the

Dirac CPV phase δ at low energies if the specified mixing sum rule holds at high energies.

The paper is organised as follows: after a short review of the framework for mixing

sum rules in section 2, we present analytical estimates for the allowed parameter regions

for δ taking RG corrections into account in section 3. In section 4 we present the numerical

results for the different mixing schemes. Finally, we summarise and conclude in section 5

and present in the appendix plots for the likelihoods in terms of cos δ for better comparison

with previous literature.

2 Mixing sum rules

In this section we briefly review the framework in which mixing sum rules are obtained

and fix notation and conventions. In the most general case the PMNS matrix U can be

parametrised as [45]

U = U †eUν = (Ũe)
†ΨŨνQ0 . (2.1)
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Here Ue and Uν are 3 × 3 unitary matrices, which diagonalise, respectively, the charged

lepton and neutrino mass matrices. Ũe and Ũν are CKM-like 3 × 3 unitary matrices, and

Ψ and Q0 are diagonal phase matrices:

Ψ = diag
(

1, e−iψ, e−iω
)
, (2.2)

Q0 = diag

(
1, ei

ξ21
2 , ei

ξ31
2

)
. (2.3)

The phases in Q0 contribute to the Majorana phases in the PMNS matrix.

Similar to what has been done in [14–17] we will consider the cases when Ũν has the

BM, TBM, GRA, GRB and HG forms. For all these forms Ũν can be expressed as a

product of 3 × 3 orthogonal matrices R23 and R12 describing rotations in the 2-3 and 1-2

planes, i.e.,

Ũν = R23(θν23)R12(θν12) , (2.4)

with θν23 = −π/4 and θν12 = π/4 (BM); θν12 = arcsin(1/
√

3) (TBM); θν12 = arctan(1/φ)

(GRA), φ = (1 +
√

5)/2 being the golden ratio; θν12 = arccos(φ/2) (GRB); θν12 = π/6 (HG).

For convenience, in another convention the same list reads sin2 θν23 = 1/2 and sin2 θν12 = 1/2

(BM); sin2 θν12 = 1/3 (TBM); sin2 θν12 = (5−
√

5)/10 (GRA); sin2 θν12 = (5−
√

5)/8 (GRB);

sin2 θν12 = 1/4 (HG).

For the matrix Ũe, following [14], we will consider two different forms both of which

correspond to negligible θe13. They are realised in a class of flavour models based on a GUT

and/or a discrete symmetry (see, e.g., [46–54]). The first form is characterised also by zero

θe23, i.e.,

Ũe = R−1
12 (θe12) . (2.5)

In this case there is a correlation between the values of sin2 θ23 and sin2 θ13:

sin2 θ23 =
sin2 θν23 − sin2 θ13

1− sin2 θ13
, (2.6)

which for all the symmetry forms of Ũν introduced above leads to

sin2 θ23 =
1− 2 sin2 θ13

2 (1− sin2 θ13)
=

1

2
− 1

2
sin2 θ13 +O(sin4 θ13) . (2.7)

This implies in turn that θ23 cannot deviate significantly from π/4. The second form of Ũe
corresponds to non-zero θe12 and θe23, i.e.,

Ũe = R−1
23 (θe23)R−1

12 (θe12) . (2.8)

This matrix provides the corrections to Ũν necessary to reproduce the current best fit values

of all the three neutrino mixing angles θ12, θ13 and θ23 in the PMNS matrix U without any

further contributions like RG or other corrections.

It was shown in [14] that for Ũν given in eq. (2.4) and Ũe determined in eqs. (2.5)

or (2.8), the Dirac phase δ present in the PMNS matrix satisfies a sum rule which reads

cos δ =
tan θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2θ23 sin2 θ13

)]
. (2.9)
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Additionally, in the case of Ũe given in eq. (2.5), the correlation between θ23 and θ13,

eq. (2.7), has to be respected. The sum rule, eq. (2.9), in this case reduces to [14]

cos δ =
(1− 2 sin2 θ13)

1
2

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) 1− 3 sin2 θ13

1− 2 sin2 θ13

]
. (2.10)

In the following we will refer to the case with Ũe given in eq. (2.5) (eq. (2.8)) as to the

case of zero (non-zero) θe23. In this article we will study the impact of the RG corrections

on the mixing sum rules in eqs. (2.9) and (2.10), and the angle sum rule in eq. (2.7), which

are assumed to hold at some high-energy scale specified later.

In [17] other forms of the matrices Ũe and Ũν corresponding to different rotations and

leading to sum rules for cos δ of the type of eqs. (2.9) and (2.10) have been investigated.

The RG corrections to them, however, are expected to be similar to the ones which take

place for the sum rules described above. For this reason we will not consider them in the

present study.

3 Analytical estimates

Before we present our numerical results in the next section, we give in this section analytical

estimates of the effect of radiative corrections on the mixing sum rules. We discuss how

we obtain constraints on the mass scale and on tan β (in the MSSM) from the requirement

that the mixing sum rule has to be fulfilled at the high scale.

3.1 General effects of radiative corrections

The running of the mixing parameters is already known for quite some time, see, e.g., [24].

One might wonder if RG corrections have a large impact on the predicted value for δ

from the sum rule in eq. (2.9). Indeed, we expect large RG corrections for a large Yukawa

coupling (large tan β) and a heavy neutrino mass scale. To be more precise, the β-functions

of the mixing angles, in the leading order in θ13 and neglecting the electron and muon

Yukawa couplings in comparison to the tau one, depend on the tau Yukawa coupling, the

absolute neutrino mass scale (or min(mj), j = 1, 2, 3), the mixing angles, the type of

spectrum — normal or inverted ordering — the neutrino masses obey, on the Majorana

phases α1 and α2,2 and in the MSSM — on tan β. In the leading order in θ13 only the

β-function for θ13 depends on δ. The β-functions read up to O(θ13) [24]:

d θ12

d ln(µ/µ0)
= − Cy

2
τ

32π2
sin 2θ12s

2
23

∣∣m1eiα1 +m2eiα2
∣∣2

∆m2
21

+O(θ13) , (3.1)

d θ13

d ln(µ/µ0)
=

Cy2
τ

32π2
sin 2θ12 sin 2θ23

m3

∆m2
32(1 + ζ)

× [m1 cos(α1 − δ)− (1 + ζ)m2 cos(α2 − δ)− ζm3 cos δ] +O(θ13) , (3.2)

d θ23

d ln(µ/µ0)
= − Cy

2
τ

32π2
sin 2θ23

1

∆m2
32

[
c2

12

∣∣m2eiα2 +m3

∣∣2 + s2
12

∣∣m1eiα1 +m3

∣∣2
1 + ζ

]
(3.3)

+O(θ13) ,

2The Majorana phases α1 and α2 are related to those of the standard parametrisation of the PMNS

matrix [5], α21 and α31, as follows: α21 = α1 − α2 and α31 = α1.
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with µ being the renormalisation scale, ζ =
∆m2

21

∆m2
32

and Cy2τ
32π2 ≈ 0.3 · 10−6(1 + tan2 β) in the

MSSM and Cy2τ
32π2 ≈ −0.5 · 10−6 in the SM. In the SM there is no tan β enhancement and

hence the effects are usually relatively small.

We would like to note at this point that we consider here only minimal scenarios,

namely the SM and the MSSM augmented with Majorana neutrino masses. In standard

seesaw scenarios it would be correct to integrate out the additional heavy states at their

respective mass scale which would change the β-functions and the running. Nevertheless,

we want to assume the heavy masses all to be roughly of the same order, so that it is

a good approximation to impose the sum rules at the high scale and use the minimal

β-functions for the running. For low scale seesaw mechanisms this would certainly be a

bad approximation, but there the sum rule should be realised at the low scale as well and

running effects can be more generally expected to be small.

To give an idea about the size of the effect of interest we show in figure 1 results for cos δ

as derived from the sum rule in eq. (2.9) for the GRA mixing scheme. We used the REAP

package [55] to solve the RGEs for the mixing parameters between the low-energy scale

MZ and the high-energy scale which we have set equal to the seesaw scale MS ≈ 1013 GeV.

We only consider the case with θe12 6= 0, θe23 6= 0 and θe13 = 0. We have set all mass squared

differences and angles to their best fit values given in table 1, scanned over the lightest

neutrino mass and chose random values for the low energy Majorana phases. For the SM

case we see no effect, while for tan β = 30 and 50, the RG effects are significant. Even for

a moderate tan β in the MSSM and a relatively small mass scale mlightest ≈ 0.04 eV the

effect is non-negligible. Since the running of the angles is stronger with an inverted mass

ordering, the effect for the prediction of cos δ is larger in the IO case. For that case it is

furthermore in particular remarkable that the corrections do not go to zero for m3 going

to zero. This is due to the well-known fact, cf. [24], that the β-functions for δ and θ12 are

in this limit enhanced by a factor of ∆m2
23/∆m

2
21. Together with the tan β enhancement

this leads to quite sizeable effects for all relevant neutrino mass scales.

3.2 Allowed parameter regions with RG corrections

In this subsection we derive constraints on tan β (in the case of the MSSM) and the mass

of the lightest neutrino, mlightest, by imposing the mixing sum rule at the high scale and by

requiring that cos δ ∈ [−1, 1] at the high scale. We have chosen the high-scale to be equal

to the seesaw scale MS ≈ 1013 GeV. The BM mixing scheme is strongly disfavoured for

the current best fit values of the neutrino mixing angles without taking the RG corrections

into account. Thus, one of the questions we are interested in is whether the corrections

can reconstitute the validity of the BM scheme even for the best fit values of the angles.

We give first analytical estimates of the RG effects on eq. (2.9). At the high scale we

can write, for instance, for the mixing angles

θij(MS) = θij(MZ) + δθij ≡ θij + δθij , (3.4)

where δθij is the RG correction or the difference between the high-scale and low-scale values

of the mixing angle θij . Since the RG corrections are small we can expand the mixing sum

– 6 –
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Figure 1. Results for the predicted value of cos δ from the sum rule in eq. (2.9) for the GRA

mixing scheme in the case where θe12 6= 0, θe23 6= 0 and θe13 = 0. The black dashed lines represent

the tree level result. The blue points are our scan points. For the angles and the mass squared

differences we took the best fit values from table 1. We let the parameters run between the high-

scale MS ≈ 1013 GeV and the low-scale MZ . The Majorana phases are chosen randomly between 0

and 2π. The plots on the left (right) side correspond to normal (inverted) mass ordering.

rule at the high-scale in the small quantities and find:

cos δ(MS) ≈ cos δ(MZ) + δ(cos δ)

=
tan θ23

sin 2θ12 sin θ13
(cos 2θν12 + (sin2 θ12 − cos2 θν12)(1− cot2θ23 sin2 θ13))

+ f13(θ13, θ12, θ23, θ
ν
12) δθ13

+ f23(θ13, θ12, θ23, θ
ν
12) δθ23

+ f12(θ13, θ12, θ23, θ
ν
12) δθ12 , (3.5)

– 7 –



J
H
E
P
1
1
(
2
0
1
6
)
1
4
6

where the fij are prefactors from the expansion. For the angles and mass squared differ-

ences at the low scale we use the best fit values. Note that the Dirac phase δ appears in the

β-function for the mixing angles. Here, we use the approximation δ(MZ) ≈ δ(MS) and eval-

uate the value from the sum rule neglecting RG corrections. This is formally correct since

their inclusion would be a two-loop correction. The Majorana phases are free parameters.

For the best fit values of the angles the function f12 is always positive independent

of the value of θν12. Since the sign of δθ12 is always negative to leading order in θ13,

the correction to cos δ(MZ) due to the running of θ12 has a fixed negative sign in this

approximation. The sign of the correction due to the running of θ23 depends on θν12 and

the mass ordering: δθ23 is positive for inverted ordering and negative for normal ordering

and f23 is negative for θν12 & 33◦. The sign of the correction due to the running of θ13

depends on the CPV phases and θν12.

For BM mixing the function f13 dominates in δ(cos δ), in contrast to the other mixing

patterns for which f12 has the largest influence. This means that the contribution in

TBM, GRA, GRB and HG mixings due to the running of θ12, which is larger than the

contributions due to the running of the other angles (except for the case of a parametric

suppression of the β-function which will be discussed later), is additionally enhanced by

the large prefactor f12 making the δθ12 even more important.

Since the running depends also on the unknown Majorana phases we will vary them

and give in the rest of the subsection the results for minimal or maximal corrections. Note

that minimal corrections can also correspond to negative values of δ(cos δ).

The allowed parameter regions in the mlightest-tanβ plane for the GRA and HG cases

are shown in figure 2. For minimal corrections the parameter regions get severely con-

strained, tan β > 20 is incompatible with cos δ(MS) ∈ [−1, 1] for IO spectrum; for NO

spectrum it is incompatible with cos δ(MS) ∈ [−1, 1] for m1 ∼> 0.06 eV. This can be under-

stood since cos δ(MZ) is positive for GRA mixing and the dominant contribution to δ(cos δ)

comes from the correction due to δθ12, which is negative. A similar argument holds also

for HG mixing.

For TBM and GRB cos δ(MZ) is negative and the corrections further decrease the

value. The plots for the allowed parameter regions can be found in figure 3.

For BM mixing cos δ(MZ) < −1 for the best fit values of the angles, which is ruled out.

As best approximation for the value of δ in the β-functions we use then δ(MZ) = π. The

dominant contribution to the correction is due to δθ13, which is positive for the maximal

correction. Since f13 is also positive in BM mixing, the value of cos δ(MS) increases. Hence,

the RG corrections have shifted cos δ(MS) to allowed values, but for too large values of

tanβ the corrections overshoot cos δ(MS) = 1 and the points are excluded. The allowed

banana-shaped parameter regions are displayed in figure 4.

Note that in this example we have only employed the constraint on δ from eq. (2.9)

at the high-energy scale. This corresponds to the scheme where θe23 6= 0. To fulfil the sum

rule, θ12 is allowed to run weakly. In the case of the SM running, the RG effects are already

small. In the case of the MSSM running, they are relatively small if the Majorana phases

satisfy the relation α2 ≈ α1 + π. The restrictions on the Majorana phases in the case of

θe23 = 0 from eq. (2.7) are rather weak.
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Figure 2. Allowed regions for tan β and mlightest for the NO and IO spectra in the cases of minimal

(blue) and maximal (pink) corrections for cos δ in the GRA mixing scheme (upper plots) and the

HG mixing scheme (lower plots). We used the best fit values for the mixing angles. The high-energy

scale is set to 1013 GeV.

3.3 Implications of α2 − α1 = 0 and π and small tanβ

In this subsection we show how the specific values of the difference of the Majorana phases,

namely, α2 − α1 = 0 and π, contribute to the total likelihood profile obtained after the

RG corrections are taken into account. These values might seem to be very special at a

first glance but in fact many symmetric matrices belong at leading order to one of the two

cases. The CP-violating effects of the requisite corrections from Ũe then might be controlled

using, for instance, spontaneous CP violation with the discrete vacuum alignment method

proposed in [56].

These two cases are also interesting because they correspond to extremal values of the

neutrinoless double beta decay observable — the effective Majorana mass, |mee|, in the
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Figure 3. Allowed regions for tan β and mlightest for the NO and IO spectra in the cases of

minimal (blue) and maximal (pink) corrections for cos δ in the TBM mixing scheme (upper plots)

and the GRB mixing scheme (lower plots). We used the best fit values for the mixing angles. The

high-energy scale is set to 1013 GeV.

cases of neutrino mass spectrum with IO or of quasi-degenerate type (see, e.g., [5, 57, 58]).

For α2−α1 = 0, |mee| is maximal in the two cases, while if α2−α1 = π, |mee| has a minimal

value for both types of spectrum. In the case of IO spectrum and m3 � m1,2, for example,

|mee| ∼=
√

∆m2
23 +m2

3 cos2 θ13
∼= 4.7 × 10−2 eV if α2 − α1 = 0, while for α2 − α1 = π we

have |mee| ∼=
√

∆m2
23 +m2

3 cos2 θ13 cos 2θ12 ∼> 0.014 eV, where we have used the 3σ allowed

ranges of ∆m2
23, sin2 θ13 and sin2 θ12 (for the IO spectrum) from table 1.

As can be understood from eq. (3.1), in the case of equal Majorana phases, the running

of θ12 is maximal, while for α2 − α1 = π it is maximally suppressed. Since for the TBM,

GRA, GRB and HG symmetry forms the correction to the tree-level value of cos δ is

dominated by the running of θ12 (see subsection 3.2), we consider as example the case of
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Figure 4. Allowed regions for tan β and mlightest for the NO and IO spectra in the case of maximal

corrections for cos δ in the BM mixing scheme. We used the best fit values of the mixing angles. For

the minimal corrections there is no allowed parameter region which is compatible with | cos δ| ≤ 1.

We set the high-energy scale to 1013 GeV.

TBM and θe23 6= 0 with the values of α2 − α1 specified above. The results we obtain in the

GRA, GRB and HG cases are very similar.

It is interesting to see, in particular, what is the quantitative relation between the cor-

rections obtained in the setup with relatively large tan β, e.g., tan β = 30, and suppression

of θ12 running due to α2−α1 = π, and the setup with relatively small tan β, e.g., tan β = 5

or 10, but enhancement due to α2 = α1.

To answer this question, we employ a simplified one-step integration procedure (lin-

earised running), in which the high-energy values of the mixing parameters entering the

sum rule are obtained using one-step integration of the exact one-loop beta functions for

the mixing parameters from [24]. We set θ13, θ23, ∆m2
21, ∆m2

31(23) to their best fit values

and impose i) α2 = α1, and ii) α2 = α1 + π. For each set of these low-energy values, we

solve the high-energy sum rule for the low-energy value of θ12.

In order to perform a statistical analysis of the low-energy data after RG corrections

we construct the χ2 function as

χ2(~x) =
6∑
i=1

χ2
i (xi) , (3.6)

where ~x = (sin2 θ12, sin
2 θ13, sin

2 θ23, δ,∆m
2
21,∆m

2
31(23)) for the NO (IO) spectrum, and χ2

i

are one-dimensional projections taken from [7]. In order to obtain the one-dimensional

projection χ2(δ) from the constructed χ2(~x) function we need to minimise the latter with

respect to all other parameters (sin2 θij , ∆m2
21 and ∆m2

31(23)), i.e., we need to find a

minimum of χ2(~x) for a fixed value of δ:

χ2(δ) = min
[
χ2(~x)|δ=const

]
. (3.7)
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The likelihood function L, which represents the most probable values of δ in each of the

considered cases, reads

L(δ) = exp

(
−χ

2(δ)

2

)
. (3.8)

We will present the results in terms of the likelihood functions, considering three values for

the absolute mass scale, mlightest = 0.005, 0.01 and 0.05 eV, and four values of tan β = 5,

10, 30 and 50.

It is worth noting here that, as shown in ref. [24] (see eq. (26) therein), for the running

of the difference α1 − α2 we have up to O(θ13) terms:

d

d ln(µ/µ0)
(α1 − α2) ∝ sin(α1 − α2) . (3.9)

This implies that if the phases are equal (different by π) at some scale to a good approx-

imation, they remain equal (differ by π) at another scale. Thus, the relation imposed by

us at the low scale holds also at the high scale (up to O(θ13) corrections).

We present graphically the results obtained for the TBM symmetry form in figures 5

and 6 for the NO and IO neutrino mass spectra, respectively. The dotted black line stands

for likelihood extracted from the global analysis [7]. The blue, orange, green and red lines

are for tan β = 5, 10, 30 and 50, respectively. The left panels in each of the two figures

correspond to α2 = α1, while the right panels are for α2 = α1 + π.

Several comments are in order. As expected, the results for α2 − α1 = π and small

tanβ, tanβ = 5 and 10 (blue and orange lines, respectively), are quantitatively very similar

to the result without running (this is why we do not present the latter in the plots) for all

three mass scales considered and both orderings due to the suppression of the running of

θ12 discussed above. However, this is not the case for the large values of tan β = 30 and

50 (green and red lines, respectively) and the NO spectrum with m1 = 0.05 eV, and for all

three values of m3 considered in the case of the IO spectrum. Clearly, the enhancement

due to tan β prevails over the suppression due to the Majorana phases in these cases.

The next interesting point to note is that for the IO spectrum, the corrections in the

case of tan β = 5 and α2 = α1 (blue line) are comparable with the corrections for tan β = 30

and α2 = α1 + π (green line) for all three mass scales considered. A similar observation

holds also for the NO spectrum if m1 = 0.05 eV: the corrections for tan β = 10 and α2 = α1

(orange line) are similar in magnitude to those for tan β = 30 and α2−α1 = π (green line).

Further, we note also that the absence of the green and red lines, corresponding to

tanβ = 30 and 50 and equal Majorana phases, in all cases, except for NO with m1 =

0.005 eV and m1 = 0.01 eV, reflects the fact that the RG corrections lead, in particular, to

a low-energy value of θ12, which is outside of the current 3σ range. For the IO spectrum

with m3 = 0.05 eV and α2 = α1, even for tan β = 10 (orange line) the RG corrections

are quite large, such that only a small region of values of δ around π is allowed, with the

likelihood of these values being suppressed.

For the BM symmetry form the results we obtain are quite different. In this case

we consider values of mlightest = 0.01, 0.05 and 0.1 eV, and tan β = 5, 10, 30 and 50.

We find that the small values of tan β considered, tan β = 5, 10, cannot provide the RG
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Figure 5. Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form of

the matrix Ũν and the NO spectrum. The dotted black line stands for likelihood extracted from

the global analysis in [7]. The blue, orange, green and red lines are for the running within MSSM

with tan β = 5, 10, 30 and 50, respectively. The left panels correspond to α2 = α1, while the right

panels are for α2 = α1 + π.
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Figure 6. Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form of

the matrix Ũν and the IO spectrum. The dotted black line stands for likelihood extracted from

the global analysis in [7]. The blue, orange, green and red lines are for the running within MSSM

with tan β = 5, 10, 30 and 50, respectively. The left panels correspond to α2 = α1, while the right

panels are for α2 = α1 + π.
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corrections which allow one to have cos δ ∈ [−1, 1] and low-energy values of the mixing

angles compatible with the current data (except for the small range of values of δ close to

π allowed without running). For the large values of tan β and the NO spectrum, we get

significant RG corrections compatible with all constraints, as can be seen from figure 7, i)

for α2 − α1 = π (dashed lines), provided m1 ∼> 0.05 eV, and ii) for α2 = α1 (solid line) if

m1
∼= 0.10 eV and tan β = 50. For the IO spectrum and m3 ∼> 0.05 eV, the predictions are

compatible with the data for α2 = α1 provided tan β = 50. If m3 = 0.1 eV, α2 − α1 = π

also contributes to the final likelihood profile for tan β = 50, although this contribution is

less favoured.

As already discussed above, the running of θ12 is suppressed if the difference of the

Majorana phases is equal to π, otherwise the running of θ12 is always the dominant cor-

rection to cos δ. If the running of θ12 is minimal, the running of θ23 and θ13 is dominant

(for a maximal running of θ13 we need additionally to have δ = α2). Then δθ13 and δθ23

are roughly two orders of magnitude larger then δθ12. This implies that the correction to

cos δ in the HG, GRA, GRB and TBM mixing schemes is not longer determined by the

running of θ12 but by the running of θ23 and θ13. For BM mixing the contribution of δθ13

is still dominant. The sign and size of the correction to cos δ depends on δ because the size

of δθ13 depends on δ and the contributions to δ(cos δ) by the running of θ23 and θ13 are

approximately equal.

Finally, we would like to note that the cases studied in the present subsection were

analysed rather qualitatively in [37], considering only the running of θ12. Our analysis goes

beyond the discussion in [37], since we present explicitly in graphic form the impact of the

RG effects on the likelihood functions (figures 5–7). In particular, as was discussed above,

the results depend strongly on the symmetry form considered — the TBM, GRA, GRB and

HG forms on the one hand and the BM form on the other — and this distinction was not

discussed in [37]. Furthermore, in our quantitative results we find a region of parameter

space where their conclusions are not fully correct. Although this region seems somewhat

tuned, it is actually motivated, as we mentioned above, in setups with spontaneous CP

violation. We find that, e.g., in the case of the TBM symmetry form, for m3 = 0.01 eV

(IO), tan β = 30 and α2 − α1 = π (green line in the corresponding panel of figure 6) the

RG corrections are noticeable, in contrast to the conclusion in [37] that the RG corrections

can be neglected for tan β ∼< 35 if the spectrum is not quasi-degenerate.

3.4 Notes on the θe
23 = 0 case

Before we turn to the numerical results we want to make a few more remarks on the case of

θe23 = 0, i.e., imposing also the sum rule from eq. (2.7) at the high scale. This will help to

understand the numerical results in the next section. In eq. (2.10) we can replace θ12(MS)

by θ12(MZ) plus the small RG correction δθ12 in which we expand. Since θ13 and δθ13 are

small we can neglect the latter (θ13(MS) ≈ θ13(MZ)) and expand the correction in the first

to end up with

cos δ(MS) ≈ cos δ(MZ) +
1− cos 2θ12 cos 2θν12

θ13 sin2 2θ12
δθ12 . (3.10)
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Figure 7. Likelihood function vs. δ in the case of non-zero θe23 for the BM symmetry form of the

matrix Ũν . The dotted black line stands for likelihood extracted from the global analysis in [7]. The

blue, orange, green and red lines are for the running within MSSM with tan β = 5, 10, 30 and 50,

respectively. The solid lines correspond to α2 = α1. The dashed lines correspond to α2 = α1 + π.

Note that the lines for tan β < 50 are often barely visible.
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In the case of BM mixing cos δ(MZ) is smaller than −1 for the best fit values of the angles

and the correction is always negative since the running of θ12 has a fixed sign. Note, that

the value of cos δ(MZ) could be adjusted by θe23 6= 0 to a value larger than −1, cf. eq. (2.9).

So, from that estimate we expect the BM mixing scheme not to be valid in the case of

θe23 = 0. This is confirmed in our extensive numerical scan, where we employed the exact

sum rules from eqs. (2.7), (2.10) and the full 1-loop β-functions for all parameters but did

not find any physically acceptable points as well. Nevertheless, our estimate is a bit rough

and a numerical scan cannot cover the whole parameter space such that a tiny, highly

tuned region of parameter space might still be allowed.

Let us now turn to the other mixing cases. There the absolute value of cos δ(MZ) in

our estimate eq. (3.10) is always smaller than one. For TBM and GRB it is still negative,

but for TBM mixing, for instance, we get

cos δ(MZ) ≈ −0.21 , (3.11)

which allows for a sizeable correction of θ12 up to −6.5◦, so that these two scenarios are

not disfavoured by our estimate. For GRA and HG mixing the first term is even positive

such that we can account for even more sizeable RG corrections in these cases.

4 Numerical results

In the present section we will first describe our numerical approach before we show the

results we obtain for the δ likelihood functions in the TBM, GRA, GRB, BM and HG

mixing schemes in the cases of θe23 6= 0 and θe23 = 0.

4.1 Numerical approach

To obtain the low-energy predictions for δ from the high-scale mixing sum rule, eq. (2.9)

in the case of θe23 6= 0 (eq. (2.10) in the case of θe23 = 0), we employ the running of the

parameters using the REAP package [55]. For the running we set the low-energy scale to be

MZ and the high-energy scale to be equal to the seesaw scale MS ≈ 1013 GeV. Since the

dependence on the scales is only logarithmic a mild change of the high-energy or low-energy

scale would not change our results significantly.

In our scans we present the results for the SM and MSSM extended minimally by

the Weinberg operator. We have fixed the scale where we switch from the SM to MSSM

RGEs to 1 TeV. Again the dependence on the scale is only logarithmic and hence weak.

The exact supersymmetric (SUSY) particle spectrum plays only a minor role since we have

neglected the SUSY threshold corrections [59–62].

In the MSSM we consider as benchmarks tan β = 30 and tan β = 50. In the SM the

running is relatively small and hence the results are very similar to the results without

running. In fact the SM results look like the results obtained in [15] apart from relatively

small changes due to the different global fit results [8] used therein. For a given mass scale

and a given model (SM or MSSM with a given tan β), we employ the mixing sum rules

at the high scale to determine δ (and θ23 for θe23 = 0) at the low scale depending on the

other parameters. For a given mass scale and a given model (SM or MSSM with a given

tanβ), we determine the low-scale parameters (the angles, mass squared differences and
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the Majorana phases) such that the mixing sum rule eq. (2.9) (and eq. (2.10) for θe23 = 0)

at the high scale is fulfilled and their likelihood function is maximal. We choose a “small”

neutrino mass scale, mlightest = 0.01 eV, a “medium” mass scale, mlightest = 0.05 eV, and a

“large” mass scale, mlightest = 0.1 eV. The “large” neutrino mass scale is still compatible

with the cosmological bound on the sum of the neutrino masses [63]∑
mν < 0.49 eV. (4.1)

Note that for very small neutrino mass scales, mlightest � 0.01 eV and sufficiently small

tanβ, the RG effects are negligibly small even in the MSSM. We present the results

for different cases considered in the present study in terms of the likelihood functions

defined in eq. (3.8).

4.2 Results for different mixing schemes in the case of non-zero θe
23

We begin our discussion of the numerical results with the case of non-zero θe23. In

figures 8–11 we show the likelihood functions versus δ for the TBM, GRA, GRB and HG

symmetry forms of the matrix Ũν in all setups. The blue line in these figures represents the

SM running result, the green and red lines are for the MSSM running with tan β = 30 and

tanβ = 50, respectively. The SM line practically coincides with the line corresponding to

the result without running, as expected. For this reason we do not show the latter in the

plots. The dotted black line stands for the likelihood extracted from the global analysis [7]

which corresponds to the likelihood for δ without imposing any sum rule. We note that

the whole procedure is numerically very demanding and hence there are some tiny wiggles

in the likelihoods which do not have any physical meaning. Note also that the mixing

sum rule has two solutions but the solution δ ≈ 90◦ has a small likelihood and is therefore

barely visible in the plots.

As we have already indicated, the SM results are very similar to the results obtained

in [15] without running. This implies that, as was concluded in [15] (see also [14]), using

the data on neutrino mixing angles and a sufficiently precise measurement of cos δ it will

be possible to distinguish between the three groups of schemes: the TBM and GRB group,

the GRA and HG group, and the BM scheme. Distinguishing between the GRA and

HG schemes is experimentally very demanding, but not impossible, while distinguishing

between the TBM and GRB seems practically extremely difficult (if not impossible) to

achieve (see [15, 16] for further details).

In the MSSM, the results depend on the value of the lightest neutrino mass, the type of

spectrum — NO or IO — the neutrino masses obey, on the value of tan β as well as on the

uncertainties in the measured values of the neutrino oscillation parameters. As expected,

for increasing tan β and increasing absolute neutrino mass scale, the difference with the

predictions without running increases. The allowed regions for δ start to broaden and, e.g.,

for the largest value of tan β = 50 and m1 = 0.05 eV and 0.10 eV (m3 = 0.01 eV, 0.05 eV

and 0.10 eV) in the case of NO (IO) spectrum, the likelihood profile in the cases of the

TBM, GRA, GRB and HG mixing schemes practically coincides with the likelihood for δ

obtained without imposing the sum rule constraint, the difference between the two profiles

being noticeable only for values of δ lying approximately in the interval δ ∼ (270◦–360◦). As

– 18 –



J
H
E
P
1
1
(
2
0
1
6
)
1
4
6

Global analysis

SM

MSSM tan β = 30

MSSM tan β = 50

0.2

0.4

0.6

0.8

1.0

L

NO

m1 = 0.01 eV

IO

m3 = 0.01 eV

0.2

0.4

0.6

0.8

L

m1 = 0.05 eV m3 = 0.05 eV

0 90 180 270
0.0

0.2

0.4

0.6

0.8

δ [°]

L

m1 = 0.1 eV

90 180 270 360

δ [°]

m3 = 0.1 eV

θ23
e ≠ 0, TBM

Figure 8. Likelihood function vs. δ in the case of non-zero θe23 for the TBM symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running, while the green and red lines are for the

running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 9. Likelihood function vs. δ in the case of non-zero θe23 for the GRA symmetry form of

the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from

the global analysis in [7]. The blue line is for the SM running; the green and red lines are for the

running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 10. Likelihood function vs. δ in the case of non-zero θe23 for the GRB symmetry form of

the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running, while the green and red lines are for the

running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 11. Likelihood function vs. δ in the case of non-zero θe23 for the HG symmetry form of

the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from

the global analysis in [7]. The blue line is for the SM running; the green and red lines are for the

running within MSSM with tan β = 30 and tan β = 50, respectively.
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already discussed in the previous section, the running of cos δ in the TBM, GRA, GRB and

HG mixing schemes is mainly influenced by the running of θ12 which has a fixed negative

sign and hence has a tendency to shift δ to values smaller than 270◦. For NO spectrum,

m1 ≤ 0.01 eV and tanβ = 30, a measured value of δ ∼< 260◦ would favour the TBM and

GRB schemes. For m1 = 0.05 eV (or m1 = 0.01 eV) and the same value of tan β = 30,

a measurement of δ ∼> 290◦ would make the GRA and HG schemes more probable. For

tanβ = 50, m1 = 0.05 eV (or m1 = 0.10 eV), and given the current uncertainties in the

measured values of the neutrino oscillation parameters, the TBM, GRA, GRB and HG

schemes lead to very similar predictions for δ.

For the IO spectrum the RG effects are larger and therefore the broadening happens in

the four schemes under discussion — TBM, GRA, GRB and HG — already for the “small”

neutrino mass scale. Since the likelihood profiles are so broad and nearly identical even

for the “small” and “medium” mass scales, except for certain differences in the interval

δ ∼= (270◦−360◦), and given the current uncertainties in the measured values of the neutrino

oscillation parameters, it will be difficult in the MSSM with tan β ∼> 30 to distinguish

between any of the four schemes considered using only a determination of δ.

For the BM mixing scheme the results are very different. This scheme is strongly

disfavoured for the currently allowed ranges of the mixing parameters without considering

RG effects. Therefore, the maximal value of the likelihood in the SM running case is

relatively small. In the MSSM the running increases the value of cos δ to physical values,

as explained in the previous section. In addition both the maximal value of the likelihood

function increases and the position of the likelihood maximum shifts from δ ∼= 180◦ towards

δ = 270◦ (see figure 12). Again the likelihood profile broadens with increasing of the

absolute neutrino mass scale and tan β and at δ ∼< 270◦ for NO spectrum tends to approach

the likelihood function for δ obtained without imposing the sum rule. In the case of IO

spectrum, the BM scheme is strongly disfavoured for m3 ∼< 0.05 eV even for tan β = 50.

4.3 Results for different mixing schemes in the case of zero θe
23

In figures 13–16 we present the results in the case of θe23 = 0. Again, the blue line in

these figures represents the SM running result, the green and red lines are for the MSSM

running with tan β = 30 and tan β = 50, respectively. The dotted black line stands for the

likelihood extracted from the global analysis [7] which corresponds to the likelihood for δ

without imposing any sum rule. Similar to the case of non-zero θe23, the SM line practically

coincides with the line corresponding to the result without running, as expected. Therefore

we do not show the latter in the plots. Note again that the small wiggles in the likelihoods

are of numerical origin and not physical.

For the TBM, GRA, GRB and HG mixing schemes we observe similar to the case

of non-zero θe23 broadening of the likelihood with increasing tan β and increasing absolute

neutrino mass scale. But in contrast to the case of θe23 6= 0, the likelihood does not reach

the likelihood for δ without imposing the sum rule considered. The major difference with

respect to the results obtained in the case of θe23 6= 0 is that due to the constraint on

θ23 from eq. (2.7) at the high scale, the low-scale mixing parameters are more severely

constrained and not necessarily close to their respective best fit values.
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Figure 12. Likelihood function vs. δ in the case of non-zero θe23 for the BM symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running, while the green and red lines are for the

running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 13. Likelihood function vs. δ in the case of zero θe23 for the TBM symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 14. Likelihood function vs. δ in the case of zero θe23 for the GRA symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 15. Likelihood function vs. δ in the case of zero θe23 for the GRB symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 16. Likelihood function vs. δ in the case of zero θe23 for the HG symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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As figures 13–16 show, for the values of min(mj) and tan β considered, the NO spec-

trum is less favoured (i.e., has a smaller likelihood for any given δ and smaller maximum

likelihood) than the IO spectrum. The sum rule, eq. (2.7), restricts θ23 to be slightly

smaller than 45◦ at the high scale. Since the running of this angle has a fixed negative sign

for NO spectrum, its low-scale value is larger than its high scale value and pushed outside

of the NO 1σ region. On the other hand, for IO spectrum the low-scale value of θ23 is

always smaller than 45◦ due to the running and the sum rule. However, in this case there

is a second 1σ region below maximal mixing besides the region around the best fit value

which is larger than 45◦.

In the case of the TBM and GRB schemes, the case of min(mj) = 0.10 eV and tan β =

50 is strongly disfavoured for both NO and IO spectra, while for the GRA and HG schemes

it is less favoured than the min(mj) = 0.10 eV and tan β = 30 case.

As explained in subsection 3.4, in order to satisfy the sum rule eq. (2.10) for zero

θe23, θ12 is not allowed to run strongly. This leads to the relatively small likelihood for

tanβ = 50 and mlightest = 0.1 eV seen in figures 13–16. For TBM and GRB mixing the

constraint on the running of θ12 is even more severe than for GRA and HG mixing and the

likelihood in these schemes is hence even smaller for tan β = 50 and mlightest = 0.1 eV.

For BM mixing our analytical estimates have indicated that this scheme is not valid

due to the severe constraint on the running of θ12. In our extensive numerical scans we did

not find any valid, i.e., physically acceptable, parameter points as well.

5 Summary and conclusions

We presented a systematic study of the effects of RG corrections on sum rules for the

Dirac CPV phase, eqs. (2.9) and (2.10). These corrections are present in every high-energy

model, when running down to the low scale where experiments take place. We answered the

question how stable the predictions from the sum rules are in the cases of charged lepton

corrections characterised by i) θe12 6= 0, θe23 6= 0, θe13 = 0 and ii) θe12 6= 0, θe23 = 0, θe13 = 0

to TBM, BM, GRA, GRB or HG mixing in the neutrino sector.

To this aim we first reviewed the framework in which we obtain the mixing sum rules.

Then we presented analytical estimates of the allowed parameter space if we take RG

corrections into account. These estimates were subsequently verified numerically. To obtain

the numerical results for the allowed ranges of δ we used as three benchmark cases the SM

running (where the running effects are small) and the MSSM running with tan β = 30 and

tanβ = 50 (where the running effects become larger with increasing tan β). Furthermore,

we considered three mass scales: a “small” mass scale (mlightest = 0.01 eV), a “medium”

mass scale (mlightest = 0.05 eV) and a “large” mass scale (mlightest = 0.1 eV), where the RG

effects increase with the mass scale. We presented the results in terms of the likelihood

functions for each case (SM or MSSM with a given tan β, and a given mass scale). Our

numerical results are obtained using the current best fit values and uncertainties on the

neutrino oscillation parameters derived in the global analysis of the neutrino oscillation

data performed in [7].
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Our results have shown that the RG effects can change significantly the allowed low-

energy ranges for δ, especially when we employ the MSSM running with the “medium”

and “large” mass scales. In the case of θe23 6= 0 the allowed regions for δ broaden and the

likelihood profiles approach the likelihood for δ extracted from the global analysis (without

imposing the sum rules considered). For the TBM, GRA, GRB and HG symmetry forms

we found the allowed ranges of values of δ to be shifted from values close to (somewhat

larger than) 270◦ to values somewhat smaller than (close to) 270◦. For BM mixing, which

is strongly disfavoured by the current data without taking into account the running of the

neutrino parameters, we found that the RG corrections partially reconstitute compatibility

of this symmetry form with the data. With the increasing of min(mj) and tan β, the values

of δ in this case shift from δ ∼ 180◦ towards 270◦. In the case of θe23 = 0 and for the TBM,

GRA, GRB and HG mixing schemes the likelihood profiles broaden with increasing tan β

and increasing mass scale, similarly to the case of non-zero θe23. The main difference is

that now they do not reach the likelihood for δ obtained without imposing the sum rule.

The reason for that is the constraint on θ23 from eq. (2.7) at the high scale, due to which

the low-scale mixing parameters are more severely constrained and not necessarily close to

their respective best fit values. Finally, we found that in this case the RG corrections are

not sufficient to restore even partial compatibility of BM mixing with the current data.

In conclusion, our results show that the RG effects on the mixing sum rules in SUSY

models with min(mj) ∼> 0.01 eV and tanβ ∼> 30 have to be taken into account to realistically

probe the predictions from the sum rules in concrete models.
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A Likelihood functions for cos δ

In the past there have been already extensive studies on the likelihoods for the Dirac

CPV phase derived from mixing sum rules. In [15–17, 37], in particular, results for the

TBM, GRA, GRB, HG and BM mixing schemes were presented neglecting the RG cor-

rections. However, in the indicated publications the likelihoods for cos δ and not for δ

have been derived. For better comparison with these results we include in the present

appendix figures 17–21 (figures 22–25) with the likelihood functions for cos δ in the case of

θe23 6= 0 (θe23 = 0).
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Figure 17. Likelihood function vs. cos δ in the case of non-zero θe23 for the TBM symmetry form

of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from

the global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are

for the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 18. Likelihood function vs. cos δ in the case of non-zero θe23 for the GRA symmetry form

of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from

the global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are

for the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 19. Likelihood function vs. cos δ in the case of non-zero θe23 for the GRB symmetry form

of the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from

the global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are

for the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 20. Likelihood function vs. cos δ in the case of non-zero θe23 for the HG symmetry form of

the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 21. Likelihood function vs. cos δ in the case of non-zero θe23 for the BM symmetry form of

the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 22. Likelihood function vs. cos δ in the case of zero θe23 for the TBM symmetry form of

the matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 23. Likelihood function vs. cos δ in the case of zero θe23 for the GRA symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 24. Likelihood function vs. cos δ in the case of zero θe23 for the GRB symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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Figure 25. Likelihood function vs. cos δ in the case of zero θe23 for the HG symmetry form of the

matrix Ũν in all the setups considered. The dotted line stands for likelihood extracted from the

global analysis in [7]. The blue line is for the SM running. Finally, the green and red lines are for

the running within MSSM with tan β = 30 and tan β = 50, respectively.
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