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Abstract: 

When substituting conventional with electric vehicles (EV) a high annual mileage is desirable from an 

environmental as well as an economic perspective. However, there are still significant technological 

limitations that need to be taken into consideration. This study presents and discusses five different 

charging strategies for two mobility applications executed during an early stage long-term field test 

from 2013 to 2015 in Germany, which main objective was to increase the utilization within the existing 

technological restrictions. During the field test seven EV drove more than 450,000 km. For four out of 

five presented charging strategies the inclusion of DC fast charging is indispensable. Based on the 

empirical evidence five key performance indicators (KPI) are developed. These indicators give 

recommendations to economically deploy EV in commercial fleets. The results demonstrate that the 

more predictable the underlying mobility demand and the more technical information is available the 

better the charging strategies can be defined. Furthermore, the results indicate that a prudent mix of 

conventional and DC fast charging allows a high annual mileage while at the same time limiting 

avoidable harmful effects on the battery.  
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1. Introduction 

The electrification seems to be a very promising way to cut future CO2 emissions from road transport 

(Creutzig et al., 2015). This is especially true if the underlying electricity demand of electric vehicles 

(EV) is generated by carbon-free energy resources (such as wind or solar energy) (Ensslen et al., 

2017; Jochem et al., 2015; Sohnen et al., 2015). Furthermore, EV show potential to reduce the oil 

dependency of western societies and decrease local emissions in urban areas, i.e. noise and local air 

pollutants such as SOx, particle matters, CO and NOx (Jochem et al., 2016). Concerning both aspects, 

a high life-time mileage is desirable to fully utilize the EV emission saving potential (Stella et al., 2015). 

 

However, EV are still a new technology and therefore face some hurdles that are currently limiting 

their market success considerably (Ensslen et al., 2014a). Two of those hurdles are the limited range 

of current vehicles (about 150 km) and their purchase prices that are considerably higher than the 

ones of their internal combustion engine driven counterparts (ICEV) (Dumortier et al., 2015). In 
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commercial transport both limitations are easier to overcome than for private passenger car 

applications (Ketelaer et al., 2014). This is mainly due to the fact that for many applications trips are 

more predictable, single trips above the maximum range are more easily replaced by conventional 

cars, and the high purchase price of EV can be negated by the higher annual mileage of commercial 

cars due to the lower variable costs of EV operation compared to ICEV (Bickert et al., 2015; Gnann et 

al., 2012; Plötz et al., 2015; Sierzchula, 2014).  

 

Therefore, for environmental as well as economic motives the aim of this study is to increase the 

number of trips and hence the annual mileage of EV in commercial fleets. One essential part is the 

development of specific charging strategies that allow a high operating grade. These include the 

usage of fast charging infrastructure in order to show an economic advantageous application of 

current EV compared to conventional vehicles in an empirical field test (a detailed description of the 

research aim can be found in section 2.4). The field test with several cross-border commuters from 

Alsace (France) to Karlsruhe (Germany) lasted from early 2013 till the end of 2015. The research 

project behind was comprised of two different user groups: the first were fixed car-pooling commuter 

groups that travelled on average 75 km one-way from their homes in France to work in Germany; the 

second were employees on business trips during the day between two plant sites around 70 km apart, 

one in Germany and one in France. The EV were equipped with data loggers tracking battery as well 

as GPS data to allow a detailed technological and economic analysis. 

 

The article is structured as follows: the second section provides an overview of the existing literature 

focusing on charging strategies, economic reasons as well as limitations of fast charging. It illustrates 

the gap in the literature and states the underlying research aim. The third section introduces the 

project RheinMobil and the research method by explaining the research design, setting and data 

collection. The fourth section is divided into five subsections; each describes and analyzes a different 

charging strategy that was implemented for the two mobility applications. The fifth section discusses 

the presented strategies in reference to the literature and introduces key performance indicators (KPI) 

for comparison. It also includes a small Total Cost of Ownership (TCO) analysis as well as a 

discussion of the technological implications. The last section concludes by summarizing the results, 

outlining the limitations and suggesting topics for future research. 

 

2. Literature review 

There are two main perspectives in the literature on the impacts of charging EV. One comprehensive 

focus deals with the impact on the electricity system (1) and the second focus considers the impact on 

the vehicle and the battery (2). There are several dimensions for focus (1). Some studies take a 

macroscopic point of view by looking at the impact on the electricity load and the resulting implications 

on the power plant portfolio and electricity grid (Babrowski et al., 2014; Camus et al., 2011; 

Dharmakeerthi et al., 2014; Hadley and Tsvetkova, 2009; Hahn et al., 2013; Harris and Webber, 2014; 

Jansen et al., 2010), another emphasis is on additional emissions caused by electricity generation 

based on the timely distribution of charging (Bickert et al., 2015; Donateo et al., 2015; Ensslen et al., 

2017; Jochem et al., 2015; Khoo et al., 2014; Muneer et al., 2015; Rangaraju et al., 2015; Sohnen et 

al., 2015; Thompson et al., 2011), still others aim on maximizing the input from (local) renewable 

energies (Atia and Yamada, 2015; Kier and Weber, 2015; Pantoš, 2011; Škugor and Deur, 2015; Wu 

et al., 2016). These topics are sometimes connected to different charging technologies such as 

controlled charging or even vehicle-to-grid (V2G) systems, providing virtual energy storage for grid 

services in the local electricity system (Bishop et al., 2016; Kristoffersen et al., 2011; Tomić and 

Kempton, 2007). The second focus (2) is on vehicles and their batteries. Previous studies investigate 

the development of an optimized charging strategy from an EV perspective considering factors such 

as the state of health (SOH) of the battery, cost optimized charging, including V2G, and parking time 

(Bashash et al., 2011; Neubauer et al., 2012). Other studies go even more into battery-related 

technical details by evaluating the charging and discharging behavior of the battery packs or even of 

individual cells (Kim et al., 2014; Onda et al., 2006; Rahimian et al., 2011). 
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2.1 Charging strategies for EV 

The understanding of the term charging strategy presented in this study differs from the one commonly 

used in the literature. In previous studies “charging strategy” is mostly applied in terms of timing the 

charging event (from an electricity grid perspective). Three options are mainly discussed: instant 

charging (uncontrolled charging), controlled charging (load and time), and V2G. The idea of controlled 

charging mainly focuses on avoiding load peaks and improving the electricity market efficiency by 

offering load shift potentials (flexibilization of electricity demand / demand response) (Axsen et al., 

2011; Babrowski et al., 2014; Kang and Recker, 2009). Some studies analyze the real charging 

behavior of EV users in the context of timing, distribution, and type of charging (Khoo et al., 2014; Sun 

et al., 2015a, 2015b). Other “charging strategies” focus on sustaining a high SOH of the battery (Lunz 

et al., 2012). Our perspective starts from a mobility application that is focused on increasing the annual 

mileage of EV in order to replace mileage of ICEV. Therefore, not only the time and power of charging, 

but also the location is highly relevant.  

 

Currently, many authors assume that charging takes place at home, at work or at other public electric 

vehicle supply equipment (EVSE) (Axsen et al., 2011; Neubauer et al., 2012; Speidel and Bräunl, 

2014). The configuration of the EVSE varies between locations and countries depending on charging 

power, grid connections, and other technological standards (Azadfar et al., 2015). Previous research 

suggests that for first-time EV users, home charging is most convenient and most probable – 

especially for households in rural areas, in suburbs or for people with access to city parking garages. 

However, charging at work or in public is also seen as realistic. Consequently recharging at work or 

public places leads to less demand for charging at home (Kang and Recker, 2009; Neubauer et al., 

2012). 

 

Developing a suitable charging strategy is highly dependent on the objectives and the ratio of driving 

to parking time. The objectives set by the requirements of customers, EV and the grid (Hahn et al., 

2013). Lunz et al. (2012) suggest the following order of priorities: first, the vehicle owner's interest, 

second, grid stability, and as third priority grid support. The vehicle owner's interest is a combination of 

ensuring that the EV meets the personal mobility needs combined with economic aspects such as 

sustaining the battery SOH as well as personal attitude and further interests (Graham-Rowe et al., 

2012). Concerning the ratio of driving to parking time many studies of conventional driving patterns or 

EV user behavior indicate that particularly privately used EV are not in use most of the time and are 

therefore available for charging; in average more than 22 hours per day (Guille and Gross, 2009), or 

80 to 96% of their lifetime (Camus et al., 2011; Lunz et al., 2012; Speidel and Bräunl, 2014). The EV 

spend more time than technologically required for the charging process at the EVSE (Speidel and 

Bräunl, 2014), and the charging time therefore has in average little impact on the EV feasibility 

(Greaves et al., 2014).  

 

2.2 Economic advantages and reasons for fast charging 

The high production costs of EV at the time of the field test in 2013, which were essentially the 

consequence of high battery prices (Plötz et al., 2013), have motivated research effort to identify and 

quantify potential savings in EV operations. In the context of charging some propose that potential 

economical savings lie in the use of V2G load shifting potentials during parking time. Simulations 

based on real driving patterns, different dynamic tariffs, and electricity market prices show that the 

potential cost reductions through controlled charging and V2G might reduce the TCO of EV in the 

future (Bunce et al., 2014; Dallinger et al., 2011; Ensslen et al., 2014b). Even though commercial 

applications of EV seem to be more convenient there are only a few studies in this field, especially 

with empirical EV data (Kier and Weber, 2015; Škugor and Deur, 2015; Tomić and Kempton, 2007). In 

terms of driving patterns, Robinson et al. (2013) show in their investigation of over 30,000 EV trips that 

commercially used pool vehicles have the highest amount of daily trips, but also the shortest trips on 

average. This underlines the technical and economic potential for EV in commercial fleets. 

https://doi.org/10.1016/j.trd.2016.11.032
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Besides using potential savings through controlled charging, maximizing the availability and durability 

of the EV, to achieve a high annual as well as lifetime mileage might increase the competitiveness of 

commercial EV for some applications. The lower variable costs (fuel costs per km) (Alexander and 

Davis, 2013; Linssen et al., 2012; Plötz et al., 2013) are mainly based on the higher efficiency of EV 

and the spread of fuel and electricity prices, which differ considerably between countries (cf. table 1). 

In some countries, e.g. Norway, the benefits amount to 15 Euro-Ct/km. Furthermore, the costs for 

maintenance are seen to be 50 to 60% lower compared to ICEV (Alexander and Davis, 2013; Richter 

and Lindenberger, 2010). However, due to limited long time experience there is still a high uncertainty 

in the real maintenance costs of EV.  

 

 Variable cost  

(EV, Industry) 

[Euro-Ct/km] 

Variable cost  

(EV, Household) 

[Euro-Ct/km] 

Fuel costs  

(ICEV, gasoline) 

[Euro-Ct/km] 

Canada 1.347 1.599 8.580 

China 1.309 1.686 8.905 

France 1.899 2.913 12.415 

Germany 2.551 5.840 12.740 

India 1.515 1.667 8.125 

Japan 2.958 4.112 13.000 

Norway 1.101 2.379 16.445 

US 1.033 1.836 6.305 

Table 1: Fuel costs for EV and ICEV in selected countries for 2013 (based on data from (Dudenhöffer 

et al., 2014; IEA, 2014; OECD, 2015; Wagner, 2014)) 

 

One way to increase the availability of EV is the implementation of fast charging. Fast charging in the 

context of this paper is defined as C-rates of 1 C or higher. The C-rate stands for the relation of the 

applied charging current to the battery cell’s capacity: e.g., for battery cells with a capacity of 40 Ah a 

charging current of 120 A means a C-rate of 3. According to IEC 61851-1 there are three different 

charging modes that are able to deliver charging power that goes beyond the standard single-phased 

outlet, which in Germany has a maximum charging power of max. 3.7 kW (one phase 16 A/230 V). In 

Germany two of them are used for passenger cars. In mode 3 the EV is charged with alternating 

current (AC). For passenger cars this is usually limited to 22 kW (three phases 32A/400 V) charging 

power. In mode 4 the EV is charged with direct current (DC), allowing maximum charging currents of 

up to 400 A. Besides some exceptions, the few in 2013 available EV that were equipped with DC 

charging technology allowed a maximum charging power of 50 kW. For EV with battery capacities 

around 20 kWh (at that time most common in the market), AC charging with 22 kW leads to a charging 

rate of around 1 C, and 2 C for 50 kW DC charging. As a result a complete recharge would take one 

hour or 30 minutes respectively (Bashash et al., 2011). Disadvantages of fast charging are the 

significant increase of investment for the EVSE (Neubauer et al., 2012), as well as the stronger impact 

and stress placed on the battery cells, which could harm them in the long run. 

 

2.3 Challenges of fast charging for the Li-Ion battery  

One of the major problems at higher C-rates is the increased likeliness of lithium plating occurring on 

the anode. Plated lithium can destroy the separator resulting in short circuits and possible thermal 

runaways. Several studies have been reported dealing with these effects (Chandrasekaran, 2014; Kim 

et al., 2014, 2011; Offer et al., 2012; Onda et al., 2006; Vetter et al., 2005). 

https://doi.org/10.1016/j.trd.2016.11.032
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Fast charging also increases ageing effects depending on various battery conditions. Battery 

degradation can have many causes, some of the key factors are the depth of discharge (DOD) and 

temperature (Fernández et al., 2013). At high and low SOC, due to chemical effects and secondary 

reactions, high currents stress cells more than in the mid SOC range (Agubra and Fergus, 2013; 

Broussely et al., 2005; Ecker et al., 2012; Vetter et al., 2005). Furthermore, high SOC is far worse for 

battery health than cycling (Lunz et al., 2012; Vetter et al., 2005). Too high or too low temperatures 

can also harm the cells (critical values depend on the cell chemistry and set-up). Higher charging 

currents lead to measurably higher local heating, which can result in a departure from the temperature 

range for ideal performance. A detailed explanation of ageing is beyond the scope of this article, but 

the potentially harmful effects underline the limitations and consequences of using fast charging to 

increase EV availability. 

 

Even though fast charging is potentially harming the SOH of the battery, the time-limiting requirement 

by vehicles users is a serious challenge for the deployment of EV. Therefore, the US government has 

gone as far as setting 6 C as an objective for future charging standards (Chandrasekaran, 2014).  

 

2.4 Research aim 

From the ecological as well as the economic point of view, a high annual EV mileage, resulting in 

emission and potential cost savings, is desirable when substituting ICEV with EV. On the other hand, 

there are the above-mentioned technological limitations that need to be taken into consideration. 

Therefore, this study proposes conceptual suggestions and provides empirical evidence from a long-

term field test in Germany of how charging strategies for EV that enable a high annual mileage under 

the technological restrictions can be implemented, assessed, and optimized based on different KPI. 

The concepts developed and conclusions drawn are based on real charging and mobility data as well 

as experience gathered in the development and execution of five different charging strategies in two 

mobility applications. 

 

3. Research method and data 

In order to answer the proposed research questions this paper takes a holistic experimental research 

approach, analyzing the development and application of different charging strategies according to their 

operational implications in two commercial applications. The field test was part of the research project 

RheinMobil, which itself was part of a greater publicly subsidized initiative financed by three different 

German Federal Ministries (Transport, Economics, and Research). RheinMobil itself was financially 

supported by the Federal Ministry of Transport and Digital infrastructure, which took no influence on 

the study design, data collection, analysis and interpretation of data. Its main objective was to 

demonstrate how EV are able to technologically and economically substitute ICEV and to maximize 

environmental benefits in commercial day-to-day operations: commuting and business trips (Stella et 

al., 2015). For this reason, three companies and two research institutions launched the project 

together in 2013. In order for an application of EV to be economical, the annual mileage should be 

high enough to compensate for the higher investment in purchasing the car. Accordingly, one key part 

of RheinMobil was the development and adaption of charging strategies that enable these high annual 

mileages and allow to prove the reliability of EV components under stringent conditions. 

 

3.1 Research setting 

RheinMobil focused on two different mobility applications: the commuting of car-pooling shift workers 

and internal business trips of employees between two plant sites. The two applications were selected 

according to a distinctive set of conditions:  

 Firstly, the deployment and routing of the vehicles is constant. 

 Secondly, the distance of a one-way trip does not exceed the realistic maximum range of the 

EV.  

 Thirdly, short recharging cycles allow for more than one or two trips per day on the selected 

routes.  

https://doi.org/10.1016/j.trd.2016.11.032
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Fulfilling these criteria ensures on the one hand that the EV offer an adequate range for the selected 

application, and on the other hand that, due to the high mobility demand on the route, a high operating 

grade and therefore mileage per year can be achieved. For both reasons it is essential that the routes 

travelled remain more or less constant and that the frequencies of use and charging time are almost 

completely predictable.  

 

In the first mobility application, the commuting of shift workers in established car-pool groups provides 

a sensible application for an economically feasible e-mobility transport solution. Different studies have 

already identified the high potential of EV for commuting (Brunnert, 2012; Linssen et al., 2012; Richter 

and Lindenberger, 2010; Tomić and Kempton, 2007). Our application fulfills the criteria of fixed travel 

times and routes: the groups leave and arrive at regular times based on the shift schedule and they 

keep to their usual commuting routes. Furthermore, all parking places are equipped with EVSE and 

the commuting distances are rather long, on average 75 km one-way (cf. table 2). This leads to an 

annual mileage for a single shift worker of about 36,000 km. 

 

 Application 1: Commuting of car-

pooling shift workers 

Application 2: Business trips 

between sites 

User group Employees in shift production All employees 

User per EV 5-7 people 1-4 people 

Fixed user group Yes, fixed group(s) per EV No, changing each trip 

Time of use Around the clock, 7 days a week 7 am - 8 pm, 5 days a week 

One-way distance 75 km 70 km 

Average speed 55 km/h 71 km/h 

EV 3 e-Wolf Delta 2, 3 e-Wolf Delta 2 (EVO) 1 Nissan Leaf 

Charging locations Home and at work Both plant sites 

Charging 

infrastructure 

12 standard outlets (max. 3.7 kW) 

1 e-Wolf CHAdeMO (max. 30 kW) 

1 standard outlet (max. 3.7 kW)  

2 Siemens CHAdeMO (max. 50 kW) 

Table 2: Overview of the two selected mobility applications 

 

In the second mobility application, the business trips of employees between two production sites, not 

all of our set criteria are met. Trips are in this case less predictable, the user groups change and also 

the time of use varies. This creates uncertainty for charging times. Nevertheless, the route remains 

(more or less) constant and distances are similar, on average 70 km. One single trip per workday 

leads to an annual mileage of about 34,000 km.  

 

All EV in the project were chosen according to technological and user specific requirements of the two 

applications. The first main condition was that batteries had to have sufficient capacity to ensure that 

even under restrictive conditions such as cold temperatures the EV would still be able to travel at least 

one way without the need of recharging. The second main condition was DC fast charging. In 

Germany at the starting time of the project, in 2013, the only available technology for DC fast charging 

(mode 4) was with the CHAdeMO system with a charging rate of up to 50 kW. Besides the sufficient 

range and option to fast charge, the EV were also selected according to the installed cell technology. 

The battery cells needed enough cycle stability under the planned fast charging conditions to 

sufficiently allow the proposed intensive use of fast charging without quickly showing significant 

capacity losses. In addition to the technological requirements the EV needed to fit the demands of the 

https://doi.org/10.1016/j.trd.2016.11.032
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travelers concerning size and comfort. Since the commuters travelled in groups of up to seven people 

and the employees on business trips were traveling in groups of one to four people the EV had to 

have at least that amount of seats (cf. table 2). The only two EV that were fulfilling these conditions 

and were available in Germany in early 2013 were the e-Wolf Delta 2 and the updated EVO-version 

for the commuters and the Nissan Leaf for the business trips. In total seven EV were deployed in the 

field test. The detailed technological data for both EV can be found in table 3.  

 

Technical Data e-Wolf Delta 2 e-Wolf Delta 2 EVO Nissan Leaf 

Number of deployed EV 3 3 1 

Traction battery capacity 

(nominal)  

24.2 kWh 32 kWh 24 kWh 

Traction battery voltage 

(max.) 

720 V 720 V 360 V 

Cell technology Li-ion NMC Li-ion NMC Li-ion LMO-NCA 

Energy consumption 

(NEDC) 

187 Wh/km 200 Wh/km 173 Wh/km 

Maximum range (NEDC) 154 km 165 km  175 km 

Peak performance 90 kW 90 kW 80 kW 

Cabin heating Bio-Diesel Bio-Diesel HV-Battery 

Vehicle mass (empty) 1,666 kg 1,650 kg 1,525 kg 

AC charging power 

(nominal) 

2.6 kW 2.5 kW 2.3 kW 

AC plug type Type 2  

(EN 62196 - 2) 

Type 2 

(EN 62196 - 2) 

Type 1 

(SEA J1772) 

AC charging mode Mode 1 Mode 1 Mode 2 

DC charging power Up to 30 kW  Up to 30 kW Up to 50 kW 

DC communication protocol CHAdeMO CHAdeMO CHAdeMO 

DC plug type Harting Harting CHAdeMO 

Data logger On-board CAN 

and GPS Logger 

On-board CAN and 

GPS Logger 

Online overview, On-

board OBD and GPS  

Table 3: Technological data of the applied EV 

 

Besides the differences listed in table 2, the applications can be distinguished from each other by their 

different requirements on charging technology. Similar to the EV, the conductive charging 

infrastructure was selected according to the technological requirements set by the two different 

mobility applications. In the case of commuting, EV can be deployed without the necessity of fast 

charging EVSE. Both time spans at home and at work are sufficient for conventional full charging 

cycles. However, during the field test it became necessary to install a fast charging station at the plant 

https://doi.org/10.1016/j.trd.2016.11.032
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site in order to create the potential to increase the annual mileage significantly (c.f. table 4).1 This goes 

hand in hand with a developed car sharing principle between all commuting groups, which is described 

in section 4.1 below. For the business trips between the two plant sites the time span is 

heterogeneous and mostly not sufficient for conventional charging; in particular, usual meetings with 

durations of less than two hours do not mesh with the conventional charging technology. Accordingly, 

on both ends DC fast charging EVSE was installed right from the beginning (c.f. table 4).  

 

 e-Wolf EW-DC-30 Siemens CP3000 

Input voltage 3-phased 340 - 460 V AC 3-phased 400 V AC 

Input current 64 A 80 A 

Efficiency < 95.5 % < 94 % 

Output voltage 500 - 700 V DC 50 - 500 V DC 

Output current Max. 50 A Max. 120 A 

Output power Max. 30 kW Max. 50 kW 

Plug type Harting CHAdeMO 

Communication protocol CHAdeMO CHAdeMO 

DC charging mode Mode 4 (IEC 61851-1) Mode 4 (IEC 61851-1) 

Table 4: Technical parameters of fast charging EVSE installed in the project 

 

3.2 Data collection 

During the field test the EV were equipped with data loggers. The e-Wolf Delta 2 data loggers 

(VIKMOTE VX 20, Vikingegaarden) were connected directly to the CAN-bus of the vehicle and 

constantly send their data via UMTS to the online server data base. With timely equidistant data 

points, the following vehicle and GPS data was recorded: date and time, voltage in the 12V-battery, 

voltage in the low voltage-circuit, several parameters of the high-voltage-battery, such as voltage, 

mean cell voltage, battery current, medium cell temperature, and SOC, as well as remaining range, 

speed and odometer based on axis turning, GPS height, GPS odometer, GPS speed, GPS position 

latitude and longitude, and address according to GPS. The data can be ascribed to the individual cars 

and user groups. The data logger was active while the ignition was switched on as well as during 

charging processes. For the data collection of the Nissan Leaf two different approaches were taken. 

Mainly a conventional online platform provided by the OEM to review the energy consumption and 

operation of the EV was used. This database shows the current SOC, the remaining range, and 

whether the vehicle is currently charged or not. Additionally, it lists historical data such as trips made, 

distances travelled, energy consumed by the engine, energy consumed by the auxiliaries, energy 

recuperated through regenerative breaking and travel time. To record the charging curves as well as 

to assess the accuracy of the online data for a five-month period an extra data logger directly 

connected via Bluetooth to the EVs on-board diagnostic system (OBD) was installed. This allowed 

detailed access to a wide range of additional data, e.g. battery currents, voltages, temperatures, SOC, 

SOH, charging status as well as GPS data. From early 2013 to the end of 2015, over 450,000 km of 

fully electrically driven mileage as well as over 5,000 conventional and 650 DC fast charging events 

were logged.  

 

4. Charging strategies for an economical application of electric commercial cars 

                                                           
1 Since the e-Wolf EV had a board voltage above 600 V, for which both DC-fast standard charging plugs CHAdeMO and CCS 
are not certified, e-Wolf built a special charging station, which worked on the open source CHAdeMO protocol, but used the 
Harting plug, which comes from railway technology and is certified up to 1,000 V. 

https://doi.org/10.1016/j.trd.2016.11.032
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In the following we present and evaluate five different charging strategies, which allow a significant 

increase of the EV operating grade. The first three (1.1 to 1.3) refer to the commuting application: the 

first solely relying on conventional AC charging, the other two including DC fast charging for achieving 

a higher annual mileage. The remaining two charging strategies (2.1 and 2.2) belong to the business 

trip application.  

 

4.1 Charging strategies for commuting shift workers 

The three charging strategies applied for the commuting case can be directly connected to the 

premises set by the shift schedule as well as the travelling routes and times. In the current shift 

system, the car-sharing groups leave their home roughly two hours before the start of the shift, drive 

about 75 km to the plant and pick up colleagues on the way. They arrive about 30 minutes before the 

start of the shift at 6 am, 2 pm, or 10 pm. Each shift lasts 8 hours and after the shift they immediately 

start their journey back to their homes where they arrive about one and a half hours later. Each new 

charging strategy represents an increase in the possible annual mileage. 

 

4.1.1 Strategy 1.1: Relying on conventional charging (mode 2) only for one user group per EV 

The first charging strategy was developed based on the technological data of the charging processes 

(mode 2), the energy consumption of the EV and the shift schedule of one commuter group. With 

8.5 hours at work and 12.5 hours at home available for recharging (cf. figure 1) and an effective 

measured power after considering charging losses of around 2.30 or 2.19 kW respectively (c.f. figure 2 

& table 5), the theoretical maximum energy that can be recharged at work is about 18.7 kWh and 

27.5 kWh at home. With a measured average energy consumption of about 230 Wh/km (NEDC is 

187/200 Wh/km, c.f. table 3) the maximum distance that can be covered by a recharge at work is 

about 81 km. The average distance of a one-way journey lies at around 75 km and the energy 

consumption therefore is 17.25 kWh, which requires about 8 hours of recharge. Accordingly, for each 

EV deployed one conventional charging point is required on each end of the route. The calculations 

show that during the working shift almost the whole time is required for charging. At home only around 

2/3 of the available time is needed for charging. With this charging strategy an annual mileage around 

36,000 km a year can reached. Based on the average distance of 75 km the total charging time is 

about 16 hours (66.7%), the total driving time is 3 hours (12.5%), and finally the idle time equals 

5 hours (20.8%). The complexity for the vehicles users of this strategy is very simple since it did not 

involve switching EV or using different charging technologies.  

  

 
Figure 1: Illustration of the commuting charging strategy 1.1 

 

https://doi.org/10.1016/j.trd.2016.11.032
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Figure 2: Conventional AC charging curves of the e-Wolf Delta 2 and Delta 2 EVO 

 

 e-Wolf Delta 2  e-Wolf Delta 2 EVO 

SOC span 0-100%  0-100%  

Charging time for a full 

recharge [h] 

11.78 15.60 

Max. effective charging 

power at outlet [kW] 

2.58 2.50 

Max. effective battery 

charging power [kW] 

2.30 2.19 

Table 5: Data conventional AC charging curves of the e-Wolf Delta 2 and Delta 2 EVO 

 

4.1.2 Strategy 1.2: Using fast charging to enable three or four user groups to share two EV  

In order to increase the annual mileage, it becomes necessary to assign more than one commuter 

group to each EV. Based on the shift schedule, three or four groups that work different shifts are 

required to share two EV amongst them. While the travel distances and the time for recharging at the 

plant remain constant, the time available for recharging at home changes: once a group arrives at 

home another group uses the EV to get to their next shift. The available charging time is reduced to 

4.5 hours. Figure 3 illustrates the strategy 1.2 by showing the driving and charging schedule over three 

days for one EV and three user groups. 

  

 
Figure 3: Illustration of the commuting charging strategy 1.2 

 

The shorter available charging time at home requires the installation of DC fast charging at the plant 

site. Calculating with an effective conventional AC charging rate of 2.19 kW (cf. figure 2) and the 

energy consumption of about 17.25 kWh per trip, it becomes obvious that the reduced charging time at 

home, in which only about 9.9 kWh can be recharged, is insufficient. As can be seen in figure 4 both 

the Delta 2 and Delta 2 EVO cannot constantly operate under these requirements. While the Delta 2 

https://doi.org/10.1016/j.trd.2016.11.032
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can accomplish only one round-trip, the Delta 2 EVO comes to an end after three round-trips. Only the 

fast charging infrastructure at the plant site allows sustainable operation of this strategy.  

 

 
Figure 4: Development of SOC for strategy 1.2 with and without DC fast charging station 

 

Based on the charging power and duration of the DC fast charging process as well as the energy 

consumption of the EV the charging strategy 1.2 was elaborated (cf. figure 3). The reduced charging 

time of 4.5 hours is compensated by the use of fast charging at the plant. With the maximum effective 

charging power of about 26 kW and a maximum time of 2.5 hours for a full recharge (c.f. figure 5) the 

parking time at the plant is more than sufficient. Therefore, the time lacking for recharging at home can 

be more than compensated through DC fast charging at work. In this strategy the Delta 2 EVO's 

battery capacity of 32 kWh is sufficient to ensure that there is enough energy remaining for the way to 

the plant, including a satisfactory additional energy reserve. This operation schedule leads to an 

annual mileage of between 54,000 km (for three groups sharing two cars) and 72,000 km (for four 

groups sharing two cars) per EV. The total charging time is either 13.5 hours (56.25%, day 1) or 

7.5 hours (31.25%, day 2). The total driving time per day is constant with 4.5 hours (18.75%). In the 

remaining 6 or 12 hours the EV is neither being charged nor used, respectively. The number of 

conventional and fast charging events is different for the two days. During day one, two fast and only 

one conventional charging events are started; on day two, two conventional and one fast charging 

event take place, on average 1.5 per day. Even though on average the number of charging events is 

equal, distinctly more energy is effectively recharged through fast charging. In 1.5 charging events 

36.9 kWh are recharged by DC charging and only 14.84 kWh through conventional charging. All the 

groups using the EV have to work in different shifts as can be seen comparing day 1 and day 2 in 

figure 3. Hence for the two EV shared by the three or four commuting groups only one fast charging 

outlet is required.  

https://doi.org/10.1016/j.trd.2016.11.032
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Figure 5: DC fast charging curve of the e-Wolf Delta 2 EVO 

 

 e-Wolf Delta 2 EVO 

SOC span 0-100%  

Charging time for a full 

recharge [h] 

2.30 

Max. effective charging 

power at outlet [kW] 

30.00 

Max. effective battery 

charging power [kW] 

26.04 

Table 6: Data DC fast charging curve of the e-Wolf Delta 2 EVO 

 

4.1.3 Strategy 1.3: Using fast charging to enable three or four user groups to share one EV  

Charging strategy 1.3 provides the opportunity to increase the annual mileage of the EV even further. 

The underlying model allows three of four different shift groups to continually share one EV as follows: 

(i) the first group drives to work, arrive about 30 minutes before the start, and immediately charge the 

EV; (ii) the second group leaves the plant 30 minutes later and travels back home, where the EV has 

4.5 hours for recharging until (iii) the third group takes it to drive to the plant and after a recharge of 

30 minutes hands it over again to the first group, and so on. Figure 6 illustrates an EV on two 

consecutive days deployed in this model. 

 

 
Figure 6: Illustration of the commuting charging strategy 1.3 (distance 50 km) 

 

Under the field test conditions strategy 1.3 could not be implemented. The idea of this strategy was 

developed before the start of the project. With an average distance of 75 km per journey, an average 

energy consumption of 230 Wh/km, and charging times of 0.5 or 4.5 hours respectively the model 

proved unsustainable. As can be seen in figure 7, after the second recharge at home the energy 

stored in the battery is insufficient to drive the EV back to the plant.  

https://doi.org/10.1016/j.trd.2016.11.032
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Figure 7: Development of SOC for strategy 1.3 for 75 and 50 km average distance 

  

Reducing the average commuting distance can make the charging strategy and the underlying 

occupancy model sustainable. Reducing the average distance has two positive effects. Firstly, the 

shorter distance reduces the energy consumption per trip. Only 11.5 kWh are required for a 50 km 

journey. Secondly, a shorter distance also reduces the travelling time from 1.5 to 1 hour and therefore 

enhances the available time span for recharging at home from 4.5 to 5.5 hours (cf. figure 6). 

 

At an average distance of 50 km the charging strategy 1.3 becomes sustainable. The required energy 

per trip of 11.5 kW can be charged conventionally at home, where the maximum recharge in 5.5 hours 

is 12.1 kWh, and at work, where the maximum recharge in the 30 minutes is 13.5 kWh. Due to the fact 

that the DC fast charging power is significantly reduced at high SOC (cf. figure 5) the charging status 

of the EV never again reaches 100% SOC. After a few trips the process with its fixed time slots for 

charging stabilizes by utilizing the higher available DC charging power. Then the SOC range lies 

between 51% (16.34 kWh) and 89% (28.44 kWh) (cf. figure 7). This way of deployment leads to an 

annual mileage of around 100,000 km. The total charging time per day is 18 hours (75%) and total 

driving time 6 hours (25%) respectively. For this strategy the number of fast and conventional charging 

events started per day is 3 each. In these 36.3 kWh is charged conventionally and 32.7 kWh is 

recharged through DC fast charging. Since all the groups participating have to work in different shifts, 

again one DC fast charging EVSE is required.  

 

4.2 Charging strategies for business trips between plants 

For the business trips application there was no fixed schedule available to fit the charging strategy to. 

The groups consist of up to four people which travel between the two plant sites that lie 70 km apart 

(cf. table 2). For these trips the EV was accessible from 8 am until 8 pm. The available time for 

charging on both ends could only be estimated with an average duration of 2 hours, i.e., the average 

duration of one meeting or the time frame between the arrival of one group and the departure of the 

next.  

 

4.2.1 Strategy 2.1: Solely relying on fast charging 

Strategy 2.1 was developed by taking into account the technological data of the charging process, the 

energy consumption, and the required availability. A complete AC charge (mode 2) lasts up to 

https://doi.org/10.1016/j.trd.2016.11.032
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10 hours. The effective charging power measured at the outlet is about 2.3 kW, and the effective 

charging power of the battery is 2.1 kW (cf. figure 9 & table 7). With the available charging times 

during the day of about two hours between trips, the conventional 2.1 kW charging does not provide a 

sustainable solution for this strategy. Hence, at both plant sites the installed DC fast charging EVSE 

with 50 kW peak charging power was used. However due to local grid limitations the charging power in 

France was limited to 20 kW. Under ideal conditions the 50 kW fast charging process is ended by the 

Nissan Leaf’s battery management system (BMS) after reaching around 90% SOC at about 

30 minutes. Independent from the charging power and the SOC level, the DC fast charging process is 

ended by this vehicle’s BMS after one hour latest. In both cases a manual restart is possible (cf. figure 

10). Figure 8 illustrates the strategy's timeline for two example days, the first with one and the second 

with two trips and retours per day. By doing 1.5 trips on average per day, which was roughly the 

number of total trips before the deployment of the EV, the result would be an annual mileage of 

around 50,000 km. With one hour per tour, one hour (20 kW) in France and 30 minutes (50 kW) in 

Germany per charge, this leads on average to three hours of driving, 2.25 hours of charging, and 

18.75 h of idle time per day (cf. figure 8). 

 

 
Figure 8: Illustration of the business trip charging strategy 2.1 

 

  
Figure 9: Conventional AC charging curve of the Nissan Leaf 

 

 Nissan Leaf  

SOC span 0-100%  

Charging time for a full 

recharge [h] 

10.26 

Max. effective charging 

power at outlet [kW] 

2.32 

Max. effective battery 

charging power [kW] 

2.10 

Table 7: Data conventional AC charging curve of the Nissan Leaf 
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During operation two problems occurred with this charging strategy. Both can directly be linked to the 

exclusive use of DC fast charging and the fact that this vehicle version’s BMS automatically limits the 

fast charging process to one hour latest (cf. figure 10). The first problem was the fading of the battery's 

capacity: after only about 4,000 km the vehicle’s SOH display indicated a considerable decrease. The 

reason identified for this fast capacity fade was the missing passive balancing of the individual battery 

cells' voltage. The passive balancing process takes time; since the charging process is ended by the 

EV after one hour at the latest, there was no time for passive balancing of the battery. The second 

problem with the autonomous switch-off was an insufficient charging level. Due to SOH considerations 

depending on the temperature the charging power is automatically reduced by the BMS. The forced 

switch-off after one hour lead in extreme situations to an insufficient SOC to ensure a safe journey 

back. Based on these problems with the execution of charging strategy 2.1, strategy 2.2 was set up. 

 

  
Figure 10: DC fast charging curves of the Nissan Leaf 

 

 
Nissan Leaf 

(20 kW) 

Nissan Leaf 

(50 kW) 

SOC span 0-100%  0-100% 

Charging time for a 

full recharge [h] 

< 1.5 < 1.0 

Max. effective 

charging power at 

outlet [kW] 

20 50 

Max. effective battery 

charging power [kW] 

18.4 47.5 

Table 8: Data DC fast charging curves of the Nissan Leaf 

 

4.2.2 Strategy 2.2: Relying on fast charging for the day and conventional charging (mode 2) at 

night 

Charging strategy 2.2 includes not only fast charging during the day, but also conventional AC 

charging overnight (cf. figure 11). This addresses both problems that occurred in strategy 2.1: the 

conventional charging overnight provides more than enough time for passive balancing voltage levels 

of battery cells. After the introduction of overnight conventional AC charging, the SOH remained 

constantly at the reset level. The AC charging also allows preconditioning of the EV. The Nissan Leaf 

can be heated or cooled before use in the morning by energy taken directly from the power grid, which 

in turn increases the range of the vehicle. The new charging strategy ensures that even under low 

temperatures all the requirements concerning functionality and availability are met, while at the same 

https://doi.org/10.1016/j.trd.2016.11.032
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time protecting the SOH. In this charging strategy the average time of driving and fast charging per 

day remains constant at 3 or 2.25 hours respectively. However, about 12 out of the remaining 

18.75 hours are now used for recharging, balancing, and preconditioning. 

 

  
Figure 11: Illustration of the business trip charging strategy 2.2 including AC charging overnight 

 

 

5. Discussion 

The outcomes of this field test provide evidence for an ecologically and economic sensible application 

of EV. Furthermore, they support previous findings and claimed concepts, but also provide new 

insights and conceptual suggestions for the optimal outlay of EV charging strategies for a 

predetermined mobility application. The presented charging strategies are based on three types of 

input factors originating from the charging processes, the deployed EV, and the mobility applications. 

 

Contrary to most studies investigating charging behavior and strategies, for the five presented 

strategies the charging places and times are predetermined by the underlying application. The 

charging points considered (at plant sites and at private homes) concur with current empirical research 

studies, which show that most EV are charged at home and at work; public charging plays a less 

important role (Robinson et al., 2013; Skippon and Garwood, 2011). 

 

In the literature, the main distinction with regard to the timing of charging relates to the electricity 

market. Therefore, the start of the charging process relative to the arrival and the time of day are 

focused on. With all five presented strategies, which try to maximize the annual mileage, there was 

significantly less flexibility in timing of the charging process compared to most other applications 

(Franke and Krems, 2013; Robinson et al., 2013). Considering the distribution of charging events 

during the day, the commuter strategies lead to an almost even distribution due to the 24 h rolling shift 

schedule. For the business trips most charging events happen during the day, which on a greater 

scale would mean putting additional electricity demand on the grid during peak times.  

 

5.1 Key performance indicators to assess and compare EV charging strategies 

To our knowledge the analysis of charging strategies at this level of detail is rather new to the 

literature. To characterize and compare the five different charging strategies it became clear that using 

only the ratio of driving time to parking time as can be found in other studies (Camus et al., 2011; Lunz 

et al., 2012; Speidel and Bräunl, 2014) was insufficient. Therefore, this study proposes five KPI using 

different technical dimensions: the average daily distance travelled, the average idle time per day, the 

average ratio of driving to charging hours per day, the average ratio of fast to conventional charging 

events per day, and the average ratio of energy charged through fast and conventional charging per 

day.  

 

The comparison of these key indicators amongst the five strategies illustrates the individual 

advantages and shortcomings (cf. table 9). The increase in the daily distance travelled between the 

commuting strategies 1.1, 1.2, and 1.3 does not lead to a constant reduction of idle time. On the 

contrary, due to the introduction of fast charging, the average idle time actually almost doubles from 5 

to 9 hours in strategy 1.2. However, in strategy 1.3 the EV virtually have no idle time. Between 1.2 and 

1.3 even though the daily distance covered increases by almost 50% and the number of charging 
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events increases from 3 to 6, due to a more balanced charging distribution the ratio of driving to 

charging time decreases and less energy is recharged through fast charging in total as well as relative 

to the amount conventionally charged. The highest amount of idle time and the highest ratio of driving 

to charging can be found in the business travel strategy 2.1, where on average the EV is charged 

faster than it is discharged through driving. This combination illustrates the reasoning behind the 

adaptation from 2.1 to 2.2: not only is the objective of high availability fulfilled, but also the potential 

degeneration of battery cells is limited. Since the EV is not used overnight, the fast charging can be 

combined with conventional charging, even if it is mainly done for balancing and preconditioning. 

Three of the five strategies have an average daily distance of over 200 km, but differ significantly in 

the remaining values of their key indicators. Strategy 2.2 has the lowest amount of idle time, but 

strategy 1.2 is more balanced between conventional and fast charging. These examples illustrate that 

the KPI individually are insufficient to characterize and evaluate a charging strategy. In combination 

they can serve as a sufficient basis for comparing and evaluating charging strategies based on 

constant mobility applications. 

 

Comparing the time distribution of charging and driving in the different strategies to the values in the 

literature it becomes evident that even in the strategies with high annual mileage, driving only makes 

up a small proportion of the total time of day. The values in this study lie between 3 hours in strategy 

1.1 (12.5%) and 6 hours in strategy 1.3 (25%). Accordingly, 75% to 87.5% of the day consist of 

charging and idle time. Compared to the 91.7% (22 h) by Guille & Gross (2009), the 95% by Camus et 

al. (2011), and 96,15% by Speidel & Bräunl (2014) the values reached are significantly lower. A 

comparison of these values has to be done carefully, since the distribution of charging and driving time 

is highly dependent on the average speed and therefore average discharge power. Nevertheless, in 

this project, even when travelling 300 km per day, most of the time the EV stands still. 

 

Key performance 

indicators 

(daily average) 

Strategy 

1.1 

Strategy 1.2 Strategy 

1.3 

Strategy 

2.1 

Strategy 2.2 

Distance travelled  ~150 km ~225 km ~300 km ~210 km ~210 km 

Idle time 5 h 9 h 0 h 18 h 6 h 

Ratio of driving time to 

charging time  

0.19 

(3 h/16 h) 

0.43 

(4.5 h/10.5 h) 

0.33 

(6 h/18 h) 

1.33 

(3 h/2.25 h) 

0.21 

(3 h/14.25 h) 

Ratio of started fast 

charging to conventional 

charging events  

0 

(0/2) 

1 

(1.5/1.5) 

1 

(3/3) 

undef. 

(1.5/0) 

1.5 

(1.5/1) 

Ratio of energy recharged 

through fast and 

conventional charging 

0 

(0/34.5) 

2.49 

(36.9/14.85) 

0.90 

(32.7/36.3) 

Only fast 

charging  

Conventional 

mainly for 

balancing 

Table 9: Key performance indicators of the presented charging strategies 

 

5.2 Lessons learned 

The conclusions drawn from evaluating the charging strategies, the adaptations made in the process, 

and the KPI introduced reveal three distinctive outcomes concerning the nature of the underlying 

application, the required input parameters, and the choice of charging power. 

 

The differences in the charging strategies between the commuting and the business trips show that, 

the more predictable the underlying mobility application the better the charging strategy can be 

adapted to it. Based on the fixed shift schedule for commuters all the charging times were fully 

predictable. Therefore, the timing of the charging and the required charging power could be chosen 

accordingly. Since for the business trips the duration of meetings or the departure of the next group 
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was unknown, during the day the maximum charging power was always applied, even though it places 

more strain one the battery and the grid. A higher predictability not only leads to a less excessive use 

of fast charging, but also opens up the possibility for including other objectives such as decreasing the 

degradation of the battery or providing services to the electricity grid.  

 

The field test indicates that in addition to the characteristics of the underlying mobility application, such 

as the starting and ending points, the travel times and distances covered, two factors need to be 

considered when developing a charging strategy: the features of the charging curve and the real 

(temperature and driving style dependent) energy consumption. 

 

The comparison of the five charging curves presented in this study indicates that three characteristics 

are essential to develop a sustainable charging strategy: the maximum charging power, the duration of 

a full recharge, and the shape of the charging curve. The conventional AC charging curves for both EV 

types are similar, differing only slightly in their shape (cf. figure 2 and 9), whereas the charging power 

remains constant relative to the maximum charging power. Hence, the maximum charging power can 

be taken as a reliable indicator to simulate the recharge process. The DC fast charging curves on the 

other hand show a different progression (cf. figure 5 and 10). Therefore, for including fast charging in a 

sustainable charging strategy it is not sufficient just to rely on the nominal maximum charging power 

(C-rate) – the shape and the total duration of the charging process also need to be considered. This is 

illustrated by strategy 1.3: since the higher charging power is only available at lower SOC, even 

though the strategy is sustainable the SOC value never rises above 90% (cf. figure 7). Accordingly, 

various EV manufacturers provide not only estimations for a full fast charging recharge, but also for 

the duration of an 80% recharge. Strategy 1.2 shows that for an optimal charging strategy two distinct 

charging levels are not enough: the conventional charging is insufficient, but the fast charging requires 

far less time than the 8.5 hours available. To allow the setting of a flexible charging power in a 

predetermined range could even further benefit the system. Concerning the application-specific real 

EV energy consumption, the results of this field test emphasize that real consumption can be 

significantly higher than values based on the New European Drive Cycle (NEDC) stated by the 

manufacturers depending on various factors, such as route profile, driving behavior, or the use of 

auxiliaries (Lorf et al., 2013; Muneer et al., 2015; Travesset-Baro et al., 2015; Wu et al., 2015). For the 

present field test the high occupancy rate of the EV (about 5 people per EV in average) and high 

average speed of around 55 km/h can be identified as one reason for the observed discrepancy.  

 

 

5.3 Technological and economic implications 

Considering the charging strategies and the market technology available at the time of the field test, it 

becomes evident that with high utilization of EV the cycle life of the battery cells becomes an issue. 

Apart from the standard degradation of parts such as tires, brakes etc., the battery ages in intensive 

use. Over the course of a year the strategies in use lead to a different number of charging events as 

can be seen in table 10. The DOD for each trip is considered constant for each strategy, since the 

travelled distances do not change. Applying a higher number of charging cycles allows a higher (daily) 

mileage, but due to cyclical effects it also affects battery life (Neubauer et al., 2012). Many battery cell 

manufacturers state a ten year lifetime based on calendar life and at least 3,000 full charge and 

discharge cycles before reaching their end of life at 80% capacity (Azadfar et al., 2015; Kley, 2011). 

For the presented charging strategies and the associated DOD per trip, neglecting effects due to fast 

charging or different SOC levels regarding the cell chemistry, which goes beyond the scope of this 

work, the estimated cycle life of 3,000 cycles varies from 4.2 to 11.1 years. As can be seen from these 

values in table 10 the calendar life of the battery of ten years and beyond plays no significant role, 

since for all but one charging strategy the predicted cycle life values are distinctly lower than the 

calendar life. The actual SOC range used on both trip directions indicates that for all strategies there is 

potential to avoid high and low SOC levels (cf. table 10). The at this levels more likely occurring 

harmful chemical effects and secondary reactions could hence be avoided. This could prolong the 

battery life, but it requires external control of the EV BMS to limit the maximum SOC. 
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EV e-Wolf Delta 2 EVO Nissan Leaf 

Strategy 1.1 1.2 1.3 2.1 2.2 

Annual mileage ~36,000 km ~72,000 km ~100,000 km ~50,000 km ~50,000 km 

Number of conventional 

charging events per year 500 500 1,000  
Passive 

balancing 

Number of fast charging 

events per year 
 500 1,000 750 750 

Total charging events per 

year 
500 1,000 2,000 750 750 

SOC range used 

(in stable conditions) 
~46-100% ~23-100%  ~51-90% ~32-100%   ~32-100%  

Depth of discharge per 

trip (Energy 

consumed/capacity) 

54% 54% 36% 58% 58% 

Number of full charging 

cycles per year (Charging 

events*DOD) 

270 540 720 435 435 

Estimated cycle life 

(based on 3,000 cycles) 
11.1 years 5.6 years 4.2 years 6.9 years 6.9 years 

Table 10: Prediction of cycle life in different charging strategies 

 

Evaluating the technologically possible annual and EV lifetime mileage from an economic point of 

view, the deployment of EV in the considered mobility applications can potentially become less costly 

than the use of ICEV. Various studies have compared and discussed the TCO of EV and ICEV (Plötz 

et al., 2013; Tseng et al., 2013; Windisch, 2013). In general, the TCO is influenced by two kinds of 

factors: technological factors and regional factors. Technological factors are for example the price and 

durability of the EV, especially that of the battery cells, or the basis of comparison to the ICEV, e.g. 

engine power. Regional factors can be energy prices, taxes, incentives, and other market 

circumstances, which are dependent on the respective country (Feng and Figliozzi, 2013; Plötz et al., 

2013; Sharma et al., 2012). Considering the high sensitivity of a TCO analysis to these various factors 

no definite statements can be made based solely on the annual or lifetime mileage of an EV. In 

particular due to a lack of empirical evidence and fast technological progress, the residual value of the 

battery and therefore a successful market penetration of EV is still uncertain (Plötz et al., 2013). 

However, taking the annual or lifetime mileage can serve as an indicator for potential competitiveness. 

Various TCO analyses have shown that despite the savings in variable costs at current market prices 

and production processes, an annual mileage of 20,000 km, which is about the average of the 

German commercial fleet (Wermuth et al., 2012), is insufficient to reach an economic break-even in 

comparison to ICEV in Germany (Plötz et al., 2013). Hacker et al. (2015) calculate that in 2014 the 

barrier lies at 30,400 km in an optimistic scenario; Richter & Lindenberger (2010) estimate that for 

Germany in 2020 at least 27,000 km annual mileage is required while Kasten & Zimmer (2011) even 

state a required annual mileage of 34,750 km in 2020 to break even. For the US market Feng & 

Figliozzi (2013) come to the conclusion that for commercial vehicles the competitiveness starts at 

16,000 to 22,000 miles (25,750 – 35,400 km), depending on the conditions; Tseng et al. (2013) state a 
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total of around 150,000 miles (241,000 km) over a lifetime of ten years for passenger cars. For the 

Australian market Sharma et al. (2012) show that a mileage of 150,000 km in ten years under the 

current conditions is insufficient. For France Windisch (2013) calculate a minimum of 30,000 km per 

year for seven years leading to a total of 210,000 km as break-even point. However, based on the 

average EU market conditions Faria et al. (2013) come to the conclusion that for the Nissan Leaf an 

annual mileage of 20,000 km in 8-9 years is sufficient to become competitive. The high discrepancy in 

the results illustrates the difficulty of feasibility statements solely based on mileage. However, 

comparing all the listed mileages to the annual as well as lifetime mileages that can potentially be 

reached with the presented charging strategies and technology at hand, it becomes evident that the 

values in this study are significantly higher than the break-even values that can be found in the 

literature. This clearly indicates that the presented charging strategies can distinctly contribute to a 

potentially competitive EV use in commercial applications. 

 

6. Conclusion 

This study adds new empirical insights and conceptual suggestions to the EV charging literature by 

presenting and discussing charging strategies for two commercial mobility applications with constant 

mobility demand and fixed routes: the commuting of shift workers and business trips of employees. 

The five charging strategies, which were developed to increase the economic feasibility and therefore 

the annual mileage of EV in two mobility applications, were tested in a French-German field test from 

early 2013 to the end of 2015. During this time over 450,000 km were travelled by the seven EV 

deployed. First and foremost, the results demonstrate how specifically developed and adapted 

charging strategies can lead to a high annual mileage by relying on more than one level of charging 

power. In particular, the inclusion of DC fast charging with charging rates of 1 C or higher is shown to 

be indispensable when trying to reach a high EV operating grade. Nevertheless, the results also 

provide indications that there are limits to fast charging, that to avoid unnecessary damage to the 

battery cells it should only be applied when required by the underlying mobility demand. To illustrate 

and assess charging strategies five KPI are suggested. They can also be applied to evaluate and 

compare different charging strategies, by for example revealing an avoidably high amount of idle time 

as a consequence of an unnecessarily frequent use of fast charging. The results further reveal that the 

more predictable the underlying mobility application the easier the charging strategy can be adapted to 

it. For this adaptation the empirical examples suggest a range of input parameters required for 

developing a balanced charging strategy, such as the features of the charging curve and the real 

energy consumption of the EV in use. Overall, the results and discussion underline how important a 

carefully designed charging strategy is for technological, environmental and economic sensible EV 

deployment and that charging time under the condition of high mobility demand becomes a critical 

component on the way to feasible EV deployment. 

 

Considering the research method, setting, and focus of the study, the transfer of the findings and 

conclusions into a broader context must be carried out carefully. Limitations lie especially in the 

research method: the early stage long-term field test of two mobility applications served with two 

different types of EV is insufficient for a broad generalization. The results show that particularly the 

technological features of EV have a strong influence on the charging strategies. The charging curves 

for example, which are a substantial part, are highly dependent on the EV individual BMS, and thus 

they vary for each EV. All charging curves presented in this study are recorded under ideal 

circumstances. Our experience in the project shows that especially under high or low battery 

temperatures the BMS lower the charging power of both conventional and DC fast charging processes 

to avoid harming the battery cells.  

 

Based on the results future research could expand into three directions. Firstly, it could take the 

presented field test as an empirical starting point for developing an optimization model of charging 

patterns comparable to Bashash et al. (2011). However, instead of only using one charging power 

level to balance the annual mileage with the cost of cycle ageing it could allow for more levels of 

charging power. As indicated by the used SOC range (cf. table 10) for most charging strategies the 
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battery capacity could be reduced, which could lower the production costs. However, there is a trade-

off with increasing ageing effects. Hence, a different approach with a fixed target mileage could allow 

different levels of battery capacity as additional decision variables in the optimization model. Secondly, 

the presented mobility applications show highly predictable demand patterns. However, for many 

commercial applications and private users the demand per vehicle is less predictable. Therefore, 

future research could also expand the detailed analysis of charging strategies by including stochastic 

models for optimization similar to Iversen et al. (2014) or Škugor and Deur (2015). Thirdly, the field 

test could be expanded based on the available detailed data by an analysis of the thermal behavior 

and thermal limits of DC fast charging in EV deployment, especially when there is no active cooling of 

the cells. Last but not least, the EV and battery technology is improving fast. Therefore, similar field 

tests could be conducted with future EV generations and compared to this early stage set up.  
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