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1. Introduction

A key issue in biomedicine and biotechnology is to control
processes in cells with the highest specificity without unwant-

ed side effects of the intervening agents. Most processes in

our body are regulated through the differential transcription of
genes. Gene transcription is universally controlled by structural

elements within the gene, cis-acting regulatory elements,
which specifically bind transcription factors.[1] Among these cis-

acting elements, the core promoters bind general transcription
factors of the general transcription machinery, whereas en-
hancer elements and proximal promoter elements bind se-

quence-specific transcription factors, which activate transcrip-
tion by stimulating transcription initiation at the core promot-
er. Targeting these enhancer and proximal promoter elements

with, for example, synthetic sequence-specific transcription fac-
tors, represents a way to activate the transcription of only the

genes harboring these elements. Yet, many genes share the

transcription factor binding sites present within these ele-
ments. However, unlike enhancer elements, which act inde-

pendently of their distance to the core promoter, the effect of
proximal promoter elements depends on the distance be-

tween the transcription factor binding site and the core pro-
moter.[2, 3] Transcription factors are modular proteins composed
of a DNA binding domain (DBD), which specifically recognizes

the response element, and a transactivation domain (TAD),
which directly or indirectly interacts with the general transcrip-
tion machinery at the core promoter. Therefore, if one could
engineer an artificial transcription factor with a fixed distance

between the DBD and the TAD that matches the distance be-
tween the proximal promoter element and the core promoter

of a particular gene (Figure 1), one would potentially have

a much more specific tool to selectively activate the transcrip-
tion of this gene.

The so-called “scaffolded DNA origami” nanostructures[4]

have the potential to serve as such tools. They are readily avail-

able by folding a long single-stranded DNA (ssDNA) molecule
with a designed set of short synthetic “staple-strand” oligonu-

cleotides.[5–7] DNA origami nanostructures (DONs) have typical

dimensions in the 10–100 nm regime, which perfectly match
those of large supramolecular protein complexes, such as the

molecular machinery involved in gene regulation, cell signal-
ing, or cell division.[8] More importantly, these dimensions are

within the range of the typical distances between proximal
promoter elements and core promoters. Furthermore, DONs

The unique structure-directing properties of DNA origami
nanostructures (DONs) show great potential to specifically ma-

nipulate intracellular processes. We report an innovative con-
cept to selectively activate the transcription of a single gene in
the developing zebrafish embryo. We reason that engineering
a designer transcription factor in which a rigid DON imposes
a fixed distance between the DNA-binding domain (DBD) and
the transactivation domain (TAD) would allow the selective ac-

tivation of a gene harboring the same distance between the
corresponding transcription factor binding site and the core
promoter. As a test case, a rigid tubular DON was designed to
separate the DBD of the GAL4 transcription factor and the

VP16 viral protein as a TAD. This construct was microinjected

in the yolk of one-cell-stage zebrafish embryos, together with

a reporter plasmid to assess its functionality. The large DON
was efficiently distributed to cells of the developing embryo

and showed no signs of toxicity. However, because the DON
showed only a cytosolic localization, it did not activate tran-

scription of the reporter gene. Although this work clearly dem-
onstrates that DON microinjection enables the intracellular dis-
tribution of multi-protein architectures in most of the cells of

the developing zebrafish embryo, further refinements are nec-
essary to enable selective gene activation in vivo.
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have unique structure-directing properties, because they can

be used as scaffolds for the precise arrangement of non-nucle-
ic acid components such as proteins or colloidal nanoparti-

cles.[9, 10] It is, therefore, not surprising that there is increasing
activity to explore DONs as tools to manipulate and analyze

cellular functions.[11] Along this line, efforts are underway to
study the stability and function of DONs under in vitro and
in vivo conditions. For instance, it has been demonstrated that

DONs are stable reagents under cell culturing conditions.[12–14]

DONs are functional as immune-activating programmable adju-

vants,[15, 16] and they can be used as drug-delivery vehicles to
circumvent drug resistance.[17–20] These studies have suggested

that intracellular DON uptake is usually dependent on endocy-

tosis.[18] Furthermore, DONs can bind to the outside of the cells
to stimulate cellular transmembrane receptors.[21–23]

Despite these exciting reports, the exploitation of DONs for
the analysis and manipulation of cells is still in its infancy, and

there is a strong demand for further insights into the complex
interactions of these synthetic biomacromolecules with the

machinery of living systems. Towards this goal, we report here

the microinjection of a protein-functionalized DON construct
into zebrafish embryos (Figure 1).

Our working hypothesis is that using a DON to control the
distance between a DBD and a TAD in order to match the dis-

tance between a proximal promoter element and a core pro-
moter would enable the selective activation of a downstream
gene. As a test system, we took advantage of the GAL4-UAS

system. This binary expression system has been widely used in
many model species to drive the expression of genes. The first

component of the binary system consists of a synthetic tran-
scription factor composed of the DBD of the yeast GAL4 tran-

scription factor fused to the TAD of the Herpes simplex VP16
protein. The second component is comprised of a synthetic
gene with a tandem array of the DNA binding sites for the

GAL-VP16 chimera, called the upstream activating sequence or
UAS (CGG AGTAC T GTCCT CCG),[24] upstream of a minimal

core promoter. This UAS promoter controls the expression of
downstream cloned genes with dependence on the GAL4-

Figure 1. Concept and strategy for DON-mediated selective gene activation. A) A DNA-binding domain (DBD) and transactivation domain (TAD) are separated
by a rigid DON of a length matching the distance between the transcription factor binding site (TFBS) and the core promoter of gene A. Upon binding of the
DBD moiety to the TFBS, the TAD would be ideally positioned to activate the transcription of gene A. The length of the DON does not match the distance be-
tween the TFBS and core promoter in gene B. Therefore, gene B is predicted not to be activated by the construct. B) As a test case, a rigid, tubular DON
(DON-1) derivatized with the suicide ligands benzylguanine (BG) at one end and chlorohexane (CH) at the other end is functionalized with a BG-reactive,
SNAP-tagged version of the DBD of the yeast GAL4 transcription factor and with a CH-reactive, Halo-tagged version of the VP16 TAD to generate DON–GV.
DON–GV is then microinjected in zebrafish embryos together with a luciferase reporter gene construct, in which five copies of the consensus binding site for
GAL4 (5 V UAS) are separated from the core promoter by a spacer sequence predicted to match the length of the DON.
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VP16 chimeric transcription factor.[25] It is known that GAL4-
VP16 fusion proteins generate robust expression from the UAS

responder genes in transient and stable activation assays in ze-
brafish.[26] To allow for a quantitative assessment of transcrip-

tion, we chose the firefly luciferase reporter gene as a regulated
gene. To test the effect of the distance between the UAS and

the core promoter in the reporter plasmid, they were separat-
ed from each other by a variable spacer (grey region of the re-

porter gene, Figure 1). The reporter plasmid was constructed

by Gibson cloning[27] by sequentially aligning five copies of the
UAS, a spacer, a minimal CMV (cytomegalie virus) promoter
and the firefly reporter gene[28] (detailed plasmid map shown

in Figure S1). We reasoned that, upon injection into zebrafish
embryo, the level of expression of the firefly luciferase reporter

should then depend on the distance between the DBD (GAL4)
and the TAD (VP16) physically connected to each other

through a DON spacer in the supramolecular construct DON–
GV (Figure 1).

2. Results and Discussion

To prepare the DON–GV construct, we assembled a three-di-
mensional 8 V 11 V 148 nm3 rigid-rod tubular DON-1 (Figure 2 A)

Figure 2. Design and analysis of DNA origami nanostructures. A) Schematic representation of the 3D DON-1 design. B) Position (top) and chemical structure
(bottom) of the staple strands used for the incorporation of the suicide ligands benzylguanine (BG) and chlorohexane (CH) at 5 ’ ends of the selected staple
oligonucleotides. C) Ethidium bromide-stained 0.75 % agarose gel of DON samples before (not purified, NP) and after (purified, P) PEG purification. M: GeneRu-
ler DNA Ladder Mix. The supernatant (S) removed after precipitation contains the non-incorporated staple strands (red arrow). The assembled DONs are indi-
cated by the black arrow; ss : single-stranded scaffold. D) Representative AFM image of purified DON-1, indicating monodispersed rod-shaped particles. Scale
bar: 100 nm. E) Height profiles obtained from AFM images along the cross-sections are marked in blue and red in panel (D). The box-whisker plots show the
results of the statistical analysis of 60 particles to determine their dimensions along their axes. The values for x and y were determined from the cross-sec-
tions, whereas the z values were determined from the particle’s heights.
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by using the single-stranded 5438 nt template 109Z5, prepared
as previously described.[29]

To enable the selective attachment of the GAL4-DBD and
VP16 protein at the two ends of the rod, we incorporated at

the appropriate positions pairs of the small-molecule suicide li-
gands benzylguanine (BG) and chlorohexane (CH), to which

SNAP- and Halo-tagged proteins, respectively, can be ligated.[30]

The BG- and CH-modified staple strands were prepared from
NHS-activated precursors, as previously described,[30, 31] and

characterized by using gel electrophoresis (Figure S2). The as-
sembly of DON-1 was achieved by temperature-dependent an-
nealing. In brief, the single-stranded DNA plasmid and the
staple strands at a 1:20 molar ratio were heated to 95 8C and
the annealing was performed by decreasing the temperature
from 85 to 65 8C at @1 8C per cycle with each step held for

10 min and, subsequently, from 65 to 25 8C at @1 8C per cycle

with each step held for 15 min. The assembled DON-1 samples
were purified through polyethylene glycol precipitation[32] and

their integrity and correct folding was confirmed by gel elec-
trophoresis (Figure 2 C), FRET-dependent annealing studies

(Figure S3), and AFM analysis (Figure 2 D). Statistical analysis of
the AFM images (Figure 2 E) revealed that the observed length

(146:5 nm), thickness (17:3 nm), and height (7:1 nm) were

in agreement with the theoretically calculated values of
148 nm length, 11 nm thickness, and 8 nm height for the rods,

as depicted in Figure 2 A.
To synthesize the regulatory protein-decorated construct

DON–GV (Figure 1), the required proteins were produced by
recombinant expression. We cloned GAL4-DBD C-terminally

fused to the SNAP-tag through a flexible (GGGGS)3 linker (Fig-

ure S4). The corresponding protein GAL4-SNAP was overex-
pressed in E. coli and purified to homogeneity by fast protein

liquid chromatography (FPLC, Figure S5). As native GAL4 func-
tions as a homodimer, it was important to confirm that also

the novel GAL4-SNAP fusion can dimerize. This was achieved
by using size-exclusion chromatography (Figure S6). Further-

more, the functionality of the novel GAL4-SNAP fusion protein
to bind the UAS recognition sequence was demonstrated by

using a microbead-based pull-down assay (Figure S7). The
VP16 TAD was cloned with the Halo-tag fused to its N-terminus

(Figure S4). The corresponding Halo-VP16 protein was overex-
pressed in E. coli, purified to homogeneity by FPLC, and its

identity was verified with Western blot analysis (Figure S8).

Having both regulatory proteins available as pure and bio-
conjugatable reagents (Figure 3 A), we then assembled the bi-

functional protein–DNA construct, DON–GV. To this end, a Cy5-
labeled DON-1 (DON-1Cy5) was prepared as described above

and mixed with 25 molar equivalents of GAL4-SNAP and Halo-
VP16. Several controls, which included DON-2Cy5, a construct

identical to DON-1Cy5 but lacking the BG and CH ligands, and

samples lacking one of the two proteins were prepared in
a similar manner. The reaction products were characterized by

using gel electrophoresis (Figure 3 B), which clearly indicated
that DON–GV could be successfully assembled as expected.

The experiments also indicated the absence of unspecific bind-
ing between GAL4-SNAP, Halo-VP16, and the DON.

We then started to analyze the behavior of the DONs in vivo

in the zebrafish embryo. To this end, we used a zebrafish line
stably expressing GFP-fused histone H2A[33] that labels the

cells’ nuclei and, thereby, facilitates the determination of the
DONs’ subcellular localization. DON-1Cy5 (approximately 500 pL,

250 nm) was injected into the yolk of one-cell-stage embryos
and the embryos were imaged 6 h later (Figure 4 A).

The injected embryos survived and developed normally,

suggesting that the introduced nanomaterial was well toler-
ated. The large Cy5-labeled DNA construct was detected

within many cells of the developing embryo. This result
shows that DON-1 has no obvious deleterious effects on early

Figure 3. Assembly of DON–GV. A) Electrophoretic analysis of the conjugation of the two CH- and BG-modified staple strands with the recombinant proteins
Halo-VP16 and GAL4-SNAP to be used as TAD and DBD, respectively, in DON–GV (see Figure 2 B). This is a 16 % SDS gel, 20 V cm@1, 1 h, stained with Coomas-
sie; M: Page Ruler pre-stained protein ladder. The appearance of a second band with lower electrophoretic mobility upon incubation with the ligand-conju-
gated DNA oligonucleotides (sample 2, 3, 5, and 6) indicates the successful conjugation of the protein with the respective staples. M: molecular weight
marker. B) Halo-VP16 and GAL4-SNAP do not bind to DON-2Cy5, a construct lacking CH- and BG-modified staple strands (lanes 1–5). In contrast, DON-1Cy5 con-
taining the CH and BG modifications can bind both of the proteins, as indicated from the shift of the bands in lanes 7–9. Note that the conjugation with
Halo-VP16 (lane 8) induces only slight electrophoretic mobility shifts, presumably owing to net negative charge of VP16 (pI = 4.4). This is a 0.75 % agarose gel,
70 V, 3 h, visualized by Cy5 fluorescence imaging (top) and ethidium bromide staining (bottom). M: GeneRuler DNA Ladder; ss : scaffold strand.
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embryonic development and is indeed efficiently internalized
from the yolk (Figure 4 A, panel III). However, comparison of

the nuclei position (GFP signal, panel II) with the DON fluores-
cent signal (panel III) indicates that the DON localizes mainly to

the cytosol. Thus, “naked” DONs do not accumulate in the nu-
cleus.

We then studied the intracellular localization of the bifunc-
tional protein–DNA construct DON–GV injected alone or to-

Figure 4. Localization of the DONs in the developing zebrafish embryos. One-cell stage embryos from a zebrafish line stably expressing GFP-fused histone
H2A were used,[33] which allows the direct localization of the cell nuclei (green channel). The Cy5-labeled constructs (red channel) were microinjected into the
yolk with DON-1Cy5 alone (A), the protein-decorated DON (DON-1Cy5-GV; B) or DON-1Cy5-GV along with the reporter plasmid (C). Then, at 6 h post-fertilization,
the embryos were embedded in agarose and analyzed by using confocal fluorescence microscopy. Three channels were recorded: the bright-field image (I),
the signal from the GFP-histone H2 in green (II), and the Cy5 signal from the DONs in red (III). The high-intensity signal in the red channel shows that the
large DNA constructs were internalized at a high rate from the yolk. In addition, the high magnification (bottom images) clearly indicates that the internalized
DONs are mostly cytosolic (orange arrow), with very little to no nuclear localization (white arrow). Note that the presence of neither the proteins nor the re-
porter plasmid influenced the internalization or the subcellular distribution of the DONs. Scale bars: 30 mm and 10 mm for low and high magnification,
respectively.
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gether with the reporter plasmid (Figures 4 B and 4 C, respec-
tively). The DON–GV also had no obvious effect on early em-

bryonic development and was internalized by the cells. Fur-
thermore, it was only detected in the cytosol, irrespective of

the presence of the reporter plasmid (Figures 4 B and 4 C). Con-
sistent with the absence of nuclear localization, the DON–GV

had no effect on the expression of the reporter gene, as com-
pared to the DON-1 (data not shown). Spherical particles with

a diameter below 26 nm freely diffuse into the nucleus, where-

as larger particles require a nuclear localization signal (NLS) to
actively translocate through the nuclear pore complex, with an

upper size limit of about 39 nm.[34] The GAL4-DBD used to
functionalize the DON–GV harbors an intrinsic nuclear localiza-

tion signal.[35] However, it was apparently not sufficient to drive
the DON–GV to the nucleus. Recently, it was shown that func-

tionalization with an NLS increases the nuclear uptake of 5–

10 nm V 100–300 nm rod-shaped polymeric nanoparticles.[36]

Therefore, the absence of nuclear accumulation of the DON–

GV is unlikely because of its size, but rather to a low efficiency
of the GAL4-DBD NLS in the context of the construct. Thus,

functionalizing the DON with a “stronger” NLS as a peptide co-
valently attached to the DON might increase its nuclear

uptake.

3. Conclusions

We report here on an ambitious concept for controlling gene

transcription in a distance-dependent manner in the develop-
ing zebrafish embryo, taking advantage of designed protein–

DNA origami nanostructures. Although we could clearly dem-

onstrate the successful synthesis of our target construct, appli-
cations in vivo require further developments. Nonetheless, we

believe that our study represents an important contribution to
the exploitation of DONs for the analysis and manipulation of

cells in vivo. We demonstrated, for the first time, that microin-
jection in the yolk of the zebrafish embryo enables intracellular

distribution in most of the cells of large origami constructs har-

boring active proteins precisely arranged in a 3D fashion. Fur-
thermore, we demonstrated that the DON constructs are not

toxic for the embryos and allowed normal development, at
least in the early stages. We foresee that this technology could
be applied to deliver complex multi-protein constructs to the
cytosol and maybe also to the nuclei by means of strong nu-
clear localization signals.

Experimental Section

For experimental details, see the Supporting Information.
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