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Abstract

Consolidated distribution and order splitting are two risk pooling strategies
which pool demand and lead time, respectively. In this research work, we in-
tend to examine the impact of the integration of these two concepts on the total
logistics cost. To achieve this aim, we propose four mathematical models. The
first model is the traditional logistic system which we call a Direct Shipping
system (DS model). Then, we develop a Direct Shipping model with Order
Splitting (DSOS model). Further, the traditional multi-echelon distribution
system consisting of one supplier, one distribution center, and multiple retail-
ers is presented. In the latter system, a Distribution Center (DC) consolidates
the order quantity of all retailers. This is the Consolidated Distribution system
(CD model). Finally, we integrate and extend these models to a Consolidated
Distribution Order Splitting system (CDOS model).
We investigate whether the integration of consolidated distribution and or-

der splitting increases the advantages while simultaneously decreases the short-
comings of both strategies, in comparison to the cases where none or only one
of these two concepts is implemented. In this work, our mathematical models
consider stochastic demand and lead time. We used the method of moments
to compute the parameters of lead time, demand and lead time demand dis-
tribution. Unlike most of order splitting research, the order quantity is split
and delivered by one single supplier.
We evaluate the performance of the total annual cost of the DSOS, CD, and

CDOS models over the DS model and call our key performance indicator as
“percentage increase/decrease over the DS model”. The results indicate that,
among all models, the CDOS has the best performance over the DS model.
Next to the CDOD and with a slight difference, the CD model performs well.
Quantity discounts are the main reason for the superiority of these two models
in our logistics model. The DSOS model has a worse performance than the
DS model.
To further understand the impact of each strategy on total logistics cost, we
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did a sensitivity analysis of average daily demand, number of retailers, split
proportion, lead time mean, coefficient of variation, and average purchasing
price. Again, for the given input, we realized that the CDOS and CD models,
respectively, have a better performance over the DS and DSOS models, and
the DSOS model performs worse than the DS model. In addition, the CDOS
model has a better performance than the CD model in most cases. However,
the performance of all the four models may change based on the increase or
decrease in the value of parameters mentioned.
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1 Introduction

1.1 Scope of the Research
An essential aspect of modern logistic concepts is the question how to deal
with demand and lead time uncertainties. Risk pooling strategies are practical
ways of dealing with these uncertainties. To overbear the risks of uncertainty
in lead-time, order splitting has been suggested by some researchers. Order
splitting (OS) is splitting a single order in a number of subsequent deliver-
ies in the same reorder cycle (Janssen et al., 2000). In a typical inventory
control policy, an order quantity is placed with a specific vendor whenever
the inventory level drops to the reorder point (continuous review system) or
whenever the inventory is reviewed periodically (the periodic review system).
It is generally assumed that the whole order quantity is received in a single
delivery from the supplier(s) in each order cycle. However, it is possible that
multiple deliveries can be arranged with the supplier(s) so that portions of the
order quantity arrive at the receiving point at different times. Apparently, the
benefit associated with this approach is the reduction in the inventory costs
and simultaneously, achieving better service. By receiving smaller quantities
at the right times, buyers can obtain inventory-related savings to a consider-
able degree. The Japanese manufacturing philosophy also provides most of
the motivation toward this frequent-delivery approach (Chiang and Chiang,
1996).
On the other hand, these multiple deliveries can be done from one supplier

(single sourcing) and not necessarily from multiple suppliers (multiple sourc-
ing). The decision on the number of suppliers has been discussed extensively
during the last few years. Although some companies try to supply their re-
quirements from more than one supplier to reduce the risk of nonperformance,
it is not still clear whether adopting more suppliers is cost-beneficial. It has
been discussed that the benefits of single sourcing often outweigh that of mul-
tiple sourcing (Burke et al., 2007). Mishra and Tadikamalla (2006) provided
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a list of factors from the literature to show when the decision on single or
multiple sourcing is favored.
Another risk pooling strategy is consolidated distribution (Cachon and Ter-

wiesch, 2009) and is suggested as a way of dealing with demand uncertainty.
It can also be called depot effect (Eppen and Schrage, 1981) or postponement.
If the total demand for a number of market stores is known but the allocation
of this total demand to each store is uncertain, we can benefit from Consoli-
dated Distribution (CD) to reduce this uncertainty. Here, warehouses or retail
stores place their orders on a consolidating/Distribution Center (DC) instead
of directly ordering from supplier(s) and the DC, in turn, orders from the sup-
plier(s). This postpones a decision in distribution and makes the company able
to use more accurate information because of a shorter forecast period and an
aggregate forecast, especially in industries with high demand uncertainty, and
commits resources rather to demand than to a forecast (Oeser, 2010). A pri-
mary work on logistics postponement by Eppen and Schrage (1981) discusses
whether to ship the orders directly from the supplier to the warehouses or send
the aggregated demand of all warehouses to a distribution center as a joint or-
dering point and then, to each warehouse. The advantage of depoting is that
final allocation decisions would not have to be made until more information is
available and, thus, one should be able to reduce the probability of stock-outs
in future periods (Eppen and Schrage, 1981).
Both of these two concepts (consolidated distribution and order splitting)

have been sufficiently addressed by researchers in each area. What lacks in
the literature as well as in practice is the investigation of the possibility of
integrating these two concepts and their simultaneous implementation. van
Hoek (2001) and Boone et al. (2007) clearly call for linking postponement with
other supply chain concepts. Oeser (2010) also criticizes the lack of research on
combining a specific risk pooling method with other ones. In this research, we
integrate these two risk pooling strategies and examine how their interaction
influences the total logistics cost.

1.2 Problem Description and Research Questions
In this research work, we consider the impact of order splitting at the multi-
echelon level, where there are retailers who place their orders on a single sup-
plier through a DC. Although splitting the order of a single buyer may result
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in extra costs, splitting the aggregated order of multiple buyers may bring
benefits to the system. Order splitting in a multi-echelon system can have the
same impact as the other two risk pooling strategies, i.e. consolidated distri-
bution or postponement, from the point of view that delaying the delivery of
the second or next shipments can result in obtaining more customer informa-
tion about postponed shipments. This could be discussed, for example, under
the title “partial postponement”, which has been argued, although from other
viewpoints, by Graman (1999; 2010).
Till 2006, research mainly investigated the trade-off between ordering cost

and inventory cost when dealing with the order splitting problem. This stream
of research indicates that splitting orders can lead to savings in inventory hold-
ing cost that outweigh the incremental ordering cost. Thomas and Tyworth
(2006) criticized the literature on order-splitting, stating that the transporta-
tion and ordering costs are ignored or at least underestimated. They discussed
that shipping costs increase disproportionately as the size of the shipment de-
creases, which means that order splitting may increase transportation costs
substantially. In their work in 2007 (Thomas and Tyworth, 2007), they con-
cluded that managers should consider order splitting, at best, in the case of
high lead-time volatility, high demand rates, high service levels, high inven-
tory carrying cost factors, high unit values and low incremental transportation
and ordering costs. In spite of the importance of transportation cost in order
splitting, it seems that most research works after Thomas and Tyworth (2006)
have still either ignored or underestimated the consideration of this element in
the total logistic cost.
In this work, we discuss that a purchasing cost, which is based on a quantity

discount structure, represents a potentially important component upon the
development of a supplier-DC-retailers system. There is other order splitting
research that has included this cost in mathematical models (Ganeshan et al.,
1999; Tyworth and Ruiz-Torres, 2000; Mishra and Tadikamalla, 2006). How-
ever, in our work, the purchasing price follows a stepwise function, meaning
that the increase in order quantity results in lower purchasing cost for the
buyer. We believe that quantity discount is an important element in order
splitting. In practice, the price of an item and its ordered quantity are nega-
tively correlated. Therefore, when an order is split and supplied via multiple
vendors, the procurement price will increase. This is another shortcoming in
the research related to order splitting. We discuss that in the particular case of
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having a DC, i.e. when the orders are aggregated by the DC, the whole order
quantity and consequently, the order quantity of each retailer can benefit from
quantity discounts.
As discussed above, we also consider another important logistics cost element

(transportation cost) in our model. Larger orders may allow the vendor to
capture transportation discounts currently unavailable to him. Therefore, even
if the order quantity of a DC is split, it still takes advantage of consolidated
orders, compared to order splitting models when the supplier directly sends
the order to the retailers.
This consolidated demand has other advantages for supply chain parties.

First, larger individual order means the vendor will need to process fewer
orders per year from the customer. Thus, with larger orders the vendor should
be able to reduce his yearly order processing costs. Second, and potentially
even more important, are the manufacturing cost savings made possible by
larger customer orders. This is especially true for the vendor who produces the
item himself. Larger orders, if produced to order, will mean longer production
runs and fewer manufacturing set-ups per year. This can be reflected in the
purchasing price of the customer. However, inventory should be held both at
DC and retailers’ shelves. Finally, larger individual orders will cause a change
in the current pattern of orders placed throughout the year. This will mean
a shift in both the magnitude and timing of order payments from the buyer.
Hopefully, the vendor will then find he has the use of more the buyer’s money,
earlier in the year. This may be very important to the vendor, depending upon
the size of his particular opportunity cost of capital (Monahan, 1984).
We also assume that a business implemets order splitting over time, and

not over suppliers. That means, there is only one supplier and the order is
split and delivered at different points of time. The case of order splitting via
a single supplier has been studied by Mishra and Tadikamalla (2006), Hill
(1996), and Chiang and Chiang (1996). Based on the work of Mishra and
Tadikamalla (2006), we assume that many advantages of dual sourcing arise
from order splitting rather than actually using two suppliers. This assumption
supports our approach in using order splitting between supplier and DC, i.e.
downstream part of our supply chain where we want to take advantage of
quantity discounts. According to Supplier Selection and Management Report
(IOMA, 2002), reducing the supplier base has been the “top of the list” most
effective practice for controlling costs during six consecutive years. Figure 1.1
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shows an example of single sourcing.

Figure 1.1: Order splitting over time

We believe that our research model is practical and mathematically simple.
We have taken into consideration many advantages and disadvantages of con-
solidated distribution and order splitting. We moderate the disadvantages of
one strategy through its integration with the other one.
In this research work, the application of order splitting before the decoupling

point (here DC) in a multi-echelon supply chain will be investigated. We do
not consider order splitting between DC and retailers. We assume that the
demand of the retailers is pooled through the DC, and a single supplier feeds
the DC.
The application of nonlinear purchasing and transportation cost functions is

ignored in the previous research works. We believe that it has a great impact
on the total cost of order splitting and, generally, the supply chain. Taking this
approach into account, we move one step forward in comparison to the work of
Thomas and Tyworth (2007) and discuss whether the total logistic cost of an
order splitting model is lower than that of a non-order splitting model, in case
transportation and purchasing price are nonlinearly related to order quantity.
To this aim, the first research question is established as following:

1. How high is the total cost of a Direct Shipping system where the order
quantity is split (DSOS model) compared to a Direct Shipping non-order
splitting system (DS model), when transportation and purchasing cost
functions are nonlinear and there is a single supplier?
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Moreover, when purchasing and transportation costs are nonlinear, the consol-
idation of retailers’ orders at DC creates larger order quantities which results
in lower purchasing and transportation costs. Therefore, we intend to answer
the following research question as well:

2. How high is the total cost of a system where the retailers’ order quan-
tities are consolidated through a DC (CD model) compared to a Direct
Shipping non-order splitting system where the retailers’ order quantities
are directly placed on the supplier (DS model), when transportation and
purchasing cost functions are nonlinear and there is a single supplier?

In the next step, we look forward to see how the integration of order splitting
and consolidated distribution affects the total logistic cost. Therefore, we
present our third research question as following:

3. How high is the total cost of a system where the retailers’ order quantities
are consolidated through a DC and the order quantity between supplier
and DC is split (CDOS model), compared to a Direct Shipping non-order
splitting system where the retailers’ order quantities are directly placed
on the supplier (DS model), when transportation and purchasing cost
functions are nonlinear and there is a single supplier?

1.3 Structure of the Research Work
In chapter 2, a brief literature review on consolidated distribution will be
presented. Next, order splitting literature is reviewed and the shortcomings of
the research in this area are highlighted. This is done through comparison of
the research stream before and after the work of Thomas and Tyworth (2006)
to see if their criticism has been dealt with in later research works.
In chapter 3, the mathematical models for the determination of the Total

Annual Cost (TAC) are presented. We also discuss the solutions to the mathe-
matical model. We consider the trade-offs between purchasing, transportation,
ordering, cycle, safety, and in-transit inventory costs. We firstly model the to-
tal cost of Direct Shipping system (DS model). Then, we consider the total
cost of a Direct Shipping Order Splitting system (DSOS model) and a Consol-
idated Distribution system (CD model), separately. In the fourth model, we
integrate Consolidated Distribution and Order Splitting strategies to consider
the impact of their integration on a supply chain (CDOS model).
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Chapter 4 provides the numerical experiments by examining the mathemat-
ical models of chapter 3 using the softwares “Excel 2010” and “Mathematica
10.0”. A detailed sensitivity analysis on how important input parameters influ-
ence the results of the models is conducted. These results are, then, presented.
Later in chapter 5, we analyze these results and present the main findings and
discussions of our research work. The chapter ends with the limitations of the
work and future research directions.
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2.1 Risk Pooling
Pooling is a resource management term that refers to the grouping together of
resources for the purposes of maximizing advantage and/or minimizing risk to
the users. The term is used in many disciplines. It is often central to many
operational strategies and an important concept in Logistics and Supply Chain
Management (L&SCM) (Oeser, 2010). In L&SCM, it takes the form of using a
centralized system with aggregated ordering via a centralized facility, instead
of a decentralized system with separate ordering. Therefore, it is defined as
“consolidating individual variabilities of demand and/or lead time in order
to reduce the total variability they form and thus, uncertainty and risk (the
possibility of not achieving business objectives)” (Oeser, 2010, p. 12). The
underlying idea of risk pooling is to mitigate the uncertainty and minimize the
total cost while maintaining a high service level (Cai and Du, 2009).
Risk pooling is widely used in various industries such as insurance com-

panies, engineering systems and financial institutions, etc. (Cai and Du,
2009). However, a survey of 102 German manufacturing and trading com-
panies by Oeser (2010) shows that risk pooling strategies are known fairly well
in Germany but despite their potential benefits, they are not extensively imple-
mented. Based on a comprehensive search in the literature, Oeser (2010) con-
cludes that apart from inventory pooling (IP), risk pooling can also be achieved
by: Capacity Pooling (CP), Central Ordering (CO), Component Commonal-
ity (CC), Virtual Pooling (VP), Postponement (PM), Product Pooling (PP),
Product Substitution (PS), Transshipments (TS), and Order Splitting (OS).
He categorizes these risk pooling methods into two groups. The first types
are those strategies which pool demand, and include the first eight strategies
mentioned above. The last two strategies are categorized as lead time pooling
strategies. Table 2.1 represents this categorization.
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Table 2.1: Risk pooling methods’ building blocks (adopted from Oeser (2010))
Building blocks CP CO CC IP VP PM PP PS TS OS

Demand pooling 1 1 1 1 1 1 1 1 0 0
Lead time pooling 0 0 0 0 0 0 0 0 1 1

One of the strategies categorized by Oeser (2010) is central ordering. He also
calls it as “consolidated distribution”, “risk pooling over the outside supplier
lead time”, or “warehouse risk pooling”. We believe that not all these titles can
be applied interchangeably. For example, scenario 4 in the work of Munson
and Hu (2010) indicates an approach in which the Centralized Purchasing
Office (CPO) purchases the items for all retailers, but the items are directly
shipped to retailers and not to the DC. This can be called central ordering.
At the same time, Munson and Hu (2010)’s third scenario represents the case
where purchasing and distribution/warehousing are done by a DC. Cachon
and Terwiesch (2009) call this as “consolidated distribution”. Generally, we
can call consolidated distribution as one type of centralized ordering.
This research considers two strategies of Oeser (2010) and discusses them

in detail. We choose a strategy from lead time pooling category, which is
order splitting, and one from demand pooling category, and that is Consol-
idated Distribution. The aim is to comprehensively discover the advantages
and disadvantages of order splitting, and see if its shortcomings, argued by e.g.
Thomas and Tyworth (2006), can be covered through integration with another
strategy. We believe that consolidated distribution can accomplish this task.
Figure 2.1 represents the trend in risk pooling research till 2009. It is clear

that there has been an increasing interest in this area since its introduction. In
addition, it indicates that both consolidated distribution (centralized ordering
in this figure) and order splitting are among those strategies with fewer research
works in comparison to other strategies. Therefore, doing more research on
them can explore new directions on these research streams.
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Figure 2.1: Risk pooling research since its introduction (adopted from Oeser
(2010))

2.2 Consolidated Distribution
In the consolidated distribution, the separate lead times between the supplier
and the retailers in the direct shipping system are pooled to a single lead time
between the supplier and the DC. It means that forecast demands are pooled
over the outside supplier lead time. Consolidated distribution creates larger
common orders for multiple locations and this, in turn, makes more frequent
shipments economically possible between the suppliers and the DC and the DC
and the retailers. Therefore, this may decrease lead time uncertainty despite
the additional lead time from the DC to the various retailers (Oeser, 2010). If
the lead time before the DC is much longer than the lead time after the DC,
consolidated distribution is most effective (Cachon and Terwiesch, 2009).
Eppen and Schrage (1981) investigate centralized ordering policies in a

periodic-review base-stock multi-echelon, multi-period system for steel indus-
try with independent normally distributed random demands and identical costs
of holding and backordering at N warehouses. They derive expressions for the
inventory at each warehouse. The objective is to optimize the total cost of the
system by exploring the optimal value of the system-wide inventory position
as the decision variable.
Schwarz (1989) compares two inventory systems. In the first system, the

products are directly shipped from the manufacturer to retailers, but in the
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second system, they are shipped to a central warehouse which feeds the re-
tailers. Upon receipt of the shipment to the warehouse, the system order is
allocated to retailers. The warehouse holds no inventory and acts as a cross-
docking facility. He assumes order-up-to level policy and only models the
inventory costs. In case the in-transit inventory can somehow be avoided, the
risk pooling in system 2 has considerable value, otherwise its overall value of
risk pooling is sharply reduced. He also concludes that if the allocation and
repackaging time at the warehouse is small and the proportion of transport
time of supplier-warehouse to warehouse-retailers is considerably larger, then,
system 2 outperforms system 1.
Erkip et al. (1990) study a depot-warehouse system where the demands both

across warehouses and in time (demand of a warehouse for two successive peri-
ods) are correlated. The effect of this correlation on safety stock is examined.
Similar to Schwarz (1989), they assume that the depot holds no inventory and
acts as an order consolidating facility. Their numerical evaluation shows that
the effect of correlations is highly significant which results in larger amounts
of safety stock.
Gürbüz et al. (2007) consider a coordinated replenishment policy where there

is one warehouse and there are N identical retailers. The warehouse plays the
role of a cross-docking terminal with no inventory in which upon the arrival
of the shipments at the warehouse, they are allocated to the retailers. The
warehouse has full access to the system information of the retailers’ inventory.
They include holding, backorder, ordering, and shipment cost in their model.
They also propose a new policy called hybrid policy. They explain this as a
mixture of the traditional echelon policy and a special type of can-order policy.
Under this policy, the warehouse monitors the inventory position of all retailers,
and places an order at the outside supplier to raise every retailer’s inventory
position to an order-up-to level SH , whenever any retailer’s inventory position
reaches sH , where sH < SH , or the total demand at all the retailers reaches QH .
The numerical results suggest that this policy provides significant improvement
over the echelon-based replenishment policies, and the installation-based policy
performs as good as the hybrid policy when the transportation costs are not
included.
Munson and Hu (2010) provide methods to compute optimal order quan-

tities and total purchasing and inventory costs where the purchasing quan-
tity benefits from quantity discount pricing. They propose four strategies for
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purchasing: complete decentralization, centralized pricing with decentralized
purchasing, centralized purchasing with local distribution, and centralized pur-
chasing and warehousing. In the fourth strategy (centralized purchasing and
warehousing), a central warehouse buys from a supplier and delivers to local
sites. The central warehouse may keep the items for some time until the lo-
cal sites ask for replenishment. The authors conclude that with centralized
purchasing and warehousing, retailers or local warehouses can benefit from
discounted purchase price while holding little inventory.
Cachon and Terwiesch (2009) categorize risk pooling strategies as location,

virtual, product, capacity, and lead time risk pooling. They further dis-
cuss consolidated distribution and delayed differentiation as two strategies to
achieve lead time pooling. Location and product pooling’s limitations include
farther distance between inventory and customers, and potential degradation
of product functionality, respectively. On the other hand, lead time pooling
shortens the lead time to customers while allowing to benefit from location
pooling. As the stocking point is close to all customers, lead time would be
decreased and final allocation of demand is delayed till the last moment, and
the inventory of any customer can be replenished from this stocking point
which in turn results in location uncertainty reduction.
In contrast to location pooling which just creates the DC as the centralized

inventory location and fulfills the demands of the customers directly from the
DC (it, thereby, eliminates retail stores, and therefore, prevents customers from
physically seeing a product before purchase) (Cachon and Terwiesch, 2009),
consolidated distribution allows the retailer stores to keep inventory. In the
consolidated distribution, retailers are served by a central DC, which is close to
retailers, instead of the supplier. This reduces the lead time to replenish their
stores which in turn reduces drastically their storage capacity and inventory.
One may assume that, like in Eppen and Schrage (1981), the DC does not hold
inventory, or may extend their work by assuming that the DC holds inventory,
as they suggest.
As the main topic of this research is order splitting, we focus on the literature

around this subject. We are not going to review the extensive literature on
consolidation distribution as it is broadly discussed in Oeser (2010) and other
research works (e.g. Cachon and Terwiesch 2009). However, the interaction
between these two strategies and the advantages or disadvantages that this
integration brings to a supply chain will be later discussed.
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2.3 Order Splitting

2.3.1 Literature Review before 2006

Many research works have been trying to analyze the effects of different strate-
gies to control lead time, as variability in lead time between successive stages
has a great influence on supply chain coordination (Ryu and Lee, 2003).
Oeser’s comprehensive categorization of risk pooling methods also involves
order splitting. In his research, order splitting is discussed as a method to
pool/reduce lead time uncertainty.
Order splitting is at its infancy. Hill defines order splitting as “splitting a

replenishment order between two or more suppliers rather than rely on one
supplier to meet it” (Hill, 1996, p. 53). Chiang and Chiang (1996) clarify
that order splitting is the issue of arranging the arrival of multiple deliveries
with the supplier so that portions of the order quantity arrive at the receiving
point at different times. A universal definition of order splitting is provided
by Janssen et al. who define order splitting as “splitting a single order in
a number of subsequent (equally sized) deliveries in the same reorder cycle
(Janssen et al., 2000, p. 1136)”. However, the only drawback of this definition
is that they only assume equally sized deliveries.
The decision on the number of suppliers has been extensively discussed dur-

ing the last few years. While some companies try to supply their requirements
from more than one supplier to reduce the risk of nonperformance, it is not still
clear whether adopting more suppliers is cost-beneficial. It is discussed that,
in many cases, using multiple suppliers reduces inventory and distribution sys-
tem costs. However, many companies are moving from having many suppliers
to largely rely on a single supplier (Ganeshan, 1999). Researchers (Mohr and
Spekman, 1994; Burke et al., 2007) assert that the benefits of single sourcing
often outweigh that of multiple sourcing. According to Supplier Selection and
Management Report (IOMA, 2002), reducing the supplier base has been the
“top of the list” most effective practice for controlling costs during six consec-
utive years. Mishra and Tadikamalla (2006) provided a list of factors from the
literature to show when the decision on single or multiple sourcing is favored
(Table 2.2).
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Table 2.2: Factors influencing the decision on single and multiple sourcing
(adopted from Mishra and Tadikamalla (2006))

Single sourcing is favored Multiple sourcing is favored

Cost:
- High cost of close cooperation; - Switching costs remain low;
- Higher trust between supplier and
buyer;

- No supplier has unfair advantage in
negotiations;

- Economies of scale and learning
curve advantages for supplier;

- Low cost and high performance
through competitive bidding.

- Lower cost due to quantity discounts;
- High setup/order cost.

Production:
- Better quality due to long-term
relationship and associated
investments;

- High risk of disruption of supply due
to fire, strike, natural disaster,
financial insolvency, etc.

- Better understanding of product and
process specifications;
- Quality control easier due to one
source of variation;
- Facilitates Just-in-Time;
- Lower uncertainty of demand for
supplier.

Competitiveness:
- Superior quality improves
competitiveness;
- Poor quality of a supplier can reduce
market share and competitiveness.

- Access to new and wider variety of
technology from among which
commitment can be made to the most
suitable technology.

Since its introduction, it seems that adequate research on order splitting
has not been completed. A reason could be that some research results (e.g.
Thomas and Tyworth 2007) have questioned the usefulness of order splitting or
claimed that order splitting is advantageous under certain limited conditions.
An overview of order splitting literature can also be found in Thomas and
Tyworth (2006).
Sculli and Wu (1981) are the first authors who publish a paper on order

splitting and investigate its impact on Lead Time Demand (LTD) and con-
sequently, safety stock. The lead time and demand are both assumed to be
stochastic, where lead time is normally distributed. Given that replenishment
orders are placed at the same time, they indicate that simultaneous use of two
suppliers results in lower reorder level or safety stock.
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Sculli and Shum (1990) extend order splitting to the case of N suppliers,
where orders on these suppliers are placed at the same time. Their results show
that there is a negative correlation between safety stock and shortage cost, and
number of suppliers. It means that placing several replenishment orders for a
single item simultaneously with multiple suppliers will reduce the buffer stock
and average shortage for a given level of protection against stock-out during
lead-time demand.
The case of constant demand with uniform or exponential lead time is con-

sidered by Ramasesh et al. (1991). The order quantity is equally split between
two suppliers and placed simultaneously. The total cost consists of ordering
and inventory holding costs. Using numerical search to find the optimal solu-
tions, they reach the following conclusions:

• If ordering cost is relatively low, the savings from dual sourcing, because
of decrease in inventory holding and backordering costs, outweigh the
increase in ordering cost;

• Dual sourcing would be more beneficial as the lead time variability in-
creases;

• Exponentially distributed lead times offer more savings when compared
to uniformly distributed lead times. They conclude that dual sourcing
may suggest more benefits for skewed and long-tailed lead time distribu-
tions.

Hong and Hayya (1992) consider two Just-In-Time models, one with one sup-
plier and the other with multiple suppliers, in which the order quantity is split.
The models are deterministic and include the aggregate ordering cost (trans-
portation, inspection, and other related ordering costs) and inventory holding
cost. Mathematical procedures are proposed to find the optimal selection of
suppliers and the size of the split orders for both models.
Lau and Zhao (1993) derive expressions for cycle stock, safety stock and

shortage cost in order splitting. They provide procedures for any stochastic
lead time and demand. The total cost function consists of ordering cost, cycle,
safety, and shortage costs for the two supplier case. They conclude that in an
order splitting system:

• The effect of shortage cost reduction in order splitting is comparatively
small;
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• The major advantage is due to the reduction in cycle stock;

• When the lead time of the second supplier is suitably larger than the
lead time of the first supplier, order splitting is more advantageous;

• The optimal proportion of split portion depends on the difference be-
tween the lead times of the suppliers.

Lau and Lau (1994) present a model and solution procedure for the case of
two suppliers where one offers lower prices and the other supplier has shorter
lead time. The demand is deterministic but the lead time is stochastic. The
total cost function consists of purchasing, ordering, safety stock, cycle stock,
and shortage costs. Their results indicate that the decision to split the order
quantity and the optimal proportion of the split quantity depends on differ-
ent parameters, e.g. unit shortage cost, holding cost, standard deviation of
lead time, etc. They also conclude that when the inventory parameters have
intermediate values, it worth to split the order quantity for two suppliers.
It seems that Gupta and Kini (1995), Hill (1996), and Chiang and Chiang

(1996) are the first authors who examined order splitting with one supplier.
Gupta and Kini (1995) develop a model to integrate JIT and PQD (Price-
Quantity Discount). Using their proposed model, companies can place orders
in large quantities (PQD structure), while receiving them in JIT format (small
lot sizes). Ordering cost, inventory holding cost, transportation cost, and
purchasing cost comprise the total cost model. Although the purchasing price
follows a step-wise function, the transportation cost is linear. The model allows
the buyer to decide how much to purchase and how many shipments should be
placed per order. Through their numerical experiments one may observe that
the total cost per year decreases as the order quantity and number of deliveries
both increase.
Hill (1996) considers a Poisson or deterministic demand process, and a gen-

eral lead time distribution for placing n orders on a single supplier. His model
includes only the inventory holding and back-order/lost sales costs. The results
show that:

• Order splitting has always lower stock levels than non-split model.

• Compared to order splitting through different and identical suppliers,
order splitting through single sourcing (placing order on one supplier at
different points of time) will result in lower operating costs.
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• Assuming the same order quantity and service level, he suggests (but not
proves) that increasing the number of split portions (i.e. making smaller
orders) of a single supplier reduces the average stock level.

Assuming normally distributed demand and constant lead time, Chiang and
Chiang (1996) calculate the total cost of ordering, inventory carrying (cycle
and safety stock), and shortage for two delivery order splitting. They derive
expressions for cycle stock and show that splitting the order in multiple deliv-
eries can significantly reduce inventory carrying cost for independent-demand
items.
Using a level-crossing methodology, Mohebbi and Posner (1998) analyze sole

sourcing versus dual sourcing model where there is lost sales cost. The demand
and lead time have, respectively, compound Poisson and exponential distribu-
tions. The cost model consists of purchasing, ordering, inventory holding, and
shortage costs. Their results supports the benefits of dual sourcing over single
sourcing when the lead time is stochastic.
Ganeshan et al. (1999) provide a broader order splitting model which in-

cludes purchasing, non-linear transportation, ordering, and inventory (includ-
ing in-transit inventory) costs. The demand is normally distributed and lead
time may have any distribution. In their model, the second supplier is an un-
reliable supplier having longer lead time mean and variance, which offers lower
purchasing price. The objective is to find whether order splitting is more ad-
vantageous than sole sourcing, and if yes, the amount of discount and split
proportion of the second supplier. Their conclusion is that order splitting is
beneficial if the price discount of the second supplier is sufficient enough to
cover the increase in other costs.
The mathematical model of Sedarage et al. (1999) considers a N -supplier

system with random lead time and demand which consists of ordering cost,
purchasing cost, inventory holding cost, and shortage cost. The purchasing
price for each supplier is different. Contrary to some other previous research
works, their numerical experiments indicate that there is an optimal number
of suppliers, in case the order splitting is a worthwhile policy. A counter-
intuitive finding of thier work is that, it may be economical to place an order
with suppliers having higher lead time mean and standard deviation and higher
purchasing price.
Janssen et al. (2000) evaluate order splitting from the suppliers’ point of view

and call it delivery splitting in which the order quantity is shipped in equally
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sized and equally spaced deliveries. In their work, demand has a compound
Poisson distribution while lead time is deterministic. The problem is to find
the optimal values of order quantity, the reorder point, the time between the
shipments, and the amount of shipment. The objective function is the sum of
ordering, holding, and transportation costs subject to a service level constraint.
Transportation cost is proportional to the number of deliveries. Their results
indicate that the profitability of delivery splitting strongly depends on the
input parameters.
Tyworth and Ruiz-Torres (2000) compare dual sourcing with single sourcing.

The total annual cost consists of purchasing, transportation, ordering, cycle
and safety stock holding, and back-order costs. The purchasing price may be
different for different suppliers but it is not a function of order quantity. The
demand is constant while the lead time is exponentially distributed. Their
results show the important role of transportation cost in dual sourcing. They
argue that high annual demands, poor lead time performances, high supplier
prices, and short supply lines best fits to order splitting.
Ghodsypour and O’Brien (2001) developed a mixed integer non-linear pro-

gramming model to solve the multiple sourcing, multiple criteria and capacity
constraint problem. The total cost comprises of purchasing, inventory hold-
ing, transportation, and ordering costs. The purchasing price does not follow
a quantity discount scheme. The proposed algorithm for solving the model is
illustrated using a numerical example.
Kelle and Miller (2001) analyze the optimal rate of split proportion if the

objective is to minimize stock-out risk. The assumption is that ordering, pur-
chasing, and transportation costs are the same for both suppliers, so they
exclude these cost elements from their model. They consider both constant
and random demand, while both suppliers have lead times with different char-
acteristics. They show that uneven split proportions reduce the stock-out risk
compared to even split proportions. If order quantity is much larger than
the expected lead time demand, the optimal split proportion in dual sourcing
reduces stock-out risk for both suppliers.
Ryu and Lee (2003) examine a dual sourcing model with and without lead

time reduction and stochastically determine lead time for each supplier. The
demand is constant and lead time is exponentially distributed for both sup-
pliers. They try to find out the optimal amount of reduction in lead time
and determine the order quantity of each supplier as a result of this lead time
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reduction. The total cost function is the sum of inventory holding, shortage,
and ordering costs. They find out that dual sourcing with lead time reduction
results in significant savings in the expected total cost per unit time.
Instead of splitting the order quantity between different suppliers, Dullaert

et al. (2005) extend the model of Ganeshan et al. (1999) by allocating the
order, which is placed on a single supplier, to different transport modes. This
means splitting over transport alternatives. The total cost includes ordering,
transportation, cycle stock, safety stock and in-transit stock costs. They make
two assumptions: first, order quantities are a linear combination of total ca-
pacities of different transport modes, implying that the capacity of a transport
alternative is fully utilized if it is selected. Second, instead of effective lead
time for calculating safety stock, they use the lead time of the fastest trans-
port alternative (shortest average lead time). Both lead time and demand are
random variables. They use an Evolutionary Algorithm to solve the problem.
This research work is not mentioned in the literature review by Thomas and
Tyworth (2006).
A review of the main logistics cost elements which are included in the math-

ematical models of previous research works is summarized in Table 2.3.

2.3.2 Review of post 2006 Literature

In the previous section, we tried to provide an overview of order splitting
literature until 2006. A comprehensive overview of order splitting literature
can also be found in Thomas and Tyworth (2006).
Reviewing the literature on order splitting, Thomas and Tyworth (2006)

criticized previous research works arguing that the literature has mostly ig-
nored or underestimated the ordering and transportation costs. In spite of
the importance of transportation cost in order splitting, it seems that even
most studies after Thomas and Tyworth have not appropriately applied this
cost element in their work. Columns 2-5 in Table 2.4 represent the inclusion
of the main logistics cost elements in developing order splitting mathematical
models since the work of Thomas and Tyworth (2006). Although we do not
claim that this list is exhaustive, it still affirms the criticism by these authors.
It should be noticed that there may be other costs included in the analytical
models of these papers. However, we just mentioned the availability of the
main conventional logistics cost elements in order to see if transportation cost
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element has been included in these models.
In this work, we consider another important element, quantity discount, in

our cost model. We believe that quantity discount is an important element in
order splitting cost models. In practice, the price of an item and its ordered
quantity are negatively correlated. Therefore, when an order is split, its pro-
curement price may increase, especially if it is supplied from multiple sellers.
This is another shortcoming in the related research works.
Mishra and Tadikamalla (2006) show that many of the benefits of dual

sourcing come from order splitting rather than using two suppliers. After the
order for the first portion of the order quantity is sent to a supplier, the order
for the subsequent order quantities are placed on the same supplier, but with
a time delay (scheduled-release). The demand is constant but the lead time is
stochastic with gamma distribution. The total cost comprises of procurement,
ordering, safety and cycle stock, and shortage costs. When a supplier has low
standard deviation of lead time and a competitive price, and also in cases where
dual sourcing is considered, scheduled-release is beneficial. This is comparable
to former research works in which the second supplier has a cheaper price but
a worse lead time performance.
Qi (2007) considers two logistic and supply chain topics in a single manu-

facturer, multiple suppliers system: multiple sourcing, and the integration of
marketing and operations. For multiple sourcing, he examines the case where
suppliers have limited capacity. He assumes that market demand is determined
by its selling price. There is a fixed transportation cost for each non-zero or-
der. The objective is to find the optimal order quantity for each supplier.
The total maximization profit function of the manufacturer consists of selling
income minus the production cost of the manufacturer and the costs incurred
with suppliers (purchasing, transportation and ordering costs). It seems that
Qi has not included inventory cost. He also extends his basic model to the case
where there are quantity discounts for buying prices from suppliers. Using a
heuristic algorithm and a dynamic programming algorithm, he concludes that:
first, a conservative production plan is favored if the sourcing information is
not available, and second, an aggressive production plan is preferred if the
market demand information is unknown and there are enough suppliers.
In their paper in 2007, Thomas and Tyworth examine an order splitting

model where both demand and lead time are random variables. However, they
discuss that lead time of each shipment may not necessarily be independent.
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Their total annual cost is the sum of ordering, holding (cycle, safety, and in-
transit inventory), transportation, and shortage costs. They concluded that
order splitting is beneficial only in case of high lead time volatility, demand
rates, service levels, carrying costs, and unit values and relatively low incre-
mental transportation and ordering costs. They also discussed these issues in
an international case study.
The work of Burke et al. (2007) focuses on supplier selection and quan-

tity allocation to the selected suppliers. They develop an integrated model
to investigate these two decisions and consider product prices, supplier costs,
supplier reliabilities, supplier capacities, manufacturing inventory costs, and
manufacturer diversification benefits in making decisions related to supplier
selection and quantity allocation. There is uncertainty from both supply and
demand side and the suppliers have capacity limits. The model includes in-
ventory, purchasing, and shortage parameters. They have assumed that fixed
ordering cost is zero as the orders are placed online. Their results show that
single sourcing is beneficial when supplier capacities are large compared to the
product demand and when there is no benefit from diversification. Otherwise,
multiple sourcing is an optimal choice.
Burke et al. (2008) consider the case where a CPO (Central Purchasing

Organization) aggregates the demands of retailers and places the order on
suppliers. The problem is to identify what amount of order quantity should be
provided by different suppliers who have capacity limitations and offer differ-
ent quantity discount schemes (linear, incremental and all-units). The pricing
scheme of each supplier also includes the logistics/transportation cost. They
have assumed that fixed ordering cost is zero for the buying firm. If the suppli-
ers have enough capacity to individually supply the total order quantity, single
sourcing from the supplier with the least price is the optimal choice, otherwise
the decision would be complex. For the latter case, they propose heuristics
to solve the problem with good quality. When suppliers have capacity con-
straints, at most one selected supplier will receive an order quantity that is
less than its capacity for linear and incremental discount schemes. Generally,
the proposed heuristic provides stronger solutions using incremental discount
scheme.
Sajadieh and Eshghi (2009) examine a dual sourcing model where the lead

time and the purchase price are dependent on the order quantity. The objective
is to find the optimal reorder point, order quantity and split proportion. In
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their work, demand is constant but lead time is a random variable. All-units
quantity discount scheme is assumed. The total cost model consists of ordering,
purchasing, inventory holding and shortage costs. Using a nonlinear mixed
integer programming model, they conclude that:

• There is a positive and direct relationship between ordering batch size
and the lead time. Ignoring this relation results in more than 50% un-
derestimation of dual sourcing savings compared to single sourcing;

• When there is a quantity discount scheme, difference between dual sourc-
ing and single sourcing is quite small;

• The optimal split proportion is not necessarily %50-%50, given that there
is a quantity discount scheme. Moreover, the split proportion is sensitive
to discount breaking points;

• And, contrary to the results of Lau and Zhao (1993), when the suppliers’
lead times are the same, order splitting is more attractive.

Chiang (2010) proposes an order splitting model with one supplier. This is
an expedited shipment model with continuous-review policy (s, Q). When the
inventory falls below an expedited-up-to level R, the buyer asks the suppliers
to ship part of the order quantity by fast transportation mode. The remaining
portion of order quantity is then shipped by slow transportation mode. Both
lead time and demand are stochastic. The total cost function is comprised of
ordering, inventory holding, and shortage costs, given a pre-determined service
level. The objective is to find how much of the outstanding order is expedited,
and to find the optimal values of Q, s and R. The results indicate that the
proposed model is attractive if service level is high, demand variability is large,
the expediting cost is small, or the manufacturing lead time is long.
Focusing on the mathematical modeling of decision making process, Tsai and

Wang (2010) apply a mixed integer programming method for order allocation
problem with multiple products and multiple suppliers. A buyer receives orders
from retailers and places their aggregate demand on different suppliers which
have finite capacity. The model is comprised of purchasing and fixed ordering
costs. This is done when there are quantity discount offers by the supplier. The
model provides non-inferior solutions and analyzes tradeoffs among objectives.
Abginehchi and Farahani (2010) examine an order splitting model with N

suppliers when the lead time is exponentially distributed and the demand is
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constant. The objective is to find out the optimal number of suppliers to
minimize total cost. Their total cost includes purchasing, inventory holding,
ordering, and back-order costs. If there are two suppliers, they get similar
results as in Ramasesh et al. (1991). The sensitivity analysis represents that,
for every n:

• The increase in demand results in the increase in total cost and order
quantity of supplier i;

• The increase in ordering cost results in the increase in total cost and
order quantity of supplier i;

• The increase in inventory holding cost results in the increase in total
cost, but the decrease of total order quantity;

• The increase in lead time means and/or variances results in the increase
in total order quantity. However, it does not always increase total cost.
In addition, it increases the optimal number of suppliers; and finally,

• When N increases, total order quantity increases, but total cost first
decreases and then increases.

Cheng and Ye (2011) develop a two objective order splitting model to minimize
cost and balance the production loads among the N selected suppliers when the
lead time is deterministic. The first objective function minimizes the processing
and ordering costs while the second one minimizes the deviation of production
load rates distribution in the suppliers. It is not clear what their processing cost
is comprised of. Their results indicate that the production load distribution
among the selected suppliers is relatively balanced.
Developing a heuristic planning tool, Glock (2011) considers a supply chain

consisting of one buyer and heterogeneous suppliers. The objective is to select
the right suppliers and the right amount of quantity allocated to supplier i to
minimize the total cost. All parameters, including lead time and demand, are
deterministic and the production capacity of suppliers is limited. The total cost
is the sum of the costs at the buyer and the vendors which includes inventory
holding cost, ordering cost, and relationship management cost at the buyer,
and inventory carrying cost, set-up cost, transportation cost, production cost
at the vendor. He assumes a fixed transportation cost per delivery for each of
the equal-sized batches per lot of supplier i. Shortages are not allowed. His
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proposed approach reduces the number of suppliers’ combinations for solving
the heuristic. This is, however, dependent on the total number of suppliers,
the production rate of the suppliers, the relationship management costs, the
location of the optimal solution, and the sequence in which the decision trees
are evaluated.
Glock (2012) discusses the effect of learning on the suppliers’ production

process and consequently, the supplier selection (to order from a single or two
suppliers) and order allocation decisions. He argues that learning process re-
duces the production costs and this, in turn, results in the decrease of sales
price. All parameters, including lead time and demand, are deterministic and
constant. The total cost function comprises of buyer and vendor costs. Buyer
costs include inventory carrying cost, ordering cost, and relationship manage-
ment cost (searching for suppliers, cost of qualifying and auditing suppliers).
The vendors’ costs comprise of inventory carrying cost, set-up cost, and labor
cost. The learning effect is also included in the total system cost. The re-
sults indicate that the learning effect at the suppliers can be influenced by the
supplier selection decision and dual- or multiple-sourcing may be worthwhile.
Moreover, selecting both suppliers can be still beneficial if they have different
learning effects.
Li and Amini (2012) consider multiple sourcing for new products where

there is uncertainty and lack of information for demand data. The lead time is
constant but demand is a random variable. The maximization function is total
life cycle revenue minus total supply chain costs. Selling price, pipeline stock
cost and safety stock cost are included in the model. They conclude that, in
an uncertain environment, unit manufacturing cost is lower in single sourcing
but multiple sourcing can be of higher overall profit for the supply chain.
A mixed integer non-linear programming is developed by Meena and Sarmah

(2013) to consider multiple sourcing for different capacity, failure probability
(due to man-made or natural disruptions) and quantity discounts for each
supplier. They use genetic algorithm to solve the problem with the objective
to determine the allocated order quantity to each supplier and minimize the
total cost of the buyer. The total cost is comprised of purchasing cost, supplier
management and expected total loss costs. The demand is known and constant
and the suppliers have certain capacity. The results confirm the stronger effect
of order quantity allocation over supplier’s failure probability. They also show
that management cost and loss per unit do not influence demand allocation
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decision.
Silbermayr and Minner (2013) discuss interruptions in supply (due to ma-

chine breakdowns, material shortages, natural disasters, and labor strikes) as
a reason for multiple sourcing. The distribution of demand is Poisson and lead
time is exponentially distributed. The lead time is also extended to deter-
ministic and gamma distributed lead times. Total cost consists of purchasing,
inventory holding, and penalty costs (a lost sales and a back-order model).
The results show the advantage of dual sourcing over single sourcing when the
penalty costs are high and disruption periods are long.
Glock and Ries (2013) consider a multiple sourcing model under continuous

review inventory policy and different delivery structures (simultaneous and
sequential deliveries) with the objective of determining the size and timing of
orders. Demand is normally distributed and lead time is deterministic but
variable, depending on the lot size. The total cost is the sum of costs at the
buyer and supplier facilities and consists of ordering, supplier handling and
material receiving, inventory holding, and back-order costs at the buyer and
inventory holding, set-up and transportation cost per lot size at the suppliers’
facilities. They show that sequential delivery structure performs better than
simultaneous delivery structure. This especially happens when the number of
suppliers is high, receiving costs are low, fixed lead time is high in comparison
to order quantity-dependent lead time, and finally, when inventory holding
cost at the buyer is high, but it is low at the suppliers.
Abginehchi et al. (2013) propose a multiple sourcing mathematical model

where both demand and lead time are stochastic. Their total cost includes
ordering, purchasing, inventory holding, and shortage costs. They compare
their model with that of Sedarage et al. (1999). They show that the difference
between their and Sedarage et al.’s model increases by an increase in mean
demand rate, decrease in ordering cost, increase in shortage cost, and increase
in lead time mean and variance.
Four sourcing strategies are examined in the research work of Sajadieh and

Thorstenson (2014) when the demand is constant and lead time is an expo-
nentially distributed random variable. They consider single versus multiple
sourcing throughout the supply chain where the costs of the buyer and suppli-
ers are jointly or separately (cooperative and non-cooperative) optimized. The
total cost function is the sum of back-order and ordering costs of the buyer, set-
up cost of the suppliers and inventory holding cost at both buyer and supplier
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facilities. They find out that first, depending on the parameter values, dual
sourcing has no advantage over single sourcing in many cases. Second, single
sourcing with cooperative strategy often outperforms other three strategies.
Third, the benefits of dual sourcing are realized at best when the majority of
the total system costs arise from the buyer’s side. And finally, single sourcing
with cooperative strategy is in most cases beneficial when two non-identical
suppliers have different lead time parameters.
Biçer (2015) considers the impact of tail heaviness of demand distribution

on optimal dual sourcing policy using extreme value theory. The buyer orders
from two suppliers, in which one is less expensive but less responsive, meaning
that it requires the buyer to place the order well in advance and, the other
supplier is more expensive but also more responsive and delivers faster. The
maximization function includes the purchasing and inventory costs. The re-
sults indicate that the expected value of lost sales increase (lower fill rate),
when the tail of the demand is heavier. Moreover, under heavy-tailed demand,
high fill rate cost can be achieved if the cost of supplying from a responsive
vendor is relatively low.
As it is shown in Table 2.4, there is no work considering all these main

logistics cost elements simultaneously. In our models, we fill this gap.

2.4 Interaction of Consolidated Distribution and
Order Splitting

Based on sections 2.2 and 2.3, both of these two concepts (consolidated dis-
tribution and order splitting) have been sufficiently addressed by researchers
in each area. What lacks in the literature as well as practice is investigat-
ing the possibility of integrating these two concepts and their simultaneous
implementation. Thus, the question may arise that “what is the interaction
of consolidated distribution and order splitting?” In other words, “is there
any benefit from the integration of these two strategies, or this is simply the
summation of total cost of each strategy?”
van Hoek (2001) and Boone et al. (2007) clearly call for linking postpone-

ment with other supply chain concepts. Oeser (2010) also criticizes the lack of
research on combining a specific risk pooling method with other ones. In this
research, we integrate these two risk pooling strategies and examine how their
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interaction influences the total logistics cost (Figure 2.2).
 

Order splitting over time 

𝑅1 
 

Retailers 

𝑅2 

𝑅3 

𝑅𝑛 
 

DC Supplier 

Figure 2.2: Integration of consolidated distribution and order splitting

The only research work similar to ours is done by Ganeshan (1999). In this
paper, he introduces a supply chain consisting of a central warehouse feeding
a set of retailers which is replenished by several suppliers. He analyzes the
inventory at the retailers and warehouse as well as the demand process at
the warehouse. Both demand and lead time are stochastic. The total logis-
tics cost includes ordering, inventory, and transportation costs. However, he
does not consider the purchasing cost and the impact of the retailers’ demand
aggregation on it. Using simulation, he concludes that the analytical model
is reasonably accurate in obtaining service levels within 3.59% at the retailer
level, and within 1.12% at the warehouse.
In our research work, we consider another important logistic cost element,

purchasing cost, in the model. There are other order splitting works that
have included this cost (Ganeshan et al. 1999; Tyworth and Ruiz-Torres 2000;
Mishra and Tadikamalla 2006). However, in our work, the purchasing price
follows a stepwise function, meaning that the increase in order quantity results
in lower purchasing cost for the buyer. We believe that quantity discount is
an important element in order splitting models, especially when the demand
is aggregated via a DC.

30



2.4 Interaction of Consolidated Distribution and Order Splitting

Another potentially important influence of the development of an optimal
quantity discount schedule is on shipping cost. By ordering larger quantities,
the vendor can capture transportation discounts currently unavailable to him.
Finally, larger individual orders changes the current pattern of orders placed
throughout the year. This causes a shift in both the magnitude and timing of
order payments from the buyer. Consequently, the vendor then finds he gets
the use of more the buyer’s money, earlier in the year. Depending upon the
size of the particular opportunity cost of capital, this can be very important
to the vendor (Monahan, 1984).
In this research, we consider the impact of order splitting at a multi-echelon

level, where there are retailers who place their orders on a single supplier
through a DC. Under such an assumption, the DC in the system receives
replenishment quantities from only one higher level site, but can distribute to
several lower levels. This single sourcing scenario seems plausible especially in
the last decade, which has seen a significant shift in the sourcing strategy of
many firms, moving from the traditional concept of having many suppliers to
rely largely on one source (Ganeshan, 1999).
Although splitting the order of a single buyer may result in extra costs,

splitting the aggregated order of multiple buyers may bring benefits to the
system other than those discussed above. Order splitting can have the same
impact as other risk pooling strategies, such as consolidated distribution or
postponement, from the point of view that delaying the delivery of second or
next shipments can result in obtaining actual information about postponed
shipments. This could be discussed, for example, under the title “partial post-
ponement”, which has been argued by Graman (1999; 2010), but from another
angle.
We also assume that a business is implementing order splitting over time,

and not over suppliers. That means, there is only one supplier and the order
is split and delivered at different points of time. The case of splitting a sin-
gle supplier order has been studied by Mishra and Tadikamalla (2006), Hill
(1996), and Chiang and Chiang (1996). Based on the work of Mishra and
Tadikamalla (2006), we assume that many advantages of dual sourcing arise
from order splitting rather than actually using two suppliers. This assump-
tion supports our approach in using order-splitting between supplier and DC,
i.e. downstream part of our supply chain where we want to take advantage of
quantity discounts.
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We believe that our research model is practical and mathematically simple.
We take into consideration almost all advantages and disadvantages of consol-
idated distribution and order splitting. We moderate the disadvantage of one
strategy with its integration in the other one.
Figure 2.2 presents a general overview of this research framework. As it

is shown, the application of order splitting, before the decoupling point, in
a multi-echelon supply chain (supplier, distribution center (DC), and ware-
houses) will be investigated. We do not consider order splitting between DC
and retailers. We assume that the demand of the retailers is pooled through
the DC, and a single supplier/manufacturer feeds the DC.

32



3 Mathematical Modeling of the
Four Strategies

In this chapter, the mathematical models of this research are presented. The
objective is to compare the total logistics cost of Direct Shipping (DS), Direct
Shipping with Order Splitting (DSOS), Consolidated Distribution (CD), and
Consolidated Distribution with Order Splitting (CDOS). We discuss these four
mathematical models in section 3.2.

3.1 Notational Terms
In order to better understand the mathematical models, the objective func-
tions, decision variables, and parameters are explained here.

Objective Functions:

TACnoCD
noOS : total annual system cost in the case of Direct Shipping to retailers

without order splitting (DS model);
TACnoCD

OS : total annual system cost in the case of Direct Shipping to retailers
with order splitting (DSOS model);
TACCD

noOS: total annual system cost in the case of Consolidated Distribution
without order splitting (CD model);
TACCD

OS : total annual system cost when both Consolidated Distribution and
Order Splitting are implemented (CDOS model);

Decision Variables:

Qn: order quantity at retailer n;
Q0: order quantity at DC, Q0=QnN, which is the multiplication of order quan-
tity at a single retailer by the total number of retailers N. All retailers are
identical;
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Rn: reorder point at retailer n;
R0: reorder point at DC;

Parameters:

N : total number of retailers, where n = 1, 2, ..., N ;
Dn: total annual demand at retailer n;
D0: total annual demand at DC, D0= DnN, which is the multiplication of
total annual demand at a single retailer by the total number of retailers N ;
c: unit purchasing price from the supplier which is a function of order quantity,
where qk < Qn ≤ qk+1 and qk < Q0 ≤ qk+1, and qk is the kth price breakpoint
in the price table;
ri: ith proportion of order quantity which is transported by the supplier to DC
or retailer n, where i = 1, 2 and ∑I

i=1 ri = 1;
w: item weight;
T : shipment weight, where T = Qnw or T = Q0w;
Z: distance between two facilities;
TC: total transportation cost which is a function of shipment weight T and
distance Z;
O: cost of placing an order at DC or retailers;
B: cost of receiving an order at DC or retailers;
A: a multiple for receiving cost of an split order (A > 1) representing the
incremental cost of splitting orders which is the same at DC and retailers;
Hn: annual inventory holding cost of an item at retailer n expressed as a
percentage of value of an item;
H0: annual inventory holding cost of an item at DC expressed as a percentage
of value of an item;
H it

0 : annual inventory in-transit cost of an item from supplier to DC expressed
as a percentage of value of an item;
H it
n : annual inventory in-transit cost of an item from supplier or DC to retailer

n expressed as a percentage of value of an item;
t: a variable representing transit time;
η: a fixed order-to-ship time component of lead time;
l: a variable representing lead time;
d: a variable representing daily demand;
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µ(ls0i): mean of the lead time from supplier to DC for the ith proportion of Q0

(in case of order splitting), where i = 1, 2;
µ(lsni): mean of the lead time from supplier to retailer n for the ith proportion
of Qn (in case of order splitting), where i = 1, 2;
µ(lsn): mean of the lead time from supplier to retailer n (in case of no order
splitting);
µ(ls0): mean of the lead time from supplier to DC (in case of no order splitting);
µ(l0n): mean of the lead time from DC to retailer n (in case of no order
splitting);
µ(tsn): mean of the transit time from supplier to retailer n;
µ(ts0): mean of the transit time from supplier to DC;
µ(t0n): mean of the transit time from DC to retailer n;
µ(dn): mean of the daily demand at retailer n;
µ(d0): mean of the daily demand at DC;
µ(LTDs0i): mean of the lead time demand from supplier to DC for the ith

proportion of Q0 (in case of order splitting);
µ(LTDsni): mean of the lead time demand from supplier to retailer n for the
ith proportion of Qn (in case of order splitting);
µ(LTDsn): mean of the lead time demand from supplier to retailer n (in case
of no order splitting);
µ(LTDs0): mean of the lead time from supplier to DC (in case of no order
splitting);
µ(LTD0n): mean of the lead time from DC to retailer n (in case of no order
splitting);
σ(ls0i): standard deviation of the lead time from supplier to DC for the ith

proportion of Q0 (in case of order splitting);
σ(lsni): standard deviation of the lead time from supplier to retailer n for the
ith proportion of Qn (in case of order splitting);
σ(lsn): standard deviation of the lead time from supplier to retailer n (in case
of no order splitting);
σ(ls0): standard deviation of the lead time from supplier to DC (in case of no
order splitting);
σ(l0n): standard deviation of the lead time from DC to retailer n (in case of
no order splitting);
σ(tsn): standard deviation of the in transit time from supplier to retailer n;
σ(ts0): standard deviation of the in transit time from supplier to DC;
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σ(t0n): standard deviation of the in transit time from DC to retailer n;
σ(dn): standard deviation of the daily demand at retailer n;
σ(d0): standard deviation of the daily demand at DC;
σ(LTDs0i): standard deviation of the lead time demand from supplier to DC
for the ith proportion of Qn (in case of order splitting);
σ(LTDsni): standard deviation of the lead time demand from supplier to re-
tailer n for the ith proportion of Qn (in case of order splitting);
σ(LTDsn): standard deviation of the lead time demand from supplier to re-
tailer n (in case of no order splitting);
σ(LTDs0): standard deviation of the lead time from supplier to DC (in case
of no order splitting);
σ(LTD0n): standard deviation of the lead time from DC to retailer n (in case
of no order splitting);
CS: cycle stock;
IT : in-transit stock;
SS: safety stock;
β: service level;
ESn: expected number of shortages per cycle at retailer n in case of no order
splitting;
ES0: expected number of shortages per cycle at DC in case of no order split-
ting;
ESOSn : expected number of shortages per cycle at retailer n in case of order
splitting;
ESOS0 : expected number of shortages per cycle at DC in case of order splitting.
Note that anywhere in this manuscript when a variable has a subscript s,

0, n, and i, it refers to supplier, DC, retailer n and ith proportion of lot size,
respectively; For example, µ(ls02) means the average lead time from supplier
to DC for the second portion of Q0 (in case of order splitting).

3.2 Optimization Models
The aim of this research is to investigate the impact of simultaneous application
of consolidated distribution and order splitting on a supply chain consisting
of one supplier, one DC and N retailers. To do so, we first model the total
cost of Direct Shipping system (DS model). Then, we consider the total cost
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of Direct Shipping with Order Splitting system (DSOS model) and, a Consol-
idated Distribution system (CD model), separately. We then integrate these
two strategies to consider the impact of their integration on a supply chain
(CDOS model). The inventory policy is continuous review (Q, R) throughout
this research work. The total annual cost is the sum of Purchasing Cost (PC),
Transportation Cost (TC), Ordering Cost (OC), Cycle Stock holding Cost
(CSC), Safety Stock holding Cost (SSC), and In-Transit stock Cost (ITC).

TAC = PC + TC +OC + CSC + SSC + ITC (3.1)

Figure 3.1 presents the cost structure of the models. The cost elements are
later in this section described in detail.

Figure 3.1: The cost structure

For all models, assume that f(.) and F (.) be, respectively, the probability
distribution function (pdf) and cumulative distribution function (cdf) of lead-
time l, and g(.) and G(.) be, respectively, the pdf and cdf of daily demand d.
Similarly, assume that w(.) and W (.) be, respectively, the pdf and cdf of lead
time demand LTD.
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3.2.1 Direct Shipping without Order Splitting (DS Model)

In the DS model, the order quantity is directly shipped from a single supplier
to each retailer (no order-splitting and no consolidated distribution).

Min TAC
noCD
noOS = {Dnc+ Dn

Qn

TC(Qn) + Dn

Qn

(O +B) +Hn(Qn

2 )+

+Hn(Rn − µ(LTDsn)) +H it
n µ(LTDsn)}N (3.2)

S.t. :

ESn ≤ αQn where α = 1− β, n = 1, 2, . . . , N

Qn ≥ 1

Rn ≥ 1

In equation 3.2, the first and second terms represent purchasing and trans-
portation costs. Purchasing price c is a function of order quantity Qn, where qk

< Qn ≤ qk+1. To determine the purchasing price, different ranges of rates for
a purchasing quantity are generated. This approach is used when the suppliers
offer volume discounts to stimulate the buyers for purchase of larger quantities.
Transportation cost per cycle TC, which is a function of order quantity Qn,

consists of two components. The full truck load (FTL) and less than truck load
(LTL) components. If the shipment weight is equal to the capacity of x FTLs,
the transportation cost is then calculated through the following formula:

Z × FTL rate permile× x (3.3)

where x is the number of FTL shipments.
For that part of the shipment which is less than a FTL capacity, the following

formula is used:

Z × LTL rate permile× 0.7log2( capacity of a F T L
T ) (3.4)

where T is the shipment weight for LTL shipments. This is a realistic
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formula which was provided by a former manager at Bosch Corporation and,
according to him, can be used in any country and for a variety of products.
The third term is the ordering cost, OC. The ordering cost is divided into

two types of costs. One is the cost of sending out an order (O) which includes
costs of preparing specifications, obtaining letters of credit, etc. and the other
is the cost of receiving an incoming procurement (B) such as cost of monitoring
the shipment, handling and inspection of the procurement when it arrives, etc.
The fourth, fifth and sixth terms indicate the CS, SS and IT costs where SS

can be calculated as

SS = Rn − µ(LTDsn) (3.5)

Note that µ(LTDsn) = µ(dn)µ(lsn). In order to calculate Rn, we first need
to mention that the service level β can be calculated through the following
formula (Tadikamalla, 1978):

β =
ˆ Rn

0
w(x)d(x) (3.6)

Therefore, in equation 3.2, Rn can be computed through numerical calcu-
lations or (given a specific service level) the following equation (Tadikamalla,
1978):

Rn = W
−1 (β) (3.7)

In this work, we consider the system inventory cost that also includes the
in transit inventory. IT is the average demand during the transit time t and
appears η periods after the order is placed, i.e. t = l – η. Hence, IT can be
calculated as:

ITC = µ(LTDsn) = µ(dn)µ(tsn) (3.8)
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Thus, the problem in equation 3.2 is to find the optimal order quantity Q∗n
and reorder point R∗n such that TACnoCD

noOS is minimized subject to a maximum
allowable stock-out risk, so that ESn ≤ αQn, where α = 1− β.
Where ESn can be calculated through the following formula (First order

loss function- see Tempelmeier, 2015):

ESn =
ˆ ∞
Rn

(x−Rn)w(x)d(x) (3.9)

3.2.2 Direct Shipping with Order Splitting (DSOS Model)

In the DSOS model, the demand is directly shipped from one single supplier
to each retailer n, but it is split. That means the first shipment is sent at time
0 and the second shipment is delivered after a fixed time θ.

Min TACnoCD
OS = {Dnc+ Dn

Qn

I∑
i=1

TC (riQn) + Dn

Qn

(O + AB) +

Hn

(
Qn

2 − r2µ(dn) [µ(lsn2)− µ(lsn1)]
)

+Hn(Rn−

µ(LTDsn1)) +H it
n µ(LTDsn1)}N (3.10)

S.t. :

ES
OS

n ≤ αQn where α = 1− β, n = 1, 2, . . . , N

Qn ≥ 1

Rn ≥ 1

Here, because all portions of the order of each retailer are supplied by a
single supplier, the purchasing price for all units and all portions of Qn is the
same. However, the retailer may pay more transportation cost per unit as its
order is split into smaller quantities.
For the ordering cost, the difference between the DS and DSOS models lies

in the multiplier A which indicates the increase in the cost of receiving two
shipment quantities. We use the following formulas to calculate CS and SS
costs for order splitting with stochastic lead time and demand in the fourth
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and fifth terms, respectively. Hence, CS and SS, respectively, are calculated
as (Lau and Zhao, 1993):

CS = Qn

2 − r2µ(dn) [µ(lsn2)− µ(lsn1)] (3.11)

SS = Rn − µ(LTDsn1) (3.12)

The last term, IT inventory cost does not depend on the number of suppliers
and its calculation is the same as in the DS model.
Thus, the problem in equation 3.10 is to find the optimal order quantity Q∗n

and reorder point R∗n such that TACnoCD
OS is minimized subject to a maximum

allowable stock-out risk, so that ESOSn ≤ αQn, where α = 1− β.
ESOSn is calculated according to equation 3.13 (Lau and Zhao, 1993). In

this equation, Vij is the probability of occurrence of situation i. “Situation
1” and “Situation 2” refer to the situation where the first arriving order is
the first and second shipment, respectively. Correspondingly, V11 refers to the
probability of stock-out in situation 1 before the arrival of the first shipment
and V12 is the probability of stock-out in situation 1 before the arrival of the
second shipment but after the arrival of the first shipment. As the lead time
is stochastic, it may happen that the second shipment arrives before the first
shipment.

ESOSn = (V11 + V12 + V21 + V22) Qn (3.13)

The procedure for calculating Vij is explained in section 3.4.

3.2.3 Consolidated Distribution without Order Splitting
(CD Model)

In the CD model, units are first delivered to the distribution center where
after possibly remaining as inventory for some time, they are subsequently
delivered to the retailers. Here, consolidated distribution (CD) is considered
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without order splitting. The total cost here is the total cost at the DC plus
the cost at retailers’ facility. The total cost of the retailers is highlighted by
an underline.

Min TACCD
noOS = D0c+ D0

Q0
TC (Q0) + D0

Q0
(O +B) +H0

(
Q0

2

)
+

H0(R0 − µ(LTDs0)) +H it
0 µ(LTDs0) + {Dn

Qn

TC (Qn) +

+Dn

Qn

(B) +Hn

(
Qn

2

)
+Hn(Rn − µ(LTD0n)) +

H it
n µ(LTD0n)}N (3.14)

S.t. :

ES0 ≤ αQn where α = 1− β, n = 1, 2, . . . , N

ES0 ≤ αQ0 where α = 1− β

Qn ≥ 1

Q0 ≥ 1

Rn ≥ 1

R0 ≥ 1

In this model, the DC aggregates the order of retailers and places the aggre-
gated order on the supplier. Therefore, DC bears a cost of placing the order
(O) and receiving the order (B). However, since the DC, and not the retailers,
places the order, the only ordering cost that the retailers bear is the cost of
receiving the shipment (B).
Compared to the DS and DSOS models, the purchasing cost may decrease

since the aggregated purchase of retailers’ order can result in taking advantage
of quantity discounts. It is also assumed that DC and retailers are all one
entity/company. Therefore, the purchasing cost is calculated just one time for
the entire system.
From the transportation cost point of view, establishment of DC reduces

shipment cost from supplier to DC by aggregating the order quantities of re-
tailers which results in larger shipment quantities. However, the total distance
(or to say “lead time”) from supplier to DC and from DC to retailers is longer.
Therefore, increase or decrease in transportation cost depends on the trade-off

42



3.2 Optimization Models

between this extra distance, or lead time, and the amount of savings due to
aggregation. Obviously, it would be more beneficial if the distance between
supplier and DC is longer compared to the distance between DC and retailers.
Generally, a DC may or may not hold inventory. In case it holds inventory

(Schwarz, 1989), a system order is placed by and shipped to the DC, arriving
after a lead time l. Then, it is kept in DC for a while and is then reallocated to
the retailers. In this work, we consider the case where the DC keeps inventory.
Since both DC and retailers keep inventory, the cycle and safety inventory

costs in the CD model are higher compared to the DS or DSOS models. How-
ever, the unit inventory holding cost at DC is lower at the DC because of more
expensive retailer shelf space. The in-transit stock cost of the CD model is the
sum of in-transit cost from supplier to DC and from DC to retailers. Again,
because of longer total distance or lead time, it is higher compared to the DS
and DSOS models.
Thus, the problem in equation 3.14 is to find the optimal order quantity Q∗

and reorder point R∗ at DC and retailers such that TACCD
noOS is minimized

subject to a maximum allowable stock-out risk, so that ESn ≤ αQn, and
ES0 ≤ αQ0 where α = 1− β.
ESn can be calculated through the following formula:

ESn =
ˆ ∞
Rn

(x−Rn)w(x)d(x) (3.15)

For the expected number of shortages at DC, assume that x0 is the demand
during lead time. If inventory reaches the reorder level R0, the DC places an
order of Q0 units on the supplier. Therefore, the probability of stock-out at
DC is:

Pr(ES0) = Pr(x0 > R0) (3.16)

and, ES0 equals to:

ES0 =
ˆ ∞
R0

(x−R0)w(x)d(x) (3.17)
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3.2.4 Integration of the OS and CD Systems (CDOS
Model)

In the CDOS model, we integrate consolidated distribution and order splitting.
We believe that through this integration, the disadvantages of one strategy can
be compensated by the advantages of the other. We presume that the disad-
vantages of order splitting (increases in transportation and ordering costs) will
be somehow or completely compensated by its integration with consolidated
distribution and the disadvantages of consolidated distribution (increases in
cycle and safety stock holding costs) can be compensated by order splitting.

Min TACCD
OS = D0c+ D0

Q0

I∑
i=1

TC (riQ0) + D0

Q0
(O + AB) +

H0

(
Q0

2 − r2µ(d0) [µ(ls02)− µ(ls01)]
)

+H0(R0 − µ(LTDs01))+

H it
0 µ(LTDs01) + {Dn

Qn

TC (Qn) + Dn

Qn

(B) +

Hn

(
Qn

2

)
+Hn(Rn − µ(LTD0n)) +H it

n µ(LTD0n)}N

(3.18)

S.t. :

ES
OS

0 ≤ αQn where α = 1− β, n = 1, 2, . . . , N

ES
OS

0 ≤ αQ0 where α = 1− β

Qn ≥ 1

Q0 ≥ 1

Rn ≥ 1

R0 ≥ 1

The fourth model is the modification of the CD model but the order quantity
of the DC is split. The only difference of the CDOS model with the CD model
is that in the CDOS model, the transportation, ordering, cycle and safety
stock costs at the DC are calculated similar to the DSOS model. Other cost
elements are, however, calculated the same as in the CD model. Again, the
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total cost at the retailers’ facility is highlighted by an underline.
Thus, the problem in equation 3.18 is to find the optimal order quantity

Q∗ and reorder point R∗ at DC and retailers such that TACCD
OS is minimized

subject to a maximum allowable stock-out risk, so that ESn ≤ αQn, and
ESOS0 ≤ αQ0 where α = 1− β.
The derivation of ESn in the CDOS model is similar to the CD model.

Therefore, it is calculated as:

ESn =
ˆ ∞
Rn

(x−Rn)w(x)d(x) (3.19)

and, as in the DSOS model, ES at DC equals to:

ESOS0 = (V11 + V12 + V21 + V22) .Q0 (3.20)

3.3 Computation of Cycle and Safety Stock in
Order Splitting Model

In this section, the procedure for computing CS and SS in the DSOS model is
explained. Similar procedure can be applied for the CDOS model.
Figure 3.2 shows the traditional continuous review (Q, R) inventory policy.

According to this figure, an order quantity of Qn is placed on the supplier
whenever the inventory level reaches the reorder point Rn. This order quantity,
then, arrives after lsn periods where this lead time can be deterministic or
stochastic.
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Figure 3.2: Traditional (Q, R) inventory policy

In Figure 3.3, the order quantity Qn is split and the ith proportion of Qn

is placed on supplier j, Sj (j = 1, 2, . . . , J), who have different lead times.
We call order splitting via more than one supplier as “order splitting over
suppliers”. Lau and Zhao (1993) derive expressions for safety and cycle stock
for this case.

SS = Rn − µ(LTDsn1) (3.21)

CS = Q

2 − r2µ(dn) [µ(lsn2)− µ(lsn1)] (3.22)

where µ(lsn1) and µ(lsn2) are, respectively, the lead time from supplier to the
retailer for the arrival of the first and second portions of the order quantity.
As it shows, the savings in cycle stock depend only on expected lead times,

and the standard deviation of lead time plays no role. In addition, two suppliers
with the same average lead time make no benefit to order splitting.
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Figure 3.3: Oder splitting over suppliers

Figure 3.4 shows order splitting via a single supplier in which the process
is similar to Figure 3.3. We call it “order splitting over time”. The difference
with order splitting over suppliers is that when the inventory level reaches Rn,
the DC or retailer places the order and a single supplier ships the first portion
of order quantity, r1Qn, at time zero and the second portion, r2Qn, after θ
periods.

Figure 3.4: Order splitting over time (a single supplier)

The formulas for the calculation of safety and cycle safety stock are the same
as in equations 3.21 and 3.22. However, lsn2 is equal to lsn1+θ.
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3.4 Probability of Stock-out in Order Splitting
Model

In this section (section 3.4), the procedure developed by Lau and Zhao (1993)
for calculating the probability of stock-out in the order splitting model for the
case of stochastic demand and lead time is explained. Therefore, the formulas
are adopted from their work. We use the same procedure for calculating the
probability of stock-out for the split orders in the DSOS and CDOS models.
The reason is that many of order splitting models in the literature have as-
sumed that either lead time or demand is stochastic. There are not many
models with stochastic lead time and stochastic demand. Moreover, the pro-
posed procedure is simple to understand and apply.
In an order splitting model, the probability of stock-out is the summation

of probability of stock-out in two situations. Assume that x is the stochastic
quantity of demand between the time of replenishment (t0) and the arrival
time of the first supplier shipment (t1). When lead times are stochastic, it
may happen that the order of the second supplier arrives before or after the
first supplier’s order. In case supplier 1 arrives earlier than supplier 2, it is
called “Situation 1”, S1. Otherwise, it is called “Situation 2”, S2.
In situation 1, the probability of stock-out before the arrival of supplier 1’s

order is called V11. Define the first and second subscript in V11 as “situation”
and “supplier”. V11 equals to:

V11 = W
′

11(Rn).S1 (3.23)

where,

W
′

11(.) = 1−W11(.) (3.24)

and, W11 is the cumulative distribution function (cdf) of lead time demand,
and S1 is the probability that the first arriving order comes from supplier 1.
The demanded quantity within this period of time is x11. Similarly, V12 is
defined as the probability of stock-out before the arrival of supplier 2’s order
but after the arrival of supplier 1’s order and equals to:

V12 = W
′

12(Rn + r1Qn).S1 (3.25)
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Based on the abovementioned discussion, the probability of stock-out in
situation 2 can be defined as:

V21 = W
′

21(Rn + r2Qn).S2 (3.26)

V22 = W
′

22(Rn).S2 (3.27)

Therefore, the probability of stock-out in the order splitting model is:

V11 + V12 + V21 + V22 ≤ α (3.28)

3.4.1 Computing the Probability of Situation i

Assume that l1= x is the lead time of supplier 1’s shipment and it precedes
the second supplier’s lead time. Then, situation 1 occurs whose probability is

Pr(l1 = x and l2 > x) = f1(x)dx.F ′2(x) (3.29)

It can be shown as:

S1 =
ˆ ∞
−∞

f1(x).F ′2(x)dx (3.30)

Equal to this probability is the probability of the event when the shipment of
the second supplier arrives with l2= y and after the arrival of the first supplier’s
shipment and is defined as

Pr(l2 = y and l2 > x) = f2(y)dy.F1(y) (3.31)

Again, it can be shown as:

S1 =
ˆ ∞
−∞

f2(y).F1(y)dy (3.32)

Similarly, the probability of situation 2 can be calculated as

S2 =
ˆ ∞
−∞

f1(y).F2(y)dy (3.33)

or,
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S2 =
ˆ ∞
−∞

f2(x).F ′1(x)dx (3.34)

3.4.2 Defining Lead Time Distributions

In order to calculate the central moments of the lead time distribution, we
have to first define its probability distribution function (pdf). Given situation
1, assume that l11 is the stochastic duration between the time of replenishment
t0 and the arrival time of the first shipment t1. Based on equation 3.30, the
probability distribution of lead time l11, i.e. f11, equals to:

f11(x) = f1(x).F ′2(x)/
ˆ ∞
−∞

f1(x).F ′2(x)dx (3.35)

The lead time distribution f12 for the stochastic duration l12 between t0 and
t2 in situation 1 is also,

f12(x) = f2(x).F1(x)/
ˆ ∞
−∞

f2(x).F1(x)dx (3.36)

Similarly, f21 and f22 are defined via the following equations:

f21(x) = f1(x).F2(x)/
ˆ ∞
−∞

f1(x).F2(x)dx (3.37)

f22(x) = f2(x).F ′1(x)/
ˆ ∞
−∞

f2(x).F ′1(x)dx (3.38)

3.4.3 Computing the Cumulative Distribution Functions for
Order Splitting Model

In this sub-section, the procedure proposed by Lau and Zhao (1993) for com-
puting the parameters of lead time demand (LTD), Wij(.), and consequently,
W
′
ij(.) of lead time demand is illustrated. This procedure uses the method of

moments. In this work, LTD is assumed to have a Weibull distribution, but
demand and lead time distributions can be of any form. Assume that x11 is
the stochastic quantity of inventory demanded between the time the order is
placed, t0, and the time the first shipment is arrived, t1, if situation 1 occurs.
The cumulative distribution function is W11(.) and is formed by the stochastic
demand pdf g(.) and the stochastic lead time pdf f11(.).
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Step 1 : Calculate the first three raw moments of lead time, µ′n(x) = E(xn),
for fij’s using the following formula:

µ
′

n(lij) =
ˆ ∞
−∞

xnfij(x)dx (3.39)

For example, µ′n(l11) is calculated as:

µ
′

n(l11) =
ˆ ∞
−∞

xnf11(x)dx =
{ˆ ∞
−∞

xnf1(x).F ′2(x)dx
}
/S1 (3.40)

Step 2 : Calculate the first three central moments of fij’s as follows:

µ1 = µ
′

1 (3.41)

µ2 = µ
′

2 − µ
′2
1 (3.42)

µ3 = µ
′

3 − 3µ′1µ
′

2 + 2µ3
1 (3.43)

Step 3 : Use standard formulas to determine the first three raw moments of
a specific distribution for daily demand g(.), and subsequently, its first three
central moments from equations 3.41, 3.42, and 3.43. For example, for a normal
distribution, these are µ1= µ, µ2=σ2, and µ3= 0.

Step 4 : Compute the first three central moments of lead time demand dis-
tribution from the first three central moments of lead time and demand dis-
tributions using the formulas illustrated below:

µ1(xij) = µ1(lij).µ1(d) (3.44)

µ2(xij) = µ1(lij).µ2(d) + µ2(lij).µ2
1(d) (3.45)

µ3(xij) = µ1(lij).µ3(d) + 3µ2(lij).µ2(d).µ1(d) + µ3(tij).µ3
1(d) (3.46)

Step 5 : Fit these first three central moments to the cdf of a 3-parameter
Weibull distribution:
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Wij(x) = 1− exp
{
−
[
x− a
b

]c}
(3.47)

a, b and c are the location, scale, and shape parameters of a Weibull distri-
bution, respectively. Next, we have

W
′

ij(x) = exp
{
−
[
x− a
b

]c}
(3.48)

Using the above-mentioned procedures for the calculation of Si and W
′
ij,

equations 3.23-3.27 can be solved with numerical search.
It is argued by many researchers (e.g. Burgin, 1972; Murphy, 1975; Tadika-

malla, 1978, Lau and Zhao, 1993) that a 2-parameter Weibull distribution is
suitable for modeling a LTD distribution and Lau and Zhao (1993) discuss
that it is more versatile to model the LTD distribution by a 3-parameter
Weibull rather than a 2-parameter Weibull distribution.
In this section, the procedure developed by Lau and Zhao (1993) for calcu-

lating the probability of stock-out in the order splitting model for the case of
stochastic demand and lead time was explained. Following this procedure, one
can calculate the expected number of shortages in the order splitting model.

3.5 Computing Cumulative Distribution Functions
in Case of Non-Order Splitting

Computing the parameters of the LTD distribution w(.) for a non-order split-
ting model follows the same procedure as presented in section 3.4.3. However,
in step 1, instead of using equation 3.39, one can use the following general
formula to compute the first three raw moments of lead time distribution:

µ
′

n(l) =
ˆ ∞
−∞

xnf(x)dx (3.49)

This formula is the same as in equation 3.39. However, instead of f ij(.),
which is the pdf of lead time in situation i and for supplier j in order splitting
model, f(x) is used as the pdf of lead time from supplier to DC or retailer as
there is only one situation. Therefore, in steps 2 and 4, one calculates µ1(l)
and µ1(x) instead of µ1(lij) and µ1(xij), respectively. In chapter 4, these steps
will be applied using the inputs.

52



4 Evaluation and Results of the
Four Strategies

4.1 Computing the Inputs of the Models
In chapter 3, we presented the general computation procedures of the models.
In this chapter, we investigate whether the application of the proposed models
is beneficial in practice and whether it is tenable to implement either models
of the DS, DSOS, CD, or CDOS. In fact, we try to answer the three research
questions discussed in chapter 1:

• RQ1 : How high is the total cost of a Direct Shipping system where the
order quantity is split (DSOS model) compared to a Direct Shipping non-
order splitting system (DS model), in case transportation and purchasing
cost functions are nonlinear and there is a single supplier?

• RQ2 : How high is the total cost of a system where the retailers’ or-
der quantities are consolidated through a DC (CD model) compared to
a Direct Shipping non-order splitting system where the retailers’ order
quantities are directly placed on the supplier (DS model), in case trans-
portation and purchasing cost functions are nonlinear and there is a sin-
gle supplier?

• RQ3 : How high is the total cost of a system where the retailers’ order
quantities are consolidated through a DC and the order quantity between
supplier and DC is split (CDOS model), compared to a Direct Shipping
non-order splitting system where the retailers’ order quantities are di-
rectly placed on the supplier (DS model), in case transportation and pur-
chasing cost functions are nonlinear and there is a single supplier?

Table 4.1 represents the parameter values of our basic models. The selected
product is a car tire and the average values of the properties of a passenger car
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tire (such as weight and price) have been taken into account when doing the
calculations. The value of other parameters of the models are chosen based
on discussion with experts, internet websites, or the related research works.
For example, the weight of a car tire has been taken from internet websites
like Amazon, ebay, etc., the lead time from the supplier to DC or retailers is
based on the distances in google maps between the selected geographical points
and the average allowed speed of a truck, and the inventory holding factor is
selected according to the experts opinions as well as the research papers such
as the work of Thomas and Tyworth (2007).
As one may critisize our approach (adopting parameter values from different

sources and not a real case), we also try to examine the impact of changes in
important parameter values on the TAC of each model by doing a sensitivity
analysis. The Key Performance Indicator (KPI) for comparing the models is
related to the Total Annual Cost (TAC).
In addition, whenever we talk of the basic models, we mean the four models

for which we have used the parameter values from Table 4.1. In our basic
models, for example, the demand equals 10 units/day. On the other hand,
whenever we talk of the reference model, we mean the DS model, because we
compare the other three models with this model.
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4.1 Computing the Inputs of the Models

Table 4.1: Value of the parameters

Description Notation Metric

Value or

calculation

formula

Description Notation Metric

Value or

calculation

formula

Average transit

time between

supplier and DC

for 1st shipment

µ(ts01) days 3
Number of

retailers
n retailer 15

Time difference

between sending

the shipments

θ days 2
Distance between

supplier and DC
Zs0 mile 750

Average transit

time between

supplier and DC

for 2nd shipment

µ(ts02) days µ(ts01) + 2

Distance between

DC and each

retailer

Z0n mile 250

Average transit

time between DC

and retailers

µ(t0n) days 1

Distance between

supplier and each

retailer

Zsn mile 850

Average transit

time between

supplier and

retailers for 1st

shipment

µ(tsn1) days 3

Multiplier for

increase in

ordering cost in

order splitting

model

A 2

Average transit

time between

supplier and

retailers for 2nd

shipment

µ(ts02) days µ(tsn1) + 2
Cost of sending

order
O $/order 50

Order processing

time at supplier or

DC

η days 1
Cost of receiving

order
B $/order 50

Average demand

at retailer n
µ(d)

units/

day
10

Inventory holding

cost at retailer n
Hn $ 25%c

Coefficient of

variation of lead

time

CV (l) 0.25
Inventory holding

cost at DC
H0 $ 18%c

Standard deviation

of lead time
σ(l) µ(l)×CV (l)

Inventory IT cost

from supplier or

DC to retailer n

Hit
n $ 18%c

Annual demand at

retailer n
Dn

units/

year
3,650

Inventory IT cost

from supplier to

DC

Hit
0 $ 10%c

Item weight w
pounds/

item
22 Split proportion ri percent 50%-50%
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In purchasing, the most common quantity discount form is an “all-units”
model (Munson and Hu, 2010). In all-units, the lower price applies to all units
purchased, not only to those above the price break. In order to include the
all-units form for the purchasing cost, we used the following step-wise function.
This is a quantity discount structure for average purchasing price when demand
equals 10 units/day.

c = f(Q) =



c = 75.00$/item 1 ≤ Q ≤ 1, 000

c = 74.00$/item 1, 000 < Q ≤ 3, 000

c = 73.00$/item 3, 000 < Q ≤ 7, 000

c = 71.50$/item 7, 000 < Q ≤ 15, 000

c = 70.50$/item 15, 000 < Q ≤ 26, 000

c = 69.00$/item 26, 000 < Q

(4.1)

We also use the following realistic freight rate function explained in equations
3.3 and 3.4 in order to calculate the nonlinear transportation cost. This formula
is used by department of Logistics at Robert Bosch Corporation.

TC(Q) = [Z × 1.60× x] +
[
Z × 1.60× 0.7log2( 45000

T )
]

(4.2)

The FTL rate per mile ($1.60) is adopted from the report by American
Transportation Research Institute (Torrey and Murray, 2015).

4.1.1 General Procedure for Computing the Moments of
Beta and Exponential Distributions

For all models, assume that lead time and demand have beta and exponential
distribution, respectively. We chose these distributions to stay in line with the
work of Lau and Zhao (1993) whose proposed procedures were explained in
section 3.4.3 in chapter 3 and will be applied in this chapter. Similar to their
work, we fit the moments of the LTD to a 3-parameter Weibull distribution.
This is done using “Excel 2010” and “Mathematica 10.0”.
To achieve this aim, the first step is to calculate the parameters and then,

the first three raw and central moments of a beta distribution. The pdf of a
beta distribution is (Lau and Zhao (1993)):
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4.1 Computing the Inputs of the Models

f(x) = (x− a)p−1(b− x)q−1

B(p, q)(b− a)(p+q−1) (4.3)

In equation 4.3, a and b are the lower and upper bounds, respectively, p
and q are the shape parameters and B(p, q) is the beta function. To get the
parameters of the pdf of beta distribution, the following procedure can be used
(Elderton and Johnson, 1969; Lau and Zhao, 1993):

r = 6 a4 − a
2
3 − 1

6 + 3a2
3 − 2a4

(4.4)

w = [(r + 2) a3]2 + 16 (r + 1) (4.5)

p, q = 0.5r
[
1 + (r + 2) a3√

w

]
, (q > p if a3 > 0, p ≥ q otherwise (4.6)

a and b can also be calculated by:

a = µ− 0.5pσ
√
w

p+ q
(4.7)

b = a+ 0.5σ
√
w (4.8)

By calculating a, b, p and q, the first three raw moments of the beta distri-
bution can be easily achieved.
Furthermore, if demand is exponentially distributed, its raw moments can

be computed by (Lau and Zhao (1993)):

µ
′

n = λ
−n

n! (4.9)

where λ is the scale parameter.
Now, the first three central moments of beta and exponential distributions

can be calculated using equations 3.41, 3.42 and 3.43. Finally, the first three
central moments of Weibull distribution can be computed using equations 3.44,
3.45 and 3.46.
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4.1.2 Numerical Computation of the Parameters of Weibull
Distribution for the DS Model

For a DS model, assume that,
for lead time l:

µ(lsn) = 4, CV = 0.25, a3 = 0.7, a4 = 0.3 (4.10)

for demand d:
µ(dn) = 10, σ(dn) = 10, a3 = 2 (4.11)

Substituting these data into equations 4.4-4.8 to calculate p, q, a, and b for
f(x), we get:

p = 1.631, q = 4.533, a = 2.394 b = 8.462 (4.12)

Using equations 3.49 and 4.9 to compute the first three raw moments of
beta and exponential distributions, respectively, and equations 3.41-3.43 to
compute their first three central moments, the first three central moments of
the LTD distribution can be calculated using equations 3.44-3.46 and fitted
to a 3-parameter Weibull distribution. Table 4.2 shows the results.

Table 4.2: Computation of moments and Weibull parameters for the DS model
Raw moments

µ
′

1 µ
′

2 µ
′

3

l 4 17 76.7
d 10 200 6,000

Central moments

µ1 µ2 µ3

l 4 1 0.7
d 10 100 2,000
x 40 500 11,700

Weibull parameters

a b c

W 6.621 37.037 1.522
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4.1.3 Numerical Computation of the Parameters of a
Weibull Distribution for the DSOS Model

For a DSOS model, assume that
for the first shipment’s lead time l1:

µ(lsn1) = 4, CV = 0.25, a3 = 0.7, a4 = 0.3 (4.13)

for the second shipment’s lead time l2:

µ(lsn2) = 6, CV = 0.25, a3 = 0.7, a4 = 0.3 (4.14)

for demand d:
µ(dn) = 10, σ(dn) = 10, a3 = 2 (4.15)

Substituting these data into equations 4.4-4.8 to calculate p, q, a, b for f1(x)
and f2(x), we get:
for the first shipment’s lead time l1:

p = 1.631, q = 4.533, a = 2.394 b = 8.462 (4.16)

for the second shipment’s lead time l2:

p = 1.631, q = 4.533, a = 3.592 b = 12.693 (4.17)

Although f1(x) and f2(x) have different mean and standard deviations, we
should mention that pi and qi are identical for all fi(x)’s because the assumed
a3 and a4 are the same, and according to equation 4.6, it is trivial that p and
q are independent of µ and σ.
Substituting the results of equations 4.16 and 4.17 into equation 4.3 and

then, in equations 3.30-3.34 to compute S1 and S2, we have:

S1 = 0.8743, S2 = 0.1257 (4.18)

Substituting the results of equations 4.16 and 4.17 into equations 3.39 and
evaluating the integrals using “NIntegrate” function in “Mathematica 10.0” to
get the first three raw moments of lead time distribution (beta) gives:
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Table 4.3: The first three raw moments of the LT distribution for the DSOS
model

µ
′

1 µ
′

2 µ
′

3

l11 3.805 15.231 64.154
l12 6.206 40.695 281.583
l21 5.354 29.309 163.990
l22 4.565 21.245 100.807

Using Table 4.3 and equations 3.41-3.43 to compute the first three central
moments of lead time distribution, we get:

Table 4.4: The first three central moments of the LT distribution for the DSOS
model

µ1 µ2 µ3

l11 3.80 0.750 0.487
l12 6.206 2.176 2.010
l21 5.354 0.641 0.196
l22 4.565 0.406 0.113

Similarly, using equation 4.9 to compute the first three raw moments, and
subsequently, using equations 3.41-3.43 to compute the first three central mo-
ments of demand distribution (exponential), we get:

Table 4.5: First three raw and central moments of demand distribution in the
DSOS model

Raw moments

µ
′

1 µ
′

2 µ
′

3

10 200 6,000
Central moments

µ1 µ2 µ3

10 100 2,000

Using Table 4.4 and 4.5, we can now compute the first three central moments
of the LTD distribution. Therefore, we get:
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Table 4.6: The first three central moments of the LTD distribution for the
DSOS model

µ1 µ2 µ3

x11 38.053 455.540 10,347.74
x12 62.063 838.217 20,950.43
x21 53.542 599.545 12,828.51
x22 45.650 497.130 10,462.60

Fitting the central moments in Table 4.6 to a 3-parameter Weibull distribu-
tion, we have:

Table 4.7: The location, scale and shape parameters of the LTD distribution
for the DSOS model

a b c

W11 6.491 34.980 1.506
W12 14.198 53.650 1.701
W21 13.310 45.072 1.690
W22 10.454 39.294 1.617

4.1.4 Numerical Computation of the Parameters of Weibull
Distribution for the CD Model

The procedure for computing the parameters of the Weibull distribution in the
CD model is similar to the DS model. However, it should be computed for
both the DC and retailers.
Given the following parameter values for each retailer n in the CD model:
for lead time l:

µ(l0n) = 2, CV = 0.25, a3 = 0.7, a4 = 0.3 (4.19)

for demand d:
µ(dn) = 10, σ(dn) = 10, a3 = 2 (4.20)

and, substituting these data into equations 4.4-4.8 to calculate p, q, a, and
b for f(x), we have:

p = 1.631, q = 4.533, a = 1.197 b = 4.231 (4.21)
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Similar to the DS model, and using equations 3.49 and 4.9 to compute the
first three raw moments of beta and exponential distributions, respectively,
and equations 3.41-3.43 to compute the first three central moments, one can
fit these central moments to a 3-parameter Weibull distribution. Therefore,
we have:

Table 4.8: Computation of moments and Weibull parameters for retailers in
the CD model

Raw moments

µ
′

1 µ
′

2 µ
′

3

l 2 4.25 9.587
d 10 200 6,000

Central moments

µ1 µ2 µ3

l 2 0.25 0.0875
d 10 100 2,000
x 20 225 4,837.5

Weibull parameters

a b c

W 1.397 19.965 1.247

Similarly, the parameters of the Weibull distribution for our calculations at
the DC are easily achievable. Given the following parameter values for DC in
the CD model
for lead time l:

µ(ls0) = 4, CV = 0.25, a3 = 0.7, a4 = 0.3

for demand d:

µ(d0) = 150, σ(d0) = 150, a3 = 2

and, substituting these data into equations 4.4-4.8 to calculate p, q, a, and
b for f(x), we have:

p = 1.631, q = 4.533, a = 2.394 b = 8.462

Similar to the procedure for computing the first three raw and central mo-
ments of lead time and demand (beta and exponential) distributions, respec-
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tively, and estimation of Weibull parameters for retailers, for DC we obtain:

Table 4.9: Computation of moments and Weibull parameters for DC in the CD
model

Raw moments

µ
′

1 µ
′

2 µ
′

3

l 4 17 76.7
d 150 45,000 20,250,000

Central moments

µ1 µ2 µ3

l 4 1 0.7
d 150 22,500 6,750,000
x 600 112,500 39,487,500

Weibull parameters

a b c

W 99.326 555.564 1.522

4.1.5 Numerical Computation of the Parameters of Weibull
Distribution for the CDOS Model

In the CDOS model, we have the same input and output for computing the
Weibull parameters for retailers as in the CD model. Therefore, for retailers,
we have:

Table 4.10: Computation of moments and Weibull parameters for retailers in
the CDOS model

Raw moments

µ
′

1 µ
′

2 µ
′

3

l 2 4.25 9.587
d 10 200 6,000

Central moments

µ1 µ2 µ3

l 2 0.25 0.0875
d 10 100 2,000
x 20 225 4,837.5

Weibull parameters

a b c

W 1.397 19.965 1.247
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The procedure for computing the Weibull parameters at DC in the CDOS
model is similar to the DSOS model. We assume that
for the first shipment’s lead time l1:

µ(ls01) = 4, CV = 0.25, a3 = 0.7, a4 = 0.3

for the second shipment’s lead time l2:

µ(ls02) = 6, CV = 0.25, a3 = 0.7, a4 = 0.3

for demand d:

µ(d0) = 150, σ(d0) = 150, a3 = 2

Substituting these inputs into equations 4.4-4.8 to calculate p, q, a, b for
f1(x) and f2(x), we have:
for the first shipment’s lead time l1:

p = 1.631, q = 4.533, a = 2.394 b = 8.462

for the second shipment’s lead time l2:

p = 1.631, q = 4.533, a = 3.592 b = 12.693

Therefore, we have:

S1 = 0.8743, S2 = 0.1257

Table 4.11 till 4.14 present the first three raw and central moments for lead
time, demand and LTD distributions.

Table 4.11: The first three raw moments of LT distribution for the CDOS
model

µ
′

1 µ
′

2 µ
′

3

l11 3.805 15.231 64.154
l12 6.206 40.695 281.583
l21 5.354 29.309 163.990
l22 4.565 21.245 100.807
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Table 4.12: The first three central moments of LT distribution for the CDOS
model

µ1 µ2 µ3

l11 3.805 0.750 0.487
l12 6.206 2.176 2.010
l21 5.354 0.641 0.196
l22 4.565 0.406 0.113

Table 4.13: First three raw and central moments of demand distribution in the
CDOS model

Raw moments

µ
′

1 µ
′

2 µ
′

3

150 45,000 20,250,000
Central moments

µ1 µ2 µ3

150 22,500 6,750,000

Table 4.14: The first three central moments of LTD distribution for the CDOS
model

µ1 µ2 µ3

x11 570.804 102,496.40 34,923,623.47
x12 930.952 188,598.81 70,707,706.01
x21 803.134 134,897.65 43,296,206.65
x22 684.744 111,854.25 35,311,271.28

Fitting the central moments in Table 4.14 to a 3-parameter Weibull distri-
bution, we have:

Table 4.15: The location, scale and shape parameters of LTD distribution for
the CDOS model

Weibull parameters

a b c

W11 97.373 524.710 1.506
W12 212.975 804.747 1.701
W21 199.662 676.087 1.690
W22 156.808 589.418 1.617
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Having determined values of order quantity Q and reorder point R, and
using the computed parameters of a Weibull distribution for the DS, DSOS,
CD, and CDOS models in this section, one can easily calculate safety stock
and expected number of shortages.

4.2 Results

4.2.1 Numerical Analysis with the Basic Parameter Values

In order to evaluate and compare the results of order splitting and consolidated
distribution models as well as their integration in a multi-echelon distribu-
tion system with the direct shipping model, we used “Mathematica 10.0” and
conducted numerical experiments for our mathematical models. We ran the
function “NMinimize” to solve our numerical non-linear optimization problem.
“NMinimize” used “Nelder-Mead” method to deal with the problem.
Throughout this research work, the comparisons that we perform in the

context of research questions (RQ 1-3 ) involve the TAC of the DSOS, CD,
and CDOS models over the DS model as the reference model. Therefore, we
define the Key Performance Indicator (KPI) as “percentage increase/decrease
over the DS model”.
Table 4.16 displays the summary of the results. The last column in the right

hand side represents the KPI. When the value of KPI is negative, it means the
model has lower TAC over the DS model. When it is positive, it represents
the worse performance of the model over the DS model.

Table 4.16: Optimal solution for the given parameter values

Total
annual cost

($)

Q
∗

n

(units)
Q
∗

0
(units)

R
∗

n

(units)
R
∗

0
(units)

% in-
crease/decrease
over the DS

model

DS 4,278,710 384.260 - 97.37 - -
DSOS 4,312,430 478.288 - 94.41 - 0.788
CD 4,112,210 466.670 7,000.05 60.96 1,460.63 -3.891

CDOS 4,110,440 466.670 7,000.05 60.96 1,416.22 -3.932

The results indicate that the traditional order splitting approach, i.e. direct
shipping with order splitting, has 0.788% higher cost than direct shipping
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without order splitting model. Approximately 385 units are ordered in the DS
model, while the DSOS model requires an order quantity of 479 units, of which
nearly 240 units are transited by the first shipment. On the other hand, in
the CD model, where the order quantity is not split but a DC coordinates the
logistic activities, the total annual cost would be reduced by 3.891 times over
the DS model. Moreover, in case of the CDOS model, where there exists a DC
between the supplier and the retailers and the order quantity is split, the total
annual cost is reduced by 3.932%. The order quantity in the CD and CDOS
models is the same. In addition, reorder points in order splitting models are
lower than the related non-order splitting models.
Table 4.17 presents the logistics cost elements for all the models. Obviously,

the sum of the cost elements for each model should be equal to the related
total annual cost in Table 4.16. In the DSOS model, transportation, ordering,
and cycle stock costs are higher than the same costs in the DS model. It is
only its safety stock cost which is lower than safety stock cost in the DS model.

Table 4.17: The absolute value of logistic cost elements ($)

PC TC OC CIC SSC ITC

DS 4,106,250 81,965,85 14,248,17 54,036.60 16,136.85 6,075
DSOS 4,106,250 103,184.40 17,170.65 64,446.75 15,303.90 6,075
CD 3,914,630 56,117.50 6,648.21 107,607,60 22,060.43 5,148

CDOS 3,914,630 56,460.20 7,039.28 105,677.10 21,488.93 5,148

On the other side, even though the cycle and safety stock costs in the CD
and CDOS models are higher than the DS and DSOS models, the savings from
reduction in the purchasing, transportation, ordering and in-transit inventory
costs make these strategies favorable. However, it is the purchasing cost that
mainly makes the CDOS and CD models more advantageous. In order to
prove this argument, one can simply subtract the purchasing cost from the
total logistic cost of all models in Table 4.17 and then, make a comparison
similar to what we have done in Table 4.18. This table illustrates the results
when we include the purchasing cost (as presented in Table 4.16) and when
we subtract it from the total annual cost. As it is indicated, the CD and
CDOS models perform worse than the traditional DS model even though they
have lower transportation, ordering, and in-transit costs. This means that the
decreased cost of transportation, ordering, and in-transit elements in the CD
and CDOS models over the DS and DSOS models does not compensate for
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the increased cost of cycle and safety inventory when excluding the purchasing
cost. Note that these results for the CD and CDOS models can be worse if we
exclude quantity discounts from our calculations because the purchasing price
and consequently, the inventory carrying cost per unit will be the same as in
the DS and DSOS models.

Table 4.18: Total annual logistics cost with and without purchasing cost

TAC including
purchasing cost

($)

% in-
crease/decrease
over the DS

model

TAC excluding
purchasing cost

($)

% in-
crease/decrease
over the DS

model

DS 4,278,710 - 172,462.47 -
DSOS 4,312,430 0.788 192,966.90 11.889
CD 4,112,210 -3.891 197,581.73 14.565

CDOS 4,110,440 -3.932 197,204.80 14.346

We made this argument just to discuss the importance of quantity discounts
in purchasing cost. However, ignoring purchasing cost especially in multi-
echelon systems is a great shortcoming in modeling total logistic cost.

4.2.2 Sensitivity Analysis

In order to better understand the impact of integration of consolidated distri-
bution and order splitting on total annual logistics cost, we conducted sensitiv-
ity analysis of some important parameters for all the four models. We studied
the impact of changes in demand, number of retailers, split proportion, lead
time mean, coefficient of variation (CV), and purchasing price on the total
annual cost. In the following, this sensitivity analysis is presented.

4.2.2.1 Impact of Demand

We changed the value of demand to 20, 50, 80, and 150 to see how it affects the
total annual cost. To do so, we adjusted equation 4.1 for each average demand
value. It is not illogical to say that suppliers provide the quantity discount
structure based on the demand quantity. Therefore, when the average daily
demand is 50 units, for example, we have the following quantity discount piece-
wise structure:
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c = f(Q) =



c = 75.00$/item 1 ≤ Q ≤ 5, 000

c = 74.00$/item 5, 000 ≤ Q ≤ 15, 000

c = 73.00$/item 15, 000 ≤ Q ≤ 35, 000

c = 71.50$/item 35, 000 ≤ Q ≤ 75, 000

c = 70.50$/item 75, 000 ≤ Q ≤ 130, 000

c = 69.00$/item 130, 000 ≤ Q

(4.22)

Table 4.19 displays the results. Column 4 of this table represents the order
quantity at the DC which is the multiplication of order quantity at one retailer
by the number of retailers, i.e. Q0=QnN, where N is the total number of
retailers (here, 15 retailers). Note that in Table 4.19 order quantity of the CD
and CDOS models are always equal. This can happen if purchasing price has
a piece-wise structure, which is the case in our models. For example, when
demand is 50 units/day, order quantity is 2,333.34 units at each retailer and
35,000.1 units at DC, where the purchasing price is $71.5. The order quantity
cannot be 2,333.33 units, otherwise, the order quantity at DC would be 35000
units or lower and this make the purchasing price to fall within the price
category of $73. As there is no order quantity of 2,333.34 units in reality, it
means that a retailer should order 2,334 and not 2,333 units.
Looking at the order quantity in the DSOS model also reveals that it is

always larger than order quantity in the DS model (Figure 4.1). Furthermore,
the reorder point in the DSOS and CDOS models is always smaller than the
reorder point in the DS and CD models, respectively. On the other hand,
reorder point at retailers in the CD and CDOS models are smaller than in the
DS and DSOS models. This means the retailers can provide a better service
level when they are supplied by a DC.
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Table 4.19: Impact of different values of demand on total annual cost

Demand = 20 units/day

Total
annual cost

($)

Q
∗

n

(units)
Q
∗

0
(units)

R
∗

n

(units)
R
∗

0
(units)

% in-
crease/decrease
over the DS

model
DS 8,491,580 590.95 - 194.75 - -

DSOS 8,542,860 736.362 - 188.82 - 0.603
CD 8,201,790 933.34 14,000.10 121.93 2,921.26 -3.412

CDOS 8,200,620 933.34 14,000.10 121.93 2,832.42 -3.426
Demand = 50 units/day

DS 21,067,600 1,052.44 - 486.87 - -
DSOS 21,156,000 1,314.58 - 472.17 - 0.419
CD 20,480,500 2,333.34 35,000.10 304.83 7,303.14 -2.786

CDOS 20,469,800 2,333.34 35,000.10 304.83 7,081.06 -2.837
Demand = 80 units/day

DS 33,605,900 1,419.66 - 779.00 - -
DSOS 33,722,200 1,419.66 - 756.15 - 0.346
CD 32,750,700 3,733.34 56,000.10 487.73 11,685.00 -2.544

CDOS 32,731,500 3,733.34 56,000.10 487.73 11,329.70 -2.602
Demand = 150 units/day

DS 62,800,800 2,045.45 - 1,460.63 - -
DSOS 62,967,800 2,715.82 - 1,423.55 - 0.266
CD 61,403,200 7,000.01 105,000.15 914.49 21,909.40 -2.225

CDOS 61,366,600 7,000.01 105,000.15 914.49 21,243.20 -2.283

Comparing the results with Table 4.16, it is clear that the performance of
the DSOS model is worse than DS model (Figure 4.2). We realized the main
reason is that transportation cost plays a dominant role, so that for demand
= 10 units/day, the transportation cost of $1.885 per unit in the DSOS model
compared to $1.497 per unit in the DS model strongly influences the results
(Table 4.20).
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Figure 4.1: Order quantity for different values of demand
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Figure 4.2: Impact of change in demand value on TAC
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Table 4.20: Transportation cost per unit for different values of demand

10 20 50 80 150

DS 1.497 1.215 0.918 0.794 0.665
DSOS 1.885 1.528 1.154 0.995 0.811
CD 1.025 0.879 0.828 0.796 0.797

CDOS 1.031 0.910 0.833 0.797 0.798

From Figure 4.3, one can realize that as the value of demand increases, the
total transportation cost of the DSOS over the DS model gradually decreases.
Therefore, one can say that higher demand values results in lower relative
transportation cost of the DSOS over the DS model. However, this decrease
is not noteworthy.
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Figure 4.3: % increase/decrease in TC over the DS model for different values
of demand

Cycle stock cost is another main reason for higher cost of the DSOS model.
Even though the calculation of average cycle inventory with the same order
quantity (based on equation 3.22) results in lower inventory cost in the DSOS
model, the order quantity of the DSOS system is such higher that it does not
cover this reduction in cycle inventory cost. Table 4.21 indicates that cycle
stock cost per unit is always higher in the DSOS system than the DS system.
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The increase in demand value decreases the cycle stock cost per unit in both
the DS and DSOS models. However, the changes are not noteworthy (Figure
4.4).

Table 4.21: Cycle stock cost per unit for different values of demand

10 20 50 80 150

DS 0.987 0.759 0.541 0.456 0.350
DSOS 1.177 0.894 0.624 0.521 0.414
CD 1.965 1.965 1.965 1.965 1.965

CDOS 1.930 1.930 1.930 1.930 1.930
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Figure 4.4: % increase/decrease in CSC over the DS model for different values
of demand

Ordering cost follows the same pattern as the transportation cost (Table
4.22). Although the DSOS model has a higher order quantity, which reduces
the number of order processing per year, the increase in receiving cost in order
splitting system (because of the multiplier A) results in higher ordering cost
of the DSOS system over the DS system. However, as the value of demand
increases, the relative ordering cost of the DSOS model over the DS model
decreases (Figure 4.5).
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Table 4.22: Ordering cost per unit for different values of demand

10 20 50 80 150

DS 0.260 0.169 0.095 0.070 0.049
DSOS 0.314 0.204 0.114 0.084 0.055
CD 0.121 0.061 0.024 0.015 0.008

CDOS 0.129 0.064 0.026 0.016 0.009
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Figure 4.5: % increase/decrease in OC over the DS model for different values
of demand

Figure 4.2 illustrates that both the CD and CDOS models perform much
better than the DS system. By looking at logistic cost elements, we realized
that this is because of the purchasing, ordering, and transportation costs.
Purchasing cost comprises the main share of TAC (e.g. more than %90 when
demand equals 10 units/day). Therefore, even a small decrease in purchasing
price results in huge savings in TAC. Ordering cost has also a lower rate in the
CD and CDOS models over the DS model (Table 4.22).
Transportation cost is also lower in the CD and CDOS models for the basic

demand value. When the demand is 10 units/day, the transportation cost per
unit is $1.025 and $1.031 for the CD and CDOS models, respectively (Table
4.20). This indicates the influence of demand consolidation on transportation
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cost at the DC.
According to Table 4.19 and Figure 4.2, as the value of demand increases the

advantage of the CD and CDOS models over the DS model decreases. We did
a simple computation of the percentage increase/decrease of purchasing cost
in the CD and CDOS models over the DS model and realized that it is -4.67%
for both models for all demand values (Table 4.23). By looking at the order
quantity of the DS and DSOS models for all values of demand, one realizes
that they always fall between the first intervals of quantity discount structure
which results in purchasing price of $75. The order quantity of the CD and
CDOS models also always lies in the fourth interval which has the purchasing
price of $71.5. Therefore, the decrease in the total logistic cost of the CD and
CDOS models over the DS models is not definitely due to the purchasing cost.

Table 4.23: % increase/decrease in PC over the DS model for different values
of demand

10 20 50 80 150

DSOS 0 0 0 0 0
CD -4.666 -4.666 -4.666 -4.666 -4.666

CDOS -4.666 -4.666 -4.666 -4.666 -4.666

However, the increase in average daily demand decreases the advantage of
order consolidation via the distribution center such that the transportation
cost of the CD and CDOS models over the DS model are higher when demand
equals 80 and 150 units/day. Figure 4.6 displays the decrease in transportation
cost per unit in our four models. It illustrates that the slope of the DS and
DSOS curves is steeper than the CD and CDOS curves. The reason is clear.
When we have larger quantities, the greater shipment weight causes lower
transportation unit cost. To show it, we did a simulation of the transportation
cost formula (equation 4-33) for LTL (Figure 4.7) to illustrates the changes in
transportation cost for order quantity between 20 and 1200 units (w = 22 lb.,
Z = 850).
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Figure 4.6: Transportation cost per unit for different values of demand
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Figure 4.7: Simulation of transportation cost per unit for LTL shipments

The negative exponential curve in Figure 4.7 is the usual transportation
unit cost curve which has been represented in many research works for LTL
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shipments. However, when the shipment is larger than a FTL, it is then carried
by x number of FTL and possibly one LTL shipment. In this case, based on
equations 3.3 and 3.4, the simulation of per unit transportation cost is as in
Figure 4.8.
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Figure 4.8: Simulation of transportation cost per unit for FTL and LTL ship-
ments

In this figure, the curve has a negative exponential shape till approximately
Q = 2000 units (45000/22 = 2045 units), which is the limit for a LTL shipment.
However, from this point on, it has a cyclical trend and becomes more flat as
the order quantity increases.
The results also show that a CDOS system slightly performs better than a

CD system for the given demand values. This is related to cycle and safety
stock costs. Figure 4.9 shows that cycle stock cost of the CDOD model is
always lower than the CD model. The same applies to safety stock cost (Figure
4.10).
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Figure 4.9: % increase-decrease in CSC over the DS model for different values
of demand
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Figure 4.10: % increase/decrease in SSC over the DS model for different values
of demand
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4.2.2.2 Impact of Number of Retailers

In order to realize the impact of changes in number of retailers on total annual
cost, we did a sensitivity analysis when we have 50, 100, 200 and 500 retailers.
Table 4.24 presents the results.

Table 4.24: Impact of number of retailers on total annual cost

No. of retailers = 50

Total
annual cost

($)

Q
∗

n

(units)
Q
∗

0
(units)

R
∗

n

(units)
R
∗

0
(units)

% in-
crease/decrease
over the DS

model
DS 14,262,400 384.260 - 97.37 - -

DSOS 14,374,800 478.287 - 94.41 - 0.788
CD 13,261,500 520.010 26,000.50 60.96 4,868.76 -7.017

CDOS 13,256,600 520.010 26,000.50 60.96 4,720.71 -7.052
No. of retailers = 100

DS 28,524,700 384.260 - 97.37 - -
DSOS 28,749,500 478.287 - 94.41 - 0.788
CD 26,227,900 260.001 26,000.10 60.96 9,737.52 -8.052

CDOS 26,218,200 260.001 26,000.10 60.96 9,441.41 -8.086
No. of retailers = 200

DS 57,049,500 384.260 - 97.37 - -
DSOS 57,499,100 478.287 - 94.41 - 0.788
CD 52,345,600 163.636 32,727.20 60.96 19,475.00 -8.245

CDOS 52,323,100 184.091 36,818.20 60.96 18,882.80 -8.284
No. of retailers = 500

DS 142,624,000 384.260 - 97.37 - -
DSOS 143,748,000 478.288 - 94.41 - 0.788
CD 130,860,000 159.545 79,772.50 60.96 48,687.60 -8.248

CDOS 130,787,000 171.818 85,909.00 60.96 47,220.80 -8.299

Trivially, changes in number of retailers do not affect the DS and DSOS
models. Furthermore, comparing the results with Table 4.16, one realizes that
an increase in the number of retailers drastically improves the results of the
CD and CDOS models over the DS model. However, there is a limit for this
improvement. When the number of retailers is 100 or more, the improvement
is very small (Figure 4.11).

79



4 Evaluation and Results of the Four Strategies

 

-10

-8

-6

-4

-2

0

2

0 100 200 300 400 500 600

%
 i

n
c
r
e
a
se

/d
e
c
r
e
a
se

 o
v
e
r
 D

S
 m

o
d

e
l 

Number of retailers 

DSOS

CD

CDOS

Figure 4.11: Impact of change in number of retailers on TAC

The order quantity always remains the same in the DS and DSOS models.
Nevertheless, there is an increase in order quantity of the CD and CDOS mod-
els when retailers are 50, but from this point on, the order quantity decreases
(Figure 4.12). In fact, by increasing the number of retailers from 15 to 50, the
buyers in both the CD and CDOS models can benefit from lowest purchasing
price ($69) if order quantity is larger than 520 units (520.01×50 > 26000).
This results in great savings. When the number of retailers is 100, any value
of order quantity greater than 260 units (26000÷100 = 260) satisfies this situ-
ation. When retailers are 200 and 500, it is sufficient if order quantity is higher
than 130 (26000÷200) and 52 (26000÷500) units, respectively. However, the
optimal order quantity of the CD and CDOS models are higher than these
two values of demand. Generally, except for the case of 50 retailers, the order
quantity represents a decreasing trend (Figure 4.12). Similar to our previous
results, reorder point of order splitting model is always lower than the related
non-order splitting model.
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Figure 4.12: Order quantity for different number of retailers

We did a detailed analysis to realize the trend in Figure 4.11. From this
analysis, we realized that the main reason of the drastic change in TAC of
the CD and CDOS models over the DS model is purchasing cost. When the
number of retailers is 15, the purchasing price is $71.5 per unit. However, the
purchasing price is $69 if the number of retailers is increased to 50. Higher
number of retailers results in the purchasing price of $69/unit. Hence, great
savings in purchasing cost, as the main logistic cost element, are achieved.
Figure 4.13 shows the trend for purchasing cost for different number of retailers.

81



4 Evaluation and Results of the Four Strategies

 

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 100 200 300 400 500 600
%

 i
n

c
r
e
a
se

/d
e
c
r
e
a
se

 o
v
e
r
 D

S
 m

o
d

e
l 

Number of retailers 

DSOS

CD

CDOS

Figure 4.13: % increase/decrease in PC over the DS model for different number
of retailers
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Figure 4.14: % increase/decrease in CSC over the DS model for different num-
ber of retailers

82



4.2 Results

 

-10

-5

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

%
 i

n
c
r
e
a
se

/d
e
c
r
e
a
se

 o
v
e
r
 D

S
 m

o
d

e
l 

Number of retailers 

DSOS

CD

CDOS

Figure 4.15: % increase/decrease in SSC over the DS model for different num-
ber of retailers

The other reasons of the decrease in TAC include the decrease in cycle
and in-transit stock costs. In addition, we realized that the advantage of
transportation cost and ordering cost of the CD and CDOS models over a DS
model decreases as the number of retailers increases. Following the decrease in
order quantity for higher number of retailers, the decrease or increase in these
costs can be justified. Consequently, the trade-off is, on one hand, between
purchasing, cycle stock and in-transit stock costs, and on the other hand, the
transportation and ordering costs.
Again, we see that the CDOS model marginally performs better than the

CD model. This is due to cycle stock and safety stock costs (Figure 4.14 and
4.15). Except the cycle and safety stock cost elements, we did not find major
differences between other cost elements of the CD and CDOS models.

4.2.2.3 Impact of Split Proportion

We changed the split proportion from %50-%50 to %10-%90, %30-%70, %70-
%30, and %90-%10 to realize the impact of changes in split proportion on the
total annual cost. This is presented in Table 4.25.
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Table 4.25: Impact of split proportion on total annual cost

Split proportion = 10%-90%

Total
annual cost

($)

Q
∗

n

(units)
Q
∗

0
(units)

R
∗

n

(units)
R
∗

0
(units)

% in-
crease/decrease
over the DS

model
DS 4,278,710 384.260 - 97.37 - -

DSOS 4,299,220 454.976 - 94.41 - 0.479
CD 4,112,210 466.667 7,000.05 60.96 1460.63 -3.891

CDOS 4,111,830 466.667 7,000.05 60.96 1520.36 -3.900
Split proportion = 30%-70%

DS 4,278,710 384.260 - 97.37 - -
DSOS 4,309,130 473.641 - 94.41 - 0.711
CD 4,112,210 466.667 7,000.05 60.96 1460.63 -3.929

CDOS 4,110,580 466.667 7,000.05 60.96 1416.21 -3.891
Split proportion = 70%-30%

DS 4,278,710 384.260 - 97.37 - -
DSOS 4,311,380 473.641 - 94.41 - 0.763
CD 4,112,210 466.667 7,000.05 60.96 1460.63 -3.891

CDOS 4,112,120 466.667 7,000.05 60.96 1416.21 -3.893
Split proportion = 90%-10%

DS 4,278,710 384.260 - 97.37 - -
DSOS 4,303,720 454.976 - 94.41 - 0.584
CD 4,112,210 466.667 7,000.05 60.96 1460.63 -3.891

CDOS 4,113,630 466.667 7,000.05 60.96 1420.27 -3.858

As the order quantity is only split for the DSOS and CDOS models, we
computed the results for these models (Figure 4.16). The results of the DSOS
model over the DS model represent that the optimal total annual cost is
achieved when the majority of the order quantity is allocated to the second
shipment. These results show a concave shape, meaning that when order quan-
tity is equally split (%50-%50), it has the worst performance. Generally, the
more the order quantity is allocated to either of first or second shipment, the
better the performance of the DSOS model. However, it also performs better
if more than 50 percent of order quantity is allocated to the second shipment,
compared to the case where the majority of order quantity is delivered by the
first shipment.
The CDOS model behaves conversely. The best performance over a DS

model is achieved when the order quantity is exactly split in two equal ship-
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ments. Generally, the more the order quantity is allocated to either of first or
second shipment, the worse the performance of the CDOS model. Similar to
the DSOS model, when more than half of the order quantity is allocated to the
second shipment, the performance of the CDOS model over the DS model is
improved compared to the case where first delivery takes more order quantity.
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Figure 4.16: Impact of change in split proportions on TAC

The order quantity of a DSOS model changes when we do split proportion
analysis and, its curve follows the same trend as the total annual cost curve. In
other words, when order quantity is split evenly, order quantity is the largest.
However, the order quantity of the CDOS model is always the same. Figure
4.17 represents the case.
The reorder point of order splitting model is always smaller than the related

non-order splitting model. There is only one exception and this is when split
proportion is %10-%90 in the CDOS model compared to the CD model. This
is not surprising considering that only a small proportion of order quantity,
i.e. 10 percent, is shipped by the first delivery.
Having a more detailed look at the results, one realizes that the decrease in

total cost of the DSOS model for split proportions of %10-%90 is largely due
to the decrease in transportation as well as cycle stock cost. It can be more
cost beneficial to deliver higher amounts of an order quantity in a shipment,
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Figure 4.17: Order quantity for changes in split proportion

e.g. %90, than to split and transport two equal shipments (Figure 4.18).
Furthermore, according to equation 3.22, an order splitting system has less
cycle stock if more units are allocated to the second shipment (Figure 4.19).
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Figure 4.18: % increase/decrease in TC over the DS model for different split
proportions
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Figure 4.19: % increase/decrease in CSC over the DS model for different split
proportions
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For the CDOS model, it is the transportation cost which causes the order
split proportion of %50-%50 to have the lowest cost (Figure 4.18). This is
due to the decrease in the transportation cost between supplier and DC, while
the transportation cost between DC and retailers are the same and does not
change with changes in split proportion. According to Figure 4.8, if a large
quantity is evenly split, the shipment price per unit still stands in low freight
rates as the curve has a gentle slope for high shipment weights. However, if
it is split in one small and one large shipment, the shipment rate per unit for
the small shipment may be high.

4.2.2.4 Impact of Lead Time Mean

The results of the sensitivity analysis of lead time are presented in Table 4.26.
We changed the lead time from 4 to 3, 5 and 6 days. Therefore, in case of
order splitting, the second shipment arrives after 5, 7, and 8 days, respectively.
When average lead time increases, the relative TAC of the DSOS model over
the DS model decreases. Moreover, the relative advantage of the CD and
CDOS models over the DS model increases (Figure 4.20). The order quantity
does not change for any of the models, but reorder points in order splitting
models are smaller than the reorder point in the related non-order splitting
models.
The percentage decrease in total annual cost of the DSOS model over the

DS model is related to decrease of safety stock cost (Figure 4.21). The value
of other cost elements does not change. On the other hand, the percentage
decrease in total annual cost of the CD and CDOD models is related to the
decrease of safety stock and in-transit stock costs. This is because lead time
directly impacts safety stock and in-transit stock (Figure 4.21 and 4.22).
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Table 4.26: Impact of lead time mean on total annual cost

Lead time = 3 days

Total
annual cost

($)

Q
∗

n

(units)
Q
∗

0
(units)

R
∗

n

(units)
R
∗

0
(units)

% in-
crease/decrease
over the DS

model
DS 4,274,510 384,260 - 79.63 - -

DSOS 4,308,650 478,287 - 78.16 - 0.798
CD 4,109,640 466,667 7,000.05 60.96 1,194.54 -3.857

CDOS 4,108,160 466,667 7,000.05 60.96 1,172.53 -3.891
Lead time = 5 days

DS 4,282,770 384,260 - 114.61 - -
DSOS 4,315,900 478,287 - 109.56 - 0.773
CD 4,114,680 466,667 7,000.05 60.96 1,719.20 -3.924

CDOS 4,112,500 466,667 7,000.05 60.96 1,643.43 -3.975
Lead time = 6 days

DS 4,286,750 384,260 - 131.54 - -
DSOS 4,319,210 478,287 - 124.12 - 0.757
CD 4,117,090 466,667 7,000.05 60.96 1,973.13 -3.957

CDOS 4,114,460 466,667 7,000.05 60.96 1,861.87 -4.019
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Figure 4.20: Impact of change in lead time mean on TAC
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Figure 4.21: % increase/decrease in SSC over the DS model for different lead
time mean
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Figure 4.22: % increase/decrease in ITC over the DS model for different lead
time mean
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In addition, the CDOS model performs better than the CD model. This is
because of lower safety stock cost in the CDOS system.

4.2.2.5 Impact of Coefficient of Variation of Lead Time

The Coefficient of Variation (CV) in the base model is 0.25. We changed this
value to 0.5 and 1.0 to compute its impact on total annual cost. As shown in
Table 4.27 and Figure 4.23, when the CV increases, the performance of the
DSOS and CDOS models over the DS model improves but, the advantage of the
CD model over the DS model decreases. However, the changes in performance
of the CD and CDOS models are not high.

Table 4.27: Impact of coefficient of variation of lead time on total annual cost

CV = 0.5

Total
annual cost

($)

Q
∗

n

(units)
Q
∗

0
(units)

R
∗

n

(units)
R
∗

0
(units)

% in-
crease/decrease
over the DS

model
DS 4,283,300 384.260 - 113.67 - -

DSOS 4,313,640 478.287 - 98.72 - 0.708
CD 4,117,410 466.667 7,000.05 67.62 1,705.17 -3.872

CDOS 4,112,930 466.667 7,000.05 67.62 1,471.52 -3.977
CV = 1.0

DS 4,295,320 384.260 - 156.40 - -
DSOS 4,319,080 478.287 - 118.04 - 0.553
CD 4,130,650 466.667 7,000.05 87.23 2,346.10 -3.833

CDOS 4,122,040 466.667 7,000.05 87.23 1,770.62 -4.034
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Figure 4.23: Impact of change in Coefficient of Variation (CV) of lead time on
TAC

A detailed analysis reveals that the only logistic cost element that is affected
by the change in coefficient of variation (CV) is safety stock cost (Table 4.28).
As the CV increases, the relative safety stock cost of the DSOS and CDOS
models over the DS model decreases. The same applies to the CD model (Fig-
ure 4.24). However, compared to the DSOS and CDOS models, the percentage
decrease of the CD model over the DS model is not that high and results in a
slight increase in total annual cost.

Table 4.28: % increase/decrease in SSC over the DS model for different values
of CV

0.25 0.5 1.0

DSOS -5.161 -20.290 -32.959
CD 36.708 30.258 23.703

CDOS 33.166 15.746 1.081
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Figure 4.24: % increase/decrease in SSC over the DS model for different values
of CV

Similar to our findings in the sensitivity analysis of other parameters, the
CDOS model performs better than the CD model for the given values of CV
(Figure 4.23).
When the CV changes from 0.25 to 0.5 or 1.0, the order quantity of neither

models changes. Again, the reorder points in order splitting models are lower
than the reorder points in the related non-order splitting models.

4.2.2.6 Impact of Purchasing Price

Till now, we discussed that the main reason of lower total annual cost of the CD
and CDOS models compared to the DS and DSOS models is the aggregation
of order quantity of retailers from the supplier to DC and hence, the impact
of this aggregation on purchasing price. To better understand the influence
of purchasing price, we changed the average purchasing prices in the quantity
discount structure (equation 4.1) by dividing each breakpoint price by 10 or
multiplying it by 10 and 20. For example, we have the following quantity
discount structure when the prices are divided by 10:
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c = f(Q) =



c = 7.50$/item 1 ≤ Q ≤ 1, 000

c = 7.40$/item 1, 000 < Q ≤ 3, 000

c = 7.30$/item 3, 000 < Q ≤ 7, 000

c = 7.15$/item 7, 000 < Q ≤ 15, 000

c = 7.05$/item 15, 000 < Q ≤ 26, 000

c = 6.90$/item 26, 000 < Q

(4.23)

The results in Table 4.29 show a decreasing trend for TAC of the DSOS
model as the average purchasing price increases. However, the optimal result
is not achieved when we have lower or higher purchasing prices in the CD and
CDOS models. To further explain, with the new values we assigned to the
purchasing price, the advantages of the CD and CDOS models over the DS
model decreases for either lower or higher prices (Figure 4.25).

Table 4.29: Impact of purchasing price on total annual cost

Purchasing price divided by 10

Total
annual cost

($)

Q
∗

n

(units)
Q
∗

0
(units)

R
∗

n

(units)
R
∗

0
(units)

% in-
crease/decrease
over the DS

model
DS 473,958 1,651.74 - 97.37 - -

DSOS 490,340 2,062.70 - 94.41 - 3.456
CD 462,811 1,000.01 15,000.15 60.96 1,460.63 -2.352

CDOS 462,885 1,090.90 16,363.50 60.96 1,416.22 -2.336
Purchasing price multiplied by 10

DS 41,637,400 96.01 - 97.37 - -
DSOS 41,690,700 128.99 - 95.33 - 0.128
CD 40,557,200 466.667 7,000.05 60.96 1,460.63 -2.594

CDOS 40,532,900 466.667 7,000.05 60.96 1,416.22 -2.653
Purchasing price multiplied by 20

DS 83,030,400 64.10 - 97.37 - -
DSOS 83,109,200 109.60 - 97.75 - 0.095
CD 81,051,600 466.667 7,000.05 60.96 1,460.63 -2.383

CDOS 81,002,300 466.667 7,000.05 60.96 1,416.22 -2.443
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Figure 4.25: Impact of change in purchasing price on TAC

With higher purchasing prices, the order quantity of the DS and DSOS
models decreases. However, for the CD and CDOS models, it first decreases
but then remains the same (Figure 4.26). On the other hand, except for the
case where the basic average purchasing price is multiplied by 20, the reorder
points of order splitting models are lower than the related non-order splitting
models.
We did a detailed analysis to understand changes in total annual cost. Dur-

ing this process, we realized that the changes in TAC are not due to purchasing
cost. In the DSOS model, the purchasing cost is always equal to purchasing
cost of the DS model. The same applies to the CD and CDOS models. In
the CD and CDOS models, the percentage decrease over the DS model is ap-
proximately %4.7 for all given values of average purchasing price (Table 4.30).
This result shows that the purchasing price does not directly impact the rel-
ative value of TAC of the DSOS, CD and CDOS models over the DS model.
However, as we discuss below, it influences other logistic cost elements.
The results indicate that the transportation and ordering costs of the DSOS,

CD and CDOS models have a decreasing trend over the DS model as the
average purchasing price decreases (Figure 4.27 and 4.28).
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Figure 4.26: Order quantity for changes in purchasing price

In addition, the relative cycle cost of the DSOS model over the DS model
gradually decreases as well with the increase in average purchasing price. The
only exception is for the case where average purchasing price is multiplied by
20. This is because the order quantity of the DS model at this point does not
decrease proportional to the order quantity of the DSOS system.
On the other hand, cycle stock cost in the CD and CDOS models signifi-

cantly increases with the increase in average purchasing price (Figure 4.29).
Therefore, the trade-off is between transportation and ordering costs, on the
one hand, and cycle stock cost, on the other hand.

Table 4.30: % increase/decrease in PC over the DS model for different pur-
chasing prices

PP divided
by 10

PP
multiplied

by 10

PP
multiplied

by 20

DSOS 0 0 0
CD -4.729 -4.666 -4.666

CDOS -4.729 -4.666 -4.666
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Figure 4.27: % increase/decrease in TC over the DS model for different pur-
chasing prices

4.2.3 Summary of the Results

In previous subsections, we did the numerical analysis for basic models and
sensitivity analysis of important parameters. The results show that in all
cases (with the selected parameter values) the CD and CDOS models have
lower TAC while the DSOS model has higher TAC when compared to the
DS model. However, the magnitude of TAC is dependent on the value of
the studied parameters. Moreover, in most cases the CDOS model performs
better than the CD model. Generally, as the percentage increase/decrease in
TAC of the models is dependent on the increase/decrease in the value of the
parameters, we cannot absolutely claim whether higher or lower values of these
parameters improve or worsen the TAC of the DS, CD, and CDOS models over
the DS model.
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Figure 4.28: % increase-decrease in OC over the DS model for different pur-
chasing prices
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Figure 4.29: % increase/decrease in CSC over the DS model for different pur-
chasing prices
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5.1 Discussion of the Findings
In chapter 4, we presented the results of the evaluation. We found out that a
DSOS has always a higher TAC than a DS model for the given values of the
parameters. With this result, we have answered the first research question.
We also discovered that among the four developed models, the CDOS model
offers the best results with respect to TAC. Next after the CDOS model, the
CD model performs the best. Therefore, the answer to the second and third
research questions is now provided.
From these results, we can conclude that at the presence of quantity discount

offers by the supplier, consolidation of order quantity of individual retailers can
have a great impact on total annual cost because it reduces the purchasing
price. According to our results, this reduction is noteworthy as the purchasing
cost covers the majority of total logistics cost. Thus, even small reductions
in purchasing cost can cause great savings. If quantity discounts exist, the
CDOS and CD strategies seem to perform much better when compared with
the DS and DSOS strategies. This is in line with the work of Munson and Hu
(2010) who concluded that centralization of purchasing leads to larger purchase
quantities and while the retailers hold inventory, they can still benefit from a
discounted purchase price. Although we did not run sensitivity analysis for
different quantity discount structures, it is trivial that the magnitude of this
benefit is dependent on this structure.
The consolidation also impacts the total transportation cost. This is because

the shipments benefits from lower unit transportation cost when the order
quantity is larger. On the other hand, if the order quantity of multiple retailers
is aggregated and placed by the DC, the whole system bears only one order
placement cost.
In contrast to the DSOS model, the advantages of the CD and CDOS models

over the DS model are more sensible if the average demand is lower. This
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means that higher demand rates diminish the advantages of consolidation.
Furthermore, when the number of retailers is higher, the CDOS and CD models
perform much better over the DS and DSOS models. Again, this indicates the
impact of consolidating the order quantity of more retailers on purchasing cost.
However, there is a limit to this improvement.
The CDOS model is also more beneficial than the DS model if the order

quantity is more evenly split. In addition, the CD and CDOS models per-
form better when lead time mean is higher. However, increase in coefficient
of variation only improves the performance of the CDOS model over the DS
model and shrinks the advantages of the CD model. This finding supports the
argument that order splitting is a strategy which pools the uncertainty in lead
time (Oeser, 2010). Finally, higher purchasing prices do not necessarily result
in better performance of the CD and CDOS models. It is important to know
that the changes in TAC, when we do a sensitivity analysis of average purchas-
ing prices, are not due to purchasing cost. According to our results, purchasing
price does not directly impact the relative value of TAC of the DSOS, CD and
CDOS models over the DS model. In fact, purchasing price should be viewed
from the aspect that how it influences transportation, ordering and inventory
costs. Therefore, one should consider the trade-off between transportation and
ordering costs, on the one hand, and cycle stock cost, on the other hand.
As the results of our basic models indicate, even without including the pur-

chasing cost, the CDOS would be the preferred strategy over the CD if the
order quantity of both systems is the same. This is proved in our basic mod-
els where order quantity equals 466.67 for both models. This indicates that
consolidation of individual order quantities weakens the advantages of a non-
order splitting system (lower transportation and ordering costs) over an order
splitting system while the inventory reduction advantages of the order splitting
system still exist. Furthermore, a general understanding of the results demon-
strates that almost in all cases considered in our research work, the CDOS
model slightly performs better than the CD model (even though they have
different order quantities).
We also found out that in those cases where the order quantity of the CDOS

and CD models are not equal, the CDOS model has a larger order quantity.
On the other hand, the reorder point of the CDOS model is always smaller
than the CD model. There is, however, exception where the split proportion
is %10-%90. This is not surprising since the delivery proportion of the first
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shipment is so small and requires higher reorder point to prevent shortages.
The results further illustrate that even if the suppliers offer quantity dis-

counts, the DS is preferred over the DSOS system. The DSOS has larger order
quantity than the DS system. This is in accordance with the findings of pre-
vious research works. Therefore, the general inference is that by splitting the
order quantity (when it is supplied by a single seller), it is more likely that
buyers obtain quantity discounts (Chiang and Chiang, 1996). However, in our
work, quantity discounts play no role in direct shipping models because the or-
der quantity of both systems stands between the same price breakpoint. Only
if the intervals are sufficiently small, it is probable that offering a quantity
discount influences the total cost of order splitting. As shown in results, this
is the higher transportation cost of the DSOS model which greatly influences
the total cost.
Our findings also indicate that the total annual cost of the DSOS model

over the DS model decreases for higher average daily demand and coefficient of
variation of lead time. Previous research works also confirm that order splitting
is worthwhile when coefficient of variation is high (Chiang and Benton, 1994;
Thomas and Tyworth, 2007) and demand rates are relatively high (Thomas
and Tyworth, 2007). We also proved that the shipment of a higher proportion
of order quantity by the second delivery improves the total cost of the DSOS
model. The results of the research work by Meena and Sarmah (2013) confirm
our results. They conclude that the minimum total cost is achieved when the
split proportion is %10 and %90 for the first and second portion, respectively.
Moreover, Sajadieh and Eshghi (2009) also conclude that order quantity should
not necessarily be split equally. This is, however, in contrast to the optimal
solution of our fourth model (CDOS model) where the split proportion is %50-
%50.
Another finding is that longer lead time improves the DSOS model over the

DS model. Therefore, the longer the lead time the better the performance
of the DSOS model. This is contrary to the results of Ramasesh et al. (1991)
who discuss that order splitting performs better when the mean and variability
in the lead times (assumed to be exponential) are lower. Lastly, it is trivial
that an increase or decrease in the number of retailers has no impact on total
annual cost of the DSOS and DS systems.
The fact that order quantity is larger in the DSOS model than in the DS

model while reorder point is smaller support the findings of Chiang and Benton
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(1994), Chiang and Chiang (1996), and Tyworth and Ruiz-Torres (2000). The
lower reorder point means that order splitting provides a better service level
than non-order splitting model.

5.2 Summary
A main concern of many supply chain managers is to implement strategies
which practically result in reduced inventory cost. This is because space is an
expensive asset in many regions. This encourages academics and practitioners
to work on strategies that may decrease the cost of inventory. However, appro-
priate attention should be paid to all main logistic costs so that a decrease in
one cost does not cause an increase in other costs. In fact, a supply chain can
greatly reduce total annual cost even if either of inventory or transportation
cost is not optimal. Therefore, managers can also focus on strategies which
reduce purchasing cost.
In the literature, there are plenty of works which have discussed that order

splitting reduces inventory carrying costs. However, there are examples that
prove the disadvantages of order splitting over non-order splitting model in
case realistic transportation cost functions are selected and used. This point
was first argued by Thomas and Tyworth (2006) who discussed that, at the
presence of realistic transportation cost functions, order splitting is advanta-
geous in specific situations. Unfortunately, this important point is still ignored
in many later research works.
In this work, we reviewed the literature on order splitting to see which

logistic cost elements are included in the literature. We divided the research
stream in two periods, the research works by 2006 (till the work of Thomas and
Tyworth in 2006), and after 2006. We concluded that there is no research work
that has appropriately included all main logistic cost elements when modeling
order splitting problem (Chapter 2).
Then, we developed models to compare the total logistic cost of an or-

der splitting system (DSOS model) with the traditional logistic system (DS
model). We involved all the main logistic cost elements including purchasing,
transportation, ordering, cycle stock, safety stock, and in-transit stock costs
in our model. Therefore, we can claim that we have extended the work of
previous researchers. Furthermore, Thomas and Tyworth (2007) proposed a
research gap where a single supplier receives an order and delivers it in two
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or more shipments sequentially to take advantage of actual information about
future delivery and reduce the variability of the demand. We also filled this
gap in the literature.
Additionally, we developed an approach and proposed a case where order

splitting can perform better than a non-order splitting system. This was done
by assuming a multi-echelon system consisting of a supplier, a distribution
center (DC), and multiple retailers, where the order quantity of individual re-
tailers is consolidated by the DC and delivered by the supplier to the DC in
two separate shipments (CDOS). We also compared this Consolidated Distri-
bution Order Splitting (CDOS) model with a Consolidated Distribution (CD)
model but without order splitting (Chapter 3).
To test our proposed models, we ran numerical analysis using “Mathematica

version 10.0”. The KPI “percentage increase/decrease over the DS model” was
used to achieve integrity in making comparisons between the results. There-
fore, the evaluation of the DSOS, CD, and CDOS models is performed with
respect to the DS model. In line with the work of Thomas and Tyworth
(2007), the results of our basic models indicate that the DSOS model has a
worse performance over the traditional Direct Shipping (DS) model. Moreover,
the CDOS model performs much better than the DS and DSOS models and
slightly better than the CD model.
We also performed sensitivity analysis for average daily demand, number of

retailers, split proportion, lead time mean, coefficient of variation of lead time,
and average purchasing price. For the given values of the above-mentioned
parameters, we got the following conclusions. Similar to the results of the
basic models, the general conclusion of sensitivity analysis is that the DSOS
model always performs worse than the DS model. On the other hand, the CD
and CDOS models always perform much better than the DS and DSOS models.
The main reason is the great decrease in purchasing cost due to aggregated
demand of retailers. In addition, the CDOS performs slightly better than the
CD. The other finding is that order quantity of the DSOS model is always
higher than order quantity of the DS model. On the other hand, the order
quantity of the CDOS model is either equal to (in most cases) or larger than
the order quantity of the CD model. We also concluded that order splitting
models have a lower reorder point than the related non-order splitting models
(Chapter 4). To summarize, the CDOS strategy provides an opportunity to
implement an advantageous order splitting system. It actually takes advantage
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of demand consolidation.

5.3 Research Limitations and Future Directions
for Research

In this work, we assumed that the order is placed on a single supplier. A tra-
ditional approach to order splitting is that order quantity is split and placed
on multiple suppliers. We believe that at the presence of a quantity discount
structure, purchasing cost can be an important element in calculating the cost
of an order splitting system. It is very often that suppliers offer quantity dis-
counts to the buyers to motivate them to order larger quantities. Therefore,
if a quantity is supplied by two or more suppliers, it is probable that it falls
within lower price breakpoints resulting in higher purchasing prices. The inclu-
sion of quantity discount structure is also important in multi-echelon systems
where the retailers and DC all are a single entity and the retailers place the
orders to the supplier via the DC. Similarly, in a multi-echelon system, if the
aggregated orders are split and placed on multiple suppliers, it is probable that
it falls in lower price breakpoints. Therefore, as a limitation to our work, we
suggest further research when two or more suppliers in multi-echelon systems
deliver the order quantity.
In our work, we did not include the changes in incremental ordering cost

multiplier A. Even when A is 2 (in our models), we realized that the ordering
cost is not that high to significantly influence the total annual cost. However,
future research can consider the impact of increase or decrease in A. Another
shortcoming of our work is that order quantity is only split in two shipments.
Some researchers (Chiang and Chiang, 1996; Abginehchi et al., 2013) have
investigated the impact of multiple deliveries on a system total cost. Further
works can extend our research to multiple delivery case.
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