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Abstract

Since most systems in the real world exhibit non-stationary and non-linear dynamical
performance, parameter identification for general time-variant systems is of utmost im-
portance. This dissertation investigates the identification of general time-variant systems
using the Hilbert-Huang transform (HHT) and Bayesian model updating and model class
selection method. An identification technique based on the HHT for parametric identi-
fication of linear time-varying chainlike systems is extended for identification of general
linear time-varying systems including non-chainlike and chainlike systems. The proposed
method decomposes the system responses into intrinsic mode functions (IMFs) and residues
by the empirical mode decomposition, and then analyzes the IMFs and residues by Hilbert
transform to obtain the analytical IMFs and analytical residues. After that, it synthe-
sizes these analytical signals to form new analytical response signals and uses the new
synthesized analytical responses together with the original system responses to identify
system stiffness and damping parameters. The method is later extended for identification
of weakly nonlinear time-varying systems including Duffing and Van der Pol systems with
the help of the approximations generated according to Hahn’s formula and the theory
of Feldman. In application of the HHT-based identification technique, uncertainties due
to model structure errors, model parameter errors or model order errors may exist. To
update the uncertainties which might occur, a Bayesian model updating and model class
selection method implemented by the transitional Markov chain Monte Carlo method is
combined with the proposed HHT-based identification method. It updates initial knowl-
edge about the system responses and the white noise in these system responses based on
measured system responses. Then, it defines a set of model classes by assigning different
values to the ratio between the prediction error variance (PEV) of displacement and that
of the corresponding acceleration as well as the ratio between the PEV of velocity and
that of the corresponding acceleration, chooses the most probable model class by perform-
ing Bayesian model class selection, and generates sample system responses by using the
posterior distributions of the noise parameters obtained for the most probable model class
and the reference values of the system responses, which are later processed by the HHT-
based identification method, yielding the statistical distributions of system stiffness and
damping parameters. To address the identification of system structural parameters, a new
Bayesian inference based parameter identification method has been developed. It updates
initial knowledge about the system structural parameters and the PEVs of the IMFs of the
acceleration responses based on measured system responses with the likelihood function
formulated as the product of three probability density functions, one relating to the IMFs
of the acceleration responses, the other two relating to the IMFs of the corresponding
velocity responses and the IMFs of the corresponding displacement responses. Then, it
defines a set of candidate model classes by assigning different values to the ratio between
the PEV of each IMF of each velocity response and that of the corresponding acceler-
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Abstract

ation response as well as the ratio between the PEV of each IMF of each displacement
response and that of the corresponding acceleration response, and determines the most
probable model class by performing Bayesian model class selection, resulting in the pos-
terior distribution of the system structural parameters for the most probable model class.
Numerical simulations are carried out on 1-DOF and 2-DOF general linear time-varying
systems and weakly nonlinear time-varying systems with smooth, abrupt and periodical
stiffness variations and white noise perturbations in the system responses to demonstrate
the effectiveness, accuracy and robustness of the proposed methods.
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1 Introduction

Prediction, modeling, and identification are omnipresent in natural science. Accurate de-
scriptions of the dynamic properties of the interested systems are often required in many
engineering applications. Accurate models characterizing these dynamic properties which
are based on first principles of physics, mechanics, biology and so on are difficult to derive
because of the lack of detailed specialist knowledge. Another way of constructing models is
system identification, which deals with the problem of constructing mathematical models
to provide a better understanding and characterization of the interested dynamic systems
based on experiments and observations. System identification has evolved considerably
during the past 30 years [1, 2]. The techniques of system identification can be usually
divided into time domain techniques and frequency domain techniques. In the time do-
main, linear time-invariant systems, which are often used to model systems with stationary
properties, form indisputably the most common class of models for dynamic systems con-
sidered in practice and in literature. However, as linear time-invariant systems are not
able to capture the instantaneous dynamic properties of the systems, they can not be
applied to systems with non-stationary properties. Linear time-varying systems are often
used to model systems with non-stationary properties and might often oscillate with small
magnitude vibrations. Since most systems in the real world exhibit non-stationary dynam-
ical performance, the identification of linear time-varying systems has received increasing
attention in a wide variety of scientific fields, e.g. in electrical and control engineering
[3], civil engineering [4], biology [5], aero engineering [6] and mechanical engineering. In
mechanical engineering, applications range from robotics to dynamics of machines and
rotors.

1.1 Identification methods for linear time-varying systems

Spectral analysis based on Fourier transform (FT) is the most commonly used method
when the global power-frequency distribution of a given signal is of interest, and forms a
relation between time domain and frequency domain. By application of Inverse Fourier
transform (IFT), a signal is expressed as the superposition of complex exponentials of
various frequencies with complex amplitudes defined by FT. Due to its simplicity and ver-
satility, it has become the predominant method for data analysis since it was discovered
[7]. However, due to the critical limitations such as: the system to be analyzed must be
linear and the data to be analyzed must be strictly periodic or stationary, the application
of Fourier spectral analysis is limited. In spite of these limitations, Fourier spectral analy-
sis is still widely used to process data with finite duration and nonstationarity for lack of
alternatives. The uncritical use of Fourier spectral analysis and the casual adoption of the
stationary and linear assumptions may give misleading results [8].
As Fourier basis functions are localized in frequency but not in time, an alternative method
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naming the Short time Fourier transform (STFT) was proposed by Denis Gabor for ap-
plication of speech communication [9]. Gabor multiplied a signal by a pre-fixed window
function which is nonzero for only a short period of time, then took the Fourier trans-
form of the modified signal when the window was sliding along the time axis, resulting
in the sinusoidal frequency and phase content of sections of the signal. Portnoff [10] de-
veloped a representation for discrete-time signals and linear time-varying systems based
on STFT and the time-varying frequency response. Based on Portnoff’s work, Kozek and
Hlawatsch [11] proposed a time-frequency representation for linear time-varying systems
using the Weyl Symbol. Later, Benisty et al [12] introduce a Time-varying short time
Fourier transform (TV-STFT) defined by a time-varying window length. Based on Mul-
tiplicative transfer function (MTF) approximation [13], by controlling the length of the
analysis window, an adaptive scheme is presented to achieve a relatively low steady state
error without degrading its convergence rate.
However, due to the limit given by the Heisenberg uncertainty principle, the frequency
resolution of STFT is inversely proportional to its time resolution (window length), and
variations of window length compromise the frequency resolution. Even if optimized joint
time-frequency localization is assumed, the trade-off between time and frequency resolu-
tion is unavoidable. This limitation of STFT prompts the need for an alternative method
for time-frequency analysis. For this reason, a multi-resolution analysis method with its
basis functions compactly supported in both time and frequency domain, namely Wavelet
transform (WT) has been proposed [14, 15].
The original wavelet representations were developed mainly during the 1980s, and Ingrid
Daubechies [16] developed the most famous wavelet representations, namely the orthonor-
mal compactly supported wavelets. Similar to STFT, WT results in a time-frequency
representation, but other than representing signals by sinusoidal functions, WT represents
a signal by the superposition of its projections on a set of daughter wavelets generated by
scaling and translating a pre-assumed wavelet basis function known as the mother wavelet
in both time domain and frequency domain, offering very good time and frequency local-
ization of the signal. By using a mother wavelet which is both shifted and dilated, WT
mitigates the limitations of FT and STFT. Furthermore, WT is able to use time window
shorter than that of the STFT to generate accurate signal spectrum, and thus is able to
detect model variations more quickly. Nonetheless, wavelet theory is still limited by the
Heisenberg uncertainty principle.
Many authors have proposed WT-based methods for identification of linear time-varying
systems. Ghanem and Romeo [17] estimated the system parameters with a differential
equation model relating input and output measurements which has been discretized by
a Wavelet-Galerkin method. Park et al [18] derived an algebraic equation of linear time-
varying systems by expanding the input-output data and the time-varying impulse response
with normalized Haar wavelets. By solving the algebraic equation, unknown wavelet coef-
ficients for the system impulse response can be estimated and the system impulse response
can be synthesized. Shan and Burl [19] estimated the system parameters from the system’s
"local" transfer function based on its time-frequency representation using the continuous
wavelet transform. A non-linear least square algorithm coupled with a scale selection al-
gorithm was used to carry out the parameter estimation.
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According to the definitions, both STFT and WT are methods with a priori fixed choice
of a basis, their application to the identification of system parameters has been difficult
[17] and yields very often instantaneous modal parameters only. And as mentioned before,
due to the limit of Heisenberg uncertainty principle, their time and frequency resolutions
cannot have the same precision simultaneously. To conquer the limitations of these meth-
ods, further research and methods are anticipated.
In the late 20th century, some efforts have been made in extending the discrete-time
state-space methods to linear time-varying systems [20–22]. Shokoohi and Silverman [20]
proposed a Hankel matrix decomposition method based on impulse response data to iden-
tify the state-space model of a linear time-varying system. Based on their work, Verhaegen
and Yu [21] extracted successive discrete transition matrices of a linear time-varying sys-
tem by a subspace-based algorithm from an ensemble of input and output data. Later on,
Liu developed another Singular value decomposition (SVD)-based state-space method to
identify linear time-varying systems [22]. With respect to the previous work of Verhaegen
and Yu, Liu’s method guarantees the invariability of the eigenvalues of the estimated tran-
sition matrix and extends the modal concepts of linear time-varying systems by proposing
the concept of pseudomodal parameters which are determined from the eigenvalues of the
varying transition matrix to characterize the dynamical properties of systems. Neverthe-
less, this SVD-based method cannot obtain characteristic time and frequency scales, and
due to the fact that the eigenfunctions are difficult to interpret, the applicability of this
method to the parametric identification of linear time-varying systems seems to be limited.
At the end of the 1990s, Huang et al [8] proposed the Empirical mode decomposition (EMD)
method for non-stationary data analysis. The main idea is to decompose a general signal
into a finite number of mono-component signals called intrinsic mode functions by a sift-
ing process. As it is based on the local characteristics of the signal, EMD method can be
applied to nonlinear and non-stationary processes. EMD method combined with Hilbert
transform (HT) was denoted as Hilbert-Huang transform (HHT) [8]. It can describe the
instantaneous dynamic properties of the signal both in time and frequency domain. HHT
has been applied to identify modal parameters of Multi-degrees of freedom (MDOF) linear
systems including the natural frequencies and damping ratios as well as the mass, damping
and stiffness matrices of the systems [23, 24]. However, these HHT-based applications of-
ten relate to time-invariant systems. Recently, HHT method has been successfully applied
to linear time-varying chain-like systems by Shi and Law, in which only one set of IMFs is
required to identify the system parameters [25, 26].
In the application of the aforementioned identification methods, uncertainties may exist.
These uncertainties may be due to model structure errors which would be caused by some
uncertainties concerning the governing physical equations of the system, usually related
to the chosen mathematical model, which might occur typically in the modeling of pro-
cesses and strongly nonlinear behavior in certain engineering systems, and due to model
parameter errors which would be caused by the application of inappropriate boundary
conditions and inaccurate assumptions used in order to simplify the model of the system,
the environmental influence, manufacturing tolerances and the artificial introduction of
system damping, etc, and also due to model order errors which might be caused by the
discretization of complex systems, since real structures are continuous and have infinite
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DOFs, but the DOFs of the discretized model is limited [27]. In order to update the uncer-
tainties which might occur in the identification of linear time-varying systems and weakly
nonlinear systems, we adopt Bayesian inference in this thesis.

1.2 Bayesian inference

In statistical analysis, probability can be interpreted in different ways: frequency proba-
bility (physical probability) and Bayesian inference (evidential probability). The former
treats probability as the limit of an event’s relative frequency in a large number of trials
and thus its application is limited since probability can only be assigned to an event in
which a random experiment is possible; whereas the latter can assign probabilities to any
event, even when a random experiment is not possible. Bayesian inference is based on
Bayes’ theorem [28, 29] developed by Thomas Bayes in 1760s, which states that the condi-
tional probability (posterior probability) of an event A conditioned on the available data
of another event B is given by the product of the prior probability of A and the conditional
probability (likelihood function) of B (conditioned on A) divided by the prior probability
of B. Bayes’ theorem is one of the most frequently occurring eponyms in the literature of
statistics.
Based on Bayes’ work, Harold Jeffreys [30], Richard T. Cox [31] and Edwin T. Jaynes
[32–34] significantly developed the Bayesian theory, since then Bayesian inference has been
widely used in different areas of natural sciences and engineering, such as statistical physics
[33, 35], medical sciences [36, 37], computer science [38], engineering geology [39], system
reliability [40, 41], mechanical engineering [42], aerospace engineering [43], etc.

1.3 Motivations and aims

As there exist still limitations in identification of time-varying systems, the aim of this
thesis is to propose an HHT-based identification method for the parametric identification
of general linear time-varying systems (including chainlike and non-chainlike systems) as
well as weakly nonlinear time-varying systems (such as Duffing and Van der Pol oscilla-
tors). The broad-based aims of this thesis are summarized as follows:

1. Extend the parametric identification method of linear time-varying chainlike systems
proposed by Shi and Law to general linear time-varying systems (including chainlike and
non-chainlike systems).
2. Extend the parametric identification method of general linear time-varying systems
(including chainlike and non-chainlike systems) to weakly nonlinear time-varying systems
(such as Duffing and Van der Pol oscillators).
3. Apply Bayesian inference for both general linear time-varying systems and weakly
nonlinear systems to get the statistical distributions of the system parameters.
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1.4 Outline of the thesis

This thesis contains 6 chapters. Chapter 2 introduces the theoretical bases of the HHT-
based identification method. First, the detailed concepts and procedures of HHT as well as
its application in linear time-varying MDOF systems are introduced. Then, the theoretical
knowledge about Bayesian inference methods is also presented.
Chapter 3 first proposes the main ideas and procedures of the HHT-based identifica-
tion method for general linear time-varying MDOF systems (including chainlike and non-
chainlike systems). Then, three types of time variation of stiffness: smooth, abrupt and
periodical variations are studied on 1-DOF and 2-DOF mass-spring-damper dynamical
systems to demonstrate the effectiveness and accuracy of the HHT-based identification
method for general linear time-varying systems.
Chapter 4 first introduces some basic knowledge about Duffing oscillators and Van der
Pol oscillators, then extends the HHT-based identification method for general linear time-
varying MDOF systems to the identification of weakly nonlinear time-varying MDOF
Duffing systems and Van der Pol systems, respectively. As in Chapter 3, three types of
time variation of stiffness: smooth, abrupt and periodical variations are also studied on
1-DOF and 2-DOF Duffing as well as Van der Pol systems to demonstrate the effectiveness
and accuracy of the proposed method for weakly nonlinear time-varying systems.
Chapter 5 proposes the main ideas and procedures of Bayesian inference based methods
which use the Transitional Markov chain Monte Carlo (TMCMC) method for sampling for
both general linear time-varying systems and weakly nonlinear time-varying systems. As
in the above two chapters, 1-DOF and 2-DOF general linear time-varying systems as well
as weakly nonlinear time-varying systems are studied with smooth, abrupt and periodi-
cal stiffness variations and white noise disturbance. The resulting statistical distributions
of the system parameters demonstrate the effectiveness, accuracy and robustness of the
Bayesian inference based methods for both general linear time-varying systems and weakly
nonlinear time-varying systems.
Finally, Chapter 6 summarizes the conclusions of the thesis and presents recommendations
for future research that could be possible extensions to this work.
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2 Theoretical bases

2.1 Hilbert-Huang Transform

HHT is the combination of EMD method and HT. It is an adaptive method and has
been proposed by Huang et al in 1998 for nonlinear and non-stationary data analysis. It
was proved to be effective for the characterization of a wide range of nonlinear and non-
stationary signals in terms of Intrinsic mode function (IMF) obtained by the application
of EMD to the signals [8, 44, 45]. Due to its huge potential, HHT has been widely used in
many applications, such as financial applications, medical applications, plasma diagnostics,
study of ozone records, damage detection, aeroelastic flight data analysis, gearbox and
roller bearing fault diagnosis, and nonlinear vibration characterization [46–54].

2.1.1 Empirical Mode Decomposition

A very successful approach to study time-varying dynamic properties of a system is the
HT [55, 56], which is able to decompose signals in the time-frequency domain to catch the
time and frequency localization information of the signals. At any given time instance,
most signals in real world such as human speech, radar signals, wireless signals and me-
chanical signals may involve more than one harmonic component [57–59]. For the purpose
of obtaining meaningful Instantaneous frequency (IF), general signals have to be processed
into mono-component signals, each of which admits an unambiguous definition of instan-
taneous frequency and amplitude through HT. This kind of mono-component signals are
termed as IMFs, which are defined as functions satisfying two conditions: (1) in the whole
data set, the number of extrema and the number of zero crossings must either be equal or
differ at most by one; and (2) at any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is zero. The first condition
makes sure that the IMFs are narrow band signals. Since there is no precise definition
for mono-component signals, narrow band requirement was adopted as a limitation on
signals so that the signals are quasi mono-component signals with meaningful IFs. The
second condition modifies the classical global requirement to a local one and is essential to
make sure that the IF will not have unwanted fluctuations induced by asymmetric wave-
forms [8]. Based on these two conditions, the resulting IMFs are Amplitude and frequency
modulated (AM/FM) zero mean signals suitable for Hilbert transform.
Huang et al. [8] proposed empirical mode decomposition to decompose a general signal
into a finite number of IMFs. Compared with conventional decomposition methods, which
accomplish the analysis by projecting the considered signal into numbers of pre-assumed
basis vectors, EMD represents the signal as an expansion of signal-dependent IMFs gen-
erated via an iterative sifting process. Therefore, it can be applied to nonstationary and
nonlinear signals. As the results are not biased by the predetermined basis, the IMFs
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are able to retain the physical meaning of the intrinsic processes underlying the signal.
After applying HT to the IMFs, meaningful IFs can be obtained, offering a time-frequency
representation of the signal.

Suppose the signal under consideration is a signal of an n-DOF system x(t), the sifting
process is presented in detail as follows:

Figure 2.1: Quantities related to the lth iteration for generating the jth IMF.

First, all local maxima and minima of the signal x(t) have to be identified and connected
by cubic splines as the upper envelope, and lower envelope respectively (see Figure 2.1);

Second, the mean of the upper and lower envelopes (designated as mean1) is computed
and subtracted from the original signal to form a new signal:

h1 = x(t) −mean1 (2.1)

Third, h1 is treated as the signal to be sifted, and the previous two steps are repeated,
then we have:

h11 = h1 −mean11 (2.2)

The above sifting steps are repeated l times, until the resulting new signal h1l satisfies the
two conditions for an IMF:

h1l = h1(l−1) −mean1l (2.3)

x1 = h1l (2.4)

where x1 is the first IMF component of the signal x(t). A stop criterion for the sifting
process has to be determined to make sure that the IMF components maintain enough
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physical sense of both amplitude and frequency modulations, which is achieved by limiting
the size of the standard deviation as follows

SD =
T
∑

t=0







∣

∣

∣h1(l−1)(t) − h1l(t)
∣

∣

∣

2

h2
1(l−1)(t)





 (2.5)

Then, the first IMF x1 should be subtracted from the original signal to form another new
signal:

r1 = x(t) − x1 (2.6)

As the new signal r1 still contains information of longer period components, the previous
three steps have to be repeated on r1:

r2 = r1 − x2

The previous four steps should be repeated on all the subsequent rjs(j ≥ 2), until the
residual signal rn becomes a monotonic function from which no more IMFs can be extracted
or becomes smaller than a predetermined value.

rj = rj−1 − xj , . . . , rn = rn−1 − xn (2.7)

Finally, the original signal x(t) can be expressed as

x(t) =
n
∑

j=1

xj(t) + rn(t) (2.8)

in which xj, j = 1, 2, . . . , n are the IMFs of the original signal x(t), rn(t) is the residue.
Following the above EMD algorithm, MATLAB scripts were later developed by P. Flan-
drin [60] with a new stop criterion as an improvement to the aforementioned criterion (see
Equation (2.5)). This new criterion tests if the evaluation function σ(t) = |mean(t)/a(t)|
(mean(t) is the mean envelope of the signal, a(t) = (emax(t) − emin(t))/2 is the mode
amplitude, emax(t) is maximal envelope and emin(t) is minimal envelope) is smaller than
γ1 for some prescribed fraction (1 − αp) of the total duration, and is smaller than γ2 for
the remaining fraction [61]. If the new criterion test is positive and if the number of zero
crossings and the number of extrema differ by no more than 1, the iterations for extracting
a single IMF are stopped.

2.1.2 Hilbert Transform

HT was first proposed by David Hilbert in 1905. Later, Gabor introduced HT to signal
theory and defined the amplitude and other instantaneous characteristics of an arbitrary
signal with the help of the HT [9]. In order to obtain meaningful IF, a general signal has
to be decomposed into IMFs suitable for HT.
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For an IMF xj(t), the HT of xj(t) is denoted by x̃j(t) as

x̃j(t) = H [xj(t)] =
1

π
P
∫ +∞

−∞

xj(τ)

t− τ
dτ, (2.9)

where P denotes the Cauchy principal value. xj(t) and x̃j(t) form a complex conjugate
pair. The analytical signal Xj(t) of xj(t) is expressed as

Xj(t) = xj(t) + jx̃j(t) = Aj(t) exp[jψj(t)] (2.10)

in which

xj(t) = Aj(t) cos [ψj(t)]

Aj(t) =
√

x2
j(t) + x̃2

j(t)

ψj(t) = arctan [x̃j(t)/xj(t)]

(2.11)

where Aj(t) is the instantaneous amplitude and ψj(t) is the instantaneous phase angle,
and non-subscript j = (−1)1/2. The IF ωj(t) is the time-derivative of the instantaneous
phase angle given as

ωj(t) = ψ̇j(t) =
xj(t) ˙̃xj(t) − ẋj(t)x̃j(t)

A2
j(t)

= Im

[

Ẋj(t)

Xj(t)

]

(2.12)

The time-derivative of the instantaneous amplitude can be expressed as

Ȧj(t) =
xj(t)ẋj(t) + x̃j(t) ˙̃xj(t)

Aj(t)
= Aj(t)Re

[

Ẋj(t)

Xj(t)

]

(2.13)

Equations (2.10) - (2.13) describe the instantaneous behavior of an IMF at any time t
through HT.

2.2 Linear time-varying MDOF systems

The equation of a linear time-varying MDOF system can be expressed as

M(t)ÿ(t) + C(t)ẏ(t) + K(t)y(t) = f(t) (2.14)

Suppose the system is an n-DOF system, then y(t) = [y1(t), y2(t), . . . , yn(t)]T is the dis-
placement vector, f(t) is the excitation vector (f(t) = 0 for free vibration), M(t) the mass
matrix, C(t) the damping matrix, K(t) the stiffness matrix. They are all n× n matrices.
The displacement vector y(t) is decomposed using EMD method. The ith element of the
displacement vector can be expressed as

yi(t) =
n
∑

j=1

yij(t) + ri(t) =
n
∑

j=1

Aij(t) cos[ψij(t)] + ri(t) (2.15)
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in which yij(t) is the jth IMF extracted from the ith element of the displacement vector
which corresponds to the ith DOF.
From Bedrosian’s theorem on the HT of the product of two signals [62], suppose lp(t) is
the low-pass portion of a signal, hp(t) is the high-pass portion of the same signal, their
spectra are non-overlapping, then H [lp(t)hp(t)] = lp(t)H [hp(t)]. If the coefficient matrices
M(t), C(t) and K(t) don’t vary quickly over time, we have:

H [M(t)ÿ(t)] = M(t)H [ÿ(t)] = M(t)¨̃y(t)

H [C(t)ẏ(t)] = C(t)H [ẏ(t)] = C(t) ˙̃y(t)

H [K(t)y(t)] = K(t)H [y(t)] = K(t)ỹ(t)

(2.16)

This assumption is violated for abruptly varying systems. We will further discuss this in
the simulations of abruptly varying systems in next chapter.
If we apply the HT to both sides of Equation (2.14), and consider Equation (2.16), we get:

M(t)¨̃y(t) + C(t) ˙̃y(t) + K(t)ỹ(t) = f̃(t) (2.17)

Multiplying each term of Equation (2.17) by the imaginary number j and adding it to the
corresponding term of Equation (2.14), the differential equation of the linear time-varying
n-DOF system can be expressed with analytic signals as follows:

M(t)Ÿ(t) + C(t)Ẏ(t) + K(t)Y(t) = F(t) (2.18)

in which F(t) = [F1(t), F2(t), . . . , Fn(t)]T is the analytic signal of the excitation vector,
Y(t) = [Y1(t), Y2(t), . . . , Yn(t)]T is the analytic signal of the displacement vector. From
Equations (2.10) - (2.11), the ith element of the analytic signal which corresponds to the
ith DOF can be expressed by the superposition of n analytical IMFs and an analytical
residue:

Yi(t) =
n
∑

j=1

Yij(t) +Ri(t) =
n
∑

j=1

Aij(t) exp[jψij(t)] +Ri(t) (2.19)

where the instantaneous amplitude Aij(t), the instantaneous phase angle ψij(t), the IF
ωij(t) and the time-derivative of Aij(t) are expressed according to Equations (2.11) - (2.13),
except that their subscripts are changed from j to ij.
According to Equations (2.11) - (2.13) and (2.19), we obtain

Ẏij(t) = Yij(t)[Ȧij(t)/Aij(t) + jωij(t)] (2.20)

Ÿij(t) = Yij(t)[Äij(t)/Aij(t) − ω2
ij(t) + j(2Ȧij(t)ωij(t)/Aij(t) + ω̇ij(t))] (2.21)

where

ω̇ij(t) = Im

[

Ÿij(t)

Yij(t)

]

− 2
Ȧij(t)ωij(t)

Aij(t)
(2.22)

Äij(t) = Aij(t)

(

Re

[

Ÿij(t)

Yij(t)

]

+ ω2
ij(t)

)

(2.23)
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2.3 An HHT-based identification method for linear

time-varying MDOF chainlike systems based on

forced vibration data

Since most systems in the real world exhibit time-varying dynamical performance, identifi-
cation for linear time-varying systems is utmost required. To this end, Shi et al developed
an identification algorithm for linear time-varying MDOF chainlike systems based on HHT
with forced vibration response data [26]. Since the system model introduced in Section
2.2 was adopted for linear time-varying MDOF systems, all the equations in Section 2.2
can be also used in this section. The identification algorithm is given as follows:
For Equation (2.18), the jth analytical signal of the analytical displacement vector Y(t) =
∑n

j=1 Yj(t) can be written as

Yj(t) = [Y1j, Y2j, . . . , Ynj]
T (2.24)

Then, substitute Equations (2.20) and (2.21) for Ẏ(t) and Ÿ(t) in Equation (2.18), we
obtain

M(t)[γm]Y(t) + C(t)[γc]Y(t) + K(t)Y(t) = F(t) (2.25)

in which [γm] and [γc] are coefficient matrices, the elements of which are given by

γm
ij = [Äij(t)/Aij(t) − ω2

ij(t)] + j[2Ȧij(t)ωij(t)/Aij(t) + ω̇ij(t)] (2.26)

γc
ij = Ȧij(t)/Aij(t) + jωij(t) (2.27)

Assume any two IMFs yf (t) and yg(t) satisfy the orthogonal relationship yf (t) · yg(t) = 0.
Based on Bedrosian’s theorem, it is easy to obtain

Yf (t) · Yg(t) = 0 (2.28)

Multiply the two sides of Equation (2.25) with YT
j (t), we have

YT
j (t)M(t)[γm]Yj(t) + YT

j (t)C(t)[γc]Yj(t) + YT
j (t)K(t)Yj(t) = YT

j (t)F(t) (2.29)

Assume the mass matrix is known, with the help of Equations (2.12), (2.13), (2.22) and
(2.23), Equation (2.29) can be simplified and written in compact matrix notation as

Qcβc + Qkβk = Qm (2.30)

where βc = [c1, c2, . . . , ci, . . . , cn]T , βk = [k1, k2, . . . , ki, . . . , kn]T , Qc Qk and Qm are the
coefficient matrices and vector, whose elements in the jth row are expressed as

Qc
j =

























Y1jγ
c
1jY1j

Y1j(γ
c
1jY1j − γc

2jY2j) + Y2j(γ
c
2jY2j − γc

1jY1j)
...

Yi−1j(γ
c
i−1jYi−1j − γc

ijYij) + Yij(γ
c
ijYij − γc

i−1jYi−1j)
...

Yn−1j(γ
c
n−1jYn−1j − γc

njYnj) + Ynj(γ
c
njYnj − γc

n−1jYn−1j)

























T
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Qk
j =

























Y 2
1j

Y1j(Y1j − Y2j) + Y2j(Y2j − Y1j)
...

Yi−1j(Yi−1j − Yij) + Yij(Yij − Yi−1j)
...

Yn−1j(Yn−1j − Ynj) + Ynj(Ynj − Yn−1j)

























T

(2.31)

Qm
j = YT

j F − (Y1jm1γ
m
1jY1j + Y2jm2γ

m
2jY2j + · · · + Yijmiγ

m
ij Yij + · · · + Ynjmnγ

m
njYnj)

According to its real and imaginary parts, the complex Equation (2.30) can be assembled
as follows

[

Re(Qc) Re(Qk))
Im(Qc) Im(Qk)

] [

βc

βk

]

=

{

Re(Qm)
Im(Qm)

}

(2.32)

For an n-DOF linear time-varying chainlike system, Equation (2.32) contains 2n time-
varying equations. By solving Equation (2.32), time-varying unknown system parameters
can be obtained at any time instant t.
For a 1-DOF linear time-varying system, the stiffness and damping coefficients can be
expressed as

k(t) = mω2
0(t), c(t) = 2mh0(t) (2.33)

where ω0(t) and h0(t) are the instantaneous undamped natural frequency and the instan-
taneous damping coefficient of the system respectively, which are given by

ω2
0(t) =

k(t)

m

= ω2(t) +
Re(F (t)/Y (t))

m
−

Im(F (t)/Y (t))Ȧ(t)

mω(t)A(t)
−
Ä(t)

A(t)
+

2Ȧ2(t)

A2(t)
+
ω̇(t)Ȧ(t)

ω(t)A(t)

(2.34)

h0(t) =
Im(F (t)/Y (t))

2mω(t)
−
Ȧ(t)

A(t)
−

ω̇(t)

2ω(t)
(2.35)

in which ω(t), Ȧ(t), ω̇(t) and Ä(t) are the instantaneous coefficients.

2.4 Bayesian model updating

Model updating focuses on improving the mathematical model based on the experimental
data such that the updated model describes the dynamic properties of the subject structure
more correctly. Since there always exist uncertainties (the origin of the uncertainties can be
found in Section 1.1) in the modeling process, model updating is required. Model updating
can be divided into general model updating and Bayesian model updating, the former

13



2 Theoretical bases

assumes that the updated model parameter is a single value, whereas the latter assumes
that the updated model parameter is a random variable with probability distribution. As
the updated model parameter obtained by general model updating is a single value, the
updated model obtained by this method is the model which has the minimal error between
the experimental data and the model itself, general model updating method is not able to
show uncertainty of the model parameter. However, Bayesian model updating can solve
this problem: the Probability density function (PDF) of the updated model parameter
obtained by Bayesian model updating is capable of expressing uncertainty of the model
parameter. It is a powerful tool to update the uncertainties in a model response by using
experimental data [63].

2.4.1 Bayesian model updating for a given model class

For a given model class Mmi, suppose D is a set of experimental data from measurements
of a dynamic system which might be the modal shapes and frequencies of the system,
the measured system structural response in terms of acceleration, or the spectral density
of the response. The goal of Bayesian model updating is to use D to update the relative
plausibility of each model in the chosen model set which is defined by the parameter vector
θ ∈ Θ ∈ R

Np . According to the well known Bayes’ theorem, a posterior (updated) proba-
bility distribution of model parameter conditioned on the available data is proportional to
the product between the prior probability distribution and the likelihood function which
are defined in some ways, so the relative plausibility of each model in the chosen model
class is given by

p(θ|D,Mmi) =
p(D|θ,Mmi)p(θ|Mmi)

p(D|Mmi)
(2.36)

where p(θ|D,Mmi) is the posterior PDF of θ which represents the probability of obtain-
ing model parameter vector θ given the experimental data D and the model class Mmi;
p(θ|Mmi) is the prior PDF given the model class Mmi, which represents the initial knowl-
edge about the dynamic system when D are not obtained and quantifies the prior plausi-
bility of each model in the model class Mmi. Generally the real value of θ is unknown, so
a reasonable PDF will be set as the prior PDF of θ; p(D|θ,Mmi) is the likelihood function
which represents the probability of obtaining D given θ and the model class Mmi. The
closer the distribution of θ is to the real value of the parameter vector, and the closer Mmi

is to the real dynamic system, the closer the predicted system responses will be to the
experimental data D, and the larger the obtained likelihood will be; p(D|Mmi) is the evi-
dence for the model class Mmi provided by the experimental data D which is a normalizing
constant to make the area of p(D|θ,Mmi)p(θ|Mmi) equal to 1, so it does not have an effect
on the shape of the posterior distribution. All the above probabilities are conditional on
the chosen Bayesian model class Mmi.

2.4.2 Formulation of the likelihood function

The likelihood function p(D|θ,Mmi) is a measure of the data fit between the system output
(experimental data) and the corresponding structural model output, whose value for each

14
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parameter vector θ is given by a probability model for the prediction error, which is the
difference between the system output that will be measured (experimental data) and that
predicted by the structural model for a specified value of the parameter vector θ. As the
Gaussian PDF gives the largest amount of uncertainty among all probability distributions
for a real variable whose first two moments are specified, a Gaussian distribution with zero
mean and covariance matrix Σ justified by the principle of maximum entropy is chosen as
the PDF model for the prediction error e.
Assume the system output (experimental data) is denoted as so, the corresponding struc-
tural model output is denoted as mo(θ), the connection between these two outputs is given
as

so = mo(θ) + e , e ∼ N(0,Σ) (2.37)

Then, the PDF model for the system output is given by a Gaussian PDF with the mean
equal to the model value mo(θ) ∈ RNo and with a covariance matrix Σ(θ) ∈ RNo×No :

p(so|θ) =
1

(2π)No/2|Σ(θ)|1/2
exp

[

−
1

2
(so−mo(θ))T (Σ(θ))−1(so−mo(θ))

]

(2.38)

where No is the number of observed degrees of freedom.
Assume the experimental data D = {so : ki = 1, . . . , Ns} from measurements consist of
Ns sets of data, and the prediction errors are modeled as statistically independent of each
other, then the likelihood function can be given as

p(D|θ,Mmi) =
Ns
∏

ki=1

p(so|θ)

=
1

(2π)NoNs/2∏Ns

ki=1 |Σ(θ)|1/2
exp

[

−
1

2

Ns
∑

ki=1

(so−mo(θ))T (Σ(θ))−1(so−mo(θ))

]

(2.39)

2.4.3 Markov chain Monte Carlo simulations – Metropolis-Hastings
algorithm

In order to take samples from the posterior PDF p(θ|D,Mmi), stochastic simulation meth-
ods [64–66] which can estimate any value of interest E[ϑ|D,Mmi] with the help of Law of
Large Numbers E[ϑ|D,Mmi] ≈

∑N
l=1 ϑ(θl)/N ({θl : l = 1, . . . , N} are the samples taken

from p(θ|D,Mmi)) are often used in Bayesian inference. Among the stochastic simulation
methods, Markov chain Monte Carlo (MCMC) methods are very famous methods pro-
posed to gain a sample distributed as a PDF p(θ) without sampling or simulating directly
from p(θ) in the recent two decades [67]. It is constituted by Markov Chain process and
Monte Carlo integration. The principle of MCMC is: for any random starting value θ(0),
an ergodic Markov chain θ(t) is generated using a transition kernel with stationary distri-
bution p(θ), the distribution of θ(t) will converge to p(θ) and has nothing to do with the
choice of θ(0).
Among the MCMC methods, the Metropolis-Hastings (MH) algorithm which was first
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proposed by Metropolis et al. [68] then generalized and applied for Bayesian analysis by
Hastings [69] is the most famous MCMC method. There are two important distributions
in MH algorithm, one is the target PDF p(θ), the other is the proposal distribution q(·|·),
also called transition function. Consider Bayesian model updating and set the posterior
PDF p(θ|D,M) as the target PDF p(θ), the MH algorithm is as follows:

1. Choose θ(0) as any variable sample and set t = 0;

2. Generate a candidate point Y from q(·|θ(t));

3. Generate a random number u from a standard uniform distribution, u ∼ U(0, 1);

4. If u ≤ apt, then set θ(t+1) = Y , otherwise set θ(t+1) = θ(t), where apt =

min
(

1,
p(Y )q(θ(t)|Y )

p(θ(t))q(Y |θ(t))

)

is the Metropolis-Hastings acceptance probability;

5. Set t = t+ 1;

Repeating step 2 to 5 N times, a Markov chain sample {θt+1 : t = 0, . . . , N} can be
obtained. The period before the sample becomes stationary is called burn-in period, the
sample obtained within this period is not obtained from the posterior PDF, so it should be
discarded. If the Markov chain has simulated through the whole sample space (ergodic),
after discarding the sample within the burn-in period, the sample left will be distributed
as the posterior PDF.
The choice of the proposal distribution q(·|·) should follow two rules: (1) The proposal
distribution should approach the target PDF p(θ) as close as possible; (2) It should be
easy to sample from the proposal distribution. The MH algorithm depends only on the
ratio p(Y )/p(θ(t)) and q(θ(t)|Y )/q(Y |θ(t)), therefore it is independent of normalizing con-
stants and can be used to solve Bayesian statistical problems where the posterior target
distribution is usually a normalizing constant.

2.4.4 The transitional Markov chain Monte Carlo method

MCMC are often inefficient when the uncertain variables are highly correlated condition-
ing on the data; and when it is difficult to choose a suitable proposal distribution, it is
inapplicable. To overcome these defects, a sophisticated MCMC-based algorithm called
Adaptive Metropolis-Hastings (AMH) method has been developed by Beck and Au [70],
the core of which is to avoid directly sampling from the target PDF but to sample from
a series of simpler intermediate PDFs that converges to the target PDF. However, this
method is inefficient for high-dimensional problems as kernel density estimation which is
inefficient for high-dimensional problems is required. A simulation-based method called
the TMCMC method, which is motivated by the intermediate PDF idea from AMH and
based on MCMC, is proposed by Ching and Chen for Bayesian model updating, model
class selection and model averaging problems [71]. The TMCMC method inherits the ad-
vantages of AMH but avoids inefficient kernel density estimation, so it is applicable to very
peaked, flat and multimodal posterior PDFs and is efficient for high-dimensional problems.
Moreover, the TMCMC method is capable of automatically selecting intermediate PDFs,
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2.4 Bayesian model updating

and can evaluate the evidence for the chosen model class as a by-product, which is the key
component for Bayesian model class selection and Bayesian model averaging.
According to Equation (2.36), the following relation is considered

p(θ|D,Mmi) ∝ p(D|θ,Mmi)p(θ|Mmi) (2.40)

Since the geometry of the likelihood function p(D|θ,Mmi) cannot be fully known in ad-
vance, directly sampling from posterior PDF p(θ|D,Mmi) can be difficult. Following the
intermediate PDF idea of AMH, the TMCMC method avoids directly sampling from diffi-
cult posterior PDF, but samples from a sequence of intermediate PDFs which are defined
by

pj(θ) ∝ p(θ|Mmi) · p(D|θ,Mmi)
βj (2.41)

where the stage number j = 0, . . . , sn and 0 = β0 < β1 < · · · < βsn = 1.
According to this definition, the intermediate PDFs pj(θ) will converge from the prior PDF
p0(θ) = p(θ|Mmi) to the posterior PDF psn(θ) = p(θ|D,Mmi). It is noted that, although
the change between p(θ|Mmi) and p(θ|D,Mmi) can be prominent, the change between two
adjacent intermediate PDFs can be small, which makes it possible to generate samples
from pj+1(θ) based on pj(θ). By applying the MH algorithm in each intermediate stage
to generate samples according to pj(θ), the TMCMC method can gradually contract the
parameter space to the region which has significant probability mass.
For each resampling stage, the following procedure is processed:
Given Nj samples {θj,l : l = 1, . . . , Nj} from pj(θ), compute the plausibility weight of
these samples with respect to pj+1(θ)

w(θj,l) =
p(θj,l|Mmi)p(D|θj,l,Mmi)

βj+1

p(θj,l|Mmi)p(D|θj,l,Mmi)βj
= p(D|θj,l,Mmi)

βj+1−βj (2.42)

where the l denotes the sample index in the jth iteration stage.
Then generate each sample from pj+1(θ) using the MH algorithm: the starting point of a
Markov chain is a previous sample that is selected according to the probability equal to
its normalized weight

θj+1,l = θj,i with probability
w(θj,i)

∑Nj

i=1 w(θj,i)
l = 1, . . . , Nj+1 (2.43)

If Nj and Nj+1 are large, then samples {θj+1,l : l = 1, . . . , Nj+1} will be distributed as
pj+1(θ), and we can obtain

∑Nj

l=1 w(θj,l)

Nj

≈

∫

p(θ|Mmi)p(D|θ,Mmi)
βj+1dθ

∫

p(θ|Mmi)p(D|θ,Mmi)βj dθ
(2.44)

The proposal distribution for the MH algorithm is a Gaussian distribution centered at the
previous sample with a covariance matrix Σj equal to the scaled version of the estimated
covariance matrix of pj+1(θ)

Σj = s2
f

Nj
∑

l=1

w(θj,l)
∑Nj

l=1 w(θj,l)
(θj,l − θ̄j)(θj,l − θ̄j)

T (2.45)
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where

θ̄j =

∑Nj

i=1 w(θj,i)θj,i
∑Nj

i=1 w(θj,i)
(2.46)

The parameter sf is the prescribed scaling factor used to suppress the rejection rate and
make large MCMC jumps at each stage.
The above steps are repeated until the samples are generated from the posterior PDF
p(θ|D,Mmi) (βj = 1).

The complete procedure of the TMCMC method is presented as follows:

1. Generate samples {θ0,l : l = 1, . . . , N0} from the prior PDF p0(θ) = p(θ|Mmi).
Repeat step 2-3 for j = 0, . . . , sn− 1.

2. Choose βj+1 so that the Coefficient of variation (COV) of the set of plausibility
weights {w(θj,l) = p(D|θj,l,Mmi)

βj+1−βj , l = 1, . . . , Nj} is equal to a prescribed
threshold, then compute the plausibility weight w(θj,l) = p(D|θj,l,Mmi)

βj+1−βj for

l = 1, . . . , Nj and compute Sj =
∑Nj

l=1 w(θj,l)/Nj.

3. Create Nj Markov chains: generate the starting point of the lth Markov chain at
θnow

j,l = θj,l, where θnow
j,l represents the current sample in the lth Markov chain. With

probability w(θj,i)/
∑Nj

i=1 w(θj,i), extract the candidate sample θC
j,l from a Gaussian

distribution N(θnow
j,l ,Σj) where Σj is defined by Equation (2.45). Set θj+1,l = θC

j,l

and θnow
j,l = θC

j,l with probability pj+1(θ
C
j,l)/pj+1(θ

now
j,l ); otherwise, set θj+1,l = θnow

j,l .
Repeat this step for l = 1, . . . , Nj+1 to obtain samples {θj+1,l : l = 1, . . . , Nj+1}.

After sn stages, samples {θsn,l : l = 1, . . . , Nsn} are asymptotically distributed as the
posterior PDF p(θ|D,Mmi), and the evidence is given by the product of the intermediate
ratios

p(D|Mmi) ≈ S(mi) =
sn−1
∏

j=0

Sj =
sn−1
∏

j=0

∑Nj

l=1 w(θj,l)

Nj

(2.47)

According to the Law of Large Numbers, the expectation of p(θ|D,Mmi) can be estimated
as

E[p(θ|D,Mmi)] ≈
1

Nsn

Nsn
∑

l=1

p(θsn,l|D,Mmi) ≡ p(θ|D,M )
(mi)
T MCMC (2.48)

If the above procedure is repeated for a set of model classes M = {Mmi : mi =
1, . . . , Nclass}, where Nclass is the number of model classes, then Bayesian model class
selection, and model averaging can be done as follows:

p(Mmi|D,M ) =
p(D|Mmi)p(Mmi|M )

p(D|M )

≈ S(mi) · p(Mmi|M )/





Nclass
∑

mk=1

S(mk)p(Mmk|M )



 = p
(mi)
T MCMC

(2.49)
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E[p(θ|D,M )] ≈
Nclass
∑

mi=1

p(θ|D,M )
(mi)
T MCMC · p

(mi)
T MCMC ≡ p(θ|D,M )average

T MCMC (2.50)

where the prior PDF p(Mmi|M ) = 1/Nclass, since all model classes are considered as
equally likely apriori.
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3 HHT-based Identification of general linear
time-varying systems

3.1 HHT-based identification method for general linear

time-varying systems

Compared with the HHT-based identification method proposed by Shi and Law which
can solve only linear time-varying chainlike systems, the HHT-based identification method
proposed here extends the identification of linear time-varying chainlike systems to general
linear time-varying systems including not only chainlike systems, but also non-chainlike
systems.
The governing differential equation of a general linear time-varying n-DOF system which
is given by Equation (2.14) can be embodied by



















m11(t) . . . m1i(t) . . . m1n(t)
...

...
...

...
...

mj1(t) . . . mji(t) . . . mjn(t)
...

...
...

...
...

mn1(t) . . . mni(t) . . . mnn(t)





































ÿ1(t)
...

ÿi(t)
...

ÿn(t)



















+



















c11(t) . . . c1i(t) . . . c1n(t)
...

...
...

...
...

cj1(t) . . . cji(t) . . . cjn(t)
...

...
...

...
...

cn1(t) . . . cni(t) . . . cnn(t)





































ẏ1(t)
...

ẏi(t)
...

ẏn(t)



















+



















k11(t) . . . k1i(t) . . . k1n(t)
...

...
...

...
...

kj1(t) . . . kji(t) . . . kjn(t)
...

...
...

...
...

kn1(t) . . . kni(t) . . . knn(t)





































y1(t)
...

yi(t)
...

yn(t)



















=



















f1(t)
...

fi(t)
...

fn(t)



















(3.1)

Therefore, the coefficient matrices in Equation (2.14) can be embodied by

M(t) =



















m11(t) . . . m1i(t) . . . m1n(t)
...

...
...

...
...

mj1(t) . . . mji(t) . . . mjn(t)
...

...
...

...
...

mn1(t) . . . mni(t) . . . mnn(t)



















C(t) =



















c11(t) . . . c1i(t) . . . c1n(t)
...

...
...

...
...

cj1(t) . . . cji(t) . . . cjn(t)
...

...
...

...
...

cn1(t) . . . cni(t) . . . cnn(t)



















(3.2)

21



3 HHT-based Identification of general linear time-varying systems

K(t) =



















k11(t) . . . k1i(t) . . . k1n(t)
...

...
...

...
...

kj1(t) . . . kji(t) . . . kjn(t)
...

...
...

...
...

kn1(t) . . . kni(t) . . . knn(t)



















where ÿi(t), ẏi(t), yi(t), i = 1, . . . , n are the accelerations, velocities and displacements
of the system, respectively; fj(t), j = 1, . . . , n are the excitation signals of the system;
mji(t), cji(t), kji(t), j, i = 1, . . . , n are the elements of the system mass, stiffness and damp-
ing matrices, respectively.

Figure 3.1: A 2-DOF linear time-varying chainlike system.

The following 2-DOF systems illustrate the difference between chainlike and non-chainlike
systems:
If the system is a 2-DOF linear time-varying chainlike system shown in Figure 3.1,
mj(t), cj(t), kj(t), j = 1, 2 are the mass, damping and stiffness coefficients respectively,
then the governing differential equations of the system are given by

[

m1(t) 0
0 m2(t)

] [

ÿ1(t)
ÿ2(t)

]

+

[

c1(t) + c2(t) −c2(t)
c2(t) c2(t)

] [

ẏ1(t)
ẏ2(t)

]

+

[

k1(t) + k2(t) −k2(t)
−k2(t) k2(t)

] [

y1(t)
y2(t)

]

=

[

f1(t)
f2(t)

]

(3.3)

If the system is a 2-DOF linear time-varying non-chainlike system shown in Figure 3.2,
m(t), I(t), kj(t), cj(t), j = 1, 2 are the mass, mass moment of inertia, stiffness and damping
coefficients respectively, then the governing differential equations of the system are given
by

[

m(t) 0
0 I(t)

] [

ẍ(t)
ϕ̈(t)

]

+

[

c1(t) + c2(t) c1(t)L1 − c2(t)L2

c1(t)L1 − c2(t)L2 c1(t)L
2
1 + c2(t)L

2
2

] [

ẋ(t)
ϕ̇(t)

]

+

[

k1(t) + k2(t) k1(t)L1 − k2(t)L2

k1(t)L1 − k2(t)L2 k1(t)L2
1 + k2(t)L

2
2 + kR(t)

] [

x(t)
ϕ(t)

]

=

[

f(t)
−f(t)L2

]

(3.4)

With the help of Equations (3.3) - (3.4), it is noted that: For n-DOF linear time-varying
chainlike systems, the type of motion of each DOF is the same (it might be a translation
in the same/parallel direction or a rotation around the same axis). The system stiffness
and damping coefficient matrices are tridiagonal matrices, and the elements of the system
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Spring

deflection

Spring

deflectionR

Figure 3.2: A 2-DOF linear time-varying non-chainlike system.

stiffness and damping coefficient matrices are simply related to the system stiffness and
damping coefficients as in following expressions:
cjj(t) = cj(t) + cj+1(t), kjj(t) = kj(t) + kj+1(t) when j = 1, . . . , n− 1, n ≥ 2;
cjj−1(t) = cj−1j(t) = −cj(t), kjj−1(t) = kj−1j(t) = −kj(t) when j = 2, . . . , n, n ≥ 2;
cjj−2(t) = cj−2j(t) = 0, kjj−2(t) = kj−2j(t) = 0 when j = 3, . . . , n, n ≥ 3;
cjj(t) = cj(t), kjj(t) = kj(t) when j = n.
Thus, the identified results of n-DOF linear time-varying chainlike systems can be ob-
tained from 2n time-varying equations.
For n-DOF linear time-varying non-chainlike systems, the type of motion of each DOF
can be different (it might be a translation, a rotation, a translation in a direction per-
pendicular to the aforementioned translation or a rotation around an axis perpendicular
to the aforementioned rotational axis). The relations between the elements of the system
stiffness and damping coefficient matrices and the corresponding system stiffness and
damping coefficients are dependent on the motions of individual DOFs and thus have
no uniform expressions as those of chainlike systems. Thus, n × 2n time-varying equa-
tions are required to obtain the identified result of each element of the system stiffness
and damping coefficient matrices first, and then the identified results of individual sys-
tem stiffness and damping coefficients are obtained from the motion-dependent relations
(These two procedures are also available for n-DOF linear time-varying chainlike systems).

The main procedures of the HHT-based identification method for general linear time-
varying systems are presented as follows:

1. Use EMD and HT to process the system response signals (displacements yi(t), ve-
locities ẏi(t) and accelerations ÿi(t)) of Equation (3.1), n IMFs and a residue as well
as n analytical IMFs and an analytical residue are obtained corresponding to each
original response signal.

2. Sum the n analytical IMFs and the analytical residue of each original response signal
to form new analytical signals Yi(t), Ẏi(t) and Ÿi(t). Here, the subscript i denotes the

23
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Figure 3.3: Main procedures of the HHT-based identification method for general linear
time-varying systems.

ith element of the signal which corresponds to the ith DOF. A differential equation
expressed by the analytical signals Yi(t), Ẏi(t) and Ÿi(t) can be obtained for a general
linear time-varying system.

3. With the help of the system response signals yi(t), ẏi(t) and ÿi(t) as well as the new
synthesized analytical signals Yi(t), Ẏi(t) and Ÿi(t), the differential equation on the
analytical signals at one time step can be simplified and written in compact matrix
notation as

P k(t)αk(t) + P c(t)αc(t) = F (t) − M(t)Pm(t) (3.5)
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3.1 HHT-based identification method for general linear time-varying systems

in which

αk(t) = [k11(t), . . . , k1n(t), . . . , ki1(t), . . . , kin(t), . . . , kn1(t), . . . , knn(t)]T (3.6)

(n2 × 1)

αc(t) = [c11(t), . . . , c1n(t), . . . , ci1(t), . . . , cin(t), . . . , cn1(t), . . . , cnn(t)]T (3.7)

(n2 × 1)

P k(t) =



















Y1(t) · · · Yn(t)
. . . 0

Y1(t) · · · Yn(t)

0
. . .

Y1(t) · · · Yn(t)



















(3.8)

(n× n2)

P c(t) =





















Ẏ1(t) · · · Ẏn(t)
. . . 0

Ẏ1(t) · · · Ẏn(t)

0
. . .

Ẏ1(t) · · · Ẏn(t)





















(3.9)

(n× n2)

Pm(t) = [ Ÿ1(t) · · · Ÿi(t) · · · Ÿn(t)]T ] (3.10)

(n× 1)

As the coefficients above are complex numbers, Equation (3.5) can be assembled as

[

Re(P k(t))
Im(P k(t))

]

αk(t) +

[

Re(P c(t))
Im(P c(t))

]

αc(t) =

{

Re(F (t) − M(t)Pm(t))
Im(F (t) − M(t)Pm(t))

}

(3.11)

(2n× n2) (2n× n2) (2n× 1)

or
[

Re(P k(t)) Re(P c(t))
Im(P k(t)) Im(P c(t))

] [

αk(t)
αc(t)

]

=

{

Re(F (t) − M(t)Pm(t))
Im(F (t) − M(t)Pm(t))

}

(3.12)

(2n× 2n2) (2n2 × 1) (2n× 1)

4. Repeat step 3 until the results in the required time history are obtained.
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3 HHT-based Identification of general linear time-varying systems

Equation (3.11) or Equation (3.12) contains 2n time-varying equations, so we can only
estimate 2n unknows at any time instant t by solving Equation (3.11) or Equation (3.12)
if we know only one set of system responses yi(t), ẏi(t) and ÿi(t). However, we have 2n2

unknown elements of the system stiffness and damping coefficient matrices in Equation
(3.11) or Equation (3.12). In order to get the values of all the 2n2 unknown elements, we
should run n experiments to get n sets of system responses yi(t), ẏi(t) and ÿi(t) (for each
experiment, the same initial conditions are given at a different DOF of the system), thus
we have n× 2n time-varying equations.
For the 1-DOF case, the above Equation (3.11) or Equation (3.12) has only 2 time-varying
equations and 2 unknown elements, so we can solve Equation (3.11) or Equation (3.12)
when we have only one set of system responses yi(t), ẏi(t) and ÿi(t) for the 2 unknown
elements, which can be simplified as

αc(t) = c(t) =
Im(F (t)/Y (t))

ω(t)
−m(t)

(

2Ȧ(t)

A(t)
+
ω̇(t)

ω(t)

)

(3.13)

αk(t) = k(t) = m(t)ω2
0(t) (3.14)

in which

ω2
0(t) =

k(t)

m(t)

= ω2(t) +
Re(F (t)/Y (t))

m(t)
−

Im(F (t)/Y (t))Ȧ(t)

m(t)ω(t)A(t)
−
Ä(t)

A(t)
+

2Ȧ2(t)

A2(t)
+
Ȧ(t)ω̇(t)

A(t)ω(t)
(3.15a)

ω(t) = ψ̇(t) =
y(t) ˙̃y(t) − ẏ(t)ỹ(t)

A2(t)
= Im

[

Ẏ (t)

Y (t)

]

(3.15b)

Ȧ(t) =
y(t)ẏ(t) + ỹ(t) ˙̃y(t)

A(t)
= A(t)Re

[

Ẏ (t)

Y (t)

]

(3.15c)

ω̇(t) = Im

[

Ÿ (t)

Y (t)

]

− 2
Ȧ(t)ω(t)

A(t)
(3.15d)

Ä(t) = A(t)

(

Re

[

Ÿ (t)

Y (t)

]

+ ω2(t)

)

(3.15e)

Equations (3.14) - (3.15) of the proposed method are equivalent to the corresponding equa-
tions of HHT-based method proposed by Shi and Law for 1-DOF case (see Section 2.3).
In order to demonstrate the effectiveness, accuracy and robustness of the proposed HHT-
based identification method for general linear time-varying systems, we will process simu-
lations on 1-DOF and 2-DOF linear time-varying systems in the next section.
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3.2 HHT-based Identification of general linear time-varying systems from simulated time histories

3.2 HHT-based Identification of general linear

time-varying systems from simulated time histories

Simulation is the imitation of the operation of a real-world process or system over time
which involves the generation of an artificial history of the system and the observation
of the artificial history to draw inferences concerning the operating characteristics of the
real system that is represented [72]. It is widely used in many fields, such as performance
optimization [73], safety engineering [74], testing and training [75, 76], education, business,
social science and engineering [77]. Usually, simulation can be divided into physical simu-
lation and computer simulation. The former is defined as an imitation of the operation of
a real system in which physical objects are substituted for the system, whereas the latter
is defined as an imitation of the operation of a real system on a computer. Computer
simulation has many advantages, for example, it allows experimentation without disrup-
tions to existing systems, allows concepts to be tested prior to the installation of new
systems, detects unforeseen problems or bugs that may exist in systems’ design, gains in
knowledge on systems, speeds up the analysis of systems, forces analysts to fully define all
parameters pertinent to the operations of systems, and enhances creativity in the design
of systems [78].
Since it has so many benefits, we will carry out computer simulation on general linear
time-varying systems with the aid of MATLAB in this section. For an n-DOF general
linear time-varying system, the procedures of the identification simulation are as follows:

1. Run n experiments to get n sets of noiseless system responses in the required time
history (for each experiment, solve ODE of the system with the same initial condi-
tions given at a different DOF of the system, obtaining each set of system responses:
displacement yi,q(t), velocity ẏi,q(t) and acceleration ÿi,q(t) at each time instant
where the subscripts i = 1, . . . , n denotes the index of DOF and q = 1, . . . , n denotes
the index of experiment). Apply EMD method to decompose these noiseless system
responses to obtain their corresponding IMFs. Use these IMFs in the proposed
HHT-based identification method to obtain the identified results of the elements of
system stiffness and damping coefficient matrices, and then the identified results
of individual system stiffness and damping coefficients can be obtained from the
motion-dependent relations (see Section 3.1).

2. For each noiseless system response obtained in step (1), given the ratio Nstd of
the standard deviation of the added noise and that of the corresponding noiseless
system response as well as the number NE of trials, a different white noise signal is
generated with the same ratio Nstd by standard normally distributed pseudorandom
numbers and added to the corresponding noiseless system response in each trial to
obtain NE noise-added system responses as the measured system responses in NE
trials. Since there exists white noise in the measured system responses, directly
decomposing the system responses by EMD will leave noise remain in IMFs. In
order to remove the high-frequency noise from the noise-added system responses
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3 HHT-based Identification of general linear time-varying systems

before they are decomposed by EMD, a fourth-order zero-lag Butterworth low-pass
digital filter [79] is used with the proper cutoff frequency of the filter determined by
a residual analysis proposed by Winter[80]. For a raw signal with N sample points,
the residual at any cutoff frequency is calculated as follows:

R(fc) =

√

√

√

√

1

N

N
∑

i=1

(Xi − X̂i)2 (3.16)

in which fc is the cutoff frequency of the fourth-order zero-lag low-pass filter, Xi

is the ith sample of the raw signal and X̂i is the ith sample of the filtered signal
obtained at fc. By application of Equation (3.16), the raw signal is filtered at a wide
range of cutoff frequencies, and a residual amplitude versus cutoff frequeny curve is
plotted, in which a linear regression line is determined where the residual becomes a
linear function of the cutoff frequeny and represents estimate of the noise residual.
With the help of the linear regression line, the proper cutoff frequency is selected
with the compromise that the amount of signal distortion and the amount of noise
passed through the filter are equal. Then, the proper cutoff frequency is verified by
the power spectral density estimation and Hilbert spectral analysis. After filtered
by the fourth-order zero-lag Butterworth low-pass filter with the selected proper
cutoff frequencies, the NE system responses are decomposed by EMD to obtain their
corresponding IMFs (the number of IMFs should be n × NE). Then, these IMFs
are averaged to obtain n ensemble means of IMFs for the NE noise-added system
responses.

3. Use the ensemble means of IMFs of n sets of system responses (the number of the
IMFs should be 3n3) in the proposed HHT-based identification method to obtain
the identified results of the elements of system stiffness and damping coefficient
matrices, and then the identified results of individual system stiffness and damping
coefficients can be obtained from the motion-dependent relations (see Section 3.1).
Compare these identified results with their counterparts obtained in step (1).

The aforementioned identification simulation is carried out on 1-DOF and 2-DOF lin-
ear time-varying mass-spring-damper dynamical systems in forced vibrations with three
types of time variation of stiffness coefficients: smooth, abrupt and periodical variations
to demonstrate the effectiveness, accuracy and robustness of the HHT-based identification
method for general linear time-varying systems. The identification simulation is processed
by MATLAB programs. The time interval between two adjacent data points in the sim-
ulations is 0.01 seconds, and the whole time history is 10 seconds. The noiseless system
responses are obtained by solving the system differential equations, and the noise-added
system responses are generated with the ratio of the standard deviation of the added
white noise and that of the corresponding noiseless system response Nstd set as 0.05 and
the number of trials NE set as 15.
For 1-DOF linear time-varying systems, the following common information is given ([26]):
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the mass of the system is assumed to be known as m = 1kg, the initial conditions are
given as y(0) = 1m and ẏ(0) = 0m/s. An impact excitation is given at the mass by
f(t) = 1N when t = 0s, f(t) = 0N otherwise. For 2-DOF linear time-varying non-chainlike
systems which adopt the model shown in Figure 3.2, the following common information is
given ([81]): the system damping coefficients are given by: c1 = 0Ns/m, c2 = 0Ns/m, the
mass and the mass moment of inertia as well as the length parameters of the system are
assumed to be known as m = 840/2kg, I = 820 kgm2, L1 = 0.7m, L2 = 0.75m. The initial
conditions for the two experiments are given as x(0) = 0m, ϕ(0) = 1rad, ẋ(0) = 0m/s,
ϕ̇(0) = 0rad/s as well as x(0) = 1m, ϕ(0) = 0rad, ẋ(0) = 0m/s, ϕ̇(0) = 0rad/s. An
impact excitation is given at mass 1 by f1(t) = 200N when t = 0s, f1(t) = 0N other-
wise. For 2-DOF linear time-varying chainlike systems which adopt the model shown in
Figure 3.1, the following common information is given ([26]): the system damping coeffi-
cients are given by: c1 = 30Ns/m, c2 = 0Ns/m, the system mass coefficients are assumed
to be known as m1 = m2 = 50kg. The initial conditions for the two experiments are
given as y1(0) = 0m, y2(0) = 1m, ẏ1(0) = 0m/s, ẏ2(0) = 0m/s as well as y1(0) = 1 m,
y2(0) = 0m, ẏ1(0) = 0m/s, ẏ2(0) = 0m/s. An impact excitation is given at mass 1 by
f1(t) = 200N when t = 0s, f1(t) = 0N otherwise. By application of the proposed HHT-
based identification method, the identified values of the elements of the system stiffness
and damping coefficient matrices can be obtained, and according to their relations with
the system coefficients kj(t), cj(t), j = 1 or j = 1, 2 (see Section 3.1), the identified results
of the system coefficients kj(t), cj(t), j = 1 or j = 1, 2 can be obtained. The identified
stiffness coefficients of the smoothly and abruptly varying systems are presented in the
following sections, whereas the identified damping coefficients of the former systems and
all the identified results of the periodically varying systems are presented in Appendices
A.1.1 - A.1.4.

3.2.1 HHT-based Identification of 1-DOF linear time-varying systems

For 1-DOF linear time-varying forced vibration systems to be simulated, the system stiff-
ness coefficients with three types of time variation and system damping coefficients are
given as follows ([26]):
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3 HHT-based Identification of general linear time-varying systems

Table 3.1: System coefficients of 1-DOF linear time-varying systems

Type of systems

System
coefficients

System stiffness coefficient and damping coefficient

1-DOF linear smoothly
varying system

k(t) = 100π2N/m, c(t) = 0.7Ns/m when t < 2s,
k(t) = 100π2 − 10π2tN/m, c(t) = 0.7 + 0.15tNs/m
when 2s ≤ t ≤ 4s,
k(t) = 80π2N/m, c(t) = 1.0Ns/m when t > 4s.

1-DOF linear abruptly
varying system

k(t) = 100π2N/m when t < 1.5s,
k(t) = 60π2N/m when 1.5s ≤ t ≤ 3.5s,
k(t) = 80π2N/m when t ≥ 3.5s,
c(t) = 0.7Ns/m for any t.

1-DOF linear periodically
varying system

k(t) = 100π2 − 10π2 sin (2πt)N/m for any t,
c(t) = 1.26Ns/m for any t.

The identified results of the stiffness coefficients of the 1-DOF linear smoothly and abruptly
varying systems, their relative errors as well as the time-frequency distribution of the re-
sponse signal of the 1-DOF linear abruptly varying system are shown in Figures 3.4 - 3.6.
It can be seen from the figures that: For the 1-DOF linear smoothly varying system, when
noiseless system responses are used as input of the HHT-based identification method, the
identified stiffness coefficient matches the true value of the corresponding system stiffness
coefficient quite well; even when noise-added system responses are used as input, although
the identified stiffness coefficient is contaminated by noise, it is still close to its true value
(with maximal relative error less than 2.1%); For the 1-DOF linear abruptly varying sys-
tem, two abrupt jumps of the IF are noticed around t = 1.5s and t = 3.5s in Figure 3.5,
which means that there are abrupt changes in the physical parameter of the system at these
two time points. And the identified results of the stiffness coefficient (shown in Figure 3.6)
obtained by using noiseless and noise-added system responses as input of the HHT-based
identification method have large identification errors around t = 1.5s and t = 3.5s, which
accord with the observed changes of IF in Figure 3.5, and are due to the abrupt changes
of the true system stiffness at these time instants. This implies that the proposed method
has bad ability to capture the abrupt change of the system parameters due to the limi-
tations of Equation (2.16). At other time instants, the identified results of the stiffness
coefficient are close to its true value and have small relative errors (always less than 2.7%).
For both systems, the identified stiffness coefficients gained by the proposed HHT-based
identification method are equivalent to their respective counterparts which are obtained
by the HHT-based method proposed by Shi and Law, since the two methods share the
same equations for 1-DOF systems.
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Figure 3.4: Stiffness coefficient of a 1-DOF linear smoothly varying forced vibration system:
(a) The true value and the identified values of the stiffness coefficient, (b)
Relative errors of the identified values of the stiffness coefficient, (c) Relative
errors of the identified values of the stiffness coefficient (without noise in system
responses).
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Figure 3.5: Instantaneous frequency of a 1-DOF linear abruptly varying forced vibration
system.
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Figure 3.6: Stiffness coefficient of a 1-DOF linear abruptly varying forced vibration system:
(a) The true value and the identified values of the stiffness coefficient, (b)
Relative errors of the identified values of the stiffness coefficient.
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3.2.2 HHT-based Identification of 2-DOF linear time-varying
non-chainlike systems

For the 2-DOF linear time-varying non-chainlike forced vibration systems which adopt the
model shown in Figure 3.2, the system stiffness coefficients are given as follows:

Table 3.2: System stiffness coefficients of 2-DOF linear time-varying non-chainlike
systems

Type of systems

System
coefficients System stiffness coefficient

(N/m)

2-DOF linear smoothly
varying system

k2(t) = 10000 when t < 1s,
k2(t) = 10000 − 100(t− 1) when 1s ≤ t ≤ 3s,
k2(t) = 9800 when t > 3s,
k1(t) = 10000, kR(t) = 25000 for any t.

2-DOF linear abruptly
varying system

k1(t) = 10000 when t ≤ 3s,
k1(t) = 9000 when t > 3s,
k2(t) = 10000, kR(t) = 25000 for any t.

2-DOF linear periodically
varying system

k1(t) = 10000 when t < 2s,
k1(t) = 10000 − 100 sin [π(t− 2)] when t ≥ 2s,
k2(t) = 10000, kR(t) = 25000 for any t.

Figures 3.7 - 3.10 present the identified results of the system stiffness coefficients and their
relative errors of the 2-DOF linear smoothly and abruptly varying non-chainlike forced
vibration systems.
It is found from the figures that: For the 2-DOF linear smoothly varying non-chainlike
forced vibration system, when noiseless system responses are used as input of the HHT-
based identification method, the identified stiffness coefficients match their respective true
values quite well, except around t = 1s and t = 3s abrupt changes are found, due to
the abrupt changes of the true system stiffness at these time instants. When noise-added
system responses are used as input, the identified results are contaminated by noise, though
the identified stiffness coefficients are still found very close to their corresponding true
values, and have small relative errors (whose maxima are less than 0.69% and 0.60%
respectively); For the 2-DOF linear abruptly varying non-chainlike forced vibration system,
no matter using noiseless or noise-added system responses as input of the HHT-based
identification method, the identified stiffness coefficients have relatively large identification
errors around time instant t = 3s (with maximal relative error of k1 less than 5.3% and
that of k2 less than 1.6%), which implies that the adopted method has bad ability to
capture the abrupt change of the system parameters due to the limitations of Equation
(2.16). Nevertheless, these relatively quite large identification errors can be used to detect
the abrupt stiffness variations of the system. At other time instants, the identified stiffness
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coefficients are close to their respective true values with small relative errors (the maximal
relative error of k1 is less than 1.1% and the maximal relative error of k2 is less than
0.89%).
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Figure 3.7: Stiffness coefficient k1 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k1, (b) Relative
errors of the identified values of k1, (c) Relative error of the identified value of
k1(without noise in system responses).
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Figure 3.8: Stiffness coefficient k2 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k2, (b) Relative
errors of the identified values of k2, (c) Relative error of the identified value of
k2 (without noise in system responses).
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Figure 3.9: Stiffness coefficient k1 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k1, (b) Relative
errors of the identified values of k1.
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Figure 3.10: Stiffness coefficient k2 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k2, (b)
Relative errors of the identified values of k2.
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3.2.3 HHT-based Identification of 2-DOF linear time-varying
chainlike systems

For the 2-DOF linear time-varying chainlike forced vibration systems which adopt the
model shown in Figure 3.1, the system stiffness coefficients are given as follows ([26]):

Table 3.3: System stiffness coefficients of 2-DOF linear time-varying chainlike systems

Type of systems

System
coefficients System stiffness coefficient

(N/m)

2-DOF linear smoothly
varying system

k2(t) = 87552 when t < 1s,
k2(t) = 87552 − 8755.2(t− 1) when 1s ≤ t ≤ 3.5s,
k2(t) = 70042 when t > 3s,
k1(t) = 40053 for any t.

2-DOF linear abruptly
varying system

k1(t) = 40053, k2(t) = 87552 when t ≤ 3s,
k1(t) = 36048, k2(t) = 70042 when t > 3s.

2-DOF linear periodically
varying system

k1(t) = 40053 when t < 2s,
k1(t) = 40053 − 4005.3 sin [π(t− 2)] when t ≥ 2s,
k2(t) = 87552 for any t.

The identified results of the system stiffness coefficients and their relative errors of the 2-
DOF linear smoothly and abruptly varying chainlike forced vibration systems are presented
in Figures 3.11 - 3.14.
From these figures, it is noted that: For the 2-DOF linear smoothly varying chainlike forced
vibration system, like those in the non-chainlike case, when noiseless system responses are
used as input of the HHT-based identification method, the identified stiffness coefficients
obtained in chainlike case are quite close to their true values, their relative errors have
decreasing trend as time increases, except around t = 1s and t = 3s where abrupt changes
are found, due to the abrupt changes of the system stiffness coefficient at these time
instants. However, when noise-added system responses are used as input, the identified
results of the stiffness coefficients are contaminated by noise. Nevertheless, they are still
close to their respective true values with sufficiently small relative errors (the maximal
relative error of k1 is less than 5.6% and that of k2 is less than 1.6%); For the 2-DOF linear
abruptly varying chainlike forced vibration system, when noiseless system responses are
used as input of the HHT-based identification method, the identified stiffness coefficients
are quite close to their true values, except around the time instant t = 3s, they have
relatively quite large identification errors. This implies that the proposed method has bad
ability to capture the abrupt change of the system parameters due to the limitations of
Equation (2.16). When noise-added system responses are used as input, although they are
contaminated by noise, the identified stiffness coefficients still match their respective true
values well with small relative errors (the maximal relative error of k1 is less than 5.0%
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and that of k2 is less than 1.4%) at time instants which are not around t = 3s. For both
systems, it can be found that the identified results of stiffness coefficients and damping
coefficients (see Appendix A.1.3) denoted by black solid lines and blue solid lines which
are obtained by the HHT-based identification method are better than their counterparts
denoted by orange solid lines and green solid lines which are obtained by the HHT-based
identification method proposed by Shi and Law [26], possibly because the latter method
uses single IMFs as input while discarding the signal residues obtained by EMD method
which might still contain some information about the system responses, and adopts the
assumption of orthogonality between any two IMFs.
Similar identified results can be also obtained for numerical simulations of 1-DOF and 2-
DOF linear time-varying non-chainlike/chainlike systems in free vibrations with the system
coefficients and initial conditions given the same as those in the above simulations of the
corresponding systems in forced vibrations.
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Figure 3.11: Stiffness coefficient k1 of a 2-DOF linear smoothly varying chainlike forced
vibration system: (a) The true value and the identified values of k1, (b)
Relative errors of the identified values of k1, (c) Relative error of the identified
value of k1 (without noise in system responses).
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Figure 3.12: Stiffness coefficient k2 of a 2-DOF linear smoothly varying chainlike forced
vibration system: (a) The true value and the identified values of k2, (b)
Relative errors of the identified values of k1, (c) Relative error of the identified
value of k2 (without noise in system responses).
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Figure 3.13: Stiffness coefficient k1 of a 2-DOF linear abruptly varying chainlike forced
vibration system: (a) The true value and the identified values of k1, (b)
Relative errors of the identified values of k1.
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Figure 3.14: Stiffness coefficient k2 of a 2-DOF linear abruptly varying chainlike forced
vibration system: (a) The true value and the identified values of k2, (b)
Relative errors of the identified values of k2.
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3.3 Parameter studies on general linear time-varying

systems

In the first part of this section, parameter studies are processed on forced vibration simu-
lations of 2-DOF linear time-varying non-chainlike systems to find the proper value ranges
of the structural parameters which are variable factors in the system coefficients, for which
good identified results can be obtained by the proposed method. Like in the above sim-
ulations, noise-added system responses (Nstd = 0.05, NE = 15) are considered in the
parameter studies.
In the second part of this section, different values of the control parameters of EMD pro-
gram are applied in the forced vibration simulations of 2-DOF linear time-varying chainlike
systems with three types of stiffness variations. The identified results obtained by using
the identification method proposed by Shi and Law and the proposed HHT-based iden-
tification method when applying different value sets of control parameters are compared,
gaining appropriate values of the control parameters of the EMD program which can result
in good identified results.

3.3.1 Parameter studies on 2-DOF linear time-varying non-chainlike
systems

Parameter studies are processed on the forced vibration simulations of 2-DOF linear
smoothly varying and periodically varying non-chainlike systems. As the proposed
method has bad ability to capture the abrupt change of the system parameters of 2-DOF
linear abruptly varying systems due to the limitations of Equation (2.16), the resulting
relative and absolute errors of the system parameters can be extremely large at the time
instants when the system parameters have abrupt changes, which would shadow the
changes of relative and absolute errors caused by the change of structural parameters and
make the parameter study senseless. As a result, parameter study will not processed on
2-DOF linear abruptly varying systems. Results of the parameter study on the forced vi-
bration simulation of a 2-DOF linear smoothly varying non-chainlike system are presented
in the following, whereas those of the parameter study on the forced vibration simulation
of a 2-DOF linear periodically varying non-chainlike system can be found in Appendix
A.1.5.

Parameter study on the forced vibration simulation of a 2-DOF linear smoothly varying
non-chainlike system:
The system coefficients, initial conditions as well as the external force are given the same
as those of the 2-DOF linear smoothly varying non-chainlike forced vibration system in
Section 3.2.2, except that the system stiffness k2 adopts the model shown in Figure 3.15:
k2 = kup when t < 1s,
k2 = kup − (kup − kdown)/tL(t− 1) when 1s ≤ t ≤ tL + 1s,
k2 = kdown when t > tL + 1s,
kup = 10000N/m, kdown = 9800N/m for any t,
where tL is a variable structural parameter in the interval (0, 10]s with the time interval
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3 HHT-based Identification of general linear time-varying systems

between two adjacent tL values equal to 0.01s (The special case tL = 0s stands for an
abruptly varying system).

Figure 3.15: Stiffness coefficient k2 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system with variable tL.
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Figure 3.16: Mean relative error of stiffness coefficient k1 of a 2-DOF linear smoothly vary-
ing non-chainlike forced vibration system with respect to tL: (a) Mean relative
error of the identified values of k1, (b) Mean relative error of the identified
values of k1 (without noise in system responses).

The mean relative errors of the stiffness coefficients k1 and k2, as well as the mean absolute
errors of damping coefficients c1 and c2 are obtained and shown in Figures 3.16 - 3.19.
We can note that: when noiseless system responses are used as input, the mean relative
and absolute errors (denoted with blue lines) of the system coefficients have an increase
and reach their respective maximum values as tL takes values in the interval (0, 0.24]s,
then they have large and rapid decrease as tL increases to 1s. After that, they have slight
decreasing trend as tL increases in the interval [1, 10]s. And good identified results of
the system coefficients with small mean relative or absolute errors (less than 0.0062% for
stiffness coefficients and less than 0.084Ns/m for damping coefficients) are obtained as
tL takes large values in the interval [1, 10]s; whereas when noise-added system responses
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Figure 3.17: Mean relative error of stiffness coefficient k2 of a 2-DOF linear smoothly vary-
ing non-chainlike forced vibration system with respect to tL: (a) Mean relative
error of the identified values of k2, (b) Mean relative error of the identified
values of k2 (without noise in system responses).
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Figure 3.18: Mean absolute error of damping coefficient c1 of a 2-DOF linear smoothly
varying non-chainlike forced vibration system with respect to tL: (a) Mean
absolute error of the identified values of c1, (b) Mean absolute error of the
identified values of c1 (without noise in system responses).

are used as input, all errors keep fluctuating around some constant values, and although
their magnitudes are larger than their counterparts (denoted with blue lines) obtained
by using noiseless system responses, the magnitudes of the mean relative errors of the
identified stiffness coefficients k1 and k2 are still sufficiently small (whose maxima are less
than 0.34% and 0.43% respectively). The mean absolute errors of identified c1 and c2

denoted with black lines are quite large, but the mean absolute errors of identified c1 and
c2 denoted with pink dashed lines (whose maxima are less than 3.1Ns/m and 4.1Ns/m
respectively) are relatively smaller than the former (For calculation of the mean relative
error or the mean absolute error denoted with black line, first we calculate the relative or
absolute error between each identified damping coefficient and its true value at each time
instant for different tL, then we take the mean value of the relative or absolute error of
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Figure 3.19: Mean absolute error of damping coefficient c2 of a 2-DOF linear smoothly
varying non-chainlike forced vibration system with respect to tL: (a) Mean
absolute error of the identified values of c2, (b) Mean absolute error of the
identified values of c2 (without noise in system responses).

each identified damping coefficient over the time duration 0.5 ∼ 5s for different tL; For
calculation of the mean relative error or the mean absolute error denoted with pink dashed
line, first we take the mean value of each identified damping coefficient over the time
duration 0.5 ∼ 5s for different tL, then we calculate the relative or absolute error between
the mean value of each identified damping coefficient and its true value for different tL).
At tL = 2s (case of the 2-DOF linear smoothly varying non-chainlike forced vibration
system in Section 3.2.2), the mean absolute errors of identified c1 and c2 denoted with
pink dashed lines are sufficiently small (less than 1.4Ns/m and 0.92Ns/m respectively).
In conclusion, by using noiseless system responses as input of the proposed method, good
identified results of the system coefficients with small mean relative or absolute errors
are obtained as the variable parameter tL takes large values in the interval [1, 10]s (which
represents that the system stiffness varies slowly); whereas by using noise-added system
responses as input, the variation of tL has almost no influence on the identified results of
the system coefficients, yet good identified results of the stiffness coefficients with small
mean relative errors are still obtained for any tL. As a result, it is proper to choose large
values in the interval [1, 10]s for tL.

3.3.2 Study of the control parameters of EMD program on 2-DOF

linear time-varying chainlike systems

In this section, an EMD program proposed by P. Flandrin [60] is applied to the decompo-
sition of noiseless forced vibration system responses in the identification method proposed
by Shi and Law (see Section 2.3) and the proposed HHT-based identification method (see
Section 3.1). The EMD program controls the sifting process to extract each IMF (of each
DOF) by testing: (1) if the number of zero crossings and the number of extrema differ by
no more than 1; (2) if the evaluation function σ(t) (see Section 2.1.1) is smaller than γ1
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for some prescribed fraction (1 − αp) of the total duration, and is smaller than γ2 for the
remaining fraction (the default values of γ1, γ2 and αp are set as γ1 ≈ 0.05, γ2 ≈ 10 ∗ γ1

and αp ≈ 0.05)[61]. The sifting process is iterated until both tests are positive.
In order to get appropriate values of control parameters of the EMD program which can
result in good identified results when applied in the proposed HHT-based identification
method and the identification method proposed by Shi and Law, forced vibration simula-
tions are processed on 2-DOF linear smoothly, abruptly and periodically varying chainlike
systems with the respective system coefficients, the initial conditions as well as the external
excitation given the same as in Section 3.2 and Appendix A.1.4. The noiseless system re-
sponses of these 2-DOF systems are used as input of the two aforementioned identification
methods. Six cases with different value sets of the control parameters are applied in the
EMD program in the simulations, of which the values are presented in Table 3.4.

Table 3.4: Different value sets of the control parameters of the EMD program

Case index

Control
parameters

γ1 γ2 αp

Case 0 (default) 0.05 0.5 0.05
Case 1 0.005 0.05 0.05
Case 2 5e-04 0.005 0.05
Case 3 5e-05 5e-04 0.05
Case 4 5e-06 5e-05 0.05
Case 5 5e-07 5e-06 0.05

Maximal relative/absolute error of the identified system coefficients of 2-DOF linear time-
varying chainlike systems obtained by using the identification method proposed by Shi and
Law and the proposed HHT-based identification method which apply the value sets of the
six cases are collected in Tables 3.5-3.6.
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Table 3.5: Maximal relative error of the identified system coefficients of 2-DOF linear
time-varying chainlike systems

System
coefficient

Value of
maximal
relative
error

Case
index

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5
Applied
method

k2 of the 2-DOF
linear smoothly
varying system

3.1% 1.5% 0.75% 0.57% 0.92% 0.78%
Shi&Law’s

method

0.20%

The
proposed
method

c1 of the 2-DOF
linear smoothly
varying system

220% 67% 50% 52% 56% 58%
Shi&Law’s

method

5.6%

The
proposed
method

k1 of the 2-DOF
linear abruptly
varying system

10% 2.3% 1.9% 2.1% 2.2% 2.5%
Shi&Law’s

method

0.20%

The
proposed
method

k1 of the 2-DOF
linear periodica-
lly varying
system

6.7% 1.3% 1.7% 1.6% 2.5% 2.3%
Shi&Law’s

method

0.079%

The
proposed
method

By comparing the obtained identified results, it is found out that:
For linear time-varying chainlike forced vibration systems identified by the identification
method proposed by Shi and Law, since the input of the method are single IMFs of the
system responses, the accuracy of extracting a single IMF or rather the values of the
control parameters (γ1, γ2, αp) of the EMD program has direct influence on the accuracies
of the identified results. The identified results of Case 0 (obtained by applying the default
values of the control parameters γ1 = 0.05, γ2 = 10 ∗ γ1, αp = 0.05) are worse than their
counterparts of other cases (obtained by applying smaller values of γ1 and γ2 with αp kept
constant). When the values of γ1 and γ2 decrease, the magnitudes of the relative/absolute
errors of the resulting identified results have decreasing trend. And the identified results
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3.3 Parameter studies on general linear time-varying systems

Table 3.6: Maximal absolute error of the identified system coefficients of 2-DOF linear
time-varying chainlike systems

System
coefficient

Value of
maximal
absolute
error

Case
index

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5
Applied
method

c2 of the 2-DOF
linear abruptly
varying system

37Ns/m 20Ns/m 10Ns/m 10Ns/m 11Ns/m 11Ns/m
Shi&Law’s

method

3.4Ns/m

The
proposed
method

c2 of the 2-DOF
linear periodica-
lly varying
system

37Ns/m 20Ns/m 10Ns/m 8.2Ns/m 6.8Ns/m 8.2Ns/m
Shi&Law’s

method

0Ns/m

The
proposed
method

of Case 2, Case 3, Case 4 and Case 5 have similar magnitudes of relative/absolute errors.
Thus, in consideration of the expense of computational time, the value set of Case 2
(γ1 = 5e-04, γ2 = 5e-03 and αp = 0.05) are preferable in order to get good identified results
when applying the identification method proposed by Shi and Law.
For linear time-varying chainlike forced vibration systems identified by the proposed
HHT-based identification method, since the proposed HHT-based identification method
uses synthesized analytical system responses (which are obtained by first processing the
original system responses with HHT, and then summing the obtained analytical IMFs and
analytical residues to gain the corresponding synthesized analytical signals) as input, the
changes of the control parameters (γ1, γ2, αp) have no influence on the accuracy of the
identified results. It is clear that the corresponding identified results of different cases have
same maximal relative/absolute errors (see Tables 3.5-3.6). Therefore, in consideration
of the large expense of computational time when applying small values of γ1 and γ2, the
default values of the control parameters (γ1 = 0.05, γ2 = 10 ∗ γ1, αp = 0.05) are preferably
taken in order to get good identified results when applying the proposed HHT-based
identification method.

47



3 HHT-based Identification of general linear time-varying systems

3.4 Conclusion

From the numerical simulations of linear smoothly varying, abruptly varying as well as
periodically varying non-chainlike and chainlike systems in forced vibration, it is noted
that: for 1-DOF and 2-DOF systems, the identified results of smoothly varying and pe-
riodically varying systems gained by the proposed method are quite good, whereas the
identified results of abruptly varying systems have extremely large identification errors at
some time instants, which implies that the adopted method is not suitable for abruptly
varying systems due to the limitations of Equation (2.16). And the identified results of
chainlike systems are found much better than those obtained by the identification method
proposed by Shi and Law. When there exists white noise in system responses, good iden-
tified results with small relative as well as absolute errors are obtained by the proposed
method, demonstrating the robustness of the method to noise.
Parameter studies are processed on 2-DOF linear smoothly varying and periodically vary-
ing non-chainlike forced vibration systems, gaining the relation between the relative as well
as absolute errors of identified system coefficients and the variable parameters (tL, h and
T ) in the system stiffness coefficients. When the values of these variable parameters are in
the appropriate ranges (tL takes large values in the interval of [1, 10]s, h takes small values
in the interval of [0, 5000]N/m, and T takes large values in the interval of [1, 10]s), good
identified results of the system stiffness coefficients with small magnitudes of mean relative
errors can be obtained by the proposed method no matter noiseless system responses or
noise-added system responses are used as input of the proposed HHT-based identification
method. However, due to the sensitivity of damping coefficients to noise, the identified
results of the system damping coefficients are found having large maximal mean relative
error and maximal mean absolute error. When the variable parameters take specific val-
ues (tL = 2s for case of the 2-DOF linear smoothly varying non-chainlike forced vibration
system in Section 3.2.2, h = 100N/m and T = 2s for case of the 2-DOF linear periodically
varying non-chainlike forced vibration system in Appendix A.1.4), the mean relative and
mean absolute errors of the system damping coefficients denoted by pink dashed lines are
sufficiently small.
Study of the control parameters of an EMD program is processed on 2-DOF linear time-
varying chainlike forced vibration systems by applying 6 cases in the EMD program. Each
case applies a different value set of the control parameters (γ1, γ2, αp). For the identifica-
tion method proposed by Shi and Law, small values of the control parameters γ1 and γ2

can result in identified parameters with smaller relative and absolute errors. In consider-
ation of the expense of computational time, the value set of Case 2 (γ1 = 5e-04, γ2 = 5e-03
and αp = 0.05) is preferable for application of the identification method proposed by Shi
and Law. For the proposed HHT-based identification method, the changes of the control
parameters (γ1, γ2, αp) have no influence on the accuracy of identified results. In consid-
eration of the large expense of computational time when applying small values of γ1 and
γ2, the default values of the control parameters (γ1 = 0.05, γ2 = 10 ∗ γ1, αp = 0.05) should
be taken for the proposed HHT-based identification method.
In conclusion, no matter white noise exists in the system responses or not, the proposed
HHT-based identification method can solve the system coefficients of MDOF linear time-
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3.4 Conclusion

varying non-chainlike and chainlike systems having three types of stiffness variations in
both forced vibrations and free vibrations with good accuracy, effectiveness and robust-
ness.
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4 HHT-based Identification of weakly nonlinear
time-varying systems

In this chapter, the HHT-based identification method for general linear time-varying sys-
tem proposed in the previous chapter is extended to weakly nonlinear time-varying MDOF
Duffing systems and Van der Pol systems. Since the systems contain nonlinear parame-
ters, Bedrosian’s theorem is not valid for the application of HT, we make some approxi-
mations with the help of the formula of Hahn and the theory of Feldman to modify the
HHT-based identification method for weakly nonlinear time-varying MDOF Duffing sys-
tems and Van der Pol systems respectively. By application of the modified HHT-based
identification method, numerical simulations are processed on 1-DOF and 2-DOF weakly
nonlinear time-varying Duffing as well as Van der Pol systems with smooth, abrupt and
periodical stiffness variations as well as white noise perturbations in system responses to
demonstrate the effectiveness, accuracy and robustness of the proposed method for weakly
nonlinear time-varying MDOF systems.

4.1 HHT-based Identification of weakly nonlinear

time-varying Duffing systems

Duffing oscillator was proposed by G. Duffing [82] in 1918, who introduced a nonlinear
oscillator with a cubic stiffness term to describe the hardening spring effect. Since then,
Duffing equation has become famous describing nonlinear dynamic characteristics for many
nonlinear oscillatory systems in mechanics [83], engineering [84], physics [85] and mathe-
matics [86]. The differential equation of a damped Duffing oscillator is given by

m(t)ÿ1(t) + c(t)ẏ1(t) + klinear(t)y1(t) + δ(t)y3
1(t) = f1(t) (4.1)

where klinear(t) is the linear stiffness coefficient which controls the size of the restoring
force, δ(t) is the cubic stiffness factor which controls the amount of non-linearity in the
restoring force. The Duffing equation is further classified according to the signs and values
of the parameters klinear and δ [87]:
klinear > 0, δ > 0 Hard spring Duffing equation;
klinear > 0, δ < 0 Soft spring Duffing equation;
klinear < 0, δ > 0 Inverted Duffing equation;
klinear = 0, δ > 0 Nonharmonic Duffing equation.
Suppose we have an n-DOF chainlike system with a weakly nonlinear time-varying hard/-
soft spring Duffing oscillator. Its governing differential equations can be still expressed by
Equation (3.1), but with a stiffness element given by k11(t) = k11linear(t) + δ(t)y2

1(t). For
simplicity, we assume that δ(t) = rdk11linear.

51



4 HHT-based Identification of weakly nonlinear time-varying systems

Since k11(t) contains the square of system response y2
1(t), when applying HT to process

the governing differential equation of the system, Bedrosian’s theorem is not valid for
H{k11(t)y1(t)}. According to the formula of Hahn, suppose n(t) and x(t) are two fast
varying functions whose frequency bands do overlap, if one of the functions can be repre-
sented in the form of a sum of two parts n(t) = n̄slow +

↔
nfast, then the HT of the product

of these functions with overlapping spectra can be written in the form of a sum of two
parts too [88]:

H [n(t)x(t)] = H [n̄slow +
↔
nfast]x(t) = n̄slowx̃+ ñfastx(t) (4.2)

where n̄slow is the slow (low-pass) part of the real function,
↔
nfast is the fast (high-pass)

one and ñfast is the HT pair component of the fast component
↔
nfast. Note that x(t), n̄slow

and
↔
nfast have non-overlapping spectra, x(t) is high-pass signal with respect to n̄slow, but

low-pass signal with respect to
↔
nfast, thus Bedrosian’s theorem can be applied to n̄slowx(t)

and
↔
nfastx(t) separately. Following this equation, Feldman [89] gave the example of the

HT of the square of the harmonic signal x2 = (cosϕ)2:

H [x2] = H [xx] = H [(0 + x)x] = 0 + x̃x = sinϕ cosϕ = 0.5 sin 2ϕ (4.3)

which coincides with H [x2] = H [cosϕ2] = H [0.5 + 0.5 cos 2ϕ] = 0.5 sin 2ϕ. This equation
can be also approximately applied to the square of the response y1(t) of the n-DOF chainlike
weakly nonlinear Duffing system since y1(t) is a harmonic signal similar to cosϕ.
Since the spectra of y2

1(t) and y1(t) of the 1-DOF and 2-DOF weakly nonlinear Duffing
systems to be simulated can be approximately seen as non-overlapping and y2

1(t) can be
treated as high-pass signal with respect to y1(t), we obtain H [y2

1(t)y1(t)] ≈ H [y2
1(t)]y1(t).

Then, with the help of the assumption that δ(t) doesn’t vary quickly over time, we obtain
the following expression for the n-DOF chainlike system with a weakly nonlinear time-
varying hard/soft spring Duffing oscillator:

H{k11(t)y1(t)} = H
{[

δ(t)/rd + δ(t)y2
1(t)

]

y1(t)
}

≈ δ(t)/rdH [y1(t)] + δ(t)H [y2
1(t)]y1(t)

= δ(t)/rdH [y1(t)] + δ(t)H {[0 + y1(t)]y1(t)} y1(t)

≈ δ(t)/rdH [y1(t)] + δ(t)H [y1(t)]y1(t)y1(t)

= δ(t)
{

ỹ1(t)/rd + ỹ1(t)y
2
1(t)

}

(4.4)

The HHT-based identification procedures for general linear time-varying systems can be
used for identification of the n-DOF chainlike weakly nonlinear time-varying system which
contains a weakly nonlinear time-varying hard/soft spring Duffing oscillator, except that
Equations (3.6) and (3.8) are modified as follows:

αk(t) = [δ(t), k12(t), . . . , k1n(t), . . . , ki1(t), . . . , kin(t), . . . , kn1(t), . . . , knn(t), ]T (4.5)
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4.1 HHT-based Identification of weakly nonlinear time-varying Duffing systems

P k(t) =


















Y1(t)/rd + Y1(t)y
2
1(t) Y2(t) · · · Yn(t)

. . . 0

Y1(t) · · · Yn(t)

0
. . .

Y1(t) · · · Yn(t)



















(4.6)

(n× n2)

In the following sections, by application of the modified HHT-based identification method,
we process the simulations on 1-DOF and 2-DOF weakly nonlinear time-varying systems,
each of which contains a weakly nonlinear time-varying hard spring Duffing oscillator with
smooth, abrupt or periodical stiffness variations. The identification simulations are pro-
cessed by MATLAB programs, the time interval between two adjacent data points is set
as 0.01 seconds and the whole time history is set as 10 seconds. The noiseless system
responses are obtained by solving the system differential equations, and the noise-added
system responses are generated with the ratio Nstd of the standard deviation of the added
white noise and that of the corresponding noiseless system response set as 0.05 and the
number of trials NE set as 15.
For the 1-DOF weakly nonlinear time-varying hard spring Duffing oscillators to be simu-
lated, the following common information is given: the mass coefficient is assumed to be
known as m = 1.0kg; the initial conditions are given as y(0) = 1m and ẏ(0) = 0m/s; An
impact excitation is given at the mass by f(t) = 1N when t = 0s, f(t) = 0N otherwise.
The differences among these oscillators are: the stiffness coefficients have different variation
types; the damping ratios of these oscillators are respectively of the similar magnitudes
as those of the corresponding 1-DOF linear smoothly, abruptly and periodically varying
systems. For the 2-DOF weakly nonlinear time-varying chainlike Duffing systems to be
simulated, the following common information is given: the mass coefficients are assumed to
be constants m1 = m2 = 50kg, the system damping coefficients are given by c1 = 30Ns/m,
c2 = 0Ns/m; the initial conditions for the two experiments are given as y1(0) = 0m,
y2(0) = 1m, ẏ1(0) = 0m/s, ẏ2(0) = 0m/s as well as y1(0) = 1m, y2(0) = 0m, ẏ1(0) = 0m/s,
ẏ2(0) = 0m/s; a periodic excitation is given at mass 1 by f(t) = 50 sin(2πt)N. The dif-
ferences among these 2-DOF weakly nonlinear chainlike Duffing systems are: the stiffness
coefficients have different variation types. For all weakly nonlinear time-varying chainlike
Duffing systems to be simulated, the parameter rd is given by rd = 0.1.
The identified results of the stiffness coefficients of weakly nonlinear smoothly and abruptly
varying Duffing systems are presented in the following, whereas the identified results of the
damping coefficients of the former systems and all the identified results of weakly nonlinear
periodically varying Duffing systems are presented in Appendices A.2.1 - A.2.3.
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4 HHT-based Identification of weakly nonlinear time-varying systems

4.1.1 HHT-based Identification of 1-DOF weakly nonlinear
time-varying hard spring Duffing oscillators

For 1-DOF weakly nonlinear time-varying hard spring Duffing oscillators to be simulated,
the system stiffness coefficients and damping coefficients are given as Table 4.1:

Table 4.1: System coefficients of 1-DOF weakly nonlinear time-varying hard spring
Duffing oscillators

Type of systems

System
coefficients

System stiffness coefficient and damping coefficient

1-DOF weakly
nonlinear smoothly
varying hard spring
Duffing oscillator

klinear(t) = 100π2N/m, c(t) = 0.7Ns/m when t < 2s,
klinear(t) = 100π2 − 10π2tN/m, c(t) = 0.7 + 0.15tNs/m
when 2s ≤ t ≤ 4s,
klinear(t) = 80π2N/m, c(t) = 1.0Ns/m when t > 4s,
δ(t) = 0.1klinear(t)N/m

3 for any t.
1-DOF weakly
nonlinear abruptly
varying hard spring
Duffing oscillator

klinear(t) = 100π2N/m when t < 1.5s,
klinear(t) = 60π2N/m when 1.5s ≤ t ≤ 3.5s,
klinear(t) = 80π2N/m when t ≥ 3.5s,
δ(t) = 0.1klinear(t)N/m

3, c(t) = 0.7Ns/m for any t.
1-DOF weakly
nonlinear periodically
varying hard spring
Duffing oscillator

klinear(t) = 100π2 − 10π2 sin (2πt)N/m,
δ(t) = 0.1klinear(t)N/m

3, c(t) = 1.26Ns/m for any t.

The identified results of the linear stiffness coefficient and cubic stiffness coefficient of the
1-DOF weakly nonlinear smoothly and abruptly varying hard spring Duffing oscillators as
well as their relative errors are shown in Figures 4.1 - 4.2.
We can learn from the figures that: For the 1-DOF weakly nonlinear smoothly varying
hard spring Duffing system, no matter using noiseless or noise-added system responses as
input of the modified HHT-based identification method, the accuracies of the obtained
identified results of the weakly nonlinear smoothly varying Duffing oscillator (δ = 0.1 ∗
klinear N/m3) are always worse than those of the linear smoothly varying oscillator (δ =
0 N/m3) which has the same linear system coefficients, initial conditions and excitation
signal as the weakly nonlinear smoothly varying Duffing oscillator due to the application of
Equation (4.4); when using noise-added system responses as input, although the accuracies
of the identified results are decreased, we can still obtain good identified results of linear
stiffness coefficient klinear and cubic stiffness coefficient δ (with maximal relative errors
less than 3.0%); For the 1-DOF weakly nonlinear abruptly varying hard spring Duffing
system, both the identified results for Duffing oscillator (δ = 0.1 ∗ klinear N/m3) and linear
oscillator (δ = 0 N/m3) have obvious abrupt changes around time instants t = 1.5s and
t = 3.5s, due to the abrupt changes of the system stiffness coefficients at these time
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Figure 4.1: Stiffness coefficients of a 1-DOF weakly nonlinear smoothly varying hard spring
Duffing system: (a) The true value and the identified values of linear stiffness
coefficient klinear, (b) Relative errors of the identified values of klinear, (c) The
true value and the identified values of cubic stiffness factor δ, (d) Relative
errors of the identified values of δ.

instants. The large identification errors found around these time instants imply that the
proposed method has bad ability to capture the abrupt change of the system parameters
due to the limitations of Equation (2.16) and can be used to detect the abrupt changes
of the original system stiffness coefficients. At other time instants, due to the application
of Equation (4.4), the identified results of the weakly nonlinear abruptly varying Duffing
oscillator are a little bit worse than those of the linear abruptly varying oscillator which has
the same linear system coefficients, initial conditions and excitation signal as the weakly
nonlinear abruptly varying Duffing oscillator, no matter using noiseless or noise-added
system responses as input of the modified HHT-based identification method. When using
noise-added system responses as input, although the identified results are contaminated by
noise, good identified results of linear stiffness coefficient klinear and cubic stiffness factor
δ (with maximal relative errors less than 5.2%) can be obtained at time instants which are
not around t = 1.5s and t = 3.5s.
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Figure 4.2: Stiffness coefficients of a 1-DOF weakly nonlinear abruptly varying hard spring
Duffing system: (a) The true value and the identified values of linear stiffness
coefficient klinear, (b) Relative errors of the identified values of klinear, (c) The
true value and the identified values of cubic stiffness factor δ, (d) Relative
errors of the identified values of δ.

4.1.2 HHT-based Identification of 2-DOF weakly nonlinear

time-varying chainlike Duffing systems

For the 2-DOF weakly nonlinear systems which contain a weakly nonlinear time-varying
hard spring Duffing oscillator and follow the chainlike model in Figure 3.1, the system
stiffness coefficients are given as Table 4.2:
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Table 4.2: System coefficients of 2-DOF weakly nonlinear time-varying chainlike Duffing
systems

Type of systems

System
coefficients

System stiffness coefficient

2-DOF weakly
nonlinear smoothly
varying chainlike
Duffing system

k2(t) = 87552N/m when t < 1s,
k2(t) = 87552 − 8755.2(t− 1)N/m when 1s ≤ t ≤ 3s,
k2(t) = 70042N/m when t > 3s,
k1(t) = 40053N/m for any t,
δ(t) = 0.1[k1(t) + k2(t)]N/m3 for any t.

2-DOF weakly
nonlinear abruptly
varying chainlike
Duffing system

k1(t) = 40053N/m, k2(t) = 87552N/m when t ≤ 3s,
k1(t) = 36048N/m, k2(t) = 70042N/m when t > 3s,
δ(t) = 0.1[k1(t) + k2(t)]N/m3 for any t.

2-DOF weakly
nonlinear periodically
varying chainlike
Duffing system

k1(t) = 40053N/m when t < 2s,
k1(t) = 40053 − 4005.3 sin [π(t− 2)]N/m when t ≥ 2s,
k2(t) = 87552N/m for any t,
δ(t) = 0.1[k1(t) + k2(t)]N/m3 for any t.

The identified results of the system stiffness coefficients of the 2-DOF weakly nonlinear
smoothly and abruptly varying chainlike Duffing systems and their relative errors are
shown in Figures 4.3 - 4.6.
It is noted from the figures that: For the 2-DOF weakly nonlinear smoothly varying
chainlike Duffing systems, no matter using noiseless or noise-added system responses as
input of the modified HHT-based identification method, the identified results of cubic
stiffness factor δ and stiffness coefficient k2 are always close to their respective true values
(with maximal relative error of δ less than 3.8% and that of k2 less than 2.1%); For
the 2-DOF weakly nonlinear abruptly varying chainlike Duffing system, relatively large
identification errors of δ and k2 are obtained at time instant t = 3s due to the limitations
of Equation (2.16), which can be used to detect the abrupt change of the system stiffness
coefficient at this time instant. At other time instants, the identified results of δ and k2

match their respective true values (the maximal relative error of δ is less than 4.0% and
that of k2 is less than 2.8%).
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Figure 4.3: Cubic stiffness factor δ of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying hard spring Duffing oscillator: (a) The true
value and the identified values of δ, (b) Relative errors of the identified values
of δ.
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Figure 4.4: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying hard spring Duffing oscillator: (a) The true
value and the identified values of k2, (b) Relative errors of the identified values
of k2.
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Figure 4.5: Cubic stiffness factor δ of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying hard spring Duffing oscillator: (a) The true
value and the identified values of δ, (b) Relative errors of the identified values
of δ.
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Figure 4.6: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying hard spring Duffing oscillator: (a) The true
value and the identified values of k2 , (b) Relative errors of the identified values
of k2.
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4.2 HHT-based Identification of weakly nonlinear

time-varying Van der Pol systems

Together with Duffing’s equation, Van der Pol’s equation proposed by Van der Pol [90] is
one of the classical equations in nonlinear vibrations. It was originally used to model an
electrical circuit with a triode valve, and then was extensively studied as the model of a
rich class of dynamical behavior, such as relaxation oscillations, elementary bifurcations
and chaos [91–94], etc. The differential equation of a Van der Pol oscillator is given by

mÿ1 + µ(y2
1 − 1)ẏ1 + ky1 = f1 (4.7)

in which µ is the damping factor which controls the amount of non-linearity. Since we
consider time-varying stiffness here, k is assumed to vary around 1N/m over time.
Suppose we have an n-DOF chainlike system with a weakly nonlinear time-varying Van der
Pol oscillator expressed by Equation (4.7), its governing differential equations can be still
expressed by Equation (3.1), but with a damping element given by c11(t) = µ(y2

1(t) − 1).
As c11(t) contains the square of system response y1(t)

2, when applying HT to process
the governing differential equations of the system, Bedrosian’s theorem is not valid for
H{c11(t)ẏ1(t)}. Since the spectrum of y2

1(t) and that of ẏ1(t) can be approximately seen
as non-overlapping and y2

1(t) can be seen as high-pass signal with respect to ẏ1(t), we
obtain H [y2

1(t)ẏ1(t)] ≈ H [y2
1(t)] ẏ1(t). As the response y1(t) of the n-DOF chainlike weakly

nonlinear Van der Pol system is a harmonic signal similar to cosϕ, Equation (4.3) can be
also approximately applied to the square of y1(t). Then, by assuming that µ doesn’t vary
quickly over time and applying the formula of Hahn (see Equation (4.2)), we obtain

H{c11(t)ẏ1(t)} = H
{[

µ(y2
1(t) − 1)

]

ẏ1(t)
}

= µH
{[

(y2
1(t) − 1)

]

ẏ1(t)
}

≈ µ
{

−H [ẏ1(t)] + H
[

y2
1(t)

]

ẏ1(t)
}

= µ {−H [ẏ1(t)] + H [(0 + y1(t))y1(t)] ẏ1(t)}

≈ µ {−H [ẏ1(t)] + H [y1(t)]y1(t)ẏ1(t)}

= µ
{

− ˙̃y1(t) + ỹ1(t)y1(t)ẏ1(t)
}

(4.8)

The identification method for general linear time-varying systems can be also used for
identification of the n-DOF chainlike weakly nonlinear system which contains a weakly
nonlinear time-varying Van der Pol oscillator, except that Equation (3.7) and (3.9) are
modified as follows:

αc(t) = [µ, c12(t), . . . , c1n(t), . . . , ci1(t), . . . , cin(t), . . . , cn1(t), . . . , cnn(t), ]T (4.9)
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P c(t) =




















−Ẏ1(t) + Y1(t)y1(t)ẏ1(t) Ẏ2(t) · · · Ẏn(t)
. . . 0

Ẏ1(t) · · · Ẏn(t)

0
. . .

Ẏ1(t) · · · Ẏn(t)





















(4.10)

(n× n2)

In the following sections, by application of the modified HHT-based identification method,
we process the simulations on 1-DOF and 2-DOF weakly nonlinear systems, each of which
contains a weakly nonlinear time-varying Van der Pol oscillator with smooth, abrupt or
periodical stiffness variations. The identification simulations are still processed by MAT-
LAB programs. The time interval between two adjacent data points in the simulations is
0.01 seconds, and the whole time history is 10 seconds. The system differential equations
are solved to obtain the noiseless system responses, the ratio of the standard deviation
of the added white noise and that of the corresponding noiseless system response Nstd is
set as 0.05 and the number of trials NE is set as 15 to generate the noise-added system
responses.
For the 1-DOF weakly nonlinear time-varying Van der Pol oscillators to be simulated,
the following common information is given: the mass coefficient is assumed to be known
as m = 1.0kg, and the damping factor is given by µ = 0.1Ns/m3; the initial conditions
are given as y(0) = 1m and ẏ(0) = 0m/s. An impact excitation is given at the mass by
f(t) = 1N when t = 0s, f(t) = 0N otherwise. The only differences among these oscillators
are that they have stiffness coefficient with different variation types. For the 2-DOF weakly
nonlinear time-varying chainlike Van der Pol systems to be simulated, the following com-
mon information is given: the mass coefficients, damping factor and damping coefficient
are assumed to be constants m1 = m2 = 50kg, µ = 5Ns/m3, c2 = 0Ns/m; the initial
conditions for the two experiments are given as y1(0) = 0m, y2(0) = 1m, ẏ1(0) = 0m/s,
ẏ2(0) = 0m/s as well as y1(0) = 1m, y2(0) = 0m, ẏ1(0) = 0m/s, ẏ2(0) = 0m/s; a periodic
excitation is given at mass 1 by f(t) = 50 sin(2πt)N. The only differences among these
2-DOF weakly nonlinear Van der Pol systems are that their stiffness coefficients have
different variation types.
The identified results of the stiffness coefficients of weakly nonlinear smoothly and abruptly
varying Van der Pol systems are presented in the following, whereas the identified results
of the damping coefficients of the former systems and all the identified results of weakly
nonlinear periodically varying Van der Pol systems are presented in Appendices A.2.4 -
A.2.6.
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4.2.1 HHT-based Identification of 1-DOF weakly nonlinear
time-varying Van der Pol oscillators

For the 1-DOF weakly nonlinear time-varying Van der Pol oscillators to be simulated, the
system stiffness coefficients are given as Table 4.3:

Table 4.3: System stiffness coefficients of 1-DOF weakly nonlinear time-varying Van der
Pol oscillators

Type of systems

System
coefficients System stiffness coefficient

(N/m)

1-DOF weakly
nonlinear smoothly
varying Van der Pol
oscillator

k(t) = 100π2N/m when t < 2s,
k(t) = 100π2 − 10π2tN/m when 2s ≤ t ≤ 4s,
k(t) = 80π2N/m when t > 4s.

1-DOF weakly
nonlinear abruptly
varying Van der Pol
oscillator

k(t) = 100π2 when t < 1.5s,
k(t) = 60π2 when 1.5s ≤ t ≤ 3.5s,
k(t) = 80π2 when t > 3.5s.

1-DOF weakly
nonlinear periodically
varying Van der Pol
oscillator

k(t) = 100π2 − 10π2 sin 2πt for any t.

The identified results of the stiffness coefficients of the 1-DOF weakly nonlinear smoothly
and abruptly varying Van der Pol oscillators as well as their relative errors are shown in
Figures 4.7 - 4.8.
It can be found that: For the 1-DOF weakly nonlinear smoothly varying Van der Pol
oscillator, when using noise-added system responses as input of the modified HHT-based
identification method, although the identified results are contaminated by noise, the
accuracy of the obtained identified result of stiffness coefficient k is still high (with max-
imal relative error less than 3.6%). And no matter using noiseless system responses or
noise-added ones as input, the accuracy of the obtained identified stiffness result of the
weakly nonlinear smoothly varying Van der Pol oscillator is a little bit worse than the
identified stiffness result of the linear smoothly varying oscillator (µ = 0Ns/m3) which has
the same linear system coefficients, initial conditions and excitation signal as the weakly
nonlinear smoothly varying Van der Pol oscillator, due to the approximation of Equation
(4.8); For the 1-DOF weakly nonlinear abruptly varying Van der Pol oscillator, no matter
using noiseless or noise-added system responses as input of the modified HHT-based iden-
tification method, the accuracies of the obtained identified results of the weakly nonlinear
abruptly varying Van der Pol oscillator are similar to those of the linear abruptly varying
oscillator which has the same linear system coefficients, initial conditions and excitation
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Figure 4.7: Stiffness coefficient of a weakly nonlinear smoothly varying Van der Pol oscil-
lator: (a) The true value and the identified values of stiffness coefficient k, (b)
Relative errors of the identified values of k, (c) Relative errors of the identified
values of k (without noise in system responses).

0.5 1 1.5 2 2.5 3 3.5 4 4.5
400

600

800

1000

1200

1400

1600

1800

2000

Time (s)

S
tif

fn
es

s 
co

ef
fic

ie
nt

 k
 (

N
/m

)

 

 
The true value
The identified value (without noise,
                             VDP oscillator)
The identified value (with noise,
                             VDP oscillator)
The identified value (without noise,
                             Linear oscillator)
The identified value (with noise,
                             Linear oscillator)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

k 
(%

)

 

 
Without noise, VDP oscillator
Without noise, Linear oscillator
With noise, VDP oscillator
With noise, Linear oscillator

(b)

Figure 4.8: Stiffness coefficient of a weakly nonlinear abruptly varying Van der Pol oscil-
lator: (a) The true value and the identified values of stiffness coefficient k, (b)
Relative errors of the identified values of k.

signal as the weakly nonlinear abruptly varying Van der Pol oscillator. The identified
result of stiffness coefficient k has relatively large identification errors around time instants
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t = 1.5s and t = 3.5s, which implies that the proposed identification method has bad
ability to capture the abrupt change of the system coefficient due to the limitations of
Equation (2.16). At other time instants, when using noise-added system responses as
input of the modified HHT-based identification method, good identified result of k (with
maximal relative error less than 2.8%) can still be obtained.

4.2.2 HHT-based Identification of 2-DOF weakly nonlinear

time-varying chainlike Van der Pol systems

For the 2-DOF weakly nonlinear systems which contain a weakly nonlinear time-varying
Van der Pol oscillator and follow the chainlike model in Figure 3.1, the system stiffness
coefficients are given as Table 3.3. The identified results of the system stiffness coefficients
of the 2-DOF weakly nonlinear smoothly and abruptly varying chainlike Van der Pol
systems and their relative errors are shown in Figures 4.9 - 4.12.
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Figure 4.9: Stiffness coefficient k1 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying Van der Pol oscillator: (a) The true value
and the identified values of k1, (b) Relative errors of the identified values of
k1, (c) Relative error of the identified value of k1 (without noise in system
responses).
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Figure 4.10: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying Van der Pol oscillator: (a) The true value
and the identified values of k2, (b) Relative errors of the identified values of
k2, (c) Relative error of the identified value of k2 (without noise in system
responses).
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Figure 4.11: Stiffness coefficient k1 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying Van der Pol oscillator: (a) The true value
and the identified values of k1, (b) Relative errors of the identified values of
k1.
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Figure 4.12: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying Van der Pol oscillator: (a) The true value
and the identified values of k2, (b) Relative errors of the identified values of
k2.

From the above figures, it can be seen that: For the 2-DOF weakly nonlinear smoothly
varying chainlike Van der Pol system, no matter using noiseless or noise-added system
responses as input of the modified HHT-based identification method, the resulting identi-
fied results of the stiffness coefficients always match their respective true values well (with
maximal relative error of k1 less than 5.7% and that of k2 equal to 2.0%, respectively);
For the 2-DOF weakly nonlinear abruptly varying chainlike Van der Pol system, no mat-
ter using noiseless or noise-added system responses as input of the modified HHT-based
identification method, the identified results of the stiffness coefficients have relatively large
identification errors around time instant t = 3s, which implies that the modified HHT-
based identification method has bad ability to capture the abrupt change of the system
parameter due to the limitations of Equation (2.16). At other time instants, the result-
ing identified results of the stiffness coefficients always match their respective true values
well (with maximal relative error of k1 less than 6.5% and that of k2 less than 2.0%,
respectively).

4.3 Parameter studies on weakly nonlinear time-varying

systems

Forced vibration simulations are processed on a 2-DOF weakly nonlinear smoothly varying
chainlike Duffing system and a 2-DOF weakly nonlinear periodically varying chainlike Van
der Pol system to find the proper value range of the structural parameter in the nonlinear
parameter or that of the nonlinear parameter itself, for which good identified results can
be obtained by the proposed method. Like in the simulations of the above sections, noise-
added system responses (Nstd = 0.05, NE = 15) are also considered here.
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4.3.1 Parameter study on a 2-DOF weakly nonlinear smoothly
varying chainlike Duffing system

For the parameter study on a 2-DOF weakly nonlinear smoothly varying chainlike Duffing
system, the system coefficients, initial conditions as well as the external force are given the
same as those of the 2-DOF weakly nonlinear smoothly varying chainlike Duffing system
proposed in Section 4.1.2, except that the cubic stiffness factor δ is given as follows:
δ(t) = kup when t < 1s,
δ(t) = kup − (kup − kdown)/tduff (t− 1) when 1s ≤ t ≤ tduff + 1s,
δ(t) = kdown when t > tduff + 1s,
kup = 12761N/m, kdown = 11010N/m for any t,
where tduff is the variable structural parameter. In the simulation, tduff takes values in

the interval (0, 8]s with the time interval between two adjacent tduff values equal to 0.01s.
Figures 4.13 - 4.16 present the mean relative errors of cubic stiffness factor δ, linear
stiffness coefficient k2, and damping coefficient c1 as well as the mean absolute error of
damping coefficient c2.
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Figure 4.13: Mean relative errors of cubic stiffness factor δ of a 2-DOF weakly nonlinear
smoothly varying chainlike Duffing system with respect to tduff .

We can notice from these figures that: when noiseless system responses are used as input
of the modified HHT-based identification method, the mean relative and absolute errors
(denoted with blue lines) of the system coefficients reach their maximum values as tduff

takes values in the interval (0, 0.03]s, then they have large and rapid decrease as tduff

increases and reach their minimum values as tduff takes values in the interval [1, 1.33]s.
After that, they have a large increase and reach their second maximum values followed
by a large decrease as tduff increases to 4s. As tduff increases in the interval [4, 8]s,
they almost keep constant; when noise-added system responses are used as input, the
mean relative and absolute errors (denoted with black lines) of the system coefficients
also have similar large variations as their aforementioned counterparts (denoted with blue
lines) when tduff increases in the interval (0, 4]s, then they keep fluctuating around some
constant values as tduff increases in the interval [4, 8]s. Although the magnitudes of the
latter (denoted with black lines) are larger than those of the former (denoted with blue
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Figure 4.14: Mean relative errors of stiffness coefficient k2 of a 2-DOF weakly nonlinear
smoothly varying chainlike Duffing system with respect to tduff .
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Figure 4.15: Mean relative errors of damping coefficient c1 of a 2-DOF weakly nonlinear
smoothly varying chainlike Duffing system with respect to tduff : (a) Mean
relative errors of the identified values of c1, (b) Mean relative errors of the
identified values of c1 (with noise in system responses).

lines), the magnitudes of the mean relative errors of the identified cubic stiffness factor
δ and linear stiffness coefficient k2 are still sufficiently small (less than 1.6% and 1.1%
respectively). The identified results of damping coefficients c1 and c2 have quite large
mean relative and absolute errors denoted with black lines, but their mean relative and
absolute errors denoted with pink dashed lines are relatively smaller than the former (The
procedures to calculate the mean relative and absolute errors denoted with black lines and
those denoted with pink dashed lines can be found in Section 3.3.1). At tduff = 2s (case
of the 2-DOF weakly nonlinear smoothly varying chainlike Duffing system proposed in
Section 4.1.2), the mean relative and absolute errors of damping coefficients denoted with
pink dashed lines are sufficiently small (less than 13% and 1.3Ns/m respectively).
Simulations that consider larger noise intensity ((Nstd = 0.2, NE = 15)) of the input
system responses are also carried out, and the resulting identified system parameters are
found having larger mean relative or absolute errors than their counterparts obtained
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Figure 4.16: Mean absolute errors of damping coefficient c2 of a 2-DOF weakly nonlinear
smoothly varying chainlike Duffing system with respect to tduff : (a) Mean
absolute errors of the identified values of c2, (b) Mean absolute errors of the
identified values of c2 (with noise in system responses).

above, which indicates that the magnitudes of the mean relative or absolute errors of the
system parameters depend on the noise intensity of the input system responses.
In conclusion, good results of the mean relative and absolute errors of the identified system
coefficients are obtained as tduff takes values in the interval [4, 8]s.

4.3.2 Parameter study on a 2-DOF weakly nonlinear periodically
varying chainlike Van der Pol system

For the parameter study on a 2-DOF weakly nonlinear periodically varying chainlike Van
der Pol system, the system coefficients, initial conditions as well as the external force are
given the same as those of the 2-DOF weakly nonlinear periodically varying chainlike Van
der Pol system proposed in Section 4.2.2, except that the damping factor µ = 50µl where
µl is a variable parameter in the interval [0.01, 1.0]Ns/m3 with the variation between each
two adjacent µl values equal to 0.001Ns/m3.
The mean relative errors of stiffness coefficients k1 and k2 as well as damping factor µ,
and the mean absolute error of damping coefficient c2 which are obtained at different µl

values are shown in Figures 4.17 - 4.20.
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Figure 4.17: Mean relative errors of stiffness coefficient k1 of a 2-DOF weakly nonlinear
periodically varying chainlike Van der Pol system with respect to µl.
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Figure 4.18: Mean relative errors of stiffness coefficient k2 of a 2-DOF weakly nonlinear
periodically varying chainlike Van der Pol system with respect to µl: (a) Mean
relative errors of the identified values of k2, (b) Mean relative errors of the
identified values of k2 (without noise in system responses).

From these figures, it is noticed that: no matter noiseless or noise-added system responses
are used as input of the modified HHT-based identification method, the mean relative
errors of the identified k1 and k2 as well as the mean absolute error of the identified c2

have increasing trend as µl increases, and good identified results of the stiffness coefficients
are always obtained (with maximal mean relative error of the identified k1 less than 4.3%
and that of k2 less than 0.97%, respectively); the mean relative error (denoted with a blue
line) of the identified µ obtained when using noiseless system responses as input is large
at µl = 0.01Ns/m3, then it has rapidly decreasing trend as µl increases in the interval
[0.01, 0.065]Ns/m3 and reaches its minimum at µl = 0.065Ns/m3, after that it has almost
proportionally increasing trend as µl increases in the interval (0.065, 1.0]Ns/m3 and reaches
its maximum at µl = 1.0Ns/m3. When noise-added system responses are used as input, the
mean relative error (denoted with a black line) of the identified µ has obvious decreasing
trend as µl increases in the interval [0.01, 1.0]Ns/m3, and its magnitude as well as the
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Figure 4.19: Mean relative errors of damping factor µ of a 2-DOF weakly nonlinear peri-
odically varying chainlike Van der Pol system with respect to µl: (a) Mean
relative errors of the identified values of µ, (b) Close-up of (a).
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Figure 4.20: Mean absolute errors of damping coefficient c2 of a 2-DOF weakly nonlinear
periodically varying chainlike Van der Pol system with respect to µl: (a) Mean
absolute errors of the identified values of c2, (b) Mean absolute errors of the
identified values of c2 (without noise in system responses).

magnitude of the mean absolute error (also denoted with a black line) of the identified
c2 are quite large, but the corresponding mean relative and absolute errors denoted with
pink dashed lines have relatively smaller magnitudes (The procedures to calculate the
mean relative and absolute errors denoted with black lines and those denoted with pink
dashed lines can be found in Section 3.3.1). The mean relative error of the identified µ
denoted with a pink dashed line has variation similar as the variation of its counterpart
denoted with a blue line, whereas the mean absolute error of the identified c2 denoted
with a pink dashed line keeps fluctuating around some constant value as µl increases. At
µl = 0.1Ns/m3 (case of the 2-DOF weakly nonlinear periodically varying chainlike Van
der Pol system proposed in Section 4.2.2), the mean relative error of the identified µ and
the mean absolute error of the identified c2 denoted with pink dashed lines are sufficiently
small (less than 14% and equal to 5.0Ns/m respectively).
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4 HHT-based Identification of weakly nonlinear time-varying systems

In conclusion, it is proper to choose small values in the interval [0.065, 1.0]Ns/m3 for
variable parameter µl in order to obtain good identified results of the system coefficients.

4.4 Conclusion

In this chapter, we extend the parametric identification method for general linear time-
varying systems to the identification of weakly nonlinear time-varying MDOF Duffing
systems and Van der Pol systems. Due to the exist of nonlinear coefficients, when apply-
ing HT to process the governing nonlinear differential equations of the system, Bedrosian’s
theorem is not valid for the HT on the product of the nonlinear system coefficient and
the corresponding system response. Instead, we apply the formula of Hahn and derive
Equations (4.4) and (4.8) to process the HT of the product of the nonlinear system coef-
ficient and the corresponding system response and accordingly modify the identification
method for n-DOF chainlike weakly nonlinear time-varying Duffing systems and Van der
Pol systems respectively. Then, in order to demonstrate the effectiveness and accuracy of
the modified HHT-based identification method, three types of time variation of stiffness:
smooth, abrupt and periodical variations are studied on 1-DOF and 2-DOF weakly non-
linear time-varying Duffing systems as well as Van der Pol systems.
For weakly nonlinear time-varying Duffing systems, the accuracies of the identified results
of 1-DOF weakly nonlinear time-varying Duffing systems are always worse than those
of the 1-DOF linear time-varying systems which have the same linear system coefficients,
initial conditions and excitation signals as the corresponding 1-DOF weakly nonlinear time-
varying Duffing systems due to the application of Equation (4.4) for processing the HT
of the product of the nonlinear system coefficient and the corresponding system response.
No matter using noiseless or noise-added system responses as input of the modified HHT-
based identification method, we can always obtain good identified results of the stiffness
coefficients for both 1-DOF and 2-DOF weakly nonlinear time-varying Duffing systems.
Since the damping coefficients are sensitive to noise, the accuracies of their identified re-
sults are low, especially when using noise-added system responses as input of the modified
HHT-based identification method, but the mean values of them are quite close to their
respective true values.
For weakly nonlinear time-varying Van der Pol systems, due to the application of Equa-
tion (4.8) for processing the HT of the product of the nonlinear system coefficient and the
corresponding system response, the accuracies of the identified results of 1-DOF weakly
nonlinear smoothly and periodically varying Van der Pol systems are a little bit worse
than those of the 1-DOF linear time-varying systems which have the same linear system
coefficients, initial conditions and excitation signals as the corresponding 1-DOF weakly
nonlinear time-varying Van der Pol systems. The reason for this is that we take small
value of nonlinear damping factor µ. Since the identification method has bad capability to
capture the abrupt change of the system coefficient for linear abruptly varying systems, the
consequent identification error shadow the identification error of 1-DOF weakly nonlinear
abruptly varying Van der Pol system caused by application of Equation (4.8), thus the
accuracies of the identified results of 1-DOF weakly nonlinear abruptly varying Van der
Pol system are similar to those of the 1-DOF linear abruptly varying system which has
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the same linear system coefficients, initial conditions and excitation signal as the weakly
nonlinear abruptly varying Van der Pol oscillator. For both 1-DOF and 2-DOF weakly
nonlinear time-varying Van der Pol systems, no matter using noiseless or noise-added sys-
tem responses as input of the modified HHT-based identification method, we can always
obtain good identified results of the stiffness coefficients but quite bad identified results
of the damping coefficients. By taking the mean values of them, we can still obtain good
identification of the damping coefficients.
For the parameter study on a 2-DOF weakly nonlinear smoothly varying chainlike Duffing
system, the simulation results demonstrate that it is proper to choose values in the inter-
val [4, 8]s for structural parameter tduff in order to obtain good identified results of the
system coefficients. For the parameter study on a 2-DOF weakly nonlinear periodically
varying chainlike Van der Pol system, the simulation results indicate that good identified
results of the system coefficients can be obtained as we choose small values in the interval
[0.065, 1.0]Ns/m3 for parameter µl.
In conclusion, the identified results demonstrate that the parametric identification method
for general linear time-varying systems can be extended to the identification of weakly
nonlinear time-varying MDOF chainlike Duffing systems and Van der Pol systems with
effectiveness, accuracy and robustness.
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5 HHT and Bayesian inference based
identification of general time-varying systems

As we mentioned, in the application of the proposed HHT-based identification method
uncertainties due to model structure errors, model parameter errors and model order errors
may exist. In order to update the white noise in system responses, Bayesian inference is
used, yielding the posterior distributions of the noise parameters. The referenced values
of the system responses are added to the corresponding posterior distributions of the
noise parameters, gaining the posterior distributions of the system responses, which are
used as input of the HHT-based identification method. Then, by using the HHT-based
identification method, posterior distributions of the identified results of system stiffness and
damping coefficients can be obtained. The combination of Bayesian inference and the HHT-
based identification method is applied in the identification of the aforementioned 1-DOF
and 2-DOF linear time-varying systems and weakly nonlinear time-varying systems which
have smooth, abrupt and periodical stiffness variations to demonstrate the effectiveness,
accuracy and robustness of the combined method for both linear time-varying systems and
weakly nonlinear time-varying systems.
Later, parameter studies on linear time-varying systems and weakly nonlinear time-varying
systems are carried out with the help of Bayesian inference. With the likelihood function
formulated as the product of three probability density functions, one relating to the IMFs of
the acceleration responses, the other two relating to the IMFs of the corresponding velocity
responses and the IMFs of the corresponding displacement responses, Bayesian model
updating method is implemented by TMCMC method for a set of candidate model classes,
yielding the corresponding posterior distributions of the system structural parameters for
these model classes. By using Bayesian model class selection, the most probable model
class and the corresponding posterior distributions of the system structural parameters
for the most probable model class are selected. Numerical simulations are processed on
linear time-varying systems and weakly nonlinear time-varying systems to demonstrate the
effectiveness, accuracy and robustness of the proposed Bayesian inference based parameter
identification method.

5.1 HHT and Bayesian inference based identification

method for linear time-varying systems and weakly

nonlinear time-varying systems

The main procedures of combination of Bayesian inference and the proposed HHT-based
identification method are presented as follows:
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Figure 5.1: Main procedures of the HHT-based identification method applying Bayesian
inference for an n-DOF linear time-varying system and an n-DOF weakly non-
linear time-varying system.

1. Run n experiments (see Section 3.2) to get n sets of noiseless system responses in
the required time history as the reference values of the system responses.

2. Perform Bayesian inference with the help of Equations (2.37) - (2.40) in Section 2.4
to update initial knowledge about the forced vibration system responses and the
white noise in the system responses based on measured system responses.
For a set of model classes M = {Ml : l = 1, . . . , Nclass}, suppose the experimental
data D consists of Ns sets of data D = {D(k) : k = 1, . . . , Ns} at each time instant
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5.1 HHT and Bayesian inference based identification method for linear time-varying systems and weakly nonlinear

with the kth set of data given by D(k) = {y
(k)
i,q , ẏ

(k)
i,q , ÿ

(k)
i,q : i, q = 1, . . . , n}, where

the subscript i denotes the index of DOF and the subscript q denotes the index of
experiment (in each experiment, ODE of the system is solved with the same initial
conditions given at a different DOF of the system). The prior distribution of the
white noise in each system response is assigned to be a given uniform distribution.
The prior distribution of the Prediction error variance (PEV) of each acceleration
signal is a given uniform distribution. The number of samples of each distribution is
given the same by NE.
From Equations (2.37) - (2.40), for an acceleration signal ÿ

(k)
i,q , we have

ÿ
(k)
i,q = moa(θi,q) + ea

i,q , ea
i,q ∼ N

(

0, (εa
i,q)

2
)

(5.1)

where moa(θi,q) is the model output of ÿ
(k)
i,q , which is equal to the reference value of

ÿ
(k)
i,q (supposed as noiseless) plus the white noise parameter na

i,q, e
a
i,qis the prediction

error of ÿ
(k)
i,q whose PDF model is given by a Gaussian PDF with zero mean and

variance (εa
i,q)

2. As displacement signal y
(k)
i,q and velocity signal ẏ

(k)
i,q can be obtained

by integration of the corresponding acceleration signal ÿ
(k)
i,q , we assume their PEVs

are proportional to the PEV of ÿ
(k)
i,q with respective factors ηi,q and ρi,q which define

the model class Ml = {M (ηi,q(l), ρi,q(l)) : i, q = 1, . . . , n}.
Assume the prediction errors of the system responses are modeled as statistically
independent of each other, then the likelihood function which corresponds to the ith
DOF and the qth experiment is given as

p(Di,q|θi,q,M
ik
l ) =

Ns
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ẏ
(k)
i,q −mov(θi,q)

)2

ρi,q(l)(εa
i,q)

2
+

(

y
(k)
i,q −mod(θi,q)

)2

ηi,q(l)(εa
i,q)

2

















(5.2)

where Di,q =
{

ÿ
(k)
i,q , ẏ

(k)
i,q , y

(k)
i,q

}Ns

k=1
is the subset of the experimental data D and

θi,q =
[

na
i,q, n

v
i,q, n

d
i,q, (ε

a
i,q)

2
]T

is the parameter vector to be updated, M ik
l =

M (ηi,q(l), ρi,q(l)) is the subset of the model class Ml, mo
a(θi,q), mo

v(θi,q), mo
d(θi,q)

are the model acceleration, velocity and displacement respectively, and na
i,q, n

v
i,q, n

d
i,q

are the white noise signals in the acceleration, velocity and displacement responses
respectively. All these parameters correspond to the ith DOF and the qth experi-
ment and are independent from parameters of other DOFs and other experiments.
With the help of Equation (5.2), Bayesian model updating is implemented by TM-
CMC method to update the initial knowledge about the white noise parameters in
the system responses for each DOF in each experiment at each time instant. These
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procedures are repeated for all model classes M with the posterior probability of
each model class for the ith DOF and the qth experiment at each time instant
calculated as follows

p(M ik
l |Di,q,M ) =

p(Di,q|M
ik
l )p(M ik

l |M )

p(Di,q|M )
(5.3)

where the evidence p(Di,q|M
ik
l ) can be calculated following the TMCMC method

introduced in Section 2.4.4, the prior distribution p(M ik
l |M ) = 1/Nclass since all

model classes are assumed to be equally likely apriori, and the normalizing constant
p(Di,q|M ) =

∑Nclass

l=1 p(Di,q|M
ik
l )p(M ik

l |M ).

3. Perform Bayesian model class selection according to Equation (5.3) in order to choose
the most probable model class which has the best values of the factors η and ρ. For
each DOF in each experiment at each time instant, we choose the maximal poste-
rior probability of the parameter vector (which means that we obtain n2 maximal
posterior probabilities for n DOF in n experiments at each time instant). The most

probable model class at each time instant M∗ = {M
(

η∗
i,q, ρ

∗
i,q

)

: i, q = 1, . . . , n} is

the model class which has n2 maximal posterior probabilities, where η∗
i,q and ρ∗

i,q are
the best values of the factors η and ρ for the ith DOF and the qth experiment. With
the help of the posterior distributions of the noise parameters for the most probable
model class at each time instant, NE sample sets of the n sets of system responses
(each sample set contains a different set of sample values for the corresponding n
sets of system responses) are obtained.

4. Filter the NE sample sets of the n sets of system responses obtained in step 3 with
the fourth-order zero-lag Butterworth low-pass filter, then use each Ns sample sets of
the NE sample sets of the n sets of filtered system responses as input of the proposed
HHT-based identification method for general linear time-varying systems or input
of the modified HHT-based identification method for weakly nonlinear time-varying
systems, obtaining one set of identified values of the system parameters in the re-
quired time history. Finally, for NE sample sets of the n sets of system responses, we
obtain the statistical distribution of the NE/Ns identified values (each sample value is
a time-varying signal in the required time history) for each of the system parameters.

According to the above main procedures, numerical simulations are processed on 1-DOF
and 2-DOF linear time-varying systems as well as weakly nonlinear time-varying Duffing
systems and Van der Pol systems in the following sections.
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5.2 HHT and Bayesian inference based identification of

linear time-varying systems

In this section, HHT and Bayesian inference based identification are processed on the 1-
DOF linear time-varying systems and 2-DOF linear time-varying non-chainlike systems
proposed in Section 3.2 (the initial conditions and external forces for these systems are
the same as in Section 3.2). The simulations are processed by MATLAB programs with
the time interval between two adjacent data points given by 0.01 seconds and the whole
time history given by 10 seconds. The reference values of system responses are obtained
by solving the system differential equations.
For Bayesian inference, assume the experimental data consists of Ns=15 sets of system
responses generated with the reference values of system responses perturbed by Gaussian
noise with COV equal to 5%. The prior distribution assigned to the white noise in each
system response is a uniform distribution in the range [−1, 1] ∗ (Nstde ∗ std(z)), where
std(z) is the function of MATLAB for calculating standard deviation of signal z, and the
ratio of the standard deviation of the white noise and that of the corresponding noiseless
system response Nstde is set to be 0.2. The PEV of the acceleration signal of each DOF in
each experiment is uniformly distributed in the range [0, eps∗std(acceleration)2], where the
ratio of the variance of the white noise and that of the corresponding noiseless acceleration
eps is set to be 0.05. The factors ηi,q and ρi,q which define the model class Ml are assigned
as ηi,q(l) = 0.2 + 0.1(l − 1), ρi,q(l) = 1, l = 1, . . . , 29. The number of samples of each
distribution NE is given as 450.
The statistical distributions of the identified stiffness coefficients of 1-DOF and 2-DOF
linear smoothly and abruptly varying systems are presented in the following sections,
whereas those of the identified damping coefficients of the same systems as well as the
statistical distributions of the identified system coefficients for 1-DOF and 2-DOF linear
periodically varying systems are presented in Appendix B.1.

5.2.1 HHT and Bayesian inference based identification of 1-DOF
linear smoothly and abruptly varying systems

For the HHT and Bayesian inference based identification of the 1-DOF linear smoothly
and abruptly varying forced vibration systems proposed in Section 3.2.1, the posterior
probabilities of model classes M (η1,1(l), 1), l = 1, . . . , 29, the statistical distributions of
the identified stiffness coefficients as well as their relative errors are plotted in Figures 5.2
- 5.5.
It is noted from the figures that: For the 1-DOF linear smoothly varying forced vibration
system, model classes M (η1,1(l), 1), l = 1, . . . , 29 at the different time instants shown in
Figure 5.2 have nearly 0 posterior probabilities when factor η1,1 = 0.2, then they have
increasing posterior probabilities as η1,1 increases from 0.2 to 0.7. Afterwards, they have
maximal posterior probabilities as η1,1 takes values in the interval [0.7, 1.0], and the best
values for η1,1 at different time instants are obtained. Finally, their posterior probabilities
decrease to nearly 0 when η1,1 increases from its best values to 3 (that is the reason why
ηi,q(l) = 0.2+0.1(l−1), ρi,q(l) = 1, l = 1, . . . , 29 were chosen). E.g., for t = 2.83s, the most
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Figure 5.2: Posterior probability of model classes M (η1,1, 1) specified by η1,1 = [0.2, 3] for
a 1-DOF linear smoothly varying forced vibration system.
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Figure 5.3: Stiffness coefficient of a 1-DOF linear smoothly varying forced vibration system:
(a) The true value and the identified values of the stiffness coefficient, (b)
Relative errors of the identified values of the stiffness coefficient.
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Figure 5.4: Posterior probability of model classes M (η1,1, 1) specified by η1,1 = [0.2, 3] for
a 1-DOF linear abruptly varying forced vibration system.
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Figure 5.5: Stiffness coefficient of a 1-DOF linear abruptly varying forced vibration sys-
tem: (a) The true value and the identified values of the stiffness coefficient (b)
Relative errors of the identified values of the stiffness coefficient.

probable model class is M (η1,1(6), 1) with the best value for η1,1 given by η1,1(6) = 0.7. Al-
though the prior distribution assigned to the white noise in each system response has large
ratio of the standard deviation of the white noise and that of the corresponding noiseless
system response (Nstde = 0.2), by applying the combination method based on HHT and
Bayesian Inference, the resulting statistical distribution of the identified values (denoted
with black lines) of the stiffness coefficient shown in Figure 5.3 is concentrated and the
identified values are close to its true value (with maximal relative error of its identified val-
ues less than 4.2%); For the 1-DOF linear abruptly varying forced vibration system, Figure
5.4 shows that maximal posterior probabilities of model classes M (η1,1(l), 1), l = 1, . . . , 29
at the different time instants are found as η1,1 takes values in the interval [0.7, 1.0], and
similar increasing as well as decreasing trends can be found for the posterior probabilities
as those plotted in Figure 5.2. For t = 3.1s, the most probable model class is M (η1,1(8), 1)
with the best value for η1,1 given by η1,1(8) = 0.9. The identified values of the stiffness
coefficient are concentratedly distributed and match closely its true value, except around
t = 1.5s and t = 3.5s they have relatively large identification errors, since the HHT-based
identification method has bad ability to capture the abrupt change of the system param-
eters due to the limitations of Equation (2.16). At time instants which are not around
t = 1.5s and t = 3.5s, the identified values of the stiffness coefficient have small relative
errors (whose maximum is less than 5.3%).

5.2.2 HHT and Bayesian inference based identification of 2-DOF

linear time-varying systems

For the HHT and Bayesian inference based identification of the 2-DOF linear smoothly
and abruptly varying forced vibration systems proposed in Section 3.2.2, the posterior
probabilities of model classes M (η2,1(l), 1), l = 1, . . . , 29, the statistical distributions of the
identified stiffness coefficients as well as their relative errors are shown in Figures 5.6 - 5.11.
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Figure 5.6: Posterior probability of model classes M (η2,1, 1) specified by η2,1 = [0.2, 3] for
a 2-DOF linear smoothly varying non-chainlike forced vibration system.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.96

0.98

1

1.02

1.04

1.06
x 10

4

Time (s)

S
tif

fn
es

s 
co

ef
fic

ie
nt

 k
1 (

N
/m

)

 

 
The true value
The identified value (without noise)
The identified value (with noise)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

k 1 (
%

)

 

 
Without noise
With noise(b)

Figure 5.7: Stiffness coefficient k1 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k1, (b) Relative
errors of the identified values of k1.

For the 2-DOF linear smoothly varying forced vibration system, the posterior probabilities
of model classes for the 2nd DOF and the 1st experiment M (η2,1(l), 1), l = 1, . . . , 29 which
are plotted in Figure 5.6 have nearly 0 posterior probabilities when factor η2,1 = 0.2, then
they have increasing posterior probabilities as η2,1 increases from 0.2 to 0.8. Afterwards,
they have maximal posterior probabilities as η2,1 takes values in the interval [0.8, 1.1], and
the best values for η2,1 at different time instants are obtained. Finally, their posterior prob-
abilities decrease to nearly 0 when η2,1 increases from its best values to 3. By applying the
combination method, the obtained statistical distributions of the identified values (denoted
with black lines) of the stiffness coefficients shown in Figures 5.7 - 5.8 are concentrated and
are close to their respective true values (with maximal relative error of the identified values
of stiffness coefficient k1 less than 1.3% and that of stiffness coefficient k2 less than 1.4%);
For the 2-DOF linear abruptly varying forced vibration system, the posterior probabilities
of model classes for the 2nd DOF and the 1st experiment M (η2,1(l), 1), l = 1, . . . , 29 which
are plotted in Figure 5.9 have nearly 0 posterior probabilities when factor η2,1 = 0.2, then
they have increasing posterior probabilities as η2,1 increases from 0.2 to 0.7. Afterwards,
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Figure 5.8: Stiffness coefficient k2 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k2, (b) Relative
errors of the identified values of k2.
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Figure 5.9: Posterior probability of model classes M (η2,1, 1) specified by η2,1 = [0.2, 3] for
a 2-DOF linear abruptly varying non-chainlike forced vibration system.

they have maximal posterior probabilities as η2,1 takes values in the interval [0.7, 1.2], and
the best values for η2,1 at different time instants are obtained. Finally, their posterior
probabilities decrease to nearly 0 when η2,1 increases from its best values to 3. Figures
5.10 - 5.11 show that the identified values of stiffness coefficients k1 and k2 have relatively
large identification errors around time instant t = 3.0s due to the limitations of Equation
(2.16). At other time instants, the statistical distributions of the identified values of k1 and
k2 are concentrated and are close to their respective true values (with maximal relative
error of the identified values of k1 less than 1.9% and that of k2 less than 1.2%).
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Figure 5.10: Stiffness coefficient k1 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k1, (b)
Relative errors of the identified values of k1.
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Figure 5.11: Stiffness coefficient k2 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of k2, (b)
Relative errors of the identified values of k2.

5.3 HHT and Bayesian inference based identification of

weakly nonlinear time-varying systems

In this section, by using the combination method based on the modified HHT-based identi-
fication method and Bayesian inference, numerical simulations are processed on the 1-DOF
and 2-DOF weakly nonlinear time-varying Duffing as well as Van der Pol systems proposed
in Sections 4.1 - 4.2 (the initial conditions and external forces for these systems are the
same as in Sections 4.1 - 4.2).The simulations are processed by MATLAB programs with
the time interval between two adjacent data points given by 0.01 seconds and the whole
time history given by 10 seconds. The reference values of system responses are obtained
by solving the system differential equations.
The important parameters and procedures of Bayesian inference are given the same as
those in Section 5.2 for the linear time-varying systems.
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5.3 HHT and Bayesian inference based identification of weakly nonlinear time-varying systems

The statistical distributions of the identified stiffness coefficients for 1-DOF and 2-DOF
weakly nonlinear smoothly and abruptly varying systems are presented in the following
sections, whereas those of the identified damping coefficients of the same systems as well
as the statistical distributions of the identified system coefficients for 1-DOF and 2-DOF
weakly nonlinear periodically varying systems are presented in Appendix B.2.

5.3.1 HHT and Bayesian inference based identification of 1-DOF
weakly nonlinear smoothly and abruptly varying Duffing

oscillators

For the HHT and Bayesian inference based identification of the 1-DOF weakly nonlinear
smoothly and abruptly varying hard spring Duffing oscillators proposed in Section 4.1.1,
the statistical distributions of the identified cubic stiffness factors as well as their relative
errors are plotted in Figures 5.12 - 5.13.
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Figure 5.12: Cubic stiffness factor δ of a 1-DOF weakly nonlinear smoothly varying hard
spring Duffing oscillator: (a) The true value and the identified values of δ, (b)
Relative errors of the identified values of δ.

We can see from the figures that: For the 1-DOF weakly nonlinear smoothly varying
hard spring Duffing oscillator, the obtained identified values (denoted with black lines) of
cubic stiffness factor δ are distributed concentratedly and are close to its true value (with
the maximal relative error less than 4.3%); For the 1-DOF weakly nonlinear abruptly
varying hard spring Duffing oscillator, the identified values (denoted with black lines) of
cubic stiffness factor δ have relatively quite large identification errors around time instants
t = 1.5s and t = 3.5s due to the limitations of Equation (2.16), whereas at other time
instants, the identified values of δ are concentratedly distributed and are close to its true
value (with the maximal relative error less than 4.6%).
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Figure 5.13: Cubic stiffness factor δ of a 1-DOF weakly nonlinear abruptly varying hard
spring Duffing oscillator: (a) The true value and the identified values of δ, (b)
Relative errors of the identified values of δ.

5.3.2 HHT and Bayesian inference based identification of 2-DOF
weakly nonlinear smoothly and abruptly varying Duffing systems

For the HHT and Bayesian inference based identification of the 2-DOF weakly nonlinear
smoothly and abruptly varying hard spring Duffing systems proposed in Section 4.1.2, the
statistical distributions of the identified cubic stiffness factors and identified linear stiffness
coefficients as well as their relative errors are shown in Figures 5.14 - 5.17.
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Figure 5.14: Cubic stiffness factor δ of a 2-DOF weakly nonlinear system with a weakly
nonlinear smoothly varying hard spring Duffing oscillator: (a) The true value
and the identified values of δ, (b) Relative errors of the identified values of δ.
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Figure 5.15: Stiffness coefficient k2 of a 2-DOF weakly nonlinear system with a weakly
nonlinear smoothly varying hard spring Duffing oscillator: (a) The true value
and the identified values of k2, (b) Relative errors of the identified values of
k2.
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Figure 5.16: Cubic stiffness factor δ of a 2-DOF weakly nonlinear system with a weakly
nonlinear abruptly varying hard spring Duffing oscillator: (a) The true value
and the identified values of δ, (b) Relative errors of the identified values of δ.

It can be seen from the figures that: For the 2-DOF weakly nonlinear smoothly varying
hard spring Duffing system, the identified values (denoted with black lines) of cubic
stiffness factor δ and those of stiffness coefficient k2 are concentratedly distributed and
are close to their respective true values (the maximal relative error of the identified
values of δ is less than 4.5% and that of k2 is less than 4.2%); For the 2-DOF weakly
nonlinear abruptly varying hard spring Duffing system, the identified values of δ and k2

have relatively large identification errors around time instant t = 3s which can be used to
detect the abrupt change of the system stiffness coefficient at this time instant. At other
time instants, their identified values are concentratedly distributed and are close to their
respective true values (with maximal relative error of the identified values of δ less than
4.2% and that of k2 less than 3.2%).
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Figure 5.17: Stiffness coefficient k2 of a 2-DOF weakly nonlinear system with a weakly
nonlinear abruptly varying hard spring Duffing oscillator: (a) The true value
and the identified values of k2, (b) Relative errors of the identified values of
k2.

5.3.3 HHT and Bayesian inference based identification of 1-DOF
weakly nonlinear smoothly and abruptly varying Van der Pol

oscillators

For the HHT and Bayesian inference based identification of the 1-DOF weakly nonlinear
smoothly and abruptly varying Van der Pol oscillators proposed in Section 4.2.1, the
statistical distributions of the identified stiffness coefficients as well as their relative errors
are shown in Figures 5.18 - 5.19.
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Figure 5.18: Stiffness coefficient k of a 1-DOF weakly nonlinear smoothly varying Van der
Pol oscillator: (a) The true value and the identified values of k, (b) Relative
errors of the identified values of k.

We can see from the figures that: For the 1-DOF weakly nonlinear smoothly varying Van
der Pol oscillator, the statistical distribution of the identified values (denoted with black
lines) of the stiffness coefficient k is concentrated around its true value (with the maximal
relative error less than 3.0%); For the 1-DOF weakly nonlinear abruptly varying Van der
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Figure 5.19: Stiffness coefficient k of a 1-DOF weakly nonlinear abruptly varying Van der
Pol oscillator: (a) The true value and the identified values of k, (b) Relative
errors of the identified values of k.

Pol oscillator, the identified values (denoted with black lines) of k have relatively large
identification errors around time instants t = 1.5s and t = 3.5s due to the limitations
of Equation (2.16). At other time instants, the identified values of k are concentratedly
distributed and match its true value well (with the maximal relative error less than 4.7%).

5.3.4 HHT and Bayesian inference based identification of 2-DOF

weakly nonlinear smoothly and abruptly varying chainlike Van

der Pol systems

For the HHT and Bayesian inference based identification of the 2-DOF weakly nonlinear
smoothly and abruptly varying chainlike Van der Pol systems proposed in Section 4.2.2,
the statistical distributions of the identified stiffness coefficients as well as their relative
errors are shown in Figures 5.20 - 5.23.

89



5 HHT and Bayesian inference based identification of general time-varying systems

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

3.5

4

4.5

5

5.5
x 10

4

Time (s)

S
tif

fn
es

s 
co

ef
fic

ie
nt

 k
1 (

N
/m

)

 

 
The true value
The identified value (without noise)
The identified value (with noise)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

k 1 (
%

)

 

 
Without noise
With noise(b)

Figure 5.20: Stiffness coefficient k1 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying Van der Pol oscillator: (a) The true value
and the identified values of k1, (b) Relative errors of the identified values of
k1.
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Figure 5.21: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying Van der Pol oscillator: (a) The true value
and the identified values of k2, (b) Relative errors of the identified values of
k2.

It can be seen from the figures that: For the 2-DOF weakly nonlinear smoothly varying
chainlike Van der Pol system, the resulting identified values (denoted with black lines)
of the stiffness coefficients are concentratedly distributed and are close to their respective
true values (the maximal relative error of the identified values of k1 is less than 11% and
that of k2 is less than 2.7%); For the 2-DOF weakly nonlinear abruptly varying chainlike
Van der Pol system, the identified values of the stiffness coefficients have relatively large
identification errors around time instant t = 3s, which implies that the modified HHT-
based identification method has bad ability to capture the abrupt change of the system
parameter due to the limitations of Equation (2.16) and can be used to detect the abrupt
change of the system stiffness coefficient at this time instant. At other time instants, the
identified values of the stiffness coefficients are concentratedly distributed and match their
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Figure 5.22: Stiffness coefficient k1 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying Van der Pol oscillator: (a) The true value
and the identified values of k1, (b) Relative errors of the identified values of
k1.
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Figure 5.23: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying Van der Pol oscillator: (a) The true value
and the identified values of k2, (b) Relative errors of the identified values of
k2.

respective true values (the maximal relative error of the identified values of k1 is less than
8.3% and that of k2 is less than 2.3%).
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5.4 Bayesian inference based parameter identification for

general time-varying systems

Based on Bayesian inference, a method is proposed here in order to address the identi-
fication of system parameters. By applying TMCMC method, Bayesian model updating
is implemented to update initial knowledge about the system parameters for a set of
candidate model classes, with the formulation of the likelihood function as the product of
three probability density functions, one relating to the IMFs of the acceleration responses
and the other two relating to the IMFs of the velocity responses as well as the IMFs
of the displacement responses, yielding the corresponding posterior distributions of the
system parameters for these model classes. Then, the most probable model class and
the corresponding posterior distributions of the system structural parameters for the
most probable model class are selected. Numerical simulations on 1-DOF and 2-DOF
systems are processed to demonstrate the effectiveness, accuracy and robustness of the
Bayesian inference based parameter identification method for linear time-varying systems
and weakly nonlinear time-varying systems.

5.4.1 Formulation of the likelihood function

As pointed out in Section 2.4.2, the value of the likelihood function is given by a probability
model for the prediction error vector, and a Gaussian distribution with zero mean and
covariance matrix Σ is chosen as the PDF model for the prediction error vector justified
by the principle of maximum entropy. In this section, the prediction errors of the χth
IMFs of the ith acceleration response, velocity response and displacement response in the
kth measurement are given as

ea
iχk =

1

tend

tend
∑

τ=1

∣

∣

∣IMFEa
iχk(τ) − IMFMa

iχ (θ, τ)
∣

∣

∣ ∼ N(0, (ε̄a
iχ)2)

ev
iχk =

1

tend

tend
∑

τ=1

∣

∣

∣IMFEv
iχk(τ) − IMFMv

iχ (θ, τ)
∣

∣

∣ ∼ N(0, (ε̄v
iχ)2)

ed
iχk =

1

tend

tend
∑

τ=1

∣

∣

∣IMFEd
iχk(τ) − IMFMd

iχ (θ, τ)
∣

∣

∣ ∼ N(0, (ε̄d
iχ)2)

(5.4)

where subscript i denotes the index of system responses (i = 1, . . . , NL, NL = n2 is the
number of DOFs of the system responses obtained in n experiments by solving ODE of the
system with the same initial conditions given at a different DOF of the system for each
experiment), subscript χ denotes the index of IMFs (χ = 1, . . . , n), subscript k denotes
the index of the measurements (k = 1, . . . , Ns), each of which leads to the same number
of IMFs (3n × NL), tend is the number of time instants considered in the simulation, τ is
the index of time instants, IMFEa

iχk(τ), IMFEv
iχk(τ), IMFEd

iχk(τ) are the observed values at
the τth time instant of the χth IMF of the ith acceleration response, velocity response
as well as displacement response in the kth measurement and IMFMa

iχ (θ, τ), IMFMv
iχ (θ, τ),

IMFMd
iχ (θ, τ) are the corresponding model responses, (ε̄a

iχ)2, (ε̄v
iχ)2, (ε̄d

iχ)2 are the PEVs of

92



5.4 Bayesian inference based parameter identification for general time-varying systems

the χth IMF of the ith acceleration response, velocity response as well as displacement
response, and θ is the parameter vector which is equal to the system parameter vector
together with the PEVs of the n×NL IMFs of NL acceleration responses:

θ =
[

(εa
11)

2, . . . , (εa
1n)2, . . . , (εa

i1)2, . . . , (εa
iχ)2, . . . , (εa

in)2, . . . , (εa
NL1)

2, . . . , (εa
NLn)2, θstr

]T

(5.5)

where θstr is the system parameter vector, and the PEV (εa
iχ)2 of the χth IMF of the ith

acceleration response is given by (εa
iχ)2 = (ε̄a

iχ)2/std(IMFa
iχ)2.

Then, the PDF models for the prediction errors ea
iχk, ev

iχk, ed
iχk are given as
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(5.6)

where the standard deviations of the prediction errors ea
iχk, ev

iχk, ed
iχk are given by ε̄a

iχ =

std(IMFa
iχ)εa

iχ, ε̄v
iχ = std(IMF v

iχ)εv
iχ, ε̄d

iχ = std(IMFd
iχ)εd

iχ respectively.
Since IMFs are used to model time-varying systems just as their counterparts – modal
parameters (e.g. modal frequencies, mode shape functions) for time-invariant systems,
inspired by the model class model of Goller and Beck [95] for time-invariant systems, we
define a model class M(α, γ) by ratios α and γ

α =
(εv

iχ)2

(εa
iχ)2

, γ =
(εd

iχ)2

(εa
iχ)2

(5.7)

where α is the ratio between the PEV of each IMF of each velocity response and that of
the corresponding acceleration response of the same DOF in the same experiment, γ is
the ratio between the PEV of each IMF of each displacement response and that of the
corresponding acceleration response of the same DOF in the same experiment.
Assume the prediction errors of the IMFs of the acceleration responses, velocity responses
and displacement responses are modeled as statistically independent of each other, then
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the likelihood function for model class M(α, γ) can be given as
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where
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(5.9)
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(5.10)

Applying Equations (5.8) - (5.10) in the TMCMC method, Bayesian model updating
is implemented for a set of model classes M , gaining the posterior probability of the
system parameters for each model class. Based on the resulting posterior probabilities for
these model classes, Bayesian model class selection is performed according to Equation
(2.49) to determine the most probable model class which has the most plausible values for
ratios α and γ. Then, the posterior probabilities of the system parameters for the most
probable model class is selected as the final identified result. Numerical simulations are
performed on linear and weakly nonlinear time-varying systems in the following sections
to demonstrate the effectiveness, accuracy and robustness of the parameter identification
method.

5.4.2 Numerical simulations of Bayesian inference based parameter

identification on time-varying systems

In this section, the proposed Bayesian inference based parameter identification method is
applied to 1-DOF and 2-DOF smoothly varying systems.

(1) Parameter identification of a 1-DOF linear smoothly varying system
For a 1-DOF linear smoothly varying system, the system stiffness coefficient k and damping
coefficient c are given by:
k = kup, c = cdown when t < 2s,
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k = kup − (kup − kdown)/tl(t− 2), c = cdown + (cup − cdown)/tl(t− 2) when 2s ≤ t ≤ tl + 2s,
k = kdown, c = cup when t > tl + 2s,
kup = 100π2N/m, kdown = 80π2N/m, cup = 1.0Ns/m, cdown = 0.7Ns/m for any t,
where tl is the system parameter with its expectation given by tlexp = 2s. Assume the
experimental data consists of Ns = 15 sets of IMFs generated with the model specified
by tlexp and perturbed by Gaussian noise with COV equal to 5%. The prior distribution
assigned to the system parameter tl is a uniform distribution in the range [1, 3]. The
PEV (εa

11)
2 of the IMF for the acceleration response is uniformly distributed in the range

[0, 0.05]. The ratios α, γ which define the model classes M are assigned as α = 1,
γl = 0.01 + 0.01(l − 1), l = 1, . . . , 40. The number of samples of each distribution NE is
given as 450.
Posterior probability for model classes which are characterized by parameters α = 1.0,
γ = [0.01, 0.40] is presented in Figure 5.24. The posterior distribution of the system
parameter tl as well as the relative errors of its identified values for the most probable
model class are plotted in Figure 5.25.
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Figure 5.24: Posterior probability for model classes characterized by α = 1.0, γ =
[0.01, 0.40] of a 1-DOF linear smoothly varying system.
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Figure 5.25: System parameter tl of a 1-DOF linear smoothly varying system: (a) Distri-
bution of tl, (b) Relative errors for the identified values of tl and for the most
probable model class.

From Figure 5.24, it can be seen that the posterior probability of the model classes
specified by parameters α = 1.0, γ = [0.01, 0.40] has increasing trend as γ increases
from 0.01 to 0.10 and reaches its maximum (9.8%) at γ = 0.10, then it decreases from
maximum to zero as γ increases from 0.10 to 0.40, determining the most probable model
class by α∗ = 1.0, γ∗ = 0.10. Based on the available experimental data and conditional on
the assumption that all model classes are considered as equally likely apriori, the result
in Figure 5.24 reveals that only model classes characterized by α = 1.0 and γ in the
range of γ ∈ [0.04, 0.38] have significant posterior probabilities. Figure 5.25 shows that
the posterior distribution of the system parameter tl for the most probable model class
M(α∗ = 1.0, γ∗ = 0.10) is concentrated around its expected value with small relative errors
(the mean value of which is equal to 2.0%), which indicates that the relative weightings of
the IMF of the acceleration response, and the IMF of the corresponding velocity response
as well as the IMF of the corresponding displacement response in the likelihood function
for the most probable model class M(1.0, 0.10) lead to a good identification of the system
parameter tl.

(2) Parameter identification of a 2-DOF linear smoothly varying system
For a 2-DOF linear smoothly varying non-chainlike system, the system parameter to be
identified is tL which adopts the model in Figure 3.15. The expectation of tL is given by
tLexp = 2s. Assume the experimental data consists of Ns = 15 sets of IMFs generated
with the model specified by tLexp and perturbed by Gaussian noise with COV equal to
5%. The prior distribution assigned to tL is a uniform distribution in the range [1, 3].
The PEV (εa

iχ)2 of the IMF for the acceleration response is uniformly distributed in the
range [0, 0.05]. The ratios α, γ which define the model classes M are assigned as α = 0.1,
γl = 0.3 + 0.02(l − 1), l = 1, . . . , 26. The number of samples of each distribution NE is
given as 450.
Posterior probability for model classes which are characterized by parameters α = 0.1, γ =
[0.3, 0.8] is presented in Figure 5.26. The posterior distribution of the system parameter
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tL as well as the relative errors of its identified values for the most probable model class
are plotted in Figure 5.27.
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Figure 5.26: Posterior probability for model classes characterized by α = 0.1, γ = [0.3, 0.8]
of a 2-DOF linear smoothly varying non-chainlike system.
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Figure 5.27: System parameter tL of a 2-DOF linear smoothly varying non-chainlike sys-
tem: (a) Distribution of tL, (b) Relative errors for the identified values of tL
and for the most probable model class.

It can be seen from Figure 5.26 that the posterior probability of the model classes char-
acterized by parameters α = 0.1, γ = [0.3, 0.8] has increasing trend as γ increases from
0.3 to 0.52 and reaches its maximum (12.5%) at γ = 0.52, then it has decreasing trend
as γ increases from 0.52 to 0.8, determining the most probable model class by α∗ = 0.1,
γ∗ = 0.52. Since all model classes are considered as equally likely apriori, the result
in Figure 5.26 reveals that only model classes characterized by α = 0.1 and γ in the
range of γ ∈ [0.36, 0.76] have significant posterior probabilities. Figure 5.27 shows that
the posterior distribution of the system parameter tL for the most probable model class
M(α∗ = 0.1, γ∗ = 0.52) is concentrated on its expected value (with the mean value of the
relative errors of the identified results equal to 3.0%), implying that the relative weightings
of the IMFs of the acceleration responses, the IMFs of the corresponding velocity responses
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and the IMFs of the corresponding displacement responses in the likelihood function for
the most probable model class M(0.1, 0.52) can result in a good identification of the
system parameter tL.

(3) Parameter identification of a 2-DOF weakly nonlinear smoothly varying chainlike Duff-
ing system
For a 2-DOF weakly nonlinear smoothly varying chainlike Duffing system, the system pa-
rameter to be identified is tduff as proposed in Section 4.3.1. The expectation of tduff is
given by tduffexp = 2s. Assume the experimental data consists of Ns = 15 sets of IMFs
generated with the model specified by tduffexp and perturbed by Gaussian noise with COV
equal to 5%. The prior distribution assigned to tduff is a uniform distribution in the range
[1, 3]. The PEV (εa

iχ)2 of the IMF for the acceleration response is uniformly distributed in
the range [0, 0.05]. The ratios α, γ which define the model classes M are assigned as α = 1,
γ = 0.3, 0.34, 0.38, 0.42, 0.45, 0.47, 0.5, 0.505, 0.51, 0.515, 0.535, 0.54, 0.545, 0.56, 0.58. The
number of samples of each distribution NE is given as 450.
Figure 5.28 presents the posterior probability for model classes which are characterized by
parameters α = 1, γ = [0.3, 0.58], and Figure 5.29 plots the posterior distribution of the
system parameter tduff as well as the relative errors of its identified values for the most
probable model class.
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Figure 5.28: Posterior probability for model classes characterized by α = 1, γ = [0.3, 0.58]
of a 2-DOF weakly nonlinear smoothly varying chainlike Duffing system.

It is noted from Figure 5.28 that the posterior probability of the model classes charac-
terized by parameters α = 1, γ = [0.3, 0.58] has increasing trend as γ increases from 0.3
to 0.51 and reaches its maximum (37.7%) at γ = 0.51, then it has decreasing trend as
γ increases from 0.51 to 0.58, determining the most probable model class by α∗ = 1,
γ∗ = 0.51. As all model classes are considered to be equally likely apriori, Figure 5.28
reveals that only model classes specified by α = 1 and γ in the range of γ ∈ [0.45, 0.56]
have significant posterior probabilities. The posterior distribution of tduff for the most
probable model class M(α∗ = 1, γ∗ = 0.51) which is shown in Figure 5.29 is concen-
trated on its expected value with small relative errors (the mean value of which is equal
to 2.2%). This indicates that the relative weightings of the IMFs of the acceleration
responses, the IMFs of the corresponding velocity responses as well as the IMFs of
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Figure 5.29: System parameter tduff of a 2-DOF weakly nonlinear smoothly varying chain-
like Duffing system: (a) Distribution of tduff , (b) Relative errors for the iden-
tified values of tduff and for the most probable model class.

the corresponding displacement responses in the likelihood function for the most prob-
able model class M(1, 0.51) can lead to a good identification of the system parameter tduff .

5.5 Conclusion

In this chapter, we combine the HHT-based identification method proposed in Chapter 3
or the modified HHT-based identification methods proposed in Chapter 4 with a Bayesian
model updating and model class selection method implemented by the TMCMC sampling
method to obtain the statistical distributions of the system parameters for the n-DOF
general linear time-varying systems or the n-DOF weakly nonlinear time-varying Duffing
and Van der Pol systems. Bayesian inference is used to update the white noise in sys-
tem responses at each instant of time, yielding the posterior distributions of the noise
parameters. Based on these posterior distributions of the noise parameters, the posterior
distributions of the system responses are obtained and then processed by the HHT-based
identification method or the modified HHT-based identification methods, gaining the pos-
terior distributions of the identified system parameters.
Results of the numerical simulations reveal possible noise levels for the system parameter:
For the 1-DOF and 2-DOF general linear time-varying systems as well as weakly nonlinear
time-varying Duffing systems with smooth, abrupt and periodic stiffness variations, the
identified values of the stiffness coefficients and the mean values of the identified values of
the damping coefficients are concentrated close to their respective true values (except for
the identified stiffness coefficients of abruptly varying systems that have large identification
errors at some time instants due to the limitations of Equation (2.16)), whereas the identi-
fied values of the damping coefficients are widely distributed and have large identification
errors due to the sensitivity of the damping coefficients to noise (see Sections 5.2.1-5.2.2,
Sections 5.3.1-5.3.2, Appendices B.1.1-B.1.3, and Appendices B.2.1-B.2.3); for the 1-DOF
and 2-DOF weakly nonlinear time-varying Van der Pol systems, the statistical distribu-
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tions of the identified values of the stiffness coefficients are always concentrated around
their respective true values, whereas the identified values of the damping coefficients and
the mean values of the identified values of the damping coefficients have large identification
errors due to the sensitivity of the damping coefficients to noise and the application of the
approximation Equation (4.8) (see Sections 5.3.3-5.3.4 and Appendices B.2.4-B.2.6).
Later, a Bayesian inference based parameter identification method is developed with the
likelihood function formulated as the product of three probability density functions, one
relating to the IMFs of the acceleration responses and the other two relating to the IMFs
of the corresponding velocity responses as well as the IMFs of the corresponding displace-
ment responses. By applying Bayesian model class selection, the most probable model
class is selected from a set of candidate model classes, yielding the corresponding posterior
distributions of the system parameters.
Results of the numerical simulations on linear and weakly nonlinear smoothly varying sys-
tems indicate that: By applying the proposed method, meaningful posterior probability
curves for candidate model classes can be always obtained, and the resulting posterior
distributions of the system parameters for the most probable model class are always found
concentrated around their respective expected values with small relative errors, implying
that the relative weightings of the IMFs of the acceleration responses and the IMFs of
the corresponding velocity responses as well as displacement responses in the likelihood
function chosen for the most probable model class can lead to good identification of the
system parameters (see Section 5.4.2).
Altogether, results of the numerical simulations demonstrate the effectiveness, accuracy
and robustness of the HHT and Bayesian inference based identification method as well as
the Bayesian inference based parameter identification method.
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6 Conclusions and Recommendations

This chapter summarizes the important results and conclusions that can be drawn from this
study. This dissertation extends an identification technique based on the HHT to general
time-varying systems including linear time-varying systems and nonlinear time-varying
systems such as Duffing and Van der Pol systems with smooth, abrupt and periodical
stiffness variations. Later, the method is combined with a Bayesian model updating and
model class selection method, capable of identifying the statistical distributions of not
only system stiffness and damping parameters, but also structural parameters. The key
contributions of this thesis are briefly summarized as follows:

1. A HHT-based identification method has been developed for identification of general
linear time-varying systems. This method extends the parametric identification technique
proposed by Shi and Law to address identification of not only linear time-varying chainlike
systems, but also linear time-varying non-chainlike systems. The presence of noise is
always considered in this framework.
2. With the help of the formula of Hahn and the idea of Feldman, the proposed HHT-
based identification method is modified and extended for identification of weakly nonlinear
time-varying MDOF Duffing systems and Van der Pol systems.
3. The proposed HHT-based identification method and its modifications are combined
with a Bayesian model updating and model class selection method to obtain the statistical
distributions of system stiffness and damping parameters.
4. To address the identification of system parameters, a new parameter identification
method based on Bayesian inference has been developed. When using Bayesian model
updating techniques, the new parameter identification method is based on the formulation
of the likelihood function as a product of three probability density functions, one relating
to the IMFs of the acceleration responses and the other two relating to the IMFs of the
corresponding velocity responses as well as the IMFs of the corresponding displacement
responses.

6.1 Conclusions

Concerning the aforementioned contributions, the central conclusions in this dissertation
are summarized as follows:

1. For LTV systems, priori based identification methods such as STFT and WT have dif-
ficulties to identify system parameters and mostly yield instantaneous modal parameters
only; whereas adaptive based identification methods such as SVD and HHT method pro-
posed by Shi and Law have limitations in application to parametric identification of LTV
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systems. The limitations of the former method are due to the fact that the eigenfunctions
are difficult to interpret, those of the latter method are due to the limited application
for linear time-varying chain-like systems only. In this regard, a HHT-based identification
technique, which is an extension of the HHT method proposed by Shi and Law, is proposed
to identify general linear time-varying systems including not only chainlike systems, but
also non-chainlike systems. It uses EMD to decompose the system responses into IMFs
and residues, and then analyzes the IMFs and the residues by HT to obtain the analytical
IMFs and analytical residues. After that, these analytical signals are synthesized to form
new analytical response signals. Finally, the new synthesized analytical response signals
are used to form the equations proposed in Section 3.1 for identification of system stiffness
and damping parameters. Numerical simulations on 1-DOF and 2-DOF linear time-varying
systems with smooth, abrupt and periodical stiffness variations as well as white noise per-
turbations considered in the system responses demonstrate the effectiveness, accuracy and
robustness of the method.
2. For nonlinear time-varying systems, since the systems contain nonlinear parameters,
Bedrosian’s theorem is not valid for the application of HT on the product of the nonlinear
system coefficient and the corresponding system response. Instead, some approximations
are made based on the formula of Hahn and the idea of Feldman to modify the aforemen-
tioned HHT-based identification method for weakly nonlinear time-varying MDOF Duffing
systems and Van der Pol systems respectively. In this way, the proposed HHT-based iden-
tification method is extended to address identification of nonlinear time-variant systems,
which is very important since most systems in the real world exhibit non-stationary and
non-linear dynamical performance.
3. Experimentally measured system responses are usually perturbed by noise, therefore
a Bayesian model updating and model class selection method is proposed to address this
problem. Bayesian model updating is implemented by TMCMC method to update ini-
tial knowledge about the forced vibration system responses and the white noise in these
system responses based on measured system responses. In this process, the likelihood
function is formulated as a product of three probability density functions, one relating to
acceleration responses and the other two relating to the corresponding velocity responses
and displacement responses. Then, Bayesian model class selection is performed to choose
the most probable model class. With the help of the posterior distributions of the noise
parameters obtained for the most probable model class as well as the reference values of
the system responses, sample system responses are generated and then processed by the
aforementioned HHT-based identification method, yielding the statistical distributions of
system stiffness and damping parameters. The Bayesian model updating and model class
selection method tries to largely reduce the noise components in the measured system
responses before they are used as input of the HHT-based identification method, which
is quite important for application of the HHT-based method since the existence of noise
in the input system responses might result in unwanted outcomes of the EMD. Numerical
simulations show that the combined method is capable to deal with relative high levels of
noise (up to 20%RMS) existing in the experimentally measured system responses.
4. A new parameter identification method based on Bayesian inference has been developed
to identify system parameters. Instead of using modal data such as modal frequencies and
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mode-shape components, this method utilizes IMFs generated by EMD to formulate the
likelihood function. Based on the IMFs decomposed from measured system responses,
Bayesian inference is implemented by TMCMC method to update initial knowledge about
the system parameters for a set of candidate model classes, yielding the corresponding
posterior distributions of the system parameters for these model classes. In this process,
the likelihood function is formulated as the product of three probability density functions,
one relating to the IMFs of the acceleration responses, the other two relating to the IMFs
of the corresponding velocity responses and the IMFs of the corresponding displacement
responses. Then, by performing Bayesian model class selection, the most probable model
class and the corresponding posterior distributions of the system parameters for the most
probable model class are selected. Since IMFs can be extracted conveniently from the easily
measured system responses in practice, this method enables another means to identify sys-
tem parameters with avoiding the difficulties which might be confronted when measuring
modal data.

6.2 Recommendations for future studies

This thesis has tried to develop new identification methods utilizing HHT and Bayesian
model updating and model class selection method in the field of signal processing. In light
of the current work, following work can be suggested for further research.

First, the numerical simulations in this thesis are only carried out on 1-DOF and 2-DOF
systems, since the identification methods proposed in this thesis are supposed to be applied
to MDOF time-varying systems, numerical simulations on systems with 3 or more DOFs
should be carried out to further demonstrate the robustness of the proposed identification
methods.

Second, in this thesis, only weakly nonlinear time-varying systems are considered. Further
studies can be carried out to extend the proposed HHT-based identification methods for
more complex strong nonlinear time-varying systems. In order to address more complex
nonlinear parameters, potential algorithms have to be pursued to automatically distinguish
the high-pass portion and low-pass portion of the nonlinear parameters, since application
of the formula of Hahn and the idea of Feldman requires this procedure.

Besides, reasonable prescribed values for some important factors of TMCMC method
such as the prescribed scaling factor sf used to suppress the rejection rate of MCMC (see
Equation (2.45)) and the COV of the plausibility weights of the samples used to generate
intermediate PDFs (see Section 2.4.4), should be studied for various linear and nonlinear
time-varying systems, since the suggested values of these important factors proposed by
Ching and Chen might be no longer appropriate for all cases. In avoidance of unexpected
program interruptions that were always confronted when improper values were chosen
and in consideration of reasonable computational cost, potential algorithms for obtaining
reasonable prescribed values of the important factors are utmost required.
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In addition, since the proposed HHT-based identification method is able to detect the
abrupt stiffness variations of the time-varying systems (see Sections 3.2, 4.1-4.2), and the
Bayesian model updating and model class selection method proposed in Section 5.1 can
largely reduce the noise components in the measured system responses before they are
used as input of the HHT-based identification method, combination of the Bayesian model
updating and model class selection method with the proposed HHT-based identification
method is capable to detect the damage of time-varying structures. Application of this
combined method in the field of structural health monitoring for civil and mechanical
engineering structures with time-varying properties such as a train-bridge system would
be very interesting and can be further studied.

Finally, the Bayesian inference based parameter identification method proposed in Section
5.4 is supposed to be applied to an n-DOF time-varying system with IMFs extracted from
3n2 system responses obtained in n experiments (for each experiment, ODE of the system
is solved with the same initial conditions given at a different DOF of the system), which
is quite time-consuming since the observed values and model values of n × 3n2 IMFs are
needed in the method. For 2-DOF linear and weakly nonlinear time-varying systems, it has
been proven recently that the proposed Bayesian inference based parameter identification
method still works with consideration of IMFs extracted from only one set of system
responses which corresponds to one DOF (see Appendix B.3). Since the original method
would require much more IMFs for systems with more DOFs, application of the Bayesian
inference based parameter identification method for systems with 3 or more DOFs with
consideration of less IMFs could be further studied.

106



Appendix

107





A Some of the HHT-based identification results
of general time-varying systems

A.1 Some of the HHT-based identification results of

linear time-varying systems

A.1.1 HHT-based identification results of the damping coefficients of
1-DOF linear smoothly and abruptly varying forced vibration

systems

For the 1-DOF smoothly and abruptly varying forced vibration systems proposed in Section
3.2.1, the identified results of the system damping coefficients are shown in Figures A.1 -
A.2.
We can notice that: For the 1-DOF linear smoothly varying forced vibration system, when
noise-added system responses are used as input of the proposed HHT-based identification
method, due to the sensitivity of damping coefficient to noise, the identified result of the
system damping coefficient has large identification error, but its mean value (denoted with
a pink dashed line) over the required time history is close to its true value with small
relative error (equal to 6.1%); For the 1-DOF linear abruptly varying forced vibration
system, no matter using noiseless or noise-added system responses as input of the proposed
HHT-based identification method, like the identified result of the stiffness coefficient shown
in Figure 3.6, the identified result of the damping coefficient also has large identification
errors around t = 1.5s and t = 3.5s, due to the abrupt changes of the system stiffness at
these time instants. When noise-added system responses are used as input, the identified
damping coefficient is contaminated by noise due to its sensitivity to noise, but its mean
value (denoted with a pink dashed line) over the required time history matches closely
its true value and has small relative error (less than 13%).For both systems, the identified
values of damping coefficients gained by the proposed HHT-based identification method are
equivalent to their respective counterparts which are obtained by the HHT-based method
proposed by Shi and Law, since the two methods share the same equations for 1-DOF
systems.
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Figure A.1: Damping coefficient of a 1-DOF smoothly varying forced vibration system:
(a) The true value and the identified values of the damping coefficient, (b)
Relative errors of the identified values of the damping coefficient,(c) Relative
error of the identified value of the damping coefficient (without noise in system
responses).

110



A.1 Some of the HHT-based identification results of linear time-varying systems
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Figure A.2: Damping coefficient of a 1-DOF abruptly varying forced vibration system: (a)
The true value and the identified values of the damping coefficient, (b) Relative
errors of the identified values of the damping coefficient, (c) Relative error of
the mean identified value of the damping coefficient.
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A.1.2 HHT-based identification results of the damping coefficients of
2-DOF linear smoothly and abruptly varying non-chainlike

forced vibration systems

For the 2-DOF linear smoothly and abruptly varying non-chainlike forced vibration systems
proposed in Section 3.2.2, the identified results of the system damping coefficients are
shown in Figures A.3 - A.6.
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Figure A.3: Damping coefficient c1 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c1, (b) Ab-
solute errors of the identified values of c1, (c) Close-up of (b).
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Figure A.4: Damping coefficient c2 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c2, (b) Ab-
solute errors of the identified values of c2,(c) Close-up of (b).
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Figure A.5: Damping coefficient c1 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c1, (b) Ab-
solute errors of the identified values of c1.
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Figure A.6: Damping coefficient c2 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c2, (b) Ab-
solute errors of the identified values of c2.

It is found in the figures that: For the 2-DOF linear smoothly varying non-chainlike
forced vibration system, when noise-added system responses are used as input of the
proposed HHT-based identification method, the identified results of damping coefficients
are contaminated by noise and have large absolute errors since they are sensitive to noise,
but by taking the mean values of them over the required time history, the resulting mean
identified damping coefficients (denoted with pink dashed lines) match their true values
well, and their absolute errors are small (less than 1.4Ns/m and equal to 0.56Ns/m respec-
tively); For the 2-DOF linear abruptly varying non-chainlike forced vibration system, due
to the limitations of Equation (2.16), when noiseless system responses are used as input
of the proposed HHT-based identification method, the identified results of damping coef-
ficients are found having quite large identification errors around t = 3s; when noise-added
system responses are used as input, since damping coefficients are sensitive to noise, their
identified results are contaminated by noise which makes it difficult to detect abrupt stiff-
ness variation of the system from the identified results of damping coefficients. However,
the resulting mean identified damping coefficients (denoted with pink dashed lines) are
obtained with small absolute errors (less than 1.3Ns/m and equal to 2.4Ns/m respectively).

A.1.3 HHT-based identification results of the damping coefficients of

2-DOF linear smoothly and abruptly varying chainlike forced
vibration systems

For the 2-DOF linear smoothly and abruptly varying chainlike forced vibration systems
proposed in Section 3.2.3, the identified results of the system damping coefficients are
presented in Figures A.7 - A.10.
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Figure A.7: Damping coefficient c1 of a 2-DOF linear smoothly varying chainlike forced vi-
bration system: (a) The true value and the identified values of c1, (b) Relative
errors of the identified values of c1, (c) Close-up of (b), (d) Close-up of (c).
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Figure A.8: Damping coefficient c2 of a 2-DOF linear smoothly varying chainlike forced
vibration system: (a) The true value and the identified values of c2, (b) Ab-
solute errors of the identified values of c2, (c) Close-up of (b), (d) Close-up of
(c).

From Figures A.7 - A.10, it can be seen that: For both systems, no matter using noise-
less or noise-added system responses as input of the proposed HHT based identification
method, the resulting identified damping coefficients are much better than their counter-
parts (denoted by green solid lines and orange solid lines) obtained by the identification
method proposed by Shi and Law, possibly because the identification method proposed
by Shi and Law adopts the assumption of orthogonality between any two IMFs and uses
single IMFs as input while discarding the signal residues obtained by EMD method which
might still contain some information about the system responses. When noise-added
system responses are used as input, the resulting identified damping coefficients have
large relative error or absolute error since they are sensitive to noise, but by taking the
mean values of them over the required time history, the obtained mean identified damping
coefficients (denoted by pink dashed lines) are found matching their true values well with
small relative error or absolute error (the maximal relative error of the mean identified
c1 is equal to 3.5% and the maximal absolute error of the mean identified c2 is less than
3.2Ns/m for the 2-DOF linear smoothly varying chainlike forced vibration system, their
counterparts for the 2-DOF linear abruptly varying chainlike forced vibration system
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Figure A.9: Damping coefficient c1 of a 2-DOF linear abruptly varying chainlike forced vi-
bration system: (a) The true value and the identified values of c1, (b) Relative
errors of the identified values of c1, (c) Close-up of (b), (d) Close-up of (c).

are less than 2.2% and 0.38Ns/m respectively). For the 2-DOF linear abruptly varying
chainlike forced vibration system, when using noiseless system responses as input, the
identified damping coefficients are always found having extremely large identification
errors around t = 3s, due to the limitations of Equation (2.16); when using noise-added
system responses as input, the identified damping coefficients are contaminated by noise,
which makes it difficult to detect abrupt stiffness variation of system parameters from the
identified damping coefficients.
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Figure A.10: Damping coefficient c2 of a 2-DOF linear abruptly varying chainlike forced
vibration system: (a) The true value and the identified values of c2, (b)
Absolute errors of the identified values of c2, (c) Close-up of (b), (d) Close-
up of (c).

A.1.4 HHT-based identification results of linear periodically varying
systems

(1) 1-DOF system
For the 1-DOF linear periodically varying forced vibration system proposed in Section
3.2.1, Figure A.11 presents the identified results of the system coefficients and their relative
errors. It is noted that, when using noiseless system responses as input of the proposed
HHT based identification method, the identified stiffness and damping coefficients match
their respective true values well; when using noise-added system responses as input, the
accuracies of the corresponding identified results decrease, though good identified value
of stiffness coefficient with small relative error (whose maximum is less than 4.6%) is still
obtained. The identified value of damping coefficient is contaminated a lot by noise, but
its mean value (denoted with a pink dashed line) over the required time history is close
to its true value with small relative error (less than 2.2%). Since the HHT-based method
proposed by Shi and Law and the proposed HHT-based identification method share the
same equations for 1-DOF systems, the identified values of system coefficients obtained by
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the former method are equivalent to their respective counterparts obtained by the latter
method.
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Figure A.11: System coefficients of a 1-DOF linear periodically varying forced vibration
system: (a) The true value and the identified values of the stiffness coeffi-
cient, (b) Relative errors of the identified values of the stiffness coefficient,
(c) Relative error of the identified value of the stiffness coefficient (without
noise in system responses), (d) The true value and the identified values of the
damping coefficient, (e) Relative errors of the identified values of the damping
coefficient, (f) Close-up of (e).

(2) 2-DOF system
For the 2-DOF linear periodically varying non-chainlike forced vibration system proposed
in Section 3.2.2, Figures A.12 - A.15 present the identified results of the system coefficients
as well as their relative and absolute errors.
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Figure A.12: Stiffness coefficient k1 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of k1,
(b) Relative errors of the identified values of k1, (c) Relative error of the
identified value of k1 (without noise in system responses).

It is noted that, when using noiseless system responses as input, the identified results
nearly superpose over their respective true values, and their relative as well as absolute
errors have abrupt change around time instant t = 2s, due to the abrupt change of the
given stiffness coefficient at t = 2s. When using noise-added system responses as input, the
identified results are contaminated by noise, their accuracies are worse, though identified
stiffness coefficients with small relative errors (whose maximum is less than 0.69% for k1

and less than 0.58% for k2 respectively) are still obtained. The identified damping coeffi-
cients are sensitive to noise and have large absolute errors, but their mean values (denoted
with pink dashed lines) are found close to their respective true values and have sufficiently
small absolute errors (less than 0.24Ns/m for c1 and less than 1.7Ns/m for c2 respectively).
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Figure A.13: Stiffness coefficient k2 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of k2,
(b) Relative errors of the identified values of k2, (c) Relative error of the
identified value of k2 (without noise in system responses).

For the 2-DOF linear periodically varying chainlike forced vibration system proposed in
Section 3.2.3, the identified results of the system coefficients as well as their relative and
absolute errors are presented in Figures A.16 - A.19.

122



A.1 Some of the HHT-based identification results of linear time-varying systems

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−40

−20

0

20

40

60

Time (s)

D
am

pi
ng

 c
oe

ffi
ci

en
t c

1 (
N

s/
m

)

 

 
The true value
The identified value (without noise)
The identified value (with noise)
The mean identified value (with noise)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Time (s)

A
bs

ol
ut

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

c 1 (
N

s/
m

)

 

 
Absolute error of the identified
 value (without noise)
Absolute error of the identified
 value (with noise)
Absolute error of the mean
 identified value (with noise)

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

A
bs

ol
ut

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

c 1 (
N

s/
m

)

 

 
Absolute error of the identified
 value (without noise)
Absolute error of the mean
 identified value (with noise)

(c)

Figure A.14: Damping coefficient c1 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of c1,
(b) Absolute errors of the identified values of c1, (c) Absolute error of the
identified value of c1 (without noise in system responses).

It is found out that, when using noiseless system responses as input, the identified results
nearly superpose over their corresponding true values and their relative as well as absolute
errors are quite small, except that around time instant t = 2s abrupt changes are found
in the relative errors of k1 and c1, which is due to the abrupt change of the given stiffness
coefficient k1 at t = 2s. When using noise-added system responses as input, the accuracies
of the identified results are worse than their counterparts obtained without noise in system
responses, but we can still obtain good identified stiffness coefficients with small relative
errors (the maximal relative error of k1 is less than 5.7% and that of k2 is less than 1.9%).
However, the identified damping coefficients are contaminated by noise. Taking the mean
values of them over the required time history, the resulting mean identified damping
coefficients (denoted with pink dashed lines) with small relative error or absolute error
(the maximal relative error of the mean identified c1 is less than 1.9% and the maximal
absolute error of the mean identified c2 is less than 0.18Ns/m) can be obtained. Like in
the case of 2-DOF linear smoothly and abruptly varying chainlike systems, the identified
results obtained by the HHT-based identification method are also better than the results
obtained by the HHT-based identification method proposed by Shi and Law, possibly
because the latter method adopts the assumption of orthogonality between any two IMFs,
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Figure A.15: Damping coefficient c2 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of c2,
(b) Absolute errors of the identified values of c2, (c) Close-up of (b).

and uses single IMFs as input while discarding the signal residues obtained by EMD
method which might still contain some information about the system responses.
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Figure A.16: Stiffness coefficient k1 of a 2-DOF linear periodically varying chainlike forced
vibration system: (a) The true value and the identified values of k1, (b)
Relative errors of the identified values of k1, (c) Relative error of the identified
value of k1 (without noise in system responses).
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Figure A.17: Stiffness coefficient k2 of a 2-DOF linear periodically varying chainlike forced
vibration system: (a) The true value and the identified values of k2, (b)
Relative errors of the identified values of k2, (c) Relative error of the identified
value of k2 (without noise in system responses).
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Figure A.18: Damping coefficient c1 of a 2-DOF linear periodically varying chainlike forced
vibration system: (a) The true value and the identified values of c1, (b)
Relative errors of the identified values of c1, (c) Close-up of (b), (d) Close-up
of (c).
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Figure A.19: Damping coefficient c2 of a 2-DOF linear periodically varying chainlike forced
vibration system: (a) The true value and the identified values of c2, (b)
Absolute errors of the identified values of c2, (c) Close-up of (b), (d) Absolute
error of the identified value of c2 (without noise in system responses).
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A.1.5 Parameter study on the forced vibration simulation of a 2-DOF
linear periodically varying non-chainlike system

Figure A.20: Stiffness coefficient k1 of a 2-DOF linear periodically varying non-chainlike
system with structural parameters h and T .

The system coefficients, initial conditions as well as the external force are given the same
as those of the 2-DOF linear periodically varying non-chainlike forced vibration system
in Appendix A.1.4, except that the system stiffness k1 adopts the model shown in Figure
A.20:
k1 = khead when t < 2s,
k1 = khead − h sin ((2π/T )(t− 2)) when t ≥ 2s,
khead = 10000N/m for any t,
where amplitude h and period T are variable structural parameters. Two cases are con-
sidered here: Case1: Let T = 2s, h = 0 ∼ 5000 N/m (the interval between two adjacent
h values is 5N/m); Case2: Let h = 100N/m, T = 0.01 ∼ 10s (the interval between two
adjacent T values is 0.01s).
The mean relative errors of the identified stiffness coefficients k1 and k2,as well as the mean
absolute errors of the identified damping coefficients c1 and c2 are presented in Figures A.21
- A.28.

Figures A.21 - A.24 show the identified results of Case1. It is noted that, when noiseless
system responses are used as input of the HHT-based identification method, the mean rel-
ative errors of identified k1 and k2 as well as the mean absolute errors of identified c1 and
c2 increase proportionally with h, and good identified results of these system parameters
with small mean relative errors or mean absolute errors are obtained when the structural
parameter h takes small values in the interval [0, 5000]N/m (the special case h = 0N/m
represents that the system stiffness keeps constant); whereas when noise-added system re-
sponses are used as input of the HHT-based identification method, the mean relative error
of identified k1 as well as the mean absolute error of identified c1 increase proportionally
with h, and the mean relative error of identified k2 as well as the mean absolute error of
identified c2 have slightly increasing trend as h increases. Although the identified results
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Figure A.21: Mean relative error of the identified values of stiffness coefficient k1 of a 2-
DOF linear periodically varying non-chainlike system with respect to h.
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Figure A.22: Mean relative error of the identified values of stiffness coefficient k2 of a 2-
DOF linear periodically varying non-chainlike system with respect to h.
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Figure A.23: Mean absolute error of the identified values of damping coefficient c1 of a
2-DOF linear periodically varying non-chainlike system with respect to h.

are contaminated by noise, we can still obtain good identified results of stiffness coeffi-
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Figure A.24: Mean absolute error of the identified values of damping coefficient c2 of a
2-DOF linear periodically varying non-chainlike system with respect to h.

cients k1 and k2 with small mean relative errors (whose maxima are less than 2.1% and
equal to 0.72% respectively) at different h. The identified results of damping coefficients
c1 and c2 obtained by using noise-added system responses have large mean absolute errors
denoted with black lines, but their mean absolute errors denoted with pink dashed lines
(whose maxima are less than 5.6Ns/m and 3.5Ns/m respectively) are relatively smaller
than those denoted with black lines (The procedures to calculate the mean absolute errors
denoted with black lines and those denoted with pink dashed lines can refer to the sim-
ilar calculation procedures in Section 3.3.1). At h = 100N/m (case of the 2-DOF linear
periodically varying non-chainlike forced vibration system in Appendix A.1.4), the mean
absolute errors of identified c1 and c2 denoted with pink dashed lines are sufficiently small
(less than 1.4Ns/m and 0.88Ns/m respectively).
In conclusion, no matter using noiseless or noise-added system responses as input of the
proposed HHT-based identification method, good identified results of the system parame-
ters with small mean relative errors or mean absolute errors are obtained when the struc-
tural parameter h takes small values in the interval [0, 5000]N/m (which represents that
the system stiffness varies slowly). As a result, it is proper to choose small values in the
interval [0, 5000]N/m for h.
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Figure A.25: Mean relative error of stiffness coefficient k1 of a 2-DOF linear periodically
varying non-chainlike system with respect to T .
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Figure A.26: Mean relative error of stiffness coefficient k2 of a 2-DOF linear periodically
varying non-chainlike system with respect to T .
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Figure A.27: Mean absolute error of damping coefficient c1 of a 2-DOF linear periodically
varying non-chainlike system with respect to T .

Figures A.25 - A.28 present the identified results of Case2. When using noiseless system
responses as input of the HHT-based identification method, the resulting mean relative
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Figure A.28: Mean absolute error of damping coefficient c2 of a 2-DOF linear periodically
varying non-chainlike system with respect to T .

errors of the identified stiffness coefficients k1 and k2 as well as as the mean absolute er-
rors of identified damping coefficients c1 and c2 have relatively large increase and decrease
during T = 0.01 ∼ 1s, then they have slightly decreasing trend as T increases in the
interval [1, 10]s. And good identified results of the system parameters with small mean
relative errors or mean absolute errors can be always obtained when T takes values in the
interval [1, 10]s. When using noise-added system responses as input, the resulting mean
relative error of k1 has decreasing trend as T increases in the interval [0.01, 1]s, then it
keeps fluctuating around some constant value as T increases; whereas the resulting mean
relative error of k2 as well as the mean absolute errors of c1 and c2 keep fluctuating around
some constant values as T increases in the interval [0.01, 10]s. Although the identified
results are contaminated by noise, good identified results of the stiffness coefficients with
small mean relative errors (whose maximum is less than 0.47%) are obtained when T takes
any value in the interval [1, 10]s. As damping coefficients are sensitive to noise, the mean
absolute errors of the identified results of damping coefficients denoted with black lines are
much larger than their counterparts denoted with blue lines which are obtained by using
noiseless system responses as input, but their counterparts denoted with pink dashed lines
(whose maximum is equal to 5.4Ns/m) are relatively smaller (The procedures to calculate
the mean absolute errors denoted with black lines and those denoted with pink dashed
lines can refer to the similar calculation procedures in Section 3.3.1). At T = 2s (case of
the 2-DOF linear periodically varying non-chainlike forced vibration system in Appendix
A.1.4), the mean absolute errors of identified c1 and c2 denoted with pink dashed lines are
sufficiently small (less than 2.5Ns/m and 0.0066Ns/m respectively).
In conclusion, by using noiseless system responses as input of the proposed HHT-based
identification method, good identified results of system parameters with small mean rela-
tive errors or mean absolute errors are obtained when T takes large values in the interval
[1, 10]s (which means the system stiffness coefficient varies slowly); whereas by using noise-
added system responses as input, the variation of T has almost no influence on the identified
results of the system coefficients when T takes any value in the interval [1, 10]s, yet good
identified results of the stiffness coefficients are still obtained. As a result, it is proper to
choose large values in the interval [1, 10]s for T .
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A.2 Some of the HHT-based identification results of

weakly nonlinear time-varying systems

A.2.1 HHT-based identification results of the damping coefficients of
1-DOF weakly nonlinear smoothly and abruptly varying Duffing

oscillators

For the 1-DOF weakly nonlinear smoothly and abruptly varying hard spring Duffing oscil-
lators proposed in Section 4.1.1, the identified results of the system damping coefficients
and their relative errors are shown in Figures A.29 - A.30.
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Figure A.29: Damping coefficient c of a 1-DOF weakly nonlinear smoothly varying hard
spring Duffing oscillator: (a) The true value and the identified values of c,
(b) Relative errors of the identified values of c, (c) Close-up of (b).
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Figure A.30: Damping coefficient c of a 1-DOF weakly nonlinear abruptly varying hard
spring Duffing oscillator: (a) The true value and the identified values of c,
(b) Relative errors of the identified values of c, (c) Close-up of (b), (d) Relative
errors of the mean identified values of c.

It can be seen from the figures that: For the 1-DOF weakly nonlinear smoothly varying
hard spring Duffing oscillator, the identified result of the damping coefficient c is bad
(with maximal relative error less than 1.2 × 102%) since the sensitivity of the damping
coefficient to noise and the application of Equation (4.4). However, the mean value
(denoted with a gray line) of the identified result over the required time history matches
its true value well and has sufficiently small relative error (less than 12%); For the 1-DOF
weakly nonlinear abruptly varying hard spring Duffing oscillator, the identified result of
the damping coefficient c has quite large identification errors around time instants t = 1.5s
and t = 3.5s due to the limitations of Equation (2.16). Due to the sensitivity of the
damping coefficient to noise and the application of Equation (4.4), large identification
errors of c can be also found at other time instants, which makes it difficult to detect
the exact time instants of the abrupt stiffness variations of the system from the identified
result of c. The mean identified value of c (denoted with a gray line) is found close to its
true value with relatively smaller relative error (less than 9.4%).
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A.2.2 HHT-based identification results of the damping coefficients of
2-DOF weakly nonlinear smoothly and abruptly varying

chainlike Duffing systems

For the 2-DOF weakly nonlinear smoothly and abruptly varying chainlike Duffing systems
proposed in Section 4.1.2, the identified results of the system damping coefficients as well
as their relative and absolute errors are shown in Figures A.31 - A.34.
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Figure A.31: Damping coefficient c1 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear smoothly varying hard spring Duffing oscillator: (a) The
true value and the identified values of c1, (b) Relative errors of the identified
values of c1, (c) Relative error of the mean identified value of c1.

From these figures, it is noted that: For both the 2-DOF weakly nonlinear smoothly
and abruptly varying chainlike Duffing systems, due to the sensitivity of the damping
coefficients to noise and the application of Equation (4.4), the accuracies of the identified
damping coefficients are quite low (with maximal relative error of c1 equal to 4.3 × 102%
and maximal absolute error of c2 less than 66Ns/m for the smoothly varying system,
their counterparts for the abruptly varying system are less than 7.1 × 102% and 74Ns/m
respectively). However, the mean values (denoted with pink dashed lines) of the identified
damping coefficients over the required time history are close to their respective true values
(with maximal relative error of the mean value of identified c1 less than 10% and maximal
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Figure A.32: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear smoothly varying hard spring Duffing oscillator: (a) The
true value and the identified values of c2, (b) Absolute errors of the identified
values of c2, (c) Absolute error of the mean identified value of c2.

absolute error of the mean value of identified c2 less than 0.42Ns/m for the smoothly
varying system, their counterparts for the abruptly varying system are less than 1.6%
and 0.037Ns/m respectively). For the 2-DOF weakly nonlinear abruptly varying chainlike
Duffing system, it is difficult to find the exact time instant of the abrupt stiffness variation
of the system from the identified results of damping coefficients due to the existence of
large identification errors.
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Figure A.33: Damping coefficient c1 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear abruptly varying hard spring Duffing oscillator: (a) The
true value and the identified values of c1, (b) Relative errors of the identified
values of c1, (c) Relative error of the mean identified value of c1.
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Figure A.34: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear abruptly varying hard spring Duffing oscillator: (a) The
true value and the identified values of c2, (b) Absolute errors of the identified
values of c2, (c) Absolute error of the mean identified value of c2.
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A.2.3 HHT-based identification results of weakly nonlinear
periodically varying Duffing systems

(1) 1-DOF system
For the 1-DOF weakly nonlinear periodically varying hard spring Duffing oscillator pro-
posed in Section 4.1.1, the identified results of linear stiffness coefficient klinear, cubic
stiffness factor δ and damping coefficient c of the oscillator as well as their relative errors
are shown in Figure A.35.
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Figure A.35: System coefficients of a 1-DOF weakly nonlinear periodically varying hard
spring Duffing system: (a) The true value and the identified values of lin-
ear stiffness coefficient klinear, (b) Relative errors of the identified values of
klinear, (c) The true value and the identified values of cubic stiffness factor δ,
(d) Relative errors of the identified values of δ, (e) The true value and the
identified values of damping coefficient c, (f) Relative errors of the identified
values of c, (g) Close-up of (f).

Like in the cases of weakly nonlinear smoothly and abruptly varying Duffing oscillators,
due to the application of Equation (4.4), the obtained identified results of the weakly
nonlinear periodically varying Duffing oscillator (δ = 0.1 ∗ klinear N/m3) are also worse
than those of the linear periodically varying oscillator (δ = 0 N/m3) which has the same
linear system coefficients, initial conditions and excitation signal as the weakly nonlinear
periodically varying Duffing oscillator, no matter using noiseless or noise-added system
responses as input of the modified HHT-based identification method. When using noise-
added system responses as input, good identified results of linear stiffness coefficient
klinear and cubic stiffness factor δ (with maximal relative errors less than 5.5%) are always
obtained. The identified results of damping coefficient c (with maximal relative error
equal to 2.0 × 102%) are much worse than those of klinear and δ, but its mean value
(denoted with a gray line) over the required time history matches its true value well and
has sufficiently small relative error (equal to 11%).

(2) 2-DOF system
For the 2-DOF weakly nonlinear periodically varying chainlike Duffing system proposed
in Section 4.1.2, the identified results of the system stiffness and damping coefficients as
well as their relative and absolute errors are presented in Figures A.36 - A.39.
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Figure A.36: Cubic stiffness factor δ of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of δ, (b) Relative errors of the identified
values of δ.
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Figure A.37: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of k2, (b) Relative errors of the identified
values of k2.

It is noted that no matter using noiseless or noise-added system responses as input of
the modified HHT-based identification method, the obtained identified results of stiffness
coefficients always match their corresponding true values well (with maximal relative
error of δ less than 3.9% and that of k2 less than 2.3%), whereas the accuracies of the
identified results of damping coefficients are always low, especially when using noise-added
system responses as input of the modified HHT-based identification method (the maximal
relative error of c1 is less than 4.8 × 102% and the maximal absolute error of c2 is less
than 67Ns/m). The mean values (denoted with pink dashed lines) of the identified values
of damping coefficients are quite close to their respective true values and have sufficiently
small errors (the relative error of the mean value of identified c1 is less than 9.3% and the
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Figure A.38: Damping coefficient c1 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of c1, (b) Relative errors of the identified
values of c1, (c) Relative error of the mean identified value of c1.

absolute error of the mean value of identified c2 is less than 2.0Ns/m).
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Figure A.39: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of c2, (b) Absolute errors of the identified
values of c2, (c) Absolute error of the mean identified value of c2.

A.2.4 HHT-based identification results of the damping coefficients of
1-DOF weakly nonlinear smoothly and abruptly varying Van

der Pol systems

For the 1-DOF weakly nonlinear smoothly and abruptly varying Van der Pol oscillators
proposed in Section 4.2.1, the identified result of the system damping coefficients and
their relative error are shown in Figures A.40 - A.41.
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Figure A.40: Damping factor µ of a 1-DOF weakly nonlinear smoothly varying Van der
Pol oscillator: (a) The true value and the identified values of µ, (b) Relative
errors of the identified values of µ, (c) Relative error of the mean identified
value of µ.

It is noted that: For the 1-DOF weakly nonlinear smoothly varying Van der Pol oscillator,
due to the sensitivity of damping factor to noise and the application of Equation (4.8), the
accuracy of the identified result of damping factor µ is quite low (with maximal relative
error less than 9.2 × 102%), but the mean value (denoted with a pink dashed line) of
the identified µ over the required time history has relatively smaller relative error (less
than 14%); For the 1-DOF weakly nonlinear abruptly varying Van der Pol oscillator, no
matter using noiseless or noise-added system responses as input of the modified HHT-
based identification method, the identified result of damping factor µ has extremely large
identification errors around time instants t = 1.5s and t = 3.5s. Like those of the identified
result of stiffness coefficient k, these large identification errors of µ also imply that the
proposed method has bad ability to capture the abrupt change of the system coefficient.
Due to the sensitivity of damping factor to noise and the application of Equation (4.8),
the identified values of damping factor µ obtained at other time instants are still quite
bad (with maximal relative error less than 5.7 × 102%). The mean value (denoted with a
pink dashed line) of the identified µ over the required time history also has large relative
error (less than 27%).

145



A Some of the HHT-based identification results of general time-varying systems

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−8

−6

−4

−2

0

2

Time (s)

D
am

pi
ng

 fa
ct

or
  µ

 (
N

s/
m

3 )

 

 

The true value
The identified value (without noise)
The identified value (with noise)
The mean identified value (with noise)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

 µ
 (

%
)

 

 
Relative error of the identified
 value (without noise)
Relative error of the identified
 value (with noise)
Relative error of the mean
 identified value (with noise)

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

 µ
 (

%
)

 

 
Relative error of the mean
 identified value (with noise)(c)

Figure A.41: Damping factor µ of a 1-DOF weakly nonlinear abruptly varying Van der
Pol oscillator: (a) The true value and the identified values of µ, (b) Relative
errors of the identified values of µ, (c) Relative error of the mean identified
value of µ.

A.2.5 HHT-based identification results of the damping coefficients of
2-DOF weakly nonlinear smoothly and abruptly varying

chainlike Van der Pol systems

For the 2-DOF weakly nonlinear smoothly and abruptly varying chainlike Van der Pol
systems proposed in Section 4.2.2, the identified results of the system damping coefficients
as well as their relative and absolute errors are shown in Figures A.42 - A.45.
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Figure A.42: Damping factor µ of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying Van der Pol oscillator: (a) The true value
and the identified values of µ, (b) Relative errors of the identified values of
µ, (c) Close-up of (b).

From the aforementioned figures, it is found out that: For both systems, the identified
results of the damping factor µ and damping coefficient c2 are quite bad, especially when
using noise-added system responses as input of the modified HHT-based identification
method (with maximal relative error of µ less than 1.6 × 103% and maximal absolute
error of c2 less than 78Ns/m for the smoothly varying system, their counterparts for
the abruptly varying system are less than 1.5 × 103% and 1.1 × 102Ns/m respectively).
However, the mean values (denoted with pink dashed lines) of the identified results of µ
and c2 of both systems are close to their respective true values (with maximal relative
error of the mean identified µ less than 8.6% and maximal absolute error of the mean
identified c2 less than 8.1Ns/m for the smoothly varying system, their counterparts for
the abruptly varying system are less than 14% and 5.5Ns/m respectively).
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Figure A.43: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying Van der Pol oscillator: (a) The true value
and the identified values of c2, (b) Absolute errors of the identified values of
c2, (c) Close-up of (b).
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Figure A.44: Damping factor µ of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying Van der Pol oscillator: (a) The true value
and the identified values of µ, (b) Relative errors of the identified values of
µ, (c) Close-up of (b).
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Figure A.45: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying Van der Pol oscillator: (a) The true value
and the identified values of c2, (b) Absolute errors of the identified values of
c2,(c) Close-up of (b).
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A.2.6 HHT-based identification results of weakly nonlinear
periodically varying Van der Pol systems

(1) 1-DOF system
For the 1-DOF weakly nonlinear periodically varying Van der Pol oscillator proposed in
Section 4.2.1, the identified results of stiffness coefficient k and damping factor µ as well
as their relative errors are presented in Figure A.46.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
800

1000

1200

1400

1600

1800

Time (s)

S
tif

fn
es

s 
co

ef
fic

ie
nt

 k
 (

N
/m

)

 

 
The true value
The identified value (without noise,
                             VDP oscillator)
The identified value (with noise,
                             VDP oscillator)
The identified value (without noise,
                             Linear oscillator)
The identified value (with noise,
                             Linear oscillator)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

k 
(%

)

 

 
Without noise, VDP oscillator
Without noise, Linear oscillator
With noise, VDP oscillator
With noise, Linear oscillator

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

k 
(%

)

 

 
Without noise, VDP oscillator
Without noise, Linear oscillator(c)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

−1

0

1

2

3

4

Time (s)

D
am

pi
ng

 fa
ct

or
  µ

 (
N

s/
m

3 )

 

 
The true value
The identified value (without noise)
The identified value (with noise)
The mean identified value (with noise)

(d)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600

700

800

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

 µ
 (

%
)

 

 
Relative error of the identified
 value (without noise)
Relative error of the identified
 value (with noise)
Relative error of the mean
 identified value (with noise)

(e)

151



A Some of the HHT-based identification results of general time-varying systems

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

Time (s)

R
el

at
iv

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

 µ
 (

%
)

 

 
Relative error of the mean
 identified value (with noise)(f)

Figure A.46: System coefficients of a weakly nonlinear periodically varying Van der Pol
oscillator: (a) The true value and the identified values of stiffness coefficient
k, (b) Relative errors of the identified values of k, (c) Relative errors of
the identified values of k (without noise in system responses), (d) The true
value and the identified values of damping factor µ, (e) Relative errors of the
identified values of µ, (f) Relative error of the mean identified value of µ.

We can learn from the figures that: no matter using noiseless or noise-added system
responses as input of the modified HHT-based identification method, the accuracies of
the obtained identified results of stiffness coefficient k of the weakly nonlinear periodically
varying Van der Pol oscillator (µ = 0.1Ns/m3) are a little bit worse than those of the
linear periodically varying oscillator (µ = 0Ns/m3) which has the same linear system
coefficients, initial conditions and excitation signal as the weakly nonlinear periodically
varying Van der Pol oscillator, due to the application of Equation (4.8). When using
noise-added system responses as input, although the identified results are contaminated
by noise, we can always obtain good identified result of k (with maximal relative error less
than 2.0%). No matter using noiseless or noise-added system responses as input of the
modified HHT-based identification method, the identified result of damping factor µ is
bad (with maximal relative error less than 4.8 × 102%), due to the sensitivity of damping
factor to noise and the application of Equation (4.8). However, its mean value (denoted
with a pink dashed line) is close to its true value with small relative error (less than 9.8%).

(2) 2-DOF system
For the 2-DOF weakly nonlinear periodically varying chainlike Van der Pol system pro-
posed in Section 4.2.2, the identified results of the system stiffness and damping coefficients
as well as their relative and absolute errors are shown in Figures A.47 - A.50.
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Figure A.47: Stiffness coefficient k1 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying Van der Pol oscillator: (a) The true
value and the identified values of k1, (b) Relative errors of the identified
values of k1, (c) Relative error of the identified value of k1 (without noise in
system responses).
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Figure A.48: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying Van der Pol oscillator: (a) The true
value and the identified values of k2, (b) Relative errors of the identified
values of k2, (c) Relative error of the identified value of k2 (without noise in
system responses).
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Figure A.49: Damping factor µ of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying Van der Pol oscillator: (a) The true
value and the identified values of µ, (b) Relative errors of the identified val-
ues of µ, (c) Close-up of (b).

154



A.2 Some of the HHT-based identification results of weakly nonlinear time-varying systems

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−100

−50

0

50

100

150

200

Time (s)

D
am

pi
ng

 c
oe

ffi
ci

en
t c

2 (
N

s/
m

)

 

 
The true value
The identified value (without noise)
The identified value (with noise)
The mean identified value (with noise)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

Time (s)

A
bs

ol
ut

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

c 2 (
N

s/
m

)

 

 
Absolute error of the identified
 value (without noise)
Absolute error of the identified
 value (with noise)
Absolute error of the mean
 identified value (with noise)

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5
x 10

−12

Time (s)

A
bs

ol
ut

e 
er

ro
r 

of
 th

e 
id

en
tif

ie
d 

c 2 (
%

)

 

 
Without noise

(c)

Figure A.50: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear periodically varying Van der Pol oscillator: (a) The true
value and the identified values of c2, (b) Absolute errors of the identified
values of c2, (c) Absolute error of the identified value of c2 (without noise in
system responses).

It is noted that no matter using noiseless or noise-added system responses as input of
the modified HHT-based identification method, the identified results of the stiffness co-
efficients always match their respective true values well (with maximal relative error of
k1 less than 6.1% and that of k2 less than 2.4%), whereas the accuracies of the identified
results of the damping coefficients are quite low, especially when using noise-added system
responses as input (the maximal relative error of damping factor µ is less than 1.8 × 103%
and the maximal absolute error of damping coefficient c2 is equal to 74Ns/m), due to
the application of Equation (4.8) and the sensitivity of the damping coefficients to noise.
The mean values (denoted with pink dashed lines) of the identified results of µ and c2

are close to their respective true values with relatively smaller identification errors (the
relative error of the mean identified µ is less than 11% and the absolute error of the mean
identified c2 is equal to 6.0Ns/m).
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B Some of the HHT and Bayesian inference
based identification results of general
time-varying systems

B.1 Some of the HHT and Bayesian inference based

identification results of linear time-varying systems

B.1.1 HHT and Bayesian inference based identification results of the

damping coefficients of 1-DOF linear smoothly and abruptly
varying systems

For the HHT and Bayesian inference based identification of the 1-DOF linear smoothly
and abruptly varying systems, the statistical distributions of the identified damping coef-
ficients as well as their relative errors are shown in Figures B.1 - B.2.
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Figure B.1: Damping coefficient of a 1-DOF smoothly varying forced vibration system:
(a) The true value and the identified values of the damping coefficient, (b)
Relative errors of the identified values of the damping coefficient, (c) Relative
errors of the mean identified values of the damping coefficient.
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Figure B.2: Damping coefficient of a 1-DOF abruptly varying forced vibration system: (a)
The true value and the identified values of the damping coefficient, (b) Relative
errors of the identified values of the damping coefficient, (c) Relative errors of
the mean identified values of the damping coefficient.
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B.1 Some of the HHT and Bayesian inference based identification results of linear time-varying systems

It is noticed that: For the 1-DOF linear smoothly and abruptly varying system, the
identified values of the damping coefficient are widely distributed and have large identifi-
cation errors due to the sensitivity of the damping coefficient to noise. However, the mean
values (denoted with pink dashed lines) of the identified values of the damping coefficient
have relatively smaller relative errors (whose maxima are less than 13% for the 1-DOF
linear smoothly varying system, and less than 14% for the 1-DOF linear abruptly varying
system, respectively). For the 1-DOF linear abruptly varying system, the identified values
of the damping coefficient have abrupt changes with extremely large identification errors
around t = 1.5s and t = 3.5s, indicating that the HHT-based identification method has
bad ability to capture the abrupt change of the system parameters due to the limitations
of Equation (2.16).

B.1.2 HHT and Bayesian inference based identification results of the
damping coefficients of 2-DOF linear smoothly and abruptly

varying systems

For the HHT and Bayesian inference based identification of the 2-DOF linear smoothly
and abruptly varying non-chainlike forced vibration systems, the statistical distributions of
the identified damping coefficients as well as their relative or absolute errors are presented
in Figures B.3 - B.6.
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Figure B.3: Damping coefficient c1 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c1, (b) Ab-
solute errors of the identified values of c1, (c) Absolute errors of the mean
identified values of c1.

It is found from the above figures that: For the 2-DOF linear smoothly and abruptly
varying non-chainlike systems, by applying the combined method, the statistical distri-
butions of the identified damping coefficients (denoted with black lines) are quite wide
(the maximal absolute error of the identified values of c1 is less than 17Ns/m and that of
c2 is equal to 22Ns/m for the 2-DOF linear smoothly varying non-chainlike system, their
counterparts for the 2-DOF linear abruptly varying non-chainlike system are less than
1.7Ns/m and 1.5Ns/m respectively). However, the mean values (denoted with pink dashed
lines) of the identified values of the damping coefficients over the required time history
are concentratedly distributed and are close to their respective true values (the maximal
absolute error of the mean values of the identified values of c1 is less than 1.7Ns/m and
that of c2 is less than 1.5Ns/m for the 2-DOF linear smoothly varying non-chainlike
system, their counterparts for the 2-DOF linear abruptly varying non-chainlike system are
less than 3.5Ns/m and 2.1Ns/m respectively).

160
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Figure B.4: Damping coefficient c2 of a 2-DOF linear smoothly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c2, (b) Ab-
solute errors of the identified values of c2, (c) Absolute errors of the mean
identified values of c2.
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Figure B.5: Damping coefficient c1 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c1, (b) Relative
errors of the identified values of c1, (c) Relative errors of the mean identified
values of c1.
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Figure B.6: Damping coefficient c2 of a 2-DOF linear abruptly varying non-chainlike forced
vibration system: (a) The true value and the identified values of c2, (b) Ab-
solute errors of the identified values of c2, (c) Absolute errors of the mean
identified values of c2.

163



B Some of the HHT and Bayesian inference based identification results of general time-varying systems

B.1.3 HHT and Bayesian inference based identification results of
linear periodically varying systems

(1) 1-DOF system
For the HHT and Bayesian inference based identification of the 1-DOF linear periodically
forced vibration system, the statistical distributions of the identified system coefficients
as well as their relative errors are plotted in Figure B.7.
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Figure B.7: System coefficients of a 1-DOF periodically varying forced vibration system:
(a) The true value and the identified values of the stiffness coefficient, (b)
Relative errors of the stiffness coefficient, (c) The true value and the identified
values of the damping coefficient, (d) Relative errors of the identified values
of the damping coefficient, (e) Relative errors of the mean identified values of
the damping coefficient.

It is noted that: although the prior distribution assigned to the white noise in each system
response has large ratio of the standard deviation of the white noise and that of the
corresponding noiseless system response, by applying the combined method, the obtained
identified values (denoted with black lines) of the stiffness coefficient are close to its true
value with small relative errors (whose maximum is less than 5.7%), whereas those of the
damping coefficient have large identification errors due to the sensitivity of the damping
coefficient to noise (with its maximal relative error equal to 2.3 × 102%). The mean values
(denoted with pink dashed lines) of the identified values of the damping coefficient over
the required time history match closely its true value with small errors (whose maximum
is less than 6.1%).

(2) 2-DOF systems
For the HHT and Bayesian inference based identification of the 2-DOF linear periodically
varying forced vibration system, the statistical distributions of the identified system
coefficients as well as their relative or absolute errors are shown in Figures B.8 - B.11.
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Figure B.8: Stiffness coefficient k1 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of k1, (b)
Relative errors of the identified values of k1.
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Figure B.9: Stiffness coefficient k2 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of k2, (b)
Relative errors of the identified values of k2.

It can be seen that: The resulting identified values (denoted with black lines) of the
stiffness coefficients are concentratedly distributed around their respective true values
(with maximal relative error of the identified values of k1 equal to 1.2% and that of k2

less than 1.4%), whereas those of the damping coefficients are widely distributed (with
maximal absolute error of the identified values of c1 less than 18Ns/m and that of c2 less
than 23Ns/m) due to the sensitivity of the damping coefficients to noise. The mean values
(denoted with pink dashed lines) of the identified values of the damping coefficients over
the required time history are concentratedly distributed and are close to their respective
true values (with maximal absolute error of the mean values of the identified values of c1

less than 1.6Ns/m and that of c2 less than 1.4Ns/m).
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Figure B.10: Damping coefficient c1 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of c1,
(b) Absolute errors of the identified values of c1, (c) Absolute errors of the
mean identified values of c1.
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Figure B.11: Damping coefficient c2 of a 2-DOF linear periodically varying non-chainlike
forced vibration system: (a) The true value and the identified values of c2,
(b) Absolute errors of the identified values of c2, (c) Absolute errors of the
mean identified values of c2.
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B.2 Some of the HHT and Bayesian inference based

identification results of weakly nonlinear time-varying

systems

B.2.1 HHT and Bayesian inference based identification results of the

damping coefficients of 1-DOF weakly nonlinear smoothly and
abruptly varying Duffing oscillators

For the HHT and Bayesian inference based identification of the 1-DOF weakly nonlinear
smoothly and abruptly varying Duffing oscillators, the statistical distributions of the
identified damping coefficients as well as their relative errors are shown in Figures B.12 -
B.13.
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Figure B.12: Damping coefficient c of a 1-DOF weakly nonlinear smoothly varying hard
spring Duffing oscillator: (a) The true value and the identified values of c, (b)
Relative errors of the identified values of c, (c) Relative errors of the mean
identified values of c.
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Figure B.13: Damping coefficient c of a 1-DOF weakly nonlinear abruptly varying hard
spring Duffing oscillator: (a) The true value and the identified values of c,
(b) Relative errors of the identified values of c, (c) Relative errors of the mean
identified values of c.

It can be seen that: For both oscillators, the identified values of damping coefficient c
are widely distributed and have large identification errors (the maximal relative errors
of its identified values are less than 1.2 × 102 for the weakly nonlinear smoothly varying
Duffing oscillator, and less than 3.7 × 102% for the weakly nonlinear abruptly varying
Duffing oscillator, respectively), due to the sensitivity of the damping coefficient to noise
and the application of the approximation Equation (4.4). However, the mean values
(denoted with pink dashed lines) of the identified values of c over the required time history
have relatively smaller relative errors for both oscillators (whose maxima are less than
15% for the weakly nonlinear smoothly varying Duffing oscillator, and less than 12% for
the weakly nonlinear abruptly varying Duffing oscillator, respectively). For the weakly
nonlinear abruptly varying Duffing oscillator, it is hard to detect the exact time instants
of the abrupt changes of the system parameter from the statistical distribution of the
identified damping coefficient due to the existence of large identification errors.
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B.2.2 HHT and Bayesian inference based identification results of the
damping coefficients of 2-DOF weakly nonlinear smoothly and

abruptly varying Duffing systems

For the HHT and Bayesian inference based identification of the 2-DOF weakly nonlin-
ear smoothly and abruptly varying Duffing systems, the statistical distributions of the
identified damping coefficients as well as their relative or absolute errors are presented in
Figures B.14 - B.17.
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Figure B.14: Damping coefficient c1 of a 2-DOF weakly nonlinear system with a weakly
nonlinear smoothly varying hard spring Duffing oscillator: (a) The true value
and the identified values of c1, (b)Relative errors of the identified values of
c1, (c) Relative errors of the mean identified values of c1.
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Figure B.15: Damping coefficient c2 of a 2-DOF weakly nonlinear system with a weakly
nonlinear smoothly varying hard spring Duffing oscillator: (a) The true value
and the identified values of c2, (b)Absolute errors of the identified values of
c2, (c) Absolute errors of the mean identified values of c2.

From the figures, it is noted that: For both systems, the identified values of the damping
coefficients are widely distributed with large identification errors (the maximal relative
error of the identified values of c1 is less than 4.9 × 102% and the maximal absolute error
of the identified values of c2 is less than 66Ns/m for the smoothly varying Duffing system,
their counterparts for the abruptly varying Duffing system are less than 4.7 × 102% and
less than 81Ns/m respectively). However, the mean values (denoted with pink dashed
lines) of the identified values of the damping coefficients over the required time history are
concentratedly distributed and close to their respective true values (the maximal relative
error of the mean values of the identified values of c1 is less than 9.9% and the maximal
absolute error of the mean values of the identified values of c2 is less than 1.2Ns/m for
the smoothly varying Duffing system, their counterparts for the abruptly varying Duffing
system are less than 11% and 2.2Ns/m respectively). For the 2-DOF weakly nonlinear
abruptly varying Duffing system, due to the existence of large identification errors arising
from the sensitivity of the damping coefficients to noise and the application of the ap-
proximation Equation (4.4), it is difficult to detect the exact time instant of the abrupt
change of the system parameter from the identified values of the damping coefficients.
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Figure B.16: Damping coefficient c1 of a 2-DOF weakly nonlinear system with a weakly
nonlinear abruptly varying hard spring Duffing oscillator: (a) The true value
and the identified values of c1, (b)Relative errors of the identified values of
c1, (c) Relative errors of the mean identified values of c1.
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Figure B.17: Damping coefficient c2 of a 2-DOF weakly nonlinear system with a weakly
nonlinear abruptly varying hard spring Duffing oscillator: (a) The true value
and the identified values of c2, (b)Absolute errors of the identified values of
c2, (c) Absolute errors of the mean identified values of c2.
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B.2.3 HHT and Bayesian inference based identification results of
weakly nonlinear periodically varying Duffing systems

(1) 1-DOF system
For the HHT and Bayesian inference based identification of the 1-DOF weakly nonlinear
periodically varying hard spring Duffing oscillator, the statistical distributions of the
identified values of cubic stiffness factor δ and damping coefficient c as well as the relative
errors of their identified values are shown in Figure B.18. We can see from the figures that:
The obtained identified values (denoted with black lines) of δ are distributed concentrat-
edly and match its true value (with the maximal relative error less than 7.7%), whereas
those of c are distributed widely and have large identification errors (with the maximal
relative error less than 2.5 × 102%) due to the sensitivity of the damping coefficient to
noise and the application of the approximation Equation (4.4). The mean values (denoted
with pink dashed lines) of the identified values of c over the required time history are
concentratedly distributed and are close to its true value with relatively smaller relative
errors (whose maximum is less than 11%).
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Figure B.18: System coefficients of a 1-DOF weakly nonlinear periodically varying hard
spring Duffing oscillator: (a) The true value and the identified values of cubic
stiffness factor δ, (b) Relative errors of the identified values of δ, (c) The true
value and the identified values of damping coefficient c, (d) Relative errors of
the identified values of c, (e) Relative errors of the mean identified values of
c.

(2) 2-DOF system
For the HHT and Bayesian inference based identification of the 2-DOF weakly nonlinear
periodically varying hard spring Duffing system, the statistical distributions of the iden-
tified system coefficients as well as their relative or absolute errors are shown in Figures
B.19 - B.22.
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Figure B.19: Cubic stiffness factor δ of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of δ, (b) Relative errors of the identified
values of δ.
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Figure B.20: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of k2, (b) Relative errors of the identified
values of k2.

It is noted that the resulting statistical distributions of the identified values (denoted with
black lines) of the stiffness coefficients are concentrated and their identified values are
close to their respective true values (with maximal relative error of the identified values of
δ less than 5.1% and that of k2 less than 3.4%), whereas those of the damping coefficients
are quite wide and their identified values have large identification errors (the maximal
relative error of the identified values of c1 is less than 5.1×102% and the maximal absolute
error of the identified values of c2 is less than 75Ns/m). The mean values (denoted with
pink dashed lines) of the identified values of the damping coefficients over the required
time history are concentratedly distributed and match their respective true values with
relatively small relative or absolute errors (the maximal relative error of the mean values
of the identified values of c1 is less than 12%, and the maximal absolute error of the mean
values of the identified values of c2 is equal to 1.7Ns/m).
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Figure B.21: Damping coefficient c1 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of c1, (b) Relative errors of the identified
values of c1, (c) Relative errors of the mean identified values of c1.
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Figure B.22: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear periodically varying hard spring Duffing oscillator: (a) The
true value and the identified values of c2, (b) Absolute errors of the identified
values of c2, (c) Absolute errors of the mean identified values of c2.
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B.2.4 HHT and Bayesian inference based identification results of the
damping coefficients of 1-DOF weakly nonlinear smoothly and

abruptly varying Van der Pol oscillators

For the HHT and Bayesian inference based identification of the 1-DOF weakly nonlinear
smoothly and abruptly varying Van der Pol oscillators, the statistical distributions of the
identified damping factors as well as their relative errors are shown in Figures B.23 - B.24.
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Figure B.23: Damping factor µ of a 1-DOF weakly nonlinear smoothly varying Van der
Pol oscillator: (a) The true value and the identified values of µ, (b) Relative
errors of the identified values of µ, (c) Relative errors of the mean identified
values of µ.
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Figure B.24: Damping factor µ of a 1-DOF weakly nonlinear abruptly varying Van der
Pol oscillator: (a) The true value and the identified values of µ, (b) Relative
errors of the identified values of µ, (c) Relative errors of the mean identified
values of µ.
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We can see from the figures that: For the 1-DOF weakly nonlinear smoothly varying Van
der Pol oscillator, the identified values of damping factor µ are widely distributed and
have extremely large identification errors (with maximal relative error of the identified
values equal to 6.0 × 102%) due to the sensitivity of the damping coefficient to noise
and the application of the approximation Equation (4.8), but the mean values (denoted
with pink dashed lines) of the identified values of µ over the required time history have
relatively smaller relative errors (whose maximum is less than 9.8%); For the 1-DOF weakly
nonlinear abruptly varying Van der Pol oscillator, the identified values of µ have abrupt
changes around time instants t = 1.5s and t = 3.5s due to the limitations of Equation
(2.16). Due to the sensitivity of the damping coefficient to noise and the application of
the approximation Equation (4.8), the obtained identified values of µ have extremely large
identification errors. The mean values (denoted with pink dashed lines) of the identified
values of µ over the required time history also have large relative errors (whose maximum
is equal to 82%).

B.2.5 HHT and Bayesian inference based identification results of the

damping coefficients of 2-DOF weakly nonlinear smoothly and
abruptly varying Van der Pol systems

For the HHT and Bayesian inference based identification of the 2-DOF weakly nonlinear
smoothly and abruptly varying Van der Pol systems, the statistical distributions of the
identified damping factor µ and damping coefficient c2 as well as their relative or absolute
errors for both systems are presented in Figures B.25 - B.28.
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Figure B.25: Damping factor µ of a 2-DOF weakly nonlinear system with a weakly non-
linear smoothly varying Van der Pol oscillator: (a) The true value and the
identified values of µ, (b) Relative errors of the identified values of µ, (c)
Relative errors of the mean identified values of µ.

From the above figures, it is noted that: For both systems, due to the sensitivity of the
damping coefficients to noise and the application of the approximation Equation (4.8),
the statistical distributions of the identified damping factor µ and damping coefficient c2

are quite wide with extremely large identification errors (the maximal relative error of
the identified values of µ is less than 1.8 × 103% and the maximal absolute error of the
identified values of c2 is less than 84Ns/m for the smoothly varying Van der Pol system,
their counterparts for the abruptly varying Van der Pol system are less than 2.0 × 103%
and 91Ns/m respectively). Taking the mean values of them over the required time history,
the resulting mean values (denoted with pink dashed lines) of the identified values of µ
and c2 have relatively smaller errors (the maximal relative error of the mean values of the
identified values of µ is less than 43% and the maximal absolute error of the mean values
of the identified values of c2 is less than 2.0Ns/m for the smoothly varying Van der Pol
system, their counterparts for the abruptly varying Van der Pol system are less than 33%
and 3.9Ns/m respectively). For the 2-DOF weakly nonlinear abruptly varying chainlike
Van der Pol system, due to the existence of large identification errors, it is hard to detect
the exact time instant of the abrupt change of the system coefficient from the statistical
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Figure B.26: Damping factor c2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear smoothly varying Van der Pol oscillator: (a) The true value
and the identified values of c2, (b) Absolute errors of the identified values of
c2, (c) Absolute errors of the mean identified values of c2.

distributions of the identified values of µ and c2.
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Figure B.27: Damping factor µ of a 2-DOF weakly nonlinear chainlike system with a weakly
nonlinear abruptly varying Van der Pol oscillator: (a) The true value and the
identified values of µ, (b) Relative errors of the identified values of µ, (c)
Relative errors of the mean identified values of µ.
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Figure B.28: Damping factor c2 of a 2-DOF weakly nonlinear chainlike system with a
weakly nonlinear abruptly varying Van der Pol oscillator: The true value and
the identified values of c2, (b) Absolute errors of the identified values of c2,
(c) Absolute errors of the mean identified values of c2.
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B.2.6 HHT and Bayesian inference based identification results of
weakly nonlinear periodically varying Van der Pol systems

(1) 1-DOF system
For the HHT and Bayesian inference based identification of the 1-DOF weakly nonlinear
periodically varying Van der Pol oscillator proposed in Section 4.2.1, Figure B.29 shows
the statistical distributions of the identified stiffness coefficient k and damping factor µ
as well as their relative errors. We can see from the figures that the obtained statistical
distribution of the identified values (denoted with black lines) of k is concentrated around
its true value (with maximal relative error of the identified values less than 2.4%), whereas
the identified values of µ is widely distributed with extremely large identification errors
(with maximal relative error of the identified values less than 6.3 × 102%). The mean
values (denoted with pink dashed lines) of the identified values of µ over the required time
history also have large relative errors (whose maximum is less than 22%).
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Figure B.29: System coefficients of a weakly nonlinear periodically varying Van der Pol
oscillator: (a) The true value and the identified values of stiffness coefficient
k, (b) Relative errors of the identified values of k, (c) The true value and
the identified values of damping factor µ, (d) Relative errors of the identified
values of µ, (e) Relative errors of the mean identified values of µ.

(2) 2-DOF system
For the HHT and Bayesian inference based identification of the 2-DOF weakly nonlinear
periodically varying Van der Pol system proposed in Section 4.2.2, the statistical distri-
butions of the identified system coefficients as well as their relative or absolute errors are
shown in Figures B.30 - B.33.
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Figure B.30: Stiffness coefficient k1 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear periodically varying Van der Pol oscillator: (a) The true
value and the identified values of k1, (b) Relative errors of the identified values
of k1.

It is noted that the resulting identified values (denoted with black lines) of the stiffness co-
efficients are concentratedly distributed around their respective true values (with maximal
relative error of the identified values of k1 less than 9.1% and that of k2 less than 2.6%),
whereas those of damping factor µ and damping coefficient c2 are widely distributed and
have extremely large identification errors (the maximal relative error of the identified
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Figure B.31: Stiffness coefficient k2 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear periodically varying Van der Pol oscillator: (a) The true
value and the identified values of k2, (b) Relative errors of the identified values
of k2.
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Figure B.32: Damping factor µ of a 2-DOF weakly nonlinear chainlike system with a weakly
nonlinear periodically varying Van der Pol oscillator: (a) The true value and
the identified values of µ, (b) Relative errors of the identified values of µ, (c)
Relative errors of the mean identified values of µ.
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Figure B.33: Damping coefficient c2 of a 2-DOF weakly nonlinear chainlike system with
a weakly nonlinear periodically varying Van der Pol oscillator: (a) The true
value and the identified values of c2, (b) Absolute errors of the identified
values of c2, (c) Absolute errors of the mean identified values of c2.

values of µ is less than 2.4 × 103% and the maximal absolute error of the identified values
of c2 is less than 98Ns/m). The mean values (denoted with pink dashed lines) of the iden-
tified values of µ and c2 over the required time history have relatively smaller errors (with
maximal relative error of the mean values of the identified values of µ less than 26% and
maximal absolute error of the mean values of the identified values of c2 less than 2.9Ns/m).

B.3 Results of numerical simulations of Bayesian

inference based parameter identification on 2-DOF

linear and weakly nonlinear time-varying systems

with consideration of less IMFs

In this section, with the help of the Bayesian inference based parameter identification
method proposed in Section 5.4.1, parameter identification is carried on the 2-DOF linear
smoothly varying non-chainlike system and the 2-DOF weakly nonlinear smoothly varying
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B.3 Results of numerical simulations of Bayesian inference based parameter identification on 2-DOF linear

chainlike Duffing system proposed in Section 5.4.2 with consideration of IMFs extracted
from only one set of system responses which corresponds to one DOF.

(1) Parameter identification of a 2-DOF linear smoothly varying system
For a 2-DOF linear smoothly varying non-chainlike system, the system parameter to be
identified is tL as in Section 5.4.2 with the expectation given by tLexp = 2s. Assume the
experimental data consists of Ns = 15 sets of IMFs generated with the model specified
by tLexp and perturbed by Gaussian noise with COV equal to 5%. The prior distribution
assigned to tL is a uniform distribution in the range [1, 3]. The PEV (εa

iχ)2 of the IMF
for the acceleration response is uniformly distributed in the range [0, 0.05]. The ratios α,
γ which define the model classes M are assigned as α = 0.1, γl = 0.01 + 0.01(l − 1),
l = 1, . . . , 50. The number of samples of each distribution NE is given as 450.
Posterior probability for model classes which are characterized by parameters α = 0.1,
γ = [0.01, 0.5] is presented in Figure B.34. The posterior distribution of the system
parameter tL as well as the relative errors of its identified values for the most probable
model class are plotted in Figure B.35.
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Figure B.34: Posterior probability for model classes characterized by α = 0.1, γ =
[0.01, 0.5] of a 2-DOF linear smoothly varying non-chainlike system.

Figure B.34 shows that the posterior probability of the model classes characterized by
parameters α = 0.1, γ = [0.01, 0.5] has increasing trend as γ increases from 0.01 to 0.19
and reaches its maximum (27.5%) at γ = 0.19, then it has decreasing trend as γ increases
from 0.19 to 0.5, determining the most probable model class by α∗ = 0.1, γ∗ = 0.19.
As all model classes are considered as equally likely apriori, Figure B.34 reveals that
only model classes characterized by α = 0.1 and γ in the range of γ ∈ [0.11, 0.39] have
significant posterior probabilities. Figure B.35 shows that the posterior distribution of
the system parameter tL for the most probable model class M(α∗ = 0.1, γ∗ = 0.19) is
concentrated on its expected value (with the mean value of the relative errors of the
identified results equal to 0.32%), implying that the relative weightings of the IMFs of the
acceleration responses, the IMFs of the corresponding velocity responses and the IMFs of
the corresponding displacement responses in the likelihood function for the most prob-
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Figure B.35: System parameter tL of a 2-DOF linear smoothly varying non-chainlike sys-
tem: (a) Distribution of tL, (b) Relative errors for the identified values of tL
and for the most probable model class.

able model class M(0.1, 0.19) can result in a good identification of the system parameter tL.

(2) Parameter identification of a 2-DOF weakly nonlinear smoothly varying chainlike Duff-
ing system
For a 2-DOF weakly nonlinear smoothly varying chainlike Duffing system, the system
parameter to be identified is tduff as in Section 5.4.2 with the expectation given by
tduffexp = 2s. Assume the experimental data consists of Ns = 15 sets of IMFs gener-
ated with the model specified by tduffexp and perturbed by Gaussian noise with COV
equal to 5%. The prior distribution assigned to tduff is a uniform distribution in the range
[1, 3]. The PEV (εa

iχ)2 of the IMF for the acceleration response is uniformly distributed
in the range [0, 0.05]. The ratios α, γ which define the model classes M are assigned as
α = 1, γl = 0.1 + 0.1(l− 1), l = 1, . . . , 20. The number of samples of each distribution NE

is given as 450.
The posterior probability for model classes which are characterized by parameters α = 1,
γ = [0.1, 2] is presented by Figure B.36, and the posterior distribution of the system pa-
rameter tduff as well as the relative errors of its identified values for the most probable
model class are plotted in Figure B.37.
It is noted from Figure B.36 that the posterior probability of the model classes character-
ized by parameters α = 1, γ = [0.1, 2] has increasing trend as γ increases from 0.1 to 1
and reaches its maximum (22.7%) at γ = 1, then it has decreasing trend as γ increases
from 1 to 2, determining the most probable model class by α∗ = 1, γ∗ = 1. Since all
model classes are considered to be equally likely apriori, Figure B.36 reveals that only
model classes specified by α = 1 and γ in the range of γ ∈ [0.5, 1.9] have significant
posterior probabilities. The posterior distribution of tduff for the most probable model
class M(α∗ = 1, γ∗ = 1) which is shown in Figure B.37 is concentrated on its expected
value with small relative errors (the mean value of which is equal to 2.9%). This indicates
that the relative weightings of the IMFs of the acceleration responses, the IMFs of the
corresponding velocity responses as well as the IMFs of the corresponding displacement
responses in the likelihood function for the most probable model class M(1, 1) can lead to
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B.3 Results of numerical simulations of Bayesian inference based parameter identification on 2-DOF linear
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Figure B.36: Posterior probability for model classes characterized by α = 1, γ = [0.1, 2] of
a 2-DOF weakly nonlinear smoothly varying chainlike Duffing system.
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Figure B.37: System parameter tduff of a 2-DOF weakly nonlinear smoothly varying chain-
like Duffing system: (a) Distribution of tduff , (b) Relative errors for the
identified values of tduff and for the most probable model class.

a good identification of the system parameter tduff .
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