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Abstract 

This PhD study is devoted to numerical investigations of two-phase flows on and 

through elementary and complex solid structures of varying wettability. Reliable numerical 

simulations of such multi-phase and multi-scale processes require an accurate modeling 

of the motion of the three-phase contact line. For this, conventional sharp interface models 

suffer from a classical paradox between moving contact line and no-slip boundary 

condition at solid wall. A promising approach for resolving this paradox is the phase-field 

method, where the interface is treated as a transition layer of small but finite thickness. 

This method provides a pure diffusive mechanism for the motion of contact line which can 

be used in combination with a no-slip boundary condition at solid walls.  

During the study, the phase-field method is developed and implemented in 

OpenFOAM®. Therein the Cahn-Hilliard equation for phase-field description is coupled 

with the Navier-Stokes equations for incompressible fluid flows. The numerical method 

and code are verified by a series of test cases of two-phase flows. These include phase-

field diffusion, droplet deformation in shear flow, capillary rise in vertical channel and 

equilibrium state of droplet on solid surface. In all the cases, excellent agreement is 

achieved with analytical solutions from literature. Then, the method is successfully applied 

to reproduce several representative droplet-wetting phenomena in real-life scenarios, 

ranging from elementary spreading dynamics on horizontal surfaces to complex wetting 

on chemically-heterogeneous substrates. The computational results are in good match 

with experimental and numerical data from literature.  

Subsequently, this thesis presents an innovative numerical study for wettability 

dependent interaction of a rising bubble with solid structures. By comparison with 

experimental data from literature, the numerical method is firstly validated for terminal 

bubble rise velocity and instantaneous cylinder-induced bubble cutting behavior. The 

numerical method is then employed to study the behavior of a single air bubble rising 
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through a representative subdomain of a periodic open cellular structure (POCS) filled 

with stagnant water. The results indicate that the bubble shape and path do significantly 

depend on the structure wettability. The current numerical investigation suggests a clear 

evidence that the utilization of structures with high wettability is beneficial for enhancing 

mass transfer and catalytic reactions in industrial chemical reactors packed with POCS.  

Moreover with the numerical method, local two-phase interfacial hydrodynamics in 

heterogeneous foam structures is investigated. After the validation for gas flow 

hydrodynamics in alumina sponge structure, the method is applied to interface-resolving 

simulations of gas-liquid two-phase flows in a representative elementary volume (REV) of 

Silicon Infiltrated Silicon Carbide (SiSiC) foam structure. To obtain a physical liquid phase 

distribution in such a REV, a modeling strategy is proposed and developed by mirroring 

computational domain and imposing periodic boundary conditions. Then qualitative and 

quantitative investigations are carried out to shed light on influences of physical 

parameters (i.e. liquid saturation, structure wettability and interfacial tension) on gas-liquid 

interfacial area. Such detailed insights gained from the present simulations are very useful 

for characterization of local interfacial phenomena in complex solid foam structure, which 

is rather challenging to access experimentally. 

All the results above altogether show that the phase-field method and numerical solver 

developed in OpenFOAM® are reliable and promising computational tools for investigating 

interfacial two-phase flows on and through elementary and complex solid structures.  

 

  



v 

 

Kurzfassung 

Diese Doktorarbeit beschäftigt sich mit numerischen Untersuchungen von 

Zweiphasenströmungen auf und durch elementare und komplexe feste Strukturen von 

unterschiedlicher Benetzbarkeit. Zuverlässige numerische Simulationen von solchen 

Mehrphasen- und Mehrskalen-Prozessen erfordern eine fundierte Modellierung der 

bewegten Kontaktlinien. Hierbei gibt es bei konventionellen Modellen mit scharfer 

Grenzfläche ein Paradoxon zwischen der bewegten Kontaktlinie und der Haftbedingung 

an einer festen Wand. Ein vielversprechender Ansatz zur Auflösung dieses Paradoxons 

ist die Phasenfeld Methode, bei der die Grenzfläche als Schicht mit kleiner aber endlicher 

Dicke betrachtet wird. Dieser Ansatz stellt einen rein diffusiven Mechanismus bereit, der 

eine Bewegung der Kontaktlinie in Kombination mit der Haftbedingung auf der festen 

Wand erlaubt. 

Im Rahmen der Arbeit wird eine Phasenfeld Methode für das Rechenprogramm 

OpenFOAM® entwickelt und implementiert. Dabei wird die Cahn-Hilliard-Gleichung für die 

Beschreibung der Phasenverteilung mit den inkompressiblen Navier-Stokes-Gleichungen 

für die Zweiphasenströmung gekoppelt. Der Code wird zunächst anhand einer Reihe von 

Testfällen verifiziert. Diese umfassen Phasenfeld-Diffusion, Tropfen-Deformation in einer 

Scherströmung, kapillarer Aufstieg im vertikalen Kanal und den Gleichgewichtszustand 

von Tropfen auf festen Oberflächen. Für alle Testfälle wird eine exzellente 

Übereinstimmung der numerischen Ergebnisse mit entsprechenden analytischen 

Lösungen aus der Literatur erreicht. Danach wird der numerische Löser erfolgreich 

angewendet, um praktische Benetzungsphänomene von Tropfen nachzurechnen. Diese 

reichen von elementarer Tropfen-Ausbreitungsdynamik auf horizontalen Oberflächen bis 

hin zur komplexen Benetzung auf chemisch heterogenen Substraten. Auch für diese Fälle 

stimmen die Berechnungsergebnisse gut mit experimentellen und numerischen Daten 

aus der Literatur überein. 
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Darauf folgend präsentiert die Dissertation eine innovative numerische Untersuchung 

der Interaktion einer aufsteigenden Luftblase mit festen Strukturen. Dazu wird das 

numerische Modell zunächst für die stationäre Steiggeschwindigkeit der Blase und ihre 

Zerteilung durch einen horizontalen Zylinder anhand experimenteller Ergebnisse aus der 

Literatur validiert. Daran anschließend wird der Blasenaufstieg in einem repräsentativen 

Teilgebiet einer periodischen offen zelligen Struktur („Periodic Open Cellular Structure“, 

POCS) untersucht. Dabei zeigt sich, dass die Form und das Aufstiegsverhalten der Blase 

maßgeblich von der Benetzbarkeit der Struktur abhängen. Die numerischen Ergebnisse 

legen nahe, dass für die Intensivierung von Stofftransport und katalytischen Reaktionen 

in industriellen chemischen Reaktoren POCS mit guter Benetzbarkeit vorteilhaft sind. 

In einem weiteren Anwendungsschwerpunkt werden Strömungen in heterogenen 

Schwammstrukturen untersucht. Der numerische Löser wird zunächst für die einphasige 

Gasströmung in einer Aluminiumoxid-Schwammstruktur validiert, und dann für die 

grenzflächenauflösenden Simulationen von Gas-Flüssig-Zweiphasenströmungen in 

einem repräsentativen elementaren Volumenelement (REV) einer Schwammstruktur aus 

Silizium-infiltriertem Siliziumcarbid (SiSiC) angewendet. Um eine physikalische 

Phasenverteilung an den Ein- und Austrittsrändern des Rechengebietes zu erreichen, 

wird eine Modellierungsstrategie eingesetzt. Dazu wird das REV gespiegelt, so dass 

periodische Randbedingungen verwendet werden können. Darauf basierend werden 

qualitative und quantitative Untersuchungen durchgeführt, um die Einflüsse von 

verschiedenen Parametern (z.B. Flüssigkeitssättigung, Benetzbarkeit, 

Oberflächenspannung) auf die Gas-Flüssig-Grenzfläche aufzuklären. Diese Ergebnisse 

sind nützlich für die Charakterisierung der Grenzfläche in komplexen festen 

Schwammstrukturen, bei denen experimentelle Messungen sehr schwierig sind. 

Die Gesamtheit der Ergebnisse dieser Dissertation belegt, dass die Phasenfeld-

Methode und der neu entwickelte numerische Löser in OpenFOAM® sehr zuverlässige 
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und vielversprechende Berechnungsansätze für Untersuchungen von 

Grenzflächenphänomenen in Zweiphasenströmungen auf und durch elementare und 

komplexe feste Strukturen darstellen. 
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1 Introduction 

This chapter firstly introduces the motivation for studying wetting phenomena and then 

related physical fundamentals. Special attention is paid to the inherent multi-scale nature 

of dynamic wetting where moving contact line (MCL) problem is involved. Theories of MCL 

physics on different scales are then presented and the state-of-the-art of numerical 

simulations on MCL flows in literature are reviewed. Among them, phase-field method-

based simulations are elaborated since the present PhD work is based on this method.  

1.1 Motivation  

Two-phase interfacial flows on solid surface are usually termed as wetting 

phenomena. The wetting phenomena are omnipresent in nature [1]. One of the most 

striking examples that nature inspires us concerning wetting is the lotus effect; see Figure 

1.1. Dewdrops either slide over the leaf and are about to fall down, or stay and form the 

shapes as shown there. These phenomena are attributed to very high water repellence of 

the leaf (i.e., super-hydrophobicity) induced by microscopic textures of the leaf surface.  

 

Figure 1.1: Lotus effect of dewdrops on a leaf (from Bonn et al. [1]). 
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Besides, wetting phenomena are very common in our daily life. For a passenger who 

takes a train-trip on a rainy day, it is a familiar experience to see an irregular array of rain 

droplets sticking or “traveling-down” over the outboard surface of a window (see Figure 

1.2).  

 

 

Figure 1.2: On a high-speed train (a), we might have an enjoyable watching experience 

of wetting when observing rain droplets over the window (b). The picture (a) and (b)  

are adapted respectively from Trainmountain [2] and Meyerson [3].  

 

Furthermore, wetting phenomena are crucial processes in many industrial 

applications; in-depth understanding of wetting behavior potentially leads to technological 

improvement in these industrial processes. One example is found in lab-on-a-chip 

systems as shown, for example, by Figure 1.3. For such a microfluidics system, accurate 

knowledge of wetting is a prerequisite for precise manipulation of micro-droplets locations 

and motions [4].  

Another example showing high relevance of wetting process to industrial application 

is found in multiphase chemical reactors; see Figure 1.4. For such a reactor, internal 
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structures are nowadays widely used; these are usually referred to as structured  

 

 

Figure 1.3: A digital microfluidic system (from Jebrail et al. [5]). There each droplet is 

working as a micro-reactor where parallel reactions can take place with no cross-

interference or cross-contamination.  

 

packing [6] (e.g. see Figure 1.4 a). Conventionally, monolith or honeycomb structures are 

used for structured packing [7]. Just in recent years, chemical engineers have developed 

some innovative concepts of using novel internal structures, such as periodic open-cell 

structure (POCS) [8, 9] (see Figure 1.4 b) or sponge structure [10-13] (see Figure 1.4 c). 

These new structures exhibit advantages over those traditional ones, in the sense of 

enhanced heat and mass transfer as well as favorability for catalytic chemical reaction if 

structure surface is coated with catalysts. These structure-packed multiphase reactors 

normally involve at least two fluid phases, typically gas and liquid. Both the phases could 

be continuous as demonstrated by the gas-liquid interfacial flows in a representative 

domain of sponge structure (see Figure 1.4 e), or one phase is continuous and the other 

is dispersed (see Figure 1.4 d that shows the interaction of POCS and a rising bubble as 

dispersed phase immersed in a continuous liquid phase). Accurate knowledge of these 

two-phase interfacial hydrodynamics interacting with the solid packing structures boils 

down to deep insights into local wetting phenomena (see Figure 1.4 f).  
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Figure 1.4: Inside-views into (a) structure-packed multiphase reactor of successively 

decreasing length scales: (b) periodic open-cell structure (POCS), (c) sponge (i.e. 

foam) structure, (d) rising bubble in a representative domain of POCS filled with liquid, 

(e) gas-liquid interfacial flow in a representative domain of sponge structure, (f) wetting 

phenomenon involving contact line where three phases meet together. Among the 

pictures here, (a) is redrawn from Pugliesi [14]; (b) and (c) are from Dietrich et al. [15].   

1.2 Physical Fundamentals  

1.2.1 Surface Tension 

Physical understanding of wetting is based on that of surface tension. The surface 

tension can be viewed from two perspectives: thermodynamic or mechanical [16]. In the 

former, the surface tension arises due to intermolecular interactions at interface and thus 

is defined as the Gibbs free energy per surface area. In the latter point of view, it is 

considered as the resultant force per unit length owing to a normal stress anisotropy near 

interface.  
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A typical example of surface tension effect is the existence of a pressure jump across 

curved interfaces of a bubble or droplet. This pressure difference is referred to as Laplace 

pressure and determined by the Young-Laplace equation:  

 
1 2

1 1
P

R R

 

   
 

 (1.1) 

where   is the surface tension coefficient and 1R  and 
2R  are the principal curvature radii.  

1.2.2 Surface Tension near Wall – Wetting 

When the interface (curved due to gas-liquid surface tension) gets in contact with a 

solid surface, wetting phenomenon arises and the junction where the three phases (gas, 

liquid and solid) meet together is referred to as contact line (see Figure 1.5). The degree 

of wetting (i.e. wettability) is determined mechanically by a balance between adhesive and 

cohesive force: the former drives the liquid droplet to spread over the substrate while the 

latter causes it to maintain a spherical shape and thus minimize its contact with the 

substrate. The wettability is usually quantified by the equilibrium contact angle ( e ) of the 

droplet at rest: 
e 0    indicates complete (e.g. perfect) wetting while 

e 0    means 

partial wetting. For the partial wetting case, the solid surfaces can be broadly classified 

into two types depending on e : e 90    amounts to a hydrophilic (or lyophilic for non-

water droplet) surface while e 90    indicates a hydrophobic (or lyophobic) surface.  

For ideal surfaces (i.e. horizontal, smooth and homogeneous), the equilibrium contact 

angle is unique for a fixed system at a given temperature and pressure. Its value is related 

to surface tensions among the three phases by the Young equation [17]:  

 GS LS
ecos

 





  (1.2) 

Therein GS  is the surface tension between gas and solid while LS  that between liquid 

and gas.   is the surface tension between gas and liquid as introduced in Section 1.2.1. 

To avoid possible confusion frequently arising due to interchangeable use of the term 
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“surface” and “interface”,   is hereinafter called as interfacial tension; in the remainder of 

the thesis, the term “surface” refers to the boundary between solid and a fluid phase (gas 

or liquid) while “interface” does to that between gas and liquid.  

 

 

Figure 1.5: A liquid-droplet in ambient gas and resting on solid surface, with 

equilibrium contact angle e . The “point” where the liquid-gas interface meets the solid 

surface is termed as contact line. It is noted that since here is a 2D lateral view, the 

black square dot indicating the contact line is not a point but truly a line in 3D reality.  

 

Most solid surfaces in reality are non-ideal: they could be chemically or geometrically 

heterogeneous. Such heterogeneity gives rise to the so-called contact angle hysteresis, 

where the equilibrium contact angle appears within a range 
r e a     rather than as a 

unique value. Here a  and r  are referred to as advancing and receding contact angle; 

for a given system, they are maximum and minimum achievable contact angles 

respectively.  

1.2.3 Contact Angles at Moving Contact Line – Scales, Scales, Scales …  

It will be much more complicated when one turns to consider dynamic wetting 

scenarios where contact line is moving with respect with solid substrate. It is insufficient 

to use only the equilibrium contact angle discussed above to characterize completely 
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moving contact line (MCL) problems, considering the intrinsic multi-scale nature. As 

Figure 1.6 shows, there are three length scales with three corresponding characteristic 

contact angles successively. 

 

 

Figure 1.6: Macroscopic- (main panel), microscopic- (inset a) and molecular- (inset b) 

scale involved in moving contact line physics (adapted from Bonn et al. [1]). 

1.2.3.1 Macroscopic Scale with Apparent Contact Angle 

At this large scale (see the main panel of Figure 1.6), the flow problem is governed by 

the balance of gravity and capillarity (i.e. surface tension), assuming that inertial force is 

negligible. Thus the characteristic length scale here could be indicated by the capillary 

length L( )l g    that measures the relative importance of capillarity to gravity; in an 

air-water system at room temperature and pressure, for example, the capillary length is 

on the magnitude of 1 mm . At this macroscopic scale, we are usually interested in global 

geometric features such as droplet diameter or its height. With these large-scale 
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geometric dimensions, the apparent contact angle 
app  can be extracted. For example, 

app  in the main panel of Figure 1.6 might be estimated with the height and base diameter 

of the droplet cap, provided that capillary force dominates over gravitational force where 

the droplet is a spherical cap. 

1.2.3.2 Microscopic Scale with Microscopic Contact Angle 

If zooming in on a region whose dimension is much smaller than capillary length (see 

inset a in Figure 1.6), one arrives at the microscopic scale. At this scale, the balance 

between gravity and capillarity dominating the macroscopic scale is replaced by that 

between viscosity and capillarity; so viscous forces come into play. Due to the viscous 

effect one could observe fairly curved interface at the microscopic scale. This viscosity-

induced curvature of the interface is well known as viscous bending phenomenon. The 

physical mechanism behind this bending behavior was revealed by the analytical solution 

from Huh and Scriven [18], who showed that viscous effects bring about a pressure 

around interface. This pressure must be balanced by the capillary pressure (i.e. the 

Laplace pressure) and thus a curved interface arises as implicated by Eq. (1.1). The 

microscopic contact angle 
m  is supposedly extracted from the tangent of the curved 

interface at the solid wall. 

The microscopic length scale ranges from hundreds of nano-meter to tens of micro-

meter. At this scale, Navier-Stokes-based continuum hydrodynamics is still valid at least 

for non-complex fluids [19]. If using continuum hydrodynamics principles for MCL 

problems at this scale, however, one will be faced up with a classical paradox between 

MCL and no-slip boundary condition at solid wall [18]. The latter leads to a stress 

singularity at MCL where continuum fluid mechanics breaks down. To circumvent the 

singularity, two approaches have been established and reported in literature. One method 

is to artificially remove molecular-scale-level region from hydrodynamics solution domain 

and the other is to modify boundary conditions for flow solutions by allowing for a slip 
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condition at contact line. Several pioneering scientists used the two approaches 

respectively to pursue theoretical insights into the microscopic scale MCL flow physics; in 

the following review, their names will be lined-up in chronological order of their 

breakthroughs.  

In the former approach, we pay tributes to Hoffman, Voinov, Tanner and Cox. In 1975 

Hoffman [20] derived a relation for microscopic contact angle with MCL velocity and 

apparent contact angle, by correlating experimental data from his investigation into the 

shape of liquid-air interface advancing in a glass capillary. One year later, Voinov [21] 

arrived at an analytical solution to contact angle in very close vicinity to solid wall; he 

showed that the contact angle varies logarithmically with the distance to the contact line. 

Such logarithmical variation of the contact angle in mathematics reflects viscous bending 

of the interface in physics; the latter had been identified and analyzed by Huh and Scriven 

[18] as discussed above. Since the solution by Voinov was obtained with lubrication 

approximation valid only for a quasi-parallel flow, it might apply to only MCL flows with 

very small contact angles. Based on the outcome of Voinov’s work, Tanner [22] derived 

in 1979 that the time-dependence of spreading base radius follows 1 10( ) ~r t t , known as 

the Tanner law in literature. Considering its origin from the Voinov theory, the Tanner law 

works also only for very small contact angle scenarios. Such application limitation was 

removed in 1986 when Cox [23] generalized the Voinov solution to MCL flows with large 

contact angle, beyond the lubrication approximation. Since the Voinov solution can be 

viewed as the early prototype of the theory generalized by Cox, the latter is usually 

denoted as the Voinov-Cox law. Further details on this law will be given in Section 1.3.1.  

In the latter approach that permits a slip at wall, we should remember Navier, Huh, 

Scriven and Dussan. In fact, human’s insights into slip of flows at solid surface date back 

to 1823 when Navier [24] proposed a slip mechanism for single-phase gas flow over a 

substrate; yet it was until one and a half century later (in 1971) that Huh and Scriven [18] 
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utilized slip models to remove the stress singularity in MCL problems. Different slip models 

proposing different slip mechanisms could be found in literature. Nevertheless, Dussan 

[25] pointed out in 1979 that compared to the slip length, details of a particular slip 

mechanism are of little significance. Given its origin from Navier’s work, the slip-based 

approach is usually referred to as the Navier slip boundary condition. Section 1.3.1 will 

elaborate on this boundary condition.  

1.2.3.3 Molecular Scale with Thermodynamically-Equilibrium Contact Angle 

At this molecular scale typically of a few nano-meters (see inset b in Figure 1.6), the 

Navier-Stokes-based continuum hydrodynamics breaks down and thus fails to describe 

the molecular interaction of MCL and solid substrate; molecular-kinetics theories with non-

continuum philosophy are required. These theories will be briefly introduced in Section 

1.3.2. The characteristic contact angle at this scale is intrinsically determined by 

thermodynamic equilibrium state; so the contact angle here is named as 

thermodynamically-equilibrium contact angle 
td  in the present thesis. 

td  is inherent to a 

specific thermodynamic system, thereby being independent of operating conditions such 

as contact line speed and flow geometries. It is noted that the thermodynamically-

equilibrium contact angle 
td  is essentially the equilibrium contact angle e  that has been 

introduced in Section 1.2.2; the prefix “thermodynamically-” is added here to emphasize 

its thermodynamic nature and avoid any possible confusion with the microscopic contact 

angle.  

Considering three different scales around MCL problems as introduced above, one 

must always take care to clearly distinguish them when he or she investigates the 

problems at his or her interesting scales, either analytically, experimentally, or 

numerically. Otherwise huge confusions would arise. 
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1.3 Theoretical Basics for Moving Contact Line Flow Problems 

As introduced above, MCL flow problems involve three length scales. Among them, 

the macroscopic scale with the apparent contact angle is the most straightforward since 

large-scale dimensions of interest are readily accessible either in experiments or in 

continuum-based simulations. Thus, our attention will be paid to theoretical basics for the 

microscopic scale and molecular scale, namely, hydrodynamic theory for the former and 

molecular-kinetic theory for the latter. 

1.3.1 Hydrodynamic Theory 

As discussed in Section 1.2.3.2, the hydrodynamics approaches can be roughly 

categorized into two classes: one that carves out the tiny region near MCL from continuum 

hydrodynamics solution and the other that introduces a slip concept. The former is 

exemplified by the Voinov-Cox law and the latter is represented by the Navier slip 

boundary condition.  

1.3.1.1 Voinov-Cox Law 

Using the Voinov-Cox law [21, 23], one needs to choose a slip length at molecular 

scale where continuum hydrodynamics does not apply; the tiny region within this length is 

then cut away from the hydrodynamic solution domain. Hence, the large-scale flow 

outside the carved-out zone is still resolved by continuum mechanics while the effect of 

this microscopic zone on the macroscopic flow is sub-grid-like modelled by the following 

relation for the apparent contact angle 
app  and its microscopic counterpart 

m  [23]: 

 app m cl s( , ) ( , ) ln( / )G G Ca L L        (1.3) 

where G  is a complicated function in the following form: 
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  (1.5) 

The first thing to note here is that the Voinov-Cox law (or hydrodynamics theories in 

general) takes an assumption that the microscopic contact angle 
m  equals the 

(thermodynamically) equilibrium contact angle e  (i.e. 
td ). The assumption is said to be 

based on the so-called principle of Occam’s razor (which states that among several 

competing hypotheses, the one with the fewest/simplest assumptions should be opted for) 

[26]. This assumption is valid for microscopic length scale near MCL if using 

hydrodynamics approach but not anymore for molecular scale. 

In the Voinov-Cox law above,   is the viscosity ratio between gas and liquid. The 

contact line capillary number 
cl L clCa U   denotes the contact line velocity clU  

normalized by the liquid viscosity L  and interfacial tension  . L  is the characteristic 

macroscopic length scale which, for instance, may be chosen to equate to droplet 

diameter; sL  is the slip length used to indicate the tiny region near MCL, which is carved 

out from the continuum solution domain as discussed previously. With slip length sL  

typically being of molecular size, 
sln( / )L L  is roughly expected to be of the order of 10  

[26]; such a large disparity occurs between the two length scales. Since only macroscopic 

phenomena at the larger length scale L  are of interest for the current study as many 

others in literature, sL  is treated as an ad-hoc parameter that can be fitted to some 

benchmark theoretical or experimental data. For 135    and very small viscosity ratio 

0  , Eq. (1.3) can be simplified into: 

 
3 3

app m cl s9 ln( / )Ca L L     (1.6) 

The cubic relation above had been confirmed by experiments reported in literature (e.g. 

[27, 28]) for contact angle up to 70 ~ 100   if the contact line capillary number cl 1Ca   

and Reynolds number cl L cl L 1Re LU   .  
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1.3.1.2 Navier Slip Boundary Condition 

In addition to the Voinov-Cox approach, another remedy for the contact line singularity 

is to relax no-slip boundary condition and thus allow for a slip at solid wall [25]. This 

relaxation is modelled by the Navier slip boundary condition:  

 cl s , at  0
U

U L y
y


 


  (1.7) 

Therein y  is the coordinate normal to the wall. In numerical simulations, this Navier 

formulation for slip velocity is often used in combination with particular models for the 

microscopic contact angle 
m ; under this occasion, 

m  is also called dynamic contact 

angle d  (not to be confused with the apparent contact angle 
app ) and accordingly these 

models are referred to as dynamic contact angle models in literature. Among various 

dynamic contact angle models, equating the dynamic contact angle d  to the equilibrium 

contact angle e  is the simplest one. It works for a relatively slow motion of contact line, 

but may fail as contact line speed clU  is non-trivial. Under such a condition, one requires 

models that relate d  as a function of clU  and e . These can be exemplified by the Kistler 

model (see Chapter 6 by Kistler in Berg [29]).  

By examining comparatively the corresponding formulation of the Voinov-Cox law and 

Navier slip boundary condition, one might find that in the Voinov-Cox law macroscopic 

flow phenomena parameterized by the apparent contact angle 
app  and contact line 

velocity clU  are insensitive to the microscopic details (i.e. the slip length sL ), considering 

the logarithmic relation in Eq. (1.3) or Eq. (1.6). By comparison, the large-scale flow 

physics indicated by clU  is rather sensitive to sL  in the Navier approach. Such contrasting 

features contribute to opposing pros and cons of each method. In the Voinov-Cox model, 

one may arrive at an accurate solution of the large-scale flow without detailed description 

of local behavior near the contact line; but this method may not apply if one wants to 

investigate microscopic dynamics since only large-scale flow physics is intended to be 
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resolved. On contrary, the Navier formulation requires a physical slip length; the physical 

slip length is usually under-resolved by even the finest mesh resolution of a feasible 

continuum-based computation aiming at resolving larger-scale flows. If using such an 

under-resolved slip length in simulations (e.g., based on Volume-of-Fluid method), the 

mesh spacing next to solid wall will take over the role of slip length and serve as a 

“numerical” slip length [30]. As a result, the numerical solution of macroscopic MCL 

behavior is always mesh-dependent unless special care is taken, for example, in Afkhami 

et al. [31] who applied a mesh-dependent numerical contact angle model derived with the 

Voinov-Cox law and then achieved mesh convergence. This downside of the Navier slip 

boundary condition for macroscopic process is compensated by its upside for microscopic 

behavior: it has been shown very useful for revealing the microscopic physical mechanism 

either in experiments [32] or molecular-dynamics simulations [33]. 

1.3.2 Molecular-Kinetic Theory  

Here the concept is completely different from the hydrodynamic theory. Instead of 

being regarded as continuous media, fluids in the immediate neighborhood of the contact 

line are viewed to be made up of fluid particle (molecules) [26, 34]. The motion of contact 

line occurs owing to the thermally activated molecules jumping from one fluid phase to the 

other across the contact line and thus should be determined by statistical kinetics of 

molecules for the three-phase region (see inset b in Figure 1.6). Under this modeling 

framework, a driving force is believed to disturb the equilibrium of molecular 

displacements between gas and liquid phase. The driving force is supposed to be the so-

called unbalanced Young force, i.e. 
td appcos( ) cos( )     . A simplified kinetic model can 

be expressed as follows: 

 cl td appcos( ) cos( )U


 

      (1.8) 
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Therein   is a constant related to thermodynamics of a specific system. Since further 

details concerning the molecular-kinetic theory are beyond the background scope of the 

current study, we are referred to [26, 34-36] for more information on this approach.  

1.4 Numerical Simulations for Moving Contact Line: State-of-the-Art 

This section reviews state-of-the-art numerical investigations for MCL problems in 

literature. Although molecular dynamics (MD) simulations are emerging in recent decades 

as a very effective tool to uncover molecular details of MCL [1, 26], only (quasi-) continuum 

simulations for macro- and micro-scale MCL behavior are introduced in this section. Even 

for this narrowed scope, the author does not intend to be all-inclusive; yet he does attempt 

to cover all the representative investigations on this area to the best of his knowledge. 

These numerical studies on MCL and wetting problems can be categorized according to 

their underlying numerical methods for interface-capturing. 

1.4.1 Volume-of-Fluid (VOF) methods 

VOF methods employ volume fraction F  to denote individual phases and therewith 

capture interface [37]: 1F   for liquid and 0F   for gas, so the gas-liquid interface arises 

within mesh cells (also called “cut-cells”) where transition 0 1F   occurs. Depending on 

whether interface reconstruction is required for the transition region, VOF methods can 

be subdivided into two categories: Interface-Reconstruction VOF and Color-Function VOF 

[38]: 

1.4.1.1 Interface-Reconstruction VOF (IR-VOF) 

IR-VOF needs interface reconstruction for geometrical representation of the interface, 

as its name suggests. A representative example of state-of-the-art interface 

reconstruction schemes is the so-called Piecewise Linear Interface Calculation (PLIC); 

see Rudman [39] as well as Rider and Kothe [40]. In the IR-VOF category, the numerical 
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study by Renardy et al. [30] is a pioneering work. They showed that even with no-slip 

boundary condition, a numerical slip length relating to half a mesh spacing adjacent to 

wall is introduced inherently due to advection of F  there. Hence, numerical results would 

almost always be mesh-dependent given that it is computationally prohibitive to reduce 

mesh cell size down to physical slip length of nanometer scale. To tackle the problem, 

Afkhami et al. [31] proposed a mesh-dependent numerical contact angle model using the 

Voinov-Cox law [23] and thereby gained numerical solutions that are converging with 

mesh refinement. With this contact angle model as well as by coupling flow field with 

energy equation, Fath and Bothe [41] investigated numerically thermo-capillary migration 

of a droplet on a solid wall, using the in-house VOF-based code Free Surface 3D (FS3D) 

[42, 43]. Besides, Fang et al. [44] studied contact angle hysteresis phenomena with their 

IR-VOF variant. For further examples in the IR-VOF class, we are referred to Alla et al. 

[45] and Malgarinos et al. [46], both of whom used ANSYS Fluent®. 

1.4.1.2 Color-Function VOF (CF-VOF) 

CF-VOF uses a smooth color function which is considered as an approximation of the 

volume fraction used in IR-VOF, so that geometrical interface reconstruction is not 

required. CF-VOF is also called algebraic VOF in literature. The iso-surface where 0.5F   

indicates interface location. In CF-VOF, the relief from interface reconstruction efforts 

comes at the cost of numerically diffuse interface, i.e. so called interface “smearing-out”, 

which lefts interface-capturing very inaccurate. Hence, almost all the CF-VOF 

implementations should be equipped with some special numerical techniques to 

counteract or “compress” the numerical smearing-out; see Wörner [38] for concrete 

examples. 

The application of CF-VOF into MCL problems can be exemplified by several 

numerical studies: Legendre and co-workers [47, 48] carried out numerical simulations of 

spreading and sliding droplets with appropriate modelling of contact angle hysteresis 
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using their code JADIM. Both Saha and Mitra [49] as well as Linder et al. [50] employed 

interFoam (a standard OpenFOAM® solver based on CF-VOF) to simulate MCL-related 

flow phenomena with the implementation of corresponding dynamic contact models. In 

interFoam an artificial compression term is introduced into volume fraction equation to 

offset numerical interface diffusion [51]. 

1.4.2 Level-Set (LS) methods 

LS methods use a signed distance function from the interface location for interface 

capturing. The sign is utilized to identify corresponding phases [52, 53]. With LS methods, 

Spelt and co-workers carried out a line-up of numerical simulations on droplet spreading 

phenomena [54-57]. Besides, Chen et al. [58] investigated numerically bubble formation 

on orifice. Further examples of using LS methods for MCL problems can be found in Park 

and Kang [59], Liu et al. [60], Zahedi et al. [61] and Lakehal et al. [62]. 

1.4.3 Front-Tracking (FT) methods 

 In FT methods, a discrete set of Lagrangian markers are used to track the interface 

[63]. Unlike VOF and LS methods, one could find in literature only a few numerical studies 

using FT methods for MCL problems: Manservisi and Scardovelli [64] as well as 

Muradoglu and Tasoglu [65] applied their respective FT methods to numerically reproduce 

droplet spreading process, with corresponding dynamic contact angle models. 

1.4.4 Phase-Field (PF) methods 

PF methods are diffuse-interface methods that treat interface between two immiscible 

fluids as a transition region of small but finite width, endowed with interfacial tension [66]; 

so PF-methods are also called in literature as diffuse-interface methods, highlighting their 

“diffuse-interface” as opposed to “sharp-interface” characteristics. Based on 

thermodynamics instead of mechanics, the PF methods can be traced to van der Waals 
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more than a century ago [67]. Originally employed to model the initial stages of spinodal 

decomposition [68], the PF methods have become popular in recent years as a numerical 

technique for simulating two-phase flows with a wide range of hydrodynamic and 

interfacial phenomena [69, 70].  

In the context of MCL problems, the PF methods are believed to combine macro-, 

micro- and molecular-scales in a unified theoretical framework [71]. On one hand, it 

regularizes the stress singularity at solid wall by modelling contact line motion via a 

chemical-potential-induced diffusion mechanism [72]; this treatment is physically sound 

since mechanism behind MCL at molecular scale can be viewed as a diffusion process 

[16]. Therewith, the PF methods can model appropriately molecular-scale dynamics. On 

the other hand, microscopic- and macroscopic-scale flows and interfacial phenomena are 

resolved by the coupled Cahn-Hilliard (CH) and Navier-Stokes (NS) equation system. The 

mathematical formulation of the coupled CH and NS system will be given in Section 2.1. 

Apart from the above advantage of dealing with MCL-focused flows, the PF methods 

have other merits. First from a computational view, handling an interface as a transitional 

layer of finite thickness greatly facilitates the numerical treatment of topological changes 

of the interface. Therefore, the PF methods have been successfully applied to simulate 

interfacial phenomena of singularity such as breakup and coalescence of droplets or 

bubbles [73-76]. Besides in the PF methods, the diffuse interface is treated in a physical 

rather than numerical sense. It is essentially different from other interface-capturing 

methods (e.g. the Color-Function Volume-of-Fluid and conservative Level-Set methods 

[77]) where the interface is numerically diffuse so that special care (e.g., interface 

compression or re-initialization) is required to maintain a proper interface diffusion. By 

contrast, these numerical efforts for diffuse interface regularization are saved in the PF 

methods. In addition, owing to the energy-based formulation, it is straightforward to use 
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the PF methods to describe interfacial dynamics and rheology in a unified framework when 

one studies two-phase flows of complex non-Newtonian fluids [74, 78, 79].  

In terms of numerical solution procedures, PF simulations of MCL-related flow 

dynamics can be classified into two types: one based on Navier-Stokes (NS) equations 

and the other based on Lattice-Boltzmann Method (LBM): 

1.4.4.1 NS-based PF Simulations 

Like in other interface capturing methods introduced previously, NS equations are 

utilized to describe flow dynamics. For interface capturing, a transport equation for order 

parameter C  (also called phase-field) is added and coupled with the NS equations. The 

transport equation for C  appears as two variants: one being with a physically-motivated 

diffusion term (Cahn-Hilliard Equation) and the other being without such a term (Allen-

Cahn Equation). 

The majority of NS-based PF simulations in literature fall into the former category 

where Cahn-Hilliard (CH) equation governs the transport of C , so do the numerical 

investigations in this PhD study; the mathematical formulation will be given in Section 

2.1.1. Here Jacqmin [72] is a pioneer who showed analytically the applicability of CH-

based PF methods for MCL dynamics and derived asymptotic relation as sharp interface 

limit is approached. Since his work onward, PF methods of this type have been 

progressively employed for MCL problems by several research groups: 

Wang and coworkers extended the equilibrium boundary condition from Jacqmin [72] 

to a general one (i.e. the so-called generalized Navier boundary conditions) by a 

variational approach based on Onsager’s principles of minimum dissipation [80]. They 

showed that with the proposed boundary condition, one could reproduce the results from 

experiments [81] and from molecular dynamics simulations [82]. Using their numerical 

model, they also investigated contact line dynamics on chemically patterned surface [83], 
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three-component flow phenomena on solid surface [84] as well as droplet impacting a 

homogeneous substrate [85]. 

The research activities of Amberg’s group on this area started with the work on 

fundamental wetting dynamics and generic sintering-like flows in a solid matrix [86]. Here 

they used equilibrium wetting conditions by a Neumann boundary condition for order 

parameter. Later on, they switched to non-equilibrium conditions prescribed by a partial 

differential equation and demonstrated that the non-equilibrium wetting condition is 

advantageous over its equilibrium counterpart in terms of accurately capturing rapid 

wetting dynamics [87, 88]. Their further computational investigations revealing local 

mechanism of wetting dynamics can be found in Carlson et al. [89, 90] and their recent 

extension into non-Newtonian droplet wetting is reported in Wang at al. [79]. 

The group of Anderson are the first numerical modelers who applied NS-based PF 

methods into simulations of droplet impacting solid surface [91]. Besides, they studied 

capillary-driven spreading of a droplet without impact [92]. Their further contribution to this 

area can be shown by the analytical efforts on scaling laws of PF methods [93]. Therein 

they pointed out that it is crucial to choose an appropriate mobility in accordance to 

artificially enlarged thickness of interface so that macroscopic flow physics can still be 

accurately reproduced. 

The research group key-figured by Yue and Feng set out their endeavor on MCL 

dynamics with a combined analytical and numerical study on sharp-interface limit of CH-

based PF methods [94], following their extensive PF simulations of various Newtonian 

and non-Newtonian interfacial flows problems [74, 78, 95-98]. They showed that the 

sharp-interface limit could be approached when interfacial thickness is smaller than a 

threshold value while other model parameters are kept fixed. More significantly, they 

demonstrated a clear connection between CH-based PF methods and Voinov-Cox law-

based sharp-interface methods by relating the diffusion length in the former with the slip 
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length in the latter. Shortly later, they extended the investigation into wall energy relaxation 

of the CH model [71, 99]; such an energy relaxation is reflected by a non-equilibrium 

wetting condition modelled with a partial differential equation of the order parameter 

(similar to [88]). They showed that the wall energy relaxation gives rise to a microscopic 

dynamic contact angle that deviates from the equilibrium one, and revealed a competition 

mechanism between the wall energy relaxation and CH diffusion. By making use of this 

competition, one might accurately reproduce macroscopic flow dynamics at a reduced 

computational cost. Further numerical achievements by this group on MCL-related flows 

can be exemplified by their PF simulations of dynamic wetting of Newtonian and 

viscoelastic fluids [78, 98] as well as moving and coalescing behavior of droplets driven 

by substrate wetting gradient and external flows [76]. 

Ding and coworkers performed comprehensive NS-PF-based numerical simulations 

of droplet spreading and motions [55, 100-103] using their in-house code with an 

innovative numerical treatment of large density contrast between two phases [104]. One 

feature worth noting about their phase-field modelling and simulations is that for 

microscopic contact angle imposed at wall, they adopt a geometrical formulation [100] 

rather than surface energy formulation used by other research groups reported previously. 

The use of the geometrical formulation facilitates application of the NS-PF methods into 

contact angle hysteresis-related scenarios since it makes straightforward implementation 

of a contact angle hysteresis window [101]. Recently, they also expanded their working 

scope into three-component fluid flows involving MCL problems [105]. 

The other flavor of the C  transport equation arises as the Allen-Cahn (AC) equation. 

The difference of AC-based method from CH-based counterpart is that the former does 

not have a diffusion term used by the latter to physically describe MCL. Therefore although 

AC-based PF methods have been extensively employed for a variety of multiphase 

system [106-108] and interfacial flow problems [109], a few studies can be found in 
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literature on its application into wetting-related phenomena. Ben Said and coworkers 

performed simulations of wetting phenomena of compound droplets on solid surface [110] 

and on fibers [111], with their in-house AC-based PF code. Therein they numerically 

reproduced multi-droplet systems only in an equilibrium state but no physical wetting 

process/MCL dynamics. As of now, the numerical work by Badillo [112] might be the only 

one who applied AC-based PF methods into wetting dynamics problems, to the best of 

the author’s knowledge. 

1.4.4.2 Lattice Boltzmann Method (LBM)-based PF Methods 

LBM is emerging in recent decades as a popular alternative to conventional NS-based 

CFD approaches, see e.g. [113-115], considering its suitability for massively parallel 

computation deployment at high performance computers, among other merits. Instead of 

taking continuum assumptions, LBM treats fluid consisting of fictive particles and solves 

the discrete Boltzmann equation with collision models for these particles for fluid flow 

simulations. The application of LBM-based PF methods into MCL problems was initiated 

by Chen et al. [116] who studied MCL-related two-phase hydrodynamics under shear flow. 

Later, Yeomans and co-workers performed very extensive LBM-based PF simulations 

ranging from local hydrodynamics of MCL [117-120] to droplet spreading and motions on 

heterogeneous substrates being either chemically-patterned [121-127] or geometrically-

patterned [128-134]. 

1.5 Objectives and Contributions of This Study 

The goal of this PhD study can be subdivided into the following four objectives; its 

contributions to the scientific community can be categorized into the four corresponding 

aspects as well. 
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1.5.1 Method Development and Numerical Implementation 

The starting-point/base of this PhD work lies in development of an interface-capturing 

method for two-phase interfacial flows over solid surface (especially, moving contact line 

problem among others). Here the NS-CH-formulated phase-field method (PFM) is 

adopted in this study. The start-of-the-art NS-CH-based PFM simulations by other 

research groups have been reviewed in Section 1.4.4.1; their underlying mathematical 

formulations are to be presented in Section 2.1. 

The NS-CH-based PFM is implemented in foam-extend, a community-driven fork of 

OpenFOAM®. The implementation efforts have been pursued jointly by Marschall (main 

developer) and the author of the present PhD thesis. The achievement is – among others 

– a novel customized top-level solver phaseFieldFoam [135, 136], whose capabilities 

have been shown for a variety of wetting-related processes [137-142]. The purpose of 

implementing the PFM in the open-source CFD software OpenFOAM® lies in the plan that 

the newly-developed solver phaseFieldFoam will be released freely under the GNU 

General Public License at an appropriate time; therewith fluid mechanical/chemical 

engineers will be able to use the code to solve a wide range of interfacial flow or wetting-

related processes. This is especially critical for those interested in PFM modeling and 

simulations for their problems, given that all the PFM simulations by other researchers 

(reviewed in Section 1.4.4.1) were carried out in their respective in-house codes; this 

might impede widespread (re-)use of their codes by the scientific community. Under this 

context, the scientific contribution by the present work stands out. 

1.5.2 Droplet Wetting on Homogenous/Heterogeneous Surfaces 

The aim of this topic is to simulate droplet wetting phenomena on solid surfaces in a 

reliable, accurate and efficient manner. As discussed in Section 1.1, precise control of 

micro-droplets in terms of their locations, motions and shapes is of paramount importance 



24 

 

for process design and optimization in fundamental and application-oriented research as 

well as industrial practice on areas such as micro-fluidics device, micro-reactor, lab-on-a-

chip system, etc. It is beneficial to be equipped with a reliable numerical model that 

provides accurate access to wetting phenomena. In many circumstances, such a 

numerical model is not just helpful but even critical for, e.g., virtual-prototyping hundreds 

of design and optimization alternatives before production as well as gaining deep insights 

into local physics that is challenging or simply too expensive to access experimentally. 

With the PFM-based phaseFieldFoam, a reliable numerical model for micro-droplet 

wetting phenomena is successfully developed and built. Its predictive capability is 

demonstrated by accurate simulations of a variety of droplet spreading processes on solid 

substrates of chemical homogeneity/heterogeneity. The numerical results agree well with 

corresponding analytical solutions, experimental and computational data from literature. 

Besides, first 3D FVM-based PFM simulations with near-interface adaptive mesh 

refinement are pursued in the present contribution to exploit potentials for higher 

computational efficiency. These will be shown in Chapter 4.  

1.5.3 Bubble Motion in Periodic Open Cellular Structure (POCS) 

As introduced in Section 1.1, POCS is a novel internal packing approach for innovative 

multiphase structured catalysts and reactors. Exploration into the utilization of POCS for 

bubble column reactors is one theme in the German Helmholtz Energy Alliance “Energy 

Efficient Chemical Multiphase Process” [143], where the present PhD work belongs. In 

order to better understand moving/deforming behavior of individual bubbles within POCS, 

high-fidelity computational investigations – alongside with experimental measurements – 

are of equal significance for obtaining complementary or even unprecedented insights. 

Such trustworthy computations are only possible with a reliable numerical model. Under 

this context stands the purpose of the present study: it is devoted to developing such a 
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high-quality numerical model for predicting hydrodynamic behavior of bubble interacting 

with POCS and – based on the numerical model – exploring hydrodynamics conditions 

beneficial to mass transfer enhancement and surface catalytic reaction. 

The present study starts the development of the numerical model with the 

method/code validation for single air-bubble rising in a viscous quiescent liquid. In terms 

of bubble terminal velocity and instantaneous bubble break-up process by a solid cylinder, 

the numerical model-delivered results are found to be in good match with experimental 

data from literature. Then the numerical model is applied to predict rising process of an 

air bubble through a representative domain of a POCS filled with stagnant water. Solid 

surface wettability (i.e. equilibrium contact angle) is an input parameter to the numerical 

model and is varied in a series of simulations to reveal its effect on bubble interacting 

behavior with the solid structures. The present results provide a clear evidence that bubble 

deformation and rising path largely depend on the wettability. In the circumstances of 

industrial application of POCS, therefore, the use of structures with high surface wettability 

(i.e. low equilibrium contact angle) is expected to favor mass transfer enhancement and 

catalytic gas-liquid reactions. 

1.5.4 Gas-Liquid Interfacial Flow in Sponge Structure 

In addition to POCS, sponge (i.e. foam) structure as internal structured packing is also 

a research topic in the German Helmholtz Energy Alliance “Energy Efficient Chemical 

Multiphase Process” [143]. One may find in literature extensive numerical models and 

simulations for gas-liquid two-phase hydrodynamics in sponge structure. However, most 

of these computational studies are based on scale-reduced method where averaging 

procedure is carried out. They are able to describe macroscopically effective quantities 

such as phase holdup and pressure drop but – intrinsically – not to resolve local scales, 

like, topology of gas-liquid interface. Until so far, no numerical model/simulation aimed at 
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interface-resolving of gas-liquid flow in sponge structure has been reported in literature. 

The present contribution serves as a first attempt to fill the gap.  

For this purpose, a numerical model is developed in this study. Its predictive capability 

for hydrodynamics in sponge structure is firstly validated by considering gas-flow through 

alumina sponge. Therein the present computational results appear to be in good 

agreement with experimental/numerical data from literature. The numerical model is then 

utilized for interface-resolving simulations of gas-liquid flows within a representative 

elementary volume (REV); this is based on a modeling strategy combining pressure 

decomposition in Navier-Stokes equation and mirroring procedure applied to the REV. 

One contribution of the present work is that it shows the possibility of interface-resolving 

simulation for two-phase flow in sponge structure at a feasible computational cost. By the 

investigation into the effect of surface wettability and interfacial tension on gas-liquid 

interfacial area, the numerical results suggest property-tuning approaches to enlarge 

interfacial area and thereby increase interfacial mass transfer rate. 

1.6 Thesis Outline 

The thesis has so far reviewed physical and theoretical fundamentals as well as start-

of-the-art numerical simulations of wetting process and moving contact line. The 

remainder of this thesis is organized as follows. The mathematical formulation of the 

phase-field method and its numerical implementation in OpenFOAM® are described in 

Chapter 2. Chapter 3 presents the code verification for some fundamental interfacial 

phenomena. In the following chapters, the thesis will elaborate on phase-field simulations 

of three application-oriented wetting scenarios, namely, liquid droplet spreading on 

homogenous and chemically-heterogeneous surfaces (see Chapter 4), air bubble 

(immersed in liquid phase) rising and interacting with periodic cellular structure (see 
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Chapter 5) and gas-liquid interfacial flows in a representative domain of sponge structure 

(see Chapter 6). Chapter 7 provides summaries and outlooks. 
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2 Mathematical Formulation and Numerical Methodology  

This chapter introduces the mathematical formulation of the phase-field method 

(PFM), i.e., the coupled Cahn-Hilliard and Navier-Stokes equations system. Then the 

chapter briefly presents the PFM implementation using foam-extend – a community-driven 

fork of OpenFOAM®. 

2.1 Governing Equations  

2.1.1 Convective Cahn-Hilliard Equation 

In the phase-field method, the distribution of the liquid (L) and gas (G) phase is 

indicated by an order parameter C ; C  is also called as phase-field variable. Here, C  

takes respective values 
L 1C   and G 1C    for corresponding bulk phases and varies 

rapidly but smoothly in a transition layer (that is, the physically-motivated diffuse 

interface). The thermodynamics of the binary fluid system can be described by the 

following mixing energy density [74, 144]: 

  
22 2

mix

1
1

2 4
f C C





       (2.1)   

Then the mixing energy of this system can be expressed as follows: 

 mix mix d
V

F f V    (2.2) 

where V  is the system domain. On the right-hand-side of Eq. (2.1), the first and second 

term represent the interfacial and bulk energy density respectively.   is the mixing energy 

density parameter;   is called as the mean-field thickness or capillary width, and it is 

indicative of the thickness of diffuse interface. The chemical potential   is defined as the 

variational derivative of the mixing energy mixF  with respect to the order parameter: 
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The equilibrium state of the system is obtained by minimizing 
mixF , i.e., solving the 

equation ( ) 0C  . Its solutions are 
L 1C   and G 1C    that represent the two bulk 

phases respectively, as well as a one-dimensional profile (e.g. along x  direction) across 

the interface: 

 tanh
2

e

x
C



 
  

 
  (2.4) 

Following Jacqmin [66], one defines the interface width 
CL  as the distance from 0.9C    

to 0.9C  , so that 12 2 tanh (0.9) 4.164CL    ; the interface width 
CL  contains 98.5%  

of the surface tension stress. Both 
CL  and   can be used to indicate the thickness of a 

diffuse interface. It is noted that the diffuse interface parameterized by 
CL  or   arises in 

a physical sense rather than owing to numerical reasons as discussed in Section 1.4.4; 

therefore an adequate grid resolution for the interface thickness is critical for reliable 

numerical simulations. This issue will be examined as to corresponding interfacial flow 

problems in the remainder of this thesis.   

In equilibrium, the interfacial tension   can be expressed as the integral of the free 

energy density across the interface [145]: 
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 
  

 
   (2.5) 

Cahn and Hilliard [144, 146] extended the steady-state problem above to a transient 

one by approximating diffusive flux to be proportional to chemical potential gradient. The 

transient problem is modelled by the convective Cahn-Hilliard (CH) equation as follows: 

 
2( )

C
C

t
 


   


u    (2.6) 

Here t  denotes time, u  the velocity field and   the CH mobility. The term on the right-

hand-side of Eq. (2.6) represents a diffusive process of contact line motion at solid walls. 

With the assumption of the wall free energy being at local equilibrium, one derives a 
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wetting boundary condition to take into account the solid surface wettability as follows 

[86]: 

 2e
s

cos2
ˆ (1 )

2
C C




  n   (2.7) 

e  is the equilibrium contact angle and sn̂  is the outward pointing unit normal to the solid 

wall. 

2.1.2 Navier-Stokes Equations 

The present PhD study concerns two-phase flows of immiscible, incompressible, 

isothermal and Newtonian fluids. Hence, one can describe two-phase flows by the 

following single-field Navier-Stokes (NS) equations: 

 0 u   (2.8) 

    T

C C Cp
t

  
              

u
u u u + ( u) + f g   (2.9) 

where p  is the pressure and g  the gravity vector. For the interfacial tension term f , two 

formulations exist in literature: one formed with conventional continuum surface force 

(CSF) [147] and the other based on chemical potential (CP) [66]. He and Kasagi [148] 

carried out a comparative study on the two interfacial tension formulations by investigating 

single bubble flow problems; they showed that the CP formulation is superior to the CSF 

counterpart in the sense that the former can reduce the magnitude of parasitic currents to 

the level of truncation error while the latter brings about non-trivial parasitic currents which 

could even destroy the flow at small capillary number. Hence, this PhD study adopts the 

CP-based form which expresses the interfacial tension as: 

 C   f  (2.10) 

Besides, the density and viscosity field in Eq. (2.9) are also related to the order 

parameter: 

 L G
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2 2
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 L G

1 1

2 2
C

C C
  

 
   (2.12) 

where L/G  and L/G  indicate the density and viscosity of the bulk phases. Eqs. (2.10), 

(2.11) and (2.12) couple the NS Eq. (2.9) with the CH Eq. (2.6). 

2.1.3 Dimensionless Formulation  

To achieve a non-dimensional formulation of the coupled CH-NS equations system 

above, the following dimensionless variables are defined: 

 * * * * * *

L L L

, , , ,
x u tU pL

x u t p
L U L U

 
 

  
        (2.13) 

Therein L  and U  denote characteristic length and velocity scale respectively. Dropping 

the asterisks, one arrives at a dimensionless equation system as follows: 

The chemical potential field is then: 

 3 2 2C C Cn C       (2.14) 

The convective Cahn-Hilliard equation reads: 
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with the wetting boundary condition of  C : 
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2
C C
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
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The non-dimensional form of the Navier-Stokes equations is: 

 0 u   (2.17) 
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with the density and viscosity field: 
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and the interfacial tension and buoyance force: 

 st

1
( )C C

Ca Cn
  


f   (2.21) 
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The above non-dimensional system involves five dimensionless groups: 

2
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The first three are physical ones: the Reynolds number Re  stands for the ratio 

between inertial and viscous force, the capillary number Ca  for the relative importance of 

viscous to capillary force and the Eötvös number Eo  for that of buoyance to capillary 

force. The other two are model parameters specific to the phase-field method: the Cahn 

number Cn  relates the capillary width to reference length scale and the Peclet number 

CPe  serves as a measure of the ratio between the convection and diffusion of the order 

parameter. Among these dimensionless groups  ,Re  Ca  and Eo  are fairly 

straightforward to determine from fluid and interfacial properties as well as operating 

conditions; but subtlety (even puzzlement among fluid mechanics scientists and 

engineers) arises as to the choice of Cn  and 
CPe  (equivalently,   and  ). Towards this 

issue, the next subsection gives macro-scale-oriented answers. 

2.1.4 Considerations for Choosing   and   

The question on determining   and   might be the subtlest issue in phase-field 

modeling for macro-scale flow problems; this statement is limited to “for macro-scale flow 

problems” since phase-field modelling is rather straightforward for microscopic 

phenomena.  

In reality, macroscopically immiscible interface is actually on-molecular-scale miscible 

(i.e. diffuse) with a certain amount of mixing between two phases and thereby with a non-

zero thickness, according to the deep insights of van der Waals [67] back in the 19th 
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Century. The interfacial thickness is typically on the order of tens of nanometers. In 

microscopic processes such as phase transition and critical phenomena [149, 150] as well 

as alloy solidification [151, 152], it is of primary importance to capture local interfacial 

dynamics. In such a system, characteristic length scale is either roughly the same order-

of-magnitude or just by a few orders-of-magnitude larger than the interfacial thickness; 

thus it is fairly feasible for numerical simulations to integrate all the scales of interest. 

However, for rather large-scale (e.g. from tens of micrometers to a few of millimeters) 

processes where global features (such as droplet/bubble diameter) are of interest, it is 

computationally prohibitive to resolve both macroscopic and interfacial thickness scales, 

whose disparity in order-of-magnitude can be up to 6 . In short, the crux lies in a conflict 

between physically-thin interface and computationally-unaffordable cost.  

A common practice to circumvent the above problem is to use an artificially thicker 

interface than its truly physical value for modelling and simulation of macroscopic 

interfacial phenomena. So comes the first question: how thicker interface   is allowed so 

that numerical solution of large-scale flows and interfacial dynamics is still independent of 

 ? Another issue is about the mobility factor  . It quantifies the CH diffusion process that 

governs the motion of contact line, as Eq. (2.6) implies; characteristic length of this 

diffusion is on molecular scale and thus a sufficient mesh resolution for it is beyond 

currently available computational capacities. Hence   is treated as a phenomenological 

parameter that “coarse-grains” the molecular diffusion process in a sub-grid manner. Then 

another question arises: how to choose such an appropriate   that macroscopic flow and 

interfacial phenomena can still be properly modeled and accurately reproduced? 

Since the focus of this PhD study is on interfacial phenomena at macroscopic/global 

scale (e.g., bubble/droplet diameter scale), it handles pragmatically the above two 

questions: 
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The choice of the capillary width   is made in accordance with reference length scale 

L  characteristic of a certain interfacial flow problem under consideration. The experiences 

from the author and coworkers [137, 138, 142] as well as other research groups [86, 92] 

suggest that if   is chosen such that : 0.01 ~ 0.02Cn L  , then the simulated interfacial 

dynamics at the scale L  gets rather insensitive to  . 

The value-fixing procedure for the phenomenological   starts with a preliminary 

estimate following the relation 2  . As Jacqmin [66] showed, 
2( )O   ensures that the 

CH diffusion approaches zero as   goes to zero, that is, conventional sharp-interface 

model could be properly recovered. A dimensionless version of this relation 

(parameterized by Cn  and CPe ) was already adopted by Ding et al. [102]. Around this 

first estimate,   is finally chosen by fitting with, if available, certain experimental or 

analytical data, since   may be viewed as a material property characteristic of a specific 

physical system [71]. 

2.2 Numerical Methodology  

2.2.1 Implementation Platform – OpenFOAM® 

All the method implementation works as well as subsequent simulations in this PhD 

study are carried out on the platform of OpenFOAM®. OpenFOAM® (for “Open-source 

Field Operation And Manipulation”) is primarily an open-source C++ toolbox for solving 

continuum mechanics problems, mostly for fluid dynamics and transport phenomena. 

Originally named as “FOAM”, OpenFOAM® was developed principally by Weller and Jasak 

[153, 154], both of whom were back then working at Imperial College, London. 

OpenFOAM® offers an extensive portfolio of solvers for a wide range of physical 

processes from turbulence, heat transfer, combustion and (multiphase/complex) fluid 

flows to molecular dynamics, solid mechanics, electromagnetics and acoustics. The code 

utilizes Finite Volume Method (FVM) for discretization and is equipped with unstructured 
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polyhedral grid capabilities. For further details concerning the underlying numerical 

methodologies of OpenFOAM®, one is referred to the official OpenFOAM® guides for 

users [155] and programmers [156] as well as a series of PhD theses by Jasak [157], 

Ubbink [158], Rusche [159] and Marschall [160]. 

Among dozens of forks and adaptations of OpenFOAM®, the foam-extend project is a 

global community-driven one that welcomes and integrates contributions from developers 

and users worldwide [161]; the project was previously known as OpenFOAM-extend 

(Note: OpenFOAM® is a registered trademark of ESI Group. OpenFOAM-extend and 

foam-extend are a community effort not endorsed by ESI Group). In the present PhD 

thesis, the implementation of the phase-field method and its application into numerical 

simulations are performed with foam-extend. 

2.2.2 Numerical Implementation of Phase-Field Method  

The development and implementation of phase-field method in foam-extend are 

carried out jointly by Marschall (main developer) and the author of the present PhD thesis. 

The fruit of the collaboration is a novel top-level solver phaseFieldFoam [135, 136], whose 

capabilities have been shown for a variety of wetting-related processes [137-142]. 

The solver phaseFieldFoam is equipped with two options for solution procedure of the 

Cahn-Hilliard (CH) equation from time-step n  to 1n  : segregated and coupled. In a 

segregated manner, the solution procedure within a single time-step can be summed up 

as follows: 

[1] Solve the CH equation (see Eq. (2.6)) to obtain the order parameter field at time-

step 1n  .  

[2] Update the chemical potential (see Eq. (2.3)) using the order parameter obtained 

from the step [1].  
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[3] Calculate the interfacial tension by Eq. (2.10), mixture density by Eq. (2.11) and 

mixture viscosity by Eq. (2.12).  

[4] Solve the Navier-Stokes equations (see Eqs. (2.8) and (2.9)) for the velocity field 

at time-step 1n  .  

Alternatively, the solution procedure can proceed in a coupled manner; there rather 

strict limitations on time-step size will be relaxed and thus higher computational efficiency 

be achieved. Compared to the steps in the segregated manner, step (3) and (4) remain 

while step (1) and (2) merge into a single one. In this single step, the chemical potential 

  is no longer used as an intermediate variable; rather,   expressed by Eq. (2.3) is 

substituted into the CH equation (2.6). Then the CH equation of the 4th order derivative is 

formulated and then numerically solved as a whole. Therein the 4th order CH equation is 

divided into two Helmholtz-type equations and then solved simultaneously within one 

linear solver sweep; similar numerical procedures were already used by Yue et al. [74] 

and Dong [162]. 

Besides the solver phaseFieldFoam is endowed with other start-of-the-art numerical 

techniques for mass conservation, numerical boundedness and computational efficiency. 

Similar to Ding et al. [104] and Abels et al. [163], a relative density flux term owing to 

diffusion of two phases is added into the momentum equation to fulfil volume conservation 

for two-phase flows with a large density difference. Besides, if the segregated solution is 

chosen, a temporal sub-cycling is switched on where the CH equation is solved with more 

than one sub-time-step within a single time-step. This feature is similar to what the 

standard OpenFOAM® solver interFoam has for the volume fraction equation [155]. For 

further numerical details about phaseFieldFoam, one is referred to Marschall et al. [135, 

136]. 

All the simulations reported by this thesis are equipped with the following numerical 

schemes. Spatial derivative is handled by a high resolution scheme (Gauss Gamma) and 
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time integration by a 2nd order two-time level backward scheme (Gear’s method). The time 

step is adaptively set during simulations where the maximum Courant number is fixed to 

0.1 . For details on the adaptive time step control in OpenFOAM®, one is referred to 

Berberović at al. [164]. The coupling between velocity and pressure is dealt with by the 

Pressure Implicit with Splitting of Operators (PISO) algorithm [165]. 

2.3 Summary of Chapter 2 

In this chapter, the governing mathematical equations of the PFM are introduced. 

Special care is taken for choice of the capillary width   and mobility  . Besides the 

method implementation in foam-extend is shortly introduced. Verification of the 

implementation is to be shown in the subsequent Chapter 3. 
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3 Verification for Fundamental Interfacial Phenomena 

In this chapter, phaseFieldFoam is verified for some fundamental interfacial 

phenomena against corresponding analytical solutions; its predictive capability is 

therewith demonstrated for elementary interfacial or capillary-driven flow problems. The 

results and figures presented in this chapter have been published in Cai et al. [137, 142]. 

3.1 Phase-Field Diffusion  

Owing to the free energy formulation, the CH diffusion consists of in-total fourth order 

derivative; see Eqs. (2.3) and (2.6). This is rather unusual for typical fluid mechanics and 

transport phenomena problems and therefore has not yet been handled by OpenFOAM® 

or its forks. Hence the implementation of this diffusion term in this study is to be verified 

here. For this purpose, a 1D test-case will be performed for a flat interface where the 

following CH equation without the convection term is solved:  

  2 3 2 2C
C C Cn C

t


   


  (3.1) 

The numerical results for steady state will be compared with the corresponding 

analytical solution expressed in the following dimensionless form of Eq. (2.4):  

 tanh
2

x
C

Cn

 
  

 
  (3.2) 

The simulations are carried out in a 1D domain of dimensionless length 1 with varying grid 

resolutions (i.e., different dimensionless cell size h ) of 0.02h  , 0.01h   and 0.005h  . 

With dimensionless thickness of the interfacial region 0.04164  , these mesh resolutions 

correspond to the number of cells for the diffuse interface region CN x   being 

2 ,CN   4  and 8 . At both end of the 1D domain, zero gradient boundary conditions are 

used for the order parameter C . As depicted in Figure 3.1, a good march between the 

numerical and analytical solution can be fulfilled provided 4CN  .  
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Figure 3.1: Analytical and simulated order parameter C  profile across the diffuse 

interface with differing mesh resolutions. The Cahn number is 0.01Cn  . Adapted from 

Cai et al. [142]. 

 

Next, the verification goes further to a 2D test case. At all the boundary patches, zero 

gradient conditions are applied for C . Physically, the order parameter C should be 

1 1C   , as introduced in Section 2.1.1. However, the 2D simulation made in the present 

study delivers an order parameter field ranging in [ 1 ,1 ]C C    with a shift of 

0.0052C  ; see Figure 3.2. 

 

 

Figure 3.2: Order parameter field (shown as “ordPar”) from the 2D PF simulation with 

0.01Cn  , 4CN   and 100DN  . Taken from Cai et al. [142]. 
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By the theoretical analysis of Yue et al. [97], such bound shifts were found to be 

intrinsic to 2D or 3D phase-field mathematical modeling, thereby being independent of 

numerical implementations or solution procedures. For a 2D problem, Yue et al. [97] 

related the shift C  to the Cahn number Cn  as follows: 

 
2

3
C Cn    (3.3) 

To verify the code against the analytical estimate above, numerical simulations are made 

for differing Cn . 

 

 

Figure 3.3: Comparison of the analytical estimate from Yue et al. [97] and present 

numerical results with respect to the Cahn number Cn  versus the shift in order 

parameter C . Adapted from Cai et al. [142]. 

 

Figure 3.3 shows an excellent match between the theoretical estimate and present 

computational results. As Cn  decreases, the shift C  gets smaller and the upper/lower 

limits of the order parameter approach the physically “should-be”. Thus having Cn  as 

small as possible favors mass conservation and helps prohibit spontaneous shrinkage 

that is bound to occur if too large shift C  arises. On the other hand, since Cn  denotes 
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interface thickness, it is very computationally expensive to have a very small Cn  where 

extremely fine mesh would be required. As a compromise between computational 

accuracy and expense, 0.01Cn   is used in all the upcoming simulations reported in this 

present chapter. 

3.2 Droplet Deformation in Unbounded Shear Flow 

As discussed in Section 2.1.2, the interfacial tension is formed with chemical potential 

(CP) in the present PhD study. This is essentially distinct from other conventional 

interfacial tension formulations such as continuum surface force (CSF) [166] or continuous 

surface stress (CSS)  [167]. Thus, it is necessary to verify the implementation of the CP-

based interfacial tension (see Eq. (2.10)). For this purpose, a 2D interfacial flow problem 

is considered: by imposing wall velocity U  and U  to top and bottom boundary 

respectively, a shear flow forms in the computational domain (as shown in Figure 3.4). 

Due to this shear flow, an initially circular droplet (diameter 0D  and radius 0 0 / 2R D ) at 

the center of the domain deforms to an elliptic one. The elliptic droplet at equilibrium 

features a balance between shear and interfacial forces, and its shape is quantified by the 

deformation parameter def long short long short( ) / ( )D L L L L    where longL  and shortL  are the 

respective length of the long and short axis of the ellipsoid; see Figure 3.4. For this flow 

problem, Taylor [168] derived an analytical solution for defD : 

 L 0
def

35

32

R
D

 


    (3.4) 

where   is the shear rate. It is noted that Eq. (3.4) was derived with the assumptions of 

(i) viscosity-matched binary fluids and (ii) creeping flows. In the present test case, the 

shear rate can be expressed as: 

 
0

2

2

U U

H R
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Substituting Eq. (3.5) into Eq. (3.4), one obtains: 
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 L 0 0 L
def

( / 2 )35 35

32 64

U R R U
D

 

 
      (3.6) 

The definition for the capillary number in Eq. (2.23) is rewritten here: 
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Combining Eqs. (3.6) and (3.7), one finally arrives at: 

 
def

105

128 2
D Ca   (3.8) 

Equation (3.8) serves as the analytical profile with which the computational results are 

compared. 

 

 

Figure 3.4: Due to the shear flow, an initially spherical droplet of radius 0R  deforms to 

an ellipsoid with long axis longL  and short axis shortL . Adapted from Cai et al. [142]. 

 

Before the primary simulation, a precursor computation is carried out. There by 

numerically solving CH equation without convective term, one obtains an equilibrium state 

of C  with a hyperbolic tangent profile — as shown by Eq. (2.4) or its non-dimensional 
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counterpart Eq. (3.2) — across the interface. This equilibrium field of C  is then used as 

initial condition for the upcoming primary simulation. A similar approach was already used 

by Badalassi et al. [169].  

 

 

Figure 3.5: Comparison between the computational results for differing Reynolds 

number Re  and Taylor’s analytical solution (Eq. (3.8)) with respect to the deformation 

parameter defD  versus the capillary number Ca . Adapted from Cai et al. [142]. 

 

The primary simulations are then performed. Therein wall velocity U  and U  are 

specified for the top and bottom boundary respectively (as shown in Figure 3.4) and free 

slip conditions are set for the left and right boundary. For the order parameter field, zero 

gradient conditions are applied at all boundary patches. The computational results in 

comparison with Taylor’s analytical solution (Eq. (3.8)) are shown in Figure 3.5. As Re  

(see Eq. (2.23) for the definition) is decreasing and approaching zero, the computational 

results are approximating the analytical profile. This trend is reasonable considering that 
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Taylor’s analytical solution was derived with creeping (Stokes) flow assumption (where 

Re  is limiting to zero). 

3.3 Capillary Rise in Vertical Channel  

The main objective of this PhD study is to describe wetting-related processes where 

a gas-liquid interface is in contact with a solid surface. Thus, it is necessary to verify the 

code for capillary-driven interfacial problems at a wall. For this purpose, a test-case on 

capillary rise of a liquid in a vertical narrow channel is performed. Based on the force 

balance between capillarity and gravity at final equilibrium state, the final height of the 

liquid column ( colH ) and the channel width ( d ) obey the following analytical relation [170]: 

 
col e

2

L

2 cos( )H

d gd

 


   (3.9) 

In the present study, the liquid and gas are water (
3

L 998kg m   and 
3

L 10 Pa s  ) and 

air (
3

G 1.2kg m   and 
5

G 1.81 10 Pa s   ) with interfacial tension 
10.072 Nm  . The 

channel width 2mmd   and the gravitational acceleration 
29.81ms .g   

For phase field specific parameters, 0.025Cn   and 327CPe   are adopted. A 

homogenous Cartesian grid is generated for the computational geometry; there 40  mesh 

cells are used to resolve d  and correspondingly 4  mesh cells for diffuse interface width 

CL  (i.e., where 0.9 0.9C   ). In this test case the interfacial flow system evolves to a 

steady state and no characteristic velocity U  could be directly identified from the physical 

system. Thus U  is chosen indirectly by following 1Re  . At the channel walls, the 

boundary conditions are set as no-slip for the flow field and Neumann condition 

(expressed by Eq. (2.7), where the equilibrium contact angle e  is specified) for the order 

parameter field; at the top, they are configured as pressureInletOutletVelocity with zero 

relative pressure for the flow field and zeroGradient for the order parameter field.  

Figure 3.6 illustrates a series of snapshots visualizing a simulated capillary rise process 

of water within the channel with surface wettability 45e   .  
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Figure 3.6: Simulated capillary rise of water into a vertical narrow channel at four 

instants: (a) 0 ms (initial state), (b) 3 ms, (c) 30 ms, (d) 100 ms (final state). The channel 

width 2mmd   and the equilibrium contact angle 45e   . Adapted from Cai et al. [137].  

 

At the beginning the vertical channel contains only the air while the water is in the 

horizontal container (Figure 3.6 a). Due to wall adhesion force, the water is slightly 

creeping up along the wall so that the prescribed equilibrium contact angle 45e    is met 

(Figure 3.6 b). The curved interface gives rise to a pressure difference that pushes the 

water upward (Figure 3.6 c). The water column keeps rising until the gravity force reaches 

balance with the capillary force (Figure 3.6 d). 

 

 

Figure 3.7: Computed and analytical water column equilibrium height for different 

equilibrium contact angles. Adapted from Cai et al. [137]. 
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Further simulations are made for other four values of e  in the range 30 60e    . 

As illustrated in Figure 3.7, the predicted static water column height (assessed halfway 

between the channel centerline and the right wall) is in good match with the analytical 

solution in Eq. (3.9) for all the considered equilibrium contact angles.  

3.4 Summary of Chapter 3 

This chapter has presented code verification for several fundamental interfacial or 

capillary-driven phenomena, namely, phase-field diffusion, droplet deformation in shear 

flow and capillary rise in vertical channel. For all the above flow problems, the numerical 

results prove in good match with corresponding analytical solutions. With the gained 

experience and confidence in phaseFieldFoam, the code is to be employed to describe 

wetting-related processes; these will be presented in the succeeding chapters. 
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4 Droplet Wetting on Flat Solid Surfaces 

This chapter  presents numerical investigations into a series of droplet wetting 

phenomena on horizontal surfaces, being either homogenous or chemically 

heterogeneous. The numerical results shall be compared with analytical, experimental or 

reference computational data from literature. The results and figures presented in this 

chapter have been published in Cai et al. [137]. 

4.1 Equilibrium Shape 

Equilibrium shapes of droplets resting on ideal surface are brought firstly under 

examination. Simulated steady-state dimensions of the droplets are compared with 

analytical solutions. A semi-circular droplet with initial radius 0 0 / 2R D  and contact angle 

0 90    (Figure 4.1 a) is taken as initial conditions for simulations. For the final steady 

state, a specific equilibrium contact angle e  corresponds to a certain equilibrium droplet 

shape with height eH  and base length eL  (Figure 4.1 b).  

 

 

Figure 4.1: (a) Initial shape of a droplet deposited on surface. (b) Its equilibrium shape 

for a given equilibrium contact angle e . Adapted from Cai et al. [137]. 

 

For the present 2D simulations, a computational domain of the dimensions 0 03D D  

is set up, and uniform Cartesian grid is generated with mesh resolution for 0D  being 50  

cells (i.e., that for diffuse interface thickness CL  being 4  cells). Here 0.01Cn  , 1000CPe   

and characteristic length scale L  is chosen as 0D . At the base solid surface, the boundary 
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conditions are set as no-slip for the flow field and Neumann condition (expressed by Eq. 

(2.7), where the equilibrium contact angle e  is specified) for the order parameter field; at 

the top and side boundary patches, they are configured as pressureInletOutletVelocity 

with zero relative pressure for the flow field and zeroGradient for the order parameter field. 

 

Figure 4.2: Comparison of the present simulation results and the analytical solutions 

[47] in terms of e 0/H R  and e 0/L R  versus e . Adapted from Cai et al. [137]. 

 

Akin to numerical simulations using other interface-capturing approaches such as 

VOF [47] and Level-Set [116], the present numerical investigation firstly concerns the case 

when gravity is assumed to be negligible ( 0Eo  ), so that droplet equilibrium shape is 

governed by capillary force alone. Here the droplet is wetting/spreading for e 0   and is 

de-wetting/recoiling for e 0  . For both processes, the steady-state droplet forms a 

circular cap. Following geometrical constraints one has [47]: 
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A line-up of simulations are carried out for seven distinct equilibrium contact angles in the 

range e45 135    . Figure 4.2 demonstrates the comparison of the simulation results 

and the analytical solutions from Eqs. (4.1) and (4.2) in terms of e 0/H R  and e 0/L R  versus 

e . A very good agreement is found for such a wide range of wettability covering 

hydrophilicity and hydrophobicity.  

 

Figure 4.3: Comparison of the present simulation results and the analytical solutions 

[47, 171] in terms of normalized droplet height as function of the Eötvös number for 

e 60   . The insets show the final droplet shape for the respective Eötvös number. 

Adapted from Cai et al. [137]. 

 

If 0Eo  , then the equilibrium droplet shape is determined by a competition between 

gravity and capillarity: the former attempts to further spread out (flatten) the droplet while 

the latter tends to keep its form as a circular cap. Provided the Eötvös number is 

sufficiently large (i.e. 1Eo ), the gravitational force dominates over its capillary 

counterpart and then the droplet appears as a puddle. The height of such a droplet puddle 

is analytically expressed by [171]:  
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The present simulations are carried out for a fixed equilibrium contact angle e 60    

and a group of varying Eötvös numbers in the range 0.01 10Eo  . Figure 4.3 depicts the 

normalized droplet height e 0H H  as a function of the Eötvös number Eo . If 0.1Eo   (that 

is, capillary-dominated regime), the numerical results appear in good match with the 

asymptotic solutions given by Eq. (4.2). For 5Eo   (gravity-dominated regime), the 

numerical data are found in agreement with the asymptotic solution given by Eq. (4.3). 

1Eo   implies a transitional regime between the above two. The insets in Figure 4.3 show 

respective droplet shapes in these three regimes: a circular cap for 0.1Eo  , an elongated 

circular cap for 1Eo   and a puddle for 10Eo  .  

4.2 Spreading Dynamics  

This section puts into examination wetting dynamical process of a droplet spreading 

on a hydrophilic surface. In the following presentation of instantaneous numerical results, 

physical time is normalized by the capillary time-scale cap A A 0/ /t L D     .  

4.2.1 2D Axisymmetric Simulations  

To reproduce dynamic wetting behavior in reality, 2D axisymmetric simulations are 

carried out and the results are compared with the experimental data from Zosel [172]. In 

his experiment, spreading processes of droplets of varying viscosities were investigated 

and corresponding transient spreading factors were measured. The droplet diameters 

ranged from 2.4  to 3 mm . Considering such a size range, gravitational effects are 

assumed negligible in the present simulations. Through the tip of a syringe needle, the 

droplets of nearly spherical shape were slowly deposited onto surfaces, so that impact 

effect (initial kinetic energy) of the droplets was minimized in the experiment. Thus inertial 

forces are also neglected and density ratio between the two phases is specified to unity 

in the current numerical study.  
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For the experiment-simulation comparison, a specific experiment from Zosel [172] is 

selected. There, the droplet consisted of polyisobutylene ( L 25Pa s  , 
3

L 920kg m   and 

10.0426 N m  ). Its initial diameter was 0 2.6mmD   and the base surface was polymer 

PTFE with the equilibrium contact angle e 58   . In the experiment, the viscosity ratio 

between the surrounding air and droplet was 
6

G L/ 10     . Yet in the present 

numerical study, 0.05   is used to alleviate computational burdens. This choice is 

justified by a preliminary sensitivity investigation which shows that the computational 

results get independent of   when 0.05.   In the 2D axisymmetric simulations, the 

computational domain is of the dimension 0 02 1.5 .D D  The mesh resolution for initial 

droplet diameter and diffuse interface thickness is 100DN   and 6CN  . With the Cahn 

number being fixed as 0.01Cn  , numerical simulations are carried out for two Peclet 

numbers 200CPe   and 1000  respectively. The boundary conditions are the same as 

those used in the test cases reported in Section 4.1.  

 

Figure 4.4: Comparison of the simulation ( 200CPe   and 1000 ) and the experiment [172] 

with respect to instantaneous droplet base radius. Taken from Cai et al. [137]. 

Figure 4.4 presents the comparison of the simulation results and experimental data 

[172] with respect to instantaneous base radius of the droplet. One finds a very good 
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agreement especially for the final spreading stage before the droplet reaches the 

equilibrium state. Another feature to note is that when CPe  reduces, the base radius is 

enlarging at a slightly higher speed, implying a faster motion of contact line. This trend is 

reasonable considering that contact line motion is modeled in PFM as a diffusion process 

as discussed in Section 1.4.4; hence a stronger diffusion achieved through a smaller value 

of CPe  — see Eq. (2.15) — gives rise to a faster spreading.  

4.2.2 3D Simulations with Adaptive Mesh Refinement  

Adaptive mesh refinement (AMR) is an important means to fulfil high computational 

efficiency especially for 3D PFM simulations that are typically computationally expensive. 

During an AMR simulation, sufficiently fine mesh is generated for interface neighborhood 

while relatively coarse grid may be applied for bulk regions. This is of special importance 

for PFM simulations where the interface is diffuse by its nature. As stated by Zhou et al. 

[98], the diffuse interface thickness should be small enough so that the sharp interface 

limit could be approached whilst sufficient mesh resolution for the thickness must be 

guaranteed to accurately capture interfacial phenomena.   

Here the capability of the numerical method/code for 3D AMR is showcased. The AMR 

function is dealt with by the class dynamicRefineFvMesh in the standard OpenFOAM® 

library. The present demonstrating test-case is carried out with initially specified two-level 

mesh refinement for the interface neighborhood compared to the bulk regions (Figure 4.5). 

During the simulation the AMR is performed at each time step for the interfacial zone 

where 0.9 0.9C   . The boundary conditions in the present 3D AMR simulation are the 

same as those used in the test cases reported in Section 4.1.  
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Figure 4.5: (a) Initial state of the 3D AMR simulation (one-quarter geometry and 

hexahedral grid) of a droplet wetting on a solid surface (equilibrium contact angle 

e 75   ). (b) A close-up into the interfacial zone where two-level AMR is applied. Taken 

from Cai et al. [137]. 

 

Figure 4.6 shows the total wetting process delivered by the 3D AMR simulation. The 

process starts from the initial droplet shape where 0 170    (Figure 4.6 a). As time 

proceeds, the droplet spreads out (Figure 4.6 b and c) and finally converges to the 

equilibrium state where e 75    is achieved (Figure 4.6 d). In addition to the case 

e 75 ,    another 3D AMR simulation is carried out for e 90   . 

In order to validate the accuracy of the 3D AMR simulations, reference 2D 

axisymmetric stationary-grid simulations are made with exactly the same mesh resolution 

for interface as well as physical and numerical parameters ( 0.94Ca  , 0.1  , 0.01Cn   

and 1000CPe  ). Figure 4.7 presents the comparison of the 3D AMR and 2D simulation 

results in terms of base radius versus time. Perfect agreements are observed for the both 

cases e 75    and 90 . If comparing the curves from the two different equilibrium contact 

angles, one sees the influence of the surface wettability on the wetting process, which is 

already obvious from the very beginning: therein the droplet spreads at a higher rate on a 

more hydrophilic surface (smaller equilibrium contact angle). This trend is owing to the 
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fact that the difference between 0  and e  can be phenomenologically viewed as the 

driving force for a spreading process; therewith a larger mismatch gives rise to a faster 

spreading.  

 

Figure 4.6: 3D AMR simulation of a droplet spreading process on a solid surface with 

e 75    at different instants of (a) cap/ 0t t   (initial state), (b) cap/ 2t t  , (c) cap/ 8t t   and 

(d) cap/ 30t t   (equilibrium shape). Taken from Cai et al. [137]. 

 

 

Figure 4.7: Comparison of 3D AMR and 2D axisymmetric stationary-grid simulations 

with respect to instantaneous droplet base radius. Taken from Cai et al. [137]. 
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4.3 Droplet Spreading on Chemically-Heterogeneous Surfaces 

The PhD thesis has so far investigated droplet wetting on a chemically homogeneous 

substrate where e  is unique. This section puts into consideration a chemically 

heterogeneous surface that is made up of alternating hydrophilic and hydrophobic stripes. 

The aim here is to demonstrate the predictive capability of the numerical method/code for 

directional droplet spreading and slick-slip motion of contact line that one expects for such 

an anisotropic wetting problem. 

For the above-mentioned purpose, the present study considers a test-case similar to 

Jansen et al. [173] who investigated droplet directional wetting on chemically-patterned 

surfaces through their experiment and lattice Boltzmann method (LBM)-based simulation. 

There the base substrate consists of alternating hydrophobic perfluordecyltrichlorosilane 

(PFDTS) ( 110e   ) and hydrophilic SiO2 ( e 40   ) stripes, with their width ratio being  

0.5 . The present PF numerical results are to be compared with the experimental and LBM 

numerical counterparts from Jansen et al. [173]. It is noted that in the experiment the 

droplet at equilibrium spanned around 77 stripes beneath it; each stripe was very narrow. 

Sufficient mesh resolution of each stripe is thus rather prohibitive for any practical 3D 

simulations. Thus the LBM simulations by Jansen et al. [173] were carried out for wider 

stripes and accordingly a smaller number of stripes below the droplet than the experiment. 

The present PFM simulation adopts the same manner to alleviate computational burdens.  

Jansen et al. [173] mention no physical properties but only dimensionless droplet/gas 

density for their LBM simulations; there the fluid pair were set to be of roughly identical 

kinematic viscosity. These parameters do not suffice for a quantitative recalculation with 

the present PFM numerical model. Therefore the polyisobutylene droplet studied in 

Zosel’s experiment (see Section 4.2.1) is under consideration in the current simulations. 

Owing to the different physical properties, the LBM and PF simulation results are 

compared here in a qualitative manner.  
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In the present numerical investigation 0.94Ca  , 1000CPe  , 0.02Cn   and 0.1   

are adopted. The corresponding mesh resolution for the diffuse interface and droplet 

diameter is 4CN   and 50DN  ; four and two mesh cells are used to resolve each SiO2 

stripe and PFDTS stripe respectively. Two equilibrium contact angles 110e    and 

40e    are specified to the solid substrate following the stripe pattern. Except for this, the 

boundary conditions are the same as those used in the test cases reported in Section 4.1. 

 

 

Figure 4.8: PFM simulation of a droplet spreading process on the chemically-patterned 

surface (red stripes: SiO2, e 40    and yellow stripes: PFDTS, e 110   ) at different 

instants of (a) cap/ 0t t   (initial state), (b) cap/ 40t t  , (c) cap/ 200t t   and (d) cap/ 1000t t   

(equilibrium state). Taken from Cai et al. [137]. 

 

The simulated wetting process on the chemically-patterned surface is shown in  

Figure 4.8. At the beginning the three-microliter glycerol droplet is deposited on the 

surface (Figure 4.8 a). As time proceeds, the droplet spreads out over the substrate 

(Figure 4.8 b) and its wetting behavior is different from that observed on a homogenous 
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surface: owing to the base stripe pattern, its spreading along the stripes is favored while 

that perpendicular to the stripes is hindered (Figure 4.8 c). As a result, the droplet at 

equilibrium forms a shape elongated along the stripe direction (Figure 4.8 d). 

Figure 4.9 shows instantaneous moving distance of the contact line in both the 

directions. At equilibrium state, the value for the parallel direction to the stripes is larger 

than that in the perpendicular direction; this is also implied by Figure 4.8 d. Besides if 

looking at the temporal evolution, the contact line is found to travel fairly smoothly in the 

parallel direction while rather stick-slip-like in the perpendicular direction. This 

phenomenon can be attributed to a line-up of discrete energy barriers that the contact line 

has to overcome when it moves through hydrophobic stripes. Therewith, pinning (i.e. stick-

slip-like) behavior and resulting limited spreading are found in this direction. By 

comparison, the contact line in the parallel direction does not experience such energy 

barriers and thus advances smoothly and reaches a longer distance. 

 

 

Figure 4.9: Instantaneous base radius of the droplet in the parallel and perpendicular 

direction to the stripes. Taken from Cai et al. [137]. 
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Figure 4.10: Temporal evolution of the droplet from a bottom-view. (a) – (h): the 

experiment and LB simulation from Jansen et al. [173]; (i) – (l): the present PF 

simulation. The numbers at the bottom left corner in subfigures (e) – (h) denote time 

step while those in subfigures (i) – (l) refer to cap/t t . Taken from Cai et al. [137]. 

 

Figure 4.10 compares the experimental and LBM [173] as well as the present PF 

numerical results with respect to temporal evolution of the droplet shape from the bottom-

view. At the earlier spreading stage the droplet appears a slightly elongated owing to the 

base surface pattern (Figure 4.10 a, e and i). As time proceeds, the drop spreads out 

along the stripe direction while its wetting in the perpendicular direction is confined. 

Therewith the shape elongation goes further until the equilibrium state (Figure 4.10 d, h 

and l). For the whole spreading process, the PF simulations deliver results in qualitative 

agreement with those by LBM. 
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In terms of the droplet profile, difference is found between the experiment and 

simulations: the contact line is smooth in the former while corrugated in the latter. The 

distinction is attributed to the different number of stripes beneath the droplet as discussed 

before. Such wave-like profiles were also reported by other numerical investigations [174] 

which also considered a relatively small number of stripes below the droplet. 

4.4 Summary of Chapter 4 

This chapter has presented PF-simulations for different droplet spreading processes 

on chemically homogenous/heterogeneous substrates. Steady-state or transient 

numerical results are in good agreement with the analytical solution, experimental or 

reference computational data. The use of local adaptive mesh refinement near interface 

is also demonstrated. 
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5 Interaction of a Rising Bubble with Solid Structures 

This chapter presents numerical studies on an air bubble (immersed in liquid phase) 

rising and interacting with solid structures. The numerical method/code is first validated 

for terminal bubble rise velocity and solid cylinder-induced breakup process of bubble. 

Then numerical investigations are performed towards bubble rising and deforming 

behavior inside a representative domain of a periodic open cellular structure (POCS). The 

results and figures presented in this chapter have been published in Cai et al. [138]. 

5.1 Introduction 

In the German Helmholtz Energy Alliance “Energy Efficient Chemical Multiphase 

Processes” [143], it is a core scientific topic to explore the use of POCS as internal 

structured packing. POCS of different types are produced via additive manufacturing at 

Institute of Chemical Reaction Engineering, Friedrich-Alexander-University Erlangen-

Nürnberg (FAU), Germany [8, 9]. Experimental studies on interfacial mass transfer around 

bubbles in POCS for bubble column reactor are carried out at Institute of Multiphase 

Flows, Hamburg University of Technology (TUHH), Germany [175]. Numerical 

investigations on hydrodynamics behavior of bubbles in POCS are carried out in the 

present PhD study at KIT. 

The benefit of using POCS as internal packing for bubble column reactor mainly lies 

in its favorability for interfacial mass transfer enhancement and for catalytic reactions (if 

catalysts are deposited onto POCS surface). The present study is focused on a 

fundamental process, that is, hydrodynamics interaction between a single bubble and 

POCS; the interaction process will be shown to strongly depend on the structure surface 

wettability. In manufacturing processes, surface properties of POCS can be modified and 

thus different surface wettability (i.e. different equilibrium contact angle) can be fulfilled. 

Along with the POCS geometry, therefore, tuning surface wettability affects significantly 
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hydrodynamic interaction between bubble and structure and thereby serves as a very 

promising means to further promote interfacial mass transfer. 

5.2 Terminal Bubble Rise Velocity  

In this section, the numerical method/code is validated – with respect to terminal 

bubble rise velocity and cylinder-induced bubble breakup process – against 

corresponding experimental data from Segers [176]. The validation is carried out in two 

steps. Firstly through 2D axisymmetric simulations, the respective effect of grid resolution, 

Cahn number Cn  and Peclet number CPe  on predicted bubble rise velocity is shown. 

Numerical results from a suitable combination of these parameters are then compared 

with the experimental data. Secondly cylinder-triggered bubble breakup (i.e. cutting) 

process is reproduced in 3D simulations and their results are compared with the 

experimental and numerical data from Segers [176]. 

5.2.1 Physical Properties and Computational Set-up 

In the experiments of Segers [176], glycerin-water mixtures of differing compositions 

were used; the Morton number 
4 2 3

L G L L( ) /Mo g       was varied through the liquid 

viscosity L . The present study considers a specific case where 0.064Mo  . For this 

experimental case, density/viscosity of liquid/gas are 
3

L 1237.42kg m  , 
3

G 1.0kg m  , 

L 0.219Pa s   and 
5

G 2 10 Pa s   ; the interfacial tension is 
10.0658 N m  . Thus the 

liquid-to-gas viscosity ratio is about 
4

L G/ 10 .     To save computational cost, 

4

G 2.74 10 Pa s    is set in the present numerical simulations so that 800  . It has 

been examined that the computational results get independent of   when 800  . 

As initial conditions for the present simulations, a spherical bubble (diameter D  and 

radius 2R D ) is released in the lower part of the 2D axisymmetric computational 

domain (Figure 5.1 a); therein both phases are quiescent. The height H  and width W  of 

the computational domain are 8R  and 6R . A sensitivity study on W  showed that a further 
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increase from 6R  has no influence on the numerical results. An isotropic Cartesian grid 

of uniform mesh size h  is generated within the domain. /DN D h  mesh cells are used 

to resolve the initial bubble diameter D . As introduced in Section 2.1.1, the interfacial 

width CL  is defined as the distance over which the variation 0.9 0.9C    takes place, 

therefore 4.164CL  . For the formulation of Cahn number Cn  in the present test case, 

the reference length scale L  is chosen as the bubble initial diameter. Hence, the mesh 

resolution for CL  is 4 / 4C DN h Cn N  . 

 

 

Figure 5.1: 2D axisymmetric phase-field simulation of an air bubble rising in quiescent 

liquid with 0.02Cn  , 1008CPe  , 6CN   and 75DN  . Taken from Cai et al. [138]. 

 

The boundary conditions for fluid flow are configured as pressureInletOutletVelocity 

with zero relative pressure at the top and bottom of the computational domain and free 

slip at side boundary patch. Zero gradient boundary conditions are used for order 
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parameter since no interaction between bubble and solid surface is considered in the 

current validation stage. 

As a baseline numerical test case, one specific experiment (the initial bubble diameter 

D  of 10.3 mm  and Eötvös number 
2

L G( ) /Eo gD     of 19.6 ) from Segers [176] is 

put under consideration. The terminal bubble velocity BU  is measured as 
10.172ms ;

 the 

terminal Reynolds number L B L/Re DU   is 9.85 . The simulated bubble rising process 

at four temporal instants is demonstrated in Figure 5.1. Within a rising distance of roughly 

one initial diameter, the bubble forms a steady shape and reaches a constant (i.e., 

terminal) rise velocity; see Figure 5.1 d. In this dynamic equilibrium state, the buoyance 

force is in balance with the drag force applied to the bubble surface by the ambient liquid. 

For the present combination of Eo , Mo  and Re , the simulated steady bubble shape is in 

good match with the established shape regime map in Clift et al. [177]. 

5.2.2 Numerical Parameter Study 

This section investigates the respective influence of three numerical parameters on 

the predicted bubble rising velocity. Through this parameter study, an appropriate 

combination of these parameters is ascertained for the subsequent comparison of the 

numerical results and experimental data. 

First, the effect of mesh resolution is put under examination. The baseline test case 

(presented in Section 5.2.1) is run for other three grid resolutions. Figure 5.2 presents 

simulated temporal evolution of bubble rising velocity under the influence of mesh. The 

number of cells to resolve interface width CL  is 2CN  , 4 , 6  and 8  respectively; 

considering 0.02Cn  , corresponding number of cells per bubble diameter D  is 25DN 

, 50 , 75  and 100 . As shown in Figure 5.2, the computational results get mesh-

independent as 6CN   (i.e., 75DN  ).  
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Figure 5.2: Simulated bubble rise velocity ( 0.02Cn   and 1008CPe  ) with different 

mesh resolutions. Adapted from Cai et al. [138]. 

 

 

 

Figure 5.3: Simulated bubble rise velocity ( 1008CPe   and 6CN  ) with different Cahn 

numbers. Adapted from Cai et al. [138]. 
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With 6CN   being fixed for interface mesh resolution, the Cahn number Cn  is varied 

to examine its effect. Figure 5.3 shows simulated instantaneous bubble rise velocity for 

0.01Cn  , 0.02Cn   and 0.04Cn  . These values correspond to 150CN  , 75  and 38 , 

respectively. As Cn  is going smaller, the numerical results are converging. The predicted 

terminal velocity is insensitive to Cn  provided 0.02Cn  . Since the terminal velocity is of 

focus in the present study, all the following 2D simulations are performed with 0.02Cn   

to save computational cost.  

 

 

Figure 5.4: Simulated bubble rise velocity ( 0.02Cn  , 6CN   and 75DN  ) with different 

Peclet numbers. The dashed horizontal line indicates the terminal bubble velocity 

measured by the experiment. Adapted from Cai et al. [138]. 

 

Lastly, the influence of the Peclet number CPe  is studied. In PF methods, CPe  serves 

as quantifier for a diffusion process (see RHS of Eq. (2.15)). As discussed in Section 2.1.4, 

the characteristic length scale (molecular scale) of the diffusion process is by several 

orders-of-magnitude smaller than bubble diameter (millimeter scale). Resolving the 
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diffusion process requires a prohibitive computational cost and thus this is not attempted 

in this study. Instead, the diffusion process is coarse-grained into the continuum model 

and accordingly its quantifier CPe  is treated as a phenomenological parameter. Following 

Ding et al. [102], the relation 
2

CPe Cn  is used to roughly estimate its value. Within one 

order-of-magnitude around this first estimate, CPe  is varied. Figure 5.4 juxtaposes the 

computational results for differing CPe , which shows a notable influence on the simulated 

bubble (terminal) rise velocity. As a phenomenological parameter, CPe  may be regarded 

as an intrinsic material property characterizing a given flow system [94]. Thus for the 

present physical system, 2016CPe   is selected for the upcoming simulations because it 

gives the best match with the experimental terminal velocity of 
10.172ms ; see Figure 5.4.  

5.2.3 Validation  

Section 5.2.2 has identified a suitable numerical parameter combination of 6CN  , 

0.02Cn   and 2016CPe  . Using these parameters, the simulated bubble terminal velocity 

is in good match with the measured value for the specific experiment where the bubble 

diameter is 10.3 mmD   and meanwhile high computational efficiency is guaranteed. 

With these numerical parameters unchanged, further simulations are made for other four 

different bubble diameters 7.4 mmD  , 12.4 mm , 14.2 mm  and 15.7 mm  respectively, as 

performed in the experiment of Segers [176]. These respective values of bubble diameters 

correspond to the Eötvös number 10.2 ,Eo   28.3 ,  37.3 ,  and 45.6 .  

Figure 5.5 presents the comparison of the experimental data and current numerical 

results in terms of the relation between the Eötvös number Eo  and terminal Reynolds 

number Re . There a perfect agreement is found for 19.5Eo  , because the Peclet number 

2016CPe   is chosen by reference to the experimental data for this Eötvös number/bubble 

diameter (see Figure 5.4). However, the numerical simulation slightly under-predicts the 

experimental terminal Reynolds number for 10.2Eo   whilst the former slightly over-
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estimates the latter for the cases where 20Eo  . These results imply that the optimal 

value of CPe  (i.e., one which produces the best agreement between the computational 

and experimental data) is weakly depending on the Eötvös number Eo . It is expected 

from Figure 5.4 that the most suitable value of CPe  should be slightly elevated as Eo  gets 

larger. Yet no efforts are made in this study to quantitatively investigate the relationship. 

As a whole, the match between the experimental and simulated bubble terminal velocity 

is reasonably good for a wide spectrum of Eo . 

 

 

Figure 5.5: Comparison of the present numerical results with the experimental data from 

Segers [176], with respect to the terminal bubble Reynolds number versus the Eötvös 

number. Adapted from Cai et al. [138]. 

5.3 Cylinder-induced Bubble Cutting  

Having examined the predictive capability of the numerical model for bubble terminal 

velocity in Section 5.2, the study proceeds with the validation for breakup/cutting behavior 

of a bubble interacting with a solid cylinder. Considering the nature of this physical 

process, 3D simulations are required here. 
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5.3.1 Computational Set-up 

In an attempt to reduce computational cost, one quarter of the problem domain with 

two symmetry-planes is under consideration in the present 3D simulations. The utilization 

of symmetry is justified given that the bubble rises rectilinearly under the physical 

conditions considered in the current study. A rectangular domain of a square cross-section 

4 4R R  and height 12R  is used. A horizontal solid cylinder with diameter cylD  is put in the 

upper part of the domain. As initial numerical conditions, a spherical bubble of diameter 

D  is positioned sufficiently far away below the cylinder to make sure that the bubble has 

formed its equilibrium shape and reached the terminal rise velocity before it approaches 

the cylinder. In accordance with the experiment of Segers [176], cyl 3.1mmD   and 

9.14mmD   are adopted in the current numerical study. 

Boundary conditions are set up as follows. On the surface of the solid cylinder, no-slip 

is imposed to velocity while wetting condition with a specified equilibrium contact angle 

(see Eq. (2.7)) is applied for order parameter. The top, bottom and side boundary patches 

are configured the same as the test case in Section 5.2.1. The physical and interfacial 

properties of both the phases are also identical to those in the test case reported by 

Section 5.2.1. 

5.3.2 Mesh Resolution Study 

Phase-field specific parameters Cn  and CN  play an important role here. They 

determine on the degree of details one could numerically access to thin liquid film between 

the bubble and solid surface when the former approaches the latter. On one hand, using 

a smaller Cn , local interfacial physics and topology can be more accurately reproduced. 

On the other hand, reducing Cn  normally amounts to higher computational cost, since 

the total number of mesh cells in a 3D simulation is on the magnitude of 
3( / )CN Cn  with 

4CN   being as minimum mesh resolution for diffuse interface width CL . The present 
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investigation concentrates on the validation of the numerical model for its predictive 

capability of the global bubble deformation and break-up process. Therefore 0.04Cn   is 

adopted to save computational cost. As the simulations in Section 5.2 suggest, the 

computed bubble shape is rather insensitive to this choice. The variation in the value of 

CPe  (shown in Figure 5.4) significantly affects predicted bubble rise velocity but does not 

have notable influences on predicted bubble shape. Thus 1000CPe   is used in the 

following 3D simulations. 

 

 

Figure 5.6: Instantaneous gas-liquid interfacial area during the bubble splitting process, 

delivered by the phase-field simulations ( e 30   , 0.04Cn   and 1000CPe  ) with 

different mesh resolutions. Adapted from Cai et al. [138]. 

 

With the above-chosen values of Cn  and CPe , grid dependence is studied through 

simulations of varying mesh resolution 2CN  , 4  and 6 . Figure 5.6 illustrates the mesh 

influence on temporal evolution of gas-liquid interfacial area (i.e. bubble surface area) iA  

during the whole process of the bubble interacting with the solid cylinder. Here iA  is 
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calculated as the area of the iso-surface 0C  . As shown in Figure 5.6, when the bubble 

is approaching the cylinder, the interface is enlarging in area – owing to cylinder-induced 

bubble concave deformation – until the moment 0.15st  . At that time, the bubble is 

eventually split into two bubbles and then the total interfacial area is declining over time. 

From Figure 5.6, 4CN   appears as a good compromise between computational accuracy 

and effort. Hence, this mesh resolution is adopted in the following 3D simulations. 

5.3.3 Validation 

To represent surface wettability, the numerical model needs the equilibrium contact 

angle e  as an input; see Eq. (2.7). However neither e  nor cylinder material was given 

in Segers [176]. Through personal communication [178], the author got to know that the 

cylinder was made of stainless steel. From the experimental measurement of Wang et al. 

[179], the contact angle e  for different liquids on stainless steel ranges from 32  to 54

. In the following, e 60    is used in the first test case and then numerical results using 

other values of e  are presented to reveal the influence of e . 

In Figure 5.7, the present phase-field (PF) simulation results are compared with the 

experimental measurement and the simulation based on a hybrid immersed-boundary 

volume-of-fluid (IBM-VOF) method [176]. For the comparison, the initial instant in time 

0t   is chosen so that – in the experiment and both the numerical simulations – the 

vertical distance of the bubble away from the cylinder is roughly the same and an 

equilibrium bubble shape has been reached (Figure 5.7 a, f and k). As the bubble is 

approaching the solid cylinder, it becomes flattened (Figure 5.7 b, g and l). When the 

bubble gets closer, its deformation is amplified and therein a thin liquid film forms below 

the cylinder (Figure 5.7 c, h and m). Shortly before the breakup, two daughter bubbles are 

emerging which are still bridged by a thin gas filament (Figure 5.7 d, i and n). After the 
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breakup process, both the daughter bubbles keep rising away from the cylinder  

(Figure 5.7 e, j and o). 

 

Figure 5.7: Cylinder-induced bubble cutting process. (a) – (j): experimental and numerical 

results from Segers [176]. In the adapted presentation here, 0.15 s is deducted from the 

original time frame used by Segers [176], so that a shorter computational domain needs 

to be considered by the present phase-field simulation ( e 60   ) shown in (k) – (o). 

Adapted from Cai et al. [138]. 
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The present PF simulation is found in very good qualitative agreement with the 

experiment and IBM-VOF computational study from Segers [176]. However, the whole 

process of bubble deforming and splitting predicted by the present simulation is slightly 

longer than that by Segers [176]. The reason lies in the under-prediction of the bubble 

terminal velocity by the 3D PF simulation with 0.04Cn   and 4CN  , as suggested by 

Figure 5.2 and Figure 5.3. Besides, the gas filament below the cylinder in the PF 

simulation (Figure 5.7 n) appears noticeably thicker than that from the experiment and 

IBM-VOF simulation (Figure 5.7 d and i), also owing to relatively large value of Cn  

adopted in the PF simulation. In the experiment, Segers [176] found some very small gas 

residuals from the gas filament left beneath the cylinder (yet not shown in the experimental 

recordings there). Capturing sufficiently these tiny gas pockets requires extremely fine 

meshes and thus is not pursued in the present numerical investigation. Though such a 

residual gas bubble was found in his IBM-VOF simulation (Figure 5.7 j), Segers [176] also 

reports that such tiny bubbles cannot be resolved well numerically, owing to the limitation 

of mesh resolution. 

5.3.4 Influence of Cylinder Wettability 

To investigate the effect of the surface wettability of the cylinder, further simulations 

are made for other two equilibrium contact angles 30  and 90  in addition to 60 . Figure 

5.8 juxtaposes the predicted bubble cutting process for these individual contact angles. 

Until 0.11st   the bubble deformation is still insensitive to the surface wettability (Figure 

5.8 a, f and k). The influence of the wetting condition emerges at 0.15 st  . For e 30   , 

the gas has not yet touched directly the cylinder and a thin liquid film is found in-between 

(Figure 5.8 b) whilst a direct contact has arisen for e 90    (Figure 5.8 l). This distinction 

can be attributed to the surface hydrophilicity: e 30    corresponds to a more hydrophilic 

surface where the cylinder has a strong tendency to attract liquid rather than gas. This 
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also explains the distinction among the different cases at 0.19st  , where two daughter 

bubbles have been disconnected (Figure 5.8 c, h and m).  

 

 

Figure 5.8: Bubble breakup process under differing surface wettability of the cylinder. 

Adapted from Cai et al. [138]. 
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The simulations with e 30    and e 60    predict roughly the same evolution of the 

twin bubbles when they depart from the cylinder (Figure 5.8 d and i) and continue to rise 

(Figure 5.8 e and j). In the case e 90   , however, the daughter bubbles appear a very 

different behavior: because of a larger adhesion force on the gas exerted by the solid 

phase, the bubbles are being hold longer by the cylinder. The bottom ends of the daughter 

bubbles keep in direct contact with the cylinder surface and are sliding upwards over it 

(Figure 5.8 m). Eventually their lower ends meet and the twin bubbles are reunited to a 

single bubble (Figure 5.8 n). When the re-coalesced bubble gets detached from the 

cylinder, it is not axisymmetric (Figure 5.8 o); From a 3D perspective of the simulation (not 

shown in here), the bubble appears roughly ellipsoid-like where its dimension is much 

bigger perpendicular to the cylinder axis than parallel to the axis. Expectedly the bubble 

would be recovering to an axisymmetric one as it rises further. This process, however, is 

beyond the scope of the present numerical study since a higher computational domain is 

then needed. 

 

 

Figure 5.9: Influence of cylinder surface wettability on temporal evolution of bubble 

interfacial area during the bubble splitting process. Adapted from Cai et al. [138]. 
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In Figure 5.9, one checks the effect of e  on instantaneous gas-liquid interfacial area 

iA  during the bubble deforming and break-up process. One may notice two 

characteristics. First, the peak value of iA  for e 30    is larger than the other two cases. 

Second, for each case the moment of bubble break-up is indicated by the instant in time 

when the peak value of iA  arises (see Section 5.3.2). Judging from this, the bubble 

breaks up earliest for e 90    and latest for e 30   . All the these trends can be attributed 

to strengthening hydrophilicity and – meanwhile – weakening adhesion exerted by the 

solid onto the gas phase as e  is decreasing.  

5.4 Bubble Rise through a Periodic Open Cellular Structure 

With the numerical model, PF simulations of a bubble rising and deforming inside a 

periodic open cellular structure (POCS) are presented in this section. The investigation 

focuses on the wettability dependence of bubble interacting behavior with the POCS, 

since in Section 5.3.4  the wettability has been demonstrated to have a noticeable impact 

on solid cylinder-induced bubble deforming and splitting process. 

5.4.1 Fluid Properties and Computational Set-up 

In most industrial applications of bubble column reactors, the liquid phase is water, or 

its density/viscosity are similar to those of water. Hence, an air-water system is considered 

here. The physical properties of the two-phase system are:
3

L 998kg m ,   

3

G 1.205kg m ,   
4

L 8.9 10 Pa s ,    
5

G 1.81 10 Pa s    and 
10.072 Nm ;   the 

corresponding Morton number is 111.65 10Mo   . The computational geometry (Figure 

5.10) – as a representative domain of the POCS – was provided through a STL-format file 

by Institute of Chemical Reaction Engineering at FAU and Institute of Multiphase Flows 

at TUHH. To make sure head-on interactions of the vertically-rising bubble with the POCS 

struts, the whole computational geometry is inclined around the Y -axis by 45  away from 

the horizontal level, as shown in Figure 5.10. 
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As initial conditions, a spherical bubble ( 4 mmD   and 2.2Eo  ) is released in the 

lower part of the domain (Figure 5.11 a, b and c). To make the studied scenarios relatively 

general, the bubble center is slightly deviated from the vertical centerline of the domain, 

given that a perfect vertical alignment is rather rare for the collision of bubbles onto struts 

in real applications. The boundary condition setups are identical to those in the test case 

reported in Section 5.3. An isotropic mesh is generated for the given computational 

domain. The number of cells to resolve the bubble diameter D  is 25DN  ; 0.04Cn   and 

1000CPe   are used. 

 

 

Figure 5.10: The representative domain of a POCS considered in the present simulation 

with window size 4 mms  , strut diameter 1 mmsd   and grid angle 90   . The whole 

structure is titled by 45 . Adapted from Cai et al. [138]. 

5.4.2 Results  

The study is devoted to revealing the influence of POCS surface wettability on bubble 

behavior. For this purpose, five simulations are carried out with the respective equilibrium 

contact angle e  being 0 , 30 , 60 , 90  and 120  in the present investigation.  

Figure 5.11 displays the simulated bubble-strut interacting process for e 0   , 90  and 

120  in a 3D view. Due to buoyancy force, the bubble starts to go upward (Figure 5.11 a, 
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b and c) and arrives at the first horizontal strut in a short time. For these different e  (i.e. 

surface wettability) the subsequent processes of the bubble interacting with the strut 

appear very distinct to each other. In the case e 0   , the bubble is forming as a concave 

shape and trying to avoid direct contact with the horizontal strut (Figure 5.11 d). For 

e 90    – by contrast – one observes a direct contact of the bubble not only with the 

horizontal strut but also with the lateral struts (Figure 5.11 e); this is attributed to an 

augmented tendency of the solid strut to hold the gas phase. For e 120   , such an 

aerophilic effect is even stronger so that the bubble is enwrapping the horizontal strut 

(Figure 5.11 f). For both the cases e 0    and 90  the bubble keeps rising after its 

interaction with the first horizontal strut, yet showing different behaviors. For e 0    the 

bubble is going up in a “detached” manner from the POCS struts, either being as an 

untouched ellipsoid (Figure 5.11 g and m) or being a cashew-like shape when it is getting 

close to the horizontal struts (Figure 5.11 j and p). For e 90   , however, an “attached” 

mode arises: the bubble is always touching directly horizontal/lateral struts as if it is a 

“ladder-climber” in the structure. The bubble dynamics for e 120    differs essentially from 

the above two cases: instead of continuing to move upwards, the bubble is eventually hold 

by the POCS struts (Figure 5.11 l, o and r). This is due to a strong adhesion from the 

surface acting onto the bubble – under this surface wettability – which dominates over the 

upward buoyance force. 

To make easier the analysis, a 2D view of the computational results is presented in 

Figure 5.12. There the case e 120    is not shown anymore; rather the simulation results 

for e 60    are displayed in addition to the cases e 0    and 90  whose 3D views have 

been shown in Figure 5.11. The time-scale in Figure 5.12 is identical with that in Figure 

5.11. The first trend to note in Figure 5.12 is that as e  decreases from 90  to 0  – for 

example, at 0.045st   – the concave shape is more noticeable (Figure 5.12 f, e and d).  
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Figure 5.11: 3D view of the phase-field simulations of the bubble interacting process 

with the POCS under different surface wettability of the POCS. Adapted from Cai et al. 

[138]. 
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Figure 5.12: 2D lateral view of the phase-field simulations of the bubble interacting 

process with the POCS under different surface wettability of the POCS. Adapted from 

Cai et al. [138]. 
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At subsequent temporal instants, cashew-like bubble shapes can be observed for 

e 0    (Figure 5.12 j and p), but not for the other two contact angles e 60    and 90 . 

For the latter two cases, on the other hand, the bubble shows direct contact with the 

horizontal and lateral struts whilst this phenomenon does not emerge for e 0   . In the 

present study a simulation with e 30    is also performed and the results are roughly 

similar to those with e 0   ; thus they are not shown here. 

5.4.3 Discussion 

The computational results in Section 5.4.2 have clearly shown that the bubble 

deformation and its rising path do largely depend on the surface wettability (i.e., 

equilibrium contact angle) of POCS struts. In this section, the practical implications of the 

results for industrial applications are discussed. 

The numerical results for e 120    suggest that hydrophobic POCS are unfit for 

internal structured packing in bubble column reactors, since a strong hydrophobicity-

induced adhesion leads to the eventual bubble immobilization (Figure 5.11 l, o and r). 

Since a large number of bubbles (e.g. bubble swarms) are typically found in an industrial 

bubble column reactor, the bubble immobilization potentially gives rise to bubble 

agglomerates, where original small bubbles are forming larger bubbles through 

coalescence. This phenomenon should be avoided due to the following two reasons. First 

during bubble coalescence the total volume-specific gas-liquid interfacial area is declining, 

thereby lowering interfacial mass transfer rate. Second in many technical bubble column 

reactors, bubbles are purely or partly composed of oxygen. Large accumulations of 

oxygen (induced by structure surface hydrophobicity) may lead to explosions; such a 

potential security threat must be absolutely prevented in chemical plants. 

In the case e 90   , the bubble is climbing up the struts and so is not captured by 

them. However, temporal bubble filling of a whole cell window (e.g. Figure 5.11 k and n) 
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may also result in unwanted cross-interaction and coalescence between bubbles in 

laterally neighboring cell windows. Therefore POCS with surface wettability e 90    is 

also deemed as inappropriate for bubble column internals. 

Although the distinctions among the cases e 60   , 30  and 0  are less marked than 

those among e 60   , 90  and 120 , several features can still be observed as e  varies 

from 60  to 0 ; all these favor the adoption of e 0   . First, as the equilibrium contact 

angle gets smaller, the bubble forms as a concave shape to a larger extend when it 

interacts with a horizontal strut. Such a deforming process of the bubble helps renew the 

concentration (species) boundary layer at liquid side. Therein liquid of smaller 

concentration profile can access to gas-liquid interface. Hence, interfacial concentration 

gradient becomes larger and thereby interfacial mass transfer speeds up. In this sense, 

the surface wettability e 0    is preferred. Second, in the case e 0    the bubble 

experiences alternating acceleration (in the middle of a cell window) and deceleration 

(when approaching a horizontal strut). Such a cyclic switch also improves interfacial mass 

transfer. Third, in the simulation of e 60    the bubble shows a roughly rectilinear rising 

path when 0.075st  . By comparison, for e 0    one finds a zigzag-like trajectory of the 

bubble: after each head-on collision with horizontal struts, it gets re-bounced slightly and 

redirected from its previous course. Such a meandering pathway implies a lower effective 

rise velocity and accordingly a longer residence time; therewith a larger timeframe is given 

to certain mass transfer or chemical reactions.  

Overall, adopting a more hydrophilic surface wettability (i.e. smaller equilibrium 

contact angle) creates a hydrodynamic condition that favors interfacial mass transfer 

enhancement. Besides, a more hydrophilic condition is preferred when the POCS serves 

as catalytic support for heterogeneous catalytic reactions. As the present computational 

results suggest, a thin liquid film forms between the bubble and solid strut with sufficiently 

hydrophilic wettability e 30   . This thin film implies that gaseous surfactants only need 
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to diffuse a very short path before they reach active catalytic sites on solid surface. 

Therefore the total system efficiency of a catalytic reaction is improved. 

5.5 Summary of Chapter 5 

In this chapter, the PF-based numerical model is first validated for the terminal rise 

velocity of a single bubble and its break-up behavior caused by a horizontal cylinder. The 

numerical results are found in good agreement with experimental data from literature. For 

the cylinder-induced bubble splitting process, the influence of surface wettability is 

numerically studied and it is shown to have a marked effect on bubble deforming and 

cutting behavior. Then the chapter presents numerical simulations of rising dynamics of 

an air bubble within a water-filled POCS. It is demonstrated that the POCS surface 

wettability largely affects bubble hydrodynamics behavior. By tuning a more hydrophilic 

surface, one can create a favorable hydrodynamic condition where interfacial mass 

transfer/heterogeneous catalytic reactions can be greatly enhanced. 
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6 Gas-liquid Two-phase Flows in Sponge Structures 

In the previous chapters, the solid structures involved in the interfacial two-phase flows 

problems are relatively simple: either smooth surfaces or topologically regular structures. 

This chapter takes complicated geometry into account and presents applications of the 

numerical method for interface-resolving simulations of gas-liquid flows in complex and 

irregular sponge structure.  

6.1 Introduction and Motivation 

Solid sponges (also called open-cell foam in literature) are cellular three-dimensional 

network structures, as shown in Figure 6.1 a. They are characterized by high porosity, low 

pressure drop, large specific surface area, high heat and mass transfer rates as well as 

favorability for catalytic activity [10, 180-183]. These advantages make sponge structures 

very attractive as internal packing for innovative chemical reactors [6]. Such sponge-

packed reactors usually involve gas-liquid two-phase flows, where gas-liquid reactions 

(such as oxidation, hydrogenation, hydrodesulferization) take place [184]. For reactions 

in multiphase systems, reactor efficiency is largely determined by interfacial mass transfer 

rate [10]. For enhancing the latter, gas-liquid interfacial area is a deciding factor among 

others. Thus, it is beneficial to gain deep understanding of two-phase hydrodynamics and 

quantitative knowledge of gas-liquid interfacial area for design and optimization of such 

sponge-packed multiphase reactors. 

In recent years, CFD has developed into a very valuable and promising tool to obtain 

insights into two-phase hydrodynamics in sponge structure or specifically for the sponge-

packed reactor. The majority of the CFD simulations in literature are based on volume-

averaging models, e.g. [185-189]. They are able to predict such macroscopically effective 

hydrodynamic properties as liquid-phase holdup and pressure drop but could not resolve 

flow physics at local scales, considering the nature of averaging procedures. A few 
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references have reported local-scale resolving simulations: for example, the pore-scale 

numerical studies by Amiri and Hamouda [190, 191] and Fichot et al. [192] considered 2D 

idealized and structured porous geometries; although Liu and his colleagues [193-195] 

performed pore-scale simulations for 3D complex and irregular porous media, they did not 

attempt to resolve gas-liquid interface. As of now, no CFD simulations for resolving gas-

liquid interface in complex sponge structure have been found in literature. The present 

study is a first attempt to fill this gap. 

The reason why most CFD investigations were performed with averaging models 

rather than direct numerical solution lies in a large disparity of different length scales 

involved. They could cover at least three orders-of-magnitude for gas-liquid two-phase 

flows in sponge structure: the dimensions of a sponge element are usually on the order 

of 
2(10 ) mm O  (Figure 6.1), individual liquid jets of (1) mmO  scale and local gas-liquid 

interface of 
1(10 ) mmO 

 scale (Figure 6.1 a). For interface-resolving simulations, 

computational efforts could be prohibitively large if one considers the whole sponge 

structure. In the present numerical study, a representative elementary volume (REV) of 

sponge structures is considered instead in order to save the computational cost. To obtain 

a physical liquid phase distribution for such a REV, a modeling strategy is proposed and 

developed by mirroring computational domain and decomposing physical pressure for use 

of periodic conditions. With this modelling concept, numerical simulations are carried out 

to reveal influences of physical parameters (i.e. liquid saturation, structure wettability and 

interfacial tension) on gas-liquid interfacial area. Such detailed insights gained from the 

present computational studies are of great use for characterization of local interfacial 

phenomena in complex solid sponge structure. 

The remainder of this chapter is organized as follows. In Section 6.2, the numerical 

method is validated for its predictive capability for gas flow hydrodynamics in an alumina 

sponge structure. Section 6.3 presents interface-resolving simulations of gas-liquid flows 
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in a SiSiC sponge structure and provides a detailed discussion on the results. Conclusions 

are given in Section 6.4. 

 

 

Figure 6.1: (a) Sponge structures made of different materials: silicate (top), alumina 

(right) and silicon infiltrated silicon carbon (SiSiC) (bottom). (b) Cross-cut view of a 

SiSiC sponge in a working operation with gas-liquid flows. Within the cross-sectional 

circle, black and gray stand for solid and liquid respectively while the rest is for gas. 

Both figures (a) and (b) are from Wallenstein et al. [13]. 

6.2 Validation for Singe-phase Gas Flow in Sponge Structure 

In this section, the general capability of the numerical method to reproduce accurately 

hydrodynamics in sponge structure is examined. For this purpose, the method is used to 

recalculate pressure drop of single-phase gas flow in an alumina sponge and the results 

are compared with experimental data from Dietrich et al. [181] and reference numerical 

results from Meinicke et al. [196]. 

6.2.1 Computational Geometry and Mesh  

The computational geometry of a cubic REV sponge structure is shown in Figure 6.2. 

It was provided by Institute of Thermal Process Engineering (“Institut für Thermische 
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Verfahrenstechnik” in German), KIT. The procedure of the geometry generation included 

µCT scanning of the sponge sample and subsequent geometry reconstruction using the 

commercial software MATLAB. Further details can be found in Meinicke et al. [196]. 

 

Figure 6.2: Cubic REV of an alumina sponge with porosity void REV: / 80%V V   , 20  

pores per inch (ppi) and edge length 6mma  . 

 

The computational mesh for the REV geometry is then generated with the following 

procedure: firstly, the background (relatively coarse) grid for bulk regions is produced with 

blockMesh utility; subsequently, the mesh near solid sponge surfaces is refined with 

snappyHexMesh utility. Figure 6.3 shows an example mesh from 3D and cross-cutting 

view respectively. The grid cell size for the bulk region is 0.2 mmh   with mesh refinement 

of two levels near the solid sponge surface, i.e., the smallest cell size in the vicinity of the 

wall is 0.05 mmh  . The preliminary studies have showed that the grid resolution of the 

example mesh is sufficient to deliver grid-independent results of pressure-drop prediction 
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in the present test case. Thus, this mesh resolution will be used throughout the validation 

for single-phase gas flows.  

 

 

Figure 6.3: (a) 3D view of computational mesh for the cubic REV sponge geometry. 

(b) Cross-cutting view of the mid-plane outlined in red in (a). The solid region is shown 

in dark gray while the flow region in light gray. The mesh cell size for the bulk region 

is 0.2 mmh   and mesh refinement of two levels is made near the solid sponge 

surface. 

6.2.2 Physical Properties and Computational Set-ups  

Dietrich et al. [181] investigated experimentally isothermal gas hydrodynamics in 

alumina sponge ( 80%   and 20  ppi). In the experiment, pressure drop per unit length 

/p x   was measured for varying superficial inlet velocity 0U . With the same physical and 

operating conditions, Meinicke et al. [196] numerically reproduced the experimental data 

with simpleFoam, a standard OpenFOAM® solver for single-phase, incompressible and 

steady-state flow. In this section, the computational results with the numerical model 

developed in this PhD study is compared to the experimental data and simulation results 

mentioned above. 
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In the present numerical simulations, the gas density and viscosity are 
3

G 1.0kg m   

and 
5

G 1.726 10 Pa s   , the same as those in the experiment [181] and simulation [196]. 

As introduced in Section 2.1, PFM is originally developed for interfacial two-phase flows 

problems. When it is used for the current simulation of single-phase gas flow, the order 

parameter is set to 1C    (i.e., for the gas phase) everywhere in the computational 

domain. The interfacial or phase-field specific parameters (such as the interfacial tension 

coefficient  , interfacial thickness parameter   and mobility  ) are irrelevant to the 

single-phase simulations. 

 

 

Figure 6.4: Comparison of the present simulation results with the experimental data 

from [181] and simpleFoam numerical solution from [196], with respective to pressure 

drop per unit length /p x   versus superficial gas velocity 0U  for the alumina sponge. 

 

The boundary conditions are set similar to Meinicke et al. [196]: a certain physical 

velocity ( phy 0U U   with 80%  ) is specified at the inlet patch, zero relative pressure 
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at the outlet and free-slip boundary condition at the four side patches. All the simulations 

are started from an initial condition with a uniform axial velocity phyU  in the computational 

domain. For the order parameter field, zero gradient conditions are applied to all the 

boundary patches.  

6.2.3 Comparison with Reference Experimental and Computational Results 

In Figure 6.4, the present simulation results for pressure drop per unit length /p x   

versus superficial gas velocity 0U  are compared with the experimental data from [181] 

and simpleFoam simulation results from [196]. An excellent agreement is found. There 

0U  varies from 0.159  to 
11.784 m s  and the resulting /p x   from 0.813  to 

137.749 mbar m ; within this range, the gas flow is assumed to be laminar [196]. As all the 

results suggest, pressure drop per unit length rises as superficial gas velocity increases, 

a trend first noted by Ergun and Orning [197]. 

6.3 Interface-resolving Simulation of Two-phase Flows in Sponge Structure 

In this section, the numerical method is applied for interface-resolving simulations of 

gas-liquid two-phase flows in a REV of SiSiC sponge, since this sponge type is of special 

interest to the research activities of the German Helmholtz Energy Alliance “Energy 

Efficient Chemical Multiphase Processes” [143]. For proper handling of periodicity of the 

REV, a special modeling strategy is introduced. Based on this, a series of numerical 

simulations are performed and the results concerning resolved gas-liquid interface are 

discussed.  

6.3.1 Modelling Strategy  

The aim of the interface-resolving simulations is to predict physical gas/liquid 

distribution and corresponding gas-liquid interfacial area within a REV domain under a 

given set of physical and operating conditions. To make sufficiently representative such 
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REV-based simulations of two-phase flows and especially phase distributions, one might 

consider to use periodic (also called as cyclic) boundary condition. But the application of 

this type BC into an irregular sponge REV is not straightforward. There one should take 

special cares to the following two points: 

First, when a pair of boundary patches are set to periodic, they will be treated as if 

they are physically connected. Thus, each pair should have the same geometry to ensure 

continuity of topology. Although this geometrical constraint can be readily met for 

cuboid/cylinder domain without sponge structure or those with regularly structured 

sponge, it is not the case for complex and irregular sponge REV considered in the present 

study. As shown in Figure 6.2, boundary faces differ in geometry from each other.  

Second, flow variables (e.g. velocity and pressure) at each periodic pair should be the 

same and part of numerical solution. This requirement poses two challenges to the 

conventional solution with the Navier-Stokes equations. On the one hand, if the pressure 

field is the same at a periodic pair of boundary faces, there is no pressure drop and thus 

no driving force for flow. On the other hand, for experiments or conventional CFD 

simulations, it is usual to specify a fixed inlet velocity/flow rate for a boundary patch at one 

end and then measure or simulate the resulting pressure drop, as shown in the previous 

validation for single-phase gas flow (cf. Section 6.2). However, it is impossible to do so for 

simulations with periodic conditions since velocity field at periodic pair can only be solved 

by the numerical simulations rather than be specified as an input.  

To handle properly the two points above, a modelling concept is introduced. In order 

to have a cyclic pair of faces with the identical geometry, the original SiSiC sponge REV 

(Figure 6.5 a) is mirrored with respect to the red-outlined plane perpendicular to x -

coordinate. In the resulting REV (Figure 6.5 b), the two boundary faces at 0x  and 

 a
x

x e  are exactly same in geometry so that periodic conditions shall be easily set to 

them. To deal with the second point above, physical pressure is split into two parts: 
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0 a

x x

p p
p P P

a


     e x f x   (6.1) 

where 0p  and ap  are the plane-averaged pressure at the plane 0x  and  a
x

x e  

respectively, and P  is termed as reduced pressure. By averaging Eq. (6.1) across the 

planes 0x  and  a
x

x e  respectively, one obtains:  

 0 0p P   (6.2) 

 0a a ap P p p     (6.3) 

Combining Eqs. (6.2) and (6.3), one reaches the following relation: 

 0aP P   (6.4) 

Equation (6.4) shows that the reduced pressure P  is periodic with respect to the edge 

length a . 

On the other hand, substituting Eq. (6.1) into the pressure gradient in Eq. (2.9), one 

obtains a modified N-S equation as follows: 

    T

C x CP
t

 
              

u
u u f u + ( u) + f  (6.5) 

With the modified N-S equation, the reduced pressure P  will be actually used in numerical 

simulations so that the cyclic condition is met, as shown in Eq. (6.4). On the other hand, 

a pressure drop per unit length for the REV can be specified explicitly as a body force  

 0(( ) )  x a x xp p a p x    f e e  and as a result, a flow along the direction xe  will be 

driven by the pressure drop in the simulations. Considering the range of pressure drop 

and resulting velocity investigated in the present study, the two-phase flow is assumed to 

be laminar. Thus, one would expectedly achieve a steady-state two-phase flow 

characterized by a fixed superficial velocity 0U  and interfacial area effA . It is noted that 

Ghidersa [198] and Öztaskin et al. [199] among other research groups already employed 

the above pressure-decomposition method for two-phase interfacial simulations on 

periodic domains but they considered only simple cuboid domains. 
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Figure 6.5: (a) Original SiSiC sponge REV geometry with 85%   and 20  ppi was 

provided by Institut für Thermische Verfahrenstechnik, KIT [196]. (b) Cubic REV 

geometry ( 10 mma  ) obtained through the mirroring process with respect to the red-

outlined plane perpendicular to x -coordinate. 

6.3.2 Physical Properties and Computational Set-ups  

The present interface-resolving simulations consider an air-water two-phase flow 

system with the following physical properties: 
3

G 1.0kg m ,   
5

G 1.726 10 Pa s ,    

3

L 998kg m   and 
4

L 8.9 10 Pa s .    To quantify liquid phase holdup, liquid saturation 

  is defined as L L G L void( ) ( ) /V V V V V   where the sum of liquid volume LV  and gas 

volume GV  amounts to the total void volume of the REV voidV . To determine  , voidV  is fixed 

through void REVV V  and LV  is calculated as: 

 L
0
1 d  d  d

C
V x y z


    (6.6) 

For the baseline simulation shown in Figure 6.6, liquid saturation 0.17  , equilibrium 

contact angle e 90    and interfacial tension 
172 mN m  . Here the phase-field specific 

parameters are chosen as follows: 0.02Cn   where the characteristic length scale is 

chosen as L a , 2500CPe   and 4CN  . 
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As discussed in Section 6.3.1, the two boundary faces at 0x  and  a
x

x e  are set to 

a periodic pair. At the four side patches, symmetry conditions are applied. On the sponge 

surface, no-slip boundaries are employed for the velocity and wetting boundary conditions 

with a prescribed equilibrium contact angle e  for the order parameter, cf. Eq. (2.7).  

In all the simulations in this study, the pressure drop per unit length p x   as an input 

to the computations is fixed to 1500 Pa m . For phase distribution initialization, a cylindrical 

liquid column with 0.17   is specified, as shown in Figure 6.6 a. 

6.3.3 Results and Discussions  

6.3.3.1 Dynamic Process Approaching Equilibrium State 

The baseline simulation of achieving equilibrium state of two-phase distribution is 

shown in Figure 6.6. Due to the specified pressure drop along x -coordinate, a flow arises 

in this direction. Driven by a combined effect of fluid flow and capillarity, the initially 

cylindrical liquid column (Figure 6.6 a) is starting to evolve (Figure 6.6 b) and gradually 

converging to the equilibrium state (Figure 6.6 f). 

For this baseline case, a mesh dependence study is made. For 0.02Cn   and 

2500CPe  , the simulation results from different mesh resolution 2CN  , 4  and 8  are 

compared with respective to predicted evolution of liquid saturation   and gas-liquid 

effective interfacial area effA , as shown in Figure 6.7. effA  is defined as the gas-liquid 

interfacial area normalized by the total volume of the REV 
6 3

REV 10  m .V   Since the 

periodic conditions are applied, the liquid volume should be conserved over time so that 

liquid saturation be constant. This is observed well by the simulations with 4CN   and 8  

but a noticeable loss of liquid mass is found if 2CN   (Figure 6.7 a). When one checks 

effective interfacial area effA  (Figure 6.7 b), 4CN   is shown to be a good compromise 

between accuracy and computational cost. Therefore, this mesh resolution will be kept in 

the following simulations. 



94 

 

 

 

Figure 6.6: Baseline simulation of gas-liquid two-phase flows at (a) initial state 

0 s ,t   (b) 0.005 st  , (c) 0.02 st  , (d) 0.025 st  , (e) 0.03 st   and (f) equilibrium 

state 0.05 st   in the REV ( 0.01 ma  ) of SiSiC sponge. The equilibrium contact 

angle is e 90   . In the 3D images shown on LHS, the sponge structure is shown as 

semi-transparent to facilitate visualization of the gas-liquid interface denoted by the 

blue iso-surface. On RHS are the corresponding cross-cutting views for the gray mid-

plane shown in the respective LHS images. 
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Figure 6.6: Continued. 
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Figure 6.7: Influence of mesh resolution on predicted evolution of (a) liquid saturation 

  and (b) gas-liquid effective interfacial area effA  with 0.02Cn   and 2500CPe  . 

 

6.3.3.2 Influence of Surface Wettability and Interfacial Tension  

The respective influence of surface wettability and interface tension is studied by 

examining simulation results at equilibrium state. As reported by Große [200], most 

sponge structures used as internal packing for multiphase chemical reactors have 
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hydrophilic surfaces. Thus, the current numerical investigation on surface wettability 

considers only hydrophilic regime.  

 

 

Figure 6.8: Equilibrium state liquid distribution on sponge of surface wettability (a) 

e 40    and (b) e 90   . In the both cases the liquid saturation is 0.282  . 

 

Figure 6.8 shows the comparison of simulated equilibrium liquid distribution with two 

different wettability e 40    and e 80   . It is clearly seen from the cross-cutting view that 

a more hydrophilic surface ( e 40   ) exhibits a higher favorability for liquid spreading 

around within the structure. In Figure 6.9, the effect of surface wettability, i.e., equilibrium 
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contact angle e , on gas-liquid interfacial area is quantitatively checked. For a certain 

, increase of wettability (i.e. decrease of e ) leads to increase of gas-liquid effective 

interfacial area effA . Another trend worth noting is that for a given e , as   gets larger, 

effA  rises. This is reasonable since a bigger liquid volume amounts to a larger interfacial 

area.  

 

 

Figure 6.9: Influence of equilibrium contact angle e  on gas-liquid effective interfacial 

area effA  for different liquid saturation  . The interfacial tension is 172 mN m  . 

 

In addition to equilibrium contact angle, the influence of interfacial tension is also 

investigated. For this purpose, numerical studies are carried out for five different values 

of interfacial tension   as 72 , 62 , 52 , 42  and 132 mN m . According to the Young’s 

equation (1.2), the corresponding equilibrium contact angle is 70 , 66.6 , 61.7 , 54.1  
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and 39.7 . As shown in Figure 6.10 for a certain  , as   diminishes from 72  to 

132 mN m , effA  increases by up to 30% ~ 40% . This numerical finding on the effect of   

on effA  is substantiated by the experiment study by Stemmet et al. [11]. 

 

 

Figure 6.10: Influence of interfacial tension coefficient   on gas-liquid effective 

interfacial area effA  for different liquid saturation  . The corresponding equilibrium 

contact angle e  is varied with   as prescribed by the Young’s equation (1.2). 

 

The present numerical results shown in Figure 6.9 and Figure 6.10 give a clear 

evidence that contact angle and interfacial tension are two factors which can be tuned to 

increase interfacial area and thus enhance interfacial mass transfer of two-phase flows in 

sponge structure. The adjustment of the former can be achieved by surface coating 

technology while that of the latter by addition of surfactants which gives rise to interfacial 

tension decrease.  
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6.4 Summary of Chapter 6 

This chapter presents the application of the developed numerical method for interface-

resolving simulations of gas-liquid two-phase flows in REV sponge structures. Firstly, the 

method is validated for its predictive capability of reproducing hydrodynamics in sponge 

structure, by recalculating pressure drop of gas flow in an alumina REV sponge. The 

results are shown in a very good agreement with reference experimental and numerical 

data in literature. Then the method is used to numerically resolve gas-liquid interface for 

a SiSiC sponge. The numerical simulations are carried out with a modeling concept of 

domain mirroring and pressure decomposition. The present computational results provide 

a clear evidence that interfacial area is greatly influenced by surface wettability and 

interfacial tension. By increasing surface wettability or decreasing interfacial tension 

coefficient, one can obtain an enlarged interfacial area and thus expect a considerable 

enhancement of interfacial mass transfer.  

The present numerical investigation is a pioneering work that demonstrates the 

possibility of interface-resolving simulations for two-phase flow in complex sponge 

structure with reasonable computational cost. As shown in the current study, these 

interface-resolving simulations enable characterization of local interfacial behavior as well 

as detailed investigation into influences of liquid properties and operating conditions on 

interfacial phenomena.  
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7 Summary and Outlook 

7.1 Summary and Conclusion 

This PhD thesis presents interface-resolving numerical investigations of two-phase 

flows interacting with elementary and complex solid structures. For this purpose, a novel 

top-level solver (named as phaseFieldFoam) is developed and implemented in foam-

extend. There, a phase-field description for interface evolution – i.e., the Cahn-Hilliard 

(CH) equation – is coupled with the two-phase Navier-Stokes equations in single-field 

formulation. The numerical method/code has been verified and validated through a series 

of test cases for interfacial two-phase flows. These include phase-field diffusion, droplet 

deformation in shear flow, capillary rise in vertical narrow channel, droplet wetting on 

chemically homogenous and heterogeneous substrates. The computational results are in 

good agreement with corresponding analytical and experimental data. Also the capability 

of the numerical code for 3D simulations with adaptive mesh refinement near interface is 

demonstrated. 

With these successful validations and applications for two-phase interfacial flows on 

elementary surfaces, the numerical method/code is further employed to investigate 

interfacial dynamics within periodic open cellular structures (POCS). Of special focus in 

the present study is wettability dependent interaction of rising bubble with a POCS. Based 

on the numerical method/code, a numerical model is developed and first validated for 

terminal bubble rise velocity and instantaneous cylinder-induced bubble cutting behavior, 

by comparison with experimental data from literature. Then the numerical model is 

employed to study the behavior of a single air bubble rising through a representative 

subdomain of a POCS filled with stagnant water. The present numerical simulations 

clearly demonstrate that bubble deformation and rising path are largely determined by 

surface wettability of POCS. As the results suggest, the use of POCS with high surface 
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wettability (i.e. low equilibrium contact angle) is expected to favor mass transfer 

enhancement and catalytic gas-liquid reactions. 

Also with the numerical method/code, local two-phase interfacial flows in 

heterogeneous sponge structures are studied. After the numerical model is validated for 

its predictive capability for gas flow hydrodynamics in alumina sponge structure, it is 

applied to interface-resolving simulations of gas-liquid two-phase flows in a SiSiC REV. 

To guarantee physical liquid phase distribution in the REV, a modeling strategy is 

developed by mirroring the REV and imposing periodic boundary conditions. Qualitative 

and quantitative investigations are performed to reveal influences of physical parameters 

on gas-liquid interfacial area. The numerical results clearly show that increasing surface 

wettability and decreasing interfacial tension coefficient are two means to enlarge 

interfacial area and in turn to enhance interfacial mass transfer. 

All the results show that the PFM-based numerical code and model developed in this 

work are reliable, accurate and efficient computational tools that enable scale-resolving 

investigations on interfacial two-phase flows interacting with solid structures. 

7.2 Outlook and Future Work 

The present numerical model for droplet spreading process can be potentially used to 

explore some more complicated wetting phenomena, e.g. droplet impact onto surface 

from liquid spray or droplet moving on micro-structured surface. Besides the present 

model is suited to study droplet-droplet interactions – such as breakup and coalescence 

– on solid surfaces, which are found in many industrial micro-fluidics applications. 

The present investigation on interaction of a rising bubble with single cylinder and 

POCS motivates several future works. Since no experimental studies on wettability-

dependency of bubble interacting behavior with solid structures have yet been reported in 

literature, the experimental work on this area would be highly expected, so that the current 
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numerical findings on the surface wettability effect would be confirmed and the present 

numerical model be further validated. Then the numerical model can be applied to 

investigate the influences of other physical/geometrical factors (e.g. interfacial tension 

coefficient, bubble terminal velocity, relative size of bubble to solid cell window, etc.) on 

bubble dynamics interacting with solid structures as well as to study multi-bubble 

interactions (coalescence and breakup) commonly occurring in industrial bubble column 

reactors. 

It is hoped that the present study on interface-resolving simulations of gas-liquid flows 

in sponge structure will stimulate further research activities in the scientific community. 

First, detailed experimental observation and measurement of local interfacial phenomena 

in sponge structure are highly needed to enable one-to-one comparison of experimental 

and numerical data, and the present numerical model could be further validated for its 

interface-resolving capability. Besides, with the numerical model one will be able to study 

the effects of other physical properties and characterize corresponding local interfacial 

phenomena in complex solid sponge structure, which is rather challenging or simply too 

costly to access experimentally. Moreover, the current local-scale-resolving simulations 

could be employed to develop closure relations used in macroscopic models, such as 

Euler-Euler method-based modeling, for engineering CFD simulations of multiphase 

hydrodynamics and interfacial mass transfer on a whole reactor scale. 

All the PF simulations in the present study are performed with the equilibrium contact 

angle model. In future, dynamic contact angle models can be used, where dynamic 

contact angle is a function of contact line speed. With this, further complex moving contact 

line phenomena – such as contact angle hysteresis effect – can be computationally 

studied with the present numerical method. In the current study, the phase-field-specific 

parameters – especially the mobility parameter – are chosen in a rather empirical manner. 
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In future works, a strictly-founded methodology for fixing these parameters may be 

explored. 

The outlook also includes further works on numerical aspects. One of them is about 

quantitative investigations into influences of numerical/physical parameters on volume 

conservation and boundedness. Besides, as an attempt to explore possibilities of further 

optimizing computational efficiency, dynamic load balancing can be applied for parallel 

simulations with adaptive mesh refinement. This will be very beneficial to PF simulations 

involving complex geometries, such as micro-structured substrate and heterogeneous 

sponge structure. 
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Appendix A. Workflow of Running a phaseFieldFoam Test Case 

The workflow on how to run a test case with phaseFieldFoam will be demonstrated 

with the example test case in the folder dropletSpreading. The hierarchy of the files 

contained in this test case folder is shown in Figure A.1.  

 

 

Figure A.1: The hierarchy of the files within the test case folder dropletSpreading. 

 

In this test case, one carries out the simulation of a liquid droplet spreading from its 

initial shape towards the equilibrium state. Please note that this workflow is written for 

readers who have basic knowledge of OpenFOAM® and preferably working experience 

with interFoam. Thus, phaseFieldFoam-specific rather than OpenFOAM®-general guides 
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are provided here. For the latter, one is referred to the OpenFOAM® user guide 

(http://cfd.direct/openfoam/user-guide/) and in particular the dam break test-case tutorial 

using interFoam (http://cfd.direct/openfoam/user-guide/damBreak/#x7-500002.3). 

 Mesh Generation  

Generate the wedge mesh for 2D-axisymmetric simulation using the command 

blockMesh. Further information on using blockMesh for mesh generation can be found in 

the OpenFOAM® user guide (http://cfd.direct/openfoam/user-guide/blockmesh/) and 

special tips on wedge mesh generation therein.  

 Boundary Condition Setup  

The boundary conditions for order parameter, pressure and velocity can be found in 

the file C.org, pd and U in the folder 0. Of special importance is wetting boundary condition 

setting: the equilibrium contact angle e 60    for the present test-case is specified in the 

file 0/C.org (see the excerpt of the file shown in Figure A.2). There boundary type 

constantPhaseContactAngle is used and theta0 denotes the equilibrium contact angle.  

 

 

Figure A.2: An excerpt from the file 0/C.org where one specifies the equilibrium contact 

angle denoted as theta_0. 

 

  

http://cfd.direct/openfoam/user-guide/
http://cfd.direct/openfoam/user-guide/damBreak/#x7-500002.3
http://cfd.direct/openfoam/user-guide/blockmesh/
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 Initial Field Setup 

As the phase indictor, i.e. the order parameter C , needs to be appropriately initialized 

so that a phase-field simulation can be started from an initial condition with a properly-

diffuse interface. A non-uniform initial field for the order parameter should be set 

appropriately such that: 

1) 1C   for liquid and 1C    for gas 

2) tanh( / 2 )C x   across the diffuse interface between the two phases 

This initialization is made with funkySetFields, which is similar to the standard 

OpenFOAM® utility setFields and equipped with greater flexibility for field initialization. 

More information on funkySetFields can be found on 

https://openfoamwiki.net/index.php/Contrib/funkySetFields. The active development of 

funkySetFields is included in swak4Foam. Thus, one should first install swak4foam 

(https://openfoamwiki.net/index.php/Contrib/swak4Foam) to employ funkySetFields.  

 

 

Figure A.3: The script file setInitFields where one initializes the order parameter field. 

 

https://openfoamwiki.net/index.php/Contrib/funkySetFields
https://openfoamwiki.net/index.php/Contrib/swak4Foam
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To exemplify the use of funkySetFields for the order parameter initialization, a script 

setInitFields is prepared. Its content is shown in Figure A.3. The profile of C  across the 

diffuse interface is set according to the hyperbolic function by funkySetFields with 

corresponding options at line #17. To run this script, one needs to enter “./setInitFields” in 

the terminal.  

 Physical Parameter Setup 

The density, viscosity and surface tension coefficient of the gas-liquid two-phase flow 

system is set by the file constant/transportProperties (see Figure A.4) Therein rhoa and 

rhob denote the density of gas and liquid phase, nua and nub the kinematic viscosity of 

the respective phase. In line #24, sigma indicates the interfacial tension coefficient. Like 

interFoam testcases, gravitational acceleration is set in the file constant/g. 

 

 

Figure A.4: The file constant/transportProperties where one specifies physical 

properties of the two phases. 

 

 Phase-Field Specific Parameter Setup 

One needs to set two phase-field specific parameters, namely, the capillary width 

parameter   and the Cahn-Hilliard mobility parameter  . One can achieve it by the file 

constant/phaseFieldProperties (see line #28 and #31 in Figure A.5).  
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Figure A.5: The file constant/phaseFieldProperties where phase-field specific 

parameters   and   are specified. 

 

 Numerical Solution Setup  

Setting time-step control, discretization scheme and liner-solver control is made with 

the file controlDict, fvSchemes and fvSolution (all in the folder system), respectively. How 

to set up these parameters is OpenFOAM®-general, rather than phaseFieldFoam-specific. 

Thus readers are referred to the chapter 4.3, 4.4 and 4.5 in the OpenFOAM® user guide 

(http://cfd.direct/openfoam/user-guide/cases/#x16-920004).  

 Solver Running  

To do so, one needs to enter “phaseFieldFoam” in the terminal. Alternatively, one can 

also run the solver in parallel. The details of domain decomposition for parallel 

computation are found by system/decomposeParDict. Further information for parallel 

computations in OpenFOAM® can be found in the OpenFOAM® user guide 

(http://cfd.direct/openfoam/user-guide/running-applications-parallel/#x12-820003.4).  

http://cfd.direct/openfoam/user-guide/cases/#x16-920004
http://cfd.direct/openfoam/user-guide/running-applications-parallel/#x12-820003.4
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Nomenclature 

a   [m] edge length of a cubic REV sponge structure 

effA   [m-1] effective (i.e. specific) interfacial area 

iA   [m2] gas-liquid interfacial area 

C  [-] order parameter (also called as phase-field variable) 

Cn  [-] Cahn number 

d   [m] channel width  

Sd  [m] strut diameter 

D  [m] droplet or bubble diameter 

0D  [m] initial droplet or bubble diameter 

cylD   [m] diameter of solid cylinder 

defD   [-] deformation parameter of an ellipsoid 

ˆ
xe   [-] unit vector in x direction  

ˆ
ze   [-] unit vector in z direction 

Eo   [-] Eötvös number 

F   [-] volume fraction 

g  [m s-2] gravity vector 

g   [m s-2] gravitational acceleration 

h    [m] mesh size 

H  [m] height of computational domain 

eH  [m] equilibrium height of a droplet 

colH  [m] final height of liquid column in capillary rise 

L  [m] characteristic length scale 

CL  [m] interface width 

eL   [m] equilibrium spreading length of a droplet 

sL   [m] slip length 

longL   [m] length of the long axis of an ellipsoid  

shortL  [m] length of the short axis of an ellipsoid  

Mo  [-] Morton number 

sn̂  [-] unit normal vector to solid surface pointing into fluid  
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CN   [-] number of mesh cells per interface width 

DN  [-] number of mesh cells per bubble diameter 

p  [N m-2] pressure 

CPe  [-] Peclet number in Cahn-Hilliard equation 

r   [m] radial coordinate 

R   [m] droplet or bubble radius 

0R   [m] initial droplet or bubble radius 

Re   [-] bubble Reynolds number 

s  [m] window size of cubic cell 

t  [s] time 

U  [m s-1] characteristic velocity scale 

0U  [m s-1] superficial velocity in sponge structure 

phyU   [m s-1] physical velocity in sponge structure 

u  [m s-1] velocity field 

V  [m3] volume of a certain flowing phase in sponge structure  

REVV   [m3] total volume of a REV 

voidV   [m3] total void volume of a REV 

W   [m] width of computational domain 

x   [m]  x -coordinate 

y   [m]  y -coordinate 

z   [m]  z -coordinate 

 



124 

 

Greek symbols 

 

   [-] liquid saturation  

   [s-1] shear rate 

   [m] capillary width 

   [m3 s kg-1] mobility 

   [J m-1] mixing energy parameter 

   [-] liquid-to-gas viscosity ratio 

   [Pa s] dynamic viscosity 

   [N s m-2] thermodynamics constant 

   [J m-3] Cahn-Hilliard chemical potential 

   [-] porosity 

   [kg m-3] density 

   [N m-1] interfacial tension coefficient 

a   [] advancing contact angle 

app   [] apparent contact angle 

e  [] equilibrium contact angle 

m  [] microscopic contact angle 

r   [] receding contact angle 

td   [] thermodynamically-equilibrium contact angle 

 

Subscripts 

 

G   gas phase 

L   liquid phase 

cl   contact line 
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List of Abbreviations 

AC Allen-Cahn equation 

AMR Adaptive Mesh Refinement 

AKD Arbeitskreis Deutschmann 

BC Boundary Conditions 

CH Cahn-Hilliard equation 

CFD Computational Fluid Dynamics  

CP Chemical Potential 

CSF Continuum Surface Force  

CSS Continuous Surface Stress 

FAU Friedrich-Alexander-University Erlangen-Nürnberg 

FVM Finite Volume Method  

KIT Karlsruhe Institute of Technology 

LBM Lattice Boltzmann Method 

LHS Left-Hand Side 

LS Level-Set Method 

MCL Moving Contact Line 

MD Molecular Dynamics 

NS Navier-Stokes equations 

µCT Micro Computed Tomography 

PF Phase-Field 

PFM Phase-Field Method 

PFDTS Perfluordecyltrichlorosilane 

POCS Periodic Open Cellular Structures 

ppi pores per inch 

REV Representative Elementary Volume 

RHS Right-Hand Side 

SiSiC Silicon Infiltrated Silicon Carbide 

STL Stereolithography 

TUHH Hamburg University of Technology 

VOF Volume-of-Fluid Method 
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