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Abstract This paper is in the formal concept analysis framework, an algebraic
hierarchisation method of data based on the notion of extent/intent, i.e. of max-
imally shared attributes and objects. Here we present a correspondence-based
similarity measure between two formal concept lattices, and compare it to re-
sults of a previous paper which introduced a structure-based dissimilarity mea-
sure. We define an expressive model using correspondences between objects
and between attributes of the two lattices. A key point of our approach is that
the correspondences may not be mappings and may associate each object (resp.
attribute) of one lattice with several objects (resp. attributes) of another one.

1 Introduction

Lattices are polymorphic objects: as ordered sets, lattices are natural general-
izations of many different ordered structures like trees, weak trees or pyramids.
They are also the underlying structure in the Formal Concept Analysis frame-
work articulating the duality between intent and extent. As such, they can be
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seen as an algebraic method of hierarchisation of data based on maximally
shared attributes and objects.

The aim of this paper is to investigate a novel approach to evaluate the sim-
ilarity between two lattices. Although there is an extensive literature on sim-
ilarity between (directed) graphs (Ullmann, 1976; Goldsmith and Davenport,
1990; Raymond et al, 2002; Champin and Solnon, 2003), to the author’s knowl-
edge surprisingly little work exists for similarity of concept lattices (Domenach,
2015), particularly when considered as a specific case of digraphs. Using an ap-
proach similar in nature to Champin and Solnon (2003), the method introduced
here is based on an expressive model using correspondences between objects
and between attributes, correspondences which may not be one-to-one or onto.
Each object (attribute) of the first lattice may be associated with any number of
objects (attributes) of the second lattice.

This paper is organized as follows: In Sect. 2, the fundamental definitions and
principles of Formal Concept Analysis are recalled. Section 3 states the problem
central to this article together with previous attempts to solve it. Section 4 is
the original work of this paper and describes our new proposed approach to
tackle concept lattices similarity before illustrating it with several examples.
Section 6 concludes the paper.

2 Formal Concept Analysis

2.1 Introduction

We recall here the standard Formal Concept Analysis (FCA) notations and we
refer readers to Ganter and Wille (1999) for details and proofs on FCA and
Caspard et al (2012) for results on lattices as ordered sets.

A formal context (G,M, I) is defined as a set G of objects, a set M of at-
tributes, and a binary relation I ⊆ G×M. (g,m) ∈ I means that "the object g is
related with the attribute m through the relation I". Table 1 shows an example
of a formal context where the set of objects is all natural numbers less than or
equal to 10, and the set of attributes are the properties of the set of numbers
considered (Composite, Even, Odd, Prime, Square).



Correspondence-Based Lattice Similarity Measure 3

Table 1 Context of numbers with some basic properties

Composite Even Odd Prime Square
1 X X
2 X X
3 X X
4 X X X
5 X X
6 X X
7 X X
8 X X
9 X X X
10 X X

Two derivation operators can be defined on sets of objects and sets of at-
tributes as follows, ∀O⊆ G,A⊆M:

O′ = {m ∈M : ∀g ∈ O,(g,m) ∈ I}
A′ = {g ∈ G : ∀m ∈ A,(g,m) ∈ I}

These two operators (·)′ define a Galois connection between the power set
of objects P(G) and the power set of attributes P(M) since both operators are
antitone and satisfy, ∀A⊆ G,B⊆M : A⊆ B′ ⇐⇒ B⊂ A′. A pair (O,A),O⊆
G,A⊆M, is a formal concept iff O′ = A and A′ = O. O is called the extent and
A the intent of the concept. The composition of these two operators (.)′′ forms
a closure operator on P(G) (resp. P(M)), and the Galois connection creates
a (dual) isomorphism between the closed sets of P(G) and P(M).

Going back to our toy example of Table 1, consider the set of numbers {3,5}
- they are both Odd and Prime, so

{3,5}′ = {Odd,Prime}

However, {7} is also an odd prime number:

{Odd,Prime}′ = {3,5,7}

({3,5,7},{Odd,Prime}) is a formal concept with extent {3,5,7} and intent
{Odd,Prime}. Another manner to express the notion of concept is that of
maximal rectangles: {3,5,7} have all the attributes of {Odd,Prime}, and are
the only numbers less than 10 to be both Odd and Prime. Another exam-
ple of a concept is ({1,9},{Odd,Square}), as {1,9}′ = {Odd,Square} and
{Odd,Square}′ = {1,9}.
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Fig. 1 Concept lattice associated with Table 1 with minimal labeling

2.2 Galois Lattice

The set of all formal concepts, ordered by inclusion of extents (or dually by
inclusion of intents), i.e., (O1,A1)≤ (O2,A2) if O1 ⊆ O2 (or dually A2 ⊆ A1),
forms a complete lattice (Barbut and Monjardet, 1970), called concept lattice
denoted by L=B(G,M, I). A Hasse diagram can be associated with the con-
cept lattice as the graph of the cover relation. Concept (O1,A1) is covered by
concept (O2,A2), (O1,A1)≺ (O2,A2), when there is no concept (O3,A3) such
that (O1,A1)< (O3,A3)< (O2,A2). In the Hasse diagram, each concept of the
lattice is represented as a vertex in the plane and edges that go upward from
(O1,A1) to (O2,A2) whenever (O1,A1)≺ (O2,A2).

The concept lattice associated with our toy example of Table 1 is shown in
Fig. 1, with minimal labelling: every vertex is a concept which inherits attributes
that are above it and objects that are below it, and the edges represent the cover
relation. Consider the vertex labeled with {1}: it represents the concept with
extent {1,9} (all the objects below the vertex) and intent {Square,Odd} (all the
attributes above the vertex). All the figures included in this paper were drawn
using ConExp software1 (Yevtushenko, 2000).

1 Available at http://conexp.sourceforge.net/

http://conexp.sourceforge.net/
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Fig. 2 Toy lattices L1 and L2

A well-known result on lattices is that the set of all lattices LLL is also a
lattice, and the order associated with the lattice LLL is denoted by v (see for
more detailed results Monjardet, 2003; Caspard and Monjardet, 2004).

3 Similarity Measures Between Lattices

3.1 Problem Statement

The problem considered in this paper is the quantification of the similarity
between two given lattices, possibly defined on different sets of objects and
attributes. Ideally such measure should take on large values for similar lat-
tices and small values for very dissimilar lattices. Figure 2 shows two such toy
lattices. The question then is how close are these two lattices? Since FCA is par-
ticularly useful in information retrieval and knowledge representation, studying
similarity measures are particularly relevant for the comparison of lattices.

3.2 Existing Similarity Measures

We defined in Domenach (2015) a dissimilarity measure based on the structure
of both lattices and normalized by the width of the lattices. Given two lattices
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L1 and L2, L1 =B(G,M, I1) and L2 =B(G,M, I2), a dissimilarity measure on
objects between L1 and L2 is defined as follows:

• Consider the n(n−1)
2 pairs of different objects {r,s},∀r,s ∈ G.

• We create the binary n(n−1)
2 × n matrix ML1 with mikL1 = 1 for objects

i = {r,s} if {r,s}′′ 6= {r,s,k}′′, i.e. if {r,s} and {r,s,k} have different clo-
sure in L1, with r,s,k ∈ G, and mikL1 = 0 otherwise.

• Similarly, we create the matrix ML2 on pairs of objects of L2.

The dissimilarity measure is then defined as

d =
‖ML1−ML2‖
‖ML1‖+‖ML2‖

where ‖M‖ = ΣiΣk|mik| is the L1 norm of matrix M. This measure is normal-
ized, bounded in [0,1], with d = 0 if the two lattices are identical and d = 1
if and only if no concept of L1 intersects a concept of L2, i.e. ∀C1 ∈ L1,C2 ∈
L2,C1∩C2 = /0. Moreover, this dissimilarity does not depend on object labels
since it refers to pairs of objects only.

Concept lattices create a hierarchy of the dual extent/intent of concepts,
which is lost if objects and attributes are considered separately. Although a
dual measure can be similarly defined on attributes, this dissimilarity measure
does not take into account this fundamental aspect of concept lattices.

4 Proposed Similarity Measure

Jaccard (1901) created a simple similarity measure on sets defined as the ratio
between the commonality of the elements over their union, which was later on
generalized by Tversky (1977). When applied to concept lattices, the Jaccard
measure can be written as:

sim(L1,L2) =
f (descr(L1)udescr(L2))

f (descr(L1)tdescr(L2))
∀L1,L2 ∈LLL (1)

The focus in this paper is on the case where f is the cardinality map, but
the results can be easily extended to any function positive and monotonic non-
decreasing with respect to the order on LLL (L1 v L2 implies f (L1) ≤ f (L2)).
descr is a description function, which can be seen as a coding of a lattice
allowing for a comparison between the two lattices. In the following sections,
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Table 2 Example of an arbitrary correspondence co between objects of the toy lattices of Fig. 2, each
row being an element of G1 and each column an element of G2

co o1 o2 o3 o4 o5 o6
o1 X
o2 X
o3
o4 X X
o5 X X
o6 X

we first define the commonality of the description between the two lattices (Sect.
4.2), our numerator, before stating their union in Sect. 4.3, our denominator.

4.1 Correspondence

In order to define a similarity measure between two lattices L1 =B(G1,M1, I1)
and L2 = B(G2,M2, I2), we first define an (arbitrary) correspondence co

(resp. ca) that matches objects (resp. attributes) in order to identify their com-
mon features. Those correspondences can be seen either as expert knowledge,
matching features from a lattice to the other, or as an optimization problem,
finding the best possible matching. Formally, co ∈ G1×G2 is a binary relation
between the objects of L1 and the objects of L2. It is not a mapping between
G1 and G2 as any object can have zero, one or more associated objects. Table 2
shows an example of a correspondence between objects of the two toy concept
lattices of Fig. 2.

Given a correspondence co between G1 and G2 associating zero or more
objects of L2 with each object of L1, we define the image of an object o1 ∈ G1
as:

co(o1) = {o2 ∈ G2 : (o1,o2) ∈ co}

This definition can be extended to any set of objects O1 ⊆ G1 as the Cartesian
product of the images of each element of O1:

co(O1) = {{y1,y2, ...},yi ∈ co(oi) ∀oi ∈ O1} and co( /0) = /0

For example, using the correspondence of Table 2, c0({o4,o5}) = {{o1,o3},
{o1,o4},{o3,o4},{o4}}. Similar definitions of the image of an attribute or a
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set of attributes are used with the correspondence ca that matches attributes
between M1 and M2.

4.2 Defining Common Descriptions

In order to define the common description between two concept lattices, first
we need to define how much of the information contained in L1 is represented
in L2. We define this information as the ratio for each concept of L1 to be
present, at least partially, in L2 through the correspondence co.

4.2.1 Description on Objects

Consider the concept λ = (O1,A1) ∈ L1. The description on objects of the
concept λ from L1 to L2 depending on the correspondence co, denoted by
descrco

L1→L2
(λ ), is the union of (O1,a1), a1 ∈A1, such that a1 is part of a concept

of L2 that contains an image by co of O1. Informally, it corresponds to the
information contained in the concept λ based on its set of objects that is present,
at least partially, in L2 through co. Formally,

descrco
L1→L2

(λ ) = {(O1,a1),a1 ∈ A1, ∃X1 ∈ co(O1) : a1 ∈ X ′1}

The overall description on objects from L1 to L2 is the union of the descrip-
tions of each concept:

descrco
L1→L2

=
⋃

λ∈L1

descrco
L1→L2

(λ )

The common description between two concept lattices is then the union of
the descriptions from one lattice to the other, i.e.

descrco(L1)udescrco(L2) = descrco
L1→L2

∪descrco
L2→L1

Continuing with our toy lattices example of Fig. 2, and using the correspon-
dence co of Table 2, we have descrco

L1→L2
({o3,o5},{a1,a2})= {({o3,o5},{a1}),

({o3,o5},{a2})} as co({o3,o5}) = {{o3},{o4}}, a1 ∈ {o4}′ and a2 ∈ {o3}′.
However, descrco

L1→L2
({o4,o5},{a4}) = /0 since co({o4,o5}) = {{o1,o3},

{o1,o4}, {o3,o4},{o4}} but the only concept ofL2 containing a4 is ({o1},{a4}).
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4.2.2 Description on Attributes

Given a correspondence ca associating zero or more attributes of M2 with each
attribute of M1, we can dually define the common (attribute) description from
L1 onto L2 for a concept λ = (O1,A1) ∈ L1 as:

descrca
L1→L2

(λ ) = {(o1,A1),o1 ∈ O1,∃Y1 ∈ ca(A1) : o1 ∈ Y ′1}

and the attribute description from L1 to L2 as: descrca
L1→L2

=⋃
λ∈L1

descrca
L1→L2

(λ )

4.2.3 Description on Objects and Attributes

None of the two previous definitions of descriptions on objects and on attributes
are entirely satisfying as they consider objects and attributes separately. In order
to take into account the dual nature of concept lattices, these definitions of
descriptions, either on objects or on attributes, lead to a unified description on
both dimensions. The description from L1 to L2 on objects and attributes is a
combination of the description on objects and the description on attributes, i.e.
∀λ = (O1,A1) ∈ L1:

descrco,ca
L1→L2

(λ ) = {(O1,a1), a1 ∈ A1, ∃X1 ∈ co(O1), ∃y1 ∈ ca(a1) : y1 ∈ X ′1}
∪{(o1,A1), o1 ∈ O1, ∃Y1 ∈ ca(A1), ∃x1 ∈ co(o1), z1 ∈ Y ′1}

(2)

And, similarly, the description on objects and attributes from L1 to L2 is defined
as:

descrco,ca
L1→L2

=
⋃

λ∈L1

descrco,ca
L1→L2

(λ )

Continuing with our toy example of Fig. 2, and using co of Table 2 and ca as
the identity correspondence (∀i,ca(ai) = a′i,ai ∈M1,a′i ∈M2), we have

descrco,ca
L1→L2

({o3,o4},{a1,a5}) =
{({o3,o4},{a1}),({o3,o4},{a2}),({o4},{a1,a2})}.

The common description of L1 and L2, used as the numerator in equation
1, is the union of the description from L1 to L2 and the description from L2
to L1. This set contains all the features from both L1 and L2 that are partially
matched by the correspondences co and ca.
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Definition 1. The common description of two lattices L1 and L2, denoted by
descr(L1)udescr(L2), is defined as:

descr(L1)udescr(L2) = descrco,ca
L1→L2

∪descrco,ca
L2→L1

(3)

4.3 Union of Descriptions

In order to complete our definition of the Jaccard similarity between two lattices,
used as the denominator in equation 1, we need to define the union of the
descriptions of those lattices.

Definition 2. The union of descriptions of two lattices L1 and L2, denoted as
descr(L1)tdescr(L2), is defined as:

descr(L1) tdescr(L2) =
⋃

(O1,A1)∈L1

{
⋃

a1∈A1

{(O1,a1)}∪
⋃

(o1∈O1)

{(o1,A1)}}

∪
⋃

(O2,A2)∈L2

{
⋃

a2∈A2

{(O2,a2)}∪
⋃

(o2∈O2)

{(o2,A2)}}

(4)

4.4 Splits

An issue of this correspondence based approach is that co and ca are binary
relations, not mappings. So any object (attribute) of L1 or L2 can have more
than one image. Consider the extreme case where every object / attribute of L1
is related to every other object / attribute of L2. Although uninformative, the
similarity, as defined in equation 1, will be artificially high.

Splits are defined when an object or attribute has more than one image in co

or ca. Informally, splits quantify the lack of precision in the correspondences
co and ca. The more images an object (resp. an attribute) has through co (resp.
ca), the less informative it is.

We can now revisit our similarity measure of equation 1 by taking splits into
account as we want to have a similarity measure that will be decreasing as the
number of splits is increasing:

Definition 3. The correspondence-based lattice similarity measure, depending
on the correspondences co and ca between objects and attributes respectively,
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is defined as:

simco,ca(L1,L2) =
f (descr(L1)udescr(L2))−g(splits(co)∪ splits(ca))

f (descr(L1)tdescr(L2))
(5)

with f and g two positive and non-decreasing mappings (here cardinality map-
pings).

The similarity simco,ca(L1,L2) is a similarity measure as we have, trivially,
simco,ca(L1,L1) = 1 with diagonal ca,co. However, it is not normalized because
of possible splits, and so can become negative.

Although different definitions of the splits can be used for this similarity
measure, we focused on two specific cases where:

• split1 is the number of rows and columns of co and ca with more than
one image, i.e. split1(co) = {(o,co(o)) : o ∈ G1 ∪ G2, |co(o)| > 1} and
split1(ca) = {(a,ca(a)) : a ∈M1∪M2, |ca(a)|> 1}.

• split2 is the number of images minus one in co and ca of each object and
attributes, i,e, Σx∈G1∪G2(|co(x)|−1)+Σy∈M1∪M2(|ca(y)|−1).

While being simpler, the mapping split1 tends to be too conservative and does
not sufficiently penalize correspondences with multiple images, as we will
illustrate through a simple example in the next section.

5 Examples

In this section we present some examples of concept lattices together with the
correspondences on objects and on attributes to illustrate our similarity measure.

Fig. 3 Concepts lattices L1 (left) and L2 (right) obtained by permutation
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Table 3 Correspondences co (representing a permutation on objects, left) and ca (right) for the lattices
of Fig. 3

co o1 o2 o3 o4 o5
o1 X
o2 X
o3 X
o4 X
o5 X

ca a1 a2 a3 a4 a5
a1 X
a2 X
a3 X
a4 X
a5 X

Fig. 4 Antichain lattice M5 (left) and linear order lattice C4 (right)

Table 4 Correspondences co (left) and ca (right) for the lattices of Fig. 4

co o1 o2 o3 o4
o1 X
o2 X
o3 X
o4 X
o5

ca a1 a2 a3 a4
a1 X
a2 X
a3 X
a4 X
a5

The examples were chosen in order to exemplify different aspects, strengths
and weaknesses, of this new measure.

Our first example is a permutation example. Consider the lattices of
Fig. 3: the lattice L2 was obtained by permuting the objects of L1. As one
would expect, the two lattices are identical except for their object labeling - us-
ing the correspondences of Table 3, we indeed find that the similarity on objects
and Attribute is 100%.

The second example is another extreme example, where we wanted to evalu-
ate the behavior of the similarity measure when the lattices are strongly dissim-
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Fig. 5 Lattice N5 (left) and antichain lattice M3 (right)

Table 5 Correspondences co (left) and ca (right) for the lattices of Fig. 5

co o1 o2 o3 o4 o5
o1 X X X X X
o2 X X
o3 X X X X
o4 X X X

ca a1 a2 a3 a4 a5
a1 X X X X X
a2 X X X X
a3 X X X X
a4 X X X X X

ilar. The lattices of Fig. 4 are, on the left, the antichain lattice with 5 elements,
where all the non-extremal concepts are not comparable to each other, and, on
the right, the linear order where any two concepts are comparable. Using the
correspondences of Table 4, we obtain a similarity of 33.3%.

The last example illustrates the impact of possible choices for the split func-
tion in equation 5. It is also another aberrant case, where each object and
attribute in the correspondences co and ca have multiple images (Table 5), while
the lattices are quite dissimilar (Fig. 5). With function split1, which counts the
splits as the number of rows and columns having more than one image, the
similarity is 48%. But when applying function split2, which is the number of
images minus one in co and ca, the similarity become -31%. This example
shows that the mapping split2 may be more suitable compared to a more con-
servative split1, which can be explained by the use of the existence operator in
equation 2.
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6 Conclusion and Perspectives

In this paper we introduced an adaptation of the Champin and Solnon (2003)
similarity measure from directed graphs to the FCA framework. Based on
the Jaccard measure, our similarity uses correspondences between objects and
between attributes of the two concept lattices. Our similarity measure is able to
capture the inter-related role of intent and extent, i.e. of objects and attributes
between the two concept lattices considered.

Since our similarity measure relies on finding the best correspondences co

and ca, a key issue relies on providing efficient algorithms for their implemen-
tation. As f and g are non-decreasing, it is difficult to evaluate the change of
similarity when increasing one of the correspondences. Another future investi-
gation is the statistical evaluation of the similarity measure depending on the
mappings f and g. We are also planning to analyze its behavior and correlate it
in relation with existing similarity measures.
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