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Abstract

We compute the two-loop electroweak correction to the production of the Higgs boson in gluon fusion to 
higher orders in the dimensional-regularization parameter ε = (d − 4)/2. We employ the method of differ-
ential equations augmented by the choice of a canonical basis to compute the relevant integrals and express 
them in terms of Goncharov polylogarithms. Our calculation provides useful results for the computation of 
the NLO mixed QCD-electroweak corrections to gg → H and establishes the necessary framework towards 
the calculation of the missing three-loop virtual corrections.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The recent discovery of the Higgs boson and the non-observation of any New Physics at the 
LHC establishes the validity of the Standard Model as the low-energy effective theory of Nature. 
At the same time, the apparent inability of the Standard Model to explain several experimental 
facts makes the need for physics beyond the Standard Model (BSM) as strong as ever. Search-
ing for clues about BSM physics is in the focus of contemporary particle physics. The Higgs 
boson is bound to play an important role in this endeavor. Indeed, the Higgs mechanism in the 
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Standard Model is very simplistic and rather ad hoc. At the same time, there are many exten-
sions of the Standard Model where the Higgs boson is the only particle that is sensitive to rich 
physics beyond it. More generally, if the Higgs boson is responsible for generating masses not 
only of the Standard Model but also of some BSM particles, which appears to be necessary for 
protecting the Higgs boson mass from large radiative corrections, these new particles may affect 
the couplings of the Higgs boson to gauge bosons and fermions through radiative corrections. 
A percent modification of the Higgs couplings is a generic consequence of physics beyond the 
Standard Model at the energy scale of about 1 TeV. Therefore, measurement of the Higgs bosons 
couplings to Standard Model particles to this level of precision is an important goal of the LHC 
physics program.

The major production channel of Higgs bosons at the LHC is gluon fusion. The recent compu-
tation of the three-loop QCD corrections to σgg→H significantly reduces theoretical uncertainty 
in the predicted cross section. According to Ref. [1], the theory uncertainty in σgg→H is close to 
5% and the uncertainties related to imprecise knowledge of parton distribution functions and the 
strong coupling constant are close to 4%. The theoretical uncertainty has several sources such as 
the residual scale dependence of the three-loop QCD result, imperfect knowledge of the bottom 
quark contribution to gg → H and the mixed three-loop QCD-electroweak corrections which are 
known in the unphysical limit mZ,W � mH [2]. Each of these sources contributes similar amount 
to the final uncertainty which implies that a better understanding of all of them is required for 
reducing the uncertainty to ∼ 1–2%.

In this paper we focus on the computation of the two-loop electroweak correction to the pro-
duction of the Higgs boson in gluon fusion. This contribution arises because gluons couple to 
electroweak vector bosons W and Z through a quark loop; a subsequent fusion of the elec-
troweak bosons to the Higgs boson gives rise to electroweak-mediated ggH coupling. The quark 
loop receives contributions from both light and heavy quarks but the relatively small mass of the 
Higgs boson leads to a strong dominance of the light quark contributions.1

The electroweak contributions to ggH have been evaluated analytically at leading (two-loop) 
order in Refs. [3–6]. Since the QCD corrections increase the leading, top-quark mediated, con-
tribution to gg → H by almost a factor two, it is essential to understand if a similar enhancement 
is present in case of the electroweak corrections to gg → H . To clarify this issue, we need 
a computation of QCD corrections to the electroweak contribution to ggH . However, since 
the electroweak contribution starts at two loops, calculation of NLO QCD corrections requires 
dealing with three-loop diagrams with massive internal lines. Given the complexity of the re-
quired computation, one can try to simplify it by considering different kinematic limits: mixed 
QCD-electroweak corrections in the unphysical limit of a vanishingly small Higgs boson mass 
mZ,W � mH were calculated in Ref. [2].

However, recent progress in the theoretical understanding of QCD effects in gg → H and 
continuous developments in the technology of multi-loop computations make it worthwhile and 
interesting to attempt an exact computation of the NLO QCD corrections to the electroweak 
contribution to ggH . In this paper, we make an important step in this direction by setting up a 
modern calculational framework for this problem that employs canonical bases for master inte-
grals and differential equations, and computing the two-loop electroweak contribution to ggH

to higher orders in the dimensional regularization parameter ε = (4 − d)/2. The knowledge of 
the two-loop amplitude to higher orders in ε is necessary for subtracting infrared and collinear 

1 More precisely, about 95% of the full electroweak contribution to ggH is due to the light quark loops.
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Fig. 1. The two-loop light-quark electroweak contributions to gg → H . V stands for W±, Z and the fermionic lines 
represent different quarks, depending on the electroweak boson V .

singularities from the electroweak contributions to the gg → Hg inelastic process or, alterna-
tively, for extracting the relevant finite remainder, defined by the Catani formula [7], from the 
three-loop mixed QCD-electroweak contribution to ggH amplitude.

Specifically, we derive the two-loop electroweak correction to gg → H through O(ε2) and 
show that only GPLs up to weight five appear in this amplitude. We perform our calculation 
using the method of differential equations [8–10], augmented by the choice of a canonical basis
of master integrals, introduced in Ref. [11].2 A canonical basis of master integrals is presented 
and the master integrals are calculated in terms of Goncharov’s multiple polylogarithms (GPLs) 
[13–15]. In order to fix analytically all boundary conditions we make extensive use of the large 
mass expansion the PSLQ algorithm. This allows us to derive the expansion for the master in-
tegrals in the dimensional regularization parameter ε through weight six. From our calculation 
we can easily reproduce the O(ε0) results which have been known for a long time in the litera-
ture [5].

The paper is organized as follows. We introduce the notation and discuss the structure of the 
scattering amplitude gg → H in Section 2. We describe the master integrals and the differential 
equations in Section 3. We explain how the boundary conditions can be fixed using the large mass 
expansion and outline the analytic continuation of GPLs, required to obtain results in physical 
kinematics, in Section 4. The gg → H finite part of the amplitude is given in Section 5. We 
provide constants of integration for the master integrals up to weight six in Appendix A. The 
explicit expressions for the master integrals up to this weight, and the gg → H amplitude through 
O

(
ε2

)
are available in the ancillary file.

2. Feynman diagrams and master integrals

We consider the electroweak correction to the gg → H amplitude mediated by a light-quark 
loop. The relevant contributions are shown in Fig. 1. The fermionic lines represent up, down, 
strange and charm quarks, that are taken to be massless.3 The incoming gluons g1 and g2 are 
on-shell and carry momenta p1 and p2, with color indices c1 and c2 and polarizations ελ1(p1)

and ελ2(p2), respectively. The momentum of the Higgs boson is taken to be p3 = p1 + p2 with 
p2

3 = m2
H = s.

Thanks to gauge-invariance and parity constraints, the gg → H scattering amplitude is ex-
pressed in terms of a single form factor 

Mc1c2
λ1λ2

=F
(
s,m2

W,m2
Z

)[
ημν − p2μp1ν

p1 · p2

]
δc1c2ε

μ
λ1

(p1)ε
ν
λ2

(p2). (2.1)

2 An alternative way to construct and solve differential equations has been investigated in Ref. [12].
3 Bottom quarks require a special treatment, together with top quarks.
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Fig. 2. Planar (left) and non-planar (right) topologies. See text for momenta assignments and propagator labels.

It is possible to extract the form factor F by contracting Mc1c2
λ1λ2

with the projection operator 

P
λ1λ2
c1c2

= ε∗λ1
μ (p1)ε

∗λ2
ν (p2)

δc1c2

N2
c − 1

1

d − 2

[
ημν − p

μ
1 pν

2 + pν
1p

μ
2

p1 · p2

]
. (2.2)

We find 

F
(
s,m2

W,m2
Z

)
=

∑
λ1,λ2,c1,c2

P
λ1λ2
c1,c2

Mc1,c2
λ1λ2

. (2.3)

The form factor F is a linear combination of integrals which depend on the scalar products 
between loop and external momenta, and on the scalar products of loop momenta between them-
selves. All the integrals in F are obtained starting from the two topologies shown in Fig. 2. At 
variance with Feynman diagrams in Fig. 1, when we consider topologies and master integrals, 
we use wavy (solid) lines to denote massless (massive) propagators, respectively. We take all 
momenta to be incoming, i.e. 

p3 = −p1 − p2, p2
1,2 = 0, p3

3 = s = m2
H . (2.4)

The planar and non-planar integrals are parametrized as

IP(a1, a2, a3, a4, a5, a6, a7) =
∫

ddk1ddk2

[iπ2	(1 + ε)]2

1

[1]a1 [2]a2 [3]a3 [4]a4 [5]a5 [6]a6 [7]a7
,

(2.5)

INP(a1, a2, a3, a4̃, a5, a6, a7) =
∫

ddk1ddk2

[iπ2	(1 + ε)]2

1

[1]a1 [2]a2 [3]a3 [4̃]a4̃ [5]a5 [6]a6 [7]a7
,

(2.6)

where 

[1] = k2
1, [2] = (k1 + p1)

2, [3] = k2
2, [4] = (k1 − p2)

2, [4̃] = (k2 + p2)
2,

[5] = (k1 − k2 + p1)
2 − M2, [6] = (k2 − k1 + p2)

2 − M2, [7] = (k1 + k2)
2.

(2.7)

In both cases, the propagator [7] is auxiliary; it is only needed for the parametrization of tensor 
integrals with (otherwise) irreducible numerators. Both planar and non-planar integrals are ana-
lytic functions in the complex plane of the variable s with the cut along the real axis starting at 
s = 0. This discontinuity corresponds to massless intermediate states in Feynman diagrams. At 
s ≥ 4M2, it also becomes possible to produce pairs of vector bosons on the mass shell; this leads 
to additional contributions to the discontinuities of IP,NP. We use the program Reduze2 [16]
to express all integrals that appear in the evaluation of gg → H amplitude through master in-
tegrals (MIs). We also use the integration-by-parts reduction identities to derive the differential 
equations in s and M2 satisfied by the master integrals.
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3. Differential equations

We denote a vector of master integrals by I, a set of kinematic variables by x ∈ {s, M2}, and 
write the differential equations as 

∂I(x, ε)

∂xi

=Ai (x, ε)I(x, ε). (3.1)

It was conjectured in Ref. [11] that in many physically relevant cases a canonical basis of master 
integrals I′ exists with the property that the right hand side of the differential equation has a 
simple, factorized dependence on the regularization parameter ε. While the statement has not 
been rigorously proved, it is expected to be true at least for those cases that can be expressed 
in terms of Chen iterated integrals. The differential equations for the canonical basis assume the 
following form 

∂I′(x, ε)

∂xi

= εA′
i (x)I′(x, ε), (3.2)

so that the iterative construction of I′ as series in ε becomes straightforward. General criteria to 
find candidate canonical integrals are given in Ref. [17] and, under certain conditions for ordinary 
differential equations, in Ref. [18]. We do not use this last algorithm in this paper; instead, we 
begin by constructing canonical bases for the simplest integrals in the set and gradually move to 
more complex ones, as described extensively in [19]. Since the original matrices Ai are relatively 
sparse, this approach turns out to be quite practical for finding the canonical basis.

It is convenient to choose as independent variables the center of mass energy squared s and 
the dimensionless ratio ω = −M2/s. Since the dependence of any master integral on s follows 
uniquely from its mass dimension, we write master integrals as 

I(s,ω) = s−a−2ε I(ω), (3.3)

where a is an integer determined by the canonical mass dimension of the integral. The non-trivial 
information is contained in the functions Ii(ω), which are dimensionless quantities. By choosing 
these functions to be appropriately re-scaled versions of the master integrals found by Reduze2

I1(ω) = ε2(ε − 1)(−s)2ε I2(ω) = −ε2(−s)2ε+1(ω + 1)

I3(ω) = −ε2(−s)2ε+1(ω + 1) I4(ω) = ε3(−s)2ε+1

I5(ω) = ε2(−s)2ε+2ω I6(ω) = −ε2(−s)2ε+2

I7(ω) = ε4(−s)2ε+1 I8(ω) = ε4(−s)2ε+1
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I9(ω) = ε4(−s)2ε+2(4ω + 1) I14(ω) = ε2(−s)2ε+1

I11(ω) = −ε2(−s)2ε+2 I12(ω) = −ε2(1 − 2ε)(−s)2ε+2ω ,

(3.4)

we can cast the system of differential equations for I(ω) in the following form 

dI(ω)

dω
= [A0(ω) + εA1(ω)]I(ω). (3.5)

The matrices A0,1 are rational functions of ω, and have a block-triangular structure.
To construct a systematic expansion of master integrals in ε, it is convenient to change basis 

of master integrals and transform the system of differential equations into a canonical form. 
This requires A0 to be removed. We can do that in a symbolic form by first solving the matrix 
differential equation 

dŜA0

dω
=A0(ω)ŜA0 → ŜA0 = Pωe

∫
A0(ω

′) dω′
, (3.6)

where Pω is the path-ordering operator defined as 

Pωe
∫

A0(ω
′) dω′ =

+∞∑
k=0

ω∫
ω0

A0(ω1)

ω1∫
ω0

A0(ω2) . . .

ωk−1∫
ω0

A0(ωk)dωk . . .dω2dω1. (3.7)

By defining a new set of master integrals 

F = Ŝ−1
A0

I, (3.8)

it is easy to see that F satisfies differential equations in the canonical form 

dF(ω)

dω
= εŜ−1

A0
A1ŜA0F(ω). (3.9)

The non-trivial part of this procedure is to find the matrix ŜA0 . A systematic way to do that, 
based on the Magnus exponentiation was suggested in Ref. [20]. Instead, we do that iteratively, 
using the sparse nature of the matrix A0 and considering different blocks of A0 separately. As 
an illustration, consider two integrals from the list of master integrals, I2 and I3. Neglecting the 
matrix A1, we find that they satisfy the system of coupled differential equations 

d

dω

(
I2
I3

)
= 1

ω + 1

(
0 −2
0 1

)(
I2
I3

)
. (3.10)

Integrating this equation, we find (
I2
I3

)
= Ŝ0

(
C1
C2

)
, Ŝ0 =

(−1 −2ω

0 ω + 1

)
, (3.11)

where C1,2 are the two integration constants. Since the above solution satisfies the system of 
differential equations for arbitrary C1, C2, the matrix Ŝ0 satisfies the original differential equation 

dŜ0 = 1
(

0 −2
0 1

)
Ŝ0 (3.12)
dω ω + 1
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and, therefore, can be taken to be a part of ŜA0 . Finally, we compute F = Ŝ−1
0 I and find

F2 = −I2 + 2ω

1 + ω
I3 = −ε2(−s)2ε+1

[
(ω + 1) + 2ω

]
,

F3 = 1

1 + ω
I3 = ε2(−s)2ε+1 .

The system of differential equations for the integrals F2,3 is then guaranteed to be in the canoni-
cal form. We find 

d

dω

(
F2
F3

)
= ε

(
− 2

ω+1
4

ω+1
1

ω+1 − 1
ω

− 2
ω+1 − 1

ω

)(
F2
F3

)
. (3.13)

We apply this procedure block by block, to the block-triangular matrix A0 + εA1 and obtain 
the canonical system of differential equations that we write in the following form 

dF(ω) = ε dB(ω)F(ω). (3.14)

The canonical basis of the master integrals F(ω) reads⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε2(ε − 1)(−s)2ε

−ε2(−s)2ε+1
[
(ω + 1) + 2ω

]

ε2(−s)2ε+1

ε3(−s)2ε+1

ε2
[
(1 − ε) 2√

1+4ω
(−s)2ε + ε

3(1+2ω)√
1+4ω

(−s)2ε+1 − (−s)2ε+2 ω2√
1+4ω

]

ε2
[
(1 − ε)(−s)2ε

√
1+4ω

2 + (−s)2ε+1 (ω+1)
√

1+4ω
4 + (−s)2ε+1 (ω+1)

√
1+4ω

2

+ (−s)2ε+2ω
√

1 + 4ω

]

ε4(−s)2ε+1

ε4(−s)2ε+1

ε4(−s)2ε+2√
4ω + 1

ε2(−s)2ε+1

−ε2(−s)2ε+2√
4ω + 1

ε2
[

1−ε
2 (−s)2ε + (−s)2ε+1 ω+1

4 + (−s)2ε+1 ω+1
2 + (−s)2ε+2ω

+ (−s)2ε+2 + (1 − 2ε)(−s)2ε+2ω

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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For the matrix B(ω) we obtain4

B(ω) = B1 logω + B2 log(1 + ω)+
+ B3 [log(−1 + √

1 + 4ω) − log(1 + √
1 + 4ω)] + B4 log(1 + 4ω). (3.15)

The ω-independent matrix coefficients in the above equation are given by

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
1
2

1
4

1
2 − 1

2 0 0 −2 0 0 0 0 0
−1 − 1

2 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1

2
1
2 0 0 0 0 0 0 0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
0 −2 4 0 0 0 0 0 0 0 0 0
0 1 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.16)

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
−4 0 0 3 0 0 0 0 0 0 0 0
1
2 − 3

4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 − 1

2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
6 3 0 −8 0 0 −8 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 2 0 0 0 0 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

4 The signs of the arguments of the logarithms are chosen to ensure that for positive ω the logarithms are real.
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B4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.17)

It is convenient to remove the square roots from the Eqs. (3.14), (3.15) by changing variables 
ω → y where5

y =
√

1 + 4ω − 1√
1 + 4ω + 1

. (3.18)

The differential equations (3.14) take the following form 

dF(y) = ε dC(y)F(y), (3.19)

where the matrix C reads 

C(y) = C1 logy + C2 log(1 − y) + C3 log(1 + y) + C4 log(1 − y + y2). (3.20)

The y-independent matrices C1,...,4 are

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 −3 1 0 0 0 0 0 0 0
−4 0 0 3 −1 0 0 0 0 0 0 0
1
2 − 3

4 0 0 0 −1 0 0 0 0 0 0
1
2

1
4

1
2 − 1

2 − 1
2 −1 −2 0 0 0 0 0

−1 − 1
2 0 0 0 0 0 −2 0 0 0 0

6 3 0 −8 0 0 −8 4 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
1 1

2
1
2 0 0 2 0 0 0 0 −2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

5 The relations between s, ω and y are summarized in Table 1.
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C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 0 0 0 0 0 0 0
0 4 −8 0 0 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0
−1 − 1

2 −1 1 0 0 4 0 0 0 0 0
2 1 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 2 0
−2 −1 −1 0 0 0 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.21)

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
0 −2 4 0 0 0 0 0 0 0 0 0
0 1 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.22)

It is straightforward to write the solution of the system of differential equations (3.19) as 
Taylor series in ε

F(y) =F (0)
0 + ε

⎡
⎣ y∫

0

C(τ1)F (0)
0 dτ1 +F (1)

0

⎤
⎦+

+ ε2

⎡
⎣ y∫

C(τ1)

τ1∫
C(τ2)F (0)

0 dτ2dτ1 +
y∫
C(τ1)F (1)

0 dτ1 +F (2)
0

⎤
⎦ + ...,

(3.23)
0 0 0
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Table 1
Different kinematic regions in s, ω and y.

Variable Euclidean Minkowski, below threshold Above threshold

s −∞ < s < 0 0 < s < 4M2 4M2 < s < +∞
ω = −M2

s 0 < ω < +∞ −∞ < ω < − 1
4 − 1

4 < ω < 0

y =
√

1+4ω−1√
1+4ω+1

0 < y < 1 eiϑ , 0 < ϑ < π −1 < y < 0

where F (i)
0 are integration constants that can not be fixed from the differential equations.

Given the iterative structure of the solution, it can be written as a linear combination of the so-
called Goncharov’s polylogarithms (GPLs), also known as hyperlogarithms, defined as [13–15,
21]

G(mw,mw−1;x) :=
{

1
w! logw x if mw = (0, . . . ,0)∫ x

0 f (mw; τ) G(mw−1; τ)dτ if mw �= (0, . . . ,0)
, (3.24)

where mw indicates the vector (mw, mw−1). The functions f (a; τ) represent the integration 
kernels; for our system of differential equations they span the following set 

f (0; τ) = 1

τ
, f (1; τ) = 1

τ − 1
, f (−1; τ) = 1

τ + 1
, f (r; τ) = 2τ − 1

τ 2 − τ + 1
. (3.25)

The last term in the set is quadratic in the integration variable; it is possible to re-write it in a 
usual linear form 

f (r; τ) = 2τ − 1

τ 2 − τ + 1
= 1

τ − r+
+ 1

τ − r−
= f (r+; τ) + f (r−; τ), r± = e±i π

3 , (3.26)

at the expense of introducing complex-valued poles. This last step is essential for numerical 
evaluation of the GPLs but it is not required to integrate the system of differential equations 
since, thanks to the linearity of the differential equations and the definition of the GPLs, 

G(. . . , r, . . . ;x) = G(. . . , r−, . . . ;x) + G(. . . , r+, . . . ;x). (3.27)

This implies that we can perform the analytic integration using the symbol r and then, for the 
numerical evaluation of the final result, switch to r± using Eq. (3.27).6

In Table 1 the relations among s, ω and y, as well as the different kinematic regions, are 
summarized.

4. Boundary conditions and analytic continuation

Linear differential equations allow us to restore the dependencies of master integrals on ω up 
to a single constant. The constant can be fixed by computing the required integral at any point 
ω = ω0 and comparing the result with the solution of the differential equation.

It turns out to be convenient to determine the boundary conditions by computing the master 
integrals in ω → ∞ or y → 1 limit. Since ω = −M2/s, this corresponds to M2 → ∞ at fixed 
s; in this limit the integrals can be easily computed using the so-called large-mass expansion 
procedure [24]. The large-mass expansion procedure can be formulated as follows: consider 

6 The generalization of GPLs studied here has been already considered in detail in [22,23].
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two different scalings for each of the loop momenta k1,2 ∼ M and k1,2 ∼ √
s and, for a chosen 

scaling, systematically expand the integrand in Taylor series in all small variables. The set of 
small variables will differ from scaling to scaling; for example, if k1 ∼ k2 ∼ M , one Taylor 
expands in external momenta but if the scaling k1 ∼ M , k2 ∼ √

s is considered, one Taylor 
expands in the external momenta and k2. It is easy to see that, to leading order in s/M2, most of 
the master integrals are expressed in terms of two-loop tadpole integrals and, in some cases, in 
terms of products of one-loop three- and two-point integrals and one-loop tadpole integrals.

As an illustration, consider the non-planar master integral 

F9(ω) = ε4(−s)2ε+2
√

4ω + 1 . (4.1)

We are interested in determining its behavior in the y → 1 limit. By applying the large mass 
expansion, we find that the non-planar integral scales as 

lim
M�√

s
= =O

(
M−4

)
(4.2)

in the large-M limit. This implies that the large-M limit of the F9 non-planar master integral 
reads 

F9(ω) ∼ ε4(−s)2ε+2
√

4ω + 1

M4
∼ 1

ω3/2
∼ (1 − y)3, (4.3)

where we used relations among s, ω and y variables summarized in Table 1. F9 vanishes as 
(1 − y)3 as y goes to 1, and this information is sufficient to fix the constant of integration for this 
master integral.

A similar analysis reveals that only three master integrals F1, F2, F10 possess non-vanishing 
y → 1 limit. These limits are

lim
y→1

F1(y) = −(1 − y)4ε 	(1 + 2ε)	(1 − ε)

2	(ε + 1)
, (4.4)

lim
y→1

F2(y) = (1 − y)4ε 	(1 + 2ε)	(1 − ε)

	(ε + 1)
, (4.5)

lim
y→1

F10(y) = (1 − y)4ε 	2(1 − ε)

	(1 − 2ε)
. (4.6)

To fix the boundary conditions, we need to evaluate the GPLs of the form G(m, y), where m
is composed of the elements of the set 

{ 0, 1, −1, ei π
3 , e−i π

3 }, (4.7)

and the limit y → 1 is taken where possible. For weights higher than three, not all the Goncharov 
polylogarithms at y = 1 with the arguments from Eq. (4.7) can be analytically expressed in terms 
of canonical irrational numbers such as π and ζ(n). Nevertheless, we expect that the boundary 
constants are linear combinations of these irrational numbers; to find them we follow a numerical 
approach. We use our solution of the differential equations and the boundary conditions discussed 
above to find the integration constants numerically with high precision.7 We then fit the resulting 

7 For the evaluation of the GPLs, the GINAC implementation was used, see Ref. [15].
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numerical value to a linear combination of π2 and ζ(n) of a well-defined weight. For example, 
at weight two we only have π2, at weight three ζ(3), at weight four π4, at weight five ζ(5) and 
π2ζ(3) and at weight six π6 and ζ(3)2. For each of the master integrals, we have achieved the 
matching of the numerical and the analytic results to at least 750 digits.

Our final remark concerns the analytic continuation of the master integrals F(y). So far, we 
have studied them in the Euclidean region but we need them in the region where s = m2

H > 0
and, yet, s < 4M2. The correct analytic continuation is achieved by replacing s → s + i0 at fixed 
M2. It is easy to see that this implies ω → ω + i0 and y → y + i0.

All the master integrals evaluated here have been compared for at least four different values 
of s/M2, both in the Euclidean and Minkowski region, to the numerical results obtained with the 
program Secdec [25]. In all cases we found excellent agreement.

5. Form factor for gg → H

The gg → H amplitude is described by a single form factor, as explained in Section 2. This 
form factor receives contributions from loops with W and Z bosons. The form factor is finite in 
four dimensions (ε → 0) and can be written as:

F(s,m2
W ,m2

Z) = −(4π)4ε(−s)2ε	2(ε + 1)

× iαSα2

4π sin4 ϑW

v

2

[
4A(yW ) + 2

cos4 ϑW

(
5

4
− 7

3
sin2 ϑW + 22

9
sin4 ϑW

)
A(yZ)

]
, (5.1)

where 

yW =
√

1 − 4m2
W/m2

H − 1√
1 − 4m2

W/m2
H + 1

, yZ =
√

1 − 4m2
Z/m2

H − 1√
1 − 4m2

Z/m2
H + 1

. (5.2)

We take the CKM matrix to be an identity matrix. The contributions of W bosons is computed 
in Eq. (5.1) taking into account first and second generations. The contribution of the Z boson is 
calculated for five massless quarks (u, d , s, c and b).

The function A in Eq. (5.1) can be expanded in ε; we have computed it through O
(
ε2

)
: 

A(y) =A0(y) + εA1(y) + ε2A2(y) +O
(
ε3

)
. (5.3)

The function A0(y) reads

A0(y) = 1

6(y − 1)3

[
−6 − 6y(y2 − y + 2)G(0,0, r, y) − 6(1 − y)(y2 − y + 1)G(r, y)

+ (y + 1)(y2 + 1)[18G(−1,0, r, y) + π2G(−1, y) − 18G(−1,0,0, y)]
+ 12y(2y2 + y + 1)[G(0,1,0, y) − G(0,1, r, y)]
+ 2(1 − y)(y2 + y + 1)[6G(1,0, r, y) − 12G(1,1, r, y) − π2G(1, y) + 12G(1,1,0, y)]
+ 6y(1 − y)[G(0, r, y) − 2G(1, r, y) + G(0,0, y) − 2G(1,0, y)]
− 6y2(y + 1)G(0,0,0, y) − y(3π2y2 + 12y2 + π2y − 18y + 2π2 + 6)G(0, y)

− 12(1 − y)(2y2 + y + 2)G(1,0,0, y) − 6(y + 3)(y2 + 1)ζ(3)

+ (1 − y)(12y2 − π2y − 24y + 12)
]
. (5.4)
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We see that, although A0 is the finite part of a 2-loop form factor, the highest weight of the 
GPLs that appears in Eq. (5.1) is three. This happens because none of the master integrals that 
have 1/ε4 poles contribute to the gg → H amplitude at leading order in the ε → 0 limit.

The expression for F in Eq. (5.1) has been compared with a previous calculation in Ref. [4]
and agreement was found. The terms A1(y) and A2(y) are new. They can be found in the ancil-
lary file provided with this paper.

6. Conclusions

We have presented a calculation of the mixed two-loop QCD-electroweak corrections me-
diated by massless quarks to the production of the Higgs boson in gluon fusion. We extended 
the known result for these corrections to two higher orders in the dimensional regularization 
parameter ε. This is one of the ingredients required for the computation of the NLO mixed 
QCD-electroweak corrections to gg → H amplitudes. We employed the method of differential 
equations, determined a canonical basis of master integrals and expressed all the relevant func-
tions in terms of Goncharov polylogarithms. Finally, we used a mixed numerical and analytical 
approach, based on the PSLQ algorithm, in order to fix all necessary boundary conditions. This 
establishes the necessary framework to successfully address the calculation of the missing three-
loop virtual contributions, whose calculation is ongoing.
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Appendix A. F0 values

In this appendix we present the boundary conditions for the master integrals defined in 
Eq. (3.23). The weights 0, 1 and 2 were determined analytically. For weights 4, 5 and 6 the 
results were obtained by fitting numerical results to an analytic Ansatz to at least 750 digits.

F1(y) = ε2(ε − 1)(−s)2ε (A.1)

F (0)
0,1 = −1

2
, F (1)

0,1 = 0, F (2)
0,1 = −π2

6
, F (3)

0,1 = ζ(3),

F (4)
0,1 = −π4

20
, F (5)

0,1 = 1

3

[
π2ζ(3) + 9ζ(5)

]
, F (6)

0,1 = −ζ 2(3) − 61π6

3780
.

(A.2)

F2(y) = −ε2(−s)2ε+1

[
(ω + 1) + 2ω

]
(A.3)
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F (0)
0,2 = 1, F (1)

0,2 = 0, F (2)
0,2 = −π2

3
, F (3)

0,2 = −10ζ(3),

F (4)
0,2 = −11π4

90
, F (5)

0,2 = 10π2ζ(3)

3
− 54ζ(5), F (6)

0,2 = 50ζ 2(3) − 121π6

1890
.

(A.4)

F3(y) = ε2(−s)2ε+1 (A.5)

F (0)
0,3 = 0, F (1)

0,3 = 0, F (2)
0,3 = π2

6
, F (3)

0,3 = 8ζ(3),

F (4)
0,3 = 7π4

72
, F (5)

0,3 = 48ζ(5) − 3π2ζ(3), F (6)
0,3 = 127π6

2160
− 48ζ 2(3).

(A.6)

F4(y) = ε3(−s)2ε+1 (A.7)

F (0)
0,4 = 0, F (1)

0,4 = 0, F (2)
0,4 = 0, F (3)

0,4 = −2ζ(3),

F (4)
0,4 = − π4

180
, F (5)

0,4 = −π2ζ(3)

3
− 12ζ(5), F (6)

0,4 = 9ζ 2(3) − 37π6

3780
.

(A.8)

F5(y) = ε2

⎡
⎣−2(ε − 1)(−s)2ε + ε

3(1 + 2ω)√
1 + 4ω

(−s)2ε+1 +

− (−s)2ε+2 ω2

√
1 + 4ω

]
(A.9)

F (0)
0,5 = 0, F (1)

0,5 = 0, F (2)
0,5 = −π2

3
, F (3)

0,5 = −4ζ(3),

F (4)
0,5 = −41π4

180
, F (5)

0,5 = π2ζ(3) − 30ζ(5), F (6)
0,5 = 21ζ 2(3) − 97π6

756
.

(A.10)

F6(y) = ε2

⎡
⎣(1 − ε)(−s)2ε

√
1 + 4ω

2
+ (−s)2ε+1 (ω + 1)

√
1 + 4ω

4
+

+ (−s)2ε+1 (ω + 1)
√

1 + 4ω

2
+ (−s)2ε+2ω

√
1 + 4ω

]
(A.11)

F (0)
0,6 = 0, F (1)

0,6 = 0, F (2)
0,6 = π2

4
, F (3)

0,6 = 6ζ(3),

F (4)
0,6 = 5π4

, F (5)
0,6 = 36ζ(5) − 5π2ζ(3)

, F (6)
0,6 = 77π6

− 36ζ 2(3).

(A.12)
48 2 1440
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F7(y) = ε4(−s)2ε+1 (A.13)

F (0)
0,7 = 0, F (1)

0,7 = 0, F (2)
0,7 = 0, F (3)

0,7 = ζ(3),

F (4)
0,7 = 5π4

72
, F (5)

0,7 = 7π2ζ(3)

6
+ 6ζ(5), F (6)

0,7 = 3ζ 2(3)

2
+ 13π6

270
.

(A.14)

F8(y) = ε4(−s)2ε+1 (A.15)

F (0)
0,8 = 0, F (1)

0,8 = 0, F (2)
0,8 = −π2

6
, F (3)

0,8 = 4ζ(3),

F (4)
0,8 = −π4

9
, F (5)

0,8 = π2ζ(3)

3
+ 20ζ(5), F (6)

0,8 = −16ζ 2(3) − 173π6

3780
.

(A.16)

F9(y) = ε4(−s)2ε+2
√

4ω + 1 (A.17)

F (0)
0,9 = 0, F (1)

0,9 = 0, F (2)
0,9 = −π2

3
, F (3)

0,9 = −24ζ(3),

F (4)
0,9 = 13π4

45
, F (5)

0,9 = 46π2ζ(3)

3
− 100ζ(5), F (6)

0,9 = 264ζ 2(3) + 397π6

945
.

(A.18)

F10(y) = ε2(−s)2ε+1 (A.19)

F (0)
0,10 = 1, F (1)

0,10 = 0, F (2)
0,10 = −π2

6
, F (3)

0,10 = −2ζ(3),

F (4)
0,10 = −π4

40
, F (5)

0,10 = π2ζ(3)

3
− 6ζ(5), F (6)

0,10 = 2ζ 2(3) − 79π6

15120
.

(A.20)

F11(y) = −ε2(−s)2ε+2
√

4ω + 1 (A.21)

F (0)
0,11 = 0, F (1)

0,11 = 0, F (2)
0,11 = π2

6
, F (3)

0,11 = 2ζ(3),

F (4)
0,11 = − π4

, F (5)
0,11 = 6ζ(5) − π2ζ(3), F (6)

0,11 = −6ζ 2(3) − 47π6

.

(A.22)
360 15120
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F12(y) = ε2

[
1 − ε

2
(−s)2ε + (−s)2ε+1 ω + 1

4

+ (−s)2ε+1 ω + 1

2
+ (−s)2ε+2ω + (−s)2ε+2

+ (1 − 2ε)(−s)2ε+2ω

]
(A.23)

F (0)
0,12 = 0, F (1)

0,12 = 0, F (2)
0,12 = π2

12
, F (3)

0,12 = 4ζ(3),

F (4)
0,12 = 77π4

720
, F (5)

0,12 = 30ζ(5) − 3π2ζ(3)

2
, F (6)

0,12 = 1711π6

30240
− 30ζ 2(3).

(A.24)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.nuclphysb.2017.01.020. 
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