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Abstract

The standard procedure for computing scalar multi-loop Feynman integrals consists in reducing them 
to a basis of so-called master integrals, derive differential equations in the external invariants satisfied by 
the latter and, finally, try to solve them as a Laurent series in ε = (4 − d)/2, where d are the space–time 
dimensions. The differential equations are, in general, coupled and can be solved using Euler’s variation of 
constants, provided that a set of homogeneous solutions is known. Given an arbitrary differential equation 
of order higher than one, there exists no general method for finding its homogeneous solutions. In this 
paper we show that the maximal cut of the integrals under consideration provides one set of homogeneous 
solutions, simplifying substantially the solution of the differential equations.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The method of differential equations [1–4] is undoubtedly one of the most powerful tech-
niques for the calculation of multi-loop Feynman integrals. The latter is based on the possibility 
of reducing a family of Feynman integrals to a small subset of basic integrals, the so-called mas-
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ter integrals (MIs), through the repeated use of integration by parts identities (IBPs) [5–7]. The 
IBPs themselves can then be used to show that the MIs fulfill systems of linear coupled differ-
ential equations in the external invariants, whose solution is usually much simpler than a direct 
integration over the loop momenta. For a review see [8,9].

We are normally interested in computing the master integrals as Laurent series in ε =
(4 − d)/2. To this aim, there are two fundamental steps which must be achieved. First of all, 
given a sector with N coupled master integrals, one needs a way to determine the minimum num-
ber of coupled differential equations in the limit d → 4. This is important since it determines the 
effective degree of the differential equation that has to be iteratively solved. If all master integrals 
decouple (or if the homogeneous system takes a triangular form), we are left effectively with a 
series of first order differential equations in d = 4, which can be solved by quadrature. If, in-
stead, some of the integrals remain coupled, one has to solve a higher order differential equation; 
naively one expects that the higher is the rank, the more involved the mathematical structure of 
the solutions will be. A way towards a systematical determination of the minimum degree of the 
coupled equations has been suggested in [10,11], where it was shown that the information useful 
to decouple some of the differential equations in d = 4 can be read off from the integration by 
parts identities close to d = 2 n, with n ∈N.

The choice of master integrals is, of course, arbitrary and more recently it was shown that by 
properly selecting the basis of integrals one can simplify the form of the differential equations 
substantially, bringing them to a so-called canonical form [12]. One of the fundamental properties 
of a canonical form is that the homogeneous part of the system of differential equations becomes 
trivial in the limit ε → 0

∂x �m =O(ε),

where �m is the vector of master integrals and x is a generic external invariant. This implies that 
the homogeneous solution for ε = 0 is a constant. Different algorithms have been proposed for 
the construction of a canonical basis, starting from the properties of the system of differential 
equations. Currently, they are all limited to special situations, such as a linear dependence on ε
[13] or the dependence on a single kinematic variable [14–16]. Steps towards algorithms valid 
also in the case of several variables have been made in [17] and more recently and thoroughly 
in [18]. Both papers make use of Ansätze for the linear combinations of master integrals which 
fulfill canonical differential equations. While such approaches are often very useful, their appli-
cability remains for now limited to those cases where all square roots can be removed and the 
alphabet can be completely rationalized. As it is well known, this is not always possible even 
when a canonical basis is known to exist, for a recent example see [20]. On the other hand, 
in [12] it was suggested that one of the crucial criteria for selecting candidate integrals which 
fulfill canonical differential equations is the study of their leading singularity, which can be done 
by inspecting their generalized cuts [9]. While a complete understanding of the concept of lead-
ing singularity and of a canonical basis are available only in the case of integrals that evaluate to 
multiple-polylogarithms and generalizations thereof1 [19], it has been suggested that the study of 
the maximal cut should be the starting point to extend these considerations also to more compli-
cated cases [20]. A crucial observation is that the maximal cut provides by construction exactly a 
solution of the homogeneous system of differential equations. The connection between unitarity 

1 We refer here to Feynman integrals whose solution can be written as iterated integrals over d-log forms of arbitrarily 
complicated (i.e. not necessarily linear) arguments.
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cuts and differential equations is not new. In [21], for example, the second order differential equa-
tion satisfied by the two-loop massive sunrise graph was solved by inferring the homogeneous 
solution from the calculation of the imaginary part of the graph. More in general, this connection 
has been largely exploited in the so-called reverse unitarity [22] method, while a new way of 
solving IBPs using the information coming from the unitarity cuts has been proposed in [23]. 
Finally, similar conclusions to the ones drawn in this paper have been already exploited in the 
context of the DRA method based on dimensional recurrence relations [24].

A way to algorithmically find a homogeneous solution of a coupled system of equations is in-
deed very desirable. In fact, once we are confident to have reduced the degree of the differential 
equation to the minimum possible, the problem of finding an integral representation for the solu-
tion relies on the ability to solve its homogeneous part. Once a homogeneous solution is known, 
one can use Euler’s method of variation of constants in order to build up the inhomogeneous 
solution. The goal of this paper is to show that the maximal cut can be used in many non-trivial 
examples as a powerful tool to compute the homogeneous solutions, in particular when the lat-
ter can be written in terms of complete elliptic integrals. One should recall, in fact, that given 
a coupled system of N differential equations, a complete solution requires finding N linearly 
independent solutions. In the case of elliptic integrals, one is usually left with systems of two 
coupled equations, which require therefore finding two independent solutions. While the max-
imal cut provides only one solution, once this is known, the second can be obtained by simply 
exploiting the properties of the complete elliptic integrals.

The rest of the paper is organized as follows. In Section 2 we set up the notation, summarize 
the general idea and give a prescription to compute the maximal cut of integrals with squared 
propagators. In Section 3 we apply the method to a simple one-loop example and show explicitly 
the one-to-one relation between the maximal cut and the solution of its homogeneous differential 
equation. This relation is true for any values of d and works of course both ways, which implies 
that it also provides us with a powerful tool to compute the maximal cut of any one-loop integral 
in d dimensions: this can be done simply by solving its homogeneous differential equations. In 
Section 4 we then move to more interesting two loop examples which evaluate to integrals over 
elliptic integrals. Finally we conclude in Section 5.

2. Maximal cut and differential equations

Let us consider a family of l-loop Feynman integrals with r different propagators and s irre-
ducible scalar products,

I(d;x;a1, ..., ar ;b1, ..., bs) =
∫ l∏

j=1

Ddkj

S
b1
1 ..., S

bs
s

D
a1
1 ...D

ar
r

. (2.1)

The integrals are functions of the dimensional regularization parameter d and of some external 
invariants which we call collectively x. First of all, we should define what we mean with cutting 
an integral and, in particular, with its maximal cut. It is well known that unitarity cuts can be 
used to study the discontinuity of Feynman graphs with respect to a given Mandelstam invariant. 
The original integral can then be reconstructed from its discontinuities by using dispersion rela-
tions [25–27]. For more recent developments in this directions see for example [28,29]. Here we 
will not enter into this fascinating and rich subject. The only thing we will need is an operative 
definition of maximal cut for an integral of the form (2.1).

Cutting a propagator in a Feynman diagram means, loosely speaking, to force the particle 
propagating through it to be on-shell; mathematically, we can achieve this relatively easily if the 
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propagator is raised to power one. In this case, we can simply substitute the propagator with a 
Dirac δ-function which forces the momentum of the propagator on-shell by imposing a constraint 
on the components of the loop momenta. We define the maximal cut of a diagram as the simul-
taneous cut of all its propagators and we will always assume such multiple cut to exist. In fact, if 
the set of on-shell conditions for a given diagram does not admit any solution, the diagram can 
be proven to be reducible, i.e. it can be trivially expressed as a linear combination of diagrams 
with a reduced number of propagators [30]. In the rest of our discussion will focus on diagrams 
corresponding to irreducible topologies, whose maximal cut is therefore a well defined object. 
As we will show in the following, we found it convenient to compute the maximal cut of two-
loop graphs by first localizing one of the one-loop sub-diagrams, and then integrating directly 
the remaining δ-functions obtained cutting the second loop. By appropriately choosing which 
sub-loop to cut first, the computation can be substantially simplified. Moreover this procedure 
can easily be generalized for higher loops. We note here that an alternative way of performing 
the maximal cut is going through Baikov’s representation for the loop integrals [31], as explained 
for example in [23].

2.1. Cutting squared propagators

It is useful to define what we mean with cutting a squared propagator. Indeed, at one loop one 
is always left with at most one master integral per topology, which can always be chosen with 
propagators raised at most to power one. On the other hand, in a generic multi-loop calculation, 
more integrals can remain independent and we might have to consider also integrals with squared 
internal propagators. In what follows, we will use two operative prescriptions to cut a squared 
propagator, which produce equivalent results. We will use these prescriptions to compute the 
maximal cut but, of course, they can be applied for the computation of any other cut.

1. The first prescription is based on integration by parts identities. Given any family of Feynman 
integrals, we can use IBPs to write any integral with squared propagators in terms of similar 
integrals with propagators raised at most to unit powers and, possibly, scalar products at the 
numerator. Let us take such an integral Idot(d; x) and write

Idot(d;x) =
N∑

j=1

cj (d;x)mj (d;x) + subtopologies , (2.2)

where mj(d; x) are the n linearly independent master integrals which do not contain any 
squared propagator. The cj (d; x) are instead rational functions in the dimensions d and in 
the Mandelstam invariants x.
If we apply now a maximal cut on (2.2) we get

Cut(Idot(d;x)) =
N∑

j=1

cj (d;x)Cut(mj (d;x)) , (2.3)

where we used the fact that the maximal cut of the subtopologies is identically zero.
2. An alternative prescription to cut a squared propagator is as follows. Let us take an integral 

defined as

Idot(d;m2
1, ...,m

2
s , ...,m

2
r , x) =

∫ l∏
Dd kj

1

D1(m
2
1)...D

2
s (m

2
s )...Dr(m2

r )
, (2.4)
j=1
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where the propagators Dk could in general depend on some masses mk , some or all of which 
could of course also be zero. We are integrating over l-loops and assuming that the integral 
has r propagators; the s-th propagator is squared. In order to compute the maximal cut of 
this integral, let us consider the associated integral

I(d;m2
1, ..., m̃

2
s , ...,m

2
r , x) =

∫ l∏
j=1

Dd kj

1

D1(m
2
1)...Ds(m̃2

s )...Dr(m2
r )

, (2.5)

where all propagators have unit power and we have modified the mass m2
s → m̃2

s in the 
propagator Ds , such that m̃2

s is different from any other mass in the remaining propagators. 
It is clear then that

Idot(d;m2
1, ...,m

2
s , ...,m

2
r , x) = lim

m̃2
s →m2

s

∂

∂ m̃2
s

I(d;m2
1, ..., m̃

2
s , ...,m

2
r , x) , (2.6)

and therefore

Cut(Idot(d;m2
1, ...,m

2
s , ...,m

2
r , x)) = lim

m̃2
s →m2

s

∂

∂ m̃2
s

Cut(I(d;m2
1, ..., m̃

2
s , ...,m

2
r , x)) .

(2.7)

If the limit is smooth, this provides us with a second operative prescription for computing 
the maximal cut of a graph with a squared propagator.

2.2. Differential equations and the maximal cut

Let us switch now to the connection between differential equations and the maximal cut de-
fined above. Let us consider again a family of Feynman integrals like in Eq. (2.1), which is 
reduced to N independent master integrals mi(ε; x), ..., mN(ε; x). The master integrals satisfy a 
system of N coupled differential equations in the external invariants

∂x mi(d;x) = Hij (d;x)mj (d;x) + Gi(d;x), (2.8)

where the Hij (d; x) are the coefficients of the homogeneous system, while the Gi(d; x) contain 
the dependence on the sub-topologies, which are simpler graphs with fewer propagators. Imagine 
now to perform a maximal cut on the master integrals mi(d; x), which corresponds to cutting all 
r propagators. As we discussed above, we only consider irreducible cases where all r propagators 
can be simultaneously cut. Clearly, if we imagine to apply our cutting procedure on Eq. (2.8) we 
will be left with

∂x Cut(mi(d;x)) = Hij (d;x)Cut(mj (d;x)) , (2.9)

where we use the notation Cut(mi(d; x)) for the maximal cut of the integral under consideration 
and we have obviously

Cut(Gi(d;x)) = 0 . (2.10)

Eq. (2.10) should be obvious, since all integrals contained in Gi(d; x) contain fewer propagators 
than the master integrals mi(d; x) and, consequently, applying the same cut on the latter must 
produce zero. We should stress here that, in general, the maximal cut exists only for complex 
values of the kinematical invariants. Eqs. (2.9), (2.10) are the central observations on which 
this paper is based. Similar conclusions in the context of the DRA method have been drawn 
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in [24]. What they tell us is that the maximal cut of the master integrals mi(d; x) must satisfy 
the homogeneous part of the system (2.8). A remark here is in order. It is clear that if, for any 
reason, the maximal cut of any of the master integrals mi(d; x) turns out to be zero for a given 
value of the dimensions d , this implies that the master under consideration must decouple from 
the system (2.9) for this value of d . Indeed, while the trivial solution mi(d; x) = 0 is always a 
solution of the homogeneous system, the latter will in general admit other non-trivial solutions, 
which cannot be computed by evaluating the maximal cut. We will see an explicit example of 
this later on in Section 4.2.

Let us see how this works with a very simple example. We consider the one-loop massive 
bubble

Bub(d; s,m2
1,m

2
2) = =

∫
Ddk

1

(k2 − m2
1)((k − p)2 − m2

2)
, (2.11)

where p2 = s. The latter satisfies very simple differential equations in s, m2
1 and m2

2. The one 
in s, for example, reads

d

ds
Bub(d; s,m2

1,m
2
2)

= 1

2

(
3 − d

(m1 − m2)2 − s
+ 3 − d

(m1 + m2)2 − s
+ 2 − d

s

)
Bub(d; s,m2

1,m
2
2)

+ G(d; s,m2
1,m

2
2) , (2.12)

where G(d; s, m2
1, m

2
2) is the inhomogeneous part which depends only on the tadpoles

Tad(d;m) =
∫

Ddk
1

k2 − m2
= md−2

(d − 2)(d − 4)
. (2.13)

Eq. (2.13) defines also our integration measure, whose exact value will nevertheless be irrelevant 
in this context. The homogeneous part of the equation (2.12) reads (we use the suffix H to indicate 
that we are neglecting all inhomogeneous terms)

d

ds
BubH (d; s,m2

1,m
2
2)

= 1

2

(
3 − d

(m1 − m2)2 − s
+ 3 − d

(m1 + m2)2 − s
+ 2 − d

s

)
BubH (d; s,m2

1,m
2
2) (2.14)

and it admits the solution for generic d

BubH (d; s,m2
1,m

2
2) = c1 (−s)1− d

2

(
m4

1 − 2m2
1

(
m2

2 + s
)

+
(
m2

2 − s
)2

) d−3
2

, (2.15)

where c1 is an irrelevant multiplicative constant. By the considerations above, Eq. (2.15) is also 
the d-dimensional maximal cut of the one-loop bubble. Clearly, in this case, the maximal cut 
coincides with the cut in the s-channel, which reads

Cut

⎛⎜⎝
⎞⎟⎠ =

∫
Ddk δ(k2 − m2)δ((k − p)2 − m2) . (2.16)
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The cut is straightforward to compute in the frame pμ = (
√

s, �0) and one immediately obtains

Cut

⎛⎜⎝
⎞⎟⎠ = c2 (−s)1− d

2

(
m4

1 − 2m2
1

(
m2

2 + s
)

+
(
m2

2 − s
)2

) d−3
2

,

(2.17)

where c2 is another constant whose exact value is irrelevant. Comparing Eq. (2.15) and Eq. (2.17)
it is clear that, up to an irrelevant multiplicative constant, the solution of the homogeneous equa-
tion coincides with the maximal cut of the graph.

A comment is in order. If a graph depends on more than one scale, like in the case above, the 
maximal cut provides the homogeneous solution of all differential equations in all Mandelstam 
invariants. In general, solving only the homogeneous equation in one of the invariants cannot 
capture the full dependence on all the remaining scales. For example, in the case of the one-loop 
bubble analyzed above, if we had solved only its homogeneous differential equations in ∂/∂m2

1, 
we would have not been able to determine the overall dependence on (−s)(1−d/2) in Eq. (2.17). 
Therefore, in order to get the full answer for the maximal cut we must solve all homogeneous 
differential equations in all Mandelstam invariants. While this example is straightforward, it con-
tains most of the features of the more complicated examples that we will study below.

Having retained full dependence on d in the example above might look overly complicated. 
Indeed, for physical applications, we will be eventually interested in the solution of the system 
of differential equations as a Laurent series in ε = (4 − d)/2. The discussion above applies of 
course for any integer values of d as well and, in particular, for d = 4. If we go back to the 
general equation (2.8), put d = 4 − 2ε and expand it in ε, we will quite in general end up with a 
system of equations in the form

∂x mi(ε;x) = Hij (x)mj (ε;x) +
∞∑

k=1

εk H
(k)
ij (x)mj (ε;x) + Gi(ε;x). (2.18)

Since we are interested in solving (2.18) as Laurent series in ε, the crucial step consists now in 
solving the homogeneous system evaluated for ε = 0

∂x hi(x) = Hij (x)hj (x) . (2.19)

Once the homogeneous solution is known, one can write order by order in ε an integral repre-
sentation for the inhomogeneous solution, which will then be represented in terms of iterated 
integrals. Naively, we expect that solving (2.19) must be substantially simpler than retaining full 
dependence on d . While this is indeed true, there exists no general algorithm to solve (2.19) if 
more than one equation is coupled, even for d = 4. It is sometimes useful to rephrase (2.19) as a 
N -th order differential equation for any of the functions hj(x) and try to solve the latter. As of 
today, a limited number of two-loop examples are known which require the solution of second 
order differential equations. In all these cases, a solution could be found in terms of complete el-
liptic integrals of the first and second kind with complicated arguments and irrational prefactors. 
The best known example is the two-loop massive sunrise graph [21,32,10,33–35], while more 
recently other, in some cases unrelated, examples have been worked out [36–39,20]. In all these 
cases, once the homogeneous solution was determined it became possible to write useful integral 
representations for the complete result.

Until now these results have been obtained with a case by case analysis. In this respect, very 
recently an interesting approach to solve a second order differential equation in terms of elliptic 
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integrals has been proposed in [20]. The latter is based on the possibility of reparametrizing the 
differental equations in terms of a suitably chosen parameter, in terms of which its solution in 
the form of elliptic integrals becomes manifest.

We will follow here a complementary approach. We will show that, also in complicated cases 
which require the introduction of elliptic integrals, the solution of the homogeneous equation for 
ε = 0 can be rather simply obtained from the maximal cut of the integral evaluated in d = 4. 
We will work out explicitly different examples, including the double box considered in [20]. 
While this will allow us to produce equivalent results, we believe that our approach has an inter-
est on its own, in particular since it can be at least in principle extended to any other arbitrarily 
complicated example. As we will see, the main limitation of our approach is the possibility of 
performing explicitly the integrals over the residual component of the loop momenta, after all 
δ-functions stemming from the propagators have been integrated out. This can potentially be a 
serious limitation. Nevertheless, we will show that in many cases this is not a problem and the 
calculation can be organized so to be left with only one residual one-dimensional integration. 
The complexity of this last integration depends, of course, on the integral under consideration. 
In simple cases which can be solved in terms of multiple polylogarithms, it can be usually per-
formed in terms of simple rational functions or square roots of rational functions. Whenever the 
result involves elliptic function, instead, one can use a quite general change of variable in or-
der to rephrase the result in standard form in terms of complete elliptic integrals. Finally, even 
if the last integrations cannot be performed analytically, this method allows to obtain relatively 
compact integral representations of one homogeneous solution of a complicated higher order 
differential equation, which is a very useful piece of information towards its complete solution.

In what follows we will see how the ideas described here work in practice in different ex-
amples. We will start analyzing more in detail a one-loop example, and move then to more 
interesting two-loop cases.

3. A one-loop three-point function

At one loop, for every topology, one finds always at most one master integral, which implies 
that one-loop integrals satisfy at most first order linear differential equations. It is then usually 
straightforward to integrate the homogeneous part of the differential equation by quadrature. 
According to the discussion above, this has to turn out to be identical to the computation of the 
maximal cut for the integral under consideration. Despite the simplicity of the calculations, we 
will do this here explicitly for an interesting example. This will allow us, on the one hand, to 
show some features of the procedure and, on the other, to obtain some useful formulas that we 
will recycle for the more interesting two-loop examples discussed below.

Let us consider a one-loop triangle with two massive internal propagators and three off-shell 
external legs

Tri(d;q2, q2
1 , q2

2 ,m2
a,m

2
b) =

=
∫

Ddk
1

(k2 − m2
a)(k − q1)2((k − q1 − q2)2 − m2

b)
, (3.1)

where in total generality q2 �= q2
1 �= q2

2 �= 0. In this case it is very simple to compute the maximal 
cut of the graph, in particular in d = 4:
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Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ =

∫
D4kδ(k2 − m2

a)δ((k − q1)
2)δ((k − q1 − q2)

2 − m2
b) .

(3.2)

We go to the reference frame qμ = (
√

q2, �0), qμ
1 = (E1, 0, 0, q1z), q

μ
2 = (E2, 0, 0, −q1z) with

q1z =
√

(q2 + q2
1 − q2

2 )2 − 4 q2 q2
1

2
√

q2

and obtain immediately (we neglect at every step irrelevant overall numerical constants)

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠

=
1∫

−1

dz

∞∫
0

dk̄k̄2

+∞∫
−∞

dk0δ(k
2 − m2

a)δ((k − q1)
2)δ((k − q1 − q2)

2 − m2
b)

=
1∫

−1

dz

∞∫
0

dk̄
k̄2

ωa

δ(q2
1 + m2

a − 2ωa E1 + 2k̄ q1z z) δ(q2 + m2
a − m2

b − 2ωa

√
q2) , (3.3)

where we defined k̄ = |�k| and ωa =
√

k̄2 + m2
a . Performing the integral in dk̄ = ωa/k̄ dωa we get

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ = 1

q1z

√
q2

1∫
−1

dz δ

(
q2

1 + m2
a − 2ω̄a E1

2q1z

√
ω̄2

a − m2
a

+ z

)
, (3.4)

where we have fixed ω̄a = (q2 + m2
a − m2

b)/2/
√

q2. Given that there exists a real or complex 
value for the momenta where the δ-function in (3.4) has support,2 we are left with

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ = 1√

(q2 + q2
1 − q2

2 )2 − 4 q2 q2
1

. (3.5)

Now, following our argument, this cut must be proportional to the solution of the homoge-
neous differential equations satisfied by Tri(4; q2, q2

1 , q2
2 , m2

a, m
2
b). It is very simple to derive the 

differential equations satisfied by the latter in all external invariants. As exemplification we write 
down here the homogeneous differential equation in q2 for generic d , which reads (again, we 
use the suffix H to indicate that we are neglecting all inhomogeneous terms in the differential 
equation)

2 As stated previously, it is a well-known fact that, in general, a solution for the maximal cut exists only if we allow 
the external invariants to assume complex values.
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∂

∂q2
TriH (d;q2, q2

1 , q2
2 ,m2

a,m
2
b)

= (q2
1 + q2

2 − q2)

q4
1 − 2q2

1 (q2
2 + q2) + (q2

2 − q2)2
TriH (d;q2, q2

1 , q2
2 ,m2

a,m
2
b)

+ (d − 4)C(q2, q2
1 , q2

2 ,m2
a,m

2
b)TriH (d;q2, q2

1 , q2
2 ,m2

a,m
2
b) , (3.6)

where C(q2, q2
1 , q2

2 , m2
a, m

2
b) is a cumbersome rational function. In the simpler case where mb =

ma the latter reads

C(q2, q2
1 , q2

2 ,m2
a)

= C(q2, q2
1 , q2

2 ,m2
a,m

2
a)

= ((m2
a + q2

1 )(q2
1 − q2

2 ) + s(m2
a − q2

1 ))((m2
a + q2

2 )(q2
1 − q2

2 ) + s(q2
2 − m2

a))

2
(
q4

1 − 2q2
1 (q2

2 + s) + (q2
2 − s)2

) (
s(m2

a − q2
1 )(m2

a − q2
2 ) + m2

a(q
2
1 − q2

2 )2
) . (3.7)

Putting d = 4 in Eq. (3.6), one sees that the entire dependence on the masses ma and mb disap-
pears and the solution reads

TriH (4;q2, q2
1 , q2

2 ,m2
a,m

2
b) = c√

(q2 + q2
1 − q2

2 )2 − 4 q2 q2
1

, (3.8)

where c is an integration constant. This is of course in perfect agreement with the result of the 
maximal cut calculation, Eq. (3.6).

Two comments are in order here. First of all, we could have of course solved Eq. (3.6) retaining 
full dependence in d . The result is relatively compact and reads

TriH (d;q2, q2
1 , q2

2 ,m2
a,m

2
b)

=
(
q4

1 − 2q2
1 (q2

2 + s) + (q2
2 − s)2

) 3−d
2

(
m2

a(m
2
b(q

2
1 + q2

2 − s) + q2
2 (q2

1 − q2
2 + s))

+q2
1 s(m2

b − q2
2 ) − m2

bq
2
1 (m2

b + q2
1 − q2

2 ) − m4
a q2

2

) d−4
2

(3.9)

Again, up to an overall constant, this is also the result of the calculation of the d-dimensional 
maximal cut of this triangle.

A second interesting feature of our result is that, in the limit d → 4, it does not depend either 
on ma or mb . This has some important consequences. Let us consider a similar integral, but with 
one of the two massive propagators squared, for example

Tri2a(d;q2, q2
1 , q2

2 ,m2
a,m

2
b) =

=
∫

Ddk
1

(k2 − m2
a)

2(k − q1)2((k − q1 − q2)2 − m2
b)

,

(3.10)

such that

Tri2a(d;q2, q2
1 , q2

2 ,m2
a,m

2
b) = ∂

2
Tri(d;q2, q2

1 , q2
2 ,m2

a,m
2
b) .
∂ ma
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Following our prescriptions for computing the maximal cut of this integral, we define simply

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ = ∂

∂ m2
a

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ , (3.11)

so that for d = 4 we obtain immediately

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ ∝ ∂

∂ m2
a

1√
(q2 + q2

1 − q2
2 )2 − 4 q2 q2

1

= 0 . (3.12)

The very same thing is true if we put a dot on the other massive propagator. We should stress 
here once more that this result is valid only for d = 4 identically. It is clear from Eq. (3.9) that 
taking a derivative w.r.t. m2

a or m2
b would produce an overall factor (d − 4) which goes to zero as 

d → 4.
A similar conclusion can be drawn inspecting the integration by parts identities. For ease of 

writing, we consider again the case mb = ma . Using IBPs one can show that

= (d − 4)((m2
a + q2

2 )(q2
2 − q2

1 ) + q2(m2
a − q2

2 ))

2q2(m2
a − q2

1 )(m2
a − q2

2 ) + 2m2
a(q

2
1 − q2

2 )2

+ subtopologies . (3.13)

Of course a similar but more cumbersome expression can be derived for mb �= ma . Clearly, 
computing the maximal cut on the right- and left-hand-side of Eq. (3.13) all subtopologies drop 
and we are left with

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠

= (d − 4)((m2
a + q2

2 )(q2
2 − q2

1 ) + q2(m2
a − q2

2 ))

2q2(m2
a − q2

1 )(m2
a − q2

2 ) + 2m2
a(q

2
1 − q2

2 )2
Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ , (3.14)

which, given Eq. (3.9), allows to compute the d-dimensional cut of the triangle with a squared 
propagator. Putting then d = 4 one is left again with

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠

∣∣∣∣∣
d=4

= 0 , (3.15)

consistently with (3.12).
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4. Two-loop examples

At two-loop order the situation is, indeed, much more interesting. In this case, one often has 
to consider topologies of Feynman integrals which are reduced to two or more master integrals. 
The latter will therefore satisfy systems of coupled differential equations, whose solution be-
comes much less straightforward. In this case, the first step consists in finding a solution of the 
homogeneous system. Once the latter is known, one can proceed using Euler’s variation of the 
constants to write down an integral representation for the full solution. In what follows we will 
considered two examples of two-loop Feynman graphs which fulfill second order differential 
equations and show explicitly how the maximal cut allows us to find the required homogeneous 
solutions.

4.1. A non-planar two-loop triangle

Let us start considering a two-loop non-planar triangle with two off-shell legs and four mas-
sive propagators which enters the non-planar corrections to H+j production through a massive 
fermion loop. We define our integral family as follows

= Ia1,a2,a3,a4,a5,a6,a7

∣∣∣
a7<0

=
∫

DdkDd l (k2)−a7

[(k − p1)2]a1 [(l − p1)2 − m2]a2 [(k + p2)2]a3 [(k − l + p2) − m2]a4 [(k − l) − m2]a5 [l2 − m2]a6
,

(4.1)

with p2
1 = 0, p2

2 �= 0 and q2 = (p1 + p2)
2 = s �= 0. The integrals (4.1) can be reduced to two 

master integrals that we choose as

I1 = (s − p2
2)

2I1,1,1,1,1,1,0 , I2 = (s − p2
2)

2(s + 16m2)

2(1 + 2ε)
I1,2,1,1,1,1,0 . (4.2)

Neglecting all subtopologies, the latter satisfy the following two sets of coupled differential equa-
tions in the variables x = −s/m2 and y = −p2

2/m2,

d

dx

(
I1
I2

)
=Bx(x, y)

(
I1
I2

)
+ ε Dx(x, y)

(
I1
I2

)
,

d

dy

(
I1
I2

)
=By(x, y)

(
I1
I2

)
+ ε Dy(x, y)

(
I1
I2

)
(4.3)

where Bx,y(x, y) and Dx,y(x, y) are 2 × 2 matrices that do not depend on ε, given by

Bx(x, y) =
⎛⎜⎝ 0 16x

(x−16)(y−x)2 + 8
(x−16)(y−x)

(x−16)(x+y)

2x
(
x2−2xy−16x+y2

) − 2(x−y−8)

x2−2xy−16x+y2 − 3
y−x

+ 16
(x−16)x

⎞⎟⎠ ,

Dx(x, y) =
⎛⎜⎝

2
y−x

32x

(x−16)(y−x)2 + 16
(x−16)(y−x)

2(x−16)(x+y)(
2 2

) − 2(x−y−8)
2 2 − 4

y−x
− 2

x

⎞⎟⎠ ,
x x −2xy−16x+y x −2xy−16x+y
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By(x, y) =
⎛⎜⎝ 0 − 16x

(x−16)(y−x)2

16−x

x2−2xy−16x+y2
2(x−y)

x2−2xy−16x+y2 + 3
y−x

⎞⎟⎠ ,

Dy(x, y) =
⎛⎜⎝

2
x−y

− 32x

(x−16)(x−y)2

− 4(x−16)

x2−2x(y+8)+y2 − 2x2−4xy−64x+2y2

(x−y)
(
x2−2x(y+8)+y2

)
⎞⎟⎠ . (4.4)

In d = 4, (ε = 0) the systems become

d

dx

(
I1
I2

)
=Bx(x, y)

(
I1
I2

)
,

d

dy

(
I1
I2

)
= By(x, y)

(
I1
I2

)
(4.5)

and they can be rephrased as second order differential equations for one of the two master inte-
grals. For I1 they read

d2 I1(x, y)

dx2
+

(
1

y − x
− 1

x + y
+ 1

x
+ 2(x − y − 8)

x2 − 2xy − 16x + y2

)
d I1(x, y)

dx

+
(

1

x(y − x)
+ 1

(y − x)2
− y + 4

x
(
x2 − 2xy − 16x + y2

))
I1(x, y) = 0 (4.6)

and

d2 I1(x, y)

dy2
−

(
1

y − x
+ 2(x − y)

x2 − 2xy − 16x + y2

)
d I1(x, y)

dy

+
(

1

(y − x)2
− 1

x2 − 2xy − 16x + y2

)
I1(x, y) = 0 . (4.7)

Instead of trying to solve these equations directly, we compute the maximal cut of I1 in order to 
determine a first homogeneous solution. I1 can be written as

I1 =
∫

Ddk

(k − p1)2 (k + p2)2

∫
Dd l

(l2 − m2)[(k − l) − m2][(l − p1)2 − m2] [(k − l + p2) − m2] .

(4.8)

The integral in Dd l is a one-loop box with four massive propagators and three off-shell external 
legs

=
∫

Dd l

(l2 − m2)[(k − l)2 − m2][(l − p1)2 − m2] [(k − l + p2)2 − m2] ,

(4.9)

where p1 and p2 are defined above, while q3 = k − p1 and q4 = −k − p2.
In order to compute the maximal cut of I1, it is convenient to start by first cutting the one-loop 

box Eq. (4.9). Since we have already spelled out the relation between maximal cut and homo-
geneous differential equation, we can avoid to compute this cut by direct integration over the 
δ-functions. Instead, we derive the homogeneous differential equations satisfied by the latter in 
all external invariants and solve them for d = 4. The result provides us with the maximal cut, up 
to an overall irrelevant constant. We obtain
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Cut

⎛⎜⎝
⎞⎟⎠ =

=
c√

(q2
3q2

4 − tu)2 + 4m2
(
p2

2(q2
3 − t)(q2

4 − u) − q4
3q2

4 − q2
3

(
q4

4 − q2
4 (t + u) − tu

) + tu(q2
4 − t − u)

) ,

(4.10)

where we have defined t = (p1 − q3)
2 and u = (p2 − q3)

2. Substituting this into (4.8) and local-
izing the contour for the remaining two propagators we are left with

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ = (s − p2

2)
2
∫

Ddk
δ(k2)δ((k − p1 − p2)

2)√
tu(tu − 4m2(t + u − p2

2))

, (4.11)

where we used the condition q2
3 = q2

4 = 0. In order to compute the second integral, we go to the 
center of mass frame and perform the integration in k0 and k̄ and obtain

Cut

⎛⎜⎜⎝
⎞⎟⎟⎠ = (s − p2

2)

1∫
−1

dz
1√(

1 − z2
) (

16m2s + (
1 − z2

)
(s − p2

2)
2
)

= (s − p2
2)√

p4
2 − 2p2

2 s + s(s + 16m2)

1∫
−1

dz
1√(

1 − z2
) (

1 − w z2
)

= (s − p2
2)√

p4
2 − 2p2

2 s + s(s + 16m2)

K(w), (4.12)

where we used the definition of the complete elliptic integral of the first kind

K(x) =
1∫

0

dt√
(1 − t2)(1 − x t2)

, for x ∈ C and 
(x) < 1 , (4.13)

and we defined

w = (s − p2
2)

2

p4
2 − 2p2

2 s + s(s + 16m2)
.

In terms of the adimensional variables x and y, the maximal cut becomes (neglecting once more 
overall constant factors)

Cut(I1) ∝ F1(x, y) ≡ (x − y)√
x2 − 2x(y + 8) + y2

K

(
(x − y)2

x2 − 2(y + 8)x + y2

)
. (4.14)

By direct computation one can check that F1(x, y) solves both second order differential equations 
(4.6) and (4.7). Finally, the properties of elliptic functions allow us to write a second independent 
solutions as
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F2(x, y) ≡ (x − y)√
x2 − 2x(y + 8) + y2

K (1 − w)

= (x − y)√
x2 − 2x(y + 8) + y2

K

(
− 16x

x2 − 2(y + 8)x + y2

)
. (4.15)

We observe that in the limit p2
2 → 0 we have

Cut(I1,p
2
2 → 0) ∝ s√

s(s + 16m2)
K

(
s

s + 16m2

)
, (4.16)

which provides the homogeneous solution for the differential equations of the corresponding 
non-planar two-loop triangle with only one off-shell leg. This solution can be then analytically 
continued to all physically relevant phase–space region and can be used to write down a one-fold 
integral representation for the two-loop triangle. This problem will be considered elsewhere [40].

4.2. An elliptic planar double box

As a last non-trivial example, we consider the planar double-box computed in [20], which 
corresponds to the integral family

= Ia1 a2 a3 a4 a5 a6 a7 a8 a9

∣∣∣
a7,8,9<0

=
∫

Dd kDd l
(k · p3)

−a7(l · p1)
−a8(l · p2)

−a9

D
a1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6

, (4.17)

and the propagators are defined as

D1 =k2 − m2, D2 = (k − p1)
2 − m2,

D3 =(k − p1 − p2)
2 − m2, D4 = (k − l + p3)

2,

D5 =l2 − m2, D6 = (l − p1 − p2 − p3)
2 − m2. (4.18)

We stress that, since we are interested in the six-denominator topology only, we restrict the 
indices a7,8,9 to negative values. The external kinematics is chosen to be p2

1 = p2
2 = p2

3 = 0, 
p2

4 = (p1 + p2 + p3)
2 = m2

h and the Mandelstam invariants are given by

s = (p1 + p2)
2 , t = (p1 + p3)

2 , u = (p2 + p3)
2 = m2

h − s − t. (4.19)

The IBPs reduction of the integral family (4.17) returns four master integrals, which we choose 
to be

I1 =I1 1 1 1 1 1 0 0 0 , I2 = I1 2 1 1 1 1 0 0 0

I3 =I1 1 1 1 2 1 0 0 0 , I4 = I1 1 1 1 1 1 −1 0 0. (4.20)

The master integrals Ii fulfill systems of first order differential equations in the kinematic invari-
ants. In addition, it can be verified that in d = 4 the differential equations for I4 are completely 
decoupled. Therefore, in the four-dimensional limit we can restrict ourselves to study the homo-
geneous systems for the first three master integrals, which read
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂x
I1(x) = a11(x)I1(x) + a12(x)I2(x) + a13(x)I3(x)

∂

∂x
I2(x) = a21(x)I1(x) + a22(x)I2(x) + a23(x)I3(x)

∂

∂x
I3(x) = a33(x)I3(x) ,

(4.21)

where x ∈ x = {s, t, m2
h, m

2} and aij (x) are rational functions in the Mandelstam invariants. 
Following our argument, we expect that computing the maximal cut of the three master integrals 
we will get, by construction, one set of homogeneous solutions of the system (4.21).

Interestingly enough, it is easy to show that cutting all propagators produces a further simpli-
fication of the system. In fact, we observe that I3 contains as sub-loop the one-loop triangle with 
one dotted massive propagator studied in Section 3. There we saw that the latter has vanishing 
maximal cut in d = 4. Hence, as a direct consequence of Eq. (3.12), we immediately get

Cut

⎛⎜⎝
⎞⎟⎠

=
∫

D4k δ(k2 − m2)δ((k − p1)
2 − m2)δ((k − p1 − p2)

2 − m2)

× Cut

⎛⎜⎝
⎞⎟⎠ = 0. (4.22)

The vanishing of Cut (I3) implies that, when the systems (4.21) are evaluated on the maximal cut, 
the last equation drops out and we are left with two coupled homogeneous first order differential 
equations for I1 and I2,⎧⎪⎨⎪⎩

∂

∂x
Cut (I1(x)) = a11(x)Cut (I1(x)) + a12(x)Cut (I2(x))

∂

∂x
Cut (I2(x)) = a21(x)Cut (I1(x)) + a22(x)Cut (I2(x)) .

(4.23)

A comment on the relation between the solutions of the homogeneous systems (4.21) and the ex-
istence of a vanishing maximal cut is in order. Since the differential equation for I3 is decoupled 
from I1 and I2, a zero maximal cut provides an obvious solution to it. However, Cut (I3) = 0
does not prevent the differential equation to admit other non-trivial solutions, which are not cap-
tured by the maximal cut. Nevertheless, this is not a problem since the differential equation is 
decoupled and can be solved independently by quadrature. We would like to stress here that the 
decoupling of the differential equation for a master integral in four dimensions and the vanishing 
of its maximal cut are indeed closely related. In fact, precisely a vanishing maximal cut could be 
seen as the hint of the decoupling of the differential equation for the corresponding master inte-
gral, since only a decoupled equation would be automatically satisfied by a zero solution without 
imposing strong constraints on the maximal cuts of the other two master integrals.

The systems of equations (4.23) can then be rephrased as a second order differential equa-
tions for the maximal cut of one of two master integrals. For instance, if we choose I1 and we 
differentiate with respect to the internal mass, we have
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∂2

(∂m2)2
Cut (I1)

= s2
(
48m4 − 16m2(t + m2

h) + (t − m2
h)

2
) + 48m4t2 + 16m2st (6m2 − t + m2

h)

m2
(
(m2

h − 4m2)2s2 + t2(s − 4m2)2 − 2(4m2 + m2
h)st (s − 4m2)

) ∂

∂m2

× Cut (I1) − 2
(
s2(−6m2 + t + m2

h) + st (−12m2 + t − m2
h) − 6m2t2

)
m2

(
(m2

h − 4m2)2s2 + t2(s − 4m2)2 − 2(4m2 + m2
h)st (s − 4m2)

)
× Cut (I1) (4.24)

and other three similar equations can be determined by taking derivatives with respect to s, t and 
m2

h.
One of the two independent solutions of this set of second order differential equations can be 

found by direct computation of the maximal cut of I1. As in the previous example, we start by 
computing the maximal cut of one of the two sub-loops from the solution of the corresponding 
differential equations in d = 4 and then integrate over the second loop momentum by solving 
explicitly the constraints imposed by the remaining δ-functions. In this respect we observe that, 
in principle, one is completely free to choose the order in which the loop momenta are localized. 
Nevertheless, a wise choice can substantially simplify the remaining integrals. In this particular 
case, the two sub-loops correspond to a box with two adjacent off-shell legs and a triangle with 
three off-shell legs. If we started by cutting the box, we would be left with an integral over the 
four variables parameterizing the second loop momentum and only two δ-functions constraining 
them. Therefore, in order to obtain a one-fold integral representation of the solution, we would 
need to perform an additional non-trivial integration. On the other hand, if we localize the triangle 
integral first, the action of the three remaining δ-functions would directly provide an expression 
of the maximal cut in terms of a one-dimensional integral.

We start then from the cut of the internal one-loop triangle which, using the results of Sec-
tion 3, reads

Cut

⎛⎜⎝
⎞⎟⎠

= 1√
(q − p1 − p2)2 + ((q + p3)2 − m2

h)
2 − 2(q − p1 − p2)2(q + p3)2 + m2

h)

. (4.25)

Therefore, the maximal cut of I1 can be written as

Cut

⎛⎜⎝
⎞⎟⎠

=
∫

D4k δ(k2 − m2)δ((k − p1)
2 − m2)δ((k − p1 − p2)

2 − m2)

× 1√
m4 + ((k + p3)2 − m2

h)
2 − 2m2((k + p3)2 + m2

h)

, (4.26)

where we have used that, when the remaining propagators are cut, (k − p1 − p2)
2 = m2.
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Before discussing the evaluation of the last integral, we would like to make a technical re-
mark. When the number of on-shell conditions to be imposed is sufficiently large, the kinematic 
restrictions of Minkowski space could suggest that no non-trivial solution of the maximal cut 
exists. Therefore, one needs to adopt a practical prescription in order to obtain a result in some 
kinematic region and then continue it to the region of interest through a consistent relaxation of 
the assumptions used in the intermediate steps of the calculation. For this specific case, we found 
that an effective prescription consists in assuming a negative internal mass, m2 ≤ 0.

Under this assumption, we evaluate the integral over the loop momentum k in the rest frame 
of the massive external particle pμ

4 = (mh, �0), by parameterizing the massless momenta pμ
1 and 

p
μ
2 as

p
μ
1 =(E1,0,0,E1), p

μ
2 = (E2,E2 sin θ12,0,E2 cos θ12). (4.27)

The energies of the two particles and the relative angle between their three-dimensional momenta 
are expressed in terms of the Mandelstam invariants as

E1 = s + t

2mh

, E2 = m2
h − t

2mh

, cos θ12 = m2
h(t − s) − t (s + t)

(s + t)(m2
h − t)

. (4.28)

If we go to polar coordinates and we decompose the loop momentum as

kμ = (k0, k̄ sin θ cosϕ, k̄ sin θ sinϕ, k̄ cos θ), (4.29)

where we have again defined |�k| = k̄, we can easily check that the three additional cut-conditions 
imply

(k + p3)
2 = m2 − s + 2mhk0. (4.30)

Hence, Eq. (4.26) becomes

Cut

⎛⎜⎝
⎞⎟⎠

=
∞∫

−∞
dk0

∞∫
0

dk̄k̄2

1∫
−1

d cos θ

2π∫
0

dϕ

× δ(k2 − m2)δ(2k · p1)δ(2k · p2 − s)√
m4 + (m2 + 2mhk0 − s − m2

h)
2 − 2m2(m2 + 2mhk0 − s + m2

h)

. (4.31)

The δ-function δ(k2 − m2) can be then used to perform the integral over k̄ by fixing its value to 

k̄ =
√

k2
0 − m2. In this way, the constraint imposed by δ(2k · p1) reduces to a linear equation in 

cos θ , which yields to

Cut

⎛⎜⎝
⎞⎟⎠

= 1

E1

∞∫
dk0

2π∫
dϕ δ(2k · p2 − s)
−∞ 0
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× 1√
m4 + (m2 + 2mhk0 − s − m2

h)
2 − 2m2(m2 + 2mhk0 − s + m2

h)

. (4.32)

Finally, we evaluate the integral over the angle ϕ by using the constraint imposed by the last 
δ-function, which is satisfied by

ϕ± = ± arccos

(
2E2(1 − cos θ12)k0 − s

2E2 sin θ12
√−m2

)
. (4.33)

We observe that, in order for these solutions to range in 0 ≤ ϕ± ≤ 2π , we must restrict the 
integration over k0 within the region

k0,1 < k0 ≤ k0,2, (4.34)

with

k0,1 = 1

2mh

⎛⎝s + t − 2

√
−t um2

s

⎞⎠ , k0,2 = 1

2mh

⎛⎝s + t + 2

√
−t um2

s

⎞⎠ . (4.35)

In this way, we obtain a one-fold integral representation of the maximal cut of I1 of the type

Cut

⎛⎜⎝
⎞⎟⎠ = 1

smh

k0,2∫
k0,1

dk0
1√

(k0 − k0,1)(k0 − k0,2)(k0 − k0,3)(k0 − k0,4)
,

(4.36)

where we have introduced two additional roots defined as

k0,3 =
s + m2

h − 2
√

m2
hm

2

2mh

, k0,4 =
s + m2

h + 2
√

m2
hm

2

2mh

. (4.37)

The integral (4.36) can be cast into the canonical form of a complete elliptic integral of the first 
kind through the standard change of variables

z2 = (k0 − k0,1)(k0,4 − k0,2)

(k0,4 − k0)(k0,2 − k0,1)
, (4.38)

which yields to a solution of the second order differential equation (4.24) of the form

F1 = Cut (I1) = K(ω)√
s2

(
m2

h − t
)2 − 4m2s

(
m2

h(s − t) + t (s + t) − 2
√

−s t um2
h

) , (4.39)

with

ω =
16m2

√
−s t um2

h

s
(
m2

h − t
)2 − 4m2

(
m2

h(s − t) + t (s + t) − 2
√

−s t um2
h

) . (4.40)

We observe that F1 has a smooth behavior in the limit of vanishing internal mass m2 → 0,

F1 =
m2→0

1

s(m2
h − t)

, (4.41)
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which reproduces the correct result for the maximal cut of a six-denominator box with mass-
less propagators. Finally, using the properties of elliptic integrals, it is simple to find a second 
independent solution of Eq. (4.39) by changing the argument ω of the elliptic function to 1 − ω,

F2 = K(1 − ω)√
s2

(
m2

h − t
)2 − 4m2s

(
m2

h(s − t) + t (s + t) − 2
√

−s t um2
h

) . (4.42)

We verified explicitly that Eq. (4.39), (4.42) satisfy the second order differential equation (4.24), 
and of course also the corresponding ones in the other Mandelstam invariants s, t and m2

h.
We can obtain an alternative (but equivalent) representation of the solutions as follows. We 

recall that the complete elliptic integral of the first kind is defined as

K(x) =
1∫

0

dt√
(1 − t2)(1 − x t2)

, for x ∈ C and 
(x) < 1 , (4.43)

and it fulfills a second order differential equation in the form

d2

dx2
K(x) +

(
1

x
− 1

1 − x

)
d

dx
K(x) − 1

4

(
1

x
+ 1

1 − x

)
K(x) = 0 . (4.44)

Using the transformation properties of Eq. (4.44) under x → 1/x, one can show that if K(x)

and K(1 − x) are solutions of the equation, then two other, equivalent solutions, are given by 
1/

√
x K(1/x) and 1/

√
x K(1 − 1/x). Since any second order differential equations admits only 

two independent homogeneous solutions, one must have that

1√
x

K

(
1

x

)
= c1 K(x) + c2 K(1 − x) ,

1√
x

K

(
1 − 1

x

)
= c3 K(x) + c3 K(1 − x)

(4.45)

where ci , i = 1, 2, 3, 4 are numerical (possibly complex) constants. Of course, since K(x) devel-
ops a branch cut when x > 1, one should assign a small imaginary part to x, which determines 
the sign of the imaginary parts of the coefficients ci . We find, for example, for 0 < x < 1 and 
x → x + i δ, that the following relations are satisfied

1√
x

K

(
1

x

)
= K(x) − i K(1 − x) ,

1√
x

K

(
1 − 1

x

)
= K(1 − x) . (4.46)

This means that we can equally well use either the F1 and F2 defined above or the two new 
solutions

F̃1 = 1√
s m2(−s t um2

h)
1/4

K

(
1

ω

)
, F̃2 = 1√

s m2(−s t um2
h)

1/4
K

(
1 − 1

ω

)
.

(4.47)

Finally, it is interesting to compare our result to those of [20]. There, the solution was found 
suitably redefining the Mandelstam variables in terms of an additional dimensionless parame-
ter α, with respect to which the solution of the equations became straightforward. For α = 1
one should recover the standard solution. Indeed for α = 1, the argument of the elliptic integrals 
found in [20] reduces precisely to 1/ω, as in Eqs. (4.47).
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5. Conclusions and outlook

Differential equations are an invaluable tool for computing multi-loop Feynman integrals. For 
any practical purposes, the complexity of a system of differential equations is largely dictated by 
the number of coupled differential equations that must be solved in the limit d → 4. First of all, 
one needs to find a complete set of homogeneous solutions; once they are known, Euler’s method 
of the variation of constants can be used to reconstruct the complete inhomogeneous solution. 
As a matter of fact, as soon as we are left with a system of two or more coupled irreducible 
differential equations, there exists in general no algorithm to find a complete set of homogeneous 
solutions; the possibility of solving the system depends therefore on a case-by-case analysis.

Building upon ideas developed in the context of the study of the differential equations satis-
fied by the two-loop massive sunrise graph [21], we showed that the maximal cut of any given 
(irreducible) Feynman integral provides us precisely with one set of homogeneous solutions of 
the differential equations satisfied by the latter. This one-to-one relation can of course be inverted 
and, in some case, one might want to use the solution of the homogeneous differential equations 
as tool to compute the maximal cut of a graph. This is particularly useful at one-loop, since every 
one-loop integral satisfies at most a first order differential equation, whose homogeneous part 
can always be solved by quadrature. In this sense, there is no need to compute the maximal cut 
of any one-loop integral by direct integration over the loop momenta, as the latter can always 
be obtained by solving its homogeneous differential equation, for any arbitrary values of the 
dimensions d .

For higher loops this is not true and we are left in many cases with higher order equations. 
In this case, it turns out to be much easier to compute the maximal cut then solving the homo-
geneous equation directly. The maximal cut provides us with one set of homogeneous solutions. 
When dealing with second order differential equations, the second solution can then be obtained 
in closed analytic form with standard methods. Far from being a simple curiosity, we showed 
explicitly that this observation can be turned into a very powerful tool for solving second (and 
possibly higher) order differential equations. In different non-trivial two-loop examples, in fact, 
we showed how the maximal cut can be very easily computed in d = 4 space–time dimensions, 
providing therefore a formidable piece of information towards the solution of coupled systems 
of differential equations. A crucial step in this direction is recognizing that the calculation of the 
maximal cut of a multi-loop integral can be suitably split in the calculation of the maximal cuts 
of the relevant sub-loops. A wise choice in the order in which sub-loops are cut can simplify 
substantially the calculation of the maximal cut.

Finally, we believe the results of this paper are interesting also in view of the extension of the 
concept of canonical basis to Feynman integrals that do not evaluate to iterated integrals over 
d-log forms only. Suppose, in fact, to have a N × N system of differential equations in the form

∂

∂x
�m(ε;x) = A0(x) �m(ε;x) +O(ε) . (5.1)

The maximal cut of the integrals �m(ε; x), computed in ε = 0 provides a first solution �S(1)(s) of 
the system

∂

∂x
�S(1)(x) = A0(x) �S1(x) . (5.2)

If one can use this information to find the remaining N − 1 solutions, then one is left with a 
matrix of solutions
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G(x) =
⎛⎝ S

(1)
1 (x) ... S

(N)
1 (x)

... ... ...

S
(1)
N (x) ... S

(N)
N (x)

⎞⎠ .

Rotating the master integrals to the new basis �f (ε; x) defined as

�m(ε;x) = G(x) �f (ε;x)

one finds by construction

∂

∂x
�f (ε;x) =O(ε) , (5.3)

which is one of the fundamental properties a canonical basis should fulfill. A thorough investi-
gation of these aspects is beyond the aim of this paper and will be subject of study in the near 
future.
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