KIT | KIT-Bibliothek | Impressum

Large-eddy simulations over Germany using ICON: a comprehensive evaluation

Heinze, Rieke; Dipankar, Anurag; Henken, Cintia Carbajal; Moseley, Christopher; Sourdeval, Odran; Trömel, Silke; Xie, Xinxin; Adamidis, Panos; Ament, Felix; Baars, Holger; Barthlott, Christian; Behrendt, Andreas; Blahak, Ulrich; Bley, Sebastian; Brdar, Slavko; Brueck, Matthias; Crewell, Susanne; Deneke, Hartwig; Di Girolamo, Paolo; ... mehr



Abstract (englisch): Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.


Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung - Forschungsbereich Troposphäre (IMK-TRO)
Publikationstyp Zeitschriftenaufsatz
Jahr 2017
Sprache Englisch
Identifikator DOI: 10.1002/qj.2947
ISSN: 0035-9009, 1477-870X
KITopen ID: 1000066084
HGF-Programm 12.01.02; LK 01
Erschienen in Quarterly journal of the Royal Meteorological Society
Band 143
Heft 702
Seiten 69–100
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page