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Abstract
Instruction selection is the part in a compiler that transforms
IR code into machine code. Instruction selectors build on a
library of hundreds if not thousands of rules. Creating and
maintaining these rules is a tedious and error-prone manual
process.

In this paper, we present a fully automatic approach to
create provably correct rule libraries from formal specifi-
cations of the instruction set architecture and the compiler
IR using template-based counter-example guided synthesis
(CEGIS). Thereby, we overcome several shortcomings of an
existing SMT-based CEGIS approach, which was not appli-
cable to our setting in the first place. We propose a novel way
of handling memory operations and show how the search
space can be iteratively explored to synthesize rules that are
relevant for instruction selection.

Our approach synthesized a large part of the integer arith-
metic rules for the x86 architecture within a few days where
existing techniques could not deliver a substantial rule li-
brary within weeks. With respect to the runtime of the com-
piled programs, we show that the synthesized rules are close
to a manually-tuned instruction selector.

Categories and Subject Descriptors D.3.4 [Processors]:
Retargetable compilers; I.2.2 [Automatic Programming]:
Program synthesis

Keywords Program Synthesis, Instruction Selection

1. Introduction
Instruction selection is the part of a compiler that translates
the platform-independent compiler intermediate representa-
tion (IR) into machine code. Modern instruction set architec-
tures (ISAs), even RISC processors, are complex and com-
prise several hundred instructions. In recent years, ISAs are
more frequently extended to accelerate computations of var-
ious domains (e.g., signal processing, graphics, string pro-
cessing, etc.).

Instruction selectors typically use a library of rules to
transform the program: Each rule associates a pattern of IR
instructions to a semantically equivalent, small program of
machine instructions. First, the selector matches the pattern
of each rule in the library to the IR of the program to be
compiled. Then, the selector computes a pattern cover of the
program and rewrites it according to the rules whose patterns
are part of the cover.

The rule library contains at least one rule per machine
instruction. Some instructions even have multiple (minimal)
IR patterns with the same semantics. For example, the pat-
terns for the x86 instruction inc include:

x+ 1 1 + x x− (−1) − not(x)

Therefore, the number of rules usually exceeds the number
of ISA instructions by far. Consequently, the rule libraries
of modern compilers have considerable size and consist of
hundreds if not thousands of rules. Because of the sheer size
of the rule library, manually specifying these rules is tedious
and error-prone.

To remedy this problem, this paper presents a fully au-
tomatic approach to synthesize provably correct instruction
selection rules from formal specifications of the compiler
IR’s and the ISA’s semantics. To this end, we extend existing
techniques [10] for template-based counter-example guided
inductive synthesis (CEGIS). The goal of CEGIS is to syn-
thesize a program that is correct with respect to a given spec-
ification. For now, it is sufficient to understand that CEGIS
constructs and refines candidate programs from a given mul-
tiset of template instructions in a counter-example guided
feedback cycle using a synthesis and verification step. Note
that every instruction occurrence counts: If the template
multiset contains three adds, the synthesized program can-
not contain more than three adds. We explain CEGIS in more
detail in Section 2.4. The algorithm of Gulwani et al. uses an
SMT solver for both the verification and the synthesis part
and has been shown to be practical for short programs and
small template sets (≈ 10 instructions).

To automatically generate instruction selection rules, we
use CEGIS to synthesize, for each machine instruction, a
set of patterns of IR nodes. Each pattern then provably has
the same semantics as the machine instruction. However, in
this setting, the technique of Gulwani et al. technique is not
directly applicable for two reasons:

First, we cannot fix a template library of practical size:
Even the integer subset of a standard IR has more than 20
different instructions. Then, it is not clear in advance how
many instances of each IR instruction will occur in a pattern.
Even if we provide, say, three instances per IR instruction,
the algorithm would not terminate in a reasonable amount of
time. We solve this problem by a technique we call iterative
CEGIS that iteratively explores template libraries of increas-
ing size.



Second, machine instructions sometimes use memory.
For example, x86 possesses powerful addressing modes that
allow for loading one operand from memory. However, a
straightforward extension of Gulwani et al.’s technique us-
ing array theory slows down SMT solving to an extent that
renders the approach impractical. We solve this by a novel
encoding of memory operations into bit vectors that is spe-
cific to our application setting.

In summary, we make the following contributions:

• We improve the synthesis algorithm of Gulwani et al.
[10] to iteratively explore template libraries of increasing
size. Our evaluation shows that this makes the synthesis
of instruction selection rules feasible in the first place.
• We present a novel encoding of memory operations that

avoids array theory, which we experienced as a major
performance bottleneck in the synthesis step. This allows
for an extension of Gulwani et al. [10] to memory oper-
ations, which are essential when synthesizing instruction
selection rules.
• Our experimental evaluation shows that our technique is

able to synthesize a large part of the rules for an x86
integer arithmetic instruction selector, including the fa-
mous addressing modes. Our approach synthesizes a sim-
ple rule library that already covers all primitive x86 inte-
ger operations in a few minutes. Using existing synthesis
techniques, even the simple library could not be synthe-
sized within a reasonable time budget (days, even weeks).
We obtain a more comprehensive library with large, in-
tricate patterns in 4.5 days using a standard off-the-shelf
SMT solver on a standard desktop workstation.
Concerning the runtime of the compiled programs, our
measurements on the SPEC CINT2000 benchmark suite
show that our synthesized rule library is close to a care-
fully hand-tuned one.

The remainder of the paper is structured as follows. In Sec-
tion 2, we provide some background information and dis-
cuss related work. Section 3 gives an overview of our work,
and the following sections provide more detail: Section 4
explains how we model instructions, and Section 5 describes
our synthesis algorithm and the automatic generation of code
to match the synthesized rules. Section 6 discusses limita-
tions of our work and opportunities for future improvement.
We evaluate the synthesis algorithm and the quality of the
synthesized instruction selection rules in Section 7. Finally,
Section 8 concludes.

2. Preliminaries and Related Work
In this section, we provide preliminaries for instruction se-
lection and program synthesis techniques. Along the way,
we present related work.

2.1 Instruction Selection
Instruction selection is the task of transforming machine-
independent IR operations to machine-dependent instruc-
tions. Over the past decades, compilers used a variety of
instruction selection approaches that differ significantly in
complexity and resulting code quality.

Modern compilers usually represent programs in the
static single assignment (SSA) form. We concentrate our
discussion to approaches in this setting. For other techniques
and for a comprehensive survey of instruction selection we
refer to Blindell [3].

The instruction selectors built into these compilers typ-
ically use directed acyclic graph (DAG) pattern matching
and rewriting on SSA data dependence graphs. Koes and
Goldstein [13] have shown that this problem is NP-complete
without restricting the ISA appropriately. There exist opti-
mal approaches using mathematical optimization [7] that al-
low for an extension [6] to patterns containing cycles. How-
ever, modern compilers like LLVM [14] or HotSpot [18] re-
strict themselves to DAG or tree patterns and some greedy
heuristics for selecting an appropriate covering.

Because CEGIS is (currently) limited to loop-free pro-
grams, our approach is also limited to DAG patterns. How-
ever, as outlined above, DAG patterns are the state of the
art in modern compilers. In our experimental evaluation, we
evaluate the synthesized rule libraries in a research compiler
that uses a greedy DAG-based instruction selector similar to
the one used by LLVM.

2.2 Generating Instruction Selectors
Dias and Ramsey proposed an algorithm to generate instruc-
tion selectors from declarative machine descriptions [5]. For
each instruction, the machine description provides a seman-
tically equivalent IR pattern. They then search for an equiv-
alent machine instruction sequence for each IR operation by
applying a set of user-provided algebraic laws. The result-
ing instruction selector generates code that “can be horribly
inefficient” and needs further optimization.

In contrast, our work produces patterns which incorporate
multiple IR operations, and thus make better use of the
machine. In addition, whereas Dias and Ramsey rely on a set
of rewrite rules, we specify the semantics of IR and machine
code using Satisfiability Modulo Theories (SMT).

2.3 Satisfiability Modulo Theories
In our tool, we chose to use the SMT solver Z3 [4], be-
cause it supports queries with a mixture of integer and bit-
vector arithmetic. In addition, Z3 has preliminary floating-
point support, which gives us opportunities for future work
to support floating-point instructions. Z3 follows the wide-
spread SMT-LIB standard [2].

In the algorithms below, we will denote the integer sort
as Int, and the sort of n-bit wide bit vectors as BitVecn. To
represent SMT queries, we use the following notation:



(r,m)← SMTSOLVE(∃x.φ(x))
The function returns a pair, whereby the first element is ei-
ther sat (satisfiable) or unsat (unsatisfiable), and the second
element gives a model for the existentially quantified vari-
ables if the formula is satisfiable. We represent the model as
a function from a variable’s name to its assigned value.

For example, the query
(r,m)← SMTSOLVE(∃x.∃y.∃z. x ∗ x+ y ∗ y = z ∗ z),

may return r = sat and m(x) = 3,m(y) = 4,m(z) = 5.

2.4 Synthesis
Gold [9] and Shapiro [21] introduced the idea of inductive
synthesis. The aim of inductive synthesis is to construct an
object (e.g. a program), given a finite set of test cases. In
the case of program synthesis, these are program arguments
along with the expected results.

Solar-Lezama et al. developed this idea into Counter-
example-Guided Inductive Synthesis (CEGIS) [23]. CEGIS
iterates inductive syntheses to construct a program that is
correct for all possible arguments. It uses two alternating
steps to produce new test cases interactively.

Algorithm 1 shows how to use CEGIS with an SMT
solver. In this example, we want to synthesize a program
p that satisfies φ for all inputs y. However, this formula
contains a universal quantifier, with which SMT solvers
have performance problems. CEGIS eliminates this univer-
sal quantifier.

CEGIS uses two calls to the SMT solver (in lines 4 and
8). The first of these is the synthesis query. It constructs a
candidate p∗ that is valid for all yi ∈ Y . The second SMT
call is the verification query. It checks whether p∗ is in fact
valid for all possible y by querying for a counterexample
y∗. If no counterexample is found, p∗ is correct for all y.
Otherwise, y∗ is a useful new test case to refine the next
synthesis query.

Algorithm 1 CEGIS

1: procedure CEGIS(∃p.∀y.φ(p, y))
2: Y ← ∅
3: loop
4: (r1,m1) ← SMTSOLVE(∃p∗.

∧
yi∈Y φ(p

∗, yi))

5: if r1 = unsat then
6: return (unsat, ∅)
7: end if
8: (r2,m2)← SMTSOLVE(∃y∗.¬φ(m1(p

∗), y∗))
9: if r2 = unsat then

10: return (sat, {p 7→ m1(p
∗)})

11: else
12: Y ← Y ∪m2(y

∗)
13: end if
14: end loop
15: end procedure

Gulwani et al. used this technique to build a superop-
timizer [10]. A superoptimizer is a tool to find the short-
est possible program that implements a given functionality.
They developed a representation that can encode loop-free
programs as a set of integer variables of limited range, so
that a standard SMT solver can enumerate the programs.

They benchmark their tool using examples from the
micro-optimization book “Hacker’s Delight” [24]. The tool
is able to synthesize programs of 16 instructions, albeit with
supervision in picking the types of instructions to use.

In our work, we expand the model presented by Gul-
wani et al. to support more types of instructions, and to be
able to synthesize programs unsupervised. See sections 4
and 5 for a detailed discussion.

Another approach in synthesis is to forgo completeness in
exchange for a larger search space. Schkufza et al. [20] built
their stochastic superoptimizer and synthesizer STOKE on
this principle. STOKE considers individual bits, and tries to
match these up between goal and candidate. However, this
technique has problems when computations yield only a few
bits (e.g. boolean results). Because we need to synthesize
comparisons and conditional jumps, we decided to use clas-
sical, complete synthesis.

2.5 Formal Instruction Semantics
Godefroid and Taly synthesize bit-vector formulas for pro-
cessor instructions from input/output pairs [8]. They exam-
ine an instruction’s behavior by actually executing it on ran-
dom test inputs. Then, they synthesize a semantics for the
instruction based on a set of templates. Their synthesis algo-
rithm is similar to CEGIS, except that they also search for
counterexamples by running more experiments on the actual
instruction.

Heule et al. present an approach that synthesizes the for-
mal semantics of complex instructions from a small set of
basic instructions [11]. Their algorithm starts with a set of
test inputs and results for the machine instruction. It then
uses a CEGIS-like loop, using STOKE [20] as its synthe-
sizer and an SMT solver as its verifier.

Both of these techniques could provide us with models
for machine instructions. Then, we would only need to spec-
ify the IR manually.

3. Overview
In this section, we give an overview of our work, before
describing its components in more detail in the following
sections. Refer to Table 1 for notation used in this paper.

Our instruction selection generator consists of two main
components: The synthesizer and the code generator. Algo-
rithm 2 gives an overview of the process.

The synthesizer takes semantic models (see Section 4) of
both IR operations (parameter I) and machine instructions
(parameter M ) as its input. Then, the solver runs our itera-
tive CEGIS algorithm (see Section 5) with each instruction



Operations on lists and bit vectors

l = [a, b, c] literal list/bit vector
l[i] ith element of l (zero-based)
l[i...j] Elements i down to j of l
l[i 7→ x] l with ith element set to x
|l| Length of l
k ◦ l Concatenation of k and l

SMT

SMTSOLVE Call to SMT solver, see Section 2.3
e : S expression e has sort S
l :: L expressions in list l have sorts in list L

(i.e. ∀n. l[n] : L[n])
Miscellaneous

{S} sort of sets with elements of sort S
{{S}} sort of multisets with elements of sort S
{a, b, c} set literal
{{a, b, c}} multiset literal
let v ← x in t define local variable v to be x in term t

Table 1: Notational conventions used in this paper

from M as the goal g. Each of these runs produces all min-
imal patterns with nodes from I which implement g (see
Section 5.2.1 for more detail). The synthesizer pairs these
patterns with g, and stores all pairs in a pattern database.

The pattern database can aggregate patterns found by
different synthesizer runs. Either, we can run the synthesizer
in parallel on multiple machines, or we can first synthesize
patterns for a basic set of instructions and expand on these
as needed.

In the second step, the code generator reads the pattern
database and produces code for a compiler’s instruction se-
lection phase. The code generator is free to use any instruc-
tion selection algorithm that works with DAG patterns. For
our prototype implementation, see Section 7.1.

4. Modeling Instructions
Our synthesizer needs semantic models of both IR opera-
tions and machine instructions. Following Gulwani et al. [10],
we model these as SMT predicates that connect their in-
puts and outputs. However, we extend Gulwani’s model to
include multiple sorts, instructions with preconditions, in-
structions with multiple results, and instructions that access
memory.

An instruction takes n arguments, and from these com-
putes m results. In addition, some instructions have inter-
nal attributes, whose values are chosen at compile time. For
example, a conditional branch instruction has the condition
code as an internal attribute.

The sorts of the arguments, internal values, and results
form the instruction’s interface. The interface determines the

Algorithm 2 Overview
1: procedure SYNTHESIZER(I : {Instruction},

M : {Instruction})
2: S ← {} . S : {(M × Pattern(I))}
3: for each g ∈M do
4: {p1, . . . , pn} ← ITERATIVECEGIS(I, g)

. pi : Pattern(I)
5: S ← S ∪ {(g, p1) , . . . , (g, pn)}
6: end for
7: Save S to pattern database
8: end procedure

9: procedure CODEGENERATOR(S : {(M × Pattern(I))})
10: Sort S from more specific to less specific patterns
11: for each (g, p) ∈ S do
12: Emit code: If p matches, replace it with g.
13: Otherwise try next pattern
14: end for
15: end procedure

ways in which instructions may be combined. We specify
the interface in three functions Sa, Si, and Sr. These take
an instruction and return the list of argument, internal, and
result sorts respectively.

We specify the behavior of an instruction by the three
functions defined below. Each of them takes an instruction
and three lists of SMT expressions va, vi, and vr. These are
the values to be substituted for the instruction’s arguments,
internal attributes and results respectively. In order to fulfill
the interface of the instruction i, we require va :: Sa(i),
vi :: Si(i), and vr :: Sr(i).

The first two functions return SMT formulas that specify
the instrucion’s pre- and postcondition:

• P (i, va, vi, vr) is i’s precondition. If this formula does
not hold, the instruction’s behavior is undefined.
• Q(i, va, vi, vr) is i’s postcondition. If P (i, va, vi, vr)

holds, Q(i, va, vi, vr) also holds. Its purpose is to define
vr in terms of va and vi.

The third function, V , returns a list of SMT expressions,
namely the list of valid pointers for the instruction i. De-
pending on whether the instruction is the synthesis’ goal or
a candidate, we either assume or require that the pointers in
V (i, va, vi, vr) are valid.

Example 1 (Right-shift instruction). We demonstrate the
specification of an instruction using a 32 bit wide right-
shift instruction with the semantics of C. In this semantics,
the result of the shift is undefined if the shift amount is
negative or not less than the bit width. The value to be shifted
is the first argument va[0], the shift amount is the second



argument va[1].

Sa(shr32) = [BitVec32,BitVec32]

Si(shr32) = []

Sr(shr32) = [BitVec32]

P (shr32, va, vi, vr) = 0 ≤ va[1] < 32

Q(shr32, va, vi, vr) = vr[0] = va[0] >> va[1]

V (shr32, va, vi, vr) = []

4.1 Memory Access
It is typical for compiler IRs to model memory in a linear
way, either implicitly or explicitly. In LLVM for example,
a “memory value” is implicitly consumed and produced by
every memory instruction, by the fact that instructions are
linearly ordered inside a basic block. Other IRs [15, 18]
make this explicit by modeling memory as a proper IR value.
We call this memory value M-value in the remainder of this
paper. Each instruction that accesses memory takes an M-
value as an additional argument and produces an M-value as
an additional result. In this model, load and store instructions
have the following types:

load :M × Pointer →M × V alue
store :M × Pointer × V alue→M

Note that load instructions also produce a new M-value,
even though a load instruction does not change the contents
of memory. We still need this M-value for two reasons: First,
load instructions potentially do have side-effects on volatile
memory (e.g. memory-mapped device registers). Second, we
must not reorder load instructions with respect to subsequent
store instructions, because they might have a read-after-write
dependency. Thus, all memory access operations in our pro-
grams are lined up on a chain of M-values1.

We must now ensure that the synthesizer also puts load
operations into the M-value chain. In order to force the
synthesizer to do so, load instructions must change M-values
in some way. Otherwise, the synthesizer would be free to use
the memory state before or after a load instruction as input
for the next memory access. Therefore, M-values hold two
pieces of information for each address: the data located at
that address, and an access flag. A load operation sets the
access flag of the address it loads from, thus providing an
artificial change to the M-value.

We now need an SMT sort that can represent M-values.
Program verifiers usually model memory using the SMT
theory of arrays [22] or an Ackermannized variant of it [16].
However, we found this approach to be unsuitable for our
needs: During CEGIS, we have to prove that no memory
state is a counterexample for our current synthesis candidate.
We found that the SMT solver we used ran out of memory
when trying to prove this.

1 This requirement can be relaxed if memory accesses are proven not to
alias, but we do not consider this case here.

Because we only consider one machine instruction g at a
time as our goal, we can restrict our memory model to only
represent those addresses that g uses. If any instruction in
the synthesized pattern accesses another address, the pattern
cannot have the same behavior as g, and we exclude it.
During synthesis, we check that the valid pointer set of each
IR operation is a subset of the valid pointer set of g. Since
CEGIS uses concrete test cases in its synthesis step, we need
not worry about aliasing effects.

Modeling memory with bit vectors. Given a goal instruc-
tion g which accesses the pointers G = V (g, va, vi, vr),
its corresponding M-value sort M(g) is a bit vector of size
|G| · (w + 1), where w is the bit-width of the bytes being
addressed.

This bit vector is laid out as follows: Bits k · (w+ 1) + 1
to k · (w + 1) + w hold the value located at the address
V (g, va, vi, vr)[k]. The extra bit k · (w+1) holds the access
flag.

We can now define our primitive load and store functions
ld and st, which access w bits at a time. Their task is simply
to extract and overwrite the right bits in the M-value. We
only need to handle pointers inG as inputs, because patterns
that access other pointers are excluded from synthesis.

To define these functions, we use the following abbrevia-
tions:

l(k) = k · (w + 1) + 1 Lower bound of k-th byte

u(k) = k · (w + 1) + w Upper bound of k-th byte

f(k) = k · (w + 1) Flag for k-th byte

The load function ld takes an M-value m and an address a.
It returns an updated M-value with the access flag set, and
the value stored at a. We define ld by cases ranging over G:
If a = G[k], then

ld(m, a) = (m[f(k) 7→ 1],m[u(k) . . . l(k)])

Similarly, we define st to store the value v into memory
represented by m at address a. If a = G[k], then

st(m, a, v) = m[n·(w+1) . . . u(k)+1]◦v◦m[l(k)−1 . . . 0]

Example 2 (32 bit store instruction). To construct wider
load and store instructions, we can chain load and store
operations, passing M-values from one to the next. This is



the definition of a 32 bit wide store instruction if w = 8:

Sa(store32) = [M(g),BitVec32,BitVec32]

Si(store32) = []

Sr(store32) = [M(g)]

P (store32, va, vi, vr) = true

Q(store32, va, vi, vr) =

letm0 ← st(va[0], va[1], va[2][7 . . . 0]) in

letm1 ← st(m0, va[1] + 1, va[2][15 . . . 8]) in

letm2 ← st(m1, va[1] + 2, va[2][23 . . . 16]) in

letm3 ← st(m2, va[1] + 3, va[2][31 . . . 24]) in

vr[0] = m3

V (store32, va, vi, vr) =

[va[1], va[1] + 1, va[1] + 2, va[1] + 3]

4.2 Control Flow
We also want to synthesize jump instructions with our tool.
In machine language, jumps take a target to jump to when
their condition is fulfilled, or fall through. On the other hand,
IR jumps make their fall-through target explicit, too. They
take references to both basic blocks where execution might
continue after the branch. We follow the idea of IR jumps
with their explicit control flow. However, we interpret the
basic block references as results of the jump instruction, and
encode the decision to jump using the values of these results.
The jump instructions return the boolean value True for the
branch being taken, and False for all others.

Thus, when two jump instructions return the same values
given the same arguments in our model, they will perform
the same jumps in the IR or machine language.

4.3 Compound instructions
We usually use a single machine instruction as our synthesis
goal, but we can also combine a DAG of instructions into
one specification called a compound instruction.

One example that necessitates compound instructions is
that IRs and processor architectures differ in the way in
which they handle conditional control flow. For example, a
conditional jump in x86 reads the processors flags, which
have been set by a previous instruction. Since IRs usually
do not use flags, we cannot find an IR equivalent for just a
conditional jump node. Instead, we must consider a combi-
nation of one comparison and one conditional jump as our
goal.

To define a compound instruction, we add a fresh inter-
mediate variable for each argument and each result in the
DAG. Then, we construct P (i), Q(i) and V (i) for each in-
struction i in the DAG. Finally, for each edge in the DAG,
we assert that the values it connects are equal.

Example 3 (Compare and jump if less). If we are given the
instructions “cmp” and “jcc”, we can model their combina-

tion c thus (in are the intermediate variables, and the condi-
tion code for “less than” is 12):

P (c, va, vi, vr) = Q(cmp, [i1, i2], [], [i3]) ∧
Q(jcc, [i4], [12], [i5, i6])

Q(c, va, vi, vr) = Q(cmp, [i1, i2], [], [i3]) ∧
Q(jcc, [i4], [12], [i5, i6]) ∧
i1 = va[0] ∧
i2 = va[1] ∧
i4 = i3 ∧
vr[0] = i5 ∧
vr[1] = i6

V (c, va, vi, vr) = V (cmp, [i1, i2], [], [i3]) ∪
V (jcc, [i4], [12], [i5, i6])

This compound instruction is equivalent to a combination
of one “set if less than” and one “jump if set” IR operation,
which is how IRs would model this control flow [1].

5. Instruction Selection Synthesis
In this section, we discuss the core problem of synthesiz-
ing instruction selectors: Given a goal instruction g and the
multiset of IR operations I , synthesize an IR pattern that im-
plements g.

We assume that g has no internal attributes. To synthesize
a goal instruction with internal attributes, we must run a
separate synthesis for each possible assignment to them. IR
operations, on the other hand, may have internal attributes.
For example, we have an IR operation Const, which has one
result and one internal attribute, and whose postcondition
sets vr[0] = vi[0]. We use this operation to synthesize
constants inherent in goal instructions, such as the constant
1 inherent in an increment.

Let us assume that we have S+
i , P+, Q+, and V + that

extend Si, P , Q, and V from single operations to patterns.
Then, the problem we have to solve is this:

∃p : Pattern(I).∃vi :: S+
i (p).∀va :: Sa(g).∀vr :: Sr(g).

P+(p, va, vi, vr) ∧Q+(p, va, vi, vr) =⇒
(V +(p, va, vi, vr) ⊆ V (g, va, vi, vr) ∧
P (g, va, [], vr) ∧Q(g, va, [], vr))

Our task is to combine operations from I into a pattern p,
and to find an assignment to p’s internal attributes vi, such
that the following holds: If we have any list va of arguments
that satisfies p’s precondition, and we have the list vr of
results of applying p to va, then p must only access valid
pointers (i.e. those also accessed by g) in computing those
results, the precondition of g must be fulfilled, and g must
also compute vr.



In order to solve this task, we need to model patterns as
SMT formulas, and implement the +-functions used in the
query in this model. For this, we follow the work of Gulwani
et al. [10] and discuss the basics of, and our extensions to
their approach in the next section.

5.1 Pattern Representation and Semantics
The main concept of Gulwani et al.’s pattern representation
is the idea of locations. A location is any place in the pattern
where data is produced. In a pattern, there are two kinds of
locations: Each argument to the whole pattern is a location,
and each result of an operation is a location.

Furthermore, Gulwani et al. introduce a set of location
variables L. This set contains three kinds of location vari-
ables, which specify the locations of (1) operations, (2) op-
erations’ arguments, and (3) the pattern’s results. Thus, L
fully describes the modeled pattern. However, an assignment
to L can also model an invalid pattern. To exclude these pat-
terns, Gulwani et al. place a well-formedness constraint on
L, which we will call φwf .

Given a well-formed assignment to L, Gulwani et al.
now combine the semantics of the operations to obtain a
semantics of the whole pattern by adding two additional
constraints. The first constraint asserts that each operation’s
postcondition holds for its arguments and result. The second
constraint connects each operation’s argument with the data
produced at the argument’s location. Altogether, we obtain
the postcondition Q+ of the whole pattern.

Since we use a more general instruction model, we have
to extend Gulwani et al.’s pattern representation. First, we
support operations with multiple results by assigning multi-
ple consecutive locations to them. We model this by adapting
Gulwani et al.’s consistency constraint: Let L(o) be the lo-
cation associated with IR operation o ∈ I , and let g be the
goal instruction. Our consistency constraint is then

ψcons = distinct({0, . . . , |Sa(g)| − 1} ∪⋃
o∈I
{L(o), . . . , L(o) + |Sr(o)| − 1}),

where distinct(S) holds if all elements of S are pair-wise
distinct. This predicate is included in SMT-LIB [2] and
therefore supported by all conforming SMT solvers.

Second, we support multiple sorts. Therefore, we add
further clauses to the well-formedness constraint that restrict
an argument’s location to those locations that hold a result of
the same sort.

Example 4 (Pattern representation). We want to synthe-
size an addition instruction that loads one of its operands
from memory. The instruction has three arguments (M-value,
pointer, register-operand) and two results (M-value, sum).
Given the set of IR operations I = {Add,Load}, we ob-
tain the set of location variables L. Figure 1c shows a well-
formed assignment to L. This assignment places the oper-

ations as shown in Figure 1b and fully encodes the pattern
shown in Figure 1a.

Considering the pattern semantics Q+, we can substitute
the location variables with their assignments. This allows us
to partially evaluate Q+ until we receive the formula shown
in Figure 1c. This formula contains intermediate variables
e0 to e6, which hold the argument and result values of the
operations.

Now that we are able to represent IR patterns and their
semantics in the SMT formulas, we are able to enumerate
IR patterns and identify those patterns that match our goal
instruction.

5.2 Search Algorithm
We now refine our sketch from the beginning of Section 5 in
several steps. First, we replace the pattern p from the sketch
with the representation we developed in Section 5.1, using
the location variables L and the evaluation variables E. The
latter hold the argument and result values of the operations,
as we have already seen in Example 4. We then arrive at
the following formula, where I is again the multiset of IR
operations.

∃L : LocationVariables(I).∃vi :: S+
i (I). φwf (I) ∧

∀va :: Sa(g).∀vr :: Sr(g).∃E : EvalVariables(I).

P+(I, E, va, vi, vr) ∧Q+(I, L,E, va, vi, vr) =⇒
V +(I, E, va, vi, vr) ⊆ V (g, va, vi, vr) ∧
P (g, va, [], vr) ∧Q(g, va, [], vr)

This new formula is in principle solvable by an SMT
solver, because the variables in L are integers of finite range,
and the variables in E are constrained to single values by
Q+. However, it contains universal quantifiers, and thus
solving it still takes an impracticable amount of memory
and time. In the second refinement step, we use CEGIS to
eliminate the universal quantifiers.

For CEGIS, we need two formulas: The synthesis for-
mula (1) produces a solution that is valid for the current set
of test cases, and the verification formula (2) verifies the so-
lution or produces a counterexample test case.

We define a test case to be the list ta :: Sa(g) of pattern
arguments. The set of all current test cases is T . The synthe-
sis formula φsynth(I, T, g) is then as follows:

∃L : LocationVariables(I).∃vi :: S+
i (I). φwf (I) ∧∧

ta∈T

(
∃E : EvalVariables(I).∃vr :: Sr(g).

P+(I, E, ta, vi, vr) =⇒
V +(I, E, ta, vi, vr) ⊆ V (g, ta, vi, vr) ∧
Q+(I, L,E, ta, vi, vr) ∧

P (g, ta, [], vr) ∧Q(g, ta, [], vr)
)

(1)
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(a) IR pattern

Mem 0
Ptr 1
Op 2

Load-Mem 3
Load-Value 4

Add 5

(b) Locations

Q+(I, L,E, va, vi, vr) = Q(Load, [e0, e1], [], [e2, e3])

∧Q(Add, [e4, e5], [], [e6]) ∧ e0 = va[0] ∧ e1 = va[1]

∧ e4 = e3 ∧ e5 = va[2] ∧ vr[0] = e2 ∧ vr[1] = e6

L : lLoad = 3 lLoad-Arg0 = 0 lLoad-Arg1 = 1

lAdd = 5 lAdd-Arg0 = 4 lAdd-Arg1 = 2

lRes0 = 3 lRes1 = 5

(c) Pattern postcondition Q+ and location variables L

Figure 1: Well-formed assignment of an IR pattern to locations by location variables L. The provided SMT formulaQ+ depicts
the partially evaluated postcondition fixing the location variables as shown in the assignment to L.

In the synthesis formula, we have replaced the universal
quantifiers with a conjunction over the set of test cases.

If φsynth is satisfiable, we obtain a model for the location
variables L∗ and the internal attributes v∗i . In the next step,
we check them with this verification formula:

∃t∗a :: Sa(g).∃vr :: Sr(g).∃v′r :: Sr(g).

∃E : EvalVariables(I).

P+(I, E, t∗a, v
∗
i , vr) ∧Q+(I, L∗, E, t∗a, v

∗
i , vr) ∧

Q(g, va, [], v
′
r) ∧

(¬P (g, t∗a, [], vr) ∨ vr 6= v′r ∨
V +(I, E, t∗a, vi, vr) 6⊆ V (g, t∗a, vi, vr)) (2)

The verification formula verifies that the IR pattern repre-
sented by L∗ and v∗i is equivalent to g. It does this by search-
ing for a counterexample input t∗a, which could (1) meet the
pattern’s but not g’s precondition, (2) cause the pattern and g
to produce different results, or (3) lead to an invalid memory
access. If one of these is the case, the candidate pattern is not
equivalent to g, and we discard it. Then, we add t∗a to the set
of test cases T .

If no counterexample exists,L∗ and v∗i represent a pattern
that is equivalent to g. We can then reconstruct this pattern
from L∗ and v∗i as described by Gulwani et al. [10].

5.2.1 Finding All Patterns
Many machine instructions have multiple different equiva-
lent IR patterns. To produce a complete instruction selector,
we have to find all those patterns that can occur in input pro-
grams. However, we can assume that the compiler has per-
formed several optimizations before the instruction selection
phase. Hence, not all patterns are equally likely to occur dur-
ing instruction selection. For example, it is reasonable to as-
sume that the compiler has already simplified not(x) + 1
to −x before instruction selection. To prioritize the patterns
that are more likely to be exposed to instruction selection,
we allow operations to be annotated with a cost. The cost
of a pattern is then the sum of the costs of the operations it
consists of. Our goal is to find all equivalent patterns with
minimal cost.

The iterative CEGIS algorithm (discussed below) ex-
plores IR operation multisets in the order of increasing cost.
We only have to extend the synthesis formula to be able
to synthesize different patterns from the same multiset of
IR operations. We do this by repeating the CEGIS algo-
rithm, excluding the patterns we have already found. Let
F be the set of patterns we have already found, consisting
of pairs (Lf , vf ), where Lf : LocationVariables(I) and
vf :: S+

i (I). We then add the following condition to the
synthesis constraint to exclude patterns in F :∧

(Lf ,vf )∈F

(L 6= Lf ∨ vi 6= vf )

We refer to this algorithm as CEGISALLPATTERNS below.

5.3 Iterative CEGIS
The biggest performance issue with synthesis using classical
CEGIS is the size of I . It must contain every operation
sufficiently often to synthesize any machine instruction, but
each single machine instruction will only use a small part
of I . In iterative CEGIS, we exploit this discrepancy by
replacing one large CEGIS with several smaller ones.

The iterative CEGIS algorithm (Algorithm 3) takes the
simple set of IR operations I as input (containing each op-
eration only once). Then, it produces multisets I ′ with ele-
ments taken from I in order of increasing cost. It then uses
the I ′ as input for classical CEGIS, and forms the union of
the results. When it has found at least one result for an I ′,
the algorithm terminates after it has exhausted all multisets
of equal cost. Thus, we find all patterns with minimal cost.

Note that we do not prefer any combination of IR opera-
tions apart from those with less cost. We could easily make
the synthesis faster by preferring combinations of operations
that usually occur together in machine instructions. How-
ever, we do not want to impose any preconceptions as to the
form of machine instructions on our algorithm, and we might
not find all possible patterns if we did so.

Costly operations The iteration produces multisets in or-
der of increasing cardinality. However, if there are opera-
tions with a cost greater than 1 (costly operations), pattern



Algorithm 3 Iteration over all multisets

1: procedure MULTISETITERATION(I : {Instruction},
g : Instruction)

2: Arbitrarily order I
3: `← 1
4: R← ∅
5: while R = ∅ do
6: K = [0, . . . , 0]0≤∗<`

7: loop
8: I ′ ← {{I[K[0]], . . . , I[K[`− 1]]}}
9: Collapse I ′, skip iteration if discarded

10: Skip iteration if a skip condition holds
11: R← R ∪ CEGISALLPATTERNS(I ′, g)
12: k ← max{k | K[k] < `− 1}
13: if no k exists then
14: break
15: end if
16: K[k]← K[k] + 1
17: K[k + 1, . . . , `− 1]← [K[k], . . . ,K[k]]
18: end loop
19: `← `+ 1
20: end while
21: end procedure

cardinality is not equal to pattern cost. In order to iterate in
order of increasing cost, we collapse I ′ after generating it.
For a costly operation o of cost c, we replace c instances of
o with a single instance. If o does not occur a multiple of
c times in I ′, we discard I ′. For example, assume that the
only costly operation is Mul, with cost 2. Then, we collapse
{{Add, Mul, Mul, Store}} to {{Add, Mul, Store}}, and dis-
card {{Add, Mul, Mul, Mul, Store}}.
Skipping iterations In some cases, we can know a priori
that no valid pattern can be produced from a certain I ′. We
say that a skipping condition holds for I ′ in these cases, and
skip synthesis for it. We implement two skipping conditions:

• Assume n operations in I ′ each have only one value of
a certain sort S as their result, but there are m < n
consumers of values of S. Then, the pattern must ignore
the result of at least one of these operations (say, o), and
could have been synthesized from I ′ \ o. Because this
has lower cost than I ′, we must have already tried it
unsuccessfully, and we can thus skip synthesis for I ′.
• Assume that I ′ contains an operation that requires an

argument of sort S. In this case, we require that there
is a source of S. A source is either a pattern argument, or
an instruction that has a value of S as its result without
requiring one as its argument. If we cannot find a source,
we skip synthesis for I ′.

The second skipping condition is useful in skipping all
patterns with memory access operations if the goal instruc-
tion does not access memory.

Search space estimate In the following, we assume that
we have 22 different IR operations, of which each instruction
uses at most 6. Being totally naı̈ve, this would lead to a
classical CEGIS problem with |I| = 132. We give classical
CEGIS the benefit of the doubt though, and assume that I
contains each instruction only as often as any pattern needs
it. This comes to |I| = 25.2

To estimate the search space of both approaches, we only
consider the number of possible arrangements of compo-
nents in the pattern. In the case of classical CEGIS, there are
25! possible arrangements of instructions, which is a search
space of ≈ 284. With iterative CEGIS, we have to iterate
over

(|I|+`−1
`

)
multisets of cardinality `, each with `! pos-

sible arrangements. Taking our example numbers, we have
a search space of

∑6
`=1

(
22+`−1

`

)
· `! ≈ 228 patterns for it-

erative CEGIS. In this estimate, we have not yet taken into
account the number of possibilities to choose arguments for
operations, and the ability of iterative CEGIS to skip itera-
tions.

Of course, classical CEGIS could ignore all permutations
which differ only in locations greater than those of all pattern
results. However, it is not clear how to convey this informa-
tion to the SMT solver. Gulwani et al.’s work contains no
optimization in this respect.

5.4 Code Generation
From the results of the synthesis, we can easily extract the
IR DAG patterns required for the code generator. In order to
combine the results with those from earlier runs, or runs on
other machines, we first serialize the patterns to the pattern
database, and later reload a combined pattern list to generate
the instruction selection code.

Of course, the code generator is tightly coupled to the
targeted compiler and its instruction selection mechanism.
However, our synthesis algorithm is independent from the
type of instruction selector used, as long as that instruction
selector can work with DAG patterns. In particular, our re-
sults are suitable to generate any instruction selector dis-
cussed by Blindell [3], expect those based on macro expan-
sion.

6. Limitations
There are several areas where improvement on our work
is still possible. In some cases, we are restricted by the
available technology in SMT solving or by the interfaces we
have to conform to:

Floating-Point Arithmetic We did not cover floating-point
arithmetic at all in our work, because there is no efficient
way to use it in an SMT query at present. The SMT-LIB
project has defined a theory [2, 19], and the SMT solver Z3
has preliminary support for it, but uses a “bit-blaster”.

2 An addition with its destination operand in memory and full address mode
needs the following set of operations: Scale, Add, Add, Load, Add, Store



A bit-blaster takes an SMT query, and, without further
optimization, translates it to a SAT query, which it then
solves. Because any knowledge of the underlying arithmetic
is lost in this process, the performance is not acceptable for
our needs.

Patterns with Multiple Roots A DAG-matching instruc-
tion selector requires all IR patterns to have a single root
node, i.e. a node from which the whole pattern is reachable,
and which produces all the pattern’s results.

However, the x86 instruction set has instructions which
load an operand from memory and then perform an arith-
metic operation on it. These instructions do not have a sin-
gle root: The Load operation produces a new M-value as its
result, which is not used by the arithmetic operation, but is a
result of the whole pattern.

The compiler we integrate with treats these “source ad-
dress mode” instructions specially. In order to support at
least this important class of multiply-rooted patterns, we
replicate its behavior.

This limitation is only due to our need to integrate the
synthesized instruction selector with an existing compiler. If
we were to design an instruction selector form scratch, we
could work around this problem.

Other limitations are due to our program representation
and search algorithm:

Different bit widths Currently, we only synthesize instruc-
tions for 32 bit wide values. There are three approaches to
this problem, none of which is satisfactory:

• We can run separate syntheses for the different bit widths.
This approach has tolerable performance, but cannot ex-
ploit interactions between operations with different bit
widths. For example, the x86 instruction setcc only op-
erates on 8-bit-registers but can still be useful for other
bit widths.
• We can include IR operations for all bit widths in our syn-

thesis. With our present synthesis algorithm, adding IR
operations has exponential performance impact. There-
fore, we would have to restrict ourselves to patterns of
approximately size 3.
• We can model instructions in a way that they can stand

in for their smaller counterparts if possible. For exam-
ple, a 32-bit addition can also implement a 16- oder
8-bit addition, but a right-shift instruction only works
in one bit width. This approach requires us to model
unknown bits, because some smaller-width instructions
(e.g. Loads) leave the upper bits of their destination in an
undefined state. The possibility of unknown bits makes
all models more complicated, and again hinders synthe-
sis performance.

Patterns with loops Our pattern representation can only
handle straight-line programs. The representation can sup-
port conditional assignments, but not actual conditional ex-

ecution or loops. We have this restriction, because SMT
solvers cannot work with recursive definitions, and therefore
also not with unbounded loops.

In program verification, a standard technique is to unroll
loops a limited number of times. Using this approach, we
could synthesize instructions with fixed iteration length (e.g.
SIMD instructions). We could synthesize a pattern with the
loop unrolled, and then “roll up” the loop for the purposes
of matching. However, our current approach does not scale
to the necessary size of pattern.

Unrolling or rolling up loops is only possible for synthe-
sis if the number of iterations is fixed. When this is not the
case (e.g. with x86’s rep prefix), we need more powerful
synthesis tools. A fixpoint engine [12] is now part of Z3,
although it has not yet been used in program synthesis.

Multiplication and Division Bit vector multiplication and
division are especially hard for SMT solvers: The bit-wise
definition of multiplication is quadratic in the bit-width
of the operand, and division is usually specified indirectly
through multiplication. With our tool, we made the follow-
ing observations: We can provide multiplication operations
as parts of our set I without much performance impact. If
we try to synthesize a multiplication machine instruction,
we can rule out wrong patterns with the same speed as
with other goal instructions. It is only the verification of
the correct pattern that takes impractically long (more than 8
hours). In practice, one might choose to put a timeout on the
verification and accept any pattern where verification times
out. We chose not to do this, as it compromises the provable
correctness of the generated instruction selection.

On the other hand, the performance of SMT solvers in the
face of division operations is insufficient for our needs, and
we chose to exclude division from our set of IR operations.

7. Evaluation
In this section, we evaluate the instruction selection synthe-
sis as well as the quality of the resulting instruction selection.

7.1 Setup
For the evaluation, our goal is to generate a (partial) instruc-
tion selection for the LIBFIRM compiler [15]. Since LIB-
FIRM provides a well-tuned 32-bit x86 backend, we choose
x86 as our target architecture. We provided bit-vector for-
mulas for LIBFIRM’s IR operations and our target set of 32-
bit x86 integer instructions. We also extended our synthesis
tool to generate matcher code for LIBFIRM’s greedy instruc-
tion selection algorithm. The resulting instruction selection
first checks the synthesized patterns and falls back to exist-
ing patterns if no synthesized pattern matches.

We consider two setups for the synthesis: The basic setup
only contains the register variants of the machine instruc-
tions, whereas the full setup contains all variants. The two
setups aim for different goals. The basic setup wants to min-
imize the synthesis time while having the same IR coverage



as the full setup. On the other hand, the full setup wants to
maximize the quality of the instruction selection at the costs
of an increased synthesis time. Since our modular approach
allows to iteratively add new goal instructions to the basic
setup, the two chosen setups shows the range of all possible
setups with the same IR coverage.

The synthesis as well as the measurements are per per-
formed on an Intel Core i7-3770 3.40GHz with 16GB
RAM. The machine runs a 64-bit Ubuntu 16.10 distribution
that uses the 4.8.0-26-generic version of the Linux kernel.

7.2 Synthesis
In the following, we want to investigate the synthesis time.
Since we allow for a modular synthesis, we first synthesize
the basic setup and iteratively extend the resulting instruc-
tion selection by synthesizing all variants of several instruc-
tion groups.

Table 2 shows the chosen instruction groups and the cor-
responding synthesis time. The synthesis time strongly de-
pends on the maximum pattern size and ranges from a few
seconds to several hours for a single goal instruction. For the
basic setup, we need 2min 39 s to synthesize the patterns
and 1 s to generate the instruction selection code. Based on
this setup, we can improve the quality of the instruction se-
lection by incrementally adding more complex goal instruc-
tions. Eventually, this leads to the full setup, which needs
110 h 53min 04 s to synthesize the patterns and 1min 47 s
to generate the instruction selection code.

For a comparison with Gulwani et al.’s approach [10], we
adapt our tool to use classical CEGIS instead of our itera-
tive approach. We then tried to synthesize an x86 addition
instruction with its destination in memory. This instruction
uses 3 IR operations (Load, Add, Store) and takes 7.7 sec-
onds to synthesize with our iterative approach. Running the
classical CEGIS algorithm on the same machine, the synthe-
sis did not finish within 64 hours.

7.3 Generated Instruction Selection
In this section, we want to evaluate the quality of our gen-
erated instruction selector. For this purpose, we compile the
SPEC CINT2000 benchmarks with our generated instruction
selector and the existing instruction selector of LIBFIRM.
When compiling with the generated instruction selector, we
measure the ratio of IR operations that it can translate. Fur-
thermore, we compare the time taken by the instruction se-
lection phase, as well as the runtime and number of executed
instructions of the generated executables.

When comparing the time taken by the instruction selec-
tor, we observe that the basic setup takes about 2.39× as
long as the existing instruction selector, with the whole com-
piler backend taking 16% longer. However, the full setup
takes 212× as long as the existing instruction selector, and
the whole backend takes 13.6× as long. We suspect that this
is due to two factors. First, our code generator is a prototype
that matches one pattern at a time. With a more advanced

Group #Goals Patterns Synthesis Time

# Size

Basic 26 381 5 2min 39 s

LoadAM 16 141 5 8min 53 s
StoreAM 16 141 5 5min 30 s
UnopAM 46 532 7 32 h 43min 47 s
BinopAM 170 2556 7 43 h 49min 37 s
Shift 51 426 7 25 h 48min 43 s
Lea 13 136 4 2min 05 s
UnopExtra 2 30 3 13 s
BinopExtra 6 78 5 23min 02 s
Flags 36 19776 7 7 h 48min 35 s

Total 382 24197 7 110 h 53min 04 s

Table 2: Synthesis time for different groups of goal instruc-
tions. For each instruction group, we also depict the num-
ber of goal instructions, the number of synthesized patterns,
and the maximum pattern size. Starting with LoadAM, the
instruction groups contain multiple variants of the follow-
ing x86 instructions: mov; mov; neg, not, inc, dec; add,
and, or, sub, xor; shl, shr, sar; lea; blsi, blsr; btc,
btr, bts, andn, rol, ror; cmp, test, jcc , jmp. In contrast,
the basic setup only contains the basic variants of these in-
structions, excluding add, blsi, blsr, btc, btr, bts, andn,
rol, and ror.

pattern matching algorithm, we expect a significant perfor-
mance improvement. Second, we did not exploit normaliza-
tion invariants of the IR that allow the existing instruction
selector to consider fewer patterns.

Considering the coverage of our instruction selector, Ta-
ble 3 shows that it transforms 70.96% of all IR operations
on average. The remaining operations include function calls,
operations involving other bit widths than 32 bit, and vari-
adic φ-functions.

Table 3 also compares the runtime of the generated exe-
cutables. The depicted times show the average of 20 execu-
tions. Compared to the handwritten instruction selector, the
full and basic setup increases the average runtime by 1.44%
and 8.73%, respectively. However, the 255.vortex bench-
mark shows an significant improvement of the synthesized
instruction selector compared to the handwritten one. On the
other hand, the 186.crafty benchmark shows an increased
runtime of 124.74% with the basic setup. This slowdown
originates in the extensive use of bit operations and demon-
strates the importance of a good instruction selection.

Since measured execution times may vary, we back up
our measurements by using the valgrind tool [17] to count
the number of executed instructions. Table 4 shows the cor-
responding results for executables generated by the different
instruction selectors. In general, the differences in the num-
ber of instructions are more significant than the measured



Benchmark Synthesized Handwritten Full
Handwritten

Basic
Handwritten

Coverage Full Basic

164.gzip 60.09% 61.56 s 63.82 s 61.08 s 100.78% 104.48%
175.vpr 61.51% 49.18 s 49.84 s 47.06 s 104.49% 105.91%
176.gcc 77.10% 24.25 s 25.79 s 23.87 s 101.59% 108.07%
181.mcf 86.89% 21.47 s 22.80 s 21.27 s 100.93% 107.17%
186.crafty 81.19% 30.45 s 37.35 s 29.94 s 101.71% 124.74%
197.parser 71.00% 58.97 s 63.84 s 58.26 s 101.22% 109.57%
253.perlbmk 70.58% 55.21 s 59.96 s 52.26 s 105.66% 114.75%
254.gap 65.12% 27.69 s 28.97 s 27.03 s 102.41% 107.16%
255.vortex 75.12% 45.95 s 49.70 s 47.17 s 97.42% 105.38%
256.bzip2 67.83% 49.45 s 52.43 s 49.76 s 99.37% 105.36%
300.twolf 68.70% 64.89 s 67.79 s 64.56 s 100.51% 105.01%

Geom. Mean 70.96% 101.44% 108.73%

Table 3: Run time of generated executables for different instruction selections. Handwritten refers to the greedy instruction
selection implemented in LIBFIRM, whereas Full and Basic refers to the synthesized instruction selections using the corre-
sponding synthesis setups. The coverage column shows the ratio of IR operations translated by the synthesized instruction
selector.

Benchmark Handwritten Full Basic Full
Handwritten

Basic
Handwritten

164.gzip 301 855 577 776 316 947 791 760 364 496 778 614 105.00% 120.75%
175.vpr 217 958 003 605 222 590 751 625 273 515 990 579 102.13% 125.49%
176.gcc 163 070 829 641 172 735 606 140 206 999 343 151 105.93% 126.94%
181.mcf 51 077 666 177 55 014 576 850 76 335 823 489 107.71% 149.45%
186.crafty 214 948 836 004 223 875 650 189 305 758 329 884 104.15% 142.25%
197.parser 307 070 154 893 323 238 607 369 401 109 642 519 105.27% 130.62%
253.perlbmk omitted due to lacking setjmp/longjmp support in valgrind
254.gap 227 067 494 209 235 902 934 180 262 257 771 410 103.89% 115.50%
255.vortex 387 761 541 189 384 183 996 563 470 292 189 160 99.08% 121.28%
256.bzip2 308 801 052 992 326 790 033 610 387 667 595 529 105.83% 125.54%
300.twolf 302 318 550 069 303 323 066 348 361 535 199 684 100.33% 119.59%

Geom. Mean 103.90% 127.36%

Table 4: Number of executed instructions of generated executables for different instruction selections. Handwritten refers to the
greedy instruction selection implemented in LIBFIRM, whereas Full and Basic refers to the synthesized instruction selections
using the corresponding synthesis setups.

runtimes, since the processor can compensate a bad instruc-
tion selection to a certain degree.

8. Conclusion
In this paper, we presented a fully automatic approach to cre-
ate provably correct rule libraries for instruction selection.
Our approach is based on template-based counter-example
guided synthesis (CEGIS), a technique to automatically syn-
thesize programs that are correct with respect to a formal
specification. We overcome several shortcomings of an ex-
isting SMT-based CEGIS approach, which was not applica-
ble to our setting in the first place. We propose a novel way

of handling memory operations and show how the search
space can be iteratively explored to synthesize rules that are
relevant for instruction selection.

Our approach automatically synthesized a large part of
the integer arithmetic rules for the x86 architecture within a
few days where existing techniques could not deliver a sub-
stantial rule library within weeks. With respect to the run-
time of the compiled programs, we show that the synthesized
rules are close to a manually-tuned instruction selector.
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[19] P. Rümmer and T. Wahl. An SMT-LIB theory of binary
floating-point arithmetic. In Informal proceedings of 8th Inter-
national Workshop on Satisfiability Modulo Theories (SMT) at
FLoC, Edinburgh, Scotland, 2010.

[20] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superopti-
mization. In Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 305–316, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1870-9. doi:
10.1145/2451116.2451150.

http://llvm.org/docs/LangRef.html#instruction-reference
http://llvm.org/docs/LangRef.html#instruction-reference
http://www.smt-lib.org
http://www.smt-lib.org
http://dl.acm.org/citation.cfm?id=1375657
http://dl.acm.org/citation.cfm?id=1375657
http://dl.acm.org/citation.cfm?id=1356058
http://dl.acm.org/citation.cfm?id=1356058
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9012
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9012
http://libfirm.org
http://www.usenix.org/publications/library/proceedings/jvm01/paleczny.html
http://www.usenix.org/publications/library/proceedings/jvm01/paleczny.html


[21] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press,
Cambridge, MA, USA, 1983. ISBN 9780262192187.

[22] C. Sinz, S. Falke, and F. Merz. A precise memory model for
low-level bounded model checking. In Proceedings of the 5th
International Conference on Systems Software Verification,
SSV’10, pages 1–9, Berkeley, CA, USA, 2010. USENIX As-
sociation. URL http://dl.acm.org/citation.cfm?id=

1929004.1929011.

[23] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs. In
Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 404–415, New York, NY, USA,
2006. ACM. ISBN 978-1595934512. doi: 10.1145/1168857.
1168907.

[24] H. S. Warren Jr. Hacker’s Delight. Addison-Wesley Profes-
sional, 2nd edition, 2012. ISBN 9780321842688.

http://dl.acm.org/citation.cfm?id=1929004.1929011
http://dl.acm.org/citation.cfm?id=1929004.1929011


 
KIT Scientific Working Papers 
ISSN 2194-1629

www.kit.edu
KIT – The Research University in the Helmholtz Association


	Introduction
	Preliminaries and Related Work
	Instruction Selection
	Generating Instruction Selectors
	Satisfiability Modulo Theories
	Synthesis
	Formal Instruction Semantics

	Overview
	Modeling Instructions
	Memory Access
	Control Flow
	Compound instructions

	Instruction Selection Synthesis
	Pattern Representation and Semantics
	Search Algorithm
	Finding All Patterns

	Iterative CEGIS
	Code Generation

	Limitations
	Evaluation
	Setup
	Synthesis
	Generated Instruction Selection

	Conclusion

