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Abstract
Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters

under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a

nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers

for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic

devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illus-

trate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.
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Introduction
Efficient transducers that allow converting electrical signals into

optical ones and vice versa are essential ingredients for

emerging applications in on-chip optoelectronic circuits. In par-

ticular, nanoscale transducers that can be seamlessly integrated

into optical waveguide structures are needed to enable on-chip

data communication in devices with small footprint. In this

context carbon nanotubes (CNTs) have been identified as prom-

ising active components [1,2]. As a first step towards CNT-

based optoelectronic photonic devices, light generation in wave-

guide-like electrodes [3] and optical waveguides [4-6] via elec-

trically driven CNTs has been demonstrated. Very recently

electroluminescent CNTs integrated into photonic circuits
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emerged as sources of non-classical light [7]. Besides electrical

drive, optically stimulated light emission from CNTs coupled

into waveguides [8] and to cavities [9] has been achieved. It

was demonstrated, that the wavelength and the line shape of a

CNT emission can be tailored by the photonic environment

[6,10]. Beyond continuous wave generation of light, an impor-

tant aspect that needs to be addressed is the question of how fast

a waveguide-coupled CNT transducer can respond to an elec-

trical signal. Indeed, time-dependent incandescence from a

CNT film in free-space has been measured [11] and modulation

of CNT emission with decay times below 250 ps has been

shown [6]. The intrinsic characteristic timescale for CNT incan-

descence is expected to be of the order of 10 ps, estimated from

the heat capacitance of the CNTs and the thermal coupling to

the dielectric substrate and metallic leads [11]. Hence, CNT-

based transducers operating at 100 GHz seem to be possible.

In this work, we investigated the dynamic response and cou-

pling efficiency of waveguide-coupled CNT transducers to elec-

trical signals and analyze the optical pulses propagating in the

waveguide.

Results and Discussion
Fabrication of waveguide-integrated CNT
emitters
Our waveguide-coupled CNT (WG-CNT) transducers consist of

three components: a rib waveguide, metallic contacts next to the

waveguide, and metallic single-walled carbon nanotubes

(SWCNTs) placed on top of the waveguide, bridging the

contacts (Figure 1a). We use the design and fabrication ap-

proach for our samples that has been described in detail else-

where [4]. Both electrodes and waveguides were defined

using several steps of electron beam lithography on top of

Si3N4/SiO2/Si substrate. Au/Cr contacts were produced by

physical vapor deposition, and 600 nm wide, half-etched Si3N4-

waveguides were formed with reactive ion etching. A typical

sample contains tens of contact pairs and CNTs that were

placed in between using dielectrophoresis (DEP) [12,13]. DEP

allows for site-selective placement of CNTs onto electrodes

with their long axis aligned perpendicular to the waveguide [4].

We used gel-filtrated metallic CNTs obtained from HiPco mate-

rial [14]. The deposition density has been varied in the range of

1–100 CNTs per 1 µm waveguide length. After DEP the sam-

ples were baked for 1.5 h at 150 °C in ambient air in an oven to

improve the contact adhesion. Several waveguide coupled CNT

devices are shown in Figure 1a.

By connecting the driving electrodes of the CNT to a modu-

lated voltage source, the nanoscale emitter can be driven into

incandescence. We employ a pulse generator (Agilent 8131A

for long pulses and Agilent 8133A for short electrical pulses) in

Figure 1: (a) Waveguide-integrated CNT transducers. False-colored
scanning electron image of the waveguides (purple), horizontally
aligned between metallic contacts (yellow). The CNTs can be seen as
thin vertical lines between the electrodes crossing the waveguides.
The density of CNTs varies from ca. 100 µm−1 to ca. 10 µm−1 to
ca. 3 µm−1 (SEM images from the top to the bottom). (b) Emission
spectra from a waveguide-integrated CNT transducer, driven with
200 ns electrical pulses at 200 kHz repetition rate for
2.5 VDC + 2 Vpulse (blue circles) and 2.5 VDC + 3 Vpulse (red squares).
The full lines are fits to a black-body radiation curve modulated by a
substrate-induced interference. The thermal emitter temperature from
the fit is 1217 K (1390 K). Inset: spatially resolved light emission from a
CNT emitter driven with 100 ns electrical pulses at 200 kHz rate for
Vpulse = 2.0, 2.2, 2.4 V.

combination with a Keithley 6430 source-meter for additional

DC-biasing via a bias tee (ZFBT-6GHz, Mini-Circuits) to apply

a time-varying voltage to the driving electrodes. Light emission

from WG-CNT transducers was characterized with both a free-

space setup and a fiber-coupled system. The free-space setup

allows for the spatial and spectral analysis of light emitted from

a transducer along the surface normal. The fiber-coupled system

is dedicated to analyzing short light pulses, emitted by the trans-

ducer, and propagating within the waveguide.

Light emission from waveguide-coupled
CNTs under pulsed excitation
For analysis with the free-space setup, the transducers were

placed in a lighttight system comprising of a Zeiss AxioTech

Vario microscope, directly attached to an Acton SpectraPro

2360 spectrometer. The latter consists of a switchable mirror

and grating, and is equipped with a PIXIS 256E CCD camera

(Princeton Instruments) [15]. The spectrum of the light, emitted

at the position of the CNT, is shown in Figure 1b, while the

spatial distribution of the emission is presented in the inset. The

signal intensity increases towards longer wavelengths with a

superimposed intensity modulation. This behavior is character-

istic for an incandescent emitter on a layered substrate that leads

to interference fringes in the spectral profile, as observed for

light emitting CNTs [4] and graphene [16]. The emitter temper-

ature was extracted by fitting the data to a Planck spectrum
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Figure 2: (a) Normalized total intensity Inorm versus 1/V under variation of electrical pulse width, w, and duty cycle, D. The full line is a fit to the data.
Data acquired with an additional offset voltage VDC = 1.5 V is labeled with green and yellow symbols, data acquired without offset is shown as blue
symbols. The inset schematically illustrates two biasing schemes. All measurements refer to light propagating along the surface normal collected with
the free-space setup. (b) Simulation of the temperature-dependent total intensity of the incandescent light collected with a CCD camera
Iintegrated,mod(T) (red symbols), compared with exponential (red line) and power law (blue line) fits. Inset: Simulated spectra Ispectral,mod(λ,T) of incan-
descent light sources emitting at the indicated temperatures. The shape of the spectra deviates from the Planck curve Itherm(λ,T) because of the spec-
tral sensitivity of the detector S(λ).

modulated by the substrate-induced interference [3]. Depending

on the density of the CNTs as well as the biasing conditions,

the temperature of the emitter lies within the range of 1000 to

1500 K, and increases with the pulse amplitude. The tempera-

ture of the CNT in the pulsed regime is similar to temperatures

reached under DC-biasing [4,17].

For a comprehensive characterization of the emitter response to

a modulated electrical signal, we varied the pulse amplitude

Vpulse, the pulse width w, pulse period T, and thereby the duty

cycle D = w/T. We measured the total intensity of the incandes-

cent CNT emitters, IE, for each parameter set. Emission is ob-

served above a device-dependent threshold Vth of about 1.5 V,

which is independent of w and D over a broad frequency range,

as shown in Figure 2a for contacts with similar CNT-density.

The maximum RF amplitude of the pulse generator was not

always sufficiently high to record light emission. Therefore a

device-specific DC offset VDC ≤ Vth was applied to raise the

emission count rate slightly below the dark count rate of the

system without RF contribution (Figure 2a, green and yellow

symbols).

The emission was remarkably stable over hours. As expected,

the absolute intensity depends on the duty cycle. Therefore, to

consolidate all data sets into one graph, we have plotted in

Figure 2a the normalized intensity Inorm = IE/D for pulses with

10 to 1000 ns width and duty cycles ranging from 0.002 to 0.2.

As a general trend we observe that Inorm increases with

V = Vpulse + VDC by four orders of magnitude. Moreover, by

plotting Inorm on a logarithmic scale against the inverse voltage

V−1, the data collapses onto a straight line. This establishes the

dependence . For further understanding it is im-

portant to realize that the emission has been recorded in the

high-bias regime where the current through the CNT reaches

saturation, and the dissipated power and, hence, the tempera-

ture increases linearly with voltage [18-20]. As a result

 can be converted into , similar

to previous measurements with metallic CNTs [17]. To ratio-

nalize this dependence we have modeled the temperature-de-

pendent spectral distribution Ispectral,mod(λ,T) as the product of

the Planck spectrum Itherm(λ,T) and the spectral sensitivity of

the detector S(λ) and plotted the result in the inset of Figure 2b.

For simplicity, we have approximated the sensitivity of our

detector by a Gaussian spectral profile centered at 830 nm and a

FWHM of about 250 nm. From these spectra we calculated the

wavelength-integrated, temperature-dependent intensity of the

collected light Iintegrated,mod(T) presented in Figure 2b (red

symbols). Since the limited detection range of the CCD camera

allows for the detection of broadband CNT-emitted light only

for hc/λ >> kT, the temperature dependence of Iintegrated,mod(T)

can be described using Wien’s approximation of Planck’s law.
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Figure 3: (a) Spatially resolved light emission showing intensity at the position of the CNT emitter and the grating coupler. The device geometry is in-
dicated with white lines. The dashed lines mark the waveguide. (b) Integrated intensity recorded at the grating couplers 2IC over the sum of intensi-
ties measured at the CNT emitter and grating couplers IE + 2IC. The data were collected for three devices (blue, red and yellow symbols) in the free-
space setup. A linear fit to the data provides an average coupling efficiency η ≈ 0.48. (c) Coupling efficiency for pulsed emitters with duty cycles of 0.5
(blue symbols) and 0.025 (red symbols).

The best fit to the modelled data is the function 

with the energy E = 1.5 eV (830 nm) corresponding to the

maximum spectral sensitivity of our detector. Alternatively, the

often considered power-law fit was tested, which requires

assuming a temperature offset T0. However even the closest fit

with T0 = 850 K does not match the data well and can be used

only as an approximation for higher temperatures.

Before discussing the generation of short light pulses in wave-

guides we would like to comment on the efficiency of the cou-

pling of evanescent light from the CNT emitter into the wave-

guide. To determine the coupling efficiency we compare the

emission recorded above the emitter IE with the emission re-

corded above the Bragg grating coupler IC. The grating coupler

serves to couple out light from the waveguide into free space. A

spatially resolved emission measured on a device with a short

waveguide is shown in Figure 3a.

The coupling efficiency of pulsed CNT emitters can then be

calculated by η ≥ 2IC/(IE + 2IC). Since we cannot account for

loss of light due to interaction with the substrate or emission

under shallow angle, we are actually considering an apparent

coupling efficiency. The data measured with three devices in

the broad intensity range provide an average value of η ≈ 0.48

(Figure 3b). The value of η varies in the range between 45%

and 55% independent of the emission intensity and pulse width,

as shown in Figure 3c. It is also comparable to previous results

with DC-biased WG-CNTs [4] and exceeds the calculated

values for electroluminescent CNT emitters on a SOI-wave-

guide by a factor of 1.5 to 2 [21].

Optical pulses from waveguide-coupled
CNTs
Finally we discuss light-pulse propagation in the waveguide

studied with a fiber-coupled system. In contrast to the free-

space setup, the fiber-coupled setup provides no spectral resolu-

tion, but allows us to resolve pulses with sub-nanosecond reso-

lution in the time domain.

The operation principle is shown in Figure 4a. The CNTs were

driven with electrical pulses applied with a pulse generator to

the source and drain contacts via an RF-probe (Cascade

Microtech). Waveguided light pulses were partly coupled out

via Bragg grating couplers, designed with a central wavelength

750 ± 20 nm for guiding light into an optical fiber. Optical

pulses were measured with either a single-photon avalanche

detector (τ-SPAD-100, PicoQuant) or a superconducting nano-

wire single-photon detector [22] (SNSPD or SSPD,

SCONTEL). The photon arrival times were accumulated into a

histogram with 4 ps bin size using a time-correlated single-

photon counting (TCSPC) unit [23] (Picoharp 300, PicoQuant),

triggered by the time-synchronized pulse generator. This allows

for the measurement of time-resolved, low-intensity signals and

an estimation of the emission decay. The light collection effi-
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Figure 4: (a) WG-CNT transducer characterized by the fiber-coupled setup. (b) Comparison of electrical pulses with TCSPC-histograms of optical
pulses, measured at a grating coupler. (c) Sequence of electrical pulses (150 ps width, 2 GHz, 10 VDC and 3.3 Vpulse) as well as emission pulses.
(d) Normalized fast Fourier transform (FFT) spectra of modulated CNTs, emitting at frequencies of 0.2, 0.5, 1 and 2 GHz. (e) The decay of the CNT-
emission following the trailing edge of an electrical pulse (black line) was measured with the slow SPAD (blue symbols) and fast SNSPD (red
symbols) along with fitted exponential decay curve (decay time τ = 79 ps). The broadening of the electrical signal along with a small bump at 0.4 ns
occurs because of impedance mismatch.

ciency of the fiber-coupled system is several orders of magni-

tude lower than that of the free-space setup. This is due to the

limited bandwidth of the grating coupler (ca. 50 nm) and the

lower numerical aperture of the fiber (NA = 0.14) compared to

the microscope objective (NA = 0.42). To partially compensate

the lower detection efficiency, we operated the devices at higher

voltages under vacuum conditions (10−5 to 10−7 mbar). The in-

tegration time was typically set to 1–30 minutes for maxi-

mizing the signal to noise ratio. The acquired histogram was

averaged over many cycles. The count rate under RF pulses was

typically 1 kHz to 1 MHz.

Figure 4b shows the time-resolved optical emission versus the

electrical signal amplitude applied with the pulse generator. The

optical signal of the WG-CNT transducers follows the elec-

trical signal for a pulse width ranging from 5 to 200 ns, albeit

deviations are clearly visible. The dips at the relative times of

25 and 75 ns, after the electrical bias was switched on, might

originate from the impedance mismatch between the pulse

generator output and the RF probe along with on-chip electrical

wiring. Upon switching the electrical signal on and off, we

observe a fast initial response on a sub-nanosecond timescale,

followed by an additional slower response on the scale of

10–100 ns. A similar behavior has been observed with electri-

cally biased SWCNT films and was attributed to fast heating of

SWCNTs and slow heating of the substrate [11]. We believe

that this interpretation holds also for the response of our

WG-CNT transducers. However, for shorter pulses the slow

heating does not set in before the end of the pulse, as shown in

Figure 4c. The data demonstrates a sequence of 150 ps wide

pulses at 2 GHz repetition rate, which constitutes the fastest

modulation for CNT transducers so far. The Fourier transfor-
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mations of TSCPC histograms demonstrate the modulation of

photon emission measured with different devices at 200 MHz,

500 MHz, 1 GHz and 2 GHz (Figure 4d). Higher repetition

rates are limited by the setup.

In theory, the characteristic timescale of a thermal emitter τtherm

solely depends on the mass density ρCNT, the specific heat ca-

pacitance cCNT, and thermal conductance g between the

CNTs and the substrate, as pointed out previously [11,19]:

τtherm = ρCNT·cCNT/g. For our CNTs with a diameter of

0.8–1.2 nm at 1000–1500 K, ρCNT varies between 0.7·10−15 and

1.8·10−15 kg/m, g is in the range of 0.1–0.3 W/K·m [19] and

cCNT = 2500–3900 Ws/kg·K [24]. cCNT and consequently τtherm

increases with CNT diameter and with temperature. The calcu-

lated τtherm for the parameter range given above is 5–70 ps,

making CNTs an ultra-fast thermal light source.

Indeed by using an ultra-fast single-photon detector, we were

able to prove that our WG-CNT transducers have a character-

istic time scale for signal conversion of about 80 ps. Figure 4e

shows measurements using single-photon detectors with differ-

ent time resolutions given by the timing jitter of the detectors

(350 ps for τ-SPAD and 40 ps for SNSPD for a wavelength

range of 700–900 nm).

Upon switching off the electrical signal, the emission intensity

decays exponentially. Experimentally, τtherm extracted from a

time-domain histogram (Figure 4e, measured with SNSPD) is

somewhat larger than the theoretically expected value, which

could be due to the decay time of electrical pulses τpulse ≈ 80 ps,

as measured on chip (Figure 4e, black line). Moreover, the

cumulative timing jitter of detector, pulse generator and connec-

tors lead to additional broadening of the light pulse and thus

increase of the measured decay time. Due to these instrumental

restrictions, we are not able to determine the upper limit of the

switching rate for the presented waveguide-coupled CNT-based

light emitter. However, even the demonstrated rates are excep-

tionally high for an integrated thermal emitter on chip. Both

dense films as well as single CNTs emerge as reproducible,

stable light sources in the gigahertz range within our experi-

mental resolution.
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